fs: dcache avoid starvation in dcache multi-step operations
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
07f3f05c 36#include "internal.h"
1da177e4 37
789680d1
NP
38/*
39 * Usage:
b23fb0a6
NP
40 * dcache_inode_lock protects:
41 * - i_dentry, d_alias, d_inode
23044507
NP
42 * dcache_hash_lock protects:
43 * - the dcache hash table, s_anon lists
44 * dcache_lru_lock protects:
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
b7ab39f6 50 * - d_count
da502956 51 * - d_unhashed()
2fd6b7f5
NP
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
b23fb0a6 54 * - d_alias, d_inode
789680d1
NP
55 *
56 * Ordering:
b5c84bf6
NP
57 * dcache_inode_lock
58 * dentry->d_lock
59 * dcache_lru_lock
60 * dcache_hash_lock
789680d1 61 *
da502956
NP
62 * If there is an ancestor relationship:
63 * dentry->d_parent->...->d_parent->d_lock
64 * ...
65 * dentry->d_parent->d_lock
66 * dentry->d_lock
67 *
68 * If no ancestor relationship:
789680d1
NP
69 * if (dentry1 < dentry2)
70 * dentry1->d_lock
71 * dentry2->d_lock
72 */
fa3536cc 73int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
74EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
75
b23fb0a6 76__cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_inode_lock);
789680d1 77static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_hash_lock);
23044507 78static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 80
949854d0 81EXPORT_SYMBOL(rename_lock);
b23fb0a6 82EXPORT_SYMBOL(dcache_inode_lock);
1da177e4 83
e18b890b 84static struct kmem_cache *dentry_cache __read_mostly;
1da177e4
LT
85
86#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
87
88/*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96#define D_HASHBITS d_hash_shift
97#define D_HASHMASK d_hash_mask
98
fa3536cc
ED
99static unsigned int d_hash_mask __read_mostly;
100static unsigned int d_hash_shift __read_mostly;
101static struct hlist_head *dentry_hashtable __read_mostly;
1da177e4
LT
102
103/* Statistics gathering. */
104struct dentry_stat_t dentry_stat = {
105 .age_limit = 45,
106};
107
3e880fb5 108static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
109
110#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
111static int get_nr_dentry(void)
112{
113 int i;
114 int sum = 0;
115 for_each_possible_cpu(i)
116 sum += per_cpu(nr_dentry, i);
117 return sum < 0 ? 0 : sum;
118}
119
312d3ca8
CH
120int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
121 size_t *lenp, loff_t *ppos)
122{
3e880fb5 123 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
124 return proc_dointvec(table, write, buffer, lenp, ppos);
125}
126#endif
127
9c82ab9c 128static void __d_free(struct rcu_head *head)
1da177e4 129{
9c82ab9c
CH
130 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
131
fd217f4d 132 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
133 if (dname_external(dentry))
134 kfree(dentry->d_name.name);
135 kmem_cache_free(dentry_cache, dentry);
136}
137
138/*
b5c84bf6 139 * no locks, please.
1da177e4
LT
140 */
141static void d_free(struct dentry *dentry)
142{
b7ab39f6 143 BUG_ON(dentry->d_count);
3e880fb5 144 this_cpu_dec(nr_dentry);
1da177e4
LT
145 if (dentry->d_op && dentry->d_op->d_release)
146 dentry->d_op->d_release(dentry);
312d3ca8 147
b3423415 148 /* if dentry was never inserted into hash, immediate free is OK */
e8462caa 149 if (hlist_unhashed(&dentry->d_hash))
9c82ab9c 150 __d_free(&dentry->d_u.d_rcu);
b3423415 151 else
9c82ab9c 152 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
153}
154
155/*
156 * Release the dentry's inode, using the filesystem
157 * d_iput() operation if defined.
1da177e4 158 */
858119e1 159static void dentry_iput(struct dentry * dentry)
31f3e0b3 160 __releases(dentry->d_lock)
b23fb0a6 161 __releases(dcache_inode_lock)
1da177e4
LT
162{
163 struct inode *inode = dentry->d_inode;
164 if (inode) {
165 dentry->d_inode = NULL;
166 list_del_init(&dentry->d_alias);
167 spin_unlock(&dentry->d_lock);
b23fb0a6 168 spin_unlock(&dcache_inode_lock);
f805fbda
LT
169 if (!inode->i_nlink)
170 fsnotify_inoderemove(inode);
1da177e4
LT
171 if (dentry->d_op && dentry->d_op->d_iput)
172 dentry->d_op->d_iput(dentry, inode);
173 else
174 iput(inode);
175 } else {
176 spin_unlock(&dentry->d_lock);
b23fb0a6 177 spin_unlock(&dcache_inode_lock);
1da177e4
LT
178 }
179}
180
da3bbdd4 181/*
23044507 182 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
da3bbdd4
KM
183 */
184static void dentry_lru_add(struct dentry *dentry)
185{
a4633357 186 if (list_empty(&dentry->d_lru)) {
23044507 187 spin_lock(&dcache_lru_lock);
a4633357
CH
188 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
189 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 190 dentry_stat.nr_unused++;
23044507 191 spin_unlock(&dcache_lru_lock);
a4633357 192 }
da3bbdd4
KM
193}
194
23044507
NP
195static void __dentry_lru_del(struct dentry *dentry)
196{
197 list_del_init(&dentry->d_lru);
198 dentry->d_sb->s_nr_dentry_unused--;
199 dentry_stat.nr_unused--;
200}
201
da3bbdd4
KM
202static void dentry_lru_del(struct dentry *dentry)
203{
204 if (!list_empty(&dentry->d_lru)) {
23044507
NP
205 spin_lock(&dcache_lru_lock);
206 __dentry_lru_del(dentry);
207 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
208 }
209}
210
a4633357 211static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 212{
23044507 213 spin_lock(&dcache_lru_lock);
a4633357
CH
214 if (list_empty(&dentry->d_lru)) {
215 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
216 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 217 dentry_stat.nr_unused++;
a4633357
CH
218 } else {
219 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4 220 }
23044507 221 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
222}
223
d52b9086
MS
224/**
225 * d_kill - kill dentry and return parent
226 * @dentry: dentry to kill
227 *
31f3e0b3 228 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
229 *
230 * If this is the root of the dentry tree, return NULL.
23044507 231 *
b5c84bf6
NP
232 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
233 * d_kill.
d52b9086 234 */
2fd6b7f5 235static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 236 __releases(dentry->d_lock)
2fd6b7f5 237 __releases(parent->d_lock)
b23fb0a6 238 __releases(dcache_inode_lock)
d52b9086 239{
949854d0 240 dentry->d_parent = NULL;
d52b9086 241 list_del(&dentry->d_u.d_child);
2fd6b7f5
NP
242 if (parent)
243 spin_unlock(&parent->d_lock);
d52b9086 244 dentry_iput(dentry);
b7ab39f6
NP
245 /*
246 * dentry_iput drops the locks, at which point nobody (except
247 * transient RCU lookups) can reach this dentry.
248 */
d52b9086 249 d_free(dentry);
871c0067 250 return parent;
d52b9086
MS
251}
252
789680d1
NP
253/**
254 * d_drop - drop a dentry
255 * @dentry: dentry to drop
256 *
257 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
258 * be found through a VFS lookup any more. Note that this is different from
259 * deleting the dentry - d_delete will try to mark the dentry negative if
260 * possible, giving a successful _negative_ lookup, while d_drop will
261 * just make the cache lookup fail.
262 *
263 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
264 * reason (NFS timeouts or autofs deletes).
265 *
266 * __d_drop requires dentry->d_lock.
267 */
268void __d_drop(struct dentry *dentry)
269{
270 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
271 dentry->d_flags |= DCACHE_UNHASHED;
272 spin_lock(&dcache_hash_lock);
273 hlist_del_rcu(&dentry->d_hash);
274 spin_unlock(&dcache_hash_lock);
275 }
276}
277EXPORT_SYMBOL(__d_drop);
278
279void d_drop(struct dentry *dentry)
280{
789680d1
NP
281 spin_lock(&dentry->d_lock);
282 __d_drop(dentry);
283 spin_unlock(&dentry->d_lock);
789680d1
NP
284}
285EXPORT_SYMBOL(d_drop);
286
1da177e4
LT
287/*
288 * This is dput
289 *
290 * This is complicated by the fact that we do not want to put
291 * dentries that are no longer on any hash chain on the unused
292 * list: we'd much rather just get rid of them immediately.
293 *
294 * However, that implies that we have to traverse the dentry
295 * tree upwards to the parents which might _also_ now be
296 * scheduled for deletion (it may have been only waiting for
297 * its last child to go away).
298 *
299 * This tail recursion is done by hand as we don't want to depend
300 * on the compiler to always get this right (gcc generally doesn't).
301 * Real recursion would eat up our stack space.
302 */
303
304/*
305 * dput - release a dentry
306 * @dentry: dentry to release
307 *
308 * Release a dentry. This will drop the usage count and if appropriate
309 * call the dentry unlink method as well as removing it from the queues and
310 * releasing its resources. If the parent dentries were scheduled for release
311 * they too may now get deleted.
312 *
313 * no dcache lock, please.
314 */
315
316void dput(struct dentry *dentry)
317{
2fd6b7f5 318 struct dentry *parent;
1da177e4
LT
319 if (!dentry)
320 return;
321
322repeat:
b7ab39f6 323 if (dentry->d_count == 1)
1da177e4 324 might_sleep();
1da177e4 325 spin_lock(&dentry->d_lock);
2fd6b7f5
NP
326 if (IS_ROOT(dentry))
327 parent = NULL;
328 else
329 parent = dentry->d_parent;
b7ab39f6 330 if (dentry->d_count == 1) {
b23fb0a6
NP
331 if (!spin_trylock(&dcache_inode_lock)) {
332drop2:
b5c84bf6
NP
333 spin_unlock(&dentry->d_lock);
334 goto repeat;
b23fb0a6
NP
335 }
336 if (parent && !spin_trylock(&parent->d_lock)) {
337 spin_unlock(&dcache_inode_lock);
338 goto drop2;
2fd6b7f5 339 }
b7ab39f6
NP
340 }
341 dentry->d_count--;
342 if (dentry->d_count) {
1da177e4 343 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
344 if (parent)
345 spin_unlock(&parent->d_lock);
1da177e4
LT
346 return;
347 }
348
349 /*
350 * AV: ->d_delete() is _NOT_ allowed to block now.
351 */
352 if (dentry->d_op && dentry->d_op->d_delete) {
353 if (dentry->d_op->d_delete(dentry))
354 goto unhash_it;
355 }
265ac902 356
1da177e4
LT
357 /* Unreachable? Get rid of it */
358 if (d_unhashed(dentry))
359 goto kill_it;
265ac902
NP
360
361 /* Otherwise leave it cached and ensure it's on the LRU */
362 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 363 dentry_lru_add(dentry);
265ac902 364
1da177e4 365 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
366 if (parent)
367 spin_unlock(&parent->d_lock);
b23fb0a6 368 spin_unlock(&dcache_inode_lock);
1da177e4
LT
369 return;
370
371unhash_it:
372 __d_drop(dentry);
d52b9086 373kill_it:
da3bbdd4
KM
374 /* if dentry was on the d_lru list delete it from there */
375 dentry_lru_del(dentry);
2fd6b7f5 376 dentry = d_kill(dentry, parent);
d52b9086
MS
377 if (dentry)
378 goto repeat;
1da177e4 379}
ec4f8605 380EXPORT_SYMBOL(dput);
1da177e4
LT
381
382/**
383 * d_invalidate - invalidate a dentry
384 * @dentry: dentry to invalidate
385 *
386 * Try to invalidate the dentry if it turns out to be
387 * possible. If there are other dentries that can be
388 * reached through this one we can't delete it and we
389 * return -EBUSY. On success we return 0.
390 *
391 * no dcache lock.
392 */
393
394int d_invalidate(struct dentry * dentry)
395{
396 /*
397 * If it's already been dropped, return OK.
398 */
da502956 399 spin_lock(&dentry->d_lock);
1da177e4 400 if (d_unhashed(dentry)) {
da502956 401 spin_unlock(&dentry->d_lock);
1da177e4
LT
402 return 0;
403 }
404 /*
405 * Check whether to do a partial shrink_dcache
406 * to get rid of unused child entries.
407 */
408 if (!list_empty(&dentry->d_subdirs)) {
da502956 409 spin_unlock(&dentry->d_lock);
1da177e4 410 shrink_dcache_parent(dentry);
da502956 411 spin_lock(&dentry->d_lock);
1da177e4
LT
412 }
413
414 /*
415 * Somebody else still using it?
416 *
417 * If it's a directory, we can't drop it
418 * for fear of somebody re-populating it
419 * with children (even though dropping it
420 * would make it unreachable from the root,
421 * we might still populate it if it was a
422 * working directory or similar).
423 */
b7ab39f6 424 if (dentry->d_count > 1) {
1da177e4
LT
425 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
426 spin_unlock(&dentry->d_lock);
1da177e4
LT
427 return -EBUSY;
428 }
429 }
430
431 __d_drop(dentry);
432 spin_unlock(&dentry->d_lock);
1da177e4
LT
433 return 0;
434}
ec4f8605 435EXPORT_SYMBOL(d_invalidate);
1da177e4 436
b5c84bf6 437/* This must be called with d_lock held */
23044507
NP
438static inline struct dentry * __dget_locked_dlock(struct dentry *dentry)
439{
b7ab39f6 440 dentry->d_count++;
23044507
NP
441 dentry_lru_del(dentry);
442 return dentry;
443}
444
b5c84bf6 445/* This must be called with d_lock held */
1da177e4
LT
446static inline struct dentry * __dget_locked(struct dentry *dentry)
447{
23044507 448 spin_lock(&dentry->d_lock);
b7ab39f6 449 __dget_locked_dlock(dentry);
23044507 450 spin_unlock(&dentry->d_lock);
1da177e4
LT
451 return dentry;
452}
453
b7ab39f6
NP
454struct dentry * dget_locked_dlock(struct dentry *dentry)
455{
456 return __dget_locked_dlock(dentry);
457}
458
1da177e4
LT
459struct dentry * dget_locked(struct dentry *dentry)
460{
461 return __dget_locked(dentry);
462}
ec4f8605 463EXPORT_SYMBOL(dget_locked);
1da177e4 464
b7ab39f6
NP
465struct dentry *dget_parent(struct dentry *dentry)
466{
467 struct dentry *ret;
468
469repeat:
470 spin_lock(&dentry->d_lock);
471 ret = dentry->d_parent;
472 if (!ret)
473 goto out;
474 if (dentry == ret) {
475 ret->d_count++;
476 goto out;
477 }
478 if (!spin_trylock(&ret->d_lock)) {
479 spin_unlock(&dentry->d_lock);
480 cpu_relax();
481 goto repeat;
482 }
483 BUG_ON(!ret->d_count);
484 ret->d_count++;
485 spin_unlock(&ret->d_lock);
486out:
487 spin_unlock(&dentry->d_lock);
488 return ret;
489}
490EXPORT_SYMBOL(dget_parent);
491
1da177e4
LT
492/**
493 * d_find_alias - grab a hashed alias of inode
494 * @inode: inode in question
495 * @want_discon: flag, used by d_splice_alias, to request
496 * that only a DISCONNECTED alias be returned.
497 *
498 * If inode has a hashed alias, or is a directory and has any alias,
499 * acquire the reference to alias and return it. Otherwise return NULL.
500 * Notice that if inode is a directory there can be only one alias and
501 * it can be unhashed only if it has no children, or if it is the root
502 * of a filesystem.
503 *
21c0d8fd 504 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 505 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 506 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 507 */
da502956 508static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 509{
da502956 510 struct dentry *alias, *discon_alias;
1da177e4 511
da502956
NP
512again:
513 discon_alias = NULL;
514 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
515 spin_lock(&alias->d_lock);
1da177e4 516 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 517 if (IS_ROOT(alias) &&
da502956 518 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 519 discon_alias = alias;
da502956
NP
520 } else if (!want_discon) {
521 __dget_locked_dlock(alias);
522 spin_unlock(&alias->d_lock);
523 return alias;
524 }
525 }
526 spin_unlock(&alias->d_lock);
527 }
528 if (discon_alias) {
529 alias = discon_alias;
530 spin_lock(&alias->d_lock);
531 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
532 if (IS_ROOT(alias) &&
533 (alias->d_flags & DCACHE_DISCONNECTED)) {
534 __dget_locked_dlock(alias);
535 spin_unlock(&alias->d_lock);
1da177e4
LT
536 return alias;
537 }
538 }
da502956
NP
539 spin_unlock(&alias->d_lock);
540 goto again;
1da177e4 541 }
da502956 542 return NULL;
1da177e4
LT
543}
544
da502956 545struct dentry *d_find_alias(struct inode *inode)
1da177e4 546{
214fda1f
DH
547 struct dentry *de = NULL;
548
549 if (!list_empty(&inode->i_dentry)) {
b23fb0a6 550 spin_lock(&dcache_inode_lock);
214fda1f 551 de = __d_find_alias(inode, 0);
b23fb0a6 552 spin_unlock(&dcache_inode_lock);
214fda1f 553 }
1da177e4
LT
554 return de;
555}
ec4f8605 556EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
557
558/*
559 * Try to kill dentries associated with this inode.
560 * WARNING: you must own a reference to inode.
561 */
562void d_prune_aliases(struct inode *inode)
563{
0cdca3f9 564 struct dentry *dentry;
1da177e4 565restart:
b23fb0a6 566 spin_lock(&dcache_inode_lock);
0cdca3f9 567 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 568 spin_lock(&dentry->d_lock);
b7ab39f6 569 if (!dentry->d_count) {
23044507 570 __dget_locked_dlock(dentry);
1da177e4
LT
571 __d_drop(dentry);
572 spin_unlock(&dentry->d_lock);
b23fb0a6 573 spin_unlock(&dcache_inode_lock);
1da177e4
LT
574 dput(dentry);
575 goto restart;
576 }
577 spin_unlock(&dentry->d_lock);
578 }
b23fb0a6 579 spin_unlock(&dcache_inode_lock);
1da177e4 580}
ec4f8605 581EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
582
583/*
d702ccb3
AM
584 * Throw away a dentry - free the inode, dput the parent. This requires that
585 * the LRU list has already been removed.
586 *
85864e10
MS
587 * Try to prune ancestors as well. This is necessary to prevent
588 * quadratic behavior of shrink_dcache_parent(), but is also expected
589 * to be beneficial in reducing dentry cache fragmentation.
1da177e4 590 */
2fd6b7f5 591static void prune_one_dentry(struct dentry *dentry, struct dentry *parent)
31f3e0b3 592 __releases(dentry->d_lock)
2fd6b7f5 593 __releases(parent->d_lock)
b23fb0a6 594 __releases(dcache_inode_lock)
1da177e4 595{
1da177e4 596 __d_drop(dentry);
2fd6b7f5 597 dentry = d_kill(dentry, parent);
d52b9086
MS
598
599 /*
b5c84bf6 600 * Prune ancestors.
d52b9086 601 */
d52b9086 602 while (dentry) {
b23fb0a6 603 spin_lock(&dcache_inode_lock);
2fd6b7f5 604again:
b7ab39f6 605 spin_lock(&dentry->d_lock);
2fd6b7f5
NP
606 if (IS_ROOT(dentry))
607 parent = NULL;
608 else
609 parent = dentry->d_parent;
610 if (parent && !spin_trylock(&parent->d_lock)) {
611 spin_unlock(&dentry->d_lock);
612 goto again;
613 }
b7ab39f6
NP
614 dentry->d_count--;
615 if (dentry->d_count) {
2fd6b7f5
NP
616 if (parent)
617 spin_unlock(&parent->d_lock);
b7ab39f6 618 spin_unlock(&dentry->d_lock);
b23fb0a6 619 spin_unlock(&dcache_inode_lock);
d52b9086 620 return;
23044507 621 }
d52b9086 622
a4633357 623 dentry_lru_del(dentry);
d52b9086 624 __d_drop(dentry);
2fd6b7f5 625 dentry = d_kill(dentry, parent);
d52b9086 626 }
1da177e4
LT
627}
628
3049cfe2 629static void shrink_dentry_list(struct list_head *list)
1da177e4 630{
da3bbdd4 631 struct dentry *dentry;
da3bbdd4 632
3049cfe2 633 while (!list_empty(list)) {
2fd6b7f5
NP
634 struct dentry *parent;
635
3049cfe2 636 dentry = list_entry(list->prev, struct dentry, d_lru);
23044507
NP
637
638 if (!spin_trylock(&dentry->d_lock)) {
2fd6b7f5 639relock:
23044507
NP
640 spin_unlock(&dcache_lru_lock);
641 cpu_relax();
642 spin_lock(&dcache_lru_lock);
643 continue;
644 }
645
1da177e4
LT
646 /*
647 * We found an inuse dentry which was not removed from
da3bbdd4
KM
648 * the LRU because of laziness during lookup. Do not free
649 * it - just keep it off the LRU list.
1da177e4 650 */
b7ab39f6 651 if (dentry->d_count) {
2fd6b7f5 652 __dentry_lru_del(dentry);
da3bbdd4 653 spin_unlock(&dentry->d_lock);
1da177e4
LT
654 continue;
655 }
2fd6b7f5
NP
656 if (IS_ROOT(dentry))
657 parent = NULL;
658 else
659 parent = dentry->d_parent;
660 if (parent && !spin_trylock(&parent->d_lock)) {
661 spin_unlock(&dentry->d_lock);
662 goto relock;
663 }
664 __dentry_lru_del(dentry);
23044507
NP
665 spin_unlock(&dcache_lru_lock);
666
2fd6b7f5 667 prune_one_dentry(dentry, parent);
b5c84bf6 668 /* dcache_inode_lock and dentry->d_lock dropped */
b23fb0a6 669 spin_lock(&dcache_inode_lock);
23044507 670 spin_lock(&dcache_lru_lock);
da3bbdd4 671 }
3049cfe2
CH
672}
673
674/**
675 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
676 * @sb: superblock to shrink dentry LRU.
677 * @count: number of entries to prune
678 * @flags: flags to control the dentry processing
679 *
680 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
681 */
682static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
683{
684 /* called from prune_dcache() and shrink_dcache_parent() */
685 struct dentry *dentry;
686 LIST_HEAD(referenced);
687 LIST_HEAD(tmp);
688 int cnt = *count;
689
b23fb0a6 690 spin_lock(&dcache_inode_lock);
23044507
NP
691relock:
692 spin_lock(&dcache_lru_lock);
3049cfe2
CH
693 while (!list_empty(&sb->s_dentry_lru)) {
694 dentry = list_entry(sb->s_dentry_lru.prev,
695 struct dentry, d_lru);
696 BUG_ON(dentry->d_sb != sb);
697
23044507
NP
698 if (!spin_trylock(&dentry->d_lock)) {
699 spin_unlock(&dcache_lru_lock);
700 cpu_relax();
701 goto relock;
702 }
703
3049cfe2
CH
704 /*
705 * If we are honouring the DCACHE_REFERENCED flag and the
706 * dentry has this flag set, don't free it. Clear the flag
707 * and put it back on the LRU.
708 */
23044507
NP
709 if (flags & DCACHE_REFERENCED &&
710 dentry->d_flags & DCACHE_REFERENCED) {
711 dentry->d_flags &= ~DCACHE_REFERENCED;
712 list_move(&dentry->d_lru, &referenced);
3049cfe2 713 spin_unlock(&dentry->d_lock);
23044507
NP
714 } else {
715 list_move_tail(&dentry->d_lru, &tmp);
716 spin_unlock(&dentry->d_lock);
717 if (!--cnt)
718 break;
3049cfe2 719 }
23044507 720 /* XXX: re-add cond_resched_lock when dcache_lock goes away */
3049cfe2
CH
721 }
722
723 *count = cnt;
724 shrink_dentry_list(&tmp);
725
da3bbdd4
KM
726 if (!list_empty(&referenced))
727 list_splice(&referenced, &sb->s_dentry_lru);
23044507 728 spin_unlock(&dcache_lru_lock);
b23fb0a6 729 spin_unlock(&dcache_inode_lock);
da3bbdd4
KM
730}
731
732/**
733 * prune_dcache - shrink the dcache
734 * @count: number of entries to try to free
735 *
736 * Shrink the dcache. This is done when we need more memory, or simply when we
737 * need to unmount something (at which point we need to unuse all dentries).
738 *
739 * This function may fail to free any resources if all the dentries are in use.
740 */
741static void prune_dcache(int count)
742{
dca33252 743 struct super_block *sb, *p = NULL;
da3bbdd4 744 int w_count;
86c8749e 745 int unused = dentry_stat.nr_unused;
da3bbdd4
KM
746 int prune_ratio;
747 int pruned;
748
749 if (unused == 0 || count == 0)
750 return;
da3bbdd4
KM
751 if (count >= unused)
752 prune_ratio = 1;
753 else
754 prune_ratio = unused / count;
755 spin_lock(&sb_lock);
dca33252 756 list_for_each_entry(sb, &super_blocks, s_list) {
551de6f3
AV
757 if (list_empty(&sb->s_instances))
758 continue;
da3bbdd4 759 if (sb->s_nr_dentry_unused == 0)
1da177e4 760 continue;
da3bbdd4
KM
761 sb->s_count++;
762 /* Now, we reclaim unused dentrins with fairness.
763 * We reclaim them same percentage from each superblock.
764 * We calculate number of dentries to scan on this sb
765 * as follows, but the implementation is arranged to avoid
766 * overflows:
767 * number of dentries to scan on this sb =
768 * count * (number of dentries on this sb /
769 * number of dentries in the machine)
0feae5c4 770 */
da3bbdd4
KM
771 spin_unlock(&sb_lock);
772 if (prune_ratio != 1)
773 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
774 else
775 w_count = sb->s_nr_dentry_unused;
776 pruned = w_count;
0feae5c4 777 /*
da3bbdd4
KM
778 * We need to be sure this filesystem isn't being unmounted,
779 * otherwise we could race with generic_shutdown_super(), and
780 * end up holding a reference to an inode while the filesystem
781 * is unmounted. So we try to get s_umount, and make sure
782 * s_root isn't NULL.
0feae5c4 783 */
da3bbdd4
KM
784 if (down_read_trylock(&sb->s_umount)) {
785 if ((sb->s_root != NULL) &&
786 (!list_empty(&sb->s_dentry_lru))) {
da3bbdd4
KM
787 __shrink_dcache_sb(sb, &w_count,
788 DCACHE_REFERENCED);
789 pruned -= w_count;
0feae5c4 790 }
da3bbdd4 791 up_read(&sb->s_umount);
0feae5c4 792 }
da3bbdd4 793 spin_lock(&sb_lock);
dca33252
AV
794 if (p)
795 __put_super(p);
da3bbdd4 796 count -= pruned;
dca33252 797 p = sb;
79893c17
AV
798 /* more work left to do? */
799 if (count <= 0)
800 break;
1da177e4 801 }
dca33252
AV
802 if (p)
803 __put_super(p);
da3bbdd4 804 spin_unlock(&sb_lock);
1da177e4
LT
805}
806
1da177e4
LT
807/**
808 * shrink_dcache_sb - shrink dcache for a superblock
809 * @sb: superblock
810 *
3049cfe2
CH
811 * Shrink the dcache for the specified super block. This is used to free
812 * the dcache before unmounting a file system.
1da177e4 813 */
3049cfe2 814void shrink_dcache_sb(struct super_block *sb)
1da177e4 815{
3049cfe2
CH
816 LIST_HEAD(tmp);
817
b23fb0a6 818 spin_lock(&dcache_inode_lock);
23044507 819 spin_lock(&dcache_lru_lock);
3049cfe2
CH
820 while (!list_empty(&sb->s_dentry_lru)) {
821 list_splice_init(&sb->s_dentry_lru, &tmp);
822 shrink_dentry_list(&tmp);
823 }
23044507 824 spin_unlock(&dcache_lru_lock);
b23fb0a6 825 spin_unlock(&dcache_inode_lock);
1da177e4 826}
ec4f8605 827EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 828
c636ebdb
DH
829/*
830 * destroy a single subtree of dentries for unmount
831 * - see the comments on shrink_dcache_for_umount() for a description of the
832 * locking
833 */
834static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
835{
836 struct dentry *parent;
f8713576 837 unsigned detached = 0;
c636ebdb
DH
838
839 BUG_ON(!IS_ROOT(dentry));
840
841 /* detach this root from the system */
23044507 842 spin_lock(&dentry->d_lock);
a4633357 843 dentry_lru_del(dentry);
c636ebdb 844 __d_drop(dentry);
da502956 845 spin_unlock(&dentry->d_lock);
c636ebdb
DH
846
847 for (;;) {
848 /* descend to the first leaf in the current subtree */
849 while (!list_empty(&dentry->d_subdirs)) {
850 struct dentry *loop;
851
852 /* this is a branch with children - detach all of them
853 * from the system in one go */
2fd6b7f5 854 spin_lock(&dentry->d_lock);
c636ebdb
DH
855 list_for_each_entry(loop, &dentry->d_subdirs,
856 d_u.d_child) {
2fd6b7f5
NP
857 spin_lock_nested(&loop->d_lock,
858 DENTRY_D_LOCK_NESTED);
a4633357 859 dentry_lru_del(loop);
c636ebdb 860 __d_drop(loop);
da502956 861 spin_unlock(&loop->d_lock);
c636ebdb 862 }
2fd6b7f5 863 spin_unlock(&dentry->d_lock);
c636ebdb
DH
864
865 /* move to the first child */
866 dentry = list_entry(dentry->d_subdirs.next,
867 struct dentry, d_u.d_child);
868 }
869
870 /* consume the dentries from this leaf up through its parents
871 * until we find one with children or run out altogether */
872 do {
873 struct inode *inode;
874
b7ab39f6 875 if (dentry->d_count != 0) {
c636ebdb
DH
876 printk(KERN_ERR
877 "BUG: Dentry %p{i=%lx,n=%s}"
878 " still in use (%d)"
879 " [unmount of %s %s]\n",
880 dentry,
881 dentry->d_inode ?
882 dentry->d_inode->i_ino : 0UL,
883 dentry->d_name.name,
b7ab39f6 884 dentry->d_count,
c636ebdb
DH
885 dentry->d_sb->s_type->name,
886 dentry->d_sb->s_id);
887 BUG();
888 }
889
2fd6b7f5 890 if (IS_ROOT(dentry)) {
c636ebdb 891 parent = NULL;
2fd6b7f5
NP
892 list_del(&dentry->d_u.d_child);
893 } else {
871c0067 894 parent = dentry->d_parent;
b7ab39f6
NP
895 spin_lock(&parent->d_lock);
896 parent->d_count--;
2fd6b7f5 897 list_del(&dentry->d_u.d_child);
b7ab39f6 898 spin_unlock(&parent->d_lock);
871c0067 899 }
c636ebdb 900
f8713576 901 detached++;
c636ebdb
DH
902
903 inode = dentry->d_inode;
904 if (inode) {
905 dentry->d_inode = NULL;
906 list_del_init(&dentry->d_alias);
907 if (dentry->d_op && dentry->d_op->d_iput)
908 dentry->d_op->d_iput(dentry, inode);
909 else
910 iput(inode);
911 }
912
913 d_free(dentry);
914
915 /* finished when we fall off the top of the tree,
916 * otherwise we ascend to the parent and move to the
917 * next sibling if there is one */
918 if (!parent)
312d3ca8 919 return;
c636ebdb 920 dentry = parent;
c636ebdb
DH
921 } while (list_empty(&dentry->d_subdirs));
922
923 dentry = list_entry(dentry->d_subdirs.next,
924 struct dentry, d_u.d_child);
925 }
926}
927
928/*
929 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 930 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
931 * - the superblock is detached from all mountings and open files, so the
932 * dentry trees will not be rearranged by the VFS
933 * - s_umount is write-locked, so the memory pressure shrinker will ignore
934 * any dentries belonging to this superblock that it comes across
935 * - the filesystem itself is no longer permitted to rearrange the dentries
936 * in this superblock
937 */
938void shrink_dcache_for_umount(struct super_block *sb)
939{
940 struct dentry *dentry;
941
942 if (down_read_trylock(&sb->s_umount))
943 BUG();
944
945 dentry = sb->s_root;
946 sb->s_root = NULL;
b7ab39f6
NP
947 spin_lock(&dentry->d_lock);
948 dentry->d_count--;
949 spin_unlock(&dentry->d_lock);
c636ebdb
DH
950 shrink_dcache_for_umount_subtree(dentry);
951
952 while (!hlist_empty(&sb->s_anon)) {
953 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
954 shrink_dcache_for_umount_subtree(dentry);
955 }
956}
957
1da177e4
LT
958/*
959 * Search for at least 1 mount point in the dentry's subdirs.
960 * We descend to the next level whenever the d_subdirs
961 * list is non-empty and continue searching.
962 */
963
964/**
965 * have_submounts - check for mounts over a dentry
966 * @parent: dentry to check.
967 *
968 * Return true if the parent or its subdirectories contain
969 * a mount point
970 */
1da177e4
LT
971int have_submounts(struct dentry *parent)
972{
949854d0 973 struct dentry *this_parent;
1da177e4 974 struct list_head *next;
949854d0 975 unsigned seq;
58db63d0 976 int locked = 0;
949854d0 977
949854d0 978 seq = read_seqbegin(&rename_lock);
58db63d0
NP
979again:
980 this_parent = parent;
1da177e4 981
1da177e4
LT
982 if (d_mountpoint(parent))
983 goto positive;
2fd6b7f5 984 spin_lock(&this_parent->d_lock);
1da177e4
LT
985repeat:
986 next = this_parent->d_subdirs.next;
987resume:
988 while (next != &this_parent->d_subdirs) {
989 struct list_head *tmp = next;
5160ee6f 990 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 991 next = tmp->next;
2fd6b7f5
NP
992
993 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 994 /* Have we found a mount point ? */
2fd6b7f5
NP
995 if (d_mountpoint(dentry)) {
996 spin_unlock(&dentry->d_lock);
997 spin_unlock(&this_parent->d_lock);
1da177e4 998 goto positive;
2fd6b7f5 999 }
1da177e4 1000 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1001 spin_unlock(&this_parent->d_lock);
1002 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1003 this_parent = dentry;
2fd6b7f5 1004 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1005 goto repeat;
1006 }
2fd6b7f5 1007 spin_unlock(&dentry->d_lock);
1da177e4
LT
1008 }
1009 /*
1010 * All done at this level ... ascend and resume the search.
1011 */
1012 if (this_parent != parent) {
949854d0
NP
1013 struct dentry *tmp;
1014 struct dentry *child;
1015
1016 tmp = this_parent->d_parent;
1017 rcu_read_lock();
2fd6b7f5 1018 spin_unlock(&this_parent->d_lock);
949854d0
NP
1019 child = this_parent;
1020 this_parent = tmp;
2fd6b7f5 1021 spin_lock(&this_parent->d_lock);
949854d0
NP
1022 /* might go back up the wrong parent if we have had a rename
1023 * or deletion */
1024 if (this_parent != child->d_parent ||
58db63d0 1025 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 1026 spin_unlock(&this_parent->d_lock);
949854d0
NP
1027 rcu_read_unlock();
1028 goto rename_retry;
1029 }
1030 rcu_read_unlock();
1031 next = child->d_u.d_child.next;
1da177e4
LT
1032 goto resume;
1033 }
2fd6b7f5 1034 spin_unlock(&this_parent->d_lock);
58db63d0 1035 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1036 goto rename_retry;
58db63d0
NP
1037 if (locked)
1038 write_sequnlock(&rename_lock);
1da177e4
LT
1039 return 0; /* No mount points found in tree */
1040positive:
58db63d0 1041 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1042 goto rename_retry;
58db63d0
NP
1043 if (locked)
1044 write_sequnlock(&rename_lock);
1da177e4 1045 return 1;
58db63d0
NP
1046
1047rename_retry:
1048 locked = 1;
1049 write_seqlock(&rename_lock);
1050 goto again;
1da177e4 1051}
ec4f8605 1052EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1053
1054/*
1055 * Search the dentry child list for the specified parent,
1056 * and move any unused dentries to the end of the unused
1057 * list for prune_dcache(). We descend to the next level
1058 * whenever the d_subdirs list is non-empty and continue
1059 * searching.
1060 *
1061 * It returns zero iff there are no unused children,
1062 * otherwise it returns the number of children moved to
1063 * the end of the unused list. This may not be the total
1064 * number of unused children, because select_parent can
1065 * drop the lock and return early due to latency
1066 * constraints.
1067 */
1068static int select_parent(struct dentry * parent)
1069{
949854d0 1070 struct dentry *this_parent;
1da177e4 1071 struct list_head *next;
949854d0 1072 unsigned seq;
1da177e4 1073 int found = 0;
58db63d0 1074 int locked = 0;
1da177e4 1075
949854d0 1076 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1077again:
1078 this_parent = parent;
2fd6b7f5 1079 spin_lock(&this_parent->d_lock);
1da177e4
LT
1080repeat:
1081 next = this_parent->d_subdirs.next;
1082resume:
1083 while (next != &this_parent->d_subdirs) {
1084 struct list_head *tmp = next;
5160ee6f 1085 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1086 next = tmp->next;
1087
2fd6b7f5 1088 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1089
1da177e4
LT
1090 /*
1091 * move only zero ref count dentries to the end
1092 * of the unused list for prune_dcache
1093 */
b7ab39f6 1094 if (!dentry->d_count) {
a4633357 1095 dentry_lru_move_tail(dentry);
1da177e4 1096 found++;
a4633357
CH
1097 } else {
1098 dentry_lru_del(dentry);
1da177e4
LT
1099 }
1100
1101 /*
1102 * We can return to the caller if we have found some (this
1103 * ensures forward progress). We'll be coming back to find
1104 * the rest.
1105 */
2fd6b7f5
NP
1106 if (found && need_resched()) {
1107 spin_unlock(&dentry->d_lock);
1da177e4 1108 goto out;
2fd6b7f5 1109 }
1da177e4
LT
1110
1111 /*
1112 * Descend a level if the d_subdirs list is non-empty.
1113 */
1114 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1115 spin_unlock(&this_parent->d_lock);
1116 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1117 this_parent = dentry;
2fd6b7f5 1118 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1119 goto repeat;
1120 }
2fd6b7f5
NP
1121
1122 spin_unlock(&dentry->d_lock);
1da177e4
LT
1123 }
1124 /*
1125 * All done at this level ... ascend and resume the search.
1126 */
1127 if (this_parent != parent) {
2fd6b7f5 1128 struct dentry *tmp;
949854d0
NP
1129 struct dentry *child;
1130
2fd6b7f5 1131 tmp = this_parent->d_parent;
949854d0 1132 rcu_read_lock();
2fd6b7f5 1133 spin_unlock(&this_parent->d_lock);
949854d0 1134 child = this_parent;
2fd6b7f5
NP
1135 this_parent = tmp;
1136 spin_lock(&this_parent->d_lock);
949854d0
NP
1137 /* might go back up the wrong parent if we have had a rename
1138 * or deletion */
1139 if (this_parent != child->d_parent ||
58db63d0 1140 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 1141 spin_unlock(&this_parent->d_lock);
949854d0
NP
1142 rcu_read_unlock();
1143 goto rename_retry;
1144 }
1145 rcu_read_unlock();
1146 next = child->d_u.d_child.next;
1da177e4
LT
1147 goto resume;
1148 }
1149out:
2fd6b7f5 1150 spin_unlock(&this_parent->d_lock);
58db63d0 1151 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1152 goto rename_retry;
58db63d0
NP
1153 if (locked)
1154 write_sequnlock(&rename_lock);
1da177e4 1155 return found;
58db63d0
NP
1156
1157rename_retry:
1158 if (found)
1159 return found;
1160 locked = 1;
1161 write_seqlock(&rename_lock);
1162 goto again;
1da177e4
LT
1163}
1164
1165/**
1166 * shrink_dcache_parent - prune dcache
1167 * @parent: parent of entries to prune
1168 *
1169 * Prune the dcache to remove unused children of the parent dentry.
1170 */
1171
1172void shrink_dcache_parent(struct dentry * parent)
1173{
da3bbdd4 1174 struct super_block *sb = parent->d_sb;
1da177e4
LT
1175 int found;
1176
1177 while ((found = select_parent(parent)) != 0)
da3bbdd4 1178 __shrink_dcache_sb(sb, &found, 0);
1da177e4 1179}
ec4f8605 1180EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1181
1da177e4
LT
1182/*
1183 * Scan `nr' dentries and return the number which remain.
1184 *
1185 * We need to avoid reentering the filesystem if the caller is performing a
1186 * GFP_NOFS allocation attempt. One example deadlock is:
1187 *
1188 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1189 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1190 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1191 *
1192 * In this case we return -1 to tell the caller that we baled.
1193 */
7f8275d0 1194static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1da177e4
LT
1195{
1196 if (nr) {
1197 if (!(gfp_mask & __GFP_FS))
1198 return -1;
da3bbdd4 1199 prune_dcache(nr);
1da177e4 1200 }
312d3ca8 1201
86c8749e 1202 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1da177e4
LT
1203}
1204
8e1f936b
RR
1205static struct shrinker dcache_shrinker = {
1206 .shrink = shrink_dcache_memory,
1207 .seeks = DEFAULT_SEEKS,
1208};
1209
1da177e4
LT
1210/**
1211 * d_alloc - allocate a dcache entry
1212 * @parent: parent of entry to allocate
1213 * @name: qstr of the name
1214 *
1215 * Allocates a dentry. It returns %NULL if there is insufficient memory
1216 * available. On a success the dentry is returned. The name passed in is
1217 * copied and the copy passed in may be reused after this call.
1218 */
1219
1220struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1221{
1222 struct dentry *dentry;
1223 char *dname;
1224
e12ba74d 1225 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1226 if (!dentry)
1227 return NULL;
1228
1229 if (name->len > DNAME_INLINE_LEN-1) {
1230 dname = kmalloc(name->len + 1, GFP_KERNEL);
1231 if (!dname) {
1232 kmem_cache_free(dentry_cache, dentry);
1233 return NULL;
1234 }
1235 } else {
1236 dname = dentry->d_iname;
1237 }
1238 dentry->d_name.name = dname;
1239
1240 dentry->d_name.len = name->len;
1241 dentry->d_name.hash = name->hash;
1242 memcpy(dname, name->name, name->len);
1243 dname[name->len] = 0;
1244
b7ab39f6 1245 dentry->d_count = 1;
1da177e4
LT
1246 dentry->d_flags = DCACHE_UNHASHED;
1247 spin_lock_init(&dentry->d_lock);
1248 dentry->d_inode = NULL;
1249 dentry->d_parent = NULL;
1250 dentry->d_sb = NULL;
1251 dentry->d_op = NULL;
1252 dentry->d_fsdata = NULL;
1253 dentry->d_mounted = 0;
1da177e4
LT
1254 INIT_HLIST_NODE(&dentry->d_hash);
1255 INIT_LIST_HEAD(&dentry->d_lru);
1256 INIT_LIST_HEAD(&dentry->d_subdirs);
1257 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1258 INIT_LIST_HEAD(&dentry->d_u.d_child);
1da177e4
LT
1259
1260 if (parent) {
2fd6b7f5
NP
1261 spin_lock(&parent->d_lock);
1262 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1263 dentry->d_parent = dget_dlock(parent);
1da177e4 1264 dentry->d_sb = parent->d_sb;
5160ee6f 1265 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
2fd6b7f5
NP
1266 spin_unlock(&dentry->d_lock);
1267 spin_unlock(&parent->d_lock);
2fd6b7f5 1268 }
1da177e4 1269
3e880fb5 1270 this_cpu_inc(nr_dentry);
312d3ca8 1271
1da177e4
LT
1272 return dentry;
1273}
ec4f8605 1274EXPORT_SYMBOL(d_alloc);
1da177e4
LT
1275
1276struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1277{
1278 struct qstr q;
1279
1280 q.name = name;
1281 q.len = strlen(name);
1282 q.hash = full_name_hash(q.name, q.len);
1283 return d_alloc(parent, &q);
1284}
ef26ca97 1285EXPORT_SYMBOL(d_alloc_name);
1da177e4 1286
360da900
OH
1287static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1288{
b23fb0a6 1289 spin_lock(&dentry->d_lock);
360da900
OH
1290 if (inode)
1291 list_add(&dentry->d_alias, &inode->i_dentry);
1292 dentry->d_inode = inode;
b23fb0a6 1293 spin_unlock(&dentry->d_lock);
360da900
OH
1294 fsnotify_d_instantiate(dentry, inode);
1295}
1296
1da177e4
LT
1297/**
1298 * d_instantiate - fill in inode information for a dentry
1299 * @entry: dentry to complete
1300 * @inode: inode to attach to this dentry
1301 *
1302 * Fill in inode information in the entry.
1303 *
1304 * This turns negative dentries into productive full members
1305 * of society.
1306 *
1307 * NOTE! This assumes that the inode count has been incremented
1308 * (or otherwise set) by the caller to indicate that it is now
1309 * in use by the dcache.
1310 */
1311
1312void d_instantiate(struct dentry *entry, struct inode * inode)
1313{
28133c7b 1314 BUG_ON(!list_empty(&entry->d_alias));
b23fb0a6 1315 spin_lock(&dcache_inode_lock);
360da900 1316 __d_instantiate(entry, inode);
b23fb0a6 1317 spin_unlock(&dcache_inode_lock);
1da177e4
LT
1318 security_d_instantiate(entry, inode);
1319}
ec4f8605 1320EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1321
1322/**
1323 * d_instantiate_unique - instantiate a non-aliased dentry
1324 * @entry: dentry to instantiate
1325 * @inode: inode to attach to this dentry
1326 *
1327 * Fill in inode information in the entry. On success, it returns NULL.
1328 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1329 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1330 *
1331 * Note that in order to avoid conflicts with rename() etc, the caller
1332 * had better be holding the parent directory semaphore.
e866cfa9
OD
1333 *
1334 * This also assumes that the inode count has been incremented
1335 * (or otherwise set) by the caller to indicate that it is now
1336 * in use by the dcache.
1da177e4 1337 */
770bfad8
DH
1338static struct dentry *__d_instantiate_unique(struct dentry *entry,
1339 struct inode *inode)
1da177e4
LT
1340{
1341 struct dentry *alias;
1342 int len = entry->d_name.len;
1343 const char *name = entry->d_name.name;
1344 unsigned int hash = entry->d_name.hash;
1345
770bfad8 1346 if (!inode) {
360da900 1347 __d_instantiate(entry, NULL);
770bfad8
DH
1348 return NULL;
1349 }
1350
1da177e4
LT
1351 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1352 struct qstr *qstr = &alias->d_name;
1353
9abca360
NP
1354 /*
1355 * Don't need alias->d_lock here, because aliases with
1356 * d_parent == entry->d_parent are not subject to name or
1357 * parent changes, because the parent inode i_mutex is held.
1358 */
1da177e4
LT
1359 if (qstr->hash != hash)
1360 continue;
1361 if (alias->d_parent != entry->d_parent)
1362 continue;
1363 if (qstr->len != len)
1364 continue;
1365 if (memcmp(qstr->name, name, len))
1366 continue;
1367 dget_locked(alias);
1da177e4
LT
1368 return alias;
1369 }
770bfad8 1370
360da900 1371 __d_instantiate(entry, inode);
1da177e4
LT
1372 return NULL;
1373}
770bfad8
DH
1374
1375struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1376{
1377 struct dentry *result;
1378
1379 BUG_ON(!list_empty(&entry->d_alias));
1380
b23fb0a6 1381 spin_lock(&dcache_inode_lock);
770bfad8 1382 result = __d_instantiate_unique(entry, inode);
b23fb0a6 1383 spin_unlock(&dcache_inode_lock);
770bfad8
DH
1384
1385 if (!result) {
1386 security_d_instantiate(entry, inode);
1387 return NULL;
1388 }
1389
1390 BUG_ON(!d_unhashed(result));
1391 iput(inode);
1392 return result;
1393}
1394
1da177e4
LT
1395EXPORT_SYMBOL(d_instantiate_unique);
1396
1397/**
1398 * d_alloc_root - allocate root dentry
1399 * @root_inode: inode to allocate the root for
1400 *
1401 * Allocate a root ("/") dentry for the inode given. The inode is
1402 * instantiated and returned. %NULL is returned if there is insufficient
1403 * memory or the inode passed is %NULL.
1404 */
1405
1406struct dentry * d_alloc_root(struct inode * root_inode)
1407{
1408 struct dentry *res = NULL;
1409
1410 if (root_inode) {
1411 static const struct qstr name = { .name = "/", .len = 1 };
1412
1413 res = d_alloc(NULL, &name);
1414 if (res) {
1415 res->d_sb = root_inode->i_sb;
1416 res->d_parent = res;
1417 d_instantiate(res, root_inode);
1418 }
1419 }
1420 return res;
1421}
ec4f8605 1422EXPORT_SYMBOL(d_alloc_root);
1da177e4
LT
1423
1424static inline struct hlist_head *d_hash(struct dentry *parent,
1425 unsigned long hash)
1426{
1427 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1428 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1429 return dentry_hashtable + (hash & D_HASHMASK);
1430}
1431
4ea3ada2
CH
1432/**
1433 * d_obtain_alias - find or allocate a dentry for a given inode
1434 * @inode: inode to allocate the dentry for
1435 *
1436 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1437 * similar open by handle operations. The returned dentry may be anonymous,
1438 * or may have a full name (if the inode was already in the cache).
1439 *
1440 * When called on a directory inode, we must ensure that the inode only ever
1441 * has one dentry. If a dentry is found, that is returned instead of
1442 * allocating a new one.
1443 *
1444 * On successful return, the reference to the inode has been transferred
44003728
CH
1445 * to the dentry. In case of an error the reference on the inode is released.
1446 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1447 * be passed in and will be the error will be propagate to the return value,
1448 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1449 */
1450struct dentry *d_obtain_alias(struct inode *inode)
1451{
9308a612
CH
1452 static const struct qstr anonstring = { .name = "" };
1453 struct dentry *tmp;
1454 struct dentry *res;
4ea3ada2
CH
1455
1456 if (!inode)
44003728 1457 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1458 if (IS_ERR(inode))
1459 return ERR_CAST(inode);
1460
9308a612
CH
1461 res = d_find_alias(inode);
1462 if (res)
1463 goto out_iput;
1464
1465 tmp = d_alloc(NULL, &anonstring);
1466 if (!tmp) {
1467 res = ERR_PTR(-ENOMEM);
1468 goto out_iput;
4ea3ada2 1469 }
9308a612
CH
1470 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1471
b5c84bf6 1472
b23fb0a6 1473 spin_lock(&dcache_inode_lock);
9308a612
CH
1474 res = __d_find_alias(inode, 0);
1475 if (res) {
b23fb0a6 1476 spin_unlock(&dcache_inode_lock);
9308a612
CH
1477 dput(tmp);
1478 goto out_iput;
1479 }
1480
1481 /* attach a disconnected dentry */
1482 spin_lock(&tmp->d_lock);
1483 tmp->d_sb = inode->i_sb;
1484 tmp->d_inode = inode;
1485 tmp->d_flags |= DCACHE_DISCONNECTED;
1486 tmp->d_flags &= ~DCACHE_UNHASHED;
1487 list_add(&tmp->d_alias, &inode->i_dentry);
789680d1 1488 spin_lock(&dcache_hash_lock);
9308a612 1489 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
789680d1 1490 spin_unlock(&dcache_hash_lock);
9308a612 1491 spin_unlock(&tmp->d_lock);
b23fb0a6 1492 spin_unlock(&dcache_inode_lock);
9308a612 1493
9308a612
CH
1494 return tmp;
1495
1496 out_iput:
1497 iput(inode);
1498 return res;
4ea3ada2 1499}
adc48720 1500EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1501
1502/**
1503 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1504 * @inode: the inode which may have a disconnected dentry
1505 * @dentry: a negative dentry which we want to point to the inode.
1506 *
1507 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1508 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1509 * and return it, else simply d_add the inode to the dentry and return NULL.
1510 *
1511 * This is needed in the lookup routine of any filesystem that is exportable
1512 * (via knfsd) so that we can build dcache paths to directories effectively.
1513 *
1514 * If a dentry was found and moved, then it is returned. Otherwise NULL
1515 * is returned. This matches the expected return value of ->lookup.
1516 *
1517 */
1518struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1519{
1520 struct dentry *new = NULL;
1521
21c0d8fd 1522 if (inode && S_ISDIR(inode->i_mode)) {
b23fb0a6 1523 spin_lock(&dcache_inode_lock);
1da177e4
LT
1524 new = __d_find_alias(inode, 1);
1525 if (new) {
1526 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
b23fb0a6 1527 spin_unlock(&dcache_inode_lock);
1da177e4 1528 security_d_instantiate(new, inode);
1da177e4
LT
1529 d_move(new, dentry);
1530 iput(inode);
1531 } else {
b5c84bf6 1532 /* already taking dcache_inode_lock, so d_add() by hand */
360da900 1533 __d_instantiate(dentry, inode);
b23fb0a6 1534 spin_unlock(&dcache_inode_lock);
1da177e4
LT
1535 security_d_instantiate(dentry, inode);
1536 d_rehash(dentry);
1537 }
1538 } else
1539 d_add(dentry, inode);
1540 return new;
1541}
ec4f8605 1542EXPORT_SYMBOL(d_splice_alias);
1da177e4 1543
9403540c
BN
1544/**
1545 * d_add_ci - lookup or allocate new dentry with case-exact name
1546 * @inode: the inode case-insensitive lookup has found
1547 * @dentry: the negative dentry that was passed to the parent's lookup func
1548 * @name: the case-exact name to be associated with the returned dentry
1549 *
1550 * This is to avoid filling the dcache with case-insensitive names to the
1551 * same inode, only the actual correct case is stored in the dcache for
1552 * case-insensitive filesystems.
1553 *
1554 * For a case-insensitive lookup match and if the the case-exact dentry
1555 * already exists in in the dcache, use it and return it.
1556 *
1557 * If no entry exists with the exact case name, allocate new dentry with
1558 * the exact case, and return the spliced entry.
1559 */
e45b590b 1560struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1561 struct qstr *name)
1562{
1563 int error;
1564 struct dentry *found;
1565 struct dentry *new;
1566
b6520c81
CH
1567 /*
1568 * First check if a dentry matching the name already exists,
1569 * if not go ahead and create it now.
1570 */
9403540c 1571 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1572 if (!found) {
1573 new = d_alloc(dentry->d_parent, name);
1574 if (!new) {
1575 error = -ENOMEM;
1576 goto err_out;
1577 }
b6520c81 1578
9403540c
BN
1579 found = d_splice_alias(inode, new);
1580 if (found) {
1581 dput(new);
1582 return found;
1583 }
1584 return new;
1585 }
b6520c81
CH
1586
1587 /*
1588 * If a matching dentry exists, and it's not negative use it.
1589 *
1590 * Decrement the reference count to balance the iget() done
1591 * earlier on.
1592 */
9403540c
BN
1593 if (found->d_inode) {
1594 if (unlikely(found->d_inode != inode)) {
1595 /* This can't happen because bad inodes are unhashed. */
1596 BUG_ON(!is_bad_inode(inode));
1597 BUG_ON(!is_bad_inode(found->d_inode));
1598 }
9403540c
BN
1599 iput(inode);
1600 return found;
1601 }
b6520c81 1602
9403540c
BN
1603 /*
1604 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1605 * already has a dentry.
9403540c 1606 */
b23fb0a6 1607 spin_lock(&dcache_inode_lock);
b6520c81 1608 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
360da900 1609 __d_instantiate(found, inode);
b23fb0a6 1610 spin_unlock(&dcache_inode_lock);
9403540c
BN
1611 security_d_instantiate(found, inode);
1612 return found;
1613 }
b6520c81 1614
9403540c 1615 /*
b6520c81
CH
1616 * In case a directory already has a (disconnected) entry grab a
1617 * reference to it, move it in place and use it.
9403540c
BN
1618 */
1619 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1620 dget_locked(new);
b23fb0a6 1621 spin_unlock(&dcache_inode_lock);
9403540c 1622 security_d_instantiate(found, inode);
9403540c 1623 d_move(new, found);
9403540c 1624 iput(inode);
9403540c 1625 dput(found);
9403540c
BN
1626 return new;
1627
1628err_out:
1629 iput(inode);
1630 return ERR_PTR(error);
1631}
ec4f8605 1632EXPORT_SYMBOL(d_add_ci);
1da177e4
LT
1633
1634/**
1635 * d_lookup - search for a dentry
1636 * @parent: parent dentry
1637 * @name: qstr of name we wish to find
b04f784e 1638 * Returns: dentry, or NULL
1da177e4 1639 *
b04f784e
NP
1640 * d_lookup searches the children of the parent dentry for the name in
1641 * question. If the dentry is found its reference count is incremented and the
1642 * dentry is returned. The caller must use dput to free the entry when it has
1643 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1644 */
1da177e4
LT
1645struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1646{
1647 struct dentry * dentry = NULL;
949854d0 1648 unsigned seq;
1da177e4
LT
1649
1650 do {
1651 seq = read_seqbegin(&rename_lock);
1652 dentry = __d_lookup(parent, name);
1653 if (dentry)
1654 break;
1655 } while (read_seqretry(&rename_lock, seq));
1656 return dentry;
1657}
ec4f8605 1658EXPORT_SYMBOL(d_lookup);
1da177e4 1659
b04f784e
NP
1660/*
1661 * __d_lookup - search for a dentry (racy)
1662 * @parent: parent dentry
1663 * @name: qstr of name we wish to find
1664 * Returns: dentry, or NULL
1665 *
1666 * __d_lookup is like d_lookup, however it may (rarely) return a
1667 * false-negative result due to unrelated rename activity.
1668 *
1669 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1670 * however it must be used carefully, eg. with a following d_lookup in
1671 * the case of failure.
1672 *
1673 * __d_lookup callers must be commented.
1674 */
1da177e4
LT
1675struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1676{
1677 unsigned int len = name->len;
1678 unsigned int hash = name->hash;
1679 const unsigned char *str = name->name;
1680 struct hlist_head *head = d_hash(parent,hash);
1681 struct dentry *found = NULL;
1682 struct hlist_node *node;
665a7583 1683 struct dentry *dentry;
1da177e4 1684
b04f784e
NP
1685 /*
1686 * The hash list is protected using RCU.
1687 *
1688 * Take d_lock when comparing a candidate dentry, to avoid races
1689 * with d_move().
1690 *
1691 * It is possible that concurrent renames can mess up our list
1692 * walk here and result in missing our dentry, resulting in the
1693 * false-negative result. d_lookup() protects against concurrent
1694 * renames using rename_lock seqlock.
1695 *
1696 * See Documentation/vfs/dcache-locking.txt for more details.
1697 */
1da177e4
LT
1698 rcu_read_lock();
1699
665a7583 1700 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1da177e4
LT
1701 struct qstr *qstr;
1702
1da177e4
LT
1703 if (dentry->d_name.hash != hash)
1704 continue;
1705 if (dentry->d_parent != parent)
1706 continue;
1707
1708 spin_lock(&dentry->d_lock);
1709
1710 /*
1711 * Recheck the dentry after taking the lock - d_move may have
b04f784e
NP
1712 * changed things. Don't bother checking the hash because
1713 * we're about to compare the whole name anyway.
1da177e4
LT
1714 */
1715 if (dentry->d_parent != parent)
1716 goto next;
1717
d0185c08
LT
1718 /* non-existing due to RCU? */
1719 if (d_unhashed(dentry))
1720 goto next;
1721
1da177e4
LT
1722 /*
1723 * It is safe to compare names since d_move() cannot
1724 * change the qstr (protected by d_lock).
1725 */
1726 qstr = &dentry->d_name;
1727 if (parent->d_op && parent->d_op->d_compare) {
621e155a
NP
1728 if (parent->d_op->d_compare(parent, parent->d_inode,
1729 dentry, dentry->d_inode,
1730 qstr->len, qstr->name, name))
1da177e4
LT
1731 goto next;
1732 } else {
1733 if (qstr->len != len)
1734 goto next;
1735 if (memcmp(qstr->name, str, len))
1736 goto next;
1737 }
1738
b7ab39f6 1739 dentry->d_count++;
d0185c08 1740 found = dentry;
1da177e4
LT
1741 spin_unlock(&dentry->d_lock);
1742 break;
1743next:
1744 spin_unlock(&dentry->d_lock);
1745 }
1746 rcu_read_unlock();
1747
1748 return found;
1749}
1750
3e7e241f
EB
1751/**
1752 * d_hash_and_lookup - hash the qstr then search for a dentry
1753 * @dir: Directory to search in
1754 * @name: qstr of name we wish to find
1755 *
1756 * On hash failure or on lookup failure NULL is returned.
1757 */
1758struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1759{
1760 struct dentry *dentry = NULL;
1761
1762 /*
1763 * Check for a fs-specific hash function. Note that we must
1764 * calculate the standard hash first, as the d_op->d_hash()
1765 * routine may choose to leave the hash value unchanged.
1766 */
1767 name->hash = full_name_hash(name->name, name->len);
1768 if (dir->d_op && dir->d_op->d_hash) {
b1e6a015 1769 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1770 goto out;
1771 }
1772 dentry = d_lookup(dir, name);
1773out:
1774 return dentry;
1775}
1776
1da177e4 1777/**
786a5e15 1778 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4
LT
1779 * @dentry: The dentry alleged to be valid child of @dparent
1780 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1781 *
1782 * An insecure source has sent us a dentry, here we verify it and dget() it.
1783 * This is used by ncpfs in its readdir implementation.
1784 * Zero is returned in the dentry is invalid.
786a5e15
NP
1785 *
1786 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1787 */
d3a23e16 1788int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1789{
786a5e15 1790 struct dentry *child;
d3a23e16 1791
2fd6b7f5 1792 spin_lock(&dparent->d_lock);
786a5e15
NP
1793 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1794 if (dentry == child) {
2fd6b7f5
NP
1795 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1796 __dget_locked_dlock(dentry);
1797 spin_unlock(&dentry->d_lock);
1798 spin_unlock(&dparent->d_lock);
1da177e4
LT
1799 return 1;
1800 }
1801 }
2fd6b7f5 1802 spin_unlock(&dparent->d_lock);
786a5e15 1803
1da177e4
LT
1804 return 0;
1805}
ec4f8605 1806EXPORT_SYMBOL(d_validate);
1da177e4
LT
1807
1808/*
1809 * When a file is deleted, we have two options:
1810 * - turn this dentry into a negative dentry
1811 * - unhash this dentry and free it.
1812 *
1813 * Usually, we want to just turn this into
1814 * a negative dentry, but if anybody else is
1815 * currently using the dentry or the inode
1816 * we can't do that and we fall back on removing
1817 * it from the hash queues and waiting for
1818 * it to be deleted later when it has no users
1819 */
1820
1821/**
1822 * d_delete - delete a dentry
1823 * @dentry: The dentry to delete
1824 *
1825 * Turn the dentry into a negative dentry if possible, otherwise
1826 * remove it from the hash queues so it can be deleted later
1827 */
1828
1829void d_delete(struct dentry * dentry)
1830{
7a91bf7f 1831 int isdir = 0;
1da177e4
LT
1832 /*
1833 * Are we the only user?
1834 */
b23fb0a6 1835 spin_lock(&dcache_inode_lock);
1da177e4 1836 spin_lock(&dentry->d_lock);
7a91bf7f 1837 isdir = S_ISDIR(dentry->d_inode->i_mode);
b7ab39f6 1838 if (dentry->d_count == 1) {
13e3c5e5 1839 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1da177e4 1840 dentry_iput(dentry);
7a91bf7f 1841 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
1842 return;
1843 }
1844
1845 if (!d_unhashed(dentry))
1846 __d_drop(dentry);
1847
1848 spin_unlock(&dentry->d_lock);
b23fb0a6 1849 spin_unlock(&dcache_inode_lock);
7a91bf7f
JM
1850
1851 fsnotify_nameremove(dentry, isdir);
1da177e4 1852}
ec4f8605 1853EXPORT_SYMBOL(d_delete);
1da177e4
LT
1854
1855static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1856{
1857
1858 entry->d_flags &= ~DCACHE_UNHASHED;
1859 hlist_add_head_rcu(&entry->d_hash, list);
1860}
1861
770bfad8
DH
1862static void _d_rehash(struct dentry * entry)
1863{
1864 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1865}
1866
1da177e4
LT
1867/**
1868 * d_rehash - add an entry back to the hash
1869 * @entry: dentry to add to the hash
1870 *
1871 * Adds a dentry to the hash according to its name.
1872 */
1873
1874void d_rehash(struct dentry * entry)
1875{
1da177e4 1876 spin_lock(&entry->d_lock);
789680d1 1877 spin_lock(&dcache_hash_lock);
770bfad8 1878 _d_rehash(entry);
789680d1 1879 spin_unlock(&dcache_hash_lock);
1da177e4 1880 spin_unlock(&entry->d_lock);
1da177e4 1881}
ec4f8605 1882EXPORT_SYMBOL(d_rehash);
1da177e4 1883
fb2d5b86
NP
1884/**
1885 * dentry_update_name_case - update case insensitive dentry with a new name
1886 * @dentry: dentry to be updated
1887 * @name: new name
1888 *
1889 * Update a case insensitive dentry with new case of name.
1890 *
1891 * dentry must have been returned by d_lookup with name @name. Old and new
1892 * name lengths must match (ie. no d_compare which allows mismatched name
1893 * lengths).
1894 *
1895 * Parent inode i_mutex must be held over d_lookup and into this call (to
1896 * keep renames and concurrent inserts, and readdir(2) away).
1897 */
1898void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
1899{
1900 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
1901 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
1902
fb2d5b86
NP
1903 spin_lock(&dentry->d_lock);
1904 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
1905 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
1906}
1907EXPORT_SYMBOL(dentry_update_name_case);
1908
1da177e4
LT
1909static void switch_names(struct dentry *dentry, struct dentry *target)
1910{
1911 if (dname_external(target)) {
1912 if (dname_external(dentry)) {
1913 /*
1914 * Both external: swap the pointers
1915 */
9a8d5bb4 1916 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
1917 } else {
1918 /*
1919 * dentry:internal, target:external. Steal target's
1920 * storage and make target internal.
1921 */
321bcf92
BF
1922 memcpy(target->d_iname, dentry->d_name.name,
1923 dentry->d_name.len + 1);
1da177e4
LT
1924 dentry->d_name.name = target->d_name.name;
1925 target->d_name.name = target->d_iname;
1926 }
1927 } else {
1928 if (dname_external(dentry)) {
1929 /*
1930 * dentry:external, target:internal. Give dentry's
1931 * storage to target and make dentry internal
1932 */
1933 memcpy(dentry->d_iname, target->d_name.name,
1934 target->d_name.len + 1);
1935 target->d_name.name = dentry->d_name.name;
1936 dentry->d_name.name = dentry->d_iname;
1937 } else {
1938 /*
1939 * Both are internal. Just copy target to dentry
1940 */
1941 memcpy(dentry->d_iname, target->d_name.name,
1942 target->d_name.len + 1);
dc711ca3
AV
1943 dentry->d_name.len = target->d_name.len;
1944 return;
1da177e4
LT
1945 }
1946 }
9a8d5bb4 1947 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
1948}
1949
2fd6b7f5
NP
1950static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
1951{
1952 /*
1953 * XXXX: do we really need to take target->d_lock?
1954 */
1955 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
1956 spin_lock(&target->d_parent->d_lock);
1957 else {
1958 if (d_ancestor(dentry->d_parent, target->d_parent)) {
1959 spin_lock(&dentry->d_parent->d_lock);
1960 spin_lock_nested(&target->d_parent->d_lock,
1961 DENTRY_D_LOCK_NESTED);
1962 } else {
1963 spin_lock(&target->d_parent->d_lock);
1964 spin_lock_nested(&dentry->d_parent->d_lock,
1965 DENTRY_D_LOCK_NESTED);
1966 }
1967 }
1968 if (target < dentry) {
1969 spin_lock_nested(&target->d_lock, 2);
1970 spin_lock_nested(&dentry->d_lock, 3);
1971 } else {
1972 spin_lock_nested(&dentry->d_lock, 2);
1973 spin_lock_nested(&target->d_lock, 3);
1974 }
1975}
1976
1977static void dentry_unlock_parents_for_move(struct dentry *dentry,
1978 struct dentry *target)
1979{
1980 if (target->d_parent != dentry->d_parent)
1981 spin_unlock(&dentry->d_parent->d_lock);
1982 if (target->d_parent != target)
1983 spin_unlock(&target->d_parent->d_lock);
1984}
1985
1da177e4 1986/*
2fd6b7f5
NP
1987 * When switching names, the actual string doesn't strictly have to
1988 * be preserved in the target - because we're dropping the target
1989 * anyway. As such, we can just do a simple memcpy() to copy over
1990 * the new name before we switch.
1991 *
1992 * Note that we have to be a lot more careful about getting the hash
1993 * switched - we have to switch the hash value properly even if it
1994 * then no longer matches the actual (corrupted) string of the target.
1995 * The hash value has to match the hash queue that the dentry is on..
1da177e4 1996 */
9eaef27b 1997/*
b5c84bf6 1998 * d_move - move a dentry
1da177e4
LT
1999 * @dentry: entry to move
2000 * @target: new dentry
2001 *
2002 * Update the dcache to reflect the move of a file name. Negative
2003 * dcache entries should not be moved in this way.
2004 */
b5c84bf6 2005void d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2006{
1da177e4
LT
2007 if (!dentry->d_inode)
2008 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2009
2fd6b7f5
NP
2010 BUG_ON(d_ancestor(dentry, target));
2011 BUG_ON(d_ancestor(target, dentry));
2012
1da177e4 2013 write_seqlock(&rename_lock);
2fd6b7f5
NP
2014
2015 dentry_lock_for_move(dentry, target);
1da177e4
LT
2016
2017 /* Move the dentry to the target hash queue, if on different bucket */
789680d1
NP
2018 spin_lock(&dcache_hash_lock);
2019 if (!d_unhashed(dentry))
2020 hlist_del_rcu(&dentry->d_hash);
2021 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2022 spin_unlock(&dcache_hash_lock);
1da177e4
LT
2023
2024 /* Unhash the target: dput() will then get rid of it */
2025 __d_drop(target);
2026
5160ee6f
ED
2027 list_del(&dentry->d_u.d_child);
2028 list_del(&target->d_u.d_child);
1da177e4
LT
2029
2030 /* Switch the names.. */
2031 switch_names(dentry, target);
9a8d5bb4 2032 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2033
2034 /* ... and switch the parents */
2035 if (IS_ROOT(dentry)) {
2036 dentry->d_parent = target->d_parent;
2037 target->d_parent = target;
5160ee6f 2038 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2039 } else {
9a8d5bb4 2040 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2041
2042 /* And add them back to the (new) parent lists */
5160ee6f 2043 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2044 }
2045
5160ee6f 2046 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5
NP
2047
2048 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2049 spin_unlock(&target->d_lock);
c32ccd87 2050 fsnotify_d_move(dentry);
1da177e4
LT
2051 spin_unlock(&dentry->d_lock);
2052 write_sequnlock(&rename_lock);
9eaef27b 2053}
ec4f8605 2054EXPORT_SYMBOL(d_move);
1da177e4 2055
e2761a11
OH
2056/**
2057 * d_ancestor - search for an ancestor
2058 * @p1: ancestor dentry
2059 * @p2: child dentry
2060 *
2061 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2062 * an ancestor of p2, else NULL.
9eaef27b 2063 */
e2761a11 2064struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2065{
2066 struct dentry *p;
2067
871c0067 2068 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2069 if (p->d_parent == p1)
e2761a11 2070 return p;
9eaef27b 2071 }
e2761a11 2072 return NULL;
9eaef27b
TM
2073}
2074
2075/*
2076 * This helper attempts to cope with remotely renamed directories
2077 *
2078 * It assumes that the caller is already holding
b5c84bf6 2079 * dentry->d_parent->d_inode->i_mutex and the dcache_inode_lock
9eaef27b
TM
2080 *
2081 * Note: If ever the locking in lock_rename() changes, then please
2082 * remember to update this too...
9eaef27b
TM
2083 */
2084static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
b23fb0a6 2085 __releases(dcache_inode_lock)
9eaef27b
TM
2086{
2087 struct mutex *m1 = NULL, *m2 = NULL;
2088 struct dentry *ret;
2089
2090 /* If alias and dentry share a parent, then no extra locks required */
2091 if (alias->d_parent == dentry->d_parent)
2092 goto out_unalias;
2093
2094 /* Check for loops */
2095 ret = ERR_PTR(-ELOOP);
e2761a11 2096 if (d_ancestor(alias, dentry))
9eaef27b
TM
2097 goto out_err;
2098
2099 /* See lock_rename() */
2100 ret = ERR_PTR(-EBUSY);
2101 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2102 goto out_err;
2103 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2104 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2105 goto out_err;
2106 m2 = &alias->d_parent->d_inode->i_mutex;
2107out_unalias:
b5c84bf6 2108 d_move(alias, dentry);
9eaef27b
TM
2109 ret = alias;
2110out_err:
b23fb0a6 2111 spin_unlock(&dcache_inode_lock);
9eaef27b
TM
2112 if (m2)
2113 mutex_unlock(m2);
2114 if (m1)
2115 mutex_unlock(m1);
2116 return ret;
2117}
2118
770bfad8
DH
2119/*
2120 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2121 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2122 * returns with anon->d_lock held!
770bfad8
DH
2123 */
2124static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2125{
2126 struct dentry *dparent, *aparent;
2127
2fd6b7f5 2128 dentry_lock_for_move(anon, dentry);
770bfad8
DH
2129
2130 dparent = dentry->d_parent;
2131 aparent = anon->d_parent;
2132
2fd6b7f5
NP
2133 switch_names(dentry, anon);
2134 swap(dentry->d_name.hash, anon->d_name.hash);
2135
770bfad8
DH
2136 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2137 list_del(&dentry->d_u.d_child);
2138 if (!IS_ROOT(dentry))
2139 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2140 else
2141 INIT_LIST_HEAD(&dentry->d_u.d_child);
2142
2143 anon->d_parent = (dparent == dentry) ? anon : dparent;
2144 list_del(&anon->d_u.d_child);
2145 if (!IS_ROOT(anon))
2146 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2147 else
2148 INIT_LIST_HEAD(&anon->d_u.d_child);
2149
2fd6b7f5
NP
2150 dentry_unlock_parents_for_move(anon, dentry);
2151 spin_unlock(&dentry->d_lock);
2152
2153 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2154 anon->d_flags &= ~DCACHE_DISCONNECTED;
2155}
2156
2157/**
2158 * d_materialise_unique - introduce an inode into the tree
2159 * @dentry: candidate dentry
2160 * @inode: inode to bind to the dentry, to which aliases may be attached
2161 *
2162 * Introduces an dentry into the tree, substituting an extant disconnected
2163 * root directory alias in its place if there is one
2164 */
2165struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2166{
9eaef27b 2167 struct dentry *actual;
770bfad8
DH
2168
2169 BUG_ON(!d_unhashed(dentry));
2170
b23fb0a6 2171 spin_lock(&dcache_inode_lock);
770bfad8
DH
2172
2173 if (!inode) {
2174 actual = dentry;
360da900 2175 __d_instantiate(dentry, NULL);
770bfad8
DH
2176 goto found_lock;
2177 }
2178
9eaef27b
TM
2179 if (S_ISDIR(inode->i_mode)) {
2180 struct dentry *alias;
2181
2182 /* Does an aliased dentry already exist? */
2183 alias = __d_find_alias(inode, 0);
2184 if (alias) {
2185 actual = alias;
2186 /* Is this an anonymous mountpoint that we could splice
2187 * into our tree? */
2188 if (IS_ROOT(alias)) {
9eaef27b
TM
2189 __d_materialise_dentry(dentry, alias);
2190 __d_drop(alias);
2191 goto found;
2192 }
2193 /* Nope, but we must(!) avoid directory aliasing */
2194 actual = __d_unalias(dentry, alias);
2195 if (IS_ERR(actual))
2196 dput(alias);
2197 goto out_nolock;
2198 }
770bfad8
DH
2199 }
2200
2201 /* Add a unique reference */
2202 actual = __d_instantiate_unique(dentry, inode);
2203 if (!actual)
2204 actual = dentry;
2205 else if (unlikely(!d_unhashed(actual)))
2206 goto shouldnt_be_hashed;
2207
2208found_lock:
2209 spin_lock(&actual->d_lock);
2210found:
789680d1 2211 spin_lock(&dcache_hash_lock);
770bfad8 2212 _d_rehash(actual);
789680d1 2213 spin_unlock(&dcache_hash_lock);
770bfad8 2214 spin_unlock(&actual->d_lock);
b23fb0a6 2215 spin_unlock(&dcache_inode_lock);
9eaef27b 2216out_nolock:
770bfad8
DH
2217 if (actual == dentry) {
2218 security_d_instantiate(dentry, inode);
2219 return NULL;
2220 }
2221
2222 iput(inode);
2223 return actual;
2224
770bfad8 2225shouldnt_be_hashed:
b23fb0a6 2226 spin_unlock(&dcache_inode_lock);
770bfad8 2227 BUG();
770bfad8 2228}
ec4f8605 2229EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2230
cdd16d02 2231static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2232{
2233 *buflen -= namelen;
2234 if (*buflen < 0)
2235 return -ENAMETOOLONG;
2236 *buffer -= namelen;
2237 memcpy(*buffer, str, namelen);
2238 return 0;
2239}
2240
cdd16d02
MS
2241static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2242{
2243 return prepend(buffer, buflen, name->name, name->len);
2244}
2245
1da177e4 2246/**
f2eb6575
MS
2247 * Prepend path string to a buffer
2248 *
9d1bc601
MS
2249 * @path: the dentry/vfsmount to report
2250 * @root: root vfsmnt/dentry (may be modified by this function)
f2eb6575
MS
2251 * @buffer: pointer to the end of the buffer
2252 * @buflen: pointer to buffer length
552ce544 2253 *
949854d0 2254 * Caller holds the rename_lock.
9d1bc601
MS
2255 *
2256 * If path is not reachable from the supplied root, then the value of
2257 * root is changed (without modifying refcounts).
1da177e4 2258 */
f2eb6575
MS
2259static int prepend_path(const struct path *path, struct path *root,
2260 char **buffer, int *buflen)
1da177e4 2261{
9d1bc601
MS
2262 struct dentry *dentry = path->dentry;
2263 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
2264 bool slash = false;
2265 int error = 0;
6092d048 2266
99b7db7b 2267 br_read_lock(vfsmount_lock);
f2eb6575 2268 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2269 struct dentry * parent;
2270
1da177e4 2271 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2272 /* Global root? */
1da177e4 2273 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
2274 goto global_root;
2275 }
2276 dentry = vfsmnt->mnt_mountpoint;
2277 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
2278 continue;
2279 }
2280 parent = dentry->d_parent;
2281 prefetch(parent);
9abca360 2282 spin_lock(&dentry->d_lock);
f2eb6575 2283 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2284 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2285 if (!error)
2286 error = prepend(buffer, buflen, "/", 1);
2287 if (error)
2288 break;
2289
2290 slash = true;
1da177e4
LT
2291 dentry = parent;
2292 }
2293
be285c71 2294out:
f2eb6575
MS
2295 if (!error && !slash)
2296 error = prepend(buffer, buflen, "/", 1);
2297
99b7db7b 2298 br_read_unlock(vfsmount_lock);
f2eb6575 2299 return error;
1da177e4
LT
2300
2301global_root:
98dc568b
MS
2302 /*
2303 * Filesystems needing to implement special "root names"
2304 * should do so with ->d_dname()
2305 */
2306 if (IS_ROOT(dentry) &&
2307 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2308 WARN(1, "Root dentry has weird name <%.*s>\n",
2309 (int) dentry->d_name.len, dentry->d_name.name);
2310 }
9d1bc601
MS
2311 root->mnt = vfsmnt;
2312 root->dentry = dentry;
be285c71 2313 goto out;
f2eb6575 2314}
be285c71 2315
f2eb6575
MS
2316/**
2317 * __d_path - return the path of a dentry
2318 * @path: the dentry/vfsmount to report
2319 * @root: root vfsmnt/dentry (may be modified by this function)
cd956a1c 2320 * @buf: buffer to return value in
f2eb6575
MS
2321 * @buflen: buffer length
2322 *
ffd1f4ed 2323 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2324 *
2325 * Returns a pointer into the buffer or an error code if the
2326 * path was too long.
2327 *
be148247 2328 * "buflen" should be positive.
f2eb6575
MS
2329 *
2330 * If path is not reachable from the supplied root, then the value of
2331 * root is changed (without modifying refcounts).
2332 */
2333char *__d_path(const struct path *path, struct path *root,
2334 char *buf, int buflen)
2335{
2336 char *res = buf + buflen;
2337 int error;
2338
2339 prepend(&res, &buflen, "\0", 1);
949854d0 2340 write_seqlock(&rename_lock);
f2eb6575 2341 error = prepend_path(path, root, &res, &buflen);
949854d0 2342 write_sequnlock(&rename_lock);
be148247 2343
f2eb6575
MS
2344 if (error)
2345 return ERR_PTR(error);
f2eb6575 2346 return res;
1da177e4
LT
2347}
2348
ffd1f4ed
MS
2349/*
2350 * same as __d_path but appends "(deleted)" for unlinked files.
2351 */
2352static int path_with_deleted(const struct path *path, struct path *root,
2353 char **buf, int *buflen)
2354{
2355 prepend(buf, buflen, "\0", 1);
2356 if (d_unlinked(path->dentry)) {
2357 int error = prepend(buf, buflen, " (deleted)", 10);
2358 if (error)
2359 return error;
2360 }
2361
2362 return prepend_path(path, root, buf, buflen);
2363}
2364
8df9d1a4
MS
2365static int prepend_unreachable(char **buffer, int *buflen)
2366{
2367 return prepend(buffer, buflen, "(unreachable)", 13);
2368}
2369
a03a8a70
JB
2370/**
2371 * d_path - return the path of a dentry
cf28b486 2372 * @path: path to report
a03a8a70
JB
2373 * @buf: buffer to return value in
2374 * @buflen: buffer length
2375 *
2376 * Convert a dentry into an ASCII path name. If the entry has been deleted
2377 * the string " (deleted)" is appended. Note that this is ambiguous.
2378 *
52afeefb
AV
2379 * Returns a pointer into the buffer or an error code if the path was
2380 * too long. Note: Callers should use the returned pointer, not the passed
2381 * in buffer, to use the name! The implementation often starts at an offset
2382 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2383 *
31f3e0b3 2384 * "buflen" should be positive.
a03a8a70 2385 */
20d4fdc1 2386char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2387{
ffd1f4ed 2388 char *res = buf + buflen;
6ac08c39 2389 struct path root;
9d1bc601 2390 struct path tmp;
ffd1f4ed 2391 int error;
1da177e4 2392
c23fbb6b
ED
2393 /*
2394 * We have various synthetic filesystems that never get mounted. On
2395 * these filesystems dentries are never used for lookup purposes, and
2396 * thus don't need to be hashed. They also don't need a name until a
2397 * user wants to identify the object in /proc/pid/fd/. The little hack
2398 * below allows us to generate a name for these objects on demand:
2399 */
cf28b486
JB
2400 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2401 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2402
f7ad3c6b 2403 get_fs_root(current->fs, &root);
949854d0 2404 write_seqlock(&rename_lock);
9d1bc601 2405 tmp = root;
ffd1f4ed
MS
2406 error = path_with_deleted(path, &tmp, &res, &buflen);
2407 if (error)
2408 res = ERR_PTR(error);
949854d0 2409 write_sequnlock(&rename_lock);
6ac08c39 2410 path_put(&root);
1da177e4
LT
2411 return res;
2412}
ec4f8605 2413EXPORT_SYMBOL(d_path);
1da177e4 2414
8df9d1a4
MS
2415/**
2416 * d_path_with_unreachable - return the path of a dentry
2417 * @path: path to report
2418 * @buf: buffer to return value in
2419 * @buflen: buffer length
2420 *
2421 * The difference from d_path() is that this prepends "(unreachable)"
2422 * to paths which are unreachable from the current process' root.
2423 */
2424char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2425{
2426 char *res = buf + buflen;
2427 struct path root;
2428 struct path tmp;
2429 int error;
2430
2431 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2432 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2433
2434 get_fs_root(current->fs, &root);
949854d0 2435 write_seqlock(&rename_lock);
8df9d1a4
MS
2436 tmp = root;
2437 error = path_with_deleted(path, &tmp, &res, &buflen);
2438 if (!error && !path_equal(&tmp, &root))
2439 error = prepend_unreachable(&res, &buflen);
949854d0 2440 write_sequnlock(&rename_lock);
8df9d1a4
MS
2441 path_put(&root);
2442 if (error)
2443 res = ERR_PTR(error);
2444
2445 return res;
2446}
2447
c23fbb6b
ED
2448/*
2449 * Helper function for dentry_operations.d_dname() members
2450 */
2451char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2452 const char *fmt, ...)
2453{
2454 va_list args;
2455 char temp[64];
2456 int sz;
2457
2458 va_start(args, fmt);
2459 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2460 va_end(args);
2461
2462 if (sz > sizeof(temp) || sz > buflen)
2463 return ERR_PTR(-ENAMETOOLONG);
2464
2465 buffer += buflen - sz;
2466 return memcpy(buffer, temp, sz);
2467}
2468
6092d048
RP
2469/*
2470 * Write full pathname from the root of the filesystem into the buffer.
2471 */
ec2447c2 2472static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2473{
2474 char *end = buf + buflen;
2475 char *retval;
2476
6092d048 2477 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2478 if (buflen < 1)
2479 goto Elong;
2480 /* Get '/' right */
2481 retval = end-1;
2482 *retval = '/';
2483
cdd16d02
MS
2484 while (!IS_ROOT(dentry)) {
2485 struct dentry *parent = dentry->d_parent;
9abca360 2486 int error;
6092d048 2487
6092d048 2488 prefetch(parent);
9abca360
NP
2489 spin_lock(&dentry->d_lock);
2490 error = prepend_name(&end, &buflen, &dentry->d_name);
2491 spin_unlock(&dentry->d_lock);
2492 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2493 goto Elong;
2494
2495 retval = end;
2496 dentry = parent;
2497 }
c103135c
AV
2498 return retval;
2499Elong:
2500 return ERR_PTR(-ENAMETOOLONG);
2501}
ec2447c2
NP
2502
2503char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2504{
2505 char *retval;
2506
949854d0 2507 write_seqlock(&rename_lock);
ec2447c2 2508 retval = __dentry_path(dentry, buf, buflen);
949854d0 2509 write_sequnlock(&rename_lock);
ec2447c2
NP
2510
2511 return retval;
2512}
2513EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2514
2515char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2516{
2517 char *p = NULL;
2518 char *retval;
2519
949854d0 2520 write_seqlock(&rename_lock);
c103135c
AV
2521 if (d_unlinked(dentry)) {
2522 p = buf + buflen;
2523 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2524 goto Elong;
2525 buflen++;
2526 }
2527 retval = __dentry_path(dentry, buf, buflen);
949854d0 2528 write_sequnlock(&rename_lock);
c103135c
AV
2529 if (!IS_ERR(retval) && p)
2530 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2531 return retval;
2532Elong:
6092d048
RP
2533 return ERR_PTR(-ENAMETOOLONG);
2534}
2535
1da177e4
LT
2536/*
2537 * NOTE! The user-level library version returns a
2538 * character pointer. The kernel system call just
2539 * returns the length of the buffer filled (which
2540 * includes the ending '\0' character), or a negative
2541 * error value. So libc would do something like
2542 *
2543 * char *getcwd(char * buf, size_t size)
2544 * {
2545 * int retval;
2546 *
2547 * retval = sys_getcwd(buf, size);
2548 * if (retval >= 0)
2549 * return buf;
2550 * errno = -retval;
2551 * return NULL;
2552 * }
2553 */
3cdad428 2554SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2555{
552ce544 2556 int error;
6ac08c39 2557 struct path pwd, root;
552ce544 2558 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2559
2560 if (!page)
2561 return -ENOMEM;
2562
f7ad3c6b 2563 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2564
552ce544 2565 error = -ENOENT;
949854d0 2566 write_seqlock(&rename_lock);
f3da392e 2567 if (!d_unlinked(pwd.dentry)) {
552ce544 2568 unsigned long len;
9d1bc601 2569 struct path tmp = root;
8df9d1a4
MS
2570 char *cwd = page + PAGE_SIZE;
2571 int buflen = PAGE_SIZE;
1da177e4 2572
8df9d1a4
MS
2573 prepend(&cwd, &buflen, "\0", 1);
2574 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
949854d0 2575 write_sequnlock(&rename_lock);
552ce544 2576
8df9d1a4 2577 if (error)
552ce544
LT
2578 goto out;
2579
8df9d1a4
MS
2580 /* Unreachable from current root */
2581 if (!path_equal(&tmp, &root)) {
2582 error = prepend_unreachable(&cwd, &buflen);
2583 if (error)
2584 goto out;
2585 }
2586
552ce544
LT
2587 error = -ERANGE;
2588 len = PAGE_SIZE + page - cwd;
2589 if (len <= size) {
2590 error = len;
2591 if (copy_to_user(buf, cwd, len))
2592 error = -EFAULT;
2593 }
949854d0
NP
2594 } else {
2595 write_sequnlock(&rename_lock);
949854d0 2596 }
1da177e4
LT
2597
2598out:
6ac08c39
JB
2599 path_put(&pwd);
2600 path_put(&root);
1da177e4
LT
2601 free_page((unsigned long) page);
2602 return error;
2603}
2604
2605/*
2606 * Test whether new_dentry is a subdirectory of old_dentry.
2607 *
2608 * Trivially implemented using the dcache structure
2609 */
2610
2611/**
2612 * is_subdir - is new dentry a subdirectory of old_dentry
2613 * @new_dentry: new dentry
2614 * @old_dentry: old dentry
2615 *
2616 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2617 * Returns 0 otherwise.
2618 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2619 */
2620
e2761a11 2621int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2622{
2623 int result;
949854d0 2624 unsigned seq;
1da177e4 2625
e2761a11
OH
2626 if (new_dentry == old_dentry)
2627 return 1;
2628
e2761a11 2629 do {
1da177e4 2630 /* for restarting inner loop in case of seq retry */
1da177e4 2631 seq = read_seqbegin(&rename_lock);
949854d0
NP
2632 /*
2633 * Need rcu_readlock to protect against the d_parent trashing
2634 * due to d_move
2635 */
2636 rcu_read_lock();
e2761a11 2637 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2638 result = 1;
e2761a11
OH
2639 else
2640 result = 0;
949854d0 2641 rcu_read_unlock();
1da177e4 2642 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2643
2644 return result;
2645}
2646
2096f759
AV
2647int path_is_under(struct path *path1, struct path *path2)
2648{
2649 struct vfsmount *mnt = path1->mnt;
2650 struct dentry *dentry = path1->dentry;
2651 int res;
99b7db7b
NP
2652
2653 br_read_lock(vfsmount_lock);
2096f759
AV
2654 if (mnt != path2->mnt) {
2655 for (;;) {
2656 if (mnt->mnt_parent == mnt) {
99b7db7b 2657 br_read_unlock(vfsmount_lock);
2096f759
AV
2658 return 0;
2659 }
2660 if (mnt->mnt_parent == path2->mnt)
2661 break;
2662 mnt = mnt->mnt_parent;
2663 }
2664 dentry = mnt->mnt_mountpoint;
2665 }
2666 res = is_subdir(dentry, path2->dentry);
99b7db7b 2667 br_read_unlock(vfsmount_lock);
2096f759
AV
2668 return res;
2669}
2670EXPORT_SYMBOL(path_is_under);
2671
1da177e4
LT
2672void d_genocide(struct dentry *root)
2673{
949854d0 2674 struct dentry *this_parent;
1da177e4 2675 struct list_head *next;
949854d0 2676 unsigned seq;
58db63d0 2677 int locked = 0;
1da177e4 2678
949854d0 2679 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2680again:
2681 this_parent = root;
2fd6b7f5 2682 spin_lock(&this_parent->d_lock);
1da177e4
LT
2683repeat:
2684 next = this_parent->d_subdirs.next;
2685resume:
2686 while (next != &this_parent->d_subdirs) {
2687 struct list_head *tmp = next;
5160ee6f 2688 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2689 next = tmp->next;
949854d0 2690
da502956
NP
2691 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2692 if (d_unhashed(dentry) || !dentry->d_inode) {
2693 spin_unlock(&dentry->d_lock);
1da177e4 2694 continue;
da502956 2695 }
1da177e4 2696 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2697 spin_unlock(&this_parent->d_lock);
2698 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2699 this_parent = dentry;
2fd6b7f5 2700 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2701 goto repeat;
2702 }
949854d0
NP
2703 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2704 dentry->d_flags |= DCACHE_GENOCIDE;
2705 dentry->d_count--;
2706 }
b7ab39f6 2707 spin_unlock(&dentry->d_lock);
1da177e4
LT
2708 }
2709 if (this_parent != root) {
949854d0
NP
2710 struct dentry *tmp;
2711 struct dentry *child;
2712
2713 tmp = this_parent->d_parent;
2714 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2715 this_parent->d_flags |= DCACHE_GENOCIDE;
2716 this_parent->d_count--;
2717 }
2718 rcu_read_lock();
b7ab39f6 2719 spin_unlock(&this_parent->d_lock);
949854d0
NP
2720 child = this_parent;
2721 this_parent = tmp;
2fd6b7f5 2722 spin_lock(&this_parent->d_lock);
949854d0
NP
2723 /* might go back up the wrong parent if we have had a rename
2724 * or deletion */
2725 if (this_parent != child->d_parent ||
58db63d0 2726 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 2727 spin_unlock(&this_parent->d_lock);
949854d0
NP
2728 rcu_read_unlock();
2729 goto rename_retry;
2730 }
2731 rcu_read_unlock();
2732 next = child->d_u.d_child.next;
1da177e4
LT
2733 goto resume;
2734 }
2fd6b7f5 2735 spin_unlock(&this_parent->d_lock);
58db63d0 2736 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2737 goto rename_retry;
58db63d0
NP
2738 if (locked)
2739 write_sequnlock(&rename_lock);
2740 return;
2741
2742rename_retry:
2743 locked = 1;
2744 write_seqlock(&rename_lock);
2745 goto again;
1da177e4
LT
2746}
2747
2748/**
2749 * find_inode_number - check for dentry with name
2750 * @dir: directory to check
2751 * @name: Name to find.
2752 *
2753 * Check whether a dentry already exists for the given name,
2754 * and return the inode number if it has an inode. Otherwise
2755 * 0 is returned.
2756 *
2757 * This routine is used to post-process directory listings for
2758 * filesystems using synthetic inode numbers, and is necessary
2759 * to keep getcwd() working.
2760 */
2761
2762ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2763{
2764 struct dentry * dentry;
2765 ino_t ino = 0;
2766
3e7e241f
EB
2767 dentry = d_hash_and_lookup(dir, name);
2768 if (dentry) {
1da177e4
LT
2769 if (dentry->d_inode)
2770 ino = dentry->d_inode->i_ino;
2771 dput(dentry);
2772 }
1da177e4
LT
2773 return ino;
2774}
ec4f8605 2775EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2776
2777static __initdata unsigned long dhash_entries;
2778static int __init set_dhash_entries(char *str)
2779{
2780 if (!str)
2781 return 0;
2782 dhash_entries = simple_strtoul(str, &str, 0);
2783 return 1;
2784}
2785__setup("dhash_entries=", set_dhash_entries);
2786
2787static void __init dcache_init_early(void)
2788{
2789 int loop;
2790
2791 /* If hashes are distributed across NUMA nodes, defer
2792 * hash allocation until vmalloc space is available.
2793 */
2794 if (hashdist)
2795 return;
2796
2797 dentry_hashtable =
2798 alloc_large_system_hash("Dentry cache",
2799 sizeof(struct hlist_head),
2800 dhash_entries,
2801 13,
2802 HASH_EARLY,
2803 &d_hash_shift,
2804 &d_hash_mask,
2805 0);
2806
2807 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2808 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2809}
2810
74bf17cf 2811static void __init dcache_init(void)
1da177e4
LT
2812{
2813 int loop;
2814
2815 /*
2816 * A constructor could be added for stable state like the lists,
2817 * but it is probably not worth it because of the cache nature
2818 * of the dcache.
2819 */
0a31bd5f
CL
2820 dentry_cache = KMEM_CACHE(dentry,
2821 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4 2822
8e1f936b 2823 register_shrinker(&dcache_shrinker);
1da177e4
LT
2824
2825 /* Hash may have been set up in dcache_init_early */
2826 if (!hashdist)
2827 return;
2828
2829 dentry_hashtable =
2830 alloc_large_system_hash("Dentry cache",
2831 sizeof(struct hlist_head),
2832 dhash_entries,
2833 13,
2834 0,
2835 &d_hash_shift,
2836 &d_hash_mask,
2837 0);
2838
2839 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2840 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2841}
2842
2843/* SLAB cache for __getname() consumers */
e18b890b 2844struct kmem_cache *names_cachep __read_mostly;
ec4f8605 2845EXPORT_SYMBOL(names_cachep);
1da177e4 2846
1da177e4
LT
2847EXPORT_SYMBOL(d_genocide);
2848
1da177e4
LT
2849void __init vfs_caches_init_early(void)
2850{
2851 dcache_init_early();
2852 inode_init_early();
2853}
2854
2855void __init vfs_caches_init(unsigned long mempages)
2856{
2857 unsigned long reserve;
2858
2859 /* Base hash sizes on available memory, with a reserve equal to
2860 150% of current kernel size */
2861
2862 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2863 mempages -= reserve;
2864
2865 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 2866 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 2867
74bf17cf
DC
2868 dcache_init();
2869 inode_init();
1da177e4 2870 files_init(mempages);
74bf17cf 2871 mnt_init();
1da177e4
LT
2872 bdev_cache_init();
2873 chrdev_init();
2874}