memcg: free memcg_caches slot on css offline
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0 46 * dcache->d_inode->i_lock protects:
946e51f2 47 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
946e51f2 62 * - d_u.d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
99d263d4 109 return dentry_hashtable + hash_32(hash, d_hash_shift);
ceb5bdc2
NP
110}
111
1da177e4
LT
112/* Statistics gathering. */
113struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
115};
116
3942c07c 117static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 118static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
119
120#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
121
122/*
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
126 *
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
130 *
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
133 */
3942c07c 134static long get_nr_dentry(void)
3e880fb5
NP
135{
136 int i;
3942c07c 137 long sum = 0;
3e880fb5
NP
138 for_each_possible_cpu(i)
139 sum += per_cpu(nr_dentry, i);
140 return sum < 0 ? 0 : sum;
141}
142
62d36c77
DC
143static long get_nr_dentry_unused(void)
144{
145 int i;
146 long sum = 0;
147 for_each_possible_cpu(i)
148 sum += per_cpu(nr_dentry_unused, i);
149 return sum < 0 ? 0 : sum;
150}
151
1f7e0616 152int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
153 size_t *lenp, loff_t *ppos)
154{
3e880fb5 155 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 156 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 157 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
158}
159#endif
160
5483f18e
LT
161/*
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
164 */
e419b4cc
LT
165#ifdef CONFIG_DCACHE_WORD_ACCESS
166
167#include <asm/word-at-a-time.h>
168/*
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
173 *
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
176 */
94753db5 177static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 178{
bfcfaa77 179 unsigned long a,b,mask;
bfcfaa77
LT
180
181 for (;;) {
12f8ad4b 182 a = *(unsigned long *)cs;
e419b4cc 183 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
184 if (tcount < sizeof(unsigned long))
185 break;
186 if (unlikely(a != b))
187 return 1;
188 cs += sizeof(unsigned long);
189 ct += sizeof(unsigned long);
190 tcount -= sizeof(unsigned long);
191 if (!tcount)
192 return 0;
193 }
a5c21dce 194 mask = bytemask_from_count(tcount);
bfcfaa77 195 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
196}
197
bfcfaa77 198#else
e419b4cc 199
94753db5 200static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 201{
5483f18e
LT
202 do {
203 if (*cs != *ct)
204 return 1;
205 cs++;
206 ct++;
207 tcount--;
208 } while (tcount);
209 return 0;
210}
211
e419b4cc
LT
212#endif
213
94753db5
LT
214static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
215{
6326c71f 216 const unsigned char *cs;
94753db5
LT
217 /*
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
220 *
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
228 *
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
232 */
6326c71f
LT
233 cs = ACCESS_ONCE(dentry->d_name.name);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
236}
237
8d85b484
AV
238struct external_name {
239 union {
240 atomic_t count;
241 struct rcu_head head;
242 } u;
243 unsigned char name[];
244};
245
246static inline struct external_name *external_name(struct dentry *dentry)
247{
248 return container_of(dentry->d_name.name, struct external_name, name[0]);
249}
250
9c82ab9c 251static void __d_free(struct rcu_head *head)
1da177e4 252{
9c82ab9c
CH
253 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
254
8d85b484
AV
255 kmem_cache_free(dentry_cache, dentry);
256}
257
258static void __d_free_external(struct rcu_head *head)
259{
260 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 261 kfree(external_name(dentry));
1da177e4
LT
262 kmem_cache_free(dentry_cache, dentry);
263}
264
810bb172
AV
265static inline int dname_external(const struct dentry *dentry)
266{
267 return dentry->d_name.name != dentry->d_iname;
268}
269
b4f0354e
AV
270static void dentry_free(struct dentry *dentry)
271{
946e51f2 272 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
273 if (unlikely(dname_external(dentry))) {
274 struct external_name *p = external_name(dentry);
275 if (likely(atomic_dec_and_test(&p->u.count))) {
276 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
277 return;
278 }
279 }
b4f0354e
AV
280 /* if dentry was never visible to RCU, immediate free is OK */
281 if (!(dentry->d_flags & DCACHE_RCUACCESS))
282 __d_free(&dentry->d_u.d_rcu);
283 else
284 call_rcu(&dentry->d_u.d_rcu, __d_free);
285}
286
31e6b01f
NP
287/**
288 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 289 * @dentry: the target dentry
31e6b01f
NP
290 * After this call, in-progress rcu-walk path lookup will fail. This
291 * should be called after unhashing, and after changing d_inode (if
292 * the dentry has not already been unhashed).
293 */
294static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
295{
296 assert_spin_locked(&dentry->d_lock);
297 /* Go through a barrier */
298 write_seqcount_barrier(&dentry->d_seq);
299}
300
1da177e4
LT
301/*
302 * Release the dentry's inode, using the filesystem
31e6b01f
NP
303 * d_iput() operation if defined. Dentry has no refcount
304 * and is unhashed.
1da177e4 305 */
858119e1 306static void dentry_iput(struct dentry * dentry)
31f3e0b3 307 __releases(dentry->d_lock)
873feea0 308 __releases(dentry->d_inode->i_lock)
1da177e4
LT
309{
310 struct inode *inode = dentry->d_inode;
311 if (inode) {
312 dentry->d_inode = NULL;
946e51f2 313 hlist_del_init(&dentry->d_u.d_alias);
1da177e4 314 spin_unlock(&dentry->d_lock);
873feea0 315 spin_unlock(&inode->i_lock);
f805fbda
LT
316 if (!inode->i_nlink)
317 fsnotify_inoderemove(inode);
1da177e4
LT
318 if (dentry->d_op && dentry->d_op->d_iput)
319 dentry->d_op->d_iput(dentry, inode);
320 else
321 iput(inode);
322 } else {
323 spin_unlock(&dentry->d_lock);
1da177e4
LT
324 }
325}
326
31e6b01f
NP
327/*
328 * Release the dentry's inode, using the filesystem
329 * d_iput() operation if defined. dentry remains in-use.
330 */
331static void dentry_unlink_inode(struct dentry * dentry)
332 __releases(dentry->d_lock)
873feea0 333 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
334{
335 struct inode *inode = dentry->d_inode;
b18825a7 336 __d_clear_type(dentry);
31e6b01f 337 dentry->d_inode = NULL;
946e51f2 338 hlist_del_init(&dentry->d_u.d_alias);
31e6b01f
NP
339 dentry_rcuwalk_barrier(dentry);
340 spin_unlock(&dentry->d_lock);
873feea0 341 spin_unlock(&inode->i_lock);
31e6b01f
NP
342 if (!inode->i_nlink)
343 fsnotify_inoderemove(inode);
344 if (dentry->d_op && dentry->d_op->d_iput)
345 dentry->d_op->d_iput(dentry, inode);
346 else
347 iput(inode);
348}
349
89dc77bc
LT
350/*
351 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
352 * is in use - which includes both the "real" per-superblock
353 * LRU list _and_ the DCACHE_SHRINK_LIST use.
354 *
355 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
356 * on the shrink list (ie not on the superblock LRU list).
357 *
358 * The per-cpu "nr_dentry_unused" counters are updated with
359 * the DCACHE_LRU_LIST bit.
360 *
361 * These helper functions make sure we always follow the
362 * rules. d_lock must be held by the caller.
363 */
364#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
365static void d_lru_add(struct dentry *dentry)
366{
367 D_FLAG_VERIFY(dentry, 0);
368 dentry->d_flags |= DCACHE_LRU_LIST;
369 this_cpu_inc(nr_dentry_unused);
370 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
371}
372
373static void d_lru_del(struct dentry *dentry)
374{
375 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
376 dentry->d_flags &= ~DCACHE_LRU_LIST;
377 this_cpu_dec(nr_dentry_unused);
378 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
379}
380
381static void d_shrink_del(struct dentry *dentry)
382{
383 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
384 list_del_init(&dentry->d_lru);
385 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
386 this_cpu_dec(nr_dentry_unused);
387}
388
389static void d_shrink_add(struct dentry *dentry, struct list_head *list)
390{
391 D_FLAG_VERIFY(dentry, 0);
392 list_add(&dentry->d_lru, list);
393 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
394 this_cpu_inc(nr_dentry_unused);
395}
396
397/*
398 * These can only be called under the global LRU lock, ie during the
399 * callback for freeing the LRU list. "isolate" removes it from the
400 * LRU lists entirely, while shrink_move moves it to the indicated
401 * private list.
402 */
403static void d_lru_isolate(struct dentry *dentry)
404{
405 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
406 dentry->d_flags &= ~DCACHE_LRU_LIST;
407 this_cpu_dec(nr_dentry_unused);
408 list_del_init(&dentry->d_lru);
409}
410
411static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
412{
413 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
414 dentry->d_flags |= DCACHE_SHRINK_LIST;
415 list_move_tail(&dentry->d_lru, list);
416}
417
da3bbdd4 418/*
f6041567 419 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
420 */
421static void dentry_lru_add(struct dentry *dentry)
422{
89dc77bc
LT
423 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
424 d_lru_add(dentry);
da3bbdd4
KM
425}
426
789680d1
NP
427/**
428 * d_drop - drop a dentry
429 * @dentry: dentry to drop
430 *
431 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
432 * be found through a VFS lookup any more. Note that this is different from
433 * deleting the dentry - d_delete will try to mark the dentry negative if
434 * possible, giving a successful _negative_ lookup, while d_drop will
435 * just make the cache lookup fail.
436 *
437 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
438 * reason (NFS timeouts or autofs deletes).
439 *
440 * __d_drop requires dentry->d_lock.
441 */
442void __d_drop(struct dentry *dentry)
443{
dea3667b 444 if (!d_unhashed(dentry)) {
b61625d2 445 struct hlist_bl_head *b;
7632e465
BF
446 /*
447 * Hashed dentries are normally on the dentry hashtable,
448 * with the exception of those newly allocated by
449 * d_obtain_alias, which are always IS_ROOT:
450 */
451 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
452 b = &dentry->d_sb->s_anon;
453 else
454 b = d_hash(dentry->d_parent, dentry->d_name.hash);
455
456 hlist_bl_lock(b);
457 __hlist_bl_del(&dentry->d_hash);
458 dentry->d_hash.pprev = NULL;
459 hlist_bl_unlock(b);
dea3667b 460 dentry_rcuwalk_barrier(dentry);
789680d1
NP
461 }
462}
463EXPORT_SYMBOL(__d_drop);
464
465void d_drop(struct dentry *dentry)
466{
789680d1
NP
467 spin_lock(&dentry->d_lock);
468 __d_drop(dentry);
469 spin_unlock(&dentry->d_lock);
789680d1
NP
470}
471EXPORT_SYMBOL(d_drop);
472
e55fd011 473static void __dentry_kill(struct dentry *dentry)
77812a1e 474{
41edf278
AV
475 struct dentry *parent = NULL;
476 bool can_free = true;
41edf278 477 if (!IS_ROOT(dentry))
77812a1e 478 parent = dentry->d_parent;
31e6b01f 479
0d98439e
LT
480 /*
481 * The dentry is now unrecoverably dead to the world.
482 */
483 lockref_mark_dead(&dentry->d_lockref);
484
f0023bc6 485 /*
f0023bc6
SW
486 * inform the fs via d_prune that this dentry is about to be
487 * unhashed and destroyed.
488 */
29266201 489 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
490 dentry->d_op->d_prune(dentry);
491
01b60351
AV
492 if (dentry->d_flags & DCACHE_LRU_LIST) {
493 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
494 d_lru_del(dentry);
01b60351 495 }
77812a1e
NP
496 /* if it was on the hash then remove it */
497 __d_drop(dentry);
ca5358ef 498 __list_del_entry(&dentry->d_child);
03b3b889
AV
499 /*
500 * Inform d_walk() that we are no longer attached to the
501 * dentry tree
502 */
503 dentry->d_flags |= DCACHE_DENTRY_KILLED;
504 if (parent)
505 spin_unlock(&parent->d_lock);
506 dentry_iput(dentry);
507 /*
508 * dentry_iput drops the locks, at which point nobody (except
509 * transient RCU lookups) can reach this dentry.
510 */
511 BUG_ON((int)dentry->d_lockref.count > 0);
512 this_cpu_dec(nr_dentry);
513 if (dentry->d_op && dentry->d_op->d_release)
514 dentry->d_op->d_release(dentry);
515
41edf278
AV
516 spin_lock(&dentry->d_lock);
517 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
518 dentry->d_flags |= DCACHE_MAY_FREE;
519 can_free = false;
520 }
521 spin_unlock(&dentry->d_lock);
41edf278
AV
522 if (likely(can_free))
523 dentry_free(dentry);
e55fd011
AV
524}
525
526/*
527 * Finish off a dentry we've decided to kill.
528 * dentry->d_lock must be held, returns with it unlocked.
529 * If ref is non-zero, then decrement the refcount too.
530 * Returns dentry requiring refcount drop, or NULL if we're done.
531 */
8cbf74da 532static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
533 __releases(dentry->d_lock)
534{
535 struct inode *inode = dentry->d_inode;
536 struct dentry *parent = NULL;
537
538 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
539 goto failed;
540
541 if (!IS_ROOT(dentry)) {
542 parent = dentry->d_parent;
543 if (unlikely(!spin_trylock(&parent->d_lock))) {
544 if (inode)
545 spin_unlock(&inode->i_lock);
546 goto failed;
547 }
548 }
549
550 __dentry_kill(dentry);
03b3b889 551 return parent;
e55fd011
AV
552
553failed:
8cbf74da
AV
554 spin_unlock(&dentry->d_lock);
555 cpu_relax();
e55fd011 556 return dentry; /* try again with same dentry */
77812a1e
NP
557}
558
046b961b
AV
559static inline struct dentry *lock_parent(struct dentry *dentry)
560{
561 struct dentry *parent = dentry->d_parent;
562 if (IS_ROOT(dentry))
563 return NULL;
c2338f2d
AV
564 if (unlikely((int)dentry->d_lockref.count < 0))
565 return NULL;
046b961b
AV
566 if (likely(spin_trylock(&parent->d_lock)))
567 return parent;
046b961b 568 rcu_read_lock();
c2338f2d 569 spin_unlock(&dentry->d_lock);
046b961b
AV
570again:
571 parent = ACCESS_ONCE(dentry->d_parent);
572 spin_lock(&parent->d_lock);
573 /*
574 * We can't blindly lock dentry until we are sure
575 * that we won't violate the locking order.
576 * Any changes of dentry->d_parent must have
577 * been done with parent->d_lock held, so
578 * spin_lock() above is enough of a barrier
579 * for checking if it's still our child.
580 */
581 if (unlikely(parent != dentry->d_parent)) {
582 spin_unlock(&parent->d_lock);
583 goto again;
584 }
585 rcu_read_unlock();
586 if (parent != dentry)
9f12600f 587 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
588 else
589 parent = NULL;
590 return parent;
591}
592
1da177e4
LT
593/*
594 * This is dput
595 *
596 * This is complicated by the fact that we do not want to put
597 * dentries that are no longer on any hash chain on the unused
598 * list: we'd much rather just get rid of them immediately.
599 *
600 * However, that implies that we have to traverse the dentry
601 * tree upwards to the parents which might _also_ now be
602 * scheduled for deletion (it may have been only waiting for
603 * its last child to go away).
604 *
605 * This tail recursion is done by hand as we don't want to depend
606 * on the compiler to always get this right (gcc generally doesn't).
607 * Real recursion would eat up our stack space.
608 */
609
610/*
611 * dput - release a dentry
612 * @dentry: dentry to release
613 *
614 * Release a dentry. This will drop the usage count and if appropriate
615 * call the dentry unlink method as well as removing it from the queues and
616 * releasing its resources. If the parent dentries were scheduled for release
617 * they too may now get deleted.
1da177e4 618 */
1da177e4
LT
619void dput(struct dentry *dentry)
620{
8aab6a27 621 if (unlikely(!dentry))
1da177e4
LT
622 return;
623
624repeat:
98474236 625 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 626 return;
1da177e4 627
8aab6a27
LT
628 /* Unreachable? Get rid of it */
629 if (unlikely(d_unhashed(dentry)))
630 goto kill_it;
631
632 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 633 if (dentry->d_op->d_delete(dentry))
61f3dee4 634 goto kill_it;
1da177e4 635 }
265ac902 636
358eec18
LT
637 if (!(dentry->d_flags & DCACHE_REFERENCED))
638 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 639 dentry_lru_add(dentry);
265ac902 640
98474236 641 dentry->d_lockref.count--;
61f3dee4 642 spin_unlock(&dentry->d_lock);
1da177e4
LT
643 return;
644
d52b9086 645kill_it:
8cbf74da 646 dentry = dentry_kill(dentry);
d52b9086
MS
647 if (dentry)
648 goto repeat;
1da177e4 649}
ec4f8605 650EXPORT_SYMBOL(dput);
1da177e4 651
1da177e4 652
b5c84bf6 653/* This must be called with d_lock held */
dc0474be 654static inline void __dget_dlock(struct dentry *dentry)
23044507 655{
98474236 656 dentry->d_lockref.count++;
23044507
NP
657}
658
dc0474be 659static inline void __dget(struct dentry *dentry)
1da177e4 660{
98474236 661 lockref_get(&dentry->d_lockref);
1da177e4
LT
662}
663
b7ab39f6
NP
664struct dentry *dget_parent(struct dentry *dentry)
665{
df3d0bbc 666 int gotref;
b7ab39f6
NP
667 struct dentry *ret;
668
df3d0bbc
WL
669 /*
670 * Do optimistic parent lookup without any
671 * locking.
672 */
673 rcu_read_lock();
674 ret = ACCESS_ONCE(dentry->d_parent);
675 gotref = lockref_get_not_zero(&ret->d_lockref);
676 rcu_read_unlock();
677 if (likely(gotref)) {
678 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
679 return ret;
680 dput(ret);
681 }
682
b7ab39f6 683repeat:
a734eb45
NP
684 /*
685 * Don't need rcu_dereference because we re-check it was correct under
686 * the lock.
687 */
688 rcu_read_lock();
b7ab39f6 689 ret = dentry->d_parent;
a734eb45
NP
690 spin_lock(&ret->d_lock);
691 if (unlikely(ret != dentry->d_parent)) {
692 spin_unlock(&ret->d_lock);
693 rcu_read_unlock();
b7ab39f6
NP
694 goto repeat;
695 }
a734eb45 696 rcu_read_unlock();
98474236
WL
697 BUG_ON(!ret->d_lockref.count);
698 ret->d_lockref.count++;
b7ab39f6 699 spin_unlock(&ret->d_lock);
b7ab39f6
NP
700 return ret;
701}
702EXPORT_SYMBOL(dget_parent);
703
1da177e4
LT
704/**
705 * d_find_alias - grab a hashed alias of inode
706 * @inode: inode in question
1da177e4
LT
707 *
708 * If inode has a hashed alias, or is a directory and has any alias,
709 * acquire the reference to alias and return it. Otherwise return NULL.
710 * Notice that if inode is a directory there can be only one alias and
711 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
712 * of a filesystem, or if the directory was renamed and d_revalidate
713 * was the first vfs operation to notice.
1da177e4 714 *
21c0d8fd 715 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 716 * any other hashed alias over that one.
1da177e4 717 */
52ed46f0 718static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 719{
da502956 720 struct dentry *alias, *discon_alias;
1da177e4 721
da502956
NP
722again:
723 discon_alias = NULL;
946e51f2 724 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 725 spin_lock(&alias->d_lock);
1da177e4 726 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 727 if (IS_ROOT(alias) &&
da502956 728 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 729 discon_alias = alias;
52ed46f0 730 } else {
dc0474be 731 __dget_dlock(alias);
da502956
NP
732 spin_unlock(&alias->d_lock);
733 return alias;
734 }
735 }
736 spin_unlock(&alias->d_lock);
737 }
738 if (discon_alias) {
739 alias = discon_alias;
740 spin_lock(&alias->d_lock);
741 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
742 __dget_dlock(alias);
743 spin_unlock(&alias->d_lock);
744 return alias;
1da177e4 745 }
da502956
NP
746 spin_unlock(&alias->d_lock);
747 goto again;
1da177e4 748 }
da502956 749 return NULL;
1da177e4
LT
750}
751
da502956 752struct dentry *d_find_alias(struct inode *inode)
1da177e4 753{
214fda1f
DH
754 struct dentry *de = NULL;
755
b3d9b7a3 756 if (!hlist_empty(&inode->i_dentry)) {
873feea0 757 spin_lock(&inode->i_lock);
52ed46f0 758 de = __d_find_alias(inode);
873feea0 759 spin_unlock(&inode->i_lock);
214fda1f 760 }
1da177e4
LT
761 return de;
762}
ec4f8605 763EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
764
765/*
766 * Try to kill dentries associated with this inode.
767 * WARNING: you must own a reference to inode.
768 */
769void d_prune_aliases(struct inode *inode)
770{
0cdca3f9 771 struct dentry *dentry;
1da177e4 772restart:
873feea0 773 spin_lock(&inode->i_lock);
946e51f2 774 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 775 spin_lock(&dentry->d_lock);
98474236 776 if (!dentry->d_lockref.count) {
29355c39
AV
777 struct dentry *parent = lock_parent(dentry);
778 if (likely(!dentry->d_lockref.count)) {
779 __dentry_kill(dentry);
4a7795d3 780 dput(parent);
29355c39
AV
781 goto restart;
782 }
783 if (parent)
784 spin_unlock(&parent->d_lock);
1da177e4
LT
785 }
786 spin_unlock(&dentry->d_lock);
787 }
873feea0 788 spin_unlock(&inode->i_lock);
1da177e4 789}
ec4f8605 790EXPORT_SYMBOL(d_prune_aliases);
1da177e4 791
3049cfe2 792static void shrink_dentry_list(struct list_head *list)
1da177e4 793{
5c47e6d0 794 struct dentry *dentry, *parent;
da3bbdd4 795
60942f2f 796 while (!list_empty(list)) {
ff2fde99 797 struct inode *inode;
60942f2f 798 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 799 spin_lock(&dentry->d_lock);
046b961b
AV
800 parent = lock_parent(dentry);
801
dd1f6b2e
DC
802 /*
803 * The dispose list is isolated and dentries are not accounted
804 * to the LRU here, so we can simply remove it from the list
805 * here regardless of whether it is referenced or not.
806 */
89dc77bc 807 d_shrink_del(dentry);
dd1f6b2e 808
1da177e4
LT
809 /*
810 * We found an inuse dentry which was not removed from
dd1f6b2e 811 * the LRU because of laziness during lookup. Do not free it.
1da177e4 812 */
41edf278 813 if ((int)dentry->d_lockref.count > 0) {
da3bbdd4 814 spin_unlock(&dentry->d_lock);
046b961b
AV
815 if (parent)
816 spin_unlock(&parent->d_lock);
1da177e4
LT
817 continue;
818 }
77812a1e 819
64fd72e0
AV
820
821 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
822 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
823 spin_unlock(&dentry->d_lock);
046b961b
AV
824 if (parent)
825 spin_unlock(&parent->d_lock);
64fd72e0
AV
826 if (can_free)
827 dentry_free(dentry);
828 continue;
829 }
830
ff2fde99
AV
831 inode = dentry->d_inode;
832 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 833 d_shrink_add(dentry, list);
dd1f6b2e 834 spin_unlock(&dentry->d_lock);
046b961b
AV
835 if (parent)
836 spin_unlock(&parent->d_lock);
5c47e6d0 837 continue;
dd1f6b2e 838 }
ff2fde99 839
ff2fde99 840 __dentry_kill(dentry);
046b961b 841
5c47e6d0
AV
842 /*
843 * We need to prune ancestors too. This is necessary to prevent
844 * quadratic behavior of shrink_dcache_parent(), but is also
845 * expected to be beneficial in reducing dentry cache
846 * fragmentation.
847 */
848 dentry = parent;
b2b80195
AV
849 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
850 parent = lock_parent(dentry);
851 if (dentry->d_lockref.count != 1) {
852 dentry->d_lockref.count--;
853 spin_unlock(&dentry->d_lock);
854 if (parent)
855 spin_unlock(&parent->d_lock);
856 break;
857 }
858 inode = dentry->d_inode; /* can't be NULL */
859 if (unlikely(!spin_trylock(&inode->i_lock))) {
860 spin_unlock(&dentry->d_lock);
861 if (parent)
862 spin_unlock(&parent->d_lock);
863 cpu_relax();
864 continue;
865 }
866 __dentry_kill(dentry);
867 dentry = parent;
868 }
da3bbdd4 869 }
3049cfe2
CH
870}
871
f6041567
DC
872static enum lru_status
873dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
874{
875 struct list_head *freeable = arg;
876 struct dentry *dentry = container_of(item, struct dentry, d_lru);
877
878
879 /*
880 * we are inverting the lru lock/dentry->d_lock here,
881 * so use a trylock. If we fail to get the lock, just skip
882 * it
883 */
884 if (!spin_trylock(&dentry->d_lock))
885 return LRU_SKIP;
886
887 /*
888 * Referenced dentries are still in use. If they have active
889 * counts, just remove them from the LRU. Otherwise give them
890 * another pass through the LRU.
891 */
892 if (dentry->d_lockref.count) {
89dc77bc 893 d_lru_isolate(dentry);
f6041567
DC
894 spin_unlock(&dentry->d_lock);
895 return LRU_REMOVED;
896 }
897
898 if (dentry->d_flags & DCACHE_REFERENCED) {
899 dentry->d_flags &= ~DCACHE_REFERENCED;
900 spin_unlock(&dentry->d_lock);
901
902 /*
903 * The list move itself will be made by the common LRU code. At
904 * this point, we've dropped the dentry->d_lock but keep the
905 * lru lock. This is safe to do, since every list movement is
906 * protected by the lru lock even if both locks are held.
907 *
908 * This is guaranteed by the fact that all LRU management
909 * functions are intermediated by the LRU API calls like
910 * list_lru_add and list_lru_del. List movement in this file
911 * only ever occur through this functions or through callbacks
912 * like this one, that are called from the LRU API.
913 *
914 * The only exceptions to this are functions like
915 * shrink_dentry_list, and code that first checks for the
916 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
917 * operating only with stack provided lists after they are
918 * properly isolated from the main list. It is thus, always a
919 * local access.
920 */
921 return LRU_ROTATE;
922 }
923
89dc77bc 924 d_lru_shrink_move(dentry, freeable);
f6041567
DC
925 spin_unlock(&dentry->d_lock);
926
927 return LRU_REMOVED;
928}
929
3049cfe2 930/**
b48f03b3
DC
931 * prune_dcache_sb - shrink the dcache
932 * @sb: superblock
503c358c 933 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 934 *
503c358c
VD
935 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
936 * is done when we need more memory and called from the superblock shrinker
b48f03b3 937 * function.
3049cfe2 938 *
b48f03b3
DC
939 * This function may fail to free any resources if all the dentries are in
940 * use.
3049cfe2 941 */
503c358c 942long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 943{
f6041567
DC
944 LIST_HEAD(dispose);
945 long freed;
3049cfe2 946
503c358c
VD
947 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
948 dentry_lru_isolate, &dispose);
f6041567 949 shrink_dentry_list(&dispose);
0a234c6d 950 return freed;
da3bbdd4 951}
23044507 952
4e717f5c
GC
953static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
954 spinlock_t *lru_lock, void *arg)
dd1f6b2e 955{
4e717f5c
GC
956 struct list_head *freeable = arg;
957 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 958
4e717f5c
GC
959 /*
960 * we are inverting the lru lock/dentry->d_lock here,
961 * so use a trylock. If we fail to get the lock, just skip
962 * it
963 */
964 if (!spin_trylock(&dentry->d_lock))
965 return LRU_SKIP;
966
89dc77bc 967 d_lru_shrink_move(dentry, freeable);
4e717f5c 968 spin_unlock(&dentry->d_lock);
ec33679d 969
4e717f5c 970 return LRU_REMOVED;
da3bbdd4
KM
971}
972
4e717f5c 973
1da177e4
LT
974/**
975 * shrink_dcache_sb - shrink dcache for a superblock
976 * @sb: superblock
977 *
3049cfe2
CH
978 * Shrink the dcache for the specified super block. This is used to free
979 * the dcache before unmounting a file system.
1da177e4 980 */
3049cfe2 981void shrink_dcache_sb(struct super_block *sb)
1da177e4 982{
4e717f5c
GC
983 long freed;
984
985 do {
986 LIST_HEAD(dispose);
987
988 freed = list_lru_walk(&sb->s_dentry_lru,
989 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 990
4e717f5c
GC
991 this_cpu_sub(nr_dentry_unused, freed);
992 shrink_dentry_list(&dispose);
993 } while (freed > 0);
1da177e4 994}
ec4f8605 995EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 996
db14fc3a
MS
997/**
998 * enum d_walk_ret - action to talke during tree walk
999 * @D_WALK_CONTINUE: contrinue walk
1000 * @D_WALK_QUIT: quit walk
1001 * @D_WALK_NORETRY: quit when retry is needed
1002 * @D_WALK_SKIP: skip this dentry and its children
1003 */
1004enum d_walk_ret {
1005 D_WALK_CONTINUE,
1006 D_WALK_QUIT,
1007 D_WALK_NORETRY,
1008 D_WALK_SKIP,
1009};
c826cb7d 1010
1da177e4 1011/**
db14fc3a
MS
1012 * d_walk - walk the dentry tree
1013 * @parent: start of walk
1014 * @data: data passed to @enter() and @finish()
1015 * @enter: callback when first entering the dentry
1016 * @finish: callback when successfully finished the walk
1da177e4 1017 *
db14fc3a 1018 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1019 */
db14fc3a
MS
1020static void d_walk(struct dentry *parent, void *data,
1021 enum d_walk_ret (*enter)(void *, struct dentry *),
1022 void (*finish)(void *))
1da177e4 1023{
949854d0 1024 struct dentry *this_parent;
1da177e4 1025 struct list_head *next;
48f5ec21 1026 unsigned seq = 0;
db14fc3a
MS
1027 enum d_walk_ret ret;
1028 bool retry = true;
949854d0 1029
58db63d0 1030again:
48f5ec21 1031 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1032 this_parent = parent;
2fd6b7f5 1033 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1034
1035 ret = enter(data, this_parent);
1036 switch (ret) {
1037 case D_WALK_CONTINUE:
1038 break;
1039 case D_WALK_QUIT:
1040 case D_WALK_SKIP:
1041 goto out_unlock;
1042 case D_WALK_NORETRY:
1043 retry = false;
1044 break;
1045 }
1da177e4
LT
1046repeat:
1047 next = this_parent->d_subdirs.next;
1048resume:
1049 while (next != &this_parent->d_subdirs) {
1050 struct list_head *tmp = next;
946e51f2 1051 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1052 next = tmp->next;
2fd6b7f5
NP
1053
1054 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1055
1056 ret = enter(data, dentry);
1057 switch (ret) {
1058 case D_WALK_CONTINUE:
1059 break;
1060 case D_WALK_QUIT:
2fd6b7f5 1061 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1062 goto out_unlock;
1063 case D_WALK_NORETRY:
1064 retry = false;
1065 break;
1066 case D_WALK_SKIP:
1067 spin_unlock(&dentry->d_lock);
1068 continue;
2fd6b7f5 1069 }
db14fc3a 1070
1da177e4 1071 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1072 spin_unlock(&this_parent->d_lock);
1073 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1074 this_parent = dentry;
2fd6b7f5 1075 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1076 goto repeat;
1077 }
2fd6b7f5 1078 spin_unlock(&dentry->d_lock);
1da177e4
LT
1079 }
1080 /*
1081 * All done at this level ... ascend and resume the search.
1082 */
ca5358ef
AV
1083 rcu_read_lock();
1084ascend:
1da177e4 1085 if (this_parent != parent) {
c826cb7d 1086 struct dentry *child = this_parent;
31dec132
AV
1087 this_parent = child->d_parent;
1088
31dec132
AV
1089 spin_unlock(&child->d_lock);
1090 spin_lock(&this_parent->d_lock);
1091
ca5358ef
AV
1092 /* might go back up the wrong parent if we have had a rename. */
1093 if (need_seqretry(&rename_lock, seq))
949854d0 1094 goto rename_retry;
ca5358ef
AV
1095 next = child->d_child.next;
1096 while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)) {
1097 if (next == &this_parent->d_subdirs)
1098 goto ascend;
1099 child = list_entry(next, struct dentry, d_child);
1100 next = next->next;
31dec132
AV
1101 }
1102 rcu_read_unlock();
1da177e4
LT
1103 goto resume;
1104 }
ca5358ef 1105 if (need_seqretry(&rename_lock, seq))
949854d0 1106 goto rename_retry;
ca5358ef 1107 rcu_read_unlock();
db14fc3a
MS
1108 if (finish)
1109 finish(data);
1110
1111out_unlock:
1112 spin_unlock(&this_parent->d_lock);
48f5ec21 1113 done_seqretry(&rename_lock, seq);
db14fc3a 1114 return;
58db63d0
NP
1115
1116rename_retry:
ca5358ef
AV
1117 spin_unlock(&this_parent->d_lock);
1118 rcu_read_unlock();
1119 BUG_ON(seq & 1);
db14fc3a
MS
1120 if (!retry)
1121 return;
48f5ec21 1122 seq = 1;
58db63d0 1123 goto again;
1da177e4 1124}
db14fc3a
MS
1125
1126/*
1127 * Search for at least 1 mount point in the dentry's subdirs.
1128 * We descend to the next level whenever the d_subdirs
1129 * list is non-empty and continue searching.
1130 */
1131
db14fc3a
MS
1132static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1133{
1134 int *ret = data;
1135 if (d_mountpoint(dentry)) {
1136 *ret = 1;
1137 return D_WALK_QUIT;
1138 }
1139 return D_WALK_CONTINUE;
1140}
1141
69c88dc7
RD
1142/**
1143 * have_submounts - check for mounts over a dentry
1144 * @parent: dentry to check.
1145 *
1146 * Return true if the parent or its subdirectories contain
1147 * a mount point
1148 */
db14fc3a
MS
1149int have_submounts(struct dentry *parent)
1150{
1151 int ret = 0;
1152
1153 d_walk(parent, &ret, check_mount, NULL);
1154
1155 return ret;
1156}
ec4f8605 1157EXPORT_SYMBOL(have_submounts);
1da177e4 1158
eed81007
MS
1159/*
1160 * Called by mount code to set a mountpoint and check if the mountpoint is
1161 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1162 * subtree can become unreachable).
1163 *
1ffe46d1 1164 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1165 * this reason take rename_lock and d_lock on dentry and ancestors.
1166 */
1167int d_set_mounted(struct dentry *dentry)
1168{
1169 struct dentry *p;
1170 int ret = -ENOENT;
1171 write_seqlock(&rename_lock);
1172 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1173 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1174 spin_lock(&p->d_lock);
1175 if (unlikely(d_unhashed(p))) {
1176 spin_unlock(&p->d_lock);
1177 goto out;
1178 }
1179 spin_unlock(&p->d_lock);
1180 }
1181 spin_lock(&dentry->d_lock);
1182 if (!d_unlinked(dentry)) {
1183 dentry->d_flags |= DCACHE_MOUNTED;
1184 ret = 0;
1185 }
1186 spin_unlock(&dentry->d_lock);
1187out:
1188 write_sequnlock(&rename_lock);
1189 return ret;
1190}
1191
1da177e4 1192/*
fd517909 1193 * Search the dentry child list of the specified parent,
1da177e4
LT
1194 * and move any unused dentries to the end of the unused
1195 * list for prune_dcache(). We descend to the next level
1196 * whenever the d_subdirs list is non-empty and continue
1197 * searching.
1198 *
1199 * It returns zero iff there are no unused children,
1200 * otherwise it returns the number of children moved to
1201 * the end of the unused list. This may not be the total
1202 * number of unused children, because select_parent can
1203 * drop the lock and return early due to latency
1204 * constraints.
1205 */
1da177e4 1206
db14fc3a
MS
1207struct select_data {
1208 struct dentry *start;
1209 struct list_head dispose;
1210 int found;
1211};
23044507 1212
db14fc3a
MS
1213static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1214{
1215 struct select_data *data = _data;
1216 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1217
db14fc3a
MS
1218 if (data->start == dentry)
1219 goto out;
2fd6b7f5 1220
fe91522a 1221 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1222 data->found++;
fe91522a
AV
1223 } else {
1224 if (dentry->d_flags & DCACHE_LRU_LIST)
1225 d_lru_del(dentry);
1226 if (!dentry->d_lockref.count) {
1227 d_shrink_add(dentry, &data->dispose);
1228 data->found++;
1229 }
1da177e4 1230 }
db14fc3a
MS
1231 /*
1232 * We can return to the caller if we have found some (this
1233 * ensures forward progress). We'll be coming back to find
1234 * the rest.
1235 */
fe91522a
AV
1236 if (!list_empty(&data->dispose))
1237 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1238out:
db14fc3a 1239 return ret;
1da177e4
LT
1240}
1241
1242/**
1243 * shrink_dcache_parent - prune dcache
1244 * @parent: parent of entries to prune
1245 *
1246 * Prune the dcache to remove unused children of the parent dentry.
1247 */
db14fc3a 1248void shrink_dcache_parent(struct dentry *parent)
1da177e4 1249{
db14fc3a
MS
1250 for (;;) {
1251 struct select_data data;
1da177e4 1252
db14fc3a
MS
1253 INIT_LIST_HEAD(&data.dispose);
1254 data.start = parent;
1255 data.found = 0;
1256
1257 d_walk(parent, &data, select_collect, NULL);
1258 if (!data.found)
1259 break;
1260
1261 shrink_dentry_list(&data.dispose);
421348f1
GT
1262 cond_resched();
1263 }
1da177e4 1264}
ec4f8605 1265EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1266
9c8c10e2 1267static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1268{
9c8c10e2
AV
1269 /* it has busy descendents; complain about those instead */
1270 if (!list_empty(&dentry->d_subdirs))
1271 return D_WALK_CONTINUE;
42c32608 1272
9c8c10e2
AV
1273 /* root with refcount 1 is fine */
1274 if (dentry == _data && dentry->d_lockref.count == 1)
1275 return D_WALK_CONTINUE;
1276
1277 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1278 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1279 dentry,
1280 dentry->d_inode ?
1281 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1282 dentry,
42c32608
AV
1283 dentry->d_lockref.count,
1284 dentry->d_sb->s_type->name,
1285 dentry->d_sb->s_id);
9c8c10e2
AV
1286 WARN_ON(1);
1287 return D_WALK_CONTINUE;
1288}
1289
1290static void do_one_tree(struct dentry *dentry)
1291{
1292 shrink_dcache_parent(dentry);
1293 d_walk(dentry, dentry, umount_check, NULL);
1294 d_drop(dentry);
1295 dput(dentry);
42c32608
AV
1296}
1297
1298/*
1299 * destroy the dentries attached to a superblock on unmounting
1300 */
1301void shrink_dcache_for_umount(struct super_block *sb)
1302{
1303 struct dentry *dentry;
1304
9c8c10e2 1305 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1306
1307 dentry = sb->s_root;
1308 sb->s_root = NULL;
9c8c10e2 1309 do_one_tree(dentry);
42c32608
AV
1310
1311 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1312 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1313 do_one_tree(dentry);
42c32608
AV
1314 }
1315}
1316
8ed936b5
EB
1317struct detach_data {
1318 struct select_data select;
1319 struct dentry *mountpoint;
1320};
1321static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1322{
8ed936b5 1323 struct detach_data *data = _data;
848ac114
MS
1324
1325 if (d_mountpoint(dentry)) {
8ed936b5
EB
1326 __dget_dlock(dentry);
1327 data->mountpoint = dentry;
848ac114
MS
1328 return D_WALK_QUIT;
1329 }
1330
8ed936b5 1331 return select_collect(&data->select, dentry);
848ac114
MS
1332}
1333
1334static void check_and_drop(void *_data)
1335{
8ed936b5 1336 struct detach_data *data = _data;
848ac114 1337
8ed936b5
EB
1338 if (!data->mountpoint && !data->select.found)
1339 __d_drop(data->select.start);
848ac114
MS
1340}
1341
1342/**
1ffe46d1
EB
1343 * d_invalidate - detach submounts, prune dcache, and drop
1344 * @dentry: dentry to invalidate (aka detach, prune and drop)
1345 *
1ffe46d1 1346 * no dcache lock.
848ac114 1347 *
8ed936b5
EB
1348 * The final d_drop is done as an atomic operation relative to
1349 * rename_lock ensuring there are no races with d_set_mounted. This
1350 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1351 */
5542aa2f 1352void d_invalidate(struct dentry *dentry)
848ac114 1353{
1ffe46d1
EB
1354 /*
1355 * If it's already been dropped, return OK.
1356 */
1357 spin_lock(&dentry->d_lock);
1358 if (d_unhashed(dentry)) {
1359 spin_unlock(&dentry->d_lock);
5542aa2f 1360 return;
1ffe46d1
EB
1361 }
1362 spin_unlock(&dentry->d_lock);
1363
848ac114
MS
1364 /* Negative dentries can be dropped without further checks */
1365 if (!dentry->d_inode) {
1366 d_drop(dentry);
5542aa2f 1367 return;
848ac114
MS
1368 }
1369
1370 for (;;) {
8ed936b5 1371 struct detach_data data;
848ac114 1372
8ed936b5
EB
1373 data.mountpoint = NULL;
1374 INIT_LIST_HEAD(&data.select.dispose);
1375 data.select.start = dentry;
1376 data.select.found = 0;
1377
1378 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1379
8ed936b5
EB
1380 if (data.select.found)
1381 shrink_dentry_list(&data.select.dispose);
848ac114 1382
8ed936b5
EB
1383 if (data.mountpoint) {
1384 detach_mounts(data.mountpoint);
1385 dput(data.mountpoint);
1386 }
848ac114 1387
8ed936b5 1388 if (!data.mountpoint && !data.select.found)
848ac114
MS
1389 break;
1390
1391 cond_resched();
1392 }
848ac114 1393}
1ffe46d1 1394EXPORT_SYMBOL(d_invalidate);
848ac114 1395
1da177e4 1396/**
a4464dbc
AV
1397 * __d_alloc - allocate a dcache entry
1398 * @sb: filesystem it will belong to
1da177e4
LT
1399 * @name: qstr of the name
1400 *
1401 * Allocates a dentry. It returns %NULL if there is insufficient memory
1402 * available. On a success the dentry is returned. The name passed in is
1403 * copied and the copy passed in may be reused after this call.
1404 */
1405
a4464dbc 1406struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1407{
1408 struct dentry *dentry;
1409 char *dname;
1410
e12ba74d 1411 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1412 if (!dentry)
1413 return NULL;
1414
6326c71f
LT
1415 /*
1416 * We guarantee that the inline name is always NUL-terminated.
1417 * This way the memcpy() done by the name switching in rename
1418 * will still always have a NUL at the end, even if we might
1419 * be overwriting an internal NUL character
1420 */
1421 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4 1422 if (name->len > DNAME_INLINE_LEN-1) {
8d85b484
AV
1423 size_t size = offsetof(struct external_name, name[1]);
1424 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1425 if (!p) {
1da177e4
LT
1426 kmem_cache_free(dentry_cache, dentry);
1427 return NULL;
1428 }
8d85b484
AV
1429 atomic_set(&p->u.count, 1);
1430 dname = p->name;
1da177e4
LT
1431 } else {
1432 dname = dentry->d_iname;
1433 }
1da177e4
LT
1434
1435 dentry->d_name.len = name->len;
1436 dentry->d_name.hash = name->hash;
1437 memcpy(dname, name->name, name->len);
1438 dname[name->len] = 0;
1439
6326c71f
LT
1440 /* Make sure we always see the terminating NUL character */
1441 smp_wmb();
1442 dentry->d_name.name = dname;
1443
98474236 1444 dentry->d_lockref.count = 1;
dea3667b 1445 dentry->d_flags = 0;
1da177e4 1446 spin_lock_init(&dentry->d_lock);
31e6b01f 1447 seqcount_init(&dentry->d_seq);
1da177e4 1448 dentry->d_inode = NULL;
a4464dbc
AV
1449 dentry->d_parent = dentry;
1450 dentry->d_sb = sb;
1da177e4
LT
1451 dentry->d_op = NULL;
1452 dentry->d_fsdata = NULL;
ceb5bdc2 1453 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1454 INIT_LIST_HEAD(&dentry->d_lru);
1455 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1456 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1457 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1458 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1459
3e880fb5 1460 this_cpu_inc(nr_dentry);
312d3ca8 1461
1da177e4
LT
1462 return dentry;
1463}
a4464dbc
AV
1464
1465/**
1466 * d_alloc - allocate a dcache entry
1467 * @parent: parent of entry to allocate
1468 * @name: qstr of the name
1469 *
1470 * Allocates a dentry. It returns %NULL if there is insufficient memory
1471 * available. On a success the dentry is returned. The name passed in is
1472 * copied and the copy passed in may be reused after this call.
1473 */
1474struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1475{
1476 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1477 if (!dentry)
1478 return NULL;
1479
1480 spin_lock(&parent->d_lock);
1481 /*
1482 * don't need child lock because it is not subject
1483 * to concurrency here
1484 */
1485 __dget_dlock(parent);
1486 dentry->d_parent = parent;
946e51f2 1487 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1488 spin_unlock(&parent->d_lock);
1489
1490 return dentry;
1491}
ec4f8605 1492EXPORT_SYMBOL(d_alloc);
1da177e4 1493
e1a24bb0
BF
1494/**
1495 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1496 * @sb: the superblock
1497 * @name: qstr of the name
1498 *
1499 * For a filesystem that just pins its dentries in memory and never
1500 * performs lookups at all, return an unhashed IS_ROOT dentry.
1501 */
4b936885
NP
1502struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1503{
e1a24bb0 1504 return __d_alloc(sb, name);
4b936885
NP
1505}
1506EXPORT_SYMBOL(d_alloc_pseudo);
1507
1da177e4
LT
1508struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1509{
1510 struct qstr q;
1511
1512 q.name = name;
1513 q.len = strlen(name);
1514 q.hash = full_name_hash(q.name, q.len);
1515 return d_alloc(parent, &q);
1516}
ef26ca97 1517EXPORT_SYMBOL(d_alloc_name);
1da177e4 1518
fb045adb
NP
1519void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1520{
6f7f7caa
LT
1521 WARN_ON_ONCE(dentry->d_op);
1522 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1523 DCACHE_OP_COMPARE |
1524 DCACHE_OP_REVALIDATE |
ecf3d1f1 1525 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1526 DCACHE_OP_DELETE ));
1527 dentry->d_op = op;
1528 if (!op)
1529 return;
1530 if (op->d_hash)
1531 dentry->d_flags |= DCACHE_OP_HASH;
1532 if (op->d_compare)
1533 dentry->d_flags |= DCACHE_OP_COMPARE;
1534 if (op->d_revalidate)
1535 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1536 if (op->d_weak_revalidate)
1537 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1538 if (op->d_delete)
1539 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1540 if (op->d_prune)
1541 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1542
1543}
1544EXPORT_SYMBOL(d_set_d_op);
1545
b18825a7
DH
1546static unsigned d_flags_for_inode(struct inode *inode)
1547{
1548 unsigned add_flags = DCACHE_FILE_TYPE;
1549
1550 if (!inode)
1551 return DCACHE_MISS_TYPE;
1552
1553 if (S_ISDIR(inode->i_mode)) {
1554 add_flags = DCACHE_DIRECTORY_TYPE;
1555 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1556 if (unlikely(!inode->i_op->lookup))
1557 add_flags = DCACHE_AUTODIR_TYPE;
1558 else
1559 inode->i_opflags |= IOP_LOOKUP;
1560 }
1561 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1562 if (unlikely(inode->i_op->follow_link))
1563 add_flags = DCACHE_SYMLINK_TYPE;
1564 else
1565 inode->i_opflags |= IOP_NOFOLLOW;
1566 }
1567
1568 if (unlikely(IS_AUTOMOUNT(inode)))
1569 add_flags |= DCACHE_NEED_AUTOMOUNT;
1570 return add_flags;
1571}
1572
360da900
OH
1573static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1574{
b18825a7
DH
1575 unsigned add_flags = d_flags_for_inode(inode);
1576
b23fb0a6 1577 spin_lock(&dentry->d_lock);
22213318 1578 __d_set_type(dentry, add_flags);
b18825a7 1579 if (inode)
946e51f2 1580 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
360da900 1581 dentry->d_inode = inode;
31e6b01f 1582 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1583 spin_unlock(&dentry->d_lock);
360da900
OH
1584 fsnotify_d_instantiate(dentry, inode);
1585}
1586
1da177e4
LT
1587/**
1588 * d_instantiate - fill in inode information for a dentry
1589 * @entry: dentry to complete
1590 * @inode: inode to attach to this dentry
1591 *
1592 * Fill in inode information in the entry.
1593 *
1594 * This turns negative dentries into productive full members
1595 * of society.
1596 *
1597 * NOTE! This assumes that the inode count has been incremented
1598 * (or otherwise set) by the caller to indicate that it is now
1599 * in use by the dcache.
1600 */
1601
1602void d_instantiate(struct dentry *entry, struct inode * inode)
1603{
946e51f2 1604 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
873feea0
NP
1605 if (inode)
1606 spin_lock(&inode->i_lock);
360da900 1607 __d_instantiate(entry, inode);
873feea0
NP
1608 if (inode)
1609 spin_unlock(&inode->i_lock);
1da177e4
LT
1610 security_d_instantiate(entry, inode);
1611}
ec4f8605 1612EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1613
1614/**
1615 * d_instantiate_unique - instantiate a non-aliased dentry
1616 * @entry: dentry to instantiate
1617 * @inode: inode to attach to this dentry
1618 *
1619 * Fill in inode information in the entry. On success, it returns NULL.
1620 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1621 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1622 *
1623 * Note that in order to avoid conflicts with rename() etc, the caller
1624 * had better be holding the parent directory semaphore.
e866cfa9
OD
1625 *
1626 * This also assumes that the inode count has been incremented
1627 * (or otherwise set) by the caller to indicate that it is now
1628 * in use by the dcache.
1da177e4 1629 */
770bfad8
DH
1630static struct dentry *__d_instantiate_unique(struct dentry *entry,
1631 struct inode *inode)
1da177e4
LT
1632{
1633 struct dentry *alias;
1634 int len = entry->d_name.len;
1635 const char *name = entry->d_name.name;
1636 unsigned int hash = entry->d_name.hash;
1637
770bfad8 1638 if (!inode) {
360da900 1639 __d_instantiate(entry, NULL);
770bfad8
DH
1640 return NULL;
1641 }
1642
946e51f2 1643 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
9abca360
NP
1644 /*
1645 * Don't need alias->d_lock here, because aliases with
1646 * d_parent == entry->d_parent are not subject to name or
1647 * parent changes, because the parent inode i_mutex is held.
1648 */
12f8ad4b 1649 if (alias->d_name.hash != hash)
1da177e4
LT
1650 continue;
1651 if (alias->d_parent != entry->d_parent)
1652 continue;
ee983e89
LT
1653 if (alias->d_name.len != len)
1654 continue;
12f8ad4b 1655 if (dentry_cmp(alias, name, len))
1da177e4 1656 continue;
dc0474be 1657 __dget(alias);
1da177e4
LT
1658 return alias;
1659 }
770bfad8 1660
360da900 1661 __d_instantiate(entry, inode);
1da177e4
LT
1662 return NULL;
1663}
770bfad8
DH
1664
1665struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1666{
1667 struct dentry *result;
1668
946e51f2 1669 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
770bfad8 1670
873feea0
NP
1671 if (inode)
1672 spin_lock(&inode->i_lock);
770bfad8 1673 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1674 if (inode)
1675 spin_unlock(&inode->i_lock);
770bfad8
DH
1676
1677 if (!result) {
1678 security_d_instantiate(entry, inode);
1679 return NULL;
1680 }
1681
1682 BUG_ON(!d_unhashed(result));
1683 iput(inode);
1684 return result;
1685}
1686
1da177e4
LT
1687EXPORT_SYMBOL(d_instantiate_unique);
1688
b70a80e7
MS
1689/**
1690 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1691 * @entry: dentry to complete
1692 * @inode: inode to attach to this dentry
1693 *
1694 * Fill in inode information in the entry. If a directory alias is found, then
1695 * return an error (and drop inode). Together with d_materialise_unique() this
1696 * guarantees that a directory inode may never have more than one alias.
1697 */
1698int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1699{
946e51f2 1700 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7
MS
1701
1702 spin_lock(&inode->i_lock);
1703 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1704 spin_unlock(&inode->i_lock);
1705 iput(inode);
1706 return -EBUSY;
1707 }
1708 __d_instantiate(entry, inode);
1709 spin_unlock(&inode->i_lock);
1710 security_d_instantiate(entry, inode);
1711
1712 return 0;
1713}
1714EXPORT_SYMBOL(d_instantiate_no_diralias);
1715
adc0e91a
AV
1716struct dentry *d_make_root(struct inode *root_inode)
1717{
1718 struct dentry *res = NULL;
1719
1720 if (root_inode) {
26fe5750 1721 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1722
1723 res = __d_alloc(root_inode->i_sb, &name);
1724 if (res)
1725 d_instantiate(res, root_inode);
1726 else
1727 iput(root_inode);
1728 }
1729 return res;
1730}
1731EXPORT_SYMBOL(d_make_root);
1732
d891eedb
BF
1733static struct dentry * __d_find_any_alias(struct inode *inode)
1734{
1735 struct dentry *alias;
1736
b3d9b7a3 1737 if (hlist_empty(&inode->i_dentry))
d891eedb 1738 return NULL;
946e51f2 1739 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1740 __dget(alias);
1741 return alias;
1742}
1743
46f72b34
SW
1744/**
1745 * d_find_any_alias - find any alias for a given inode
1746 * @inode: inode to find an alias for
1747 *
1748 * If any aliases exist for the given inode, take and return a
1749 * reference for one of them. If no aliases exist, return %NULL.
1750 */
1751struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1752{
1753 struct dentry *de;
1754
1755 spin_lock(&inode->i_lock);
1756 de = __d_find_any_alias(inode);
1757 spin_unlock(&inode->i_lock);
1758 return de;
1759}
46f72b34 1760EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1761
49c7dd28 1762static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1763{
b911a6bd 1764 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1765 struct dentry *tmp;
1766 struct dentry *res;
b18825a7 1767 unsigned add_flags;
4ea3ada2
CH
1768
1769 if (!inode)
44003728 1770 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1771 if (IS_ERR(inode))
1772 return ERR_CAST(inode);
1773
d891eedb 1774 res = d_find_any_alias(inode);
9308a612
CH
1775 if (res)
1776 goto out_iput;
1777
a4464dbc 1778 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1779 if (!tmp) {
1780 res = ERR_PTR(-ENOMEM);
1781 goto out_iput;
4ea3ada2 1782 }
b5c84bf6 1783
873feea0 1784 spin_lock(&inode->i_lock);
d891eedb 1785 res = __d_find_any_alias(inode);
9308a612 1786 if (res) {
873feea0 1787 spin_unlock(&inode->i_lock);
9308a612
CH
1788 dput(tmp);
1789 goto out_iput;
1790 }
1791
1792 /* attach a disconnected dentry */
1a0a397e
BF
1793 add_flags = d_flags_for_inode(inode);
1794
1795 if (disconnected)
1796 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1797
9308a612 1798 spin_lock(&tmp->d_lock);
9308a612 1799 tmp->d_inode = inode;
b18825a7 1800 tmp->d_flags |= add_flags;
946e51f2 1801 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1879fd6a 1802 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1803 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1804 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1805 spin_unlock(&tmp->d_lock);
873feea0 1806 spin_unlock(&inode->i_lock);
24ff6663 1807 security_d_instantiate(tmp, inode);
9308a612 1808
9308a612
CH
1809 return tmp;
1810
1811 out_iput:
24ff6663
JB
1812 if (res && !IS_ERR(res))
1813 security_d_instantiate(res, inode);
9308a612
CH
1814 iput(inode);
1815 return res;
4ea3ada2 1816}
1a0a397e
BF
1817
1818/**
1819 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1820 * @inode: inode to allocate the dentry for
1821 *
1822 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1823 * similar open by handle operations. The returned dentry may be anonymous,
1824 * or may have a full name (if the inode was already in the cache).
1825 *
1826 * When called on a directory inode, we must ensure that the inode only ever
1827 * has one dentry. If a dentry is found, that is returned instead of
1828 * allocating a new one.
1829 *
1830 * On successful return, the reference to the inode has been transferred
1831 * to the dentry. In case of an error the reference on the inode is released.
1832 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1833 * be passed in and the error will be propagated to the return value,
1834 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1835 */
1836struct dentry *d_obtain_alias(struct inode *inode)
1837{
1838 return __d_obtain_alias(inode, 1);
1839}
adc48720 1840EXPORT_SYMBOL(d_obtain_alias);
1da177e4 1841
1a0a397e
BF
1842/**
1843 * d_obtain_root - find or allocate a dentry for a given inode
1844 * @inode: inode to allocate the dentry for
1845 *
1846 * Obtain an IS_ROOT dentry for the root of a filesystem.
1847 *
1848 * We must ensure that directory inodes only ever have one dentry. If a
1849 * dentry is found, that is returned instead of allocating a new one.
1850 *
1851 * On successful return, the reference to the inode has been transferred
1852 * to the dentry. In case of an error the reference on the inode is
1853 * released. A %NULL or IS_ERR inode may be passed in and will be the
1854 * error will be propagate to the return value, with a %NULL @inode
1855 * replaced by ERR_PTR(-ESTALE).
1856 */
1857struct dentry *d_obtain_root(struct inode *inode)
1858{
1859 return __d_obtain_alias(inode, 0);
1860}
1861EXPORT_SYMBOL(d_obtain_root);
1862
9403540c
BN
1863/**
1864 * d_add_ci - lookup or allocate new dentry with case-exact name
1865 * @inode: the inode case-insensitive lookup has found
1866 * @dentry: the negative dentry that was passed to the parent's lookup func
1867 * @name: the case-exact name to be associated with the returned dentry
1868 *
1869 * This is to avoid filling the dcache with case-insensitive names to the
1870 * same inode, only the actual correct case is stored in the dcache for
1871 * case-insensitive filesystems.
1872 *
1873 * For a case-insensitive lookup match and if the the case-exact dentry
1874 * already exists in in the dcache, use it and return it.
1875 *
1876 * If no entry exists with the exact case name, allocate new dentry with
1877 * the exact case, and return the spliced entry.
1878 */
e45b590b 1879struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1880 struct qstr *name)
1881{
9403540c
BN
1882 struct dentry *found;
1883 struct dentry *new;
1884
b6520c81
CH
1885 /*
1886 * First check if a dentry matching the name already exists,
1887 * if not go ahead and create it now.
1888 */
9403540c 1889 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1890 if (!found) {
1891 new = d_alloc(dentry->d_parent, name);
1892 if (!new) {
4f522a24 1893 found = ERR_PTR(-ENOMEM);
427c77d4
AV
1894 } else {
1895 found = d_splice_alias(inode, new);
1896 if (found) {
1897 dput(new);
1898 return found;
1899 }
1900 return new;
9403540c 1901 }
9403540c 1902 }
9403540c 1903 iput(inode);
4f522a24 1904 return found;
9403540c 1905}
ec4f8605 1906EXPORT_SYMBOL(d_add_ci);
1da177e4 1907
12f8ad4b
LT
1908/*
1909 * Do the slow-case of the dentry name compare.
1910 *
1911 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1912 * load the name and length information, so that the
12f8ad4b
LT
1913 * filesystem can rely on them, and can use the 'name' and
1914 * 'len' information without worrying about walking off the
1915 * end of memory etc.
1916 *
1917 * Thus the read_seqcount_retry() and the "duplicate" info
1918 * in arguments (the low-level filesystem should not look
1919 * at the dentry inode or name contents directly, since
1920 * rename can change them while we're in RCU mode).
1921 */
1922enum slow_d_compare {
1923 D_COMP_OK,
1924 D_COMP_NOMATCH,
1925 D_COMP_SEQRETRY,
1926};
1927
1928static noinline enum slow_d_compare slow_dentry_cmp(
1929 const struct dentry *parent,
12f8ad4b
LT
1930 struct dentry *dentry,
1931 unsigned int seq,
1932 const struct qstr *name)
1933{
1934 int tlen = dentry->d_name.len;
1935 const char *tname = dentry->d_name.name;
12f8ad4b
LT
1936
1937 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1938 cpu_relax();
1939 return D_COMP_SEQRETRY;
1940 }
da53be12 1941 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
1942 return D_COMP_NOMATCH;
1943 return D_COMP_OK;
1944}
1945
31e6b01f
NP
1946/**
1947 * __d_lookup_rcu - search for a dentry (racy, store-free)
1948 * @parent: parent dentry
1949 * @name: qstr of name we wish to find
1f1e6e52 1950 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1951 * Returns: dentry, or NULL
1952 *
1953 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1954 * resolution (store-free path walking) design described in
1955 * Documentation/filesystems/path-lookup.txt.
1956 *
1957 * This is not to be used outside core vfs.
1958 *
1959 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1960 * held, and rcu_read_lock held. The returned dentry must not be stored into
1961 * without taking d_lock and checking d_seq sequence count against @seq
1962 * returned here.
1963 *
15570086 1964 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
1965 * function.
1966 *
1967 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1968 * the returned dentry, so long as its parent's seqlock is checked after the
1969 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1970 * is formed, giving integrity down the path walk.
12f8ad4b
LT
1971 *
1972 * NOTE! The caller *has* to check the resulting dentry against the sequence
1973 * number we've returned before using any of the resulting dentry state!
31e6b01f 1974 */
8966be90
LT
1975struct dentry *__d_lookup_rcu(const struct dentry *parent,
1976 const struct qstr *name,
da53be12 1977 unsigned *seqp)
31e6b01f 1978{
26fe5750 1979 u64 hashlen = name->hash_len;
31e6b01f 1980 const unsigned char *str = name->name;
26fe5750 1981 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 1982 struct hlist_bl_node *node;
31e6b01f
NP
1983 struct dentry *dentry;
1984
1985 /*
1986 * Note: There is significant duplication with __d_lookup_rcu which is
1987 * required to prevent single threaded performance regressions
1988 * especially on architectures where smp_rmb (in seqcounts) are costly.
1989 * Keep the two functions in sync.
1990 */
1991
1992 /*
1993 * The hash list is protected using RCU.
1994 *
1995 * Carefully use d_seq when comparing a candidate dentry, to avoid
1996 * races with d_move().
1997 *
1998 * It is possible that concurrent renames can mess up our list
1999 * walk here and result in missing our dentry, resulting in the
2000 * false-negative result. d_lookup() protects against concurrent
2001 * renames using rename_lock seqlock.
2002 *
b0a4bb83 2003 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2004 */
b07ad996 2005 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2006 unsigned seq;
31e6b01f 2007
31e6b01f 2008seqretry:
12f8ad4b
LT
2009 /*
2010 * The dentry sequence count protects us from concurrent
da53be12 2011 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2012 *
2013 * The caller must perform a seqcount check in order
da53be12 2014 * to do anything useful with the returned dentry.
12f8ad4b
LT
2015 *
2016 * NOTE! We do a "raw" seqcount_begin here. That means that
2017 * we don't wait for the sequence count to stabilize if it
2018 * is in the middle of a sequence change. If we do the slow
2019 * dentry compare, we will do seqretries until it is stable,
2020 * and if we end up with a successful lookup, we actually
2021 * want to exit RCU lookup anyway.
2022 */
2023 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2024 if (dentry->d_parent != parent)
2025 continue;
2e321806
LT
2026 if (d_unhashed(dentry))
2027 continue;
12f8ad4b 2028
830c0f0e 2029 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2030 if (dentry->d_name.hash != hashlen_hash(hashlen))
2031 continue;
da53be12
LT
2032 *seqp = seq;
2033 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2034 case D_COMP_OK:
2035 return dentry;
2036 case D_COMP_NOMATCH:
31e6b01f 2037 continue;
12f8ad4b
LT
2038 default:
2039 goto seqretry;
2040 }
31e6b01f 2041 }
12f8ad4b 2042
26fe5750 2043 if (dentry->d_name.hash_len != hashlen)
ee983e89 2044 continue;
da53be12 2045 *seqp = seq;
26fe5750 2046 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2047 return dentry;
31e6b01f
NP
2048 }
2049 return NULL;
2050}
2051
1da177e4
LT
2052/**
2053 * d_lookup - search for a dentry
2054 * @parent: parent dentry
2055 * @name: qstr of name we wish to find
b04f784e 2056 * Returns: dentry, or NULL
1da177e4 2057 *
b04f784e
NP
2058 * d_lookup searches the children of the parent dentry for the name in
2059 * question. If the dentry is found its reference count is incremented and the
2060 * dentry is returned. The caller must use dput to free the entry when it has
2061 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2062 */
da2d8455 2063struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2064{
31e6b01f 2065 struct dentry *dentry;
949854d0 2066 unsigned seq;
1da177e4 2067
b8314f93
DY
2068 do {
2069 seq = read_seqbegin(&rename_lock);
2070 dentry = __d_lookup(parent, name);
2071 if (dentry)
1da177e4
LT
2072 break;
2073 } while (read_seqretry(&rename_lock, seq));
2074 return dentry;
2075}
ec4f8605 2076EXPORT_SYMBOL(d_lookup);
1da177e4 2077
31e6b01f 2078/**
b04f784e
NP
2079 * __d_lookup - search for a dentry (racy)
2080 * @parent: parent dentry
2081 * @name: qstr of name we wish to find
2082 * Returns: dentry, or NULL
2083 *
2084 * __d_lookup is like d_lookup, however it may (rarely) return a
2085 * false-negative result due to unrelated rename activity.
2086 *
2087 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2088 * however it must be used carefully, eg. with a following d_lookup in
2089 * the case of failure.
2090 *
2091 * __d_lookup callers must be commented.
2092 */
a713ca2a 2093struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2094{
2095 unsigned int len = name->len;
2096 unsigned int hash = name->hash;
2097 const unsigned char *str = name->name;
b07ad996 2098 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2099 struct hlist_bl_node *node;
31e6b01f 2100 struct dentry *found = NULL;
665a7583 2101 struct dentry *dentry;
1da177e4 2102
31e6b01f
NP
2103 /*
2104 * Note: There is significant duplication with __d_lookup_rcu which is
2105 * required to prevent single threaded performance regressions
2106 * especially on architectures where smp_rmb (in seqcounts) are costly.
2107 * Keep the two functions in sync.
2108 */
2109
b04f784e
NP
2110 /*
2111 * The hash list is protected using RCU.
2112 *
2113 * Take d_lock when comparing a candidate dentry, to avoid races
2114 * with d_move().
2115 *
2116 * It is possible that concurrent renames can mess up our list
2117 * walk here and result in missing our dentry, resulting in the
2118 * false-negative result. d_lookup() protects against concurrent
2119 * renames using rename_lock seqlock.
2120 *
b0a4bb83 2121 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2122 */
1da177e4
LT
2123 rcu_read_lock();
2124
b07ad996 2125 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2126
1da177e4
LT
2127 if (dentry->d_name.hash != hash)
2128 continue;
1da177e4
LT
2129
2130 spin_lock(&dentry->d_lock);
1da177e4
LT
2131 if (dentry->d_parent != parent)
2132 goto next;
d0185c08
LT
2133 if (d_unhashed(dentry))
2134 goto next;
2135
1da177e4
LT
2136 /*
2137 * It is safe to compare names since d_move() cannot
2138 * change the qstr (protected by d_lock).
2139 */
fb045adb 2140 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2141 int tlen = dentry->d_name.len;
2142 const char *tname = dentry->d_name.name;
da53be12 2143 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2144 goto next;
2145 } else {
ee983e89
LT
2146 if (dentry->d_name.len != len)
2147 goto next;
12f8ad4b 2148 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2149 goto next;
2150 }
2151
98474236 2152 dentry->d_lockref.count++;
d0185c08 2153 found = dentry;
1da177e4
LT
2154 spin_unlock(&dentry->d_lock);
2155 break;
2156next:
2157 spin_unlock(&dentry->d_lock);
2158 }
2159 rcu_read_unlock();
2160
2161 return found;
2162}
2163
3e7e241f
EB
2164/**
2165 * d_hash_and_lookup - hash the qstr then search for a dentry
2166 * @dir: Directory to search in
2167 * @name: qstr of name we wish to find
2168 *
4f522a24 2169 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2170 */
2171struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2172{
3e7e241f
EB
2173 /*
2174 * Check for a fs-specific hash function. Note that we must
2175 * calculate the standard hash first, as the d_op->d_hash()
2176 * routine may choose to leave the hash value unchanged.
2177 */
2178 name->hash = full_name_hash(name->name, name->len);
fb045adb 2179 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2180 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2181 if (unlikely(err < 0))
2182 return ERR_PTR(err);
3e7e241f 2183 }
4f522a24 2184 return d_lookup(dir, name);
3e7e241f 2185}
4f522a24 2186EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2187
1da177e4 2188/**
786a5e15 2189 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2190 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2191 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2192 *
2193 * An insecure source has sent us a dentry, here we verify it and dget() it.
2194 * This is used by ncpfs in its readdir implementation.
2195 * Zero is returned in the dentry is invalid.
786a5e15
NP
2196 *
2197 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2198 */
d3a23e16 2199int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2200{
786a5e15 2201 struct dentry *child;
d3a23e16 2202
2fd6b7f5 2203 spin_lock(&dparent->d_lock);
946e51f2 2204 list_for_each_entry(child, &dparent->d_subdirs, d_child) {
786a5e15 2205 if (dentry == child) {
2fd6b7f5 2206 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2207 __dget_dlock(dentry);
2fd6b7f5
NP
2208 spin_unlock(&dentry->d_lock);
2209 spin_unlock(&dparent->d_lock);
1da177e4
LT
2210 return 1;
2211 }
2212 }
2fd6b7f5 2213 spin_unlock(&dparent->d_lock);
786a5e15 2214
1da177e4
LT
2215 return 0;
2216}
ec4f8605 2217EXPORT_SYMBOL(d_validate);
1da177e4
LT
2218
2219/*
2220 * When a file is deleted, we have two options:
2221 * - turn this dentry into a negative dentry
2222 * - unhash this dentry and free it.
2223 *
2224 * Usually, we want to just turn this into
2225 * a negative dentry, but if anybody else is
2226 * currently using the dentry or the inode
2227 * we can't do that and we fall back on removing
2228 * it from the hash queues and waiting for
2229 * it to be deleted later when it has no users
2230 */
2231
2232/**
2233 * d_delete - delete a dentry
2234 * @dentry: The dentry to delete
2235 *
2236 * Turn the dentry into a negative dentry if possible, otherwise
2237 * remove it from the hash queues so it can be deleted later
2238 */
2239
2240void d_delete(struct dentry * dentry)
2241{
873feea0 2242 struct inode *inode;
7a91bf7f 2243 int isdir = 0;
1da177e4
LT
2244 /*
2245 * Are we the only user?
2246 */
357f8e65 2247again:
1da177e4 2248 spin_lock(&dentry->d_lock);
873feea0
NP
2249 inode = dentry->d_inode;
2250 isdir = S_ISDIR(inode->i_mode);
98474236 2251 if (dentry->d_lockref.count == 1) {
1fe0c023 2252 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2253 spin_unlock(&dentry->d_lock);
2254 cpu_relax();
2255 goto again;
2256 }
13e3c5e5 2257 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2258 dentry_unlink_inode(dentry);
7a91bf7f 2259 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2260 return;
2261 }
2262
2263 if (!d_unhashed(dentry))
2264 __d_drop(dentry);
2265
2266 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2267
2268 fsnotify_nameremove(dentry, isdir);
1da177e4 2269}
ec4f8605 2270EXPORT_SYMBOL(d_delete);
1da177e4 2271
b07ad996 2272static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2273{
ceb5bdc2 2274 BUG_ON(!d_unhashed(entry));
1879fd6a 2275 hlist_bl_lock(b);
dea3667b 2276 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2277 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2278 hlist_bl_unlock(b);
1da177e4
LT
2279}
2280
770bfad8
DH
2281static void _d_rehash(struct dentry * entry)
2282{
2283 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2284}
2285
1da177e4
LT
2286/**
2287 * d_rehash - add an entry back to the hash
2288 * @entry: dentry to add to the hash
2289 *
2290 * Adds a dentry to the hash according to its name.
2291 */
2292
2293void d_rehash(struct dentry * entry)
2294{
1da177e4 2295 spin_lock(&entry->d_lock);
770bfad8 2296 _d_rehash(entry);
1da177e4 2297 spin_unlock(&entry->d_lock);
1da177e4 2298}
ec4f8605 2299EXPORT_SYMBOL(d_rehash);
1da177e4 2300
fb2d5b86
NP
2301/**
2302 * dentry_update_name_case - update case insensitive dentry with a new name
2303 * @dentry: dentry to be updated
2304 * @name: new name
2305 *
2306 * Update a case insensitive dentry with new case of name.
2307 *
2308 * dentry must have been returned by d_lookup with name @name. Old and new
2309 * name lengths must match (ie. no d_compare which allows mismatched name
2310 * lengths).
2311 *
2312 * Parent inode i_mutex must be held over d_lookup and into this call (to
2313 * keep renames and concurrent inserts, and readdir(2) away).
2314 */
2315void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2316{
7ebfa57f 2317 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2318 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2319
fb2d5b86 2320 spin_lock(&dentry->d_lock);
31e6b01f 2321 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2322 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2323 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2324 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2325}
2326EXPORT_SYMBOL(dentry_update_name_case);
2327
8d85b484 2328static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2329{
8d85b484
AV
2330 if (unlikely(dname_external(target))) {
2331 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2332 /*
2333 * Both external: swap the pointers
2334 */
9a8d5bb4 2335 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2336 } else {
2337 /*
2338 * dentry:internal, target:external. Steal target's
2339 * storage and make target internal.
2340 */
321bcf92
BF
2341 memcpy(target->d_iname, dentry->d_name.name,
2342 dentry->d_name.len + 1);
1da177e4
LT
2343 dentry->d_name.name = target->d_name.name;
2344 target->d_name.name = target->d_iname;
2345 }
2346 } else {
8d85b484 2347 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2348 /*
2349 * dentry:external, target:internal. Give dentry's
2350 * storage to target and make dentry internal
2351 */
2352 memcpy(dentry->d_iname, target->d_name.name,
2353 target->d_name.len + 1);
2354 target->d_name.name = dentry->d_name.name;
2355 dentry->d_name.name = dentry->d_iname;
2356 } else {
2357 /*
da1ce067 2358 * Both are internal.
1da177e4 2359 */
da1ce067
MS
2360 unsigned int i;
2361 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
08d4f772
MP
2362 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2363 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
da1ce067
MS
2364 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2365 swap(((long *) &dentry->d_iname)[i],
2366 ((long *) &target->d_iname)[i]);
2367 }
1da177e4
LT
2368 }
2369 }
a28ddb87 2370 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2371}
2372
8d85b484
AV
2373static void copy_name(struct dentry *dentry, struct dentry *target)
2374{
2375 struct external_name *old_name = NULL;
2376 if (unlikely(dname_external(dentry)))
2377 old_name = external_name(dentry);
2378 if (unlikely(dname_external(target))) {
2379 atomic_inc(&external_name(target)->u.count);
2380 dentry->d_name = target->d_name;
2381 } else {
2382 memcpy(dentry->d_iname, target->d_name.name,
2383 target->d_name.len + 1);
2384 dentry->d_name.name = dentry->d_iname;
2385 dentry->d_name.hash_len = target->d_name.hash_len;
2386 }
2387 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2388 kfree_rcu(old_name, u.head);
2389}
2390
2fd6b7f5
NP
2391static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2392{
2393 /*
2394 * XXXX: do we really need to take target->d_lock?
2395 */
2396 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2397 spin_lock(&target->d_parent->d_lock);
2398 else {
2399 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2400 spin_lock(&dentry->d_parent->d_lock);
2401 spin_lock_nested(&target->d_parent->d_lock,
2402 DENTRY_D_LOCK_NESTED);
2403 } else {
2404 spin_lock(&target->d_parent->d_lock);
2405 spin_lock_nested(&dentry->d_parent->d_lock,
2406 DENTRY_D_LOCK_NESTED);
2407 }
2408 }
2409 if (target < dentry) {
2410 spin_lock_nested(&target->d_lock, 2);
2411 spin_lock_nested(&dentry->d_lock, 3);
2412 } else {
2413 spin_lock_nested(&dentry->d_lock, 2);
2414 spin_lock_nested(&target->d_lock, 3);
2415 }
2416}
2417
986c0194 2418static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2419{
2420 if (target->d_parent != dentry->d_parent)
2421 spin_unlock(&dentry->d_parent->d_lock);
2422 if (target->d_parent != target)
2423 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2424 spin_unlock(&target->d_lock);
2425 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2426}
2427
1da177e4 2428/*
2fd6b7f5
NP
2429 * When switching names, the actual string doesn't strictly have to
2430 * be preserved in the target - because we're dropping the target
2431 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2432 * the new name before we switch, unless we are going to rehash
2433 * it. Note that if we *do* unhash the target, we are not allowed
2434 * to rehash it without giving it a new name/hash key - whether
2435 * we swap or overwrite the names here, resulting name won't match
2436 * the reality in filesystem; it's only there for d_path() purposes.
2437 * Note that all of this is happening under rename_lock, so the
2438 * any hash lookup seeing it in the middle of manipulations will
2439 * be discarded anyway. So we do not care what happens to the hash
2440 * key in that case.
1da177e4 2441 */
9eaef27b 2442/*
18367501 2443 * __d_move - move a dentry
1da177e4
LT
2444 * @dentry: entry to move
2445 * @target: new dentry
da1ce067 2446 * @exchange: exchange the two dentries
1da177e4
LT
2447 *
2448 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2449 * dcache entries should not be moved in this way. Caller must hold
2450 * rename_lock, the i_mutex of the source and target directories,
2451 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2452 */
da1ce067
MS
2453static void __d_move(struct dentry *dentry, struct dentry *target,
2454 bool exchange)
1da177e4 2455{
1da177e4
LT
2456 if (!dentry->d_inode)
2457 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2458
2fd6b7f5
NP
2459 BUG_ON(d_ancestor(dentry, target));
2460 BUG_ON(d_ancestor(target, dentry));
2461
2fd6b7f5 2462 dentry_lock_for_move(dentry, target);
1da177e4 2463
31e6b01f 2464 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2465 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2466
ceb5bdc2
NP
2467 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2468
2469 /*
2470 * Move the dentry to the target hash queue. Don't bother checking
2471 * for the same hash queue because of how unlikely it is.
2472 */
2473 __d_drop(dentry);
789680d1 2474 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2475
da1ce067
MS
2476 /*
2477 * Unhash the target (d_delete() is not usable here). If exchanging
2478 * the two dentries, then rehash onto the other's hash queue.
2479 */
1da177e4 2480 __d_drop(target);
da1ce067
MS
2481 if (exchange) {
2482 __d_rehash(target,
2483 d_hash(dentry->d_parent, dentry->d_name.hash));
2484 }
1da177e4 2485
1da177e4 2486 /* Switch the names.. */
8d85b484
AV
2487 if (exchange)
2488 swap_names(dentry, target);
2489 else
2490 copy_name(dentry, target);
1da177e4 2491
63cf427a 2492 /* ... and switch them in the tree */
1da177e4 2493 if (IS_ROOT(dentry)) {
63cf427a 2494 /* splicing a tree */
1da177e4
LT
2495 dentry->d_parent = target->d_parent;
2496 target->d_parent = target;
946e51f2
AV
2497 list_del_init(&target->d_child);
2498 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2499 } else {
63cf427a 2500 /* swapping two dentries */
9a8d5bb4 2501 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2502 list_move(&target->d_child, &target->d_parent->d_subdirs);
2503 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a
AV
2504 if (exchange)
2505 fsnotify_d_move(target);
2506 fsnotify_d_move(dentry);
1da177e4
LT
2507 }
2508
31e6b01f
NP
2509 write_seqcount_end(&target->d_seq);
2510 write_seqcount_end(&dentry->d_seq);
2511
986c0194 2512 dentry_unlock_for_move(dentry, target);
18367501
AV
2513}
2514
2515/*
2516 * d_move - move a dentry
2517 * @dentry: entry to move
2518 * @target: new dentry
2519 *
2520 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2521 * dcache entries should not be moved in this way. See the locking
2522 * requirements for __d_move.
18367501
AV
2523 */
2524void d_move(struct dentry *dentry, struct dentry *target)
2525{
2526 write_seqlock(&rename_lock);
da1ce067 2527 __d_move(dentry, target, false);
1da177e4 2528 write_sequnlock(&rename_lock);
9eaef27b 2529}
ec4f8605 2530EXPORT_SYMBOL(d_move);
1da177e4 2531
da1ce067
MS
2532/*
2533 * d_exchange - exchange two dentries
2534 * @dentry1: first dentry
2535 * @dentry2: second dentry
2536 */
2537void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2538{
2539 write_seqlock(&rename_lock);
2540
2541 WARN_ON(!dentry1->d_inode);
2542 WARN_ON(!dentry2->d_inode);
2543 WARN_ON(IS_ROOT(dentry1));
2544 WARN_ON(IS_ROOT(dentry2));
2545
2546 __d_move(dentry1, dentry2, true);
2547
2548 write_sequnlock(&rename_lock);
2549}
2550
e2761a11
OH
2551/**
2552 * d_ancestor - search for an ancestor
2553 * @p1: ancestor dentry
2554 * @p2: child dentry
2555 *
2556 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2557 * an ancestor of p2, else NULL.
9eaef27b 2558 */
e2761a11 2559struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2560{
2561 struct dentry *p;
2562
871c0067 2563 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2564 if (p->d_parent == p1)
e2761a11 2565 return p;
9eaef27b 2566 }
e2761a11 2567 return NULL;
9eaef27b
TM
2568}
2569
2570/*
2571 * This helper attempts to cope with remotely renamed directories
2572 *
2573 * It assumes that the caller is already holding
18367501 2574 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2575 *
2576 * Note: If ever the locking in lock_rename() changes, then please
2577 * remember to update this too...
9eaef27b 2578 */
b5ae6b15 2579static int __d_unalias(struct inode *inode,
873feea0 2580 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2581{
2582 struct mutex *m1 = NULL, *m2 = NULL;
b5ae6b15 2583 int ret = -EBUSY;
9eaef27b
TM
2584
2585 /* If alias and dentry share a parent, then no extra locks required */
2586 if (alias->d_parent == dentry->d_parent)
2587 goto out_unalias;
2588
9eaef27b 2589 /* See lock_rename() */
9eaef27b
TM
2590 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2591 goto out_err;
2592 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2593 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2594 goto out_err;
2595 m2 = &alias->d_parent->d_inode->i_mutex;
2596out_unalias:
8ed936b5 2597 __d_move(alias, dentry, false);
b5ae6b15 2598 ret = 0;
9eaef27b 2599out_err:
873feea0 2600 spin_unlock(&inode->i_lock);
9eaef27b
TM
2601 if (m2)
2602 mutex_unlock(m2);
2603 if (m1)
2604 mutex_unlock(m1);
2605 return ret;
2606}
2607
3f70bd51
BF
2608/**
2609 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2610 * @inode: the inode which may have a disconnected dentry
2611 * @dentry: a negative dentry which we want to point to the inode.
2612 *
da093a9b
BF
2613 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2614 * place of the given dentry and return it, else simply d_add the inode
2615 * to the dentry and return NULL.
3f70bd51 2616 *
908790fa
BF
2617 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2618 * we should error out: directories can't have multiple aliases.
2619 *
3f70bd51
BF
2620 * This is needed in the lookup routine of any filesystem that is exportable
2621 * (via knfsd) so that we can build dcache paths to directories effectively.
2622 *
2623 * If a dentry was found and moved, then it is returned. Otherwise NULL
2624 * is returned. This matches the expected return value of ->lookup.
2625 *
2626 * Cluster filesystems may call this function with a negative, hashed dentry.
2627 * In that case, we know that the inode will be a regular file, and also this
2628 * will only occur during atomic_open. So we need to check for the dentry
2629 * being already hashed only in the final case.
2630 */
2631struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2632{
3f70bd51
BF
2633 if (IS_ERR(inode))
2634 return ERR_CAST(inode);
2635
770bfad8
DH
2636 BUG_ON(!d_unhashed(dentry));
2637
770bfad8 2638 if (!inode) {
360da900 2639 __d_instantiate(dentry, NULL);
b5ae6b15 2640 goto out;
770bfad8 2641 }
873feea0 2642 spin_lock(&inode->i_lock);
9eaef27b 2643 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2644 struct dentry *new = __d_find_any_alias(inode);
2645 if (unlikely(new)) {
18367501 2646 write_seqlock(&rename_lock);
b5ae6b15
AV
2647 if (unlikely(d_ancestor(new, dentry))) {
2648 write_sequnlock(&rename_lock);
b18dafc8 2649 spin_unlock(&inode->i_lock);
b5ae6b15
AV
2650 dput(new);
2651 new = ERR_PTR(-ELOOP);
2652 pr_warn_ratelimited(
2653 "VFS: Lookup of '%s' in %s %s"
2654 " would have caused loop\n",
2655 dentry->d_name.name,
2656 inode->i_sb->s_type->name,
2657 inode->i_sb->s_id);
2658 } else if (!IS_ROOT(new)) {
2659 int err = __d_unalias(inode, dentry, new);
18367501 2660 write_sequnlock(&rename_lock);
b5ae6b15
AV
2661 if (err) {
2662 dput(new);
2663 new = ERR_PTR(err);
2664 }
18367501 2665 } else {
b5ae6b15
AV
2666 __d_move(new, dentry, false);
2667 write_sequnlock(&rename_lock);
2668 spin_unlock(&inode->i_lock);
2669 security_d_instantiate(new, inode);
dd179946 2670 }
b5ae6b15
AV
2671 iput(inode);
2672 return new;
9eaef27b 2673 }
770bfad8 2674 }
b5ae6b15
AV
2675 /* already taking inode->i_lock, so d_add() by hand */
2676 __d_instantiate(dentry, inode);
873feea0 2677 spin_unlock(&inode->i_lock);
b5ae6b15
AV
2678out:
2679 security_d_instantiate(dentry, inode);
2680 d_rehash(dentry);
2681 return NULL;
770bfad8 2682}
b5ae6b15 2683EXPORT_SYMBOL(d_splice_alias);
770bfad8 2684
cdd16d02 2685static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2686{
2687 *buflen -= namelen;
2688 if (*buflen < 0)
2689 return -ENAMETOOLONG;
2690 *buffer -= namelen;
2691 memcpy(*buffer, str, namelen);
2692 return 0;
2693}
2694
232d2d60
WL
2695/**
2696 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2697 * @buffer: buffer pointer
2698 * @buflen: allocated length of the buffer
2699 * @name: name string and length qstr structure
232d2d60
WL
2700 *
2701 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2702 * make sure that either the old or the new name pointer and length are
2703 * fetched. However, there may be mismatch between length and pointer.
2704 * The length cannot be trusted, we need to copy it byte-by-byte until
2705 * the length is reached or a null byte is found. It also prepends "/" at
2706 * the beginning of the name. The sequence number check at the caller will
2707 * retry it again when a d_move() does happen. So any garbage in the buffer
2708 * due to mismatched pointer and length will be discarded.
6d13f694
AV
2709 *
2710 * Data dependency barrier is needed to make sure that we see that terminating
2711 * NUL. Alpha strikes again, film at 11...
232d2d60 2712 */
cdd16d02
MS
2713static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2714{
232d2d60
WL
2715 const char *dname = ACCESS_ONCE(name->name);
2716 u32 dlen = ACCESS_ONCE(name->len);
2717 char *p;
2718
6d13f694
AV
2719 smp_read_barrier_depends();
2720
232d2d60 2721 *buflen -= dlen + 1;
e825196d
AV
2722 if (*buflen < 0)
2723 return -ENAMETOOLONG;
232d2d60
WL
2724 p = *buffer -= dlen + 1;
2725 *p++ = '/';
2726 while (dlen--) {
2727 char c = *dname++;
2728 if (!c)
2729 break;
2730 *p++ = c;
2731 }
2732 return 0;
cdd16d02
MS
2733}
2734
1da177e4 2735/**
208898c1 2736 * prepend_path - Prepend path string to a buffer
9d1bc601 2737 * @path: the dentry/vfsmount to report
02125a82 2738 * @root: root vfsmnt/dentry
f2eb6575
MS
2739 * @buffer: pointer to the end of the buffer
2740 * @buflen: pointer to buffer length
552ce544 2741 *
18129977
WL
2742 * The function will first try to write out the pathname without taking any
2743 * lock other than the RCU read lock to make sure that dentries won't go away.
2744 * It only checks the sequence number of the global rename_lock as any change
2745 * in the dentry's d_seq will be preceded by changes in the rename_lock
2746 * sequence number. If the sequence number had been changed, it will restart
2747 * the whole pathname back-tracing sequence again by taking the rename_lock.
2748 * In this case, there is no need to take the RCU read lock as the recursive
2749 * parent pointer references will keep the dentry chain alive as long as no
2750 * rename operation is performed.
1da177e4 2751 */
02125a82
AV
2752static int prepend_path(const struct path *path,
2753 const struct path *root,
f2eb6575 2754 char **buffer, int *buflen)
1da177e4 2755{
ede4cebc
AV
2756 struct dentry *dentry;
2757 struct vfsmount *vfsmnt;
2758 struct mount *mnt;
f2eb6575 2759 int error = 0;
48a066e7 2760 unsigned seq, m_seq = 0;
232d2d60
WL
2761 char *bptr;
2762 int blen;
6092d048 2763
48f5ec21 2764 rcu_read_lock();
48a066e7
AV
2765restart_mnt:
2766 read_seqbegin_or_lock(&mount_lock, &m_seq);
2767 seq = 0;
4ec6c2ae 2768 rcu_read_lock();
232d2d60
WL
2769restart:
2770 bptr = *buffer;
2771 blen = *buflen;
48a066e7 2772 error = 0;
ede4cebc
AV
2773 dentry = path->dentry;
2774 vfsmnt = path->mnt;
2775 mnt = real_mount(vfsmnt);
232d2d60 2776 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2777 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2778 struct dentry * parent;
2779
1da177e4 2780 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2781 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2782 /* Global root? */
48a066e7
AV
2783 if (mnt != parent) {
2784 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2785 mnt = parent;
232d2d60
WL
2786 vfsmnt = &mnt->mnt;
2787 continue;
2788 }
2789 /*
2790 * Filesystems needing to implement special "root names"
2791 * should do so with ->d_dname()
2792 */
2793 if (IS_ROOT(dentry) &&
2794 (dentry->d_name.len != 1 ||
2795 dentry->d_name.name[0] != '/')) {
2796 WARN(1, "Root dentry has weird name <%.*s>\n",
2797 (int) dentry->d_name.len,
2798 dentry->d_name.name);
2799 }
2800 if (!error)
2801 error = is_mounted(vfsmnt) ? 1 : 2;
2802 break;
1da177e4
LT
2803 }
2804 parent = dentry->d_parent;
2805 prefetch(parent);
232d2d60 2806 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2807 if (error)
2808 break;
2809
1da177e4
LT
2810 dentry = parent;
2811 }
48f5ec21
AV
2812 if (!(seq & 1))
2813 rcu_read_unlock();
2814 if (need_seqretry(&rename_lock, seq)) {
2815 seq = 1;
232d2d60 2816 goto restart;
48f5ec21
AV
2817 }
2818 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2819
2820 if (!(m_seq & 1))
2821 rcu_read_unlock();
48a066e7
AV
2822 if (need_seqretry(&mount_lock, m_seq)) {
2823 m_seq = 1;
2824 goto restart_mnt;
2825 }
2826 done_seqretry(&mount_lock, m_seq);
1da177e4 2827
232d2d60
WL
2828 if (error >= 0 && bptr == *buffer) {
2829 if (--blen < 0)
2830 error = -ENAMETOOLONG;
2831 else
2832 *--bptr = '/';
2833 }
2834 *buffer = bptr;
2835 *buflen = blen;
7ea600b5 2836 return error;
f2eb6575 2837}
be285c71 2838
f2eb6575
MS
2839/**
2840 * __d_path - return the path of a dentry
2841 * @path: the dentry/vfsmount to report
02125a82 2842 * @root: root vfsmnt/dentry
cd956a1c 2843 * @buf: buffer to return value in
f2eb6575
MS
2844 * @buflen: buffer length
2845 *
ffd1f4ed 2846 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2847 *
2848 * Returns a pointer into the buffer or an error code if the
2849 * path was too long.
2850 *
be148247 2851 * "buflen" should be positive.
f2eb6575 2852 *
02125a82 2853 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2854 */
02125a82
AV
2855char *__d_path(const struct path *path,
2856 const struct path *root,
f2eb6575
MS
2857 char *buf, int buflen)
2858{
2859 char *res = buf + buflen;
2860 int error;
2861
2862 prepend(&res, &buflen, "\0", 1);
f2eb6575 2863 error = prepend_path(path, root, &res, &buflen);
be148247 2864
02125a82
AV
2865 if (error < 0)
2866 return ERR_PTR(error);
2867 if (error > 0)
2868 return NULL;
2869 return res;
2870}
2871
2872char *d_absolute_path(const struct path *path,
2873 char *buf, int buflen)
2874{
2875 struct path root = {};
2876 char *res = buf + buflen;
2877 int error;
2878
2879 prepend(&res, &buflen, "\0", 1);
02125a82 2880 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
2881
2882 if (error > 1)
2883 error = -EINVAL;
2884 if (error < 0)
f2eb6575 2885 return ERR_PTR(error);
f2eb6575 2886 return res;
1da177e4
LT
2887}
2888
ffd1f4ed
MS
2889/*
2890 * same as __d_path but appends "(deleted)" for unlinked files.
2891 */
02125a82
AV
2892static int path_with_deleted(const struct path *path,
2893 const struct path *root,
2894 char **buf, int *buflen)
ffd1f4ed
MS
2895{
2896 prepend(buf, buflen, "\0", 1);
2897 if (d_unlinked(path->dentry)) {
2898 int error = prepend(buf, buflen, " (deleted)", 10);
2899 if (error)
2900 return error;
2901 }
2902
2903 return prepend_path(path, root, buf, buflen);
2904}
2905
8df9d1a4
MS
2906static int prepend_unreachable(char **buffer, int *buflen)
2907{
2908 return prepend(buffer, buflen, "(unreachable)", 13);
2909}
2910
68f0d9d9
LT
2911static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
2912{
2913 unsigned seq;
2914
2915 do {
2916 seq = read_seqcount_begin(&fs->seq);
2917 *root = fs->root;
2918 } while (read_seqcount_retry(&fs->seq, seq));
2919}
2920
a03a8a70
JB
2921/**
2922 * d_path - return the path of a dentry
cf28b486 2923 * @path: path to report
a03a8a70
JB
2924 * @buf: buffer to return value in
2925 * @buflen: buffer length
2926 *
2927 * Convert a dentry into an ASCII path name. If the entry has been deleted
2928 * the string " (deleted)" is appended. Note that this is ambiguous.
2929 *
52afeefb
AV
2930 * Returns a pointer into the buffer or an error code if the path was
2931 * too long. Note: Callers should use the returned pointer, not the passed
2932 * in buffer, to use the name! The implementation often starts at an offset
2933 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2934 *
31f3e0b3 2935 * "buflen" should be positive.
a03a8a70 2936 */
20d4fdc1 2937char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2938{
ffd1f4ed 2939 char *res = buf + buflen;
6ac08c39 2940 struct path root;
ffd1f4ed 2941 int error;
1da177e4 2942
c23fbb6b
ED
2943 /*
2944 * We have various synthetic filesystems that never get mounted. On
2945 * these filesystems dentries are never used for lookup purposes, and
2946 * thus don't need to be hashed. They also don't need a name until a
2947 * user wants to identify the object in /proc/pid/fd/. The little hack
2948 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
2949 *
2950 * Some pseudo inodes are mountable. When they are mounted
2951 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
2952 * and instead have d_path return the mounted path.
c23fbb6b 2953 */
f48cfddc
EB
2954 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
2955 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 2956 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2957
68f0d9d9
LT
2958 rcu_read_lock();
2959 get_fs_root_rcu(current->fs, &root);
02125a82 2960 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
2961 rcu_read_unlock();
2962
02125a82 2963 if (error < 0)
ffd1f4ed 2964 res = ERR_PTR(error);
1da177e4
LT
2965 return res;
2966}
ec4f8605 2967EXPORT_SYMBOL(d_path);
1da177e4 2968
c23fbb6b
ED
2969/*
2970 * Helper function for dentry_operations.d_dname() members
2971 */
2972char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2973 const char *fmt, ...)
2974{
2975 va_list args;
2976 char temp[64];
2977 int sz;
2978
2979 va_start(args, fmt);
2980 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2981 va_end(args);
2982
2983 if (sz > sizeof(temp) || sz > buflen)
2984 return ERR_PTR(-ENAMETOOLONG);
2985
2986 buffer += buflen - sz;
2987 return memcpy(buffer, temp, sz);
2988}
2989
118b2302
AV
2990char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
2991{
2992 char *end = buffer + buflen;
2993 /* these dentries are never renamed, so d_lock is not needed */
2994 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 2995 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
2996 prepend(&end, &buflen, "/", 1))
2997 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 2998 return end;
118b2302 2999}
31bbe16f 3000EXPORT_SYMBOL(simple_dname);
118b2302 3001
6092d048
RP
3002/*
3003 * Write full pathname from the root of the filesystem into the buffer.
3004 */
f6500801 3005static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3006{
f6500801 3007 struct dentry *dentry;
232d2d60
WL
3008 char *end, *retval;
3009 int len, seq = 0;
3010 int error = 0;
6092d048 3011
f6500801
AV
3012 if (buflen < 2)
3013 goto Elong;
3014
48f5ec21 3015 rcu_read_lock();
232d2d60 3016restart:
f6500801 3017 dentry = d;
232d2d60
WL
3018 end = buf + buflen;
3019 len = buflen;
3020 prepend(&end, &len, "\0", 1);
6092d048
RP
3021 /* Get '/' right */
3022 retval = end-1;
3023 *retval = '/';
232d2d60 3024 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3025 while (!IS_ROOT(dentry)) {
3026 struct dentry *parent = dentry->d_parent;
6092d048 3027
6092d048 3028 prefetch(parent);
232d2d60
WL
3029 error = prepend_name(&end, &len, &dentry->d_name);
3030 if (error)
3031 break;
6092d048
RP
3032
3033 retval = end;
3034 dentry = parent;
3035 }
48f5ec21
AV
3036 if (!(seq & 1))
3037 rcu_read_unlock();
3038 if (need_seqretry(&rename_lock, seq)) {
3039 seq = 1;
232d2d60 3040 goto restart;
48f5ec21
AV
3041 }
3042 done_seqretry(&rename_lock, seq);
232d2d60
WL
3043 if (error)
3044 goto Elong;
c103135c
AV
3045 return retval;
3046Elong:
3047 return ERR_PTR(-ENAMETOOLONG);
3048}
ec2447c2
NP
3049
3050char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3051{
232d2d60 3052 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3053}
3054EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3055
3056char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3057{
3058 char *p = NULL;
3059 char *retval;
3060
c103135c
AV
3061 if (d_unlinked(dentry)) {
3062 p = buf + buflen;
3063 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3064 goto Elong;
3065 buflen++;
3066 }
3067 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3068 if (!IS_ERR(retval) && p)
3069 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3070 return retval;
3071Elong:
6092d048
RP
3072 return ERR_PTR(-ENAMETOOLONG);
3073}
3074
8b19e341
LT
3075static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3076 struct path *pwd)
5762482f 3077{
8b19e341
LT
3078 unsigned seq;
3079
3080 do {
3081 seq = read_seqcount_begin(&fs->seq);
3082 *root = fs->root;
3083 *pwd = fs->pwd;
3084 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3085}
3086
1da177e4
LT
3087/*
3088 * NOTE! The user-level library version returns a
3089 * character pointer. The kernel system call just
3090 * returns the length of the buffer filled (which
3091 * includes the ending '\0' character), or a negative
3092 * error value. So libc would do something like
3093 *
3094 * char *getcwd(char * buf, size_t size)
3095 * {
3096 * int retval;
3097 *
3098 * retval = sys_getcwd(buf, size);
3099 * if (retval >= 0)
3100 * return buf;
3101 * errno = -retval;
3102 * return NULL;
3103 * }
3104 */
3cdad428 3105SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3106{
552ce544 3107 int error;
6ac08c39 3108 struct path pwd, root;
3272c544 3109 char *page = __getname();
1da177e4
LT
3110
3111 if (!page)
3112 return -ENOMEM;
3113
8b19e341
LT
3114 rcu_read_lock();
3115 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3116
552ce544 3117 error = -ENOENT;
f3da392e 3118 if (!d_unlinked(pwd.dentry)) {
552ce544 3119 unsigned long len;
3272c544
LT
3120 char *cwd = page + PATH_MAX;
3121 int buflen = PATH_MAX;
1da177e4 3122
8df9d1a4 3123 prepend(&cwd, &buflen, "\0", 1);
02125a82 3124 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3125 rcu_read_unlock();
552ce544 3126
02125a82 3127 if (error < 0)
552ce544
LT
3128 goto out;
3129
8df9d1a4 3130 /* Unreachable from current root */
02125a82 3131 if (error > 0) {
8df9d1a4
MS
3132 error = prepend_unreachable(&cwd, &buflen);
3133 if (error)
3134 goto out;
3135 }
3136
552ce544 3137 error = -ERANGE;
3272c544 3138 len = PATH_MAX + page - cwd;
552ce544
LT
3139 if (len <= size) {
3140 error = len;
3141 if (copy_to_user(buf, cwd, len))
3142 error = -EFAULT;
3143 }
949854d0 3144 } else {
ff812d72 3145 rcu_read_unlock();
949854d0 3146 }
1da177e4
LT
3147
3148out:
3272c544 3149 __putname(page);
1da177e4
LT
3150 return error;
3151}
3152
3153/*
3154 * Test whether new_dentry is a subdirectory of old_dentry.
3155 *
3156 * Trivially implemented using the dcache structure
3157 */
3158
3159/**
3160 * is_subdir - is new dentry a subdirectory of old_dentry
3161 * @new_dentry: new dentry
3162 * @old_dentry: old dentry
3163 *
3164 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3165 * Returns 0 otherwise.
3166 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3167 */
3168
e2761a11 3169int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3170{
3171 int result;
949854d0 3172 unsigned seq;
1da177e4 3173
e2761a11
OH
3174 if (new_dentry == old_dentry)
3175 return 1;
3176
e2761a11 3177 do {
1da177e4 3178 /* for restarting inner loop in case of seq retry */
1da177e4 3179 seq = read_seqbegin(&rename_lock);
949854d0
NP
3180 /*
3181 * Need rcu_readlock to protect against the d_parent trashing
3182 * due to d_move
3183 */
3184 rcu_read_lock();
e2761a11 3185 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3186 result = 1;
e2761a11
OH
3187 else
3188 result = 0;
949854d0 3189 rcu_read_unlock();
1da177e4 3190 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3191
3192 return result;
3193}
3194
db14fc3a 3195static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3196{
db14fc3a
MS
3197 struct dentry *root = data;
3198 if (dentry != root) {
3199 if (d_unhashed(dentry) || !dentry->d_inode)
3200 return D_WALK_SKIP;
1da177e4 3201
01ddc4ed
MS
3202 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3203 dentry->d_flags |= DCACHE_GENOCIDE;
3204 dentry->d_lockref.count--;
3205 }
1da177e4 3206 }
db14fc3a
MS
3207 return D_WALK_CONTINUE;
3208}
58db63d0 3209
db14fc3a
MS
3210void d_genocide(struct dentry *parent)
3211{
3212 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3213}
3214
60545d0d 3215void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3216{
60545d0d
AV
3217 inode_dec_link_count(inode);
3218 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3219 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3220 !d_unlinked(dentry));
3221 spin_lock(&dentry->d_parent->d_lock);
3222 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3223 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3224 (unsigned long long)inode->i_ino);
3225 spin_unlock(&dentry->d_lock);
3226 spin_unlock(&dentry->d_parent->d_lock);
3227 d_instantiate(dentry, inode);
1da177e4 3228}
60545d0d 3229EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3230
3231static __initdata unsigned long dhash_entries;
3232static int __init set_dhash_entries(char *str)
3233{
3234 if (!str)
3235 return 0;
3236 dhash_entries = simple_strtoul(str, &str, 0);
3237 return 1;
3238}
3239__setup("dhash_entries=", set_dhash_entries);
3240
3241static void __init dcache_init_early(void)
3242{
074b8517 3243 unsigned int loop;
1da177e4
LT
3244
3245 /* If hashes are distributed across NUMA nodes, defer
3246 * hash allocation until vmalloc space is available.
3247 */
3248 if (hashdist)
3249 return;
3250
3251 dentry_hashtable =
3252 alloc_large_system_hash("Dentry cache",
b07ad996 3253 sizeof(struct hlist_bl_head),
1da177e4
LT
3254 dhash_entries,
3255 13,
3256 HASH_EARLY,
3257 &d_hash_shift,
3258 &d_hash_mask,
31fe62b9 3259 0,
1da177e4
LT
3260 0);
3261
074b8517 3262 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3263 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3264}
3265
74bf17cf 3266static void __init dcache_init(void)
1da177e4 3267{
074b8517 3268 unsigned int loop;
1da177e4
LT
3269
3270 /*
3271 * A constructor could be added for stable state like the lists,
3272 * but it is probably not worth it because of the cache nature
3273 * of the dcache.
3274 */
0a31bd5f
CL
3275 dentry_cache = KMEM_CACHE(dentry,
3276 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3277
3278 /* Hash may have been set up in dcache_init_early */
3279 if (!hashdist)
3280 return;
3281
3282 dentry_hashtable =
3283 alloc_large_system_hash("Dentry cache",
b07ad996 3284 sizeof(struct hlist_bl_head),
1da177e4
LT
3285 dhash_entries,
3286 13,
3287 0,
3288 &d_hash_shift,
3289 &d_hash_mask,
31fe62b9 3290 0,
1da177e4
LT
3291 0);
3292
074b8517 3293 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3294 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3295}
3296
3297/* SLAB cache for __getname() consumers */
e18b890b 3298struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3299EXPORT_SYMBOL(names_cachep);
1da177e4 3300
1da177e4
LT
3301EXPORT_SYMBOL(d_genocide);
3302
1da177e4
LT
3303void __init vfs_caches_init_early(void)
3304{
3305 dcache_init_early();
3306 inode_init_early();
3307}
3308
3309void __init vfs_caches_init(unsigned long mempages)
3310{
3311 unsigned long reserve;
3312
3313 /* Base hash sizes on available memory, with a reserve equal to
3314 150% of current kernel size */
3315
3316 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3317 mempages -= reserve;
3318
3319 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3320 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3321
74bf17cf
DC
3322 dcache_init();
3323 inode_init();
1da177e4 3324 files_init(mempages);
74bf17cf 3325 mnt_init();
1da177e4
LT
3326 bdev_cache_init();
3327 chrdev_init();
3328}