coda: switch coda_cnode_make() to sane API as well, clean coda_lookup()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0
NP
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
23044507
NP
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
b23fb0a6 61 * - d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6
NP
65 * dentry->d_lock
66 * dcache_lru_lock
ceb5bdc2
NP
67 * dcache_hash_bucket lock
68 * s_anon lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
23044507 84static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99#define D_HASHBITS d_hash_shift
100#define D_HASHMASK d_hash_mask
101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
b07ad996 107static inline struct hlist_bl_head *d_hash(struct dentry *parent,
ceb5bdc2
NP
108 unsigned long hash)
109{
110 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
111 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113}
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3e880fb5 120static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
121
122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
123static int get_nr_dentry(void)
124{
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130}
131
312d3ca8
CH
132int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134{
3e880fb5 135 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137}
138#endif
139
9c82ab9c 140static void __d_free(struct rcu_head *head)
1da177e4 141{
9c82ab9c
CH
142 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
143
fd217f4d 144 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
145 if (dname_external(dentry))
146 kfree(dentry->d_name.name);
147 kmem_cache_free(dentry_cache, dentry);
148}
149
150/*
b5c84bf6 151 * no locks, please.
1da177e4
LT
152 */
153static void d_free(struct dentry *dentry)
154{
b7ab39f6 155 BUG_ON(dentry->d_count);
3e880fb5 156 this_cpu_dec(nr_dentry);
1da177e4
LT
157 if (dentry->d_op && dentry->d_op->d_release)
158 dentry->d_op->d_release(dentry);
312d3ca8 159
dea3667b
LT
160 /* if dentry was never visible to RCU, immediate free is OK */
161 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 162 __d_free(&dentry->d_u.d_rcu);
b3423415 163 else
9c82ab9c 164 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
165}
166
31e6b01f
NP
167/**
168 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 169 * @dentry: the target dentry
31e6b01f
NP
170 * After this call, in-progress rcu-walk path lookup will fail. This
171 * should be called after unhashing, and after changing d_inode (if
172 * the dentry has not already been unhashed).
173 */
174static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
175{
176 assert_spin_locked(&dentry->d_lock);
177 /* Go through a barrier */
178 write_seqcount_barrier(&dentry->d_seq);
179}
180
1da177e4
LT
181/*
182 * Release the dentry's inode, using the filesystem
31e6b01f
NP
183 * d_iput() operation if defined. Dentry has no refcount
184 * and is unhashed.
1da177e4 185 */
858119e1 186static void dentry_iput(struct dentry * dentry)
31f3e0b3 187 __releases(dentry->d_lock)
873feea0 188 __releases(dentry->d_inode->i_lock)
1da177e4
LT
189{
190 struct inode *inode = dentry->d_inode;
191 if (inode) {
192 dentry->d_inode = NULL;
193 list_del_init(&dentry->d_alias);
194 spin_unlock(&dentry->d_lock);
873feea0 195 spin_unlock(&inode->i_lock);
f805fbda
LT
196 if (!inode->i_nlink)
197 fsnotify_inoderemove(inode);
1da177e4
LT
198 if (dentry->d_op && dentry->d_op->d_iput)
199 dentry->d_op->d_iput(dentry, inode);
200 else
201 iput(inode);
202 } else {
203 spin_unlock(&dentry->d_lock);
1da177e4
LT
204 }
205}
206
31e6b01f
NP
207/*
208 * Release the dentry's inode, using the filesystem
209 * d_iput() operation if defined. dentry remains in-use.
210 */
211static void dentry_unlink_inode(struct dentry * dentry)
212 __releases(dentry->d_lock)
873feea0 213 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
214{
215 struct inode *inode = dentry->d_inode;
216 dentry->d_inode = NULL;
217 list_del_init(&dentry->d_alias);
218 dentry_rcuwalk_barrier(dentry);
219 spin_unlock(&dentry->d_lock);
873feea0 220 spin_unlock(&inode->i_lock);
31e6b01f
NP
221 if (!inode->i_nlink)
222 fsnotify_inoderemove(inode);
223 if (dentry->d_op && dentry->d_op->d_iput)
224 dentry->d_op->d_iput(dentry, inode);
225 else
226 iput(inode);
227}
228
da3bbdd4 229/*
f0023bc6 230 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
231 */
232static void dentry_lru_add(struct dentry *dentry)
233{
a4633357 234 if (list_empty(&dentry->d_lru)) {
23044507 235 spin_lock(&dcache_lru_lock);
a4633357
CH
236 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
237 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 238 dentry_stat.nr_unused++;
23044507 239 spin_unlock(&dcache_lru_lock);
a4633357 240 }
da3bbdd4
KM
241}
242
23044507
NP
243static void __dentry_lru_del(struct dentry *dentry)
244{
245 list_del_init(&dentry->d_lru);
246 dentry->d_sb->s_nr_dentry_unused--;
247 dentry_stat.nr_unused--;
248}
249
f0023bc6
SW
250/*
251 * Remove a dentry with references from the LRU.
252 */
da3bbdd4
KM
253static void dentry_lru_del(struct dentry *dentry)
254{
255 if (!list_empty(&dentry->d_lru)) {
23044507
NP
256 spin_lock(&dcache_lru_lock);
257 __dentry_lru_del(dentry);
258 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
259 }
260}
261
f0023bc6
SW
262/*
263 * Remove a dentry that is unreferenced and about to be pruned
264 * (unhashed and destroyed) from the LRU, and inform the file system.
265 * This wrapper should be called _prior_ to unhashing a victim dentry.
266 */
267static void dentry_lru_prune(struct dentry *dentry)
268{
269 if (!list_empty(&dentry->d_lru)) {
270 if (dentry->d_flags & DCACHE_OP_PRUNE)
271 dentry->d_op->d_prune(dentry);
272
273 spin_lock(&dcache_lru_lock);
274 __dentry_lru_del(dentry);
275 spin_unlock(&dcache_lru_lock);
276 }
277}
278
b48f03b3 279static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
da3bbdd4 280{
23044507 281 spin_lock(&dcache_lru_lock);
a4633357 282 if (list_empty(&dentry->d_lru)) {
b48f03b3 283 list_add_tail(&dentry->d_lru, list);
a4633357 284 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 285 dentry_stat.nr_unused++;
a4633357 286 } else {
b48f03b3 287 list_move_tail(&dentry->d_lru, list);
da3bbdd4 288 }
23044507 289 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
290}
291
d52b9086
MS
292/**
293 * d_kill - kill dentry and return parent
294 * @dentry: dentry to kill
ff5fdb61 295 * @parent: parent dentry
d52b9086 296 *
31f3e0b3 297 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
298 *
299 * If this is the root of the dentry tree, return NULL.
23044507 300 *
b5c84bf6
NP
301 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
302 * d_kill.
d52b9086 303 */
2fd6b7f5 304static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 305 __releases(dentry->d_lock)
2fd6b7f5 306 __releases(parent->d_lock)
873feea0 307 __releases(dentry->d_inode->i_lock)
d52b9086 308{
d52b9086 309 list_del(&dentry->d_u.d_child);
c83ce989
TM
310 /*
311 * Inform try_to_ascend() that we are no longer attached to the
312 * dentry tree
313 */
314 dentry->d_flags |= DCACHE_DISCONNECTED;
2fd6b7f5
NP
315 if (parent)
316 spin_unlock(&parent->d_lock);
d52b9086 317 dentry_iput(dentry);
b7ab39f6
NP
318 /*
319 * dentry_iput drops the locks, at which point nobody (except
320 * transient RCU lookups) can reach this dentry.
321 */
d52b9086 322 d_free(dentry);
871c0067 323 return parent;
d52b9086
MS
324}
325
c6627c60
DH
326/*
327 * Unhash a dentry without inserting an RCU walk barrier or checking that
328 * dentry->d_lock is locked. The caller must take care of that, if
329 * appropriate.
330 */
331static void __d_shrink(struct dentry *dentry)
332{
333 if (!d_unhashed(dentry)) {
334 struct hlist_bl_head *b;
335 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
336 b = &dentry->d_sb->s_anon;
337 else
338 b = d_hash(dentry->d_parent, dentry->d_name.hash);
339
340 hlist_bl_lock(b);
341 __hlist_bl_del(&dentry->d_hash);
342 dentry->d_hash.pprev = NULL;
343 hlist_bl_unlock(b);
344 }
345}
346
789680d1
NP
347/**
348 * d_drop - drop a dentry
349 * @dentry: dentry to drop
350 *
351 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
352 * be found through a VFS lookup any more. Note that this is different from
353 * deleting the dentry - d_delete will try to mark the dentry negative if
354 * possible, giving a successful _negative_ lookup, while d_drop will
355 * just make the cache lookup fail.
356 *
357 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
358 * reason (NFS timeouts or autofs deletes).
359 *
360 * __d_drop requires dentry->d_lock.
361 */
362void __d_drop(struct dentry *dentry)
363{
dea3667b 364 if (!d_unhashed(dentry)) {
c6627c60 365 __d_shrink(dentry);
dea3667b 366 dentry_rcuwalk_barrier(dentry);
789680d1
NP
367 }
368}
369EXPORT_SYMBOL(__d_drop);
370
371void d_drop(struct dentry *dentry)
372{
789680d1
NP
373 spin_lock(&dentry->d_lock);
374 __d_drop(dentry);
375 spin_unlock(&dentry->d_lock);
789680d1
NP
376}
377EXPORT_SYMBOL(d_drop);
378
44396f4b
JB
379/*
380 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
381 * @dentry: dentry to drop
382 *
383 * This is called when we do a lookup on a placeholder dentry that needed to be
384 * looked up. The dentry should have been hashed in order for it to be found by
385 * the lookup code, but now needs to be unhashed while we do the actual lookup
386 * and clear the DCACHE_NEED_LOOKUP flag.
387 */
388void d_clear_need_lookup(struct dentry *dentry)
389{
390 spin_lock(&dentry->d_lock);
391 __d_drop(dentry);
392 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
393 spin_unlock(&dentry->d_lock);
394}
395EXPORT_SYMBOL(d_clear_need_lookup);
396
77812a1e
NP
397/*
398 * Finish off a dentry we've decided to kill.
399 * dentry->d_lock must be held, returns with it unlocked.
400 * If ref is non-zero, then decrement the refcount too.
401 * Returns dentry requiring refcount drop, or NULL if we're done.
402 */
403static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
404 __releases(dentry->d_lock)
405{
873feea0 406 struct inode *inode;
77812a1e
NP
407 struct dentry *parent;
408
873feea0
NP
409 inode = dentry->d_inode;
410 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
411relock:
412 spin_unlock(&dentry->d_lock);
413 cpu_relax();
414 return dentry; /* try again with same dentry */
415 }
416 if (IS_ROOT(dentry))
417 parent = NULL;
418 else
419 parent = dentry->d_parent;
420 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
421 if (inode)
422 spin_unlock(&inode->i_lock);
77812a1e
NP
423 goto relock;
424 }
31e6b01f 425
77812a1e
NP
426 if (ref)
427 dentry->d_count--;
f0023bc6
SW
428 /*
429 * if dentry was on the d_lru list delete it from there.
430 * inform the fs via d_prune that this dentry is about to be
431 * unhashed and destroyed.
432 */
433 dentry_lru_prune(dentry);
77812a1e
NP
434 /* if it was on the hash then remove it */
435 __d_drop(dentry);
436 return d_kill(dentry, parent);
437}
438
1da177e4
LT
439/*
440 * This is dput
441 *
442 * This is complicated by the fact that we do not want to put
443 * dentries that are no longer on any hash chain on the unused
444 * list: we'd much rather just get rid of them immediately.
445 *
446 * However, that implies that we have to traverse the dentry
447 * tree upwards to the parents which might _also_ now be
448 * scheduled for deletion (it may have been only waiting for
449 * its last child to go away).
450 *
451 * This tail recursion is done by hand as we don't want to depend
452 * on the compiler to always get this right (gcc generally doesn't).
453 * Real recursion would eat up our stack space.
454 */
455
456/*
457 * dput - release a dentry
458 * @dentry: dentry to release
459 *
460 * Release a dentry. This will drop the usage count and if appropriate
461 * call the dentry unlink method as well as removing it from the queues and
462 * releasing its resources. If the parent dentries were scheduled for release
463 * they too may now get deleted.
1da177e4 464 */
1da177e4
LT
465void dput(struct dentry *dentry)
466{
467 if (!dentry)
468 return;
469
470repeat:
b7ab39f6 471 if (dentry->d_count == 1)
1da177e4 472 might_sleep();
1da177e4 473 spin_lock(&dentry->d_lock);
61f3dee4
NP
474 BUG_ON(!dentry->d_count);
475 if (dentry->d_count > 1) {
476 dentry->d_count--;
1da177e4 477 spin_unlock(&dentry->d_lock);
1da177e4
LT
478 return;
479 }
480
fb045adb 481 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 482 if (dentry->d_op->d_delete(dentry))
61f3dee4 483 goto kill_it;
1da177e4 484 }
265ac902 485
1da177e4
LT
486 /* Unreachable? Get rid of it */
487 if (d_unhashed(dentry))
488 goto kill_it;
265ac902 489
44396f4b
JB
490 /*
491 * If this dentry needs lookup, don't set the referenced flag so that it
492 * is more likely to be cleaned up by the dcache shrinker in case of
493 * memory pressure.
494 */
495 if (!d_need_lookup(dentry))
496 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 497 dentry_lru_add(dentry);
265ac902 498
61f3dee4
NP
499 dentry->d_count--;
500 spin_unlock(&dentry->d_lock);
1da177e4
LT
501 return;
502
d52b9086 503kill_it:
77812a1e 504 dentry = dentry_kill(dentry, 1);
d52b9086
MS
505 if (dentry)
506 goto repeat;
1da177e4 507}
ec4f8605 508EXPORT_SYMBOL(dput);
1da177e4
LT
509
510/**
511 * d_invalidate - invalidate a dentry
512 * @dentry: dentry to invalidate
513 *
514 * Try to invalidate the dentry if it turns out to be
515 * possible. If there are other dentries that can be
516 * reached through this one we can't delete it and we
517 * return -EBUSY. On success we return 0.
518 *
519 * no dcache lock.
520 */
521
522int d_invalidate(struct dentry * dentry)
523{
524 /*
525 * If it's already been dropped, return OK.
526 */
da502956 527 spin_lock(&dentry->d_lock);
1da177e4 528 if (d_unhashed(dentry)) {
da502956 529 spin_unlock(&dentry->d_lock);
1da177e4
LT
530 return 0;
531 }
532 /*
533 * Check whether to do a partial shrink_dcache
534 * to get rid of unused child entries.
535 */
536 if (!list_empty(&dentry->d_subdirs)) {
da502956 537 spin_unlock(&dentry->d_lock);
1da177e4 538 shrink_dcache_parent(dentry);
da502956 539 spin_lock(&dentry->d_lock);
1da177e4
LT
540 }
541
542 /*
543 * Somebody else still using it?
544 *
545 * If it's a directory, we can't drop it
546 * for fear of somebody re-populating it
547 * with children (even though dropping it
548 * would make it unreachable from the root,
549 * we might still populate it if it was a
550 * working directory or similar).
50e69630
AV
551 * We also need to leave mountpoints alone,
552 * directory or not.
1da177e4 553 */
50e69630
AV
554 if (dentry->d_count > 1 && dentry->d_inode) {
555 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 556 spin_unlock(&dentry->d_lock);
1da177e4
LT
557 return -EBUSY;
558 }
559 }
560
561 __d_drop(dentry);
562 spin_unlock(&dentry->d_lock);
1da177e4
LT
563 return 0;
564}
ec4f8605 565EXPORT_SYMBOL(d_invalidate);
1da177e4 566
b5c84bf6 567/* This must be called with d_lock held */
dc0474be 568static inline void __dget_dlock(struct dentry *dentry)
23044507 569{
b7ab39f6 570 dentry->d_count++;
23044507
NP
571}
572
dc0474be 573static inline void __dget(struct dentry *dentry)
1da177e4 574{
23044507 575 spin_lock(&dentry->d_lock);
dc0474be 576 __dget_dlock(dentry);
23044507 577 spin_unlock(&dentry->d_lock);
1da177e4
LT
578}
579
b7ab39f6
NP
580struct dentry *dget_parent(struct dentry *dentry)
581{
582 struct dentry *ret;
583
584repeat:
a734eb45
NP
585 /*
586 * Don't need rcu_dereference because we re-check it was correct under
587 * the lock.
588 */
589 rcu_read_lock();
b7ab39f6 590 ret = dentry->d_parent;
a734eb45
NP
591 spin_lock(&ret->d_lock);
592 if (unlikely(ret != dentry->d_parent)) {
593 spin_unlock(&ret->d_lock);
594 rcu_read_unlock();
b7ab39f6
NP
595 goto repeat;
596 }
a734eb45 597 rcu_read_unlock();
b7ab39f6
NP
598 BUG_ON(!ret->d_count);
599 ret->d_count++;
600 spin_unlock(&ret->d_lock);
b7ab39f6
NP
601 return ret;
602}
603EXPORT_SYMBOL(dget_parent);
604
1da177e4
LT
605/**
606 * d_find_alias - grab a hashed alias of inode
607 * @inode: inode in question
608 * @want_discon: flag, used by d_splice_alias, to request
609 * that only a DISCONNECTED alias be returned.
610 *
611 * If inode has a hashed alias, or is a directory and has any alias,
612 * acquire the reference to alias and return it. Otherwise return NULL.
613 * Notice that if inode is a directory there can be only one alias and
614 * it can be unhashed only if it has no children, or if it is the root
615 * of a filesystem.
616 *
21c0d8fd 617 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 618 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 619 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 620 */
da502956 621static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 622{
da502956 623 struct dentry *alias, *discon_alias;
1da177e4 624
da502956
NP
625again:
626 discon_alias = NULL;
627 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
628 spin_lock(&alias->d_lock);
1da177e4 629 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 630 if (IS_ROOT(alias) &&
da502956 631 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 632 discon_alias = alias;
da502956 633 } else if (!want_discon) {
dc0474be 634 __dget_dlock(alias);
da502956
NP
635 spin_unlock(&alias->d_lock);
636 return alias;
637 }
638 }
639 spin_unlock(&alias->d_lock);
640 }
641 if (discon_alias) {
642 alias = discon_alias;
643 spin_lock(&alias->d_lock);
644 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
645 if (IS_ROOT(alias) &&
646 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 647 __dget_dlock(alias);
da502956 648 spin_unlock(&alias->d_lock);
1da177e4
LT
649 return alias;
650 }
651 }
da502956
NP
652 spin_unlock(&alias->d_lock);
653 goto again;
1da177e4 654 }
da502956 655 return NULL;
1da177e4
LT
656}
657
da502956 658struct dentry *d_find_alias(struct inode *inode)
1da177e4 659{
214fda1f
DH
660 struct dentry *de = NULL;
661
662 if (!list_empty(&inode->i_dentry)) {
873feea0 663 spin_lock(&inode->i_lock);
214fda1f 664 de = __d_find_alias(inode, 0);
873feea0 665 spin_unlock(&inode->i_lock);
214fda1f 666 }
1da177e4
LT
667 return de;
668}
ec4f8605 669EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
670
671/*
672 * Try to kill dentries associated with this inode.
673 * WARNING: you must own a reference to inode.
674 */
675void d_prune_aliases(struct inode *inode)
676{
0cdca3f9 677 struct dentry *dentry;
1da177e4 678restart:
873feea0 679 spin_lock(&inode->i_lock);
0cdca3f9 680 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 681 spin_lock(&dentry->d_lock);
b7ab39f6 682 if (!dentry->d_count) {
dc0474be 683 __dget_dlock(dentry);
1da177e4
LT
684 __d_drop(dentry);
685 spin_unlock(&dentry->d_lock);
873feea0 686 spin_unlock(&inode->i_lock);
1da177e4
LT
687 dput(dentry);
688 goto restart;
689 }
690 spin_unlock(&dentry->d_lock);
691 }
873feea0 692 spin_unlock(&inode->i_lock);
1da177e4 693}
ec4f8605 694EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
695
696/*
77812a1e
NP
697 * Try to throw away a dentry - free the inode, dput the parent.
698 * Requires dentry->d_lock is held, and dentry->d_count == 0.
699 * Releases dentry->d_lock.
d702ccb3 700 *
77812a1e 701 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 702 */
77812a1e 703static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 704 __releases(dentry->d_lock)
1da177e4 705{
77812a1e 706 struct dentry *parent;
d52b9086 707
77812a1e 708 parent = dentry_kill(dentry, 0);
d52b9086 709 /*
77812a1e
NP
710 * If dentry_kill returns NULL, we have nothing more to do.
711 * if it returns the same dentry, trylocks failed. In either
712 * case, just loop again.
713 *
714 * Otherwise, we need to prune ancestors too. This is necessary
715 * to prevent quadratic behavior of shrink_dcache_parent(), but
716 * is also expected to be beneficial in reducing dentry cache
717 * fragmentation.
d52b9086 718 */
77812a1e
NP
719 if (!parent)
720 return;
721 if (parent == dentry)
722 return;
723
724 /* Prune ancestors. */
725 dentry = parent;
d52b9086 726 while (dentry) {
b7ab39f6 727 spin_lock(&dentry->d_lock);
89e60548
NP
728 if (dentry->d_count > 1) {
729 dentry->d_count--;
730 spin_unlock(&dentry->d_lock);
731 return;
732 }
77812a1e 733 dentry = dentry_kill(dentry, 1);
d52b9086 734 }
1da177e4
LT
735}
736
3049cfe2 737static void shrink_dentry_list(struct list_head *list)
1da177e4 738{
da3bbdd4 739 struct dentry *dentry;
da3bbdd4 740
ec33679d
NP
741 rcu_read_lock();
742 for (;;) {
ec33679d
NP
743 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
744 if (&dentry->d_lru == list)
745 break; /* empty */
746 spin_lock(&dentry->d_lock);
747 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
748 spin_unlock(&dentry->d_lock);
23044507
NP
749 continue;
750 }
751
1da177e4
LT
752 /*
753 * We found an inuse dentry which was not removed from
da3bbdd4
KM
754 * the LRU because of laziness during lookup. Do not free
755 * it - just keep it off the LRU list.
1da177e4 756 */
b7ab39f6 757 if (dentry->d_count) {
ec33679d 758 dentry_lru_del(dentry);
da3bbdd4 759 spin_unlock(&dentry->d_lock);
1da177e4
LT
760 continue;
761 }
ec33679d 762
ec33679d 763 rcu_read_unlock();
77812a1e
NP
764
765 try_prune_one_dentry(dentry);
766
ec33679d 767 rcu_read_lock();
da3bbdd4 768 }
ec33679d 769 rcu_read_unlock();
3049cfe2
CH
770}
771
772/**
b48f03b3
DC
773 * prune_dcache_sb - shrink the dcache
774 * @sb: superblock
775 * @count: number of entries to try to free
776 *
777 * Attempt to shrink the superblock dcache LRU by @count entries. This is
778 * done when we need more memory an called from the superblock shrinker
779 * function.
3049cfe2 780 *
b48f03b3
DC
781 * This function may fail to free any resources if all the dentries are in
782 * use.
3049cfe2 783 */
b48f03b3 784void prune_dcache_sb(struct super_block *sb, int count)
3049cfe2 785{
3049cfe2
CH
786 struct dentry *dentry;
787 LIST_HEAD(referenced);
788 LIST_HEAD(tmp);
3049cfe2 789
23044507
NP
790relock:
791 spin_lock(&dcache_lru_lock);
3049cfe2
CH
792 while (!list_empty(&sb->s_dentry_lru)) {
793 dentry = list_entry(sb->s_dentry_lru.prev,
794 struct dentry, d_lru);
795 BUG_ON(dentry->d_sb != sb);
796
23044507
NP
797 if (!spin_trylock(&dentry->d_lock)) {
798 spin_unlock(&dcache_lru_lock);
799 cpu_relax();
800 goto relock;
801 }
802
b48f03b3 803 if (dentry->d_flags & DCACHE_REFERENCED) {
23044507
NP
804 dentry->d_flags &= ~DCACHE_REFERENCED;
805 list_move(&dentry->d_lru, &referenced);
3049cfe2 806 spin_unlock(&dentry->d_lock);
23044507
NP
807 } else {
808 list_move_tail(&dentry->d_lru, &tmp);
809 spin_unlock(&dentry->d_lock);
b0d40c92 810 if (!--count)
23044507 811 break;
3049cfe2 812 }
ec33679d 813 cond_resched_lock(&dcache_lru_lock);
3049cfe2 814 }
da3bbdd4
KM
815 if (!list_empty(&referenced))
816 list_splice(&referenced, &sb->s_dentry_lru);
23044507 817 spin_unlock(&dcache_lru_lock);
ec33679d
NP
818
819 shrink_dentry_list(&tmp);
da3bbdd4
KM
820}
821
1da177e4
LT
822/**
823 * shrink_dcache_sb - shrink dcache for a superblock
824 * @sb: superblock
825 *
3049cfe2
CH
826 * Shrink the dcache for the specified super block. This is used to free
827 * the dcache before unmounting a file system.
1da177e4 828 */
3049cfe2 829void shrink_dcache_sb(struct super_block *sb)
1da177e4 830{
3049cfe2
CH
831 LIST_HEAD(tmp);
832
23044507 833 spin_lock(&dcache_lru_lock);
3049cfe2
CH
834 while (!list_empty(&sb->s_dentry_lru)) {
835 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 836 spin_unlock(&dcache_lru_lock);
3049cfe2 837 shrink_dentry_list(&tmp);
ec33679d 838 spin_lock(&dcache_lru_lock);
3049cfe2 839 }
23044507 840 spin_unlock(&dcache_lru_lock);
1da177e4 841}
ec4f8605 842EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 843
c636ebdb
DH
844/*
845 * destroy a single subtree of dentries for unmount
846 * - see the comments on shrink_dcache_for_umount() for a description of the
847 * locking
848 */
849static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
850{
851 struct dentry *parent;
852
853 BUG_ON(!IS_ROOT(dentry));
854
c636ebdb
DH
855 for (;;) {
856 /* descend to the first leaf in the current subtree */
43c1c9cd 857 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
858 dentry = list_entry(dentry->d_subdirs.next,
859 struct dentry, d_u.d_child);
c636ebdb
DH
860
861 /* consume the dentries from this leaf up through its parents
862 * until we find one with children or run out altogether */
863 do {
864 struct inode *inode;
865
f0023bc6
SW
866 /*
867 * remove the dentry from the lru, and inform
868 * the fs that this dentry is about to be
869 * unhashed and destroyed.
870 */
871 dentry_lru_prune(dentry);
43c1c9cd
DH
872 __d_shrink(dentry);
873
b7ab39f6 874 if (dentry->d_count != 0) {
c636ebdb
DH
875 printk(KERN_ERR
876 "BUG: Dentry %p{i=%lx,n=%s}"
877 " still in use (%d)"
878 " [unmount of %s %s]\n",
879 dentry,
880 dentry->d_inode ?
881 dentry->d_inode->i_ino : 0UL,
882 dentry->d_name.name,
b7ab39f6 883 dentry->d_count,
c636ebdb
DH
884 dentry->d_sb->s_type->name,
885 dentry->d_sb->s_id);
886 BUG();
887 }
888
2fd6b7f5 889 if (IS_ROOT(dentry)) {
c636ebdb 890 parent = NULL;
2fd6b7f5
NP
891 list_del(&dentry->d_u.d_child);
892 } else {
871c0067 893 parent = dentry->d_parent;
b7ab39f6 894 parent->d_count--;
2fd6b7f5 895 list_del(&dentry->d_u.d_child);
871c0067 896 }
c636ebdb 897
c636ebdb
DH
898 inode = dentry->d_inode;
899 if (inode) {
900 dentry->d_inode = NULL;
901 list_del_init(&dentry->d_alias);
902 if (dentry->d_op && dentry->d_op->d_iput)
903 dentry->d_op->d_iput(dentry, inode);
904 else
905 iput(inode);
906 }
907
908 d_free(dentry);
909
910 /* finished when we fall off the top of the tree,
911 * otherwise we ascend to the parent and move to the
912 * next sibling if there is one */
913 if (!parent)
312d3ca8 914 return;
c636ebdb 915 dentry = parent;
c636ebdb
DH
916 } while (list_empty(&dentry->d_subdirs));
917
918 dentry = list_entry(dentry->d_subdirs.next,
919 struct dentry, d_u.d_child);
920 }
921}
922
923/*
924 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 925 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
926 * - the superblock is detached from all mountings and open files, so the
927 * dentry trees will not be rearranged by the VFS
928 * - s_umount is write-locked, so the memory pressure shrinker will ignore
929 * any dentries belonging to this superblock that it comes across
930 * - the filesystem itself is no longer permitted to rearrange the dentries
931 * in this superblock
932 */
933void shrink_dcache_for_umount(struct super_block *sb)
934{
935 struct dentry *dentry;
936
937 if (down_read_trylock(&sb->s_umount))
938 BUG();
939
940 dentry = sb->s_root;
941 sb->s_root = NULL;
b7ab39f6 942 dentry->d_count--;
c636ebdb
DH
943 shrink_dcache_for_umount_subtree(dentry);
944
ceb5bdc2
NP
945 while (!hlist_bl_empty(&sb->s_anon)) {
946 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
947 shrink_dcache_for_umount_subtree(dentry);
948 }
949}
950
c826cb7d
LT
951/*
952 * This tries to ascend one level of parenthood, but
953 * we can race with renaming, so we need to re-check
954 * the parenthood after dropping the lock and check
955 * that the sequence number still matches.
956 */
957static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
958{
959 struct dentry *new = old->d_parent;
960
961 rcu_read_lock();
962 spin_unlock(&old->d_lock);
963 spin_lock(&new->d_lock);
964
965 /*
966 * might go back up the wrong parent if we have had a rename
967 * or deletion
968 */
969 if (new != old->d_parent ||
c83ce989 970 (old->d_flags & DCACHE_DISCONNECTED) ||
c826cb7d
LT
971 (!locked && read_seqretry(&rename_lock, seq))) {
972 spin_unlock(&new->d_lock);
973 new = NULL;
974 }
975 rcu_read_unlock();
976 return new;
977}
978
979
1da177e4
LT
980/*
981 * Search for at least 1 mount point in the dentry's subdirs.
982 * We descend to the next level whenever the d_subdirs
983 * list is non-empty and continue searching.
984 */
985
986/**
987 * have_submounts - check for mounts over a dentry
988 * @parent: dentry to check.
989 *
990 * Return true if the parent or its subdirectories contain
991 * a mount point
992 */
1da177e4
LT
993int have_submounts(struct dentry *parent)
994{
949854d0 995 struct dentry *this_parent;
1da177e4 996 struct list_head *next;
949854d0 997 unsigned seq;
58db63d0 998 int locked = 0;
949854d0 999
949854d0 1000 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1001again:
1002 this_parent = parent;
1da177e4 1003
1da177e4
LT
1004 if (d_mountpoint(parent))
1005 goto positive;
2fd6b7f5 1006 spin_lock(&this_parent->d_lock);
1da177e4
LT
1007repeat:
1008 next = this_parent->d_subdirs.next;
1009resume:
1010 while (next != &this_parent->d_subdirs) {
1011 struct list_head *tmp = next;
5160ee6f 1012 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1013 next = tmp->next;
2fd6b7f5
NP
1014
1015 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1016 /* Have we found a mount point ? */
2fd6b7f5
NP
1017 if (d_mountpoint(dentry)) {
1018 spin_unlock(&dentry->d_lock);
1019 spin_unlock(&this_parent->d_lock);
1da177e4 1020 goto positive;
2fd6b7f5 1021 }
1da177e4 1022 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1023 spin_unlock(&this_parent->d_lock);
1024 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1025 this_parent = dentry;
2fd6b7f5 1026 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1027 goto repeat;
1028 }
2fd6b7f5 1029 spin_unlock(&dentry->d_lock);
1da177e4
LT
1030 }
1031 /*
1032 * All done at this level ... ascend and resume the search.
1033 */
1034 if (this_parent != parent) {
c826cb7d
LT
1035 struct dentry *child = this_parent;
1036 this_parent = try_to_ascend(this_parent, locked, seq);
1037 if (!this_parent)
949854d0 1038 goto rename_retry;
949854d0 1039 next = child->d_u.d_child.next;
1da177e4
LT
1040 goto resume;
1041 }
2fd6b7f5 1042 spin_unlock(&this_parent->d_lock);
58db63d0 1043 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1044 goto rename_retry;
58db63d0
NP
1045 if (locked)
1046 write_sequnlock(&rename_lock);
1da177e4
LT
1047 return 0; /* No mount points found in tree */
1048positive:
58db63d0 1049 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1050 goto rename_retry;
58db63d0
NP
1051 if (locked)
1052 write_sequnlock(&rename_lock);
1da177e4 1053 return 1;
58db63d0
NP
1054
1055rename_retry:
1056 locked = 1;
1057 write_seqlock(&rename_lock);
1058 goto again;
1da177e4 1059}
ec4f8605 1060EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1061
1062/*
1063 * Search the dentry child list for the specified parent,
1064 * and move any unused dentries to the end of the unused
1065 * list for prune_dcache(). We descend to the next level
1066 * whenever the d_subdirs list is non-empty and continue
1067 * searching.
1068 *
1069 * It returns zero iff there are no unused children,
1070 * otherwise it returns the number of children moved to
1071 * the end of the unused list. This may not be the total
1072 * number of unused children, because select_parent can
1073 * drop the lock and return early due to latency
1074 * constraints.
1075 */
b48f03b3 1076static int select_parent(struct dentry *parent, struct list_head *dispose)
1da177e4 1077{
949854d0 1078 struct dentry *this_parent;
1da177e4 1079 struct list_head *next;
949854d0 1080 unsigned seq;
1da177e4 1081 int found = 0;
58db63d0 1082 int locked = 0;
1da177e4 1083
949854d0 1084 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1085again:
1086 this_parent = parent;
2fd6b7f5 1087 spin_lock(&this_parent->d_lock);
1da177e4
LT
1088repeat:
1089 next = this_parent->d_subdirs.next;
1090resume:
1091 while (next != &this_parent->d_subdirs) {
1092 struct list_head *tmp = next;
5160ee6f 1093 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1094 next = tmp->next;
1095
2fd6b7f5 1096 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1097
b48f03b3
DC
1098 /*
1099 * move only zero ref count dentries to the dispose list.
1da177e4 1100 */
b7ab39f6 1101 if (!dentry->d_count) {
b48f03b3 1102 dentry_lru_move_list(dentry, dispose);
1da177e4 1103 found++;
a4633357
CH
1104 } else {
1105 dentry_lru_del(dentry);
1da177e4
LT
1106 }
1107
1108 /*
1109 * We can return to the caller if we have found some (this
1110 * ensures forward progress). We'll be coming back to find
1111 * the rest.
1112 */
2fd6b7f5
NP
1113 if (found && need_resched()) {
1114 spin_unlock(&dentry->d_lock);
1da177e4 1115 goto out;
2fd6b7f5 1116 }
1da177e4
LT
1117
1118 /*
1119 * Descend a level if the d_subdirs list is non-empty.
1120 */
1121 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1122 spin_unlock(&this_parent->d_lock);
1123 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1124 this_parent = dentry;
2fd6b7f5 1125 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1126 goto repeat;
1127 }
2fd6b7f5
NP
1128
1129 spin_unlock(&dentry->d_lock);
1da177e4
LT
1130 }
1131 /*
1132 * All done at this level ... ascend and resume the search.
1133 */
1134 if (this_parent != parent) {
c826cb7d
LT
1135 struct dentry *child = this_parent;
1136 this_parent = try_to_ascend(this_parent, locked, seq);
1137 if (!this_parent)
949854d0 1138 goto rename_retry;
949854d0 1139 next = child->d_u.d_child.next;
1da177e4
LT
1140 goto resume;
1141 }
1142out:
2fd6b7f5 1143 spin_unlock(&this_parent->d_lock);
58db63d0 1144 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1145 goto rename_retry;
58db63d0
NP
1146 if (locked)
1147 write_sequnlock(&rename_lock);
1da177e4 1148 return found;
58db63d0
NP
1149
1150rename_retry:
1151 if (found)
1152 return found;
1153 locked = 1;
1154 write_seqlock(&rename_lock);
1155 goto again;
1da177e4
LT
1156}
1157
1158/**
1159 * shrink_dcache_parent - prune dcache
1160 * @parent: parent of entries to prune
1161 *
1162 * Prune the dcache to remove unused children of the parent dentry.
1163 */
1da177e4
LT
1164void shrink_dcache_parent(struct dentry * parent)
1165{
b48f03b3 1166 LIST_HEAD(dispose);
1da177e4
LT
1167 int found;
1168
b48f03b3
DC
1169 while ((found = select_parent(parent, &dispose)) != 0)
1170 shrink_dentry_list(&dispose);
1da177e4 1171}
ec4f8605 1172EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1173
1da177e4 1174/**
a4464dbc
AV
1175 * __d_alloc - allocate a dcache entry
1176 * @sb: filesystem it will belong to
1da177e4
LT
1177 * @name: qstr of the name
1178 *
1179 * Allocates a dentry. It returns %NULL if there is insufficient memory
1180 * available. On a success the dentry is returned. The name passed in is
1181 * copied and the copy passed in may be reused after this call.
1182 */
1183
a4464dbc 1184struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1185{
1186 struct dentry *dentry;
1187 char *dname;
1188
e12ba74d 1189 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1190 if (!dentry)
1191 return NULL;
1192
1193 if (name->len > DNAME_INLINE_LEN-1) {
1194 dname = kmalloc(name->len + 1, GFP_KERNEL);
1195 if (!dname) {
1196 kmem_cache_free(dentry_cache, dentry);
1197 return NULL;
1198 }
1199 } else {
1200 dname = dentry->d_iname;
1201 }
1202 dentry->d_name.name = dname;
1203
1204 dentry->d_name.len = name->len;
1205 dentry->d_name.hash = name->hash;
1206 memcpy(dname, name->name, name->len);
1207 dname[name->len] = 0;
1208
b7ab39f6 1209 dentry->d_count = 1;
dea3667b 1210 dentry->d_flags = 0;
1da177e4 1211 spin_lock_init(&dentry->d_lock);
31e6b01f 1212 seqcount_init(&dentry->d_seq);
1da177e4 1213 dentry->d_inode = NULL;
a4464dbc
AV
1214 dentry->d_parent = dentry;
1215 dentry->d_sb = sb;
1da177e4
LT
1216 dentry->d_op = NULL;
1217 dentry->d_fsdata = NULL;
ceb5bdc2 1218 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1219 INIT_LIST_HEAD(&dentry->d_lru);
1220 INIT_LIST_HEAD(&dentry->d_subdirs);
1221 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1222 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1223 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1224
3e880fb5 1225 this_cpu_inc(nr_dentry);
312d3ca8 1226
1da177e4
LT
1227 return dentry;
1228}
a4464dbc
AV
1229
1230/**
1231 * d_alloc - allocate a dcache entry
1232 * @parent: parent of entry to allocate
1233 * @name: qstr of the name
1234 *
1235 * Allocates a dentry. It returns %NULL if there is insufficient memory
1236 * available. On a success the dentry is returned. The name passed in is
1237 * copied and the copy passed in may be reused after this call.
1238 */
1239struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1240{
1241 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1242 if (!dentry)
1243 return NULL;
1244
1245 spin_lock(&parent->d_lock);
1246 /*
1247 * don't need child lock because it is not subject
1248 * to concurrency here
1249 */
1250 __dget_dlock(parent);
1251 dentry->d_parent = parent;
1252 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1253 spin_unlock(&parent->d_lock);
1254
1255 return dentry;
1256}
ec4f8605 1257EXPORT_SYMBOL(d_alloc);
1da177e4 1258
4b936885
NP
1259struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1260{
a4464dbc
AV
1261 struct dentry *dentry = __d_alloc(sb, name);
1262 if (dentry)
4b936885 1263 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1264 return dentry;
1265}
1266EXPORT_SYMBOL(d_alloc_pseudo);
1267
1da177e4
LT
1268struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1269{
1270 struct qstr q;
1271
1272 q.name = name;
1273 q.len = strlen(name);
1274 q.hash = full_name_hash(q.name, q.len);
1275 return d_alloc(parent, &q);
1276}
ef26ca97 1277EXPORT_SYMBOL(d_alloc_name);
1da177e4 1278
fb045adb
NP
1279void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1280{
6f7f7caa
LT
1281 WARN_ON_ONCE(dentry->d_op);
1282 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1283 DCACHE_OP_COMPARE |
1284 DCACHE_OP_REVALIDATE |
1285 DCACHE_OP_DELETE ));
1286 dentry->d_op = op;
1287 if (!op)
1288 return;
1289 if (op->d_hash)
1290 dentry->d_flags |= DCACHE_OP_HASH;
1291 if (op->d_compare)
1292 dentry->d_flags |= DCACHE_OP_COMPARE;
1293 if (op->d_revalidate)
1294 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1295 if (op->d_delete)
1296 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1297 if (op->d_prune)
1298 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1299
1300}
1301EXPORT_SYMBOL(d_set_d_op);
1302
360da900
OH
1303static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1304{
b23fb0a6 1305 spin_lock(&dentry->d_lock);
9875cf80
DH
1306 if (inode) {
1307 if (unlikely(IS_AUTOMOUNT(inode)))
1308 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
360da900 1309 list_add(&dentry->d_alias, &inode->i_dentry);
9875cf80 1310 }
360da900 1311 dentry->d_inode = inode;
31e6b01f 1312 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1313 spin_unlock(&dentry->d_lock);
360da900
OH
1314 fsnotify_d_instantiate(dentry, inode);
1315}
1316
1da177e4
LT
1317/**
1318 * d_instantiate - fill in inode information for a dentry
1319 * @entry: dentry to complete
1320 * @inode: inode to attach to this dentry
1321 *
1322 * Fill in inode information in the entry.
1323 *
1324 * This turns negative dentries into productive full members
1325 * of society.
1326 *
1327 * NOTE! This assumes that the inode count has been incremented
1328 * (or otherwise set) by the caller to indicate that it is now
1329 * in use by the dcache.
1330 */
1331
1332void d_instantiate(struct dentry *entry, struct inode * inode)
1333{
28133c7b 1334 BUG_ON(!list_empty(&entry->d_alias));
873feea0
NP
1335 if (inode)
1336 spin_lock(&inode->i_lock);
360da900 1337 __d_instantiate(entry, inode);
873feea0
NP
1338 if (inode)
1339 spin_unlock(&inode->i_lock);
1da177e4
LT
1340 security_d_instantiate(entry, inode);
1341}
ec4f8605 1342EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1343
1344/**
1345 * d_instantiate_unique - instantiate a non-aliased dentry
1346 * @entry: dentry to instantiate
1347 * @inode: inode to attach to this dentry
1348 *
1349 * Fill in inode information in the entry. On success, it returns NULL.
1350 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1351 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1352 *
1353 * Note that in order to avoid conflicts with rename() etc, the caller
1354 * had better be holding the parent directory semaphore.
e866cfa9
OD
1355 *
1356 * This also assumes that the inode count has been incremented
1357 * (or otherwise set) by the caller to indicate that it is now
1358 * in use by the dcache.
1da177e4 1359 */
770bfad8
DH
1360static struct dentry *__d_instantiate_unique(struct dentry *entry,
1361 struct inode *inode)
1da177e4
LT
1362{
1363 struct dentry *alias;
1364 int len = entry->d_name.len;
1365 const char *name = entry->d_name.name;
1366 unsigned int hash = entry->d_name.hash;
1367
770bfad8 1368 if (!inode) {
360da900 1369 __d_instantiate(entry, NULL);
770bfad8
DH
1370 return NULL;
1371 }
1372
1da177e4
LT
1373 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1374 struct qstr *qstr = &alias->d_name;
1375
9abca360
NP
1376 /*
1377 * Don't need alias->d_lock here, because aliases with
1378 * d_parent == entry->d_parent are not subject to name or
1379 * parent changes, because the parent inode i_mutex is held.
1380 */
1da177e4
LT
1381 if (qstr->hash != hash)
1382 continue;
1383 if (alias->d_parent != entry->d_parent)
1384 continue;
9d55c369 1385 if (dentry_cmp(qstr->name, qstr->len, name, len))
1da177e4 1386 continue;
dc0474be 1387 __dget(alias);
1da177e4
LT
1388 return alias;
1389 }
770bfad8 1390
360da900 1391 __d_instantiate(entry, inode);
1da177e4
LT
1392 return NULL;
1393}
770bfad8
DH
1394
1395struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1396{
1397 struct dentry *result;
1398
1399 BUG_ON(!list_empty(&entry->d_alias));
1400
873feea0
NP
1401 if (inode)
1402 spin_lock(&inode->i_lock);
770bfad8 1403 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1404 if (inode)
1405 spin_unlock(&inode->i_lock);
770bfad8
DH
1406
1407 if (!result) {
1408 security_d_instantiate(entry, inode);
1409 return NULL;
1410 }
1411
1412 BUG_ON(!d_unhashed(result));
1413 iput(inode);
1414 return result;
1415}
1416
1da177e4
LT
1417EXPORT_SYMBOL(d_instantiate_unique);
1418
1419/**
1420 * d_alloc_root - allocate root dentry
1421 * @root_inode: inode to allocate the root for
1422 *
1423 * Allocate a root ("/") dentry for the inode given. The inode is
1424 * instantiated and returned. %NULL is returned if there is insufficient
1425 * memory or the inode passed is %NULL.
1426 */
1427
1428struct dentry * d_alloc_root(struct inode * root_inode)
1429{
1430 struct dentry *res = NULL;
1431
1432 if (root_inode) {
1433 static const struct qstr name = { .name = "/", .len = 1 };
1434
a4464dbc
AV
1435 res = __d_alloc(root_inode->i_sb, &name);
1436 if (res)
1da177e4 1437 d_instantiate(res, root_inode);
1da177e4
LT
1438 }
1439 return res;
1440}
ec4f8605 1441EXPORT_SYMBOL(d_alloc_root);
1da177e4 1442
adc0e91a
AV
1443struct dentry *d_make_root(struct inode *root_inode)
1444{
1445 struct dentry *res = NULL;
1446
1447 if (root_inode) {
1448 static const struct qstr name = { .name = "/", .len = 1 };
1449
1450 res = __d_alloc(root_inode->i_sb, &name);
1451 if (res)
1452 d_instantiate(res, root_inode);
1453 else
1454 iput(root_inode);
1455 }
1456 return res;
1457}
1458EXPORT_SYMBOL(d_make_root);
1459
d891eedb
BF
1460static struct dentry * __d_find_any_alias(struct inode *inode)
1461{
1462 struct dentry *alias;
1463
1464 if (list_empty(&inode->i_dentry))
1465 return NULL;
1466 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1467 __dget(alias);
1468 return alias;
1469}
1470
1471static struct dentry * d_find_any_alias(struct inode *inode)
1472{
1473 struct dentry *de;
1474
1475 spin_lock(&inode->i_lock);
1476 de = __d_find_any_alias(inode);
1477 spin_unlock(&inode->i_lock);
1478 return de;
1479}
1480
1481
4ea3ada2
CH
1482/**
1483 * d_obtain_alias - find or allocate a dentry for a given inode
1484 * @inode: inode to allocate the dentry for
1485 *
1486 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1487 * similar open by handle operations. The returned dentry may be anonymous,
1488 * or may have a full name (if the inode was already in the cache).
1489 *
1490 * When called on a directory inode, we must ensure that the inode only ever
1491 * has one dentry. If a dentry is found, that is returned instead of
1492 * allocating a new one.
1493 *
1494 * On successful return, the reference to the inode has been transferred
44003728
CH
1495 * to the dentry. In case of an error the reference on the inode is released.
1496 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1497 * be passed in and will be the error will be propagate to the return value,
1498 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1499 */
1500struct dentry *d_obtain_alias(struct inode *inode)
1501{
9308a612
CH
1502 static const struct qstr anonstring = { .name = "" };
1503 struct dentry *tmp;
1504 struct dentry *res;
4ea3ada2
CH
1505
1506 if (!inode)
44003728 1507 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1508 if (IS_ERR(inode))
1509 return ERR_CAST(inode);
1510
d891eedb 1511 res = d_find_any_alias(inode);
9308a612
CH
1512 if (res)
1513 goto out_iput;
1514
a4464dbc 1515 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1516 if (!tmp) {
1517 res = ERR_PTR(-ENOMEM);
1518 goto out_iput;
4ea3ada2 1519 }
b5c84bf6 1520
873feea0 1521 spin_lock(&inode->i_lock);
d891eedb 1522 res = __d_find_any_alias(inode);
9308a612 1523 if (res) {
873feea0 1524 spin_unlock(&inode->i_lock);
9308a612
CH
1525 dput(tmp);
1526 goto out_iput;
1527 }
1528
1529 /* attach a disconnected dentry */
1530 spin_lock(&tmp->d_lock);
9308a612
CH
1531 tmp->d_inode = inode;
1532 tmp->d_flags |= DCACHE_DISCONNECTED;
9308a612 1533 list_add(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1534 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1535 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1536 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1537 spin_unlock(&tmp->d_lock);
873feea0 1538 spin_unlock(&inode->i_lock);
24ff6663 1539 security_d_instantiate(tmp, inode);
9308a612 1540
9308a612
CH
1541 return tmp;
1542
1543 out_iput:
24ff6663
JB
1544 if (res && !IS_ERR(res))
1545 security_d_instantiate(res, inode);
9308a612
CH
1546 iput(inode);
1547 return res;
4ea3ada2 1548}
adc48720 1549EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1550
1551/**
1552 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1553 * @inode: the inode which may have a disconnected dentry
1554 * @dentry: a negative dentry which we want to point to the inode.
1555 *
1556 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1557 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1558 * and return it, else simply d_add the inode to the dentry and return NULL.
1559 *
1560 * This is needed in the lookup routine of any filesystem that is exportable
1561 * (via knfsd) so that we can build dcache paths to directories effectively.
1562 *
1563 * If a dentry was found and moved, then it is returned. Otherwise NULL
1564 * is returned. This matches the expected return value of ->lookup.
1565 *
1566 */
1567struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1568{
1569 struct dentry *new = NULL;
1570
a9049376
AV
1571 if (IS_ERR(inode))
1572 return ERR_CAST(inode);
1573
21c0d8fd 1574 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1575 spin_lock(&inode->i_lock);
1da177e4
LT
1576 new = __d_find_alias(inode, 1);
1577 if (new) {
1578 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1579 spin_unlock(&inode->i_lock);
1da177e4 1580 security_d_instantiate(new, inode);
1da177e4
LT
1581 d_move(new, dentry);
1582 iput(inode);
1583 } else {
873feea0 1584 /* already taking inode->i_lock, so d_add() by hand */
360da900 1585 __d_instantiate(dentry, inode);
873feea0 1586 spin_unlock(&inode->i_lock);
1da177e4
LT
1587 security_d_instantiate(dentry, inode);
1588 d_rehash(dentry);
1589 }
1590 } else
1591 d_add(dentry, inode);
1592 return new;
1593}
ec4f8605 1594EXPORT_SYMBOL(d_splice_alias);
1da177e4 1595
9403540c
BN
1596/**
1597 * d_add_ci - lookup or allocate new dentry with case-exact name
1598 * @inode: the inode case-insensitive lookup has found
1599 * @dentry: the negative dentry that was passed to the parent's lookup func
1600 * @name: the case-exact name to be associated with the returned dentry
1601 *
1602 * This is to avoid filling the dcache with case-insensitive names to the
1603 * same inode, only the actual correct case is stored in the dcache for
1604 * case-insensitive filesystems.
1605 *
1606 * For a case-insensitive lookup match and if the the case-exact dentry
1607 * already exists in in the dcache, use it and return it.
1608 *
1609 * If no entry exists with the exact case name, allocate new dentry with
1610 * the exact case, and return the spliced entry.
1611 */
e45b590b 1612struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1613 struct qstr *name)
1614{
1615 int error;
1616 struct dentry *found;
1617 struct dentry *new;
1618
b6520c81
CH
1619 /*
1620 * First check if a dentry matching the name already exists,
1621 * if not go ahead and create it now.
1622 */
9403540c 1623 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1624 if (!found) {
1625 new = d_alloc(dentry->d_parent, name);
1626 if (!new) {
1627 error = -ENOMEM;
1628 goto err_out;
1629 }
b6520c81 1630
9403540c
BN
1631 found = d_splice_alias(inode, new);
1632 if (found) {
1633 dput(new);
1634 return found;
1635 }
1636 return new;
1637 }
b6520c81
CH
1638
1639 /*
1640 * If a matching dentry exists, and it's not negative use it.
1641 *
1642 * Decrement the reference count to balance the iget() done
1643 * earlier on.
1644 */
9403540c
BN
1645 if (found->d_inode) {
1646 if (unlikely(found->d_inode != inode)) {
1647 /* This can't happen because bad inodes are unhashed. */
1648 BUG_ON(!is_bad_inode(inode));
1649 BUG_ON(!is_bad_inode(found->d_inode));
1650 }
9403540c
BN
1651 iput(inode);
1652 return found;
1653 }
b6520c81 1654
9403540c 1655 /*
44396f4b
JB
1656 * We are going to instantiate this dentry, unhash it and clear the
1657 * lookup flag so we can do that.
9403540c 1658 */
44396f4b
JB
1659 if (unlikely(d_need_lookup(found)))
1660 d_clear_need_lookup(found);
b6520c81 1661
9403540c 1662 /*
9403540c 1663 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1664 * already has a dentry.
9403540c 1665 */
4513d899
AV
1666 new = d_splice_alias(inode, found);
1667 if (new) {
1668 dput(found);
1669 found = new;
9403540c 1670 }
4513d899 1671 return found;
9403540c
BN
1672
1673err_out:
1674 iput(inode);
1675 return ERR_PTR(error);
1676}
ec4f8605 1677EXPORT_SYMBOL(d_add_ci);
1da177e4 1678
31e6b01f
NP
1679/**
1680 * __d_lookup_rcu - search for a dentry (racy, store-free)
1681 * @parent: parent dentry
1682 * @name: qstr of name we wish to find
1683 * @seq: returns d_seq value at the point where the dentry was found
1684 * @inode: returns dentry->d_inode when the inode was found valid.
1685 * Returns: dentry, or NULL
1686 *
1687 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1688 * resolution (store-free path walking) design described in
1689 * Documentation/filesystems/path-lookup.txt.
1690 *
1691 * This is not to be used outside core vfs.
1692 *
1693 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1694 * held, and rcu_read_lock held. The returned dentry must not be stored into
1695 * without taking d_lock and checking d_seq sequence count against @seq
1696 * returned here.
1697 *
1698 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1699 * function.
1700 *
1701 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1702 * the returned dentry, so long as its parent's seqlock is checked after the
1703 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1704 * is formed, giving integrity down the path walk.
1705 */
1706struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1707 unsigned *seq, struct inode **inode)
1708{
1709 unsigned int len = name->len;
1710 unsigned int hash = name->hash;
1711 const unsigned char *str = name->name;
b07ad996 1712 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1713 struct hlist_bl_node *node;
31e6b01f
NP
1714 struct dentry *dentry;
1715
1716 /*
1717 * Note: There is significant duplication with __d_lookup_rcu which is
1718 * required to prevent single threaded performance regressions
1719 * especially on architectures where smp_rmb (in seqcounts) are costly.
1720 * Keep the two functions in sync.
1721 */
1722
1723 /*
1724 * The hash list is protected using RCU.
1725 *
1726 * Carefully use d_seq when comparing a candidate dentry, to avoid
1727 * races with d_move().
1728 *
1729 * It is possible that concurrent renames can mess up our list
1730 * walk here and result in missing our dentry, resulting in the
1731 * false-negative result. d_lookup() protects against concurrent
1732 * renames using rename_lock seqlock.
1733 *
b0a4bb83 1734 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1735 */
b07ad996 1736 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1737 struct inode *i;
1738 const char *tname;
1739 int tlen;
1740
1741 if (dentry->d_name.hash != hash)
1742 continue;
1743
1744seqretry:
1745 *seq = read_seqcount_begin(&dentry->d_seq);
1746 if (dentry->d_parent != parent)
1747 continue;
1748 if (d_unhashed(dentry))
1749 continue;
1750 tlen = dentry->d_name.len;
1751 tname = dentry->d_name.name;
1752 i = dentry->d_inode;
e1bb5782 1753 prefetch(tname);
31e6b01f
NP
1754 /*
1755 * This seqcount check is required to ensure name and
1756 * len are loaded atomically, so as not to walk off the
1757 * edge of memory when walking. If we could load this
1758 * atomically some other way, we could drop this check.
1759 */
1760 if (read_seqcount_retry(&dentry->d_seq, *seq))
1761 goto seqretry;
830c0f0e 1762 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
31e6b01f
NP
1763 if (parent->d_op->d_compare(parent, *inode,
1764 dentry, i,
1765 tlen, tname, name))
1766 continue;
1767 } else {
9d55c369 1768 if (dentry_cmp(tname, tlen, str, len))
31e6b01f
NP
1769 continue;
1770 }
1771 /*
1772 * No extra seqcount check is required after the name
1773 * compare. The caller must perform a seqcount check in
1774 * order to do anything useful with the returned dentry
1775 * anyway.
1776 */
1777 *inode = i;
1778 return dentry;
1779 }
1780 return NULL;
1781}
1782
1da177e4
LT
1783/**
1784 * d_lookup - search for a dentry
1785 * @parent: parent dentry
1786 * @name: qstr of name we wish to find
b04f784e 1787 * Returns: dentry, or NULL
1da177e4 1788 *
b04f784e
NP
1789 * d_lookup searches the children of the parent dentry for the name in
1790 * question. If the dentry is found its reference count is incremented and the
1791 * dentry is returned. The caller must use dput to free the entry when it has
1792 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1793 */
31e6b01f 1794struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1795{
31e6b01f 1796 struct dentry *dentry;
949854d0 1797 unsigned seq;
1da177e4
LT
1798
1799 do {
1800 seq = read_seqbegin(&rename_lock);
1801 dentry = __d_lookup(parent, name);
1802 if (dentry)
1803 break;
1804 } while (read_seqretry(&rename_lock, seq));
1805 return dentry;
1806}
ec4f8605 1807EXPORT_SYMBOL(d_lookup);
1da177e4 1808
31e6b01f 1809/**
b04f784e
NP
1810 * __d_lookup - search for a dentry (racy)
1811 * @parent: parent dentry
1812 * @name: qstr of name we wish to find
1813 * Returns: dentry, or NULL
1814 *
1815 * __d_lookup is like d_lookup, however it may (rarely) return a
1816 * false-negative result due to unrelated rename activity.
1817 *
1818 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1819 * however it must be used carefully, eg. with a following d_lookup in
1820 * the case of failure.
1821 *
1822 * __d_lookup callers must be commented.
1823 */
31e6b01f 1824struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1825{
1826 unsigned int len = name->len;
1827 unsigned int hash = name->hash;
1828 const unsigned char *str = name->name;
b07ad996 1829 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1830 struct hlist_bl_node *node;
31e6b01f 1831 struct dentry *found = NULL;
665a7583 1832 struct dentry *dentry;
1da177e4 1833
31e6b01f
NP
1834 /*
1835 * Note: There is significant duplication with __d_lookup_rcu which is
1836 * required to prevent single threaded performance regressions
1837 * especially on architectures where smp_rmb (in seqcounts) are costly.
1838 * Keep the two functions in sync.
1839 */
1840
b04f784e
NP
1841 /*
1842 * The hash list is protected using RCU.
1843 *
1844 * Take d_lock when comparing a candidate dentry, to avoid races
1845 * with d_move().
1846 *
1847 * It is possible that concurrent renames can mess up our list
1848 * walk here and result in missing our dentry, resulting in the
1849 * false-negative result. d_lookup() protects against concurrent
1850 * renames using rename_lock seqlock.
1851 *
b0a4bb83 1852 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1853 */
1da177e4
LT
1854 rcu_read_lock();
1855
b07ad996 1856 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1857 const char *tname;
1858 int tlen;
1da177e4 1859
1da177e4
LT
1860 if (dentry->d_name.hash != hash)
1861 continue;
1da177e4
LT
1862
1863 spin_lock(&dentry->d_lock);
1da177e4
LT
1864 if (dentry->d_parent != parent)
1865 goto next;
d0185c08
LT
1866 if (d_unhashed(dentry))
1867 goto next;
1868
1da177e4
LT
1869 /*
1870 * It is safe to compare names since d_move() cannot
1871 * change the qstr (protected by d_lock).
1872 */
31e6b01f
NP
1873 tlen = dentry->d_name.len;
1874 tname = dentry->d_name.name;
fb045adb 1875 if (parent->d_flags & DCACHE_OP_COMPARE) {
621e155a
NP
1876 if (parent->d_op->d_compare(parent, parent->d_inode,
1877 dentry, dentry->d_inode,
31e6b01f 1878 tlen, tname, name))
1da177e4
LT
1879 goto next;
1880 } else {
9d55c369 1881 if (dentry_cmp(tname, tlen, str, len))
1da177e4
LT
1882 goto next;
1883 }
1884
b7ab39f6 1885 dentry->d_count++;
d0185c08 1886 found = dentry;
1da177e4
LT
1887 spin_unlock(&dentry->d_lock);
1888 break;
1889next:
1890 spin_unlock(&dentry->d_lock);
1891 }
1892 rcu_read_unlock();
1893
1894 return found;
1895}
1896
3e7e241f
EB
1897/**
1898 * d_hash_and_lookup - hash the qstr then search for a dentry
1899 * @dir: Directory to search in
1900 * @name: qstr of name we wish to find
1901 *
1902 * On hash failure or on lookup failure NULL is returned.
1903 */
1904struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1905{
1906 struct dentry *dentry = NULL;
1907
1908 /*
1909 * Check for a fs-specific hash function. Note that we must
1910 * calculate the standard hash first, as the d_op->d_hash()
1911 * routine may choose to leave the hash value unchanged.
1912 */
1913 name->hash = full_name_hash(name->name, name->len);
fb045adb 1914 if (dir->d_flags & DCACHE_OP_HASH) {
b1e6a015 1915 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1916 goto out;
1917 }
1918 dentry = d_lookup(dir, name);
1919out:
1920 return dentry;
1921}
1922
1da177e4 1923/**
786a5e15 1924 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 1925 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 1926 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1927 *
1928 * An insecure source has sent us a dentry, here we verify it and dget() it.
1929 * This is used by ncpfs in its readdir implementation.
1930 * Zero is returned in the dentry is invalid.
786a5e15
NP
1931 *
1932 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1933 */
d3a23e16 1934int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1935{
786a5e15 1936 struct dentry *child;
d3a23e16 1937
2fd6b7f5 1938 spin_lock(&dparent->d_lock);
786a5e15
NP
1939 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1940 if (dentry == child) {
2fd6b7f5 1941 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 1942 __dget_dlock(dentry);
2fd6b7f5
NP
1943 spin_unlock(&dentry->d_lock);
1944 spin_unlock(&dparent->d_lock);
1da177e4
LT
1945 return 1;
1946 }
1947 }
2fd6b7f5 1948 spin_unlock(&dparent->d_lock);
786a5e15 1949
1da177e4
LT
1950 return 0;
1951}
ec4f8605 1952EXPORT_SYMBOL(d_validate);
1da177e4
LT
1953
1954/*
1955 * When a file is deleted, we have two options:
1956 * - turn this dentry into a negative dentry
1957 * - unhash this dentry and free it.
1958 *
1959 * Usually, we want to just turn this into
1960 * a negative dentry, but if anybody else is
1961 * currently using the dentry or the inode
1962 * we can't do that and we fall back on removing
1963 * it from the hash queues and waiting for
1964 * it to be deleted later when it has no users
1965 */
1966
1967/**
1968 * d_delete - delete a dentry
1969 * @dentry: The dentry to delete
1970 *
1971 * Turn the dentry into a negative dentry if possible, otherwise
1972 * remove it from the hash queues so it can be deleted later
1973 */
1974
1975void d_delete(struct dentry * dentry)
1976{
873feea0 1977 struct inode *inode;
7a91bf7f 1978 int isdir = 0;
1da177e4
LT
1979 /*
1980 * Are we the only user?
1981 */
357f8e65 1982again:
1da177e4 1983 spin_lock(&dentry->d_lock);
873feea0
NP
1984 inode = dentry->d_inode;
1985 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 1986 if (dentry->d_count == 1) {
873feea0 1987 if (inode && !spin_trylock(&inode->i_lock)) {
357f8e65
NP
1988 spin_unlock(&dentry->d_lock);
1989 cpu_relax();
1990 goto again;
1991 }
13e3c5e5 1992 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 1993 dentry_unlink_inode(dentry);
7a91bf7f 1994 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1995 return;
1996 }
1997
1998 if (!d_unhashed(dentry))
1999 __d_drop(dentry);
2000
2001 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2002
2003 fsnotify_nameremove(dentry, isdir);
1da177e4 2004}
ec4f8605 2005EXPORT_SYMBOL(d_delete);
1da177e4 2006
b07ad996 2007static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2008{
ceb5bdc2 2009 BUG_ON(!d_unhashed(entry));
1879fd6a 2010 hlist_bl_lock(b);
dea3667b 2011 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2012 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2013 hlist_bl_unlock(b);
1da177e4
LT
2014}
2015
770bfad8
DH
2016static void _d_rehash(struct dentry * entry)
2017{
2018 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2019}
2020
1da177e4
LT
2021/**
2022 * d_rehash - add an entry back to the hash
2023 * @entry: dentry to add to the hash
2024 *
2025 * Adds a dentry to the hash according to its name.
2026 */
2027
2028void d_rehash(struct dentry * entry)
2029{
1da177e4 2030 spin_lock(&entry->d_lock);
770bfad8 2031 _d_rehash(entry);
1da177e4 2032 spin_unlock(&entry->d_lock);
1da177e4 2033}
ec4f8605 2034EXPORT_SYMBOL(d_rehash);
1da177e4 2035
fb2d5b86
NP
2036/**
2037 * dentry_update_name_case - update case insensitive dentry with a new name
2038 * @dentry: dentry to be updated
2039 * @name: new name
2040 *
2041 * Update a case insensitive dentry with new case of name.
2042 *
2043 * dentry must have been returned by d_lookup with name @name. Old and new
2044 * name lengths must match (ie. no d_compare which allows mismatched name
2045 * lengths).
2046 *
2047 * Parent inode i_mutex must be held over d_lookup and into this call (to
2048 * keep renames and concurrent inserts, and readdir(2) away).
2049 */
2050void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2051{
7ebfa57f 2052 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2053 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2054
fb2d5b86 2055 spin_lock(&dentry->d_lock);
31e6b01f 2056 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2057 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2058 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2059 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2060}
2061EXPORT_SYMBOL(dentry_update_name_case);
2062
1da177e4
LT
2063static void switch_names(struct dentry *dentry, struct dentry *target)
2064{
2065 if (dname_external(target)) {
2066 if (dname_external(dentry)) {
2067 /*
2068 * Both external: swap the pointers
2069 */
9a8d5bb4 2070 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2071 } else {
2072 /*
2073 * dentry:internal, target:external. Steal target's
2074 * storage and make target internal.
2075 */
321bcf92
BF
2076 memcpy(target->d_iname, dentry->d_name.name,
2077 dentry->d_name.len + 1);
1da177e4
LT
2078 dentry->d_name.name = target->d_name.name;
2079 target->d_name.name = target->d_iname;
2080 }
2081 } else {
2082 if (dname_external(dentry)) {
2083 /*
2084 * dentry:external, target:internal. Give dentry's
2085 * storage to target and make dentry internal
2086 */
2087 memcpy(dentry->d_iname, target->d_name.name,
2088 target->d_name.len + 1);
2089 target->d_name.name = dentry->d_name.name;
2090 dentry->d_name.name = dentry->d_iname;
2091 } else {
2092 /*
2093 * Both are internal. Just copy target to dentry
2094 */
2095 memcpy(dentry->d_iname, target->d_name.name,
2096 target->d_name.len + 1);
dc711ca3
AV
2097 dentry->d_name.len = target->d_name.len;
2098 return;
1da177e4
LT
2099 }
2100 }
9a8d5bb4 2101 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2102}
2103
2fd6b7f5
NP
2104static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2105{
2106 /*
2107 * XXXX: do we really need to take target->d_lock?
2108 */
2109 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2110 spin_lock(&target->d_parent->d_lock);
2111 else {
2112 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2113 spin_lock(&dentry->d_parent->d_lock);
2114 spin_lock_nested(&target->d_parent->d_lock,
2115 DENTRY_D_LOCK_NESTED);
2116 } else {
2117 spin_lock(&target->d_parent->d_lock);
2118 spin_lock_nested(&dentry->d_parent->d_lock,
2119 DENTRY_D_LOCK_NESTED);
2120 }
2121 }
2122 if (target < dentry) {
2123 spin_lock_nested(&target->d_lock, 2);
2124 spin_lock_nested(&dentry->d_lock, 3);
2125 } else {
2126 spin_lock_nested(&dentry->d_lock, 2);
2127 spin_lock_nested(&target->d_lock, 3);
2128 }
2129}
2130
2131static void dentry_unlock_parents_for_move(struct dentry *dentry,
2132 struct dentry *target)
2133{
2134 if (target->d_parent != dentry->d_parent)
2135 spin_unlock(&dentry->d_parent->d_lock);
2136 if (target->d_parent != target)
2137 spin_unlock(&target->d_parent->d_lock);
2138}
2139
1da177e4 2140/*
2fd6b7f5
NP
2141 * When switching names, the actual string doesn't strictly have to
2142 * be preserved in the target - because we're dropping the target
2143 * anyway. As such, we can just do a simple memcpy() to copy over
2144 * the new name before we switch.
2145 *
2146 * Note that we have to be a lot more careful about getting the hash
2147 * switched - we have to switch the hash value properly even if it
2148 * then no longer matches the actual (corrupted) string of the target.
2149 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2150 */
9eaef27b 2151/*
18367501 2152 * __d_move - move a dentry
1da177e4
LT
2153 * @dentry: entry to move
2154 * @target: new dentry
2155 *
2156 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2157 * dcache entries should not be moved in this way. Caller must hold
2158 * rename_lock, the i_mutex of the source and target directories,
2159 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2160 */
18367501 2161static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2162{
1da177e4
LT
2163 if (!dentry->d_inode)
2164 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2165
2fd6b7f5
NP
2166 BUG_ON(d_ancestor(dentry, target));
2167 BUG_ON(d_ancestor(target, dentry));
2168
2fd6b7f5 2169 dentry_lock_for_move(dentry, target);
1da177e4 2170
31e6b01f
NP
2171 write_seqcount_begin(&dentry->d_seq);
2172 write_seqcount_begin(&target->d_seq);
2173
ceb5bdc2
NP
2174 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2175
2176 /*
2177 * Move the dentry to the target hash queue. Don't bother checking
2178 * for the same hash queue because of how unlikely it is.
2179 */
2180 __d_drop(dentry);
789680d1 2181 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2182
2183 /* Unhash the target: dput() will then get rid of it */
2184 __d_drop(target);
2185
5160ee6f
ED
2186 list_del(&dentry->d_u.d_child);
2187 list_del(&target->d_u.d_child);
1da177e4
LT
2188
2189 /* Switch the names.. */
2190 switch_names(dentry, target);
9a8d5bb4 2191 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2192
2193 /* ... and switch the parents */
2194 if (IS_ROOT(dentry)) {
2195 dentry->d_parent = target->d_parent;
2196 target->d_parent = target;
5160ee6f 2197 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2198 } else {
9a8d5bb4 2199 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2200
2201 /* And add them back to the (new) parent lists */
5160ee6f 2202 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2203 }
2204
5160ee6f 2205 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2206
31e6b01f
NP
2207 write_seqcount_end(&target->d_seq);
2208 write_seqcount_end(&dentry->d_seq);
2209
2fd6b7f5 2210 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2211 spin_unlock(&target->d_lock);
c32ccd87 2212 fsnotify_d_move(dentry);
1da177e4 2213 spin_unlock(&dentry->d_lock);
18367501
AV
2214}
2215
2216/*
2217 * d_move - move a dentry
2218 * @dentry: entry to move
2219 * @target: new dentry
2220 *
2221 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2222 * dcache entries should not be moved in this way. See the locking
2223 * requirements for __d_move.
18367501
AV
2224 */
2225void d_move(struct dentry *dentry, struct dentry *target)
2226{
2227 write_seqlock(&rename_lock);
2228 __d_move(dentry, target);
1da177e4 2229 write_sequnlock(&rename_lock);
9eaef27b 2230}
ec4f8605 2231EXPORT_SYMBOL(d_move);
1da177e4 2232
e2761a11
OH
2233/**
2234 * d_ancestor - search for an ancestor
2235 * @p1: ancestor dentry
2236 * @p2: child dentry
2237 *
2238 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2239 * an ancestor of p2, else NULL.
9eaef27b 2240 */
e2761a11 2241struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2242{
2243 struct dentry *p;
2244
871c0067 2245 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2246 if (p->d_parent == p1)
e2761a11 2247 return p;
9eaef27b 2248 }
e2761a11 2249 return NULL;
9eaef27b
TM
2250}
2251
2252/*
2253 * This helper attempts to cope with remotely renamed directories
2254 *
2255 * It assumes that the caller is already holding
18367501 2256 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2257 *
2258 * Note: If ever the locking in lock_rename() changes, then please
2259 * remember to update this too...
9eaef27b 2260 */
873feea0
NP
2261static struct dentry *__d_unalias(struct inode *inode,
2262 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2263{
2264 struct mutex *m1 = NULL, *m2 = NULL;
2265 struct dentry *ret;
2266
2267 /* If alias and dentry share a parent, then no extra locks required */
2268 if (alias->d_parent == dentry->d_parent)
2269 goto out_unalias;
2270
9eaef27b
TM
2271 /* See lock_rename() */
2272 ret = ERR_PTR(-EBUSY);
2273 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2274 goto out_err;
2275 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2276 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2277 goto out_err;
2278 m2 = &alias->d_parent->d_inode->i_mutex;
2279out_unalias:
18367501 2280 __d_move(alias, dentry);
9eaef27b
TM
2281 ret = alias;
2282out_err:
873feea0 2283 spin_unlock(&inode->i_lock);
9eaef27b
TM
2284 if (m2)
2285 mutex_unlock(m2);
2286 if (m1)
2287 mutex_unlock(m1);
2288 return ret;
2289}
2290
770bfad8
DH
2291/*
2292 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2293 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2294 * returns with anon->d_lock held!
770bfad8
DH
2295 */
2296static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2297{
2298 struct dentry *dparent, *aparent;
2299
2fd6b7f5 2300 dentry_lock_for_move(anon, dentry);
770bfad8 2301
31e6b01f
NP
2302 write_seqcount_begin(&dentry->d_seq);
2303 write_seqcount_begin(&anon->d_seq);
2304
770bfad8
DH
2305 dparent = dentry->d_parent;
2306 aparent = anon->d_parent;
2307
2fd6b7f5
NP
2308 switch_names(dentry, anon);
2309 swap(dentry->d_name.hash, anon->d_name.hash);
2310
770bfad8
DH
2311 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2312 list_del(&dentry->d_u.d_child);
2313 if (!IS_ROOT(dentry))
2314 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2315 else
2316 INIT_LIST_HEAD(&dentry->d_u.d_child);
2317
2318 anon->d_parent = (dparent == dentry) ? anon : dparent;
2319 list_del(&anon->d_u.d_child);
2320 if (!IS_ROOT(anon))
2321 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2322 else
2323 INIT_LIST_HEAD(&anon->d_u.d_child);
2324
31e6b01f
NP
2325 write_seqcount_end(&dentry->d_seq);
2326 write_seqcount_end(&anon->d_seq);
2327
2fd6b7f5
NP
2328 dentry_unlock_parents_for_move(anon, dentry);
2329 spin_unlock(&dentry->d_lock);
2330
2331 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2332 anon->d_flags &= ~DCACHE_DISCONNECTED;
2333}
2334
2335/**
2336 * d_materialise_unique - introduce an inode into the tree
2337 * @dentry: candidate dentry
2338 * @inode: inode to bind to the dentry, to which aliases may be attached
2339 *
2340 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2341 * root directory alias in its place if there is one. Caller must hold the
2342 * i_mutex of the parent directory.
770bfad8
DH
2343 */
2344struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2345{
9eaef27b 2346 struct dentry *actual;
770bfad8
DH
2347
2348 BUG_ON(!d_unhashed(dentry));
2349
770bfad8
DH
2350 if (!inode) {
2351 actual = dentry;
360da900 2352 __d_instantiate(dentry, NULL);
357f8e65
NP
2353 d_rehash(actual);
2354 goto out_nolock;
770bfad8
DH
2355 }
2356
873feea0 2357 spin_lock(&inode->i_lock);
357f8e65 2358
9eaef27b
TM
2359 if (S_ISDIR(inode->i_mode)) {
2360 struct dentry *alias;
2361
2362 /* Does an aliased dentry already exist? */
2363 alias = __d_find_alias(inode, 0);
2364 if (alias) {
2365 actual = alias;
18367501
AV
2366 write_seqlock(&rename_lock);
2367
2368 if (d_ancestor(alias, dentry)) {
2369 /* Check for loops */
2370 actual = ERR_PTR(-ELOOP);
2371 } else if (IS_ROOT(alias)) {
2372 /* Is this an anonymous mountpoint that we
2373 * could splice into our tree? */
9eaef27b 2374 __d_materialise_dentry(dentry, alias);
18367501 2375 write_sequnlock(&rename_lock);
9eaef27b
TM
2376 __d_drop(alias);
2377 goto found;
18367501
AV
2378 } else {
2379 /* Nope, but we must(!) avoid directory
2380 * aliasing */
2381 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2382 }
18367501 2383 write_sequnlock(&rename_lock);
dd179946
DH
2384 if (IS_ERR(actual)) {
2385 if (PTR_ERR(actual) == -ELOOP)
2386 pr_warn_ratelimited(
2387 "VFS: Lookup of '%s' in %s %s"
2388 " would have caused loop\n",
2389 dentry->d_name.name,
2390 inode->i_sb->s_type->name,
2391 inode->i_sb->s_id);
9eaef27b 2392 dput(alias);
dd179946 2393 }
9eaef27b
TM
2394 goto out_nolock;
2395 }
770bfad8
DH
2396 }
2397
2398 /* Add a unique reference */
2399 actual = __d_instantiate_unique(dentry, inode);
2400 if (!actual)
2401 actual = dentry;
357f8e65
NP
2402 else
2403 BUG_ON(!d_unhashed(actual));
770bfad8 2404
770bfad8
DH
2405 spin_lock(&actual->d_lock);
2406found:
2407 _d_rehash(actual);
2408 spin_unlock(&actual->d_lock);
873feea0 2409 spin_unlock(&inode->i_lock);
9eaef27b 2410out_nolock:
770bfad8
DH
2411 if (actual == dentry) {
2412 security_d_instantiate(dentry, inode);
2413 return NULL;
2414 }
2415
2416 iput(inode);
2417 return actual;
770bfad8 2418}
ec4f8605 2419EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2420
cdd16d02 2421static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2422{
2423 *buflen -= namelen;
2424 if (*buflen < 0)
2425 return -ENAMETOOLONG;
2426 *buffer -= namelen;
2427 memcpy(*buffer, str, namelen);
2428 return 0;
2429}
2430
cdd16d02
MS
2431static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2432{
2433 return prepend(buffer, buflen, name->name, name->len);
2434}
2435
1da177e4 2436/**
208898c1 2437 * prepend_path - Prepend path string to a buffer
9d1bc601 2438 * @path: the dentry/vfsmount to report
02125a82 2439 * @root: root vfsmnt/dentry
f2eb6575
MS
2440 * @buffer: pointer to the end of the buffer
2441 * @buflen: pointer to buffer length
552ce544 2442 *
949854d0 2443 * Caller holds the rename_lock.
1da177e4 2444 */
02125a82
AV
2445static int prepend_path(const struct path *path,
2446 const struct path *root,
f2eb6575 2447 char **buffer, int *buflen)
1da177e4 2448{
9d1bc601
MS
2449 struct dentry *dentry = path->dentry;
2450 struct vfsmount *vfsmnt = path->mnt;
0714a533 2451 struct mount *mnt = real_mount(vfsmnt);
f2eb6575
MS
2452 bool slash = false;
2453 int error = 0;
6092d048 2454
99b7db7b 2455 br_read_lock(vfsmount_lock);
f2eb6575 2456 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2457 struct dentry * parent;
2458
1da177e4 2459 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2460 /* Global root? */
676da58d 2461 if (!mnt_has_parent(mnt))
1da177e4 2462 goto global_root;
a73324da 2463 dentry = mnt->mnt_mountpoint;
0714a533
AV
2464 mnt = mnt->mnt_parent;
2465 vfsmnt = &mnt->mnt;
1da177e4
LT
2466 continue;
2467 }
2468 parent = dentry->d_parent;
2469 prefetch(parent);
9abca360 2470 spin_lock(&dentry->d_lock);
f2eb6575 2471 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2472 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2473 if (!error)
2474 error = prepend(buffer, buflen, "/", 1);
2475 if (error)
2476 break;
2477
2478 slash = true;
1da177e4
LT
2479 dentry = parent;
2480 }
2481
f2eb6575
MS
2482 if (!error && !slash)
2483 error = prepend(buffer, buflen, "/", 1);
2484
02125a82 2485out:
99b7db7b 2486 br_read_unlock(vfsmount_lock);
f2eb6575 2487 return error;
1da177e4
LT
2488
2489global_root:
98dc568b
MS
2490 /*
2491 * Filesystems needing to implement special "root names"
2492 * should do so with ->d_dname()
2493 */
2494 if (IS_ROOT(dentry) &&
2495 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2496 WARN(1, "Root dentry has weird name <%.*s>\n",
2497 (int) dentry->d_name.len, dentry->d_name.name);
2498 }
02125a82
AV
2499 if (!slash)
2500 error = prepend(buffer, buflen, "/", 1);
2501 if (!error)
143c8c91 2502 error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
be285c71 2503 goto out;
f2eb6575 2504}
be285c71 2505
f2eb6575
MS
2506/**
2507 * __d_path - return the path of a dentry
2508 * @path: the dentry/vfsmount to report
02125a82 2509 * @root: root vfsmnt/dentry
cd956a1c 2510 * @buf: buffer to return value in
f2eb6575
MS
2511 * @buflen: buffer length
2512 *
ffd1f4ed 2513 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2514 *
2515 * Returns a pointer into the buffer or an error code if the
2516 * path was too long.
2517 *
be148247 2518 * "buflen" should be positive.
f2eb6575 2519 *
02125a82 2520 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2521 */
02125a82
AV
2522char *__d_path(const struct path *path,
2523 const struct path *root,
f2eb6575
MS
2524 char *buf, int buflen)
2525{
2526 char *res = buf + buflen;
2527 int error;
2528
2529 prepend(&res, &buflen, "\0", 1);
949854d0 2530 write_seqlock(&rename_lock);
f2eb6575 2531 error = prepend_path(path, root, &res, &buflen);
949854d0 2532 write_sequnlock(&rename_lock);
be148247 2533
02125a82
AV
2534 if (error < 0)
2535 return ERR_PTR(error);
2536 if (error > 0)
2537 return NULL;
2538 return res;
2539}
2540
2541char *d_absolute_path(const struct path *path,
2542 char *buf, int buflen)
2543{
2544 struct path root = {};
2545 char *res = buf + buflen;
2546 int error;
2547
2548 prepend(&res, &buflen, "\0", 1);
2549 write_seqlock(&rename_lock);
2550 error = prepend_path(path, &root, &res, &buflen);
2551 write_sequnlock(&rename_lock);
2552
2553 if (error > 1)
2554 error = -EINVAL;
2555 if (error < 0)
f2eb6575 2556 return ERR_PTR(error);
f2eb6575 2557 return res;
1da177e4
LT
2558}
2559
ffd1f4ed
MS
2560/*
2561 * same as __d_path but appends "(deleted)" for unlinked files.
2562 */
02125a82
AV
2563static int path_with_deleted(const struct path *path,
2564 const struct path *root,
2565 char **buf, int *buflen)
ffd1f4ed
MS
2566{
2567 prepend(buf, buflen, "\0", 1);
2568 if (d_unlinked(path->dentry)) {
2569 int error = prepend(buf, buflen, " (deleted)", 10);
2570 if (error)
2571 return error;
2572 }
2573
2574 return prepend_path(path, root, buf, buflen);
2575}
2576
8df9d1a4
MS
2577static int prepend_unreachable(char **buffer, int *buflen)
2578{
2579 return prepend(buffer, buflen, "(unreachable)", 13);
2580}
2581
a03a8a70
JB
2582/**
2583 * d_path - return the path of a dentry
cf28b486 2584 * @path: path to report
a03a8a70
JB
2585 * @buf: buffer to return value in
2586 * @buflen: buffer length
2587 *
2588 * Convert a dentry into an ASCII path name. If the entry has been deleted
2589 * the string " (deleted)" is appended. Note that this is ambiguous.
2590 *
52afeefb
AV
2591 * Returns a pointer into the buffer or an error code if the path was
2592 * too long. Note: Callers should use the returned pointer, not the passed
2593 * in buffer, to use the name! The implementation often starts at an offset
2594 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2595 *
31f3e0b3 2596 * "buflen" should be positive.
a03a8a70 2597 */
20d4fdc1 2598char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2599{
ffd1f4ed 2600 char *res = buf + buflen;
6ac08c39 2601 struct path root;
ffd1f4ed 2602 int error;
1da177e4 2603
c23fbb6b
ED
2604 /*
2605 * We have various synthetic filesystems that never get mounted. On
2606 * these filesystems dentries are never used for lookup purposes, and
2607 * thus don't need to be hashed. They also don't need a name until a
2608 * user wants to identify the object in /proc/pid/fd/. The little hack
2609 * below allows us to generate a name for these objects on demand:
2610 */
cf28b486
JB
2611 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2612 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2613
f7ad3c6b 2614 get_fs_root(current->fs, &root);
949854d0 2615 write_seqlock(&rename_lock);
02125a82
AV
2616 error = path_with_deleted(path, &root, &res, &buflen);
2617 if (error < 0)
ffd1f4ed 2618 res = ERR_PTR(error);
949854d0 2619 write_sequnlock(&rename_lock);
6ac08c39 2620 path_put(&root);
1da177e4
LT
2621 return res;
2622}
ec4f8605 2623EXPORT_SYMBOL(d_path);
1da177e4 2624
8df9d1a4
MS
2625/**
2626 * d_path_with_unreachable - return the path of a dentry
2627 * @path: path to report
2628 * @buf: buffer to return value in
2629 * @buflen: buffer length
2630 *
2631 * The difference from d_path() is that this prepends "(unreachable)"
2632 * to paths which are unreachable from the current process' root.
2633 */
2634char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2635{
2636 char *res = buf + buflen;
2637 struct path root;
8df9d1a4
MS
2638 int error;
2639
2640 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2641 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2642
2643 get_fs_root(current->fs, &root);
949854d0 2644 write_seqlock(&rename_lock);
02125a82
AV
2645 error = path_with_deleted(path, &root, &res, &buflen);
2646 if (error > 0)
8df9d1a4 2647 error = prepend_unreachable(&res, &buflen);
949854d0 2648 write_sequnlock(&rename_lock);
8df9d1a4
MS
2649 path_put(&root);
2650 if (error)
2651 res = ERR_PTR(error);
2652
2653 return res;
2654}
2655
c23fbb6b
ED
2656/*
2657 * Helper function for dentry_operations.d_dname() members
2658 */
2659char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2660 const char *fmt, ...)
2661{
2662 va_list args;
2663 char temp[64];
2664 int sz;
2665
2666 va_start(args, fmt);
2667 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2668 va_end(args);
2669
2670 if (sz > sizeof(temp) || sz > buflen)
2671 return ERR_PTR(-ENAMETOOLONG);
2672
2673 buffer += buflen - sz;
2674 return memcpy(buffer, temp, sz);
2675}
2676
6092d048
RP
2677/*
2678 * Write full pathname from the root of the filesystem into the buffer.
2679 */
ec2447c2 2680static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2681{
2682 char *end = buf + buflen;
2683 char *retval;
2684
6092d048 2685 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2686 if (buflen < 1)
2687 goto Elong;
2688 /* Get '/' right */
2689 retval = end-1;
2690 *retval = '/';
2691
cdd16d02
MS
2692 while (!IS_ROOT(dentry)) {
2693 struct dentry *parent = dentry->d_parent;
9abca360 2694 int error;
6092d048 2695
6092d048 2696 prefetch(parent);
9abca360
NP
2697 spin_lock(&dentry->d_lock);
2698 error = prepend_name(&end, &buflen, &dentry->d_name);
2699 spin_unlock(&dentry->d_lock);
2700 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2701 goto Elong;
2702
2703 retval = end;
2704 dentry = parent;
2705 }
c103135c
AV
2706 return retval;
2707Elong:
2708 return ERR_PTR(-ENAMETOOLONG);
2709}
ec2447c2
NP
2710
2711char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2712{
2713 char *retval;
2714
949854d0 2715 write_seqlock(&rename_lock);
ec2447c2 2716 retval = __dentry_path(dentry, buf, buflen);
949854d0 2717 write_sequnlock(&rename_lock);
ec2447c2
NP
2718
2719 return retval;
2720}
2721EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2722
2723char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2724{
2725 char *p = NULL;
2726 char *retval;
2727
949854d0 2728 write_seqlock(&rename_lock);
c103135c
AV
2729 if (d_unlinked(dentry)) {
2730 p = buf + buflen;
2731 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2732 goto Elong;
2733 buflen++;
2734 }
2735 retval = __dentry_path(dentry, buf, buflen);
949854d0 2736 write_sequnlock(&rename_lock);
c103135c
AV
2737 if (!IS_ERR(retval) && p)
2738 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2739 return retval;
2740Elong:
6092d048
RP
2741 return ERR_PTR(-ENAMETOOLONG);
2742}
2743
1da177e4
LT
2744/*
2745 * NOTE! The user-level library version returns a
2746 * character pointer. The kernel system call just
2747 * returns the length of the buffer filled (which
2748 * includes the ending '\0' character), or a negative
2749 * error value. So libc would do something like
2750 *
2751 * char *getcwd(char * buf, size_t size)
2752 * {
2753 * int retval;
2754 *
2755 * retval = sys_getcwd(buf, size);
2756 * if (retval >= 0)
2757 * return buf;
2758 * errno = -retval;
2759 * return NULL;
2760 * }
2761 */
3cdad428 2762SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2763{
552ce544 2764 int error;
6ac08c39 2765 struct path pwd, root;
552ce544 2766 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2767
2768 if (!page)
2769 return -ENOMEM;
2770
f7ad3c6b 2771 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2772
552ce544 2773 error = -ENOENT;
949854d0 2774 write_seqlock(&rename_lock);
f3da392e 2775 if (!d_unlinked(pwd.dentry)) {
552ce544 2776 unsigned long len;
8df9d1a4
MS
2777 char *cwd = page + PAGE_SIZE;
2778 int buflen = PAGE_SIZE;
1da177e4 2779
8df9d1a4 2780 prepend(&cwd, &buflen, "\0", 1);
02125a82 2781 error = prepend_path(&pwd, &root, &cwd, &buflen);
949854d0 2782 write_sequnlock(&rename_lock);
552ce544 2783
02125a82 2784 if (error < 0)
552ce544
LT
2785 goto out;
2786
8df9d1a4 2787 /* Unreachable from current root */
02125a82 2788 if (error > 0) {
8df9d1a4
MS
2789 error = prepend_unreachable(&cwd, &buflen);
2790 if (error)
2791 goto out;
2792 }
2793
552ce544
LT
2794 error = -ERANGE;
2795 len = PAGE_SIZE + page - cwd;
2796 if (len <= size) {
2797 error = len;
2798 if (copy_to_user(buf, cwd, len))
2799 error = -EFAULT;
2800 }
949854d0
NP
2801 } else {
2802 write_sequnlock(&rename_lock);
949854d0 2803 }
1da177e4
LT
2804
2805out:
6ac08c39
JB
2806 path_put(&pwd);
2807 path_put(&root);
1da177e4
LT
2808 free_page((unsigned long) page);
2809 return error;
2810}
2811
2812/*
2813 * Test whether new_dentry is a subdirectory of old_dentry.
2814 *
2815 * Trivially implemented using the dcache structure
2816 */
2817
2818/**
2819 * is_subdir - is new dentry a subdirectory of old_dentry
2820 * @new_dentry: new dentry
2821 * @old_dentry: old dentry
2822 *
2823 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2824 * Returns 0 otherwise.
2825 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2826 */
2827
e2761a11 2828int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2829{
2830 int result;
949854d0 2831 unsigned seq;
1da177e4 2832
e2761a11
OH
2833 if (new_dentry == old_dentry)
2834 return 1;
2835
e2761a11 2836 do {
1da177e4 2837 /* for restarting inner loop in case of seq retry */
1da177e4 2838 seq = read_seqbegin(&rename_lock);
949854d0
NP
2839 /*
2840 * Need rcu_readlock to protect against the d_parent trashing
2841 * due to d_move
2842 */
2843 rcu_read_lock();
e2761a11 2844 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2845 result = 1;
e2761a11
OH
2846 else
2847 result = 0;
949854d0 2848 rcu_read_unlock();
1da177e4 2849 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2850
2851 return result;
2852}
2853
2854void d_genocide(struct dentry *root)
2855{
949854d0 2856 struct dentry *this_parent;
1da177e4 2857 struct list_head *next;
949854d0 2858 unsigned seq;
58db63d0 2859 int locked = 0;
1da177e4 2860
949854d0 2861 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2862again:
2863 this_parent = root;
2fd6b7f5 2864 spin_lock(&this_parent->d_lock);
1da177e4
LT
2865repeat:
2866 next = this_parent->d_subdirs.next;
2867resume:
2868 while (next != &this_parent->d_subdirs) {
2869 struct list_head *tmp = next;
5160ee6f 2870 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2871 next = tmp->next;
949854d0 2872
da502956
NP
2873 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2874 if (d_unhashed(dentry) || !dentry->d_inode) {
2875 spin_unlock(&dentry->d_lock);
1da177e4 2876 continue;
da502956 2877 }
1da177e4 2878 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2879 spin_unlock(&this_parent->d_lock);
2880 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2881 this_parent = dentry;
2fd6b7f5 2882 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2883 goto repeat;
2884 }
949854d0
NP
2885 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2886 dentry->d_flags |= DCACHE_GENOCIDE;
2887 dentry->d_count--;
2888 }
b7ab39f6 2889 spin_unlock(&dentry->d_lock);
1da177e4
LT
2890 }
2891 if (this_parent != root) {
c826cb7d 2892 struct dentry *child = this_parent;
949854d0
NP
2893 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2894 this_parent->d_flags |= DCACHE_GENOCIDE;
2895 this_parent->d_count--;
2896 }
c826cb7d
LT
2897 this_parent = try_to_ascend(this_parent, locked, seq);
2898 if (!this_parent)
949854d0 2899 goto rename_retry;
949854d0 2900 next = child->d_u.d_child.next;
1da177e4
LT
2901 goto resume;
2902 }
2fd6b7f5 2903 spin_unlock(&this_parent->d_lock);
58db63d0 2904 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2905 goto rename_retry;
58db63d0
NP
2906 if (locked)
2907 write_sequnlock(&rename_lock);
2908 return;
2909
2910rename_retry:
2911 locked = 1;
2912 write_seqlock(&rename_lock);
2913 goto again;
1da177e4
LT
2914}
2915
2916/**
2917 * find_inode_number - check for dentry with name
2918 * @dir: directory to check
2919 * @name: Name to find.
2920 *
2921 * Check whether a dentry already exists for the given name,
2922 * and return the inode number if it has an inode. Otherwise
2923 * 0 is returned.
2924 *
2925 * This routine is used to post-process directory listings for
2926 * filesystems using synthetic inode numbers, and is necessary
2927 * to keep getcwd() working.
2928 */
2929
2930ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2931{
2932 struct dentry * dentry;
2933 ino_t ino = 0;
2934
3e7e241f
EB
2935 dentry = d_hash_and_lookup(dir, name);
2936 if (dentry) {
1da177e4
LT
2937 if (dentry->d_inode)
2938 ino = dentry->d_inode->i_ino;
2939 dput(dentry);
2940 }
1da177e4
LT
2941 return ino;
2942}
ec4f8605 2943EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2944
2945static __initdata unsigned long dhash_entries;
2946static int __init set_dhash_entries(char *str)
2947{
2948 if (!str)
2949 return 0;
2950 dhash_entries = simple_strtoul(str, &str, 0);
2951 return 1;
2952}
2953__setup("dhash_entries=", set_dhash_entries);
2954
2955static void __init dcache_init_early(void)
2956{
2957 int loop;
2958
2959 /* If hashes are distributed across NUMA nodes, defer
2960 * hash allocation until vmalloc space is available.
2961 */
2962 if (hashdist)
2963 return;
2964
2965 dentry_hashtable =
2966 alloc_large_system_hash("Dentry cache",
b07ad996 2967 sizeof(struct hlist_bl_head),
1da177e4
LT
2968 dhash_entries,
2969 13,
2970 HASH_EARLY,
2971 &d_hash_shift,
2972 &d_hash_mask,
2973 0);
2974
2975 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 2976 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
2977}
2978
74bf17cf 2979static void __init dcache_init(void)
1da177e4
LT
2980{
2981 int loop;
2982
2983 /*
2984 * A constructor could be added for stable state like the lists,
2985 * but it is probably not worth it because of the cache nature
2986 * of the dcache.
2987 */
0a31bd5f
CL
2988 dentry_cache = KMEM_CACHE(dentry,
2989 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
2990
2991 /* Hash may have been set up in dcache_init_early */
2992 if (!hashdist)
2993 return;
2994
2995 dentry_hashtable =
2996 alloc_large_system_hash("Dentry cache",
b07ad996 2997 sizeof(struct hlist_bl_head),
1da177e4
LT
2998 dhash_entries,
2999 13,
3000 0,
3001 &d_hash_shift,
3002 &d_hash_mask,
3003 0);
3004
3005 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 3006 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3007}
3008
3009/* SLAB cache for __getname() consumers */
e18b890b 3010struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3011EXPORT_SYMBOL(names_cachep);
1da177e4 3012
1da177e4
LT
3013EXPORT_SYMBOL(d_genocide);
3014
1da177e4
LT
3015void __init vfs_caches_init_early(void)
3016{
3017 dcache_init_early();
3018 inode_init_early();
3019}
3020
3021void __init vfs_caches_init(unsigned long mempages)
3022{
3023 unsigned long reserve;
3024
3025 /* Base hash sizes on available memory, with a reserve equal to
3026 150% of current kernel size */
3027
3028 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3029 mempages -= reserve;
3030
3031 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3032 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3033
74bf17cf
DC
3034 dcache_init();
3035 inode_init();
1da177e4 3036 files_init(mempages);
74bf17cf 3037 mnt_init();
1da177e4
LT
3038 bdev_cache_init();
3039 chrdev_init();
3040}