FROMLIST: [PATCH v5 10/12] arm64: vdso: replace gettimeofday.S with global vgettimeof...
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / direct-io.c
CommitLineData
1da177e4
LT
1/*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
e1f8e874 8 * 04Jul2002 Andrew Morton
1da177e4
LT
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
e1f8e874 12 * 29Oct2002 Andrew Morton
1da177e4
LT
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/fs.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
98c4d57d 30#include <linux/task_io_accounting_ops.h>
1da177e4
LT
31#include <linux/bio.h>
32#include <linux/wait.h>
33#include <linux/err.h>
34#include <linux/blkdev.h>
35#include <linux/buffer_head.h>
36#include <linux/rwsem.h>
37#include <linux/uio.h>
60063497 38#include <linux/atomic.h>
65dd2aa9 39#include <linux/prefetch.h>
1da177e4
LT
40
41/*
42 * How many user pages to map in one call to get_user_pages(). This determines
cde1ecb3 43 * the size of a structure in the slab cache
1da177e4
LT
44 */
45#define DIO_PAGES 64
46
47/*
48 * This code generally works in units of "dio_blocks". A dio_block is
49 * somewhere between the hard sector size and the filesystem block size. it
50 * is determined on a per-invocation basis. When talking to the filesystem
51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
53 * to bio_block quantities by shifting left by blkfactor.
54 *
55 * If blkfactor is zero then the user's request was aligned to the filesystem's
56 * blocksize.
1da177e4
LT
57 */
58
eb28be2b
AK
59/* dio_state only used in the submission path */
60
61struct dio_submit {
1da177e4 62 struct bio *bio; /* bio under assembly */
1da177e4
LT
63 unsigned blkbits; /* doesn't change */
64 unsigned blkfactor; /* When we're using an alignment which
65 is finer than the filesystem's soft
66 blocksize, this specifies how much
67 finer. blkfactor=2 means 1/4-block
68 alignment. Does not change */
69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
70 been performed at the start of a
71 write */
72 int pages_in_io; /* approximate total IO pages */
1da177e4
LT
73 sector_t block_in_file; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available; /* At block_in_file. changes */
0dc2bc49 76 int reap_counter; /* rate limit reaping */
1da177e4 77 sector_t final_block_in_request;/* doesn't change */
1da177e4 78 int boundary; /* prev block is at a boundary */
1d8fa7a2 79 get_block_t *get_block; /* block mapping function */
facd07b0 80 dio_submit_t *submit_io; /* IO submition function */
eb28be2b 81
facd07b0 82 loff_t logical_offset_in_bio; /* current first logical block in bio */
1da177e4
LT
83 sector_t final_block_in_bio; /* current final block in bio + 1 */
84 sector_t next_block_for_io; /* next block to be put under IO,
85 in dio_blocks units */
1da177e4
LT
86
87 /*
88 * Deferred addition of a page to the dio. These variables are
89 * private to dio_send_cur_page(), submit_page_section() and
90 * dio_bio_add_page().
91 */
92 struct page *cur_page; /* The page */
93 unsigned cur_page_offset; /* Offset into it, in bytes */
94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
95 sector_t cur_page_block; /* Where it starts */
facd07b0 96 loff_t cur_page_fs_offset; /* Offset in file */
1da177e4 97
7b2c99d1 98 struct iov_iter *iter;
1da177e4
LT
99 /*
100 * Page queue. These variables belong to dio_refill_pages() and
101 * dio_get_page().
102 */
1da177e4
LT
103 unsigned head; /* next page to process */
104 unsigned tail; /* last valid page + 1 */
7b2c99d1 105 size_t from, to;
eb28be2b
AK
106};
107
108/* dio_state communicated between submission path and end_io */
109struct dio {
110 int flags; /* doesn't change */
eb28be2b 111 int rw;
15c4f638
JA
112 blk_qc_t bio_cookie;
113 struct block_device *bio_bdev;
0dc2bc49 114 struct inode *inode;
eb28be2b
AK
115 loff_t i_size; /* i_size when submitted */
116 dio_iodone_t *end_io; /* IO completion function */
eb28be2b 117
18772641 118 void *private; /* copy from map_bh.b_private */
eb28be2b
AK
119
120 /* BIO completion state */
121 spinlock_t bio_lock; /* protects BIO fields below */
0dc2bc49
AK
122 int page_errors; /* errno from get_user_pages() */
123 int is_async; /* is IO async ? */
7b7a8665 124 bool defer_completion; /* defer AIO completion to workqueue? */
53cbf3b1 125 bool should_dirty; /* if pages should be dirtied */
0dc2bc49 126 int io_error; /* IO error in completion path */
eb28be2b
AK
127 unsigned long refcount; /* direct_io_worker() and bios */
128 struct bio *bio_list; /* singly linked via bi_private */
129 struct task_struct *waiter; /* waiting task (NULL if none) */
130
131 /* AIO related stuff */
132 struct kiocb *iocb; /* kiocb */
eb28be2b
AK
133 ssize_t result; /* IO result */
134
23aee091
JM
135 /*
136 * pages[] (and any fields placed after it) are not zeroed out at
137 * allocation time. Don't add new fields after pages[] unless you
138 * wish that they not be zeroed.
139 */
7b7a8665
CH
140 union {
141 struct page *pages[DIO_PAGES]; /* page buffer */
142 struct work_struct complete_work;/* deferred AIO completion */
143 };
6e8267f5
AK
144} ____cacheline_aligned_in_smp;
145
146static struct kmem_cache *dio_cache __read_mostly;
1da177e4
LT
147
148/*
149 * How many pages are in the queue?
150 */
eb28be2b 151static inline unsigned dio_pages_present(struct dio_submit *sdio)
1da177e4 152{
eb28be2b 153 return sdio->tail - sdio->head;
1da177e4
LT
154}
155
156/*
157 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
158 */
ba253fbf 159static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
1da177e4 160{
7b2c99d1 161 ssize_t ret;
1da177e4 162
2c80929c 163 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
7b2c99d1 164 &sdio->from);
1da177e4 165
eb28be2b 166 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
557ed1fa 167 struct page *page = ZERO_PAGE(0);
1da177e4
LT
168 /*
169 * A memory fault, but the filesystem has some outstanding
170 * mapped blocks. We need to use those blocks up to avoid
171 * leaking stale data in the file.
172 */
173 if (dio->page_errors == 0)
174 dio->page_errors = ret;
b5810039
NP
175 page_cache_get(page);
176 dio->pages[0] = page;
eb28be2b
AK
177 sdio->head = 0;
178 sdio->tail = 1;
7b2c99d1
AV
179 sdio->from = 0;
180 sdio->to = PAGE_SIZE;
181 return 0;
1da177e4
LT
182 }
183
184 if (ret >= 0) {
7b2c99d1
AV
185 iov_iter_advance(sdio->iter, ret);
186 ret += sdio->from;
eb28be2b 187 sdio->head = 0;
7b2c99d1
AV
188 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
189 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
190 return 0;
1da177e4 191 }
1da177e4
LT
192 return ret;
193}
194
195/*
196 * Get another userspace page. Returns an ERR_PTR on error. Pages are
197 * buffered inside the dio so that we can call get_user_pages() against a
198 * decent number of pages, less frequently. To provide nicer use of the
199 * L1 cache.
200 */
ba253fbf 201static inline struct page *dio_get_page(struct dio *dio,
6fcc5420 202 struct dio_submit *sdio)
1da177e4 203{
eb28be2b 204 if (dio_pages_present(sdio) == 0) {
1da177e4
LT
205 int ret;
206
eb28be2b 207 ret = dio_refill_pages(dio, sdio);
1da177e4
LT
208 if (ret)
209 return ERR_PTR(ret);
eb28be2b 210 BUG_ON(dio_pages_present(sdio) == 0);
1da177e4 211 }
6fcc5420 212 return dio->pages[sdio->head];
1da177e4
LT
213}
214
6d544bb4
ZB
215/**
216 * dio_complete() - called when all DIO BIO I/O has been completed
217 * @offset: the byte offset in the file of the completed operation
218 *
7b7a8665
CH
219 * This drops i_dio_count, lets interested parties know that a DIO operation
220 * has completed, and calculates the resulting return code for the operation.
6d544bb4
ZB
221 *
222 * It lets the filesystem know if it registered an interest earlier via
223 * get_block. Pass the private field of the map buffer_head so that
224 * filesystems can use it to hold additional state between get_block calls and
225 * dio_complete.
1da177e4 226 */
7b7a8665
CH
227static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
228 bool is_async)
1da177e4 229{
6d544bb4
ZB
230 ssize_t transferred = 0;
231
8459d86a
ZB
232 /*
233 * AIO submission can race with bio completion to get here while
234 * expecting to have the last io completed by bio completion.
235 * In that case -EIOCBQUEUED is in fact not an error we want
236 * to preserve through this call.
237 */
238 if (ret == -EIOCBQUEUED)
239 ret = 0;
240
6d544bb4
ZB
241 if (dio->result) {
242 transferred = dio->result;
243
244 /* Check for short read case */
245 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
246 transferred = dio->i_size - offset;
247 }
248
6d544bb4
ZB
249 if (ret == 0)
250 ret = dio->page_errors;
251 if (ret == 0)
252 ret = dio->io_error;
253 if (ret == 0)
254 ret = transferred;
255
7b7a8665
CH
256 if (dio->end_io && dio->result)
257 dio->end_io(dio->iocb, offset, transferred, dio->private);
258
fe0f07d0
JA
259 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
260 inode_dio_end(dio->inode);
261
02afc27f
CH
262 if (is_async) {
263 if (dio->rw & WRITE) {
264 int err;
265
266 err = generic_write_sync(dio->iocb->ki_filp, offset,
267 transferred);
268 if (err < 0 && ret > 0)
269 ret = err;
270 }
271
04b2fa9f 272 dio->iocb->ki_complete(dio->iocb, ret, 0);
02afc27f 273 }
40e2e973 274
7b7a8665 275 kmem_cache_free(dio_cache, dio);
6d544bb4 276 return ret;
1da177e4
LT
277}
278
7b7a8665
CH
279static void dio_aio_complete_work(struct work_struct *work)
280{
281 struct dio *dio = container_of(work, struct dio, complete_work);
282
283 dio_complete(dio, dio->iocb->ki_pos, 0, true);
284}
285
1da177e4 286static int dio_bio_complete(struct dio *dio, struct bio *bio);
7b7a8665 287
1da177e4
LT
288/*
289 * Asynchronous IO callback.
290 */
4246a0b6 291static void dio_bio_end_aio(struct bio *bio)
1da177e4
LT
292{
293 struct dio *dio = bio->bi_private;
5eb6c7a2
ZB
294 unsigned long remaining;
295 unsigned long flags;
1da177e4 296
1da177e4
LT
297 /* cleanup the bio */
298 dio_bio_complete(dio, bio);
0273201e 299
5eb6c7a2
ZB
300 spin_lock_irqsave(&dio->bio_lock, flags);
301 remaining = --dio->refcount;
302 if (remaining == 1 && dio->waiter)
20258b2b 303 wake_up_process(dio->waiter);
5eb6c7a2 304 spin_unlock_irqrestore(&dio->bio_lock, flags);
20258b2b 305
8459d86a 306 if (remaining == 0) {
7b7a8665
CH
307 if (dio->result && dio->defer_completion) {
308 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
309 queue_work(dio->inode->i_sb->s_dio_done_wq,
310 &dio->complete_work);
311 } else {
312 dio_complete(dio, dio->iocb->ki_pos, 0, true);
313 }
8459d86a 314 }
1da177e4
LT
315}
316
317/*
318 * The BIO completion handler simply queues the BIO up for the process-context
319 * handler.
320 *
321 * During I/O bi_private points at the dio. After I/O, bi_private is used to
322 * implement a singly-linked list of completed BIOs, at dio->bio_list.
323 */
4246a0b6 324static void dio_bio_end_io(struct bio *bio)
1da177e4
LT
325{
326 struct dio *dio = bio->bi_private;
327 unsigned long flags;
328
1da177e4
LT
329 spin_lock_irqsave(&dio->bio_lock, flags);
330 bio->bi_private = dio->bio_list;
331 dio->bio_list = bio;
5eb6c7a2 332 if (--dio->refcount == 1 && dio->waiter)
1da177e4
LT
333 wake_up_process(dio->waiter);
334 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4
LT
335}
336
facd07b0
JB
337/**
338 * dio_end_io - handle the end io action for the given bio
339 * @bio: The direct io bio thats being completed
340 * @error: Error if there was one
341 *
342 * This is meant to be called by any filesystem that uses their own dio_submit_t
343 * so that the DIO specific endio actions are dealt with after the filesystem
344 * has done it's completion work.
345 */
346void dio_end_io(struct bio *bio, int error)
347{
348 struct dio *dio = bio->bi_private;
349
350 if (dio->is_async)
4246a0b6 351 dio_bio_end_aio(bio);
facd07b0 352 else
4246a0b6 353 dio_bio_end_io(bio);
facd07b0
JB
354}
355EXPORT_SYMBOL_GPL(dio_end_io);
356
ba253fbf 357static inline void
eb28be2b
AK
358dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
359 struct block_device *bdev,
360 sector_t first_sector, int nr_vecs)
1da177e4
LT
361{
362 struct bio *bio;
363
20d9600c
DD
364 /*
365 * bio_alloc() is guaranteed to return a bio when called with
71baba4b 366 * __GFP_RECLAIM and we request a valid number of vectors.
20d9600c 367 */
1da177e4 368 bio = bio_alloc(GFP_KERNEL, nr_vecs);
1da177e4
LT
369
370 bio->bi_bdev = bdev;
4f024f37 371 bio->bi_iter.bi_sector = first_sector;
1da177e4
LT
372 if (dio->is_async)
373 bio->bi_end_io = dio_bio_end_aio;
374 else
375 bio->bi_end_io = dio_bio_end_io;
376
eb28be2b
AK
377 sdio->bio = bio;
378 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
1da177e4
LT
379}
380
381/*
382 * In the AIO read case we speculatively dirty the pages before starting IO.
383 * During IO completion, any of these pages which happen to have been written
384 * back will be redirtied by bio_check_pages_dirty().
0273201e
ZB
385 *
386 * bios hold a dio reference between submit_bio and ->end_io.
1da177e4 387 */
ba253fbf 388static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
1da177e4 389{
eb28be2b 390 struct bio *bio = sdio->bio;
5eb6c7a2 391 unsigned long flags;
1716c5cf 392 struct inode *inode;
1da177e4
LT
393
394 bio->bi_private = dio;
5eb6c7a2
ZB
395
396 spin_lock_irqsave(&dio->bio_lock, flags);
397 dio->refcount++;
398 spin_unlock_irqrestore(&dio->bio_lock, flags);
399
53cbf3b1 400 if (dio->is_async && dio->rw == READ && dio->should_dirty)
1da177e4 401 bio_set_pages_dirty(bio);
5eb6c7a2 402
c1c53460 403 dio->bio_bdev = bio->bi_bdev;
1716c5cf
MB
404 bio->bi_dio_inode = dio->inode;
405
406 inode = dio->inode;
407
408#ifdef CONFIG_FMP_EXT4CRYPT_FS
409 bio->private_enc_mode = inode->i_mapping->private_enc_mode;
410 bio->private_algo_mode = inode->i_mapping->private_algo_mode;
411 bio->key = inode->i_mapping->key;
412 bio->key_length = inode->i_mapping->key_length;
413#endif
c1c53460 414
15c4f638 415 if (sdio->submit_io) {
eb28be2b
AK
416 sdio->submit_io(dio->rw, bio, dio->inode,
417 sdio->logical_offset_in_bio);
15c4f638 418 dio->bio_cookie = BLK_QC_T_NONE;
c1c53460 419 } else
15c4f638 420 dio->bio_cookie = submit_bio(dio->rw, bio);
1da177e4 421
eb28be2b
AK
422 sdio->bio = NULL;
423 sdio->boundary = 0;
424 sdio->logical_offset_in_bio = 0;
1da177e4
LT
425}
426
427/*
428 * Release any resources in case of a failure
429 */
ba253fbf 430static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
1da177e4 431{
7b2c99d1
AV
432 while (sdio->head < sdio->tail)
433 page_cache_release(dio->pages[sdio->head++]);
1da177e4
LT
434}
435
436/*
0273201e
ZB
437 * Wait for the next BIO to complete. Remove it and return it. NULL is
438 * returned once all BIOs have been completed. This must only be called once
439 * all bios have been issued so that dio->refcount can only decrease. This
440 * requires that that the caller hold a reference on the dio.
1da177e4
LT
441 */
442static struct bio *dio_await_one(struct dio *dio)
443{
444 unsigned long flags;
0273201e 445 struct bio *bio = NULL;
1da177e4
LT
446
447 spin_lock_irqsave(&dio->bio_lock, flags);
5eb6c7a2
ZB
448
449 /*
450 * Wait as long as the list is empty and there are bios in flight. bio
451 * completion drops the count, maybe adds to the list, and wakes while
452 * holding the bio_lock so we don't need set_current_state()'s barrier
453 * and can call it after testing our condition.
454 */
455 while (dio->refcount > 1 && dio->bio_list == NULL) {
456 __set_current_state(TASK_UNINTERRUPTIBLE);
457 dio->waiter = current;
458 spin_unlock_irqrestore(&dio->bio_lock, flags);
15c4f638
JA
459 if (!blk_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie))
460 io_schedule();
5eb6c7a2
ZB
461 /* wake up sets us TASK_RUNNING */
462 spin_lock_irqsave(&dio->bio_lock, flags);
463 dio->waiter = NULL;
1da177e4 464 }
0273201e
ZB
465 if (dio->bio_list) {
466 bio = dio->bio_list;
467 dio->bio_list = bio->bi_private;
468 }
1da177e4
LT
469 spin_unlock_irqrestore(&dio->bio_lock, flags);
470 return bio;
471}
472
473/*
474 * Process one completed BIO. No locks are held.
475 */
476static int dio_bio_complete(struct dio *dio, struct bio *bio)
477{
cb34e057
KO
478 struct bio_vec *bvec;
479 unsigned i;
9b81c842 480 int err;
1da177e4 481
4246a0b6 482 if (bio->bi_error)
174e27c6 483 dio->io_error = -EIO;
1da177e4 484
53cbf3b1 485 if (dio->is_async && dio->rw == READ && dio->should_dirty) {
9b81c842 486 err = bio->bi_error;
68a91855 487 bio_check_pages_dirty(bio); /* transfers ownership */
1da177e4 488 } else {
cb34e057
KO
489 bio_for_each_segment_all(bvec, bio, i) {
490 struct page *page = bvec->bv_page;
1da177e4 491
53cbf3b1
ML
492 if (dio->rw == READ && !PageCompound(page) &&
493 dio->should_dirty)
1da177e4
LT
494 set_page_dirty_lock(page);
495 page_cache_release(page);
496 }
9b81c842 497 err = bio->bi_error;
1da177e4
LT
498 bio_put(bio);
499 }
9b81c842 500 return err;
1da177e4
LT
501}
502
503/*
0273201e
ZB
504 * Wait on and process all in-flight BIOs. This must only be called once
505 * all bios have been issued so that the refcount can only decrease.
506 * This just waits for all bios to make it through dio_bio_complete. IO
beb7dd86 507 * errors are propagated through dio->io_error and should be propagated via
0273201e 508 * dio_complete().
1da177e4 509 */
6d544bb4 510static void dio_await_completion(struct dio *dio)
1da177e4 511{
0273201e
ZB
512 struct bio *bio;
513 do {
514 bio = dio_await_one(dio);
515 if (bio)
516 dio_bio_complete(dio, bio);
517 } while (bio);
1da177e4
LT
518}
519
520/*
521 * A really large O_DIRECT read or write can generate a lot of BIOs. So
522 * to keep the memory consumption sane we periodically reap any completed BIOs
523 * during the BIO generation phase.
524 *
525 * This also helps to limit the peak amount of pinned userspace memory.
526 */
ba253fbf 527static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
528{
529 int ret = 0;
530
eb28be2b 531 if (sdio->reap_counter++ >= 64) {
1da177e4
LT
532 while (dio->bio_list) {
533 unsigned long flags;
534 struct bio *bio;
535 int ret2;
536
537 spin_lock_irqsave(&dio->bio_lock, flags);
538 bio = dio->bio_list;
539 dio->bio_list = bio->bi_private;
540 spin_unlock_irqrestore(&dio->bio_lock, flags);
541 ret2 = dio_bio_complete(dio, bio);
542 if (ret == 0)
543 ret = ret2;
544 }
eb28be2b 545 sdio->reap_counter = 0;
1da177e4
LT
546 }
547 return ret;
548}
549
7b7a8665
CH
550/*
551 * Create workqueue for deferred direct IO completions. We allocate the
552 * workqueue when it's first needed. This avoids creating workqueue for
553 * filesystems that don't need it and also allows us to create the workqueue
554 * late enough so the we can include s_id in the name of the workqueue.
555 */
556static int sb_init_dio_done_wq(struct super_block *sb)
557{
45150c43 558 struct workqueue_struct *old;
7b7a8665
CH
559 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
560 WQ_MEM_RECLAIM, 0,
561 sb->s_id);
562 if (!wq)
563 return -ENOMEM;
564 /*
565 * This has to be atomic as more DIOs can race to create the workqueue
566 */
45150c43 567 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
7b7a8665 568 /* Someone created workqueue before us? Free ours... */
45150c43 569 if (old)
7b7a8665
CH
570 destroy_workqueue(wq);
571 return 0;
572}
573
574static int dio_set_defer_completion(struct dio *dio)
575{
576 struct super_block *sb = dio->inode->i_sb;
577
578 if (dio->defer_completion)
579 return 0;
580 dio->defer_completion = true;
581 if (!sb->s_dio_done_wq)
582 return sb_init_dio_done_wq(sb);
583 return 0;
584}
585
1da177e4
LT
586/*
587 * Call into the fs to map some more disk blocks. We record the current number
eb28be2b 588 * of available blocks at sdio->blocks_available. These are in units of the
04447026 589 * fs blocksize, i_blocksize(inode).
1da177e4
LT
590 *
591 * The fs is allowed to map lots of blocks at once. If it wants to do that,
592 * it uses the passed inode-relative block number as the file offset, as usual.
593 *
1d8fa7a2 594 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
595 * has remaining to do. The fs should not map more than this number of blocks.
596 *
597 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
598 * indicate how much contiguous disk space has been made available at
599 * bh->b_blocknr.
600 *
601 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
602 * This isn't very efficient...
603 *
604 * In the case of filesystem holes: the fs may return an arbitrarily-large
605 * hole by returning an appropriate value in b_size and by clearing
606 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 607 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4 608 */
18772641
AK
609static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
610 struct buffer_head *map_bh)
1da177e4
LT
611{
612 int ret;
1da177e4 613 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
ae55e1aa 614 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
1da177e4 615 unsigned long fs_count; /* Number of filesystem-sized blocks */
1da177e4 616 int create;
ab73857e 617 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
1da177e4
LT
618
619 /*
620 * If there was a memory error and we've overwritten all the
621 * mapped blocks then we can now return that memory error
622 */
623 ret = dio->page_errors;
624 if (ret == 0) {
eb28be2b
AK
625 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
626 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
ae55e1aa
TM
627 fs_endblk = (sdio->final_block_in_request - 1) >>
628 sdio->blkfactor;
629 fs_count = fs_endblk - fs_startblk + 1;
1da177e4 630
3c674e74 631 map_bh->b_state = 0;
ab73857e 632 map_bh->b_size = fs_count << i_blkbits;
3c674e74 633
5fe878ae
CH
634 /*
635 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
636 * forbid block creations: only overwrites are permitted.
637 * We will return early to the caller once we see an
638 * unmapped buffer head returned, and the caller will fall
639 * back to buffered I/O.
640 *
641 * Otherwise the decision is left to the get_blocks method,
642 * which may decide to handle it or also return an unmapped
643 * buffer head.
644 */
b31dc66a 645 create = dio->rw & WRITE;
5fe878ae 646 if (dio->flags & DIO_SKIP_HOLES) {
eb28be2b
AK
647 if (sdio->block_in_file < (i_size_read(dio->inode) >>
648 sdio->blkbits))
1da177e4 649 create = 0;
1da177e4 650 }
3c674e74 651
eb28be2b 652 ret = (*sdio->get_block)(dio->inode, fs_startblk,
1da177e4 653 map_bh, create);
18772641
AK
654
655 /* Store for completion */
656 dio->private = map_bh->b_private;
7b7a8665
CH
657
658 if (ret == 0 && buffer_defer_completion(map_bh))
659 ret = dio_set_defer_completion(dio);
1da177e4
LT
660 }
661 return ret;
662}
663
664/*
665 * There is no bio. Make one now.
666 */
ba253fbf
AK
667static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
668 sector_t start_sector, struct buffer_head *map_bh)
1da177e4
LT
669{
670 sector_t sector;
671 int ret, nr_pages;
672
eb28be2b 673 ret = dio_bio_reap(dio, sdio);
1da177e4
LT
674 if (ret)
675 goto out;
eb28be2b 676 sector = start_sector << (sdio->blkbits - 9);
b54ffb73 677 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
1da177e4 678 BUG_ON(nr_pages <= 0);
18772641 679 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
eb28be2b 680 sdio->boundary = 0;
1da177e4
LT
681out:
682 return ret;
683}
684
685/*
686 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
687 * that was successful then update final_block_in_bio and take a ref against
688 * the just-added page.
689 *
690 * Return zero on success. Non-zero means the caller needs to start a new BIO.
691 */
ba253fbf 692static inline int dio_bio_add_page(struct dio_submit *sdio)
1da177e4
LT
693{
694 int ret;
695
eb28be2b
AK
696 ret = bio_add_page(sdio->bio, sdio->cur_page,
697 sdio->cur_page_len, sdio->cur_page_offset);
698 if (ret == sdio->cur_page_len) {
1da177e4
LT
699 /*
700 * Decrement count only, if we are done with this page
701 */
eb28be2b
AK
702 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
703 sdio->pages_in_io--;
704 page_cache_get(sdio->cur_page);
705 sdio->final_block_in_bio = sdio->cur_page_block +
706 (sdio->cur_page_len >> sdio->blkbits);
1da177e4
LT
707 ret = 0;
708 } else {
709 ret = 1;
710 }
711 return ret;
712}
713
714/*
715 * Put cur_page under IO. The section of cur_page which is described by
716 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
717 * starts on-disk at cur_page_block.
718 *
719 * We take a ref against the page here (on behalf of its presence in the bio).
720 *
721 * The caller of this function is responsible for removing cur_page from the
722 * dio, and for dropping the refcount which came from that presence.
723 */
ba253fbf
AK
724static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
725 struct buffer_head *map_bh)
1da177e4
LT
726{
727 int ret = 0;
728
eb28be2b
AK
729 if (sdio->bio) {
730 loff_t cur_offset = sdio->cur_page_fs_offset;
731 loff_t bio_next_offset = sdio->logical_offset_in_bio +
4f024f37 732 sdio->bio->bi_iter.bi_size;
c2c6ca41 733
1da177e4 734 /*
c2c6ca41
JB
735 * See whether this new request is contiguous with the old.
736 *
f0940cee
NK
737 * Btrfs cannot handle having logically non-contiguous requests
738 * submitted. For example if you have
c2c6ca41
JB
739 *
740 * Logical: [0-4095][HOLE][8192-12287]
f0940cee 741 * Physical: [0-4095] [4096-8191]
c2c6ca41
JB
742 *
743 * We cannot submit those pages together as one BIO. So if our
744 * current logical offset in the file does not equal what would
745 * be the next logical offset in the bio, submit the bio we
746 * have.
1da177e4 747 */
eb28be2b 748 if (sdio->final_block_in_bio != sdio->cur_page_block ||
c2c6ca41 749 cur_offset != bio_next_offset)
eb28be2b 750 dio_bio_submit(dio, sdio);
1da177e4
LT
751 }
752
eb28be2b 753 if (sdio->bio == NULL) {
18772641 754 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4
LT
755 if (ret)
756 goto out;
757 }
758
eb28be2b
AK
759 if (dio_bio_add_page(sdio) != 0) {
760 dio_bio_submit(dio, sdio);
18772641 761 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
1da177e4 762 if (ret == 0) {
eb28be2b 763 ret = dio_bio_add_page(sdio);
1da177e4
LT
764 BUG_ON(ret != 0);
765 }
766 }
767out:
768 return ret;
769}
770
771/*
772 * An autonomous function to put a chunk of a page under deferred IO.
773 *
774 * The caller doesn't actually know (or care) whether this piece of page is in
775 * a BIO, or is under IO or whatever. We just take care of all possible
776 * situations here. The separation between the logic of do_direct_IO() and
777 * that of submit_page_section() is important for clarity. Please don't break.
778 *
779 * The chunk of page starts on-disk at blocknr.
780 *
781 * We perform deferred IO, by recording the last-submitted page inside our
782 * private part of the dio structure. If possible, we just expand the IO
783 * across that page here.
784 *
785 * If that doesn't work out then we put the old page into the bio and add this
786 * page to the dio instead.
787 */
ba253fbf 788static inline int
eb28be2b 789submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
18772641
AK
790 unsigned offset, unsigned len, sector_t blocknr,
791 struct buffer_head *map_bh)
1da177e4
LT
792{
793 int ret = 0;
794
98c4d57d
AM
795 if (dio->rw & WRITE) {
796 /*
797 * Read accounting is performed in submit_bio()
798 */
799 task_io_account_write(len);
800 }
801
1da177e4
LT
802 /*
803 * Can we just grow the current page's presence in the dio?
804 */
eb28be2b
AK
805 if (sdio->cur_page == page &&
806 sdio->cur_page_offset + sdio->cur_page_len == offset &&
807 sdio->cur_page_block +
808 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
809 sdio->cur_page_len += len;
1da177e4
LT
810 goto out;
811 }
812
813 /*
814 * If there's a deferred page already there then send it.
815 */
eb28be2b 816 if (sdio->cur_page) {
18772641 817 ret = dio_send_cur_page(dio, sdio, map_bh);
eb28be2b
AK
818 page_cache_release(sdio->cur_page);
819 sdio->cur_page = NULL;
1da177e4 820 if (ret)
b1058b98 821 return ret;
1da177e4
LT
822 }
823
824 page_cache_get(page); /* It is in dio */
eb28be2b
AK
825 sdio->cur_page = page;
826 sdio->cur_page_offset = offset;
827 sdio->cur_page_len = len;
828 sdio->cur_page_block = blocknr;
829 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
1da177e4 830out:
b1058b98
JK
831 /*
832 * If sdio->boundary then we want to schedule the IO now to
833 * avoid metadata seeks.
834 */
835 if (sdio->boundary) {
836 ret = dio_send_cur_page(dio, sdio, map_bh);
f3b53849
AG
837 if (sdio->bio)
838 dio_bio_submit(dio, sdio);
b1058b98
JK
839 page_cache_release(sdio->cur_page);
840 sdio->cur_page = NULL;
841 }
1da177e4
LT
842 return ret;
843}
844
845/*
846 * Clean any dirty buffers in the blockdev mapping which alias newly-created
847 * file blocks. Only called for S_ISREG files - blockdevs do not set
848 * buffer_new
849 */
18772641 850static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
1da177e4
LT
851{
852 unsigned i;
853 unsigned nblocks;
854
18772641 855 nblocks = map_bh->b_size >> dio->inode->i_blkbits;
1da177e4
LT
856
857 for (i = 0; i < nblocks; i++) {
18772641
AK
858 unmap_underlying_metadata(map_bh->b_bdev,
859 map_bh->b_blocknr + i);
1da177e4
LT
860 }
861}
862
863/*
864 * If we are not writing the entire block and get_block() allocated
865 * the block for us, we need to fill-in the unused portion of the
866 * block with zeros. This happens only if user-buffer, fileoffset or
867 * io length is not filesystem block-size multiple.
868 *
869 * `end' is zero if we're doing the start of the IO, 1 at the end of the
870 * IO.
871 */
ba253fbf
AK
872static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
873 int end, struct buffer_head *map_bh)
1da177e4
LT
874{
875 unsigned dio_blocks_per_fs_block;
876 unsigned this_chunk_blocks; /* In dio_blocks */
877 unsigned this_chunk_bytes;
878 struct page *page;
879
eb28be2b 880 sdio->start_zero_done = 1;
18772641 881 if (!sdio->blkfactor || !buffer_new(map_bh))
1da177e4
LT
882 return;
883
eb28be2b
AK
884 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
885 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
1da177e4
LT
886
887 if (!this_chunk_blocks)
888 return;
889
890 /*
891 * We need to zero out part of an fs block. It is either at the
892 * beginning or the end of the fs block.
893 */
894 if (end)
895 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
896
eb28be2b 897 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
1da177e4 898
557ed1fa 899 page = ZERO_PAGE(0);
eb28be2b 900 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
18772641 901 sdio->next_block_for_io, map_bh))
1da177e4
LT
902 return;
903
eb28be2b 904 sdio->next_block_for_io += this_chunk_blocks;
1da177e4
LT
905}
906
907/*
908 * Walk the user pages, and the file, mapping blocks to disk and generating
909 * a sequence of (page,offset,len,block) mappings. These mappings are injected
910 * into submit_page_section(), which takes care of the next stage of submission
911 *
912 * Direct IO against a blockdev is different from a file. Because we can
913 * happily perform page-sized but 512-byte aligned IOs. It is important that
914 * blockdev IO be able to have fine alignment and large sizes.
915 *
1d8fa7a2 916 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
917 * with the size of IO which is permitted at this offset and this i_blkbits.
918 *
919 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 920 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
921 * fine alignment but still allows this function to work in PAGE_SIZE units.
922 */
18772641
AK
923static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
924 struct buffer_head *map_bh)
1da177e4 925{
eb28be2b 926 const unsigned blkbits = sdio->blkbits;
1da177e4
LT
927 int ret = 0;
928
eb28be2b 929 while (sdio->block_in_file < sdio->final_block_in_request) {
7b2c99d1
AV
930 struct page *page;
931 size_t from, to;
6fcc5420
BH
932
933 page = dio_get_page(dio, sdio);
1da177e4
LT
934 if (IS_ERR(page)) {
935 ret = PTR_ERR(page);
936 goto out;
937 }
6fcc5420
BH
938 from = sdio->head ? 0 : sdio->from;
939 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
940 sdio->head++;
1da177e4 941
7b2c99d1 942 while (from < to) {
1da177e4
LT
943 unsigned this_chunk_bytes; /* # of bytes mapped */
944 unsigned this_chunk_blocks; /* # of blocks */
945 unsigned u;
946
eb28be2b 947 if (sdio->blocks_available == 0) {
1da177e4
LT
948 /*
949 * Need to go and map some more disk
950 */
951 unsigned long blkmask;
952 unsigned long dio_remainder;
953
18772641 954 ret = get_more_blocks(dio, sdio, map_bh);
1da177e4
LT
955 if (ret) {
956 page_cache_release(page);
957 goto out;
958 }
959 if (!buffer_mapped(map_bh))
960 goto do_holes;
961
eb28be2b
AK
962 sdio->blocks_available =
963 map_bh->b_size >> sdio->blkbits;
964 sdio->next_block_for_io =
965 map_bh->b_blocknr << sdio->blkfactor;
1da177e4 966 if (buffer_new(map_bh))
18772641 967 clean_blockdev_aliases(dio, map_bh);
1da177e4 968
eb28be2b 969 if (!sdio->blkfactor)
1da177e4
LT
970 goto do_holes;
971
eb28be2b
AK
972 blkmask = (1 << sdio->blkfactor) - 1;
973 dio_remainder = (sdio->block_in_file & blkmask);
1da177e4
LT
974
975 /*
976 * If we are at the start of IO and that IO
977 * starts partway into a fs-block,
978 * dio_remainder will be non-zero. If the IO
979 * is a read then we can simply advance the IO
980 * cursor to the first block which is to be
981 * read. But if the IO is a write and the
982 * block was newly allocated we cannot do that;
983 * the start of the fs block must be zeroed out
984 * on-disk
985 */
986 if (!buffer_new(map_bh))
eb28be2b
AK
987 sdio->next_block_for_io += dio_remainder;
988 sdio->blocks_available -= dio_remainder;
1da177e4
LT
989 }
990do_holes:
991 /* Handle holes */
992 if (!buffer_mapped(map_bh)) {
35dc8161 993 loff_t i_size_aligned;
1da177e4
LT
994
995 /* AKPM: eargh, -ENOTBLK is a hack */
b31dc66a 996 if (dio->rw & WRITE) {
1da177e4
LT
997 page_cache_release(page);
998 return -ENOTBLK;
999 }
1000
35dc8161
JM
1001 /*
1002 * Be sure to account for a partial block as the
1003 * last block in the file
1004 */
1005 i_size_aligned = ALIGN(i_size_read(dio->inode),
1006 1 << blkbits);
eb28be2b 1007 if (sdio->block_in_file >=
35dc8161 1008 i_size_aligned >> blkbits) {
1da177e4
LT
1009 /* We hit eof */
1010 page_cache_release(page);
1011 goto out;
1012 }
7b2c99d1 1013 zero_user(page, from, 1 << blkbits);
eb28be2b 1014 sdio->block_in_file++;
7b2c99d1 1015 from += 1 << blkbits;
3320c60b 1016 dio->result += 1 << blkbits;
1da177e4
LT
1017 goto next_block;
1018 }
1019
1020 /*
1021 * If we're performing IO which has an alignment which
1022 * is finer than the underlying fs, go check to see if
1023 * we must zero out the start of this block.
1024 */
eb28be2b 1025 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
18772641 1026 dio_zero_block(dio, sdio, 0, map_bh);
1da177e4
LT
1027
1028 /*
1029 * Work out, in this_chunk_blocks, how much disk we
1030 * can add to this page
1031 */
eb28be2b 1032 this_chunk_blocks = sdio->blocks_available;
7b2c99d1 1033 u = (to - from) >> blkbits;
1da177e4
LT
1034 if (this_chunk_blocks > u)
1035 this_chunk_blocks = u;
eb28be2b 1036 u = sdio->final_block_in_request - sdio->block_in_file;
1da177e4
LT
1037 if (this_chunk_blocks > u)
1038 this_chunk_blocks = u;
1039 this_chunk_bytes = this_chunk_blocks << blkbits;
1040 BUG_ON(this_chunk_bytes == 0);
1041
092c8d46
JK
1042 if (this_chunk_blocks == sdio->blocks_available)
1043 sdio->boundary = buffer_boundary(map_bh);
eb28be2b 1044 ret = submit_page_section(dio, sdio, page,
7b2c99d1 1045 from,
eb28be2b 1046 this_chunk_bytes,
18772641
AK
1047 sdio->next_block_for_io,
1048 map_bh);
1da177e4
LT
1049 if (ret) {
1050 page_cache_release(page);
1051 goto out;
1052 }
eb28be2b 1053 sdio->next_block_for_io += this_chunk_blocks;
1da177e4 1054
eb28be2b 1055 sdio->block_in_file += this_chunk_blocks;
7b2c99d1
AV
1056 from += this_chunk_bytes;
1057 dio->result += this_chunk_bytes;
eb28be2b 1058 sdio->blocks_available -= this_chunk_blocks;
1da177e4 1059next_block:
eb28be2b
AK
1060 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1061 if (sdio->block_in_file == sdio->final_block_in_request)
1da177e4
LT
1062 break;
1063 }
1064
1065 /* Drop the ref which was taken in get_user_pages() */
1066 page_cache_release(page);
1da177e4
LT
1067 }
1068out:
1069 return ret;
1070}
1071
847cc637 1072static inline int drop_refcount(struct dio *dio)
1da177e4 1073{
847cc637 1074 int ret2;
5eb6c7a2 1075 unsigned long flags;
1da177e4 1076
8459d86a
ZB
1077 /*
1078 * Sync will always be dropping the final ref and completing the
5eb6c7a2
ZB
1079 * operation. AIO can if it was a broken operation described above or
1080 * in fact if all the bios race to complete before we get here. In
1081 * that case dio_complete() translates the EIOCBQUEUED into the proper
04b2fa9f 1082 * return code that the caller will hand to ->complete().
5eb6c7a2
ZB
1083 *
1084 * This is managed by the bio_lock instead of being an atomic_t so that
1085 * completion paths can drop their ref and use the remaining count to
1086 * decide to wake the submission path atomically.
8459d86a 1087 */
5eb6c7a2
ZB
1088 spin_lock_irqsave(&dio->bio_lock, flags);
1089 ret2 = --dio->refcount;
1090 spin_unlock_irqrestore(&dio->bio_lock, flags);
847cc637 1091 return ret2;
1da177e4
LT
1092}
1093
eafdc7d1
CH
1094/*
1095 * This is a library function for use by filesystem drivers.
1096 *
1097 * The locking rules are governed by the flags parameter:
1098 * - if the flags value contains DIO_LOCKING we use a fancy locking
1099 * scheme for dumb filesystems.
1100 * For writes this function is called under i_mutex and returns with
1101 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1102 * taken and dropped again before returning.
eafdc7d1
CH
1103 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1104 * internal locking but rather rely on the filesystem to synchronize
1105 * direct I/O reads/writes versus each other and truncate.
df2d6f26
CH
1106 *
1107 * To help with locking against truncate we incremented the i_dio_count
1108 * counter before starting direct I/O, and decrement it once we are done.
1109 * Truncate can wait for it to reach zero to provide exclusion. It is
1110 * expected that filesystem provide exclusion between new direct I/O
1111 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1112 * but other filesystems need to take care of this on their own.
ba253fbf
AK
1113 *
1114 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1115 * is always inlined. Otherwise gcc is unable to split the structure into
1116 * individual fields and will generate much worse code. This is important
1117 * for the whole file.
eafdc7d1 1118 */
65dd2aa9 1119static inline ssize_t
17f8c842
OS
1120do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1121 struct block_device *bdev, struct iov_iter *iter,
1122 loff_t offset, get_block_t get_block, dio_iodone_t end_io,
1123 dio_submit_t submit_io, int flags)
1da177e4 1124{
ab73857e
LT
1125 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1126 unsigned blkbits = i_blkbits;
1da177e4
LT
1127 unsigned blocksize_mask = (1 << blkbits) - 1;
1128 ssize_t retval = -EINVAL;
af436472
CH
1129 size_t count = iov_iter_count(iter);
1130 loff_t end = offset + count;
1da177e4 1131 struct dio *dio;
eb28be2b 1132 struct dio_submit sdio = { 0, };
847cc637 1133 struct buffer_head map_bh = { 0, };
647d1e4c 1134 struct blk_plug plug;
886a3911 1135 unsigned long align = offset | iov_iter_alignment(iter);
1da177e4 1136
65dd2aa9
AK
1137 /*
1138 * Avoid references to bdev if not absolutely needed to give
1139 * the early prefetch in the caller enough time.
1140 */
1da177e4 1141
886a3911 1142 if (align & blocksize_mask) {
1da177e4 1143 if (bdev)
65dd2aa9 1144 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1da177e4 1145 blocksize_mask = (1 << blkbits) - 1;
886a3911 1146 if (align & blocksize_mask)
1da177e4
LT
1147 goto out;
1148 }
1149
f9b5570d 1150 /* watch out for a 0 len io from a tricksy fs */
17f8c842 1151 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
f9b5570d
CH
1152 return 0;
1153
6e8267f5 1154 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1da177e4
LT
1155 retval = -ENOMEM;
1156 if (!dio)
1157 goto out;
23aee091
JM
1158 /*
1159 * Believe it or not, zeroing out the page array caused a .5%
1160 * performance regression in a database benchmark. So, we take
1161 * care to only zero out what's needed.
1162 */
1163 memset(dio, 0, offsetof(struct dio, pages));
1da177e4 1164
5fe878ae
CH
1165 dio->flags = flags;
1166 if (dio->flags & DIO_LOCKING) {
17f8c842 1167 if (iov_iter_rw(iter) == READ) {
5fe878ae
CH
1168 struct address_space *mapping =
1169 iocb->ki_filp->f_mapping;
1da177e4 1170
5fe878ae
CH
1171 /* will be released by direct_io_worker */
1172 mutex_lock(&inode->i_mutex);
1da177e4
LT
1173
1174 retval = filemap_write_and_wait_range(mapping, offset,
1175 end - 1);
1176 if (retval) {
5fe878ae 1177 mutex_unlock(&inode->i_mutex);
6e8267f5 1178 kmem_cache_free(dio_cache, dio);
1da177e4
LT
1179 goto out;
1180 }
1da177e4 1181 }
1da177e4
LT
1182 }
1183
74cedf9b
JK
1184 /* Once we sampled i_size check for reads beyond EOF */
1185 dio->i_size = i_size_read(inode);
1186 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1187 if (dio->flags & DIO_LOCKING)
1188 mutex_unlock(&inode->i_mutex);
1189 kmem_cache_free(dio_cache, dio);
2d4594ac 1190 retval = 0;
74cedf9b
JK
1191 goto out;
1192 }
1193
1da177e4 1194 /*
60392573
CH
1195 * For file extending writes updating i_size before data writeouts
1196 * complete can expose uninitialized blocks in dumb filesystems.
1197 * In that case we need to wait for I/O completion even if asked
1198 * for an asynchronous write.
1da177e4 1199 */
60392573
CH
1200 if (is_sync_kiocb(iocb))
1201 dio->is_async = false;
1202 else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
17f8c842 1203 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
60392573
CH
1204 dio->is_async = false;
1205 else
1206 dio->is_async = true;
1207
847cc637 1208 dio->inode = inode;
17f8c842 1209 dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
02afc27f
CH
1210
1211 /*
1212 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1213 * so that we can call ->fsync.
1214 */
17f8c842 1215 if (dio->is_async && iov_iter_rw(iter) == WRITE &&
02afc27f
CH
1216 ((iocb->ki_filp->f_flags & O_DSYNC) ||
1217 IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1218 retval = dio_set_defer_completion(dio);
1219 if (retval) {
1220 /*
1221 * We grab i_mutex only for reads so we don't have
1222 * to release it here
1223 */
1224 kmem_cache_free(dio_cache, dio);
1225 goto out;
1226 }
1227 }
1228
1229 /*
1230 * Will be decremented at I/O completion time.
1231 */
fe0f07d0
JA
1232 if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1233 inode_dio_begin(inode);
02afc27f
CH
1234
1235 retval = 0;
847cc637 1236 sdio.blkbits = blkbits;
ab73857e 1237 sdio.blkfactor = i_blkbits - blkbits;
847cc637
AK
1238 sdio.block_in_file = offset >> blkbits;
1239
1240 sdio.get_block = get_block;
1241 dio->end_io = end_io;
1242 sdio.submit_io = submit_io;
1243 sdio.final_block_in_bio = -1;
1244 sdio.next_block_for_io = -1;
1245
1246 dio->iocb = iocb;
847cc637
AK
1247
1248 spin_lock_init(&dio->bio_lock);
1249 dio->refcount = 1;
1250
53cbf3b1 1251 dio->should_dirty = (iter->type == ITER_IOVEC);
7b2c99d1
AV
1252 sdio.iter = iter;
1253 sdio.final_block_in_request =
1254 (offset + iov_iter_count(iter)) >> blkbits;
1255
847cc637
AK
1256 /*
1257 * In case of non-aligned buffers, we may need 2 more
1258 * pages since we need to zero out first and last block.
1259 */
1260 if (unlikely(sdio.blkfactor))
1261 sdio.pages_in_io = 2;
1262
f67da30c 1263 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
847cc637 1264
647d1e4c
FW
1265 blk_start_plug(&plug);
1266
7b2c99d1
AV
1267 retval = do_direct_IO(dio, &sdio, &map_bh);
1268 if (retval)
1269 dio_cleanup(dio, &sdio);
847cc637
AK
1270
1271 if (retval == -ENOTBLK) {
1272 /*
1273 * The remaining part of the request will be
1274 * be handled by buffered I/O when we return
1275 */
1276 retval = 0;
1277 }
1278 /*
1279 * There may be some unwritten disk at the end of a part-written
1280 * fs-block-sized block. Go zero that now.
1281 */
1282 dio_zero_block(dio, &sdio, 1, &map_bh);
1283
1284 if (sdio.cur_page) {
1285 ssize_t ret2;
1286
1287 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1288 if (retval == 0)
1289 retval = ret2;
1290 page_cache_release(sdio.cur_page);
1291 sdio.cur_page = NULL;
1292 }
1293 if (sdio.bio)
1294 dio_bio_submit(dio, &sdio);
1295
647d1e4c
FW
1296 blk_finish_plug(&plug);
1297
847cc637
AK
1298 /*
1299 * It is possible that, we return short IO due to end of file.
1300 * In that case, we need to release all the pages we got hold on.
1301 */
1302 dio_cleanup(dio, &sdio);
1303
1304 /*
1305 * All block lookups have been performed. For READ requests
1306 * we can let i_mutex go now that its achieved its purpose
1307 * of protecting us from looking up uninitialized blocks.
1308 */
17f8c842 1309 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
847cc637
AK
1310 mutex_unlock(&dio->inode->i_mutex);
1311
1312 /*
1313 * The only time we want to leave bios in flight is when a successful
1314 * partial aio read or full aio write have been setup. In that case
1315 * bio completion will call aio_complete. The only time it's safe to
1316 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1317 * This had *better* be the only place that raises -EIOCBQUEUED.
1318 */
1319 BUG_ON(retval == -EIOCBQUEUED);
1320 if (dio->is_async && retval == 0 && dio->result &&
17f8c842 1321 (iov_iter_rw(iter) == READ || dio->result == count))
847cc637 1322 retval = -EIOCBQUEUED;
af436472 1323 else
847cc637
AK
1324 dio_await_completion(dio);
1325
1326 if (drop_refcount(dio) == 0) {
1327 retval = dio_complete(dio, offset, retval, false);
847cc637
AK
1328 } else
1329 BUG_ON(retval != -EIOCBQUEUED);
1da177e4 1330
7bb46a67 1331out:
1332 return retval;
1333}
65dd2aa9 1334
17f8c842
OS
1335ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1336 struct block_device *bdev, struct iov_iter *iter,
1337 loff_t offset, get_block_t get_block,
1338 dio_iodone_t end_io, dio_submit_t submit_io,
1339 int flags)
65dd2aa9
AK
1340{
1341 /*
1342 * The block device state is needed in the end to finally
1343 * submit everything. Since it's likely to be cache cold
1344 * prefetch it here as first thing to hide some of the
1345 * latency.
1346 *
1347 * Attempt to prefetch the pieces we likely need later.
1348 */
1349 prefetch(&bdev->bd_disk->part_tbl);
1350 prefetch(bdev->bd_queue);
1351 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1352
17f8c842
OS
1353 return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block,
1354 end_io, submit_io, flags);
65dd2aa9
AK
1355}
1356
1da177e4 1357EXPORT_SYMBOL(__blockdev_direct_IO);
6e8267f5
AK
1358
1359static __init int dio_init(void)
1360{
1361 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1362 return 0;
1363}
1364module_init(dio_init)