reiserfs: Use kstrdup instead of kmalloc/strcpy
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / ext2 / inode.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/ext2/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23 */
24
1da177e4
LT
25#include <linux/time.h>
26#include <linux/highuid.h>
27#include <linux/pagemap.h>
28#include <linux/quotaops.h>
1da177e4
LT
29#include <linux/writeback.h>
30#include <linux/buffer_head.h>
31#include <linux/mpage.h>
68c9d702 32#include <linux/fiemap.h>
8d6d0c4d 33#include <linux/namei.h>
1da177e4
LT
34#include "ext2.h"
35#include "acl.h"
6d79125b 36#include "xip.h"
1da177e4 37
a9185b41
CH
38static int __ext2_write_inode(struct inode *inode, int do_sync);
39
1da177e4
LT
40/*
41 * Test whether an inode is a fast symlink.
42 */
43static inline int ext2_inode_is_fast_symlink(struct inode *inode)
44{
45 int ea_blocks = EXT2_I(inode)->i_file_acl ?
46 (inode->i_sb->s_blocksize >> 9) : 0;
47
48 return (S_ISLNK(inode->i_mode) &&
49 inode->i_blocks - ea_blocks == 0);
50}
51
737f2e93 52static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
53
54static void ext2_write_failed(struct address_space *mapping, loff_t to)
55{
56 struct inode *inode = mapping->host;
57
58 if (to > inode->i_size) {
59 truncate_pagecache(inode, to, inode->i_size);
60 ext2_truncate_blocks(inode, inode->i_size);
61 }
62}
63
1da177e4
LT
64/*
65 * Called at the last iput() if i_nlink is zero.
66 */
72edc4d0 67void ext2_evict_inode(struct inode * inode)
1da177e4 68{
72edc4d0
AV
69 struct ext2_block_alloc_info *rsv;
70 int want_delete = 0;
71
72 if (!inode->i_nlink && !is_bad_inode(inode)) {
73 want_delete = 1;
871a2931 74 dquot_initialize(inode);
72edc4d0
AV
75 } else {
76 dquot_drop(inode);
77 }
78
fef26658
MF
79 truncate_inode_pages(&inode->i_data, 0);
80
72edc4d0 81 if (want_delete) {
1e8b212f 82 sb_start_intwrite(inode->i_sb);
72edc4d0
AV
83 /* set dtime */
84 EXT2_I(inode)->i_dtime = get_seconds();
85 mark_inode_dirty(inode);
86 __ext2_write_inode(inode, inode_needs_sync(inode));
87 /* truncate to 0 */
88 inode->i_size = 0;
89 if (inode->i_blocks)
90 ext2_truncate_blocks(inode, 0);
91 }
92
93 invalidate_inode_buffers(inode);
dbd5768f 94 clear_inode(inode);
1da177e4 95
72edc4d0
AV
96 ext2_discard_reservation(inode);
97 rsv = EXT2_I(inode)->i_block_alloc_info;
98 EXT2_I(inode)->i_block_alloc_info = NULL;
99 if (unlikely(rsv))
100 kfree(rsv);
1da177e4 101
1e8b212f 102 if (want_delete) {
72edc4d0 103 ext2_free_inode(inode);
1e8b212f
JK
104 sb_end_intwrite(inode->i_sb);
105 }
1da177e4
LT
106}
107
1da177e4
LT
108typedef struct {
109 __le32 *p;
110 __le32 key;
111 struct buffer_head *bh;
112} Indirect;
113
114static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
115{
116 p->key = *(p->p = v);
117 p->bh = bh;
118}
119
120static inline int verify_chain(Indirect *from, Indirect *to)
121{
122 while (from <= to && from->key == *from->p)
123 from++;
124 return (from > to);
125}
126
127/**
128 * ext2_block_to_path - parse the block number into array of offsets
129 * @inode: inode in question (we are only interested in its superblock)
130 * @i_block: block number to be parsed
131 * @offsets: array to store the offsets in
132 * @boundary: set this non-zero if the referred-to block is likely to be
133 * followed (on disk) by an indirect block.
134 * To store the locations of file's data ext2 uses a data structure common
135 * for UNIX filesystems - tree of pointers anchored in the inode, with
136 * data blocks at leaves and indirect blocks in intermediate nodes.
137 * This function translates the block number into path in that tree -
138 * return value is the path length and @offsets[n] is the offset of
139 * pointer to (n+1)th node in the nth one. If @block is out of range
140 * (negative or too large) warning is printed and zero returned.
141 *
142 * Note: function doesn't find node addresses, so no IO is needed. All
143 * we need to know is the capacity of indirect blocks (taken from the
144 * inode->i_sb).
145 */
146
147/*
148 * Portability note: the last comparison (check that we fit into triple
149 * indirect block) is spelled differently, because otherwise on an
150 * architecture with 32-bit longs and 8Kb pages we might get into trouble
151 * if our filesystem had 8Kb blocks. We might use long long, but that would
152 * kill us on x86. Oh, well, at least the sign propagation does not matter -
153 * i_block would have to be negative in the very beginning, so we would not
154 * get there at all.
155 */
156
157static int ext2_block_to_path(struct inode *inode,
158 long i_block, int offsets[4], int *boundary)
159{
160 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
161 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
162 const long direct_blocks = EXT2_NDIR_BLOCKS,
163 indirect_blocks = ptrs,
164 double_blocks = (1 << (ptrs_bits * 2));
165 int n = 0;
166 int final = 0;
167
168 if (i_block < 0) {
2314b07c
AF
169 ext2_msg(inode->i_sb, KERN_WARNING,
170 "warning: %s: block < 0", __func__);
1da177e4
LT
171 } else if (i_block < direct_blocks) {
172 offsets[n++] = i_block;
173 final = direct_blocks;
174 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
175 offsets[n++] = EXT2_IND_BLOCK;
176 offsets[n++] = i_block;
177 final = ptrs;
178 } else if ((i_block -= indirect_blocks) < double_blocks) {
179 offsets[n++] = EXT2_DIND_BLOCK;
180 offsets[n++] = i_block >> ptrs_bits;
181 offsets[n++] = i_block & (ptrs - 1);
182 final = ptrs;
183 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
184 offsets[n++] = EXT2_TIND_BLOCK;
185 offsets[n++] = i_block >> (ptrs_bits * 2);
186 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
187 offsets[n++] = i_block & (ptrs - 1);
188 final = ptrs;
189 } else {
2314b07c
AF
190 ext2_msg(inode->i_sb, KERN_WARNING,
191 "warning: %s: block is too big", __func__);
1da177e4
LT
192 }
193 if (boundary)
a686cd89
MB
194 *boundary = final - 1 - (i_block & (ptrs - 1));
195
1da177e4
LT
196 return n;
197}
198
199/**
200 * ext2_get_branch - read the chain of indirect blocks leading to data
201 * @inode: inode in question
202 * @depth: depth of the chain (1 - direct pointer, etc.)
203 * @offsets: offsets of pointers in inode/indirect blocks
204 * @chain: place to store the result
205 * @err: here we store the error value
206 *
207 * Function fills the array of triples <key, p, bh> and returns %NULL
208 * if everything went OK or the pointer to the last filled triple
209 * (incomplete one) otherwise. Upon the return chain[i].key contains
210 * the number of (i+1)-th block in the chain (as it is stored in memory,
211 * i.e. little-endian 32-bit), chain[i].p contains the address of that
212 * number (it points into struct inode for i==0 and into the bh->b_data
213 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
214 * block for i>0 and NULL for i==0. In other words, it holds the block
215 * numbers of the chain, addresses they were taken from (and where we can
216 * verify that chain did not change) and buffer_heads hosting these
217 * numbers.
218 *
219 * Function stops when it stumbles upon zero pointer (absent block)
220 * (pointer to last triple returned, *@err == 0)
221 * or when it gets an IO error reading an indirect block
222 * (ditto, *@err == -EIO)
223 * or when it notices that chain had been changed while it was reading
224 * (ditto, *@err == -EAGAIN)
225 * or when it reads all @depth-1 indirect blocks successfully and finds
226 * the whole chain, all way to the data (returns %NULL, *err == 0).
227 */
228static Indirect *ext2_get_branch(struct inode *inode,
229 int depth,
230 int *offsets,
231 Indirect chain[4],
232 int *err)
233{
234 struct super_block *sb = inode->i_sb;
235 Indirect *p = chain;
236 struct buffer_head *bh;
237
238 *err = 0;
239 /* i_data is not going away, no lock needed */
240 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
241 if (!p->key)
242 goto no_block;
243 while (--depth) {
244 bh = sb_bread(sb, le32_to_cpu(p->key));
245 if (!bh)
246 goto failure;
247 read_lock(&EXT2_I(inode)->i_meta_lock);
248 if (!verify_chain(chain, p))
249 goto changed;
250 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
251 read_unlock(&EXT2_I(inode)->i_meta_lock);
252 if (!p->key)
253 goto no_block;
254 }
255 return NULL;
256
257changed:
258 read_unlock(&EXT2_I(inode)->i_meta_lock);
259 brelse(bh);
260 *err = -EAGAIN;
261 goto no_block;
262failure:
263 *err = -EIO;
264no_block:
265 return p;
266}
267
268/**
269 * ext2_find_near - find a place for allocation with sufficient locality
270 * @inode: owner
271 * @ind: descriptor of indirect block.
272 *
1cc8dcf5 273 * This function returns the preferred place for block allocation.
1da177e4
LT
274 * It is used when heuristic for sequential allocation fails.
275 * Rules are:
276 * + if there is a block to the left of our position - allocate near it.
277 * + if pointer will live in indirect block - allocate near that block.
278 * + if pointer will live in inode - allocate in the same cylinder group.
279 *
280 * In the latter case we colour the starting block by the callers PID to
281 * prevent it from clashing with concurrent allocations for a different inode
282 * in the same block group. The PID is used here so that functionally related
283 * files will be close-by on-disk.
284 *
285 * Caller must make sure that @ind is valid and will stay that way.
286 */
287
4c8b3125 288static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
1da177e4
LT
289{
290 struct ext2_inode_info *ei = EXT2_I(inode);
291 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
292 __le32 *p;
4c8b3125
AM
293 ext2_fsblk_t bg_start;
294 ext2_fsblk_t colour;
1da177e4
LT
295
296 /* Try to find previous block */
297 for (p = ind->p - 1; p >= start; p--)
298 if (*p)
299 return le32_to_cpu(*p);
300
301 /* No such thing, so let's try location of indirect block */
302 if (ind->bh)
303 return ind->bh->b_blocknr;
304
305 /*
25985edc 306 * It is going to be referred from inode itself? OK, just put it into
1da177e4
LT
307 * the same cylinder group then.
308 */
24097d12 309 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
1da177e4
LT
310 colour = (current->pid % 16) *
311 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
312 return bg_start + colour;
313}
314
315/**
1cc8dcf5 316 * ext2_find_goal - find a preferred place for allocation.
1da177e4
LT
317 * @inode: owner
318 * @block: block we want
1da177e4 319 * @partial: pointer to the last triple within a chain
1da177e4 320 *
a686cd89 321 * Returns preferred place for a block (the goal).
1da177e4
LT
322 */
323
4c8b3125
AM
324static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
325 Indirect *partial)
1da177e4 326{
a686cd89
MB
327 struct ext2_block_alloc_info *block_i;
328
329 block_i = EXT2_I(inode)->i_block_alloc_info;
330
331 /*
332 * try the heuristic for sequential allocation,
333 * failing that at least try to get decent locality.
334 */
335 if (block_i && (block == block_i->last_alloc_logical_block + 1)
336 && (block_i->last_alloc_physical_block != 0)) {
337 return block_i->last_alloc_physical_block + 1;
338 }
339
340 return ext2_find_near(inode, partial);
341}
342
343/**
344 * ext2_blks_to_allocate: Look up the block map and count the number
345 * of direct blocks need to be allocated for the given branch.
346 *
347 * @branch: chain of indirect blocks
348 * @k: number of blocks need for indirect blocks
349 * @blks: number of data blocks to be mapped.
350 * @blocks_to_boundary: the offset in the indirect block
351 *
352 * return the total number of blocks to be allocate, including the
353 * direct and indirect blocks.
354 */
355static int
356ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
357 int blocks_to_boundary)
358{
359 unsigned long count = 0;
360
361 /*
362 * Simple case, [t,d]Indirect block(s) has not allocated yet
363 * then it's clear blocks on that path have not allocated
364 */
365 if (k > 0) {
366 /* right now don't hanel cross boundary allocation */
367 if (blks < blocks_to_boundary + 1)
368 count += blks;
369 else
370 count += blocks_to_boundary + 1;
371 return count;
1da177e4 372 }
a686cd89
MB
373
374 count++;
375 while (count < blks && count <= blocks_to_boundary
376 && le32_to_cpu(*(branch[0].p + count)) == 0) {
377 count++;
378 }
379 return count;
380}
381
382/**
383 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
384 * @indirect_blks: the number of blocks need to allocate for indirect
385 * blocks
386 *
387 * @new_blocks: on return it will store the new block numbers for
388 * the indirect blocks(if needed) and the first direct block,
389 * @blks: on return it will store the total number of allocated
390 * direct blocks
391 */
392static int ext2_alloc_blocks(struct inode *inode,
393 ext2_fsblk_t goal, int indirect_blks, int blks,
394 ext2_fsblk_t new_blocks[4], int *err)
395{
396 int target, i;
397 unsigned long count = 0;
398 int index = 0;
399 ext2_fsblk_t current_block = 0;
400 int ret = 0;
401
402 /*
403 * Here we try to allocate the requested multiple blocks at once,
404 * on a best-effort basis.
405 * To build a branch, we should allocate blocks for
406 * the indirect blocks(if not allocated yet), and at least
407 * the first direct block of this branch. That's the
408 * minimum number of blocks need to allocate(required)
409 */
410 target = blks + indirect_blks;
411
412 while (1) {
413 count = target;
414 /* allocating blocks for indirect blocks and direct blocks */
415 current_block = ext2_new_blocks(inode,goal,&count,err);
416 if (*err)
417 goto failed_out;
418
419 target -= count;
420 /* allocate blocks for indirect blocks */
421 while (index < indirect_blks && count) {
422 new_blocks[index++] = current_block++;
423 count--;
424 }
425
426 if (count > 0)
427 break;
428 }
429
430 /* save the new block number for the first direct block */
431 new_blocks[index] = current_block;
432
433 /* total number of blocks allocated for direct blocks */
434 ret = count;
435 *err = 0;
436 return ret;
437failed_out:
438 for (i = 0; i <index; i++)
439 ext2_free_blocks(inode, new_blocks[i], 1);
addacc7d
AV
440 if (index)
441 mark_inode_dirty(inode);
a686cd89 442 return ret;
1da177e4
LT
443}
444
445/**
446 * ext2_alloc_branch - allocate and set up a chain of blocks.
447 * @inode: owner
448 * @num: depth of the chain (number of blocks to allocate)
449 * @offsets: offsets (in the blocks) to store the pointers to next.
450 * @branch: place to store the chain in.
451 *
452 * This function allocates @num blocks, zeroes out all but the last one,
453 * links them into chain and (if we are synchronous) writes them to disk.
454 * In other words, it prepares a branch that can be spliced onto the
455 * inode. It stores the information about that chain in the branch[], in
456 * the same format as ext2_get_branch() would do. We are calling it after
457 * we had read the existing part of chain and partial points to the last
458 * triple of that (one with zero ->key). Upon the exit we have the same
72b43570 459 * picture as after the successful ext2_get_block(), except that in one
1da177e4
LT
460 * place chain is disconnected - *branch->p is still zero (we did not
461 * set the last link), but branch->key contains the number that should
462 * be placed into *branch->p to fill that gap.
463 *
464 * If allocation fails we free all blocks we've allocated (and forget
465 * their buffer_heads) and return the error value the from failed
466 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
467 * as described above and return 0.
468 */
469
470static int ext2_alloc_branch(struct inode *inode,
a686cd89
MB
471 int indirect_blks, int *blks, ext2_fsblk_t goal,
472 int *offsets, Indirect *branch)
1da177e4
LT
473{
474 int blocksize = inode->i_sb->s_blocksize;
a686cd89
MB
475 int i, n = 0;
476 int err = 0;
477 struct buffer_head *bh;
478 int num;
479 ext2_fsblk_t new_blocks[4];
480 ext2_fsblk_t current_block;
481
482 num = ext2_alloc_blocks(inode, goal, indirect_blks,
483 *blks, new_blocks, &err);
484 if (err)
485 return err;
486
487 branch[0].key = cpu_to_le32(new_blocks[0]);
488 /*
489 * metadata blocks and data blocks are allocated.
490 */
491 for (n = 1; n <= indirect_blks; n++) {
1da177e4 492 /*
a686cd89
MB
493 * Get buffer_head for parent block, zero it out
494 * and set the pointer to new one, then send
495 * parent to disk.
1da177e4 496 */
a686cd89 497 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
8d8759eb
WS
498 if (unlikely(!bh)) {
499 err = -ENOMEM;
500 goto failed;
501 }
a686cd89 502 branch[n].bh = bh;
1da177e4
LT
503 lock_buffer(bh);
504 memset(bh->b_data, 0, blocksize);
1da177e4 505 branch[n].p = (__le32 *) bh->b_data + offsets[n];
a686cd89 506 branch[n].key = cpu_to_le32(new_blocks[n]);
1da177e4 507 *branch[n].p = branch[n].key;
a686cd89
MB
508 if ( n == indirect_blks) {
509 current_block = new_blocks[n];
510 /*
511 * End of chain, update the last new metablock of
512 * the chain to point to the new allocated
513 * data blocks numbers
514 */
515 for (i=1; i < num; i++)
516 *(branch[n].p + i) = cpu_to_le32(++current_block);
517 }
1da177e4
LT
518 set_buffer_uptodate(bh);
519 unlock_buffer(bh);
520 mark_buffer_dirty_inode(bh, inode);
521 /* We used to sync bh here if IS_SYNC(inode).
a2a735ad 522 * But we now rely upon generic_write_sync()
1da177e4
LT
523 * and b_inode_buffers. But not for directories.
524 */
525 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
526 sync_dirty_buffer(bh);
1da177e4 527 }
a686cd89 528 *blks = num;
1da177e4 529 return err;
8d8759eb
WS
530
531failed:
532 for (i = 1; i < n; i++)
533 bforget(branch[i].bh);
534 for (i = 0; i < indirect_blks; i++)
535 ext2_free_blocks(inode, new_blocks[i], 1);
536 ext2_free_blocks(inode, new_blocks[i], num);
537 return err;
1da177e4
LT
538}
539
540/**
a686cd89
MB
541 * ext2_splice_branch - splice the allocated branch onto inode.
542 * @inode: owner
543 * @block: (logical) number of block we are adding
a686cd89
MB
544 * @where: location of missing link
545 * @num: number of indirect blocks we are adding
546 * @blks: number of direct blocks we are adding
1da177e4 547 *
a686cd89
MB
548 * This function fills the missing link and does all housekeeping needed in
549 * inode (->i_blocks, etc.). In case of success we end up with the full
550 * chain to new block and return 0.
1da177e4 551 */
a686cd89
MB
552static void ext2_splice_branch(struct inode *inode,
553 long block, Indirect *where, int num, int blks)
1da177e4 554{
1da177e4 555 int i;
a686cd89
MB
556 struct ext2_block_alloc_info *block_i;
557 ext2_fsblk_t current_block;
1da177e4 558
a686cd89 559 block_i = EXT2_I(inode)->i_block_alloc_info;
1da177e4 560
a686cd89 561 /* XXX LOCKING probably should have i_meta_lock ?*/
1da177e4
LT
562 /* That's it */
563
564 *where->p = where->key;
1da177e4 565
a686cd89
MB
566 /*
567 * Update the host buffer_head or inode to point to more just allocated
568 * direct blocks blocks
569 */
570 if (num == 0 && blks > 1) {
571 current_block = le32_to_cpu(where->key) + 1;
572 for (i = 1; i < blks; i++)
573 *(where->p + i ) = cpu_to_le32(current_block++);
574 }
1da177e4 575
a686cd89
MB
576 /*
577 * update the most recently allocated logical & physical block
578 * in i_block_alloc_info, to assist find the proper goal block for next
579 * allocation
580 */
581 if (block_i) {
582 block_i->last_alloc_logical_block = block + blks - 1;
583 block_i->last_alloc_physical_block =
584 le32_to_cpu(where[num].key) + blks - 1;
585 }
1da177e4 586
a686cd89 587 /* We are done with atomic stuff, now do the rest of housekeeping */
1da177e4
LT
588
589 /* had we spliced it onto indirect block? */
590 if (where->bh)
591 mark_buffer_dirty_inode(where->bh, inode);
592
a686cd89 593 inode->i_ctime = CURRENT_TIME_SEC;
1da177e4 594 mark_inode_dirty(inode);
1da177e4
LT
595}
596
597/*
598 * Allocation strategy is simple: if we have to allocate something, we will
599 * have to go the whole way to leaf. So let's do it before attaching anything
600 * to tree, set linkage between the newborn blocks, write them if sync is
601 * required, recheck the path, free and repeat if check fails, otherwise
602 * set the last missing link (that will protect us from any truncate-generated
603 * removals - all blocks on the path are immune now) and possibly force the
604 * write on the parent block.
605 * That has a nice additional property: no special recovery from the failed
606 * allocations is needed - we simply release blocks and do not touch anything
607 * reachable from inode.
a686cd89
MB
608 *
609 * `handle' can be NULL if create == 0.
610 *
a686cd89
MB
611 * return > 0, # of blocks mapped or allocated.
612 * return = 0, if plain lookup failed.
613 * return < 0, error case.
1da177e4 614 */
a686cd89
MB
615static int ext2_get_blocks(struct inode *inode,
616 sector_t iblock, unsigned long maxblocks,
617 struct buffer_head *bh_result,
618 int create)
1da177e4
LT
619{
620 int err = -EIO;
621 int offsets[4];
622 Indirect chain[4];
623 Indirect *partial;
a686cd89
MB
624 ext2_fsblk_t goal;
625 int indirect_blks;
626 int blocks_to_boundary = 0;
627 int depth;
628 struct ext2_inode_info *ei = EXT2_I(inode);
629 int count = 0;
630 ext2_fsblk_t first_block = 0;
1da177e4 631
a686cd89 632 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
1da177e4 633
a686cd89
MB
634 if (depth == 0)
635 return (err);
1da177e4 636
316cb4ef 637 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
1da177e4
LT
638 /* Simplest case - block found, no allocation needed */
639 if (!partial) {
a686cd89
MB
640 first_block = le32_to_cpu(chain[depth - 1].key);
641 clear_buffer_new(bh_result); /* What's this do? */
642 count++;
643 /*map more blocks*/
644 while (count < maxblocks && count <= blocks_to_boundary) {
645 ext2_fsblk_t blk;
646
316cb4ef 647 if (!verify_chain(chain, chain + depth - 1)) {
a686cd89
MB
648 /*
649 * Indirect block might be removed by
650 * truncate while we were reading it.
651 * Handling of that case: forget what we've
652 * got now, go to reread.
653 */
316cb4ef 654 err = -EAGAIN;
a686cd89 655 count = 0;
316cb4ef 656 break;
a686cd89
MB
657 }
658 blk = le32_to_cpu(*(chain[depth-1].p + count));
659 if (blk == first_block + count)
660 count++;
661 else
662 break;
663 }
316cb4ef
JK
664 if (err != -EAGAIN)
665 goto got_it;
1da177e4
LT
666 }
667
668 /* Next simple case - plain lookup or failed read of indirect block */
a686cd89
MB
669 if (!create || err == -EIO)
670 goto cleanup;
671
672 mutex_lock(&ei->truncate_mutex);
316cb4ef
JK
673 /*
674 * If the indirect block is missing while we are reading
72b43570 675 * the chain(ext2_get_branch() returns -EAGAIN err), or
316cb4ef
JK
676 * if the chain has been changed after we grab the semaphore,
677 * (either because another process truncated this branch, or
678 * another get_block allocated this branch) re-grab the chain to see if
679 * the request block has been allocated or not.
680 *
681 * Since we already block the truncate/other get_block
682 * at this point, we will have the current copy of the chain when we
683 * splice the branch into the tree.
684 */
685 if (err == -EAGAIN || !verify_chain(chain, partial)) {
686 while (partial > chain) {
687 brelse(partial->bh);
688 partial--;
689 }
690 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
691 if (!partial) {
692 count++;
693 mutex_unlock(&ei->truncate_mutex);
694 if (err)
695 goto cleanup;
696 clear_buffer_new(bh_result);
697 goto got_it;
698 }
699 }
1da177e4
LT
700
701 /*
a686cd89
MB
702 * Okay, we need to do block allocation. Lazily initialize the block
703 * allocation info here if necessary
704 */
705 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
706 ext2_init_block_alloc_info(inode);
1da177e4 707
fb01bfda 708 goal = ext2_find_goal(inode, iblock, partial);
1da177e4 709
a686cd89
MB
710 /* the number of blocks need to allocate for [d,t]indirect blocks */
711 indirect_blks = (chain + depth) - partial - 1;
712 /*
713 * Next look up the indirect map to count the totoal number of
714 * direct blocks to allocate for this branch.
715 */
716 count = ext2_blks_to_allocate(partial, indirect_blks,
717 maxblocks, blocks_to_boundary);
718 /*
719 * XXX ???? Block out ext2_truncate while we alter the tree
720 */
721 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
722 offsets + (partial - chain), partial);
723
724 if (err) {
725 mutex_unlock(&ei->truncate_mutex);
1da177e4 726 goto cleanup;
a686cd89 727 }
1da177e4 728
6d79125b
CO
729 if (ext2_use_xip(inode->i_sb)) {
730 /*
731 * we need to clear the block
732 */
733 err = ext2_clear_xip_target (inode,
734 le32_to_cpu(chain[depth-1].key));
a686cd89
MB
735 if (err) {
736 mutex_unlock(&ei->truncate_mutex);
6d79125b 737 goto cleanup;
a686cd89 738 }
6d79125b
CO
739 }
740
a686cd89
MB
741 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
742 mutex_unlock(&ei->truncate_mutex);
1da177e4 743 set_buffer_new(bh_result);
a686cd89
MB
744got_it:
745 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
746 if (count > blocks_to_boundary)
747 set_buffer_boundary(bh_result);
748 err = count;
749 /* Clean up and exit */
750 partial = chain + depth - 1; /* the whole chain */
751cleanup:
752 while (partial > chain) {
753 brelse(partial->bh);
754 partial--;
755 }
756 return err;
1da177e4
LT
757}
758
a686cd89
MB
759int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
760{
761 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
762 int ret = ext2_get_blocks(inode, iblock, max_blocks,
763 bh_result, create);
764 if (ret > 0) {
765 bh_result->b_size = (ret << inode->i_blkbits);
766 ret = 0;
767 }
768 return ret;
769
770}
771
68c9d702
JB
772int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
773 u64 start, u64 len)
774{
775 return generic_block_fiemap(inode, fieinfo, start, len,
776 ext2_get_block);
777}
778
1da177e4
LT
779static int ext2_writepage(struct page *page, struct writeback_control *wbc)
780{
781 return block_write_full_page(page, ext2_get_block, wbc);
782}
783
784static int ext2_readpage(struct file *file, struct page *page)
785{
786 return mpage_readpage(page, ext2_get_block);
787}
788
789static int
790ext2_readpages(struct file *file, struct address_space *mapping,
791 struct list_head *pages, unsigned nr_pages)
792{
793 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
794}
795
1da177e4 796static int
f34fb6ec
NP
797ext2_write_begin(struct file *file, struct address_space *mapping,
798 loff_t pos, unsigned len, unsigned flags,
799 struct page **pagep, void **fsdata)
1da177e4 800{
737f2e93 801 int ret;
802
155130a4
CH
803 ret = block_write_begin(mapping, pos, len, flags, pagep,
804 ext2_get_block);
737f2e93 805 if (ret < 0)
806 ext2_write_failed(mapping, pos + len);
807 return ret;
808}
809
810static int ext2_write_end(struct file *file, struct address_space *mapping,
811 loff_t pos, unsigned len, unsigned copied,
812 struct page *page, void *fsdata)
813{
814 int ret;
815
816 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
817 if (ret < len)
818 ext2_write_failed(mapping, pos + len);
819 return ret;
1da177e4
LT
820}
821
03158cd7
NP
822static int
823ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
824 loff_t pos, unsigned len, unsigned flags,
825 struct page **pagep, void **fsdata)
826{
737f2e93 827 int ret;
828
ea0f04e5
CH
829 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
830 ext2_get_block);
737f2e93 831 if (ret < 0)
832 ext2_write_failed(mapping, pos + len);
833 return ret;
03158cd7
NP
834}
835
1da177e4
LT
836static int ext2_nobh_writepage(struct page *page,
837 struct writeback_control *wbc)
838{
839 return nobh_writepage(page, ext2_get_block, wbc);
840}
841
842static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
843{
844 return generic_block_bmap(mapping,block,ext2_get_block);
845}
846
1da177e4
LT
847static ssize_t
848ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
849 loff_t offset, unsigned long nr_segs)
850{
851 struct file *file = iocb->ki_filp;
737f2e93 852 struct address_space *mapping = file->f_mapping;
853 struct inode *inode = mapping->host;
854 ssize_t ret;
855
aacfc19c
CH
856 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
857 ext2_get_block);
737f2e93 858 if (ret < 0 && (rw & WRITE))
859 ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
860 return ret;
1da177e4
LT
861}
862
863static int
864ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
865{
866 return mpage_writepages(mapping, wbc, ext2_get_block);
867}
868
f5e54d6e 869const struct address_space_operations ext2_aops = {
1da177e4
LT
870 .readpage = ext2_readpage,
871 .readpages = ext2_readpages,
872 .writepage = ext2_writepage,
f34fb6ec 873 .write_begin = ext2_write_begin,
737f2e93 874 .write_end = ext2_write_end,
1da177e4
LT
875 .bmap = ext2_bmap,
876 .direct_IO = ext2_direct_IO,
877 .writepages = ext2_writepages,
e965f963 878 .migratepage = buffer_migrate_page,
8ab22b9a 879 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 880 .error_remove_page = generic_error_remove_page,
1da177e4
LT
881};
882
f5e54d6e 883const struct address_space_operations ext2_aops_xip = {
6d79125b 884 .bmap = ext2_bmap,
70688e4d 885 .get_xip_mem = ext2_get_xip_mem,
6d79125b
CO
886};
887
f5e54d6e 888const struct address_space_operations ext2_nobh_aops = {
1da177e4
LT
889 .readpage = ext2_readpage,
890 .readpages = ext2_readpages,
891 .writepage = ext2_nobh_writepage,
03158cd7
NP
892 .write_begin = ext2_nobh_write_begin,
893 .write_end = nobh_write_end,
1da177e4
LT
894 .bmap = ext2_bmap,
895 .direct_IO = ext2_direct_IO,
896 .writepages = ext2_writepages,
e965f963 897 .migratepage = buffer_migrate_page,
aa261f54 898 .error_remove_page = generic_error_remove_page,
1da177e4
LT
899};
900
901/*
902 * Probably it should be a library function... search for first non-zero word
903 * or memcmp with zero_page, whatever is better for particular architecture.
904 * Linus?
905 */
906static inline int all_zeroes(__le32 *p, __le32 *q)
907{
908 while (p < q)
909 if (*p++)
910 return 0;
911 return 1;
912}
913
914/**
915 * ext2_find_shared - find the indirect blocks for partial truncation.
916 * @inode: inode in question
917 * @depth: depth of the affected branch
918 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
919 * @chain: place to store the pointers to partial indirect blocks
920 * @top: place to the (detached) top of branch
921 *
922 * This is a helper function used by ext2_truncate().
923 *
924 * When we do truncate() we may have to clean the ends of several indirect
925 * blocks but leave the blocks themselves alive. Block is partially
25985edc 926 * truncated if some data below the new i_size is referred from it (and
1da177e4
LT
927 * it is on the path to the first completely truncated data block, indeed).
928 * We have to free the top of that path along with everything to the right
929 * of the path. Since no allocation past the truncation point is possible
930 * until ext2_truncate() finishes, we may safely do the latter, but top
931 * of branch may require special attention - pageout below the truncation
932 * point might try to populate it.
933 *
934 * We atomically detach the top of branch from the tree, store the block
935 * number of its root in *@top, pointers to buffer_heads of partially
936 * truncated blocks - in @chain[].bh and pointers to their last elements
937 * that should not be removed - in @chain[].p. Return value is the pointer
938 * to last filled element of @chain.
939 *
940 * The work left to caller to do the actual freeing of subtrees:
941 * a) free the subtree starting from *@top
942 * b) free the subtrees whose roots are stored in
943 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
944 * c) free the subtrees growing from the inode past the @chain[0].p
945 * (no partially truncated stuff there).
946 */
947
948static Indirect *ext2_find_shared(struct inode *inode,
949 int depth,
950 int offsets[4],
951 Indirect chain[4],
952 __le32 *top)
953{
954 Indirect *partial, *p;
955 int k, err;
956
957 *top = 0;
958 for (k = depth; k > 1 && !offsets[k-1]; k--)
959 ;
960 partial = ext2_get_branch(inode, k, offsets, chain, &err);
961 if (!partial)
962 partial = chain + k-1;
963 /*
964 * If the branch acquired continuation since we've looked at it -
965 * fine, it should all survive and (new) top doesn't belong to us.
966 */
967 write_lock(&EXT2_I(inode)->i_meta_lock);
968 if (!partial->key && *partial->p) {
969 write_unlock(&EXT2_I(inode)->i_meta_lock);
970 goto no_top;
971 }
972 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
973 ;
974 /*
975 * OK, we've found the last block that must survive. The rest of our
976 * branch should be detached before unlocking. However, if that rest
977 * of branch is all ours and does not grow immediately from the inode
978 * it's easier to cheat and just decrement partial->p.
979 */
980 if (p == chain + k - 1 && p > chain) {
981 p->p--;
982 } else {
983 *top = *p->p;
984 *p->p = 0;
985 }
986 write_unlock(&EXT2_I(inode)->i_meta_lock);
987
988 while(partial > p)
989 {
990 brelse(partial->bh);
991 partial--;
992 }
993no_top:
994 return partial;
995}
996
997/**
998 * ext2_free_data - free a list of data blocks
999 * @inode: inode we are dealing with
1000 * @p: array of block numbers
1001 * @q: points immediately past the end of array
1002 *
25985edc 1003 * We are freeing all blocks referred from that array (numbers are
1da177e4
LT
1004 * stored as little-endian 32-bit) and updating @inode->i_blocks
1005 * appropriately.
1006 */
1007static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1008{
1009 unsigned long block_to_free = 0, count = 0;
1010 unsigned long nr;
1011
1012 for ( ; p < q ; p++) {
1013 nr = le32_to_cpu(*p);
1014 if (nr) {
1015 *p = 0;
1016 /* accumulate blocks to free if they're contiguous */
1017 if (count == 0)
1018 goto free_this;
1019 else if (block_to_free == nr - count)
1020 count++;
1021 else {
1da177e4 1022 ext2_free_blocks (inode, block_to_free, count);
addacc7d 1023 mark_inode_dirty(inode);
1da177e4
LT
1024 free_this:
1025 block_to_free = nr;
1026 count = 1;
1027 }
1028 }
1029 }
1030 if (count > 0) {
1da177e4 1031 ext2_free_blocks (inode, block_to_free, count);
addacc7d 1032 mark_inode_dirty(inode);
1da177e4
LT
1033 }
1034}
1035
1036/**
1037 * ext2_free_branches - free an array of branches
1038 * @inode: inode we are dealing with
1039 * @p: array of block numbers
1040 * @q: pointer immediately past the end of array
1041 * @depth: depth of the branches to free
1042 *
25985edc 1043 * We are freeing all blocks referred from these branches (numbers are
1da177e4
LT
1044 * stored as little-endian 32-bit) and updating @inode->i_blocks
1045 * appropriately.
1046 */
1047static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1048{
1049 struct buffer_head * bh;
1050 unsigned long nr;
1051
1052 if (depth--) {
1053 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1054 for ( ; p < q ; p++) {
1055 nr = le32_to_cpu(*p);
1056 if (!nr)
1057 continue;
1058 *p = 0;
1059 bh = sb_bread(inode->i_sb, nr);
1060 /*
1061 * A read failure? Report error and clear slot
1062 * (should be rare).
1063 */
1064 if (!bh) {
1065 ext2_error(inode->i_sb, "ext2_free_branches",
1066 "Read failure, inode=%ld, block=%ld",
1067 inode->i_ino, nr);
1068 continue;
1069 }
1070 ext2_free_branches(inode,
1071 (__le32*)bh->b_data,
1072 (__le32*)bh->b_data + addr_per_block,
1073 depth);
1074 bforget(bh);
1075 ext2_free_blocks(inode, nr, 1);
1076 mark_inode_dirty(inode);
1077 }
1078 } else
1079 ext2_free_data(inode, p, q);
1080}
1081
737f2e93 1082static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1da177e4
LT
1083{
1084 __le32 *i_data = EXT2_I(inode)->i_data;
a686cd89 1085 struct ext2_inode_info *ei = EXT2_I(inode);
1da177e4
LT
1086 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1087 int offsets[4];
1088 Indirect chain[4];
1089 Indirect *partial;
1090 __le32 nr = 0;
1091 int n;
1092 long iblock;
1093 unsigned blocksize;
1da177e4 1094 blocksize = inode->i_sb->s_blocksize;
737f2e93 1095 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1da177e4
LT
1096
1097 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1098 if (n == 0)
1099 return;
1100
a686cd89
MB
1101 /*
1102 * From here we block out all ext2_get_block() callers who want to
1103 * modify the block allocation tree.
1104 */
1105 mutex_lock(&ei->truncate_mutex);
1106
1da177e4
LT
1107 if (n == 1) {
1108 ext2_free_data(inode, i_data+offsets[0],
1109 i_data + EXT2_NDIR_BLOCKS);
1110 goto do_indirects;
1111 }
1112
1113 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1114 /* Kill the top of shared branch (already detached) */
1115 if (nr) {
1116 if (partial == chain)
1117 mark_inode_dirty(inode);
1118 else
1119 mark_buffer_dirty_inode(partial->bh, inode);
1120 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1121 }
1122 /* Clear the ends of indirect blocks on the shared branch */
1123 while (partial > chain) {
1124 ext2_free_branches(inode,
1125 partial->p + 1,
1126 (__le32*)partial->bh->b_data+addr_per_block,
1127 (chain+n-1) - partial);
1128 mark_buffer_dirty_inode(partial->bh, inode);
1129 brelse (partial->bh);
1130 partial--;
1131 }
1132do_indirects:
1133 /* Kill the remaining (whole) subtrees */
1134 switch (offsets[0]) {
1135 default:
1136 nr = i_data[EXT2_IND_BLOCK];
1137 if (nr) {
1138 i_data[EXT2_IND_BLOCK] = 0;
1139 mark_inode_dirty(inode);
1140 ext2_free_branches(inode, &nr, &nr+1, 1);
1141 }
1142 case EXT2_IND_BLOCK:
1143 nr = i_data[EXT2_DIND_BLOCK];
1144 if (nr) {
1145 i_data[EXT2_DIND_BLOCK] = 0;
1146 mark_inode_dirty(inode);
1147 ext2_free_branches(inode, &nr, &nr+1, 2);
1148 }
1149 case EXT2_DIND_BLOCK:
1150 nr = i_data[EXT2_TIND_BLOCK];
1151 if (nr) {
1152 i_data[EXT2_TIND_BLOCK] = 0;
1153 mark_inode_dirty(inode);
1154 ext2_free_branches(inode, &nr, &nr+1, 3);
1155 }
1156 case EXT2_TIND_BLOCK:
1157 ;
1158 }
a686cd89
MB
1159
1160 ext2_discard_reservation(inode);
1161
1162 mutex_unlock(&ei->truncate_mutex);
737f2e93 1163}
1164
1165static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1166{
1167 /*
1168 * XXX: it seems like a bug here that we don't allow
1169 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1170 * review and fix this.
1171 *
1172 * Also would be nice to be able to handle IO errors and such,
1173 * but that's probably too much to ask.
1174 */
1175 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1176 S_ISLNK(inode->i_mode)))
1177 return;
1178 if (ext2_inode_is_fast_symlink(inode))
1179 return;
1180 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1181 return;
1182 __ext2_truncate_blocks(inode, offset);
1183}
1184
2c27c65e 1185static int ext2_setsize(struct inode *inode, loff_t newsize)
737f2e93 1186{
737f2e93 1187 int error;
1188
737f2e93 1189 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1190 S_ISLNK(inode->i_mode)))
1191 return -EINVAL;
1192 if (ext2_inode_is_fast_symlink(inode))
1193 return -EINVAL;
1194 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1195 return -EPERM;
1196
562c72aa
CH
1197 inode_dio_wait(inode);
1198
737f2e93 1199 if (mapping_is_xip(inode->i_mapping))
1200 error = xip_truncate_page(inode->i_mapping, newsize);
1201 else if (test_opt(inode->i_sb, NOBH))
1202 error = nobh_truncate_page(inode->i_mapping,
1203 newsize, ext2_get_block);
1204 else
1205 error = block_truncate_page(inode->i_mapping,
1206 newsize, ext2_get_block);
1207 if (error)
1208 return error;
1209
2c27c65e 1210 truncate_setsize(inode, newsize);
737f2e93 1211 __ext2_truncate_blocks(inode, newsize);
1212
1da177e4
LT
1213 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1214 if (inode_needs_sync(inode)) {
1215 sync_mapping_buffers(inode->i_mapping);
c3765016 1216 sync_inode_metadata(inode, 1);
1da177e4
LT
1217 } else {
1218 mark_inode_dirty(inode);
1219 }
737f2e93 1220
1221 return 0;
1da177e4
LT
1222}
1223
1224static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1225 struct buffer_head **p)
1226{
1227 struct buffer_head * bh;
1228 unsigned long block_group;
1229 unsigned long block;
1230 unsigned long offset;
1231 struct ext2_group_desc * gdp;
1232
1233 *p = NULL;
1234 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1235 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1236 goto Einval;
1237
1238 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
ef2fb679 1239 gdp = ext2_get_group_desc(sb, block_group, NULL);
1da177e4
LT
1240 if (!gdp)
1241 goto Egdp;
1242 /*
1243 * Figure out the offset within the block group inode table
1244 */
1245 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1246 block = le32_to_cpu(gdp->bg_inode_table) +
1247 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1248 if (!(bh = sb_bread(sb, block)))
1249 goto Eio;
1250
1251 *p = bh;
1252 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1253 return (struct ext2_inode *) (bh->b_data + offset);
1254
1255Einval:
1256 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1257 (unsigned long) ino);
1258 return ERR_PTR(-EINVAL);
1259Eio:
1260 ext2_error(sb, "ext2_get_inode",
1261 "unable to read inode block - inode=%lu, block=%lu",
1262 (unsigned long) ino, block);
1263Egdp:
1264 return ERR_PTR(-EIO);
1265}
1266
1267void ext2_set_inode_flags(struct inode *inode)
1268{
1269 unsigned int flags = EXT2_I(inode)->i_flags;
1270
1271 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1272 if (flags & EXT2_SYNC_FL)
1273 inode->i_flags |= S_SYNC;
1274 if (flags & EXT2_APPEND_FL)
1275 inode->i_flags |= S_APPEND;
1276 if (flags & EXT2_IMMUTABLE_FL)
1277 inode->i_flags |= S_IMMUTABLE;
1278 if (flags & EXT2_NOATIME_FL)
1279 inode->i_flags |= S_NOATIME;
1280 if (flags & EXT2_DIRSYNC_FL)
1281 inode->i_flags |= S_DIRSYNC;
1282}
1283
4f99ed67
JK
1284/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1285void ext2_get_inode_flags(struct ext2_inode_info *ei)
1286{
1287 unsigned int flags = ei->vfs_inode.i_flags;
1288
1289 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1290 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1291 if (flags & S_SYNC)
1292 ei->i_flags |= EXT2_SYNC_FL;
1293 if (flags & S_APPEND)
1294 ei->i_flags |= EXT2_APPEND_FL;
1295 if (flags & S_IMMUTABLE)
1296 ei->i_flags |= EXT2_IMMUTABLE_FL;
1297 if (flags & S_NOATIME)
1298 ei->i_flags |= EXT2_NOATIME_FL;
1299 if (flags & S_DIRSYNC)
1300 ei->i_flags |= EXT2_DIRSYNC_FL;
1301}
1302
52fcf703 1303struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1da177e4 1304{
52fcf703 1305 struct ext2_inode_info *ei;
1da177e4 1306 struct buffer_head * bh;
52fcf703
DH
1307 struct ext2_inode *raw_inode;
1308 struct inode *inode;
1309 long ret = -EIO;
1da177e4 1310 int n;
b8a9f9e1
EB
1311 uid_t i_uid;
1312 gid_t i_gid;
1da177e4 1313
52fcf703
DH
1314 inode = iget_locked(sb, ino);
1315 if (!inode)
1316 return ERR_PTR(-ENOMEM);
1317 if (!(inode->i_state & I_NEW))
1318 return inode;
1319
1320 ei = EXT2_I(inode);
a686cd89
MB
1321 ei->i_block_alloc_info = NULL;
1322
52fcf703
DH
1323 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1324 if (IS_ERR(raw_inode)) {
1325 ret = PTR_ERR(raw_inode);
1da177e4 1326 goto bad_inode;
52fcf703 1327 }
1da177e4
LT
1328
1329 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
b8a9f9e1
EB
1330 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1331 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1da177e4 1332 if (!(test_opt (inode->i_sb, NO_UID32))) {
b8a9f9e1
EB
1333 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1334 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1da177e4 1335 }
b8a9f9e1
EB
1336 i_uid_write(inode, i_uid);
1337 i_gid_write(inode, i_gid);
bfe86848 1338 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1da177e4 1339 inode->i_size = le32_to_cpu(raw_inode->i_size);
4d7bf11d
MR
1340 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1341 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1342 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1da177e4
LT
1343 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1344 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1345 /* We now have enough fields to check if the inode was active or not.
1346 * This is needed because nfsd might try to access dead inodes
1347 * the test is that same one that e2fsck uses
1348 * NeilBrown 1999oct15
1349 */
1350 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1351 /* this inode is deleted */
1352 brelse (bh);
52fcf703 1353 ret = -ESTALE;
1da177e4
LT
1354 goto bad_inode;
1355 }
1da177e4
LT
1356 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1357 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1358 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1359 ei->i_frag_no = raw_inode->i_frag;
1360 ei->i_frag_size = raw_inode->i_fsize;
1361 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1362 ei->i_dir_acl = 0;
1363 if (S_ISREG(inode->i_mode))
1364 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1365 else
1366 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1367 ei->i_dtime = 0;
1368 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1369 ei->i_state = 0;
1da177e4
LT
1370 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1371 ei->i_dir_start_lookup = 0;
1372
1373 /*
1374 * NOTE! The in-memory inode i_data array is in little-endian order
1375 * even on big-endian machines: we do NOT byteswap the block numbers!
1376 */
1377 for (n = 0; n < EXT2_N_BLOCKS; n++)
1378 ei->i_data[n] = raw_inode->i_block[n];
1379
1380 if (S_ISREG(inode->i_mode)) {
1381 inode->i_op = &ext2_file_inode_operations;
6d79125b
CO
1382 if (ext2_use_xip(inode->i_sb)) {
1383 inode->i_mapping->a_ops = &ext2_aops_xip;
1384 inode->i_fop = &ext2_xip_file_operations;
1385 } else if (test_opt(inode->i_sb, NOBH)) {
1da177e4 1386 inode->i_mapping->a_ops = &ext2_nobh_aops;
6d79125b
CO
1387 inode->i_fop = &ext2_file_operations;
1388 } else {
1da177e4 1389 inode->i_mapping->a_ops = &ext2_aops;
6d79125b
CO
1390 inode->i_fop = &ext2_file_operations;
1391 }
1da177e4
LT
1392 } else if (S_ISDIR(inode->i_mode)) {
1393 inode->i_op = &ext2_dir_inode_operations;
1394 inode->i_fop = &ext2_dir_operations;
1395 if (test_opt(inode->i_sb, NOBH))
1396 inode->i_mapping->a_ops = &ext2_nobh_aops;
1397 else
1398 inode->i_mapping->a_ops = &ext2_aops;
1399 } else if (S_ISLNK(inode->i_mode)) {
8d6d0c4d 1400 if (ext2_inode_is_fast_symlink(inode)) {
1da177e4 1401 inode->i_op = &ext2_fast_symlink_inode_operations;
8d6d0c4d
DG
1402 nd_terminate_link(ei->i_data, inode->i_size,
1403 sizeof(ei->i_data) - 1);
1404 } else {
1da177e4
LT
1405 inode->i_op = &ext2_symlink_inode_operations;
1406 if (test_opt(inode->i_sb, NOBH))
1407 inode->i_mapping->a_ops = &ext2_nobh_aops;
1408 else
1409 inode->i_mapping->a_ops = &ext2_aops;
1410 }
1411 } else {
1412 inode->i_op = &ext2_special_inode_operations;
1413 if (raw_inode->i_block[0])
1414 init_special_inode(inode, inode->i_mode,
1415 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1416 else
1417 init_special_inode(inode, inode->i_mode,
1418 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1419 }
1420 brelse (bh);
1421 ext2_set_inode_flags(inode);
52fcf703
DH
1422 unlock_new_inode(inode);
1423 return inode;
1da177e4
LT
1424
1425bad_inode:
52fcf703
DH
1426 iget_failed(inode);
1427 return ERR_PTR(ret);
1da177e4
LT
1428}
1429
a9185b41 1430static int __ext2_write_inode(struct inode *inode, int do_sync)
1da177e4
LT
1431{
1432 struct ext2_inode_info *ei = EXT2_I(inode);
1433 struct super_block *sb = inode->i_sb;
1434 ino_t ino = inode->i_ino;
b8a9f9e1
EB
1435 uid_t uid = i_uid_read(inode);
1436 gid_t gid = i_gid_read(inode);
1da177e4
LT
1437 struct buffer_head * bh;
1438 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1439 int n;
1440 int err = 0;
1441
1442 if (IS_ERR(raw_inode))
1443 return -EIO;
1444
1445 /* For fields not not tracking in the in-memory inode,
1446 * initialise them to zero for new inodes. */
1447 if (ei->i_state & EXT2_STATE_NEW)
1448 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1449
4f99ed67 1450 ext2_get_inode_flags(ei);
1da177e4
LT
1451 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1452 if (!(test_opt(sb, NO_UID32))) {
1453 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1454 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1455/*
1456 * Fix up interoperability with old kernels. Otherwise, old inodes get
1457 * re-used with the upper 16 bits of the uid/gid intact
1458 */
1459 if (!ei->i_dtime) {
1460 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1461 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1462 } else {
1463 raw_inode->i_uid_high = 0;
1464 raw_inode->i_gid_high = 0;
1465 }
1466 } else {
1467 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1468 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1469 raw_inode->i_uid_high = 0;
1470 raw_inode->i_gid_high = 0;
1471 }
1472 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1473 raw_inode->i_size = cpu_to_le32(inode->i_size);
1474 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1475 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1476 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1477
1478 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1479 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1480 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1481 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1482 raw_inode->i_frag = ei->i_frag_no;
1483 raw_inode->i_fsize = ei->i_frag_size;
1484 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1485 if (!S_ISREG(inode->i_mode))
1486 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1487 else {
1488 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1489 if (inode->i_size > 0x7fffffffULL) {
1490 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1491 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1492 EXT2_SB(sb)->s_es->s_rev_level ==
1493 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1494 /* If this is the first large file
1495 * created, add a flag to the superblock.
1496 */
c15271f4 1497 spin_lock(&EXT2_SB(sb)->s_lock);
1da177e4
LT
1498 ext2_update_dynamic_rev(sb);
1499 EXT2_SET_RO_COMPAT_FEATURE(sb,
1500 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
c15271f4 1501 spin_unlock(&EXT2_SB(sb)->s_lock);
1da177e4
LT
1502 ext2_write_super(sb);
1503 }
1504 }
1505 }
1506
1507 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1508 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1509 if (old_valid_dev(inode->i_rdev)) {
1510 raw_inode->i_block[0] =
1511 cpu_to_le32(old_encode_dev(inode->i_rdev));
1512 raw_inode->i_block[1] = 0;
1513 } else {
1514 raw_inode->i_block[0] = 0;
1515 raw_inode->i_block[1] =
1516 cpu_to_le32(new_encode_dev(inode->i_rdev));
1517 raw_inode->i_block[2] = 0;
1518 }
1519 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1520 raw_inode->i_block[n] = ei->i_data[n];
1521 mark_buffer_dirty(bh);
1522 if (do_sync) {
1523 sync_dirty_buffer(bh);
1524 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1525 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1526 sb->s_id, (unsigned long) ino);
1527 err = -EIO;
1528 }
1529 }
1530 ei->i_state &= ~EXT2_STATE_NEW;
1531 brelse (bh);
1532 return err;
1533}
1534
a9185b41
CH
1535int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1536{
1537 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1538}
1539
1da177e4
LT
1540int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1541{
1542 struct inode *inode = dentry->d_inode;
1543 int error;
1544
1545 error = inode_change_ok(inode, iattr);
1546 if (error)
1547 return error;
907f4554 1548
12755627 1549 if (is_quota_modification(inode, iattr))
871a2931 1550 dquot_initialize(inode);
b8a9f9e1
EB
1551 if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1552 (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
b43fa828 1553 error = dquot_transfer(inode, iattr);
1da177e4
LT
1554 if (error)
1555 return error;
1556 }
af5a30d8 1557 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
737f2e93 1558 error = ext2_setsize(inode, iattr->ia_size);
1559 if (error)
1560 return error;
1561 }
6a1a90ad 1562 setattr_copy(inode, iattr);
737f2e93 1563 if (iattr->ia_valid & ATTR_MODE)
1da177e4 1564 error = ext2_acl_chmod(inode);
737f2e93 1565 mark_inode_dirty(inode);
1566
1da177e4
LT
1567 return error;
1568}