dax: remove "depends on BROKEN" from FS_DAX_PMD
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / fs / dax.c
CommitLineData
d475c634
MW
1/*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17#include <linux/atomic.h>
18#include <linux/blkdev.h>
19#include <linux/buffer_head.h>
d77e92e2 20#include <linux/dax.h>
d475c634
MW
21#include <linux/fs.h>
22#include <linux/genhd.h>
f7ca90b1
MW
23#include <linux/highmem.h>
24#include <linux/memcontrol.h>
25#include <linux/mm.h>
d475c634 26#include <linux/mutex.h>
9973c98e 27#include <linux/pagevec.h>
2765cfbb 28#include <linux/pmem.h>
289c6aed 29#include <linux/sched.h>
d475c634 30#include <linux/uio.h>
f7ca90b1 31#include <linux/vmstat.h>
34c0fd54 32#include <linux/pfn_t.h>
0e749e54 33#include <linux/sizes.h>
a254e568
CH
34#include <linux/iomap.h>
35#include "internal.h"
d475c634 36
ac401cc7
JK
37/* We choose 4096 entries - same as per-zone page wait tables */
38#define DAX_WAIT_TABLE_BITS 12
39#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
40
ce95ab0f 41static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
ac401cc7
JK
42
43static int __init init_dax_wait_table(void)
44{
45 int i;
46
47 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
48 init_waitqueue_head(wait_table + i);
49 return 0;
50}
51fs_initcall(init_dax_wait_table);
52
b2e0d162
DW
53static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
54{
55 struct request_queue *q = bdev->bd_queue;
56 long rc = -EIO;
57
7a9eb206 58 dax->addr = ERR_PTR(-EIO);
b2e0d162
DW
59 if (blk_queue_enter(q, true) != 0)
60 return rc;
61
62 rc = bdev_direct_access(bdev, dax);
63 if (rc < 0) {
7a9eb206 64 dax->addr = ERR_PTR(rc);
b2e0d162
DW
65 blk_queue_exit(q);
66 return rc;
67 }
68 return rc;
69}
70
71static void dax_unmap_atomic(struct block_device *bdev,
72 const struct blk_dax_ctl *dax)
73{
74 if (IS_ERR(dax->addr))
75 return;
76 blk_queue_exit(bdev->bd_queue);
77}
78
642261ac
RZ
79static int dax_is_pmd_entry(void *entry)
80{
81 return (unsigned long)entry & RADIX_DAX_PMD;
82}
83
84static int dax_is_pte_entry(void *entry)
85{
86 return !((unsigned long)entry & RADIX_DAX_PMD);
87}
88
89static int dax_is_zero_entry(void *entry)
90{
91 return (unsigned long)entry & RADIX_DAX_HZP;
92}
93
94static int dax_is_empty_entry(void *entry)
95{
96 return (unsigned long)entry & RADIX_DAX_EMPTY;
97}
98
d1a5f2b4
DW
99struct page *read_dax_sector(struct block_device *bdev, sector_t n)
100{
101 struct page *page = alloc_pages(GFP_KERNEL, 0);
102 struct blk_dax_ctl dax = {
103 .size = PAGE_SIZE,
104 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
105 };
106 long rc;
107
108 if (!page)
109 return ERR_PTR(-ENOMEM);
110
111 rc = dax_map_atomic(bdev, &dax);
112 if (rc < 0)
113 return ERR_PTR(rc);
114 memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
115 dax_unmap_atomic(bdev, &dax);
116 return page;
117}
118
d475c634
MW
119static bool buffer_written(struct buffer_head *bh)
120{
121 return buffer_mapped(bh) && !buffer_unwritten(bh);
122}
123
b2e0d162
DW
124static sector_t to_sector(const struct buffer_head *bh,
125 const struct inode *inode)
126{
127 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
128
129 return sector;
130}
131
a95cd631
OS
132static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
133 loff_t start, loff_t end, get_block_t get_block,
134 struct buffer_head *bh)
d475c634 135{
b2e0d162 136 loff_t pos = start, max = start, bh_max = start;
14df6a4e 137 bool hole = false;
b2e0d162
DW
138 struct block_device *bdev = NULL;
139 int rw = iov_iter_rw(iter), rc;
140 long map_len = 0;
141 struct blk_dax_ctl dax = {
7a9eb206 142 .addr = ERR_PTR(-EIO),
b2e0d162 143 };
069c77bc
JK
144 unsigned blkbits = inode->i_blkbits;
145 sector_t file_blks = (i_size_read(inode) + (1 << blkbits) - 1)
146 >> blkbits;
b2e0d162
DW
147
148 if (rw == READ)
d475c634
MW
149 end = min(end, i_size_read(inode));
150
151 while (pos < end) {
2765cfbb 152 size_t len;
d475c634 153 if (pos == max) {
e94f5a22
JM
154 long page = pos >> PAGE_SHIFT;
155 sector_t block = page << (PAGE_SHIFT - blkbits);
d475c634
MW
156 unsigned first = pos - (block << blkbits);
157 long size;
158
159 if (pos == bh_max) {
160 bh->b_size = PAGE_ALIGN(end - pos);
161 bh->b_state = 0;
b2e0d162
DW
162 rc = get_block(inode, block, bh, rw == WRITE);
163 if (rc)
d475c634 164 break;
d475c634 165 bh_max = pos - first + bh->b_size;
b2e0d162 166 bdev = bh->b_bdev;
069c77bc
JK
167 /*
168 * We allow uninitialized buffers for writes
169 * beyond EOF as those cannot race with faults
170 */
171 WARN_ON_ONCE(
172 (buffer_new(bh) && block < file_blks) ||
173 (rw == WRITE && buffer_unwritten(bh)));
d475c634
MW
174 } else {
175 unsigned done = bh->b_size -
176 (bh_max - (pos - first));
177 bh->b_blocknr += done >> blkbits;
178 bh->b_size -= done;
179 }
180
b2e0d162 181 hole = rw == READ && !buffer_written(bh);
d475c634 182 if (hole) {
d475c634
MW
183 size = bh->b_size - first;
184 } else {
b2e0d162
DW
185 dax_unmap_atomic(bdev, &dax);
186 dax.sector = to_sector(bh, inode);
187 dax.size = bh->b_size;
188 map_len = dax_map_atomic(bdev, &dax);
189 if (map_len < 0) {
190 rc = map_len;
d475c634 191 break;
b2e0d162 192 }
b2e0d162
DW
193 dax.addr += first;
194 size = map_len - first;
d475c634 195 }
02395435
ES
196 /*
197 * pos + size is one past the last offset for IO,
198 * so pos + size can overflow loff_t at extreme offsets.
199 * Cast to u64 to catch this and get the true minimum.
200 */
201 max = min_t(u64, pos + size, end);
d475c634
MW
202 }
203
2765cfbb 204 if (iov_iter_rw(iter) == WRITE) {
b2e0d162 205 len = copy_from_iter_pmem(dax.addr, max - pos, iter);
2765cfbb 206 } else if (!hole)
b2e0d162 207 len = copy_to_iter((void __force *) dax.addr, max - pos,
e2e05394 208 iter);
d475c634
MW
209 else
210 len = iov_iter_zero(max - pos, iter);
211
cadfbb6e 212 if (!len) {
b2e0d162 213 rc = -EFAULT;
d475c634 214 break;
cadfbb6e 215 }
d475c634
MW
216
217 pos += len;
b2e0d162
DW
218 if (!IS_ERR(dax.addr))
219 dax.addr += len;
d475c634
MW
220 }
221
b2e0d162 222 dax_unmap_atomic(bdev, &dax);
2765cfbb 223
b2e0d162 224 return (pos == start) ? rc : pos - start;
d475c634
MW
225}
226
227/**
228 * dax_do_io - Perform I/O to a DAX file
d475c634
MW
229 * @iocb: The control block for this I/O
230 * @inode: The file which the I/O is directed at
231 * @iter: The addresses to do I/O from or to
d475c634
MW
232 * @get_block: The filesystem method used to translate file offsets to blocks
233 * @end_io: A filesystem callback for I/O completion
234 * @flags: See below
235 *
236 * This function uses the same locking scheme as do_blockdev_direct_IO:
237 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
238 * caller for writes. For reads, we take and release the i_mutex ourselves.
239 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
240 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
241 * is in progress.
242 */
a95cd631 243ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
c8b8e32d 244 struct iov_iter *iter, get_block_t get_block,
a95cd631 245 dio_iodone_t end_io, int flags)
d475c634
MW
246{
247 struct buffer_head bh;
248 ssize_t retval = -EINVAL;
c8b8e32d 249 loff_t pos = iocb->ki_pos;
d475c634
MW
250 loff_t end = pos + iov_iter_count(iter);
251
252 memset(&bh, 0, sizeof(bh));
eab95db6 253 bh.b_bdev = inode->i_sb->s_bdev;
d475c634 254
c3d98e39 255 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
5955102c 256 inode_lock(inode);
d475c634
MW
257
258 /* Protects against truncate */
bbab37dd
MW
259 if (!(flags & DIO_SKIP_DIO_COUNT))
260 inode_dio_begin(inode);
d475c634 261
a95cd631 262 retval = dax_io(inode, iter, pos, end, get_block, &bh);
d475c634 263
a95cd631 264 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
5955102c 265 inode_unlock(inode);
d475c634 266
187372a3
CH
267 if (end_io) {
268 int err;
269
270 err = end_io(iocb, pos, retval, bh.b_private);
271 if (err)
272 retval = err;
273 }
d475c634 274
bbab37dd
MW
275 if (!(flags & DIO_SKIP_DIO_COUNT))
276 inode_dio_end(inode);
d475c634
MW
277 return retval;
278}
279EXPORT_SYMBOL_GPL(dax_do_io);
f7ca90b1 280
ac401cc7
JK
281/*
282 * DAX radix tree locking
283 */
284struct exceptional_entry_key {
285 struct address_space *mapping;
63e95b5c 286 pgoff_t entry_start;
ac401cc7
JK
287};
288
289struct wait_exceptional_entry_queue {
290 wait_queue_t wait;
291 struct exceptional_entry_key key;
292};
293
63e95b5c
RZ
294static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
295 pgoff_t index, void *entry, struct exceptional_entry_key *key)
296{
297 unsigned long hash;
298
299 /*
300 * If 'entry' is a PMD, align the 'index' that we use for the wait
301 * queue to the start of that PMD. This ensures that all offsets in
302 * the range covered by the PMD map to the same bit lock.
303 */
642261ac 304 if (dax_is_pmd_entry(entry))
63e95b5c
RZ
305 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
306
307 key->mapping = mapping;
308 key->entry_start = index;
309
310 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
311 return wait_table + hash;
312}
313
ac401cc7
JK
314static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
315 int sync, void *keyp)
316{
317 struct exceptional_entry_key *key = keyp;
318 struct wait_exceptional_entry_queue *ewait =
319 container_of(wait, struct wait_exceptional_entry_queue, wait);
320
321 if (key->mapping != ewait->key.mapping ||
63e95b5c 322 key->entry_start != ewait->key.entry_start)
ac401cc7
JK
323 return 0;
324 return autoremove_wake_function(wait, mode, sync, NULL);
325}
326
327/*
328 * Check whether the given slot is locked. The function must be called with
329 * mapping->tree_lock held
330 */
331static inline int slot_locked(struct address_space *mapping, void **slot)
332{
333 unsigned long entry = (unsigned long)
334 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
335 return entry & RADIX_DAX_ENTRY_LOCK;
336}
337
338/*
339 * Mark the given slot is locked. The function must be called with
340 * mapping->tree_lock held
341 */
342static inline void *lock_slot(struct address_space *mapping, void **slot)
343{
344 unsigned long entry = (unsigned long)
345 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
346
347 entry |= RADIX_DAX_ENTRY_LOCK;
348 radix_tree_replace_slot(slot, (void *)entry);
349 return (void *)entry;
350}
351
352/*
353 * Mark the given slot is unlocked. The function must be called with
354 * mapping->tree_lock held
355 */
356static inline void *unlock_slot(struct address_space *mapping, void **slot)
357{
358 unsigned long entry = (unsigned long)
359 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
360
361 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
362 radix_tree_replace_slot(slot, (void *)entry);
363 return (void *)entry;
364}
365
366/*
367 * Lookup entry in radix tree, wait for it to become unlocked if it is
368 * exceptional entry and return it. The caller must call
369 * put_unlocked_mapping_entry() when he decided not to lock the entry or
370 * put_locked_mapping_entry() when he locked the entry and now wants to
371 * unlock it.
372 *
373 * The function must be called with mapping->tree_lock held.
374 */
375static void *get_unlocked_mapping_entry(struct address_space *mapping,
376 pgoff_t index, void ***slotp)
377{
e3ad61c6 378 void *entry, **slot;
ac401cc7 379 struct wait_exceptional_entry_queue ewait;
63e95b5c 380 wait_queue_head_t *wq;
ac401cc7
JK
381
382 init_wait(&ewait.wait);
383 ewait.wait.func = wake_exceptional_entry_func;
ac401cc7
JK
384
385 for (;;) {
e3ad61c6 386 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
ac401cc7 387 &slot);
e3ad61c6 388 if (!entry || !radix_tree_exceptional_entry(entry) ||
ac401cc7
JK
389 !slot_locked(mapping, slot)) {
390 if (slotp)
391 *slotp = slot;
e3ad61c6 392 return entry;
ac401cc7 393 }
63e95b5c
RZ
394
395 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
ac401cc7
JK
396 prepare_to_wait_exclusive(wq, &ewait.wait,
397 TASK_UNINTERRUPTIBLE);
398 spin_unlock_irq(&mapping->tree_lock);
399 schedule();
400 finish_wait(wq, &ewait.wait);
401 spin_lock_irq(&mapping->tree_lock);
402 }
403}
404
422476c4
RZ
405static void put_locked_mapping_entry(struct address_space *mapping,
406 pgoff_t index, void *entry)
407{
408 if (!radix_tree_exceptional_entry(entry)) {
409 unlock_page(entry);
410 put_page(entry);
411 } else {
412 dax_unlock_mapping_entry(mapping, index);
413 }
414}
415
416/*
417 * Called when we are done with radix tree entry we looked up via
418 * get_unlocked_mapping_entry() and which we didn't lock in the end.
419 */
420static void put_unlocked_mapping_entry(struct address_space *mapping,
421 pgoff_t index, void *entry)
422{
423 if (!radix_tree_exceptional_entry(entry))
424 return;
425
426 /* We have to wake up next waiter for the radix tree entry lock */
427 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
428}
429
ac401cc7
JK
430/*
431 * Find radix tree entry at given index. If it points to a page, return with
432 * the page locked. If it points to the exceptional entry, return with the
433 * radix tree entry locked. If the radix tree doesn't contain given index,
434 * create empty exceptional entry for the index and return with it locked.
435 *
642261ac
RZ
436 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
437 * either return that locked entry or will return an error. This error will
438 * happen if there are any 4k entries (either zero pages or DAX entries)
439 * within the 2MiB range that we are requesting.
440 *
441 * We always favor 4k entries over 2MiB entries. There isn't a flow where we
442 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
443 * insertion will fail if it finds any 4k entries already in the tree, and a
444 * 4k insertion will cause an existing 2MiB entry to be unmapped and
445 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as
446 * well as 2MiB empty entries.
447 *
448 * The exception to this downgrade path is for 2MiB DAX PMD entries that have
449 * real storage backing them. We will leave these real 2MiB DAX entries in
450 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
451 *
ac401cc7
JK
452 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
453 * persistent memory the benefit is doubtful. We can add that later if we can
454 * show it helps.
455 */
642261ac
RZ
456static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
457 unsigned long size_flag)
ac401cc7 458{
642261ac 459 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
e3ad61c6 460 void *entry, **slot;
ac401cc7
JK
461
462restart:
463 spin_lock_irq(&mapping->tree_lock);
e3ad61c6 464 entry = get_unlocked_mapping_entry(mapping, index, &slot);
642261ac
RZ
465
466 if (entry) {
467 if (size_flag & RADIX_DAX_PMD) {
468 if (!radix_tree_exceptional_entry(entry) ||
469 dax_is_pte_entry(entry)) {
470 put_unlocked_mapping_entry(mapping, index,
471 entry);
472 entry = ERR_PTR(-EEXIST);
473 goto out_unlock;
474 }
475 } else { /* trying to grab a PTE entry */
476 if (radix_tree_exceptional_entry(entry) &&
477 dax_is_pmd_entry(entry) &&
478 (dax_is_zero_entry(entry) ||
479 dax_is_empty_entry(entry))) {
480 pmd_downgrade = true;
481 }
482 }
483 }
484
ac401cc7 485 /* No entry for given index? Make sure radix tree is big enough. */
642261ac 486 if (!entry || pmd_downgrade) {
ac401cc7
JK
487 int err;
488
642261ac
RZ
489 if (pmd_downgrade) {
490 /*
491 * Make sure 'entry' remains valid while we drop
492 * mapping->tree_lock.
493 */
494 entry = lock_slot(mapping, slot);
495 }
496
ac401cc7
JK
497 spin_unlock_irq(&mapping->tree_lock);
498 err = radix_tree_preload(
499 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
642261ac
RZ
500 if (err) {
501 if (pmd_downgrade)
502 put_locked_mapping_entry(mapping, index, entry);
ac401cc7 503 return ERR_PTR(err);
642261ac
RZ
504 }
505
506 /*
507 * Besides huge zero pages the only other thing that gets
508 * downgraded are empty entries which don't need to be
509 * unmapped.
510 */
511 if (pmd_downgrade && dax_is_zero_entry(entry))
512 unmap_mapping_range(mapping,
513 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
514
ac401cc7 515 spin_lock_irq(&mapping->tree_lock);
642261ac
RZ
516
517 if (pmd_downgrade) {
518 radix_tree_delete(&mapping->page_tree, index);
519 mapping->nrexceptional--;
520 dax_wake_mapping_entry_waiter(mapping, index, entry,
521 true);
522 }
523
524 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
525
526 err = __radix_tree_insert(&mapping->page_tree, index,
527 dax_radix_order(entry), entry);
ac401cc7
JK
528 radix_tree_preload_end();
529 if (err) {
530 spin_unlock_irq(&mapping->tree_lock);
642261ac
RZ
531 /*
532 * Someone already created the entry? This is a
533 * normal failure when inserting PMDs in a range
534 * that already contains PTEs. In that case we want
535 * to return -EEXIST immediately.
536 */
537 if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD))
ac401cc7 538 goto restart;
642261ac
RZ
539 /*
540 * Our insertion of a DAX PMD entry failed, most
541 * likely because it collided with a PTE sized entry
542 * at a different index in the PMD range. We haven't
543 * inserted anything into the radix tree and have no
544 * waiters to wake.
545 */
ac401cc7
JK
546 return ERR_PTR(err);
547 }
548 /* Good, we have inserted empty locked entry into the tree. */
549 mapping->nrexceptional++;
550 spin_unlock_irq(&mapping->tree_lock);
e3ad61c6 551 return entry;
ac401cc7
JK
552 }
553 /* Normal page in radix tree? */
e3ad61c6
RZ
554 if (!radix_tree_exceptional_entry(entry)) {
555 struct page *page = entry;
ac401cc7
JK
556
557 get_page(page);
558 spin_unlock_irq(&mapping->tree_lock);
559 lock_page(page);
560 /* Page got truncated? Retry... */
561 if (unlikely(page->mapping != mapping)) {
562 unlock_page(page);
563 put_page(page);
564 goto restart;
565 }
566 return page;
567 }
e3ad61c6 568 entry = lock_slot(mapping, slot);
642261ac 569 out_unlock:
ac401cc7 570 spin_unlock_irq(&mapping->tree_lock);
e3ad61c6 571 return entry;
ac401cc7
JK
572}
573
63e95b5c
RZ
574/*
575 * We do not necessarily hold the mapping->tree_lock when we call this
576 * function so it is possible that 'entry' is no longer a valid item in the
642261ac
RZ
577 * radix tree. This is okay because all we really need to do is to find the
578 * correct waitqueue where tasks might be waiting for that old 'entry' and
579 * wake them.
63e95b5c 580 */
ac401cc7 581void dax_wake_mapping_entry_waiter(struct address_space *mapping,
63e95b5c 582 pgoff_t index, void *entry, bool wake_all)
ac401cc7 583{
63e95b5c
RZ
584 struct exceptional_entry_key key;
585 wait_queue_head_t *wq;
586
587 wq = dax_entry_waitqueue(mapping, index, entry, &key);
ac401cc7
JK
588
589 /*
590 * Checking for locked entry and prepare_to_wait_exclusive() happens
591 * under mapping->tree_lock, ditto for entry handling in our callers.
592 * So at this point all tasks that could have seen our entry locked
593 * must be in the waitqueue and the following check will see them.
594 */
63e95b5c 595 if (waitqueue_active(wq))
ac401cc7 596 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
ac401cc7
JK
597}
598
bc2466e4 599void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
ac401cc7 600{
e3ad61c6 601 void *entry, **slot;
ac401cc7
JK
602
603 spin_lock_irq(&mapping->tree_lock);
e3ad61c6
RZ
604 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
605 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
ac401cc7
JK
606 !slot_locked(mapping, slot))) {
607 spin_unlock_irq(&mapping->tree_lock);
608 return;
609 }
610 unlock_slot(mapping, slot);
611 spin_unlock_irq(&mapping->tree_lock);
63e95b5c 612 dax_wake_mapping_entry_waiter(mapping, index, entry, false);
ac401cc7
JK
613}
614
ac401cc7
JK
615/*
616 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
617 * entry to get unlocked before deleting it.
618 */
619int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
620{
621 void *entry;
622
623 spin_lock_irq(&mapping->tree_lock);
624 entry = get_unlocked_mapping_entry(mapping, index, NULL);
625 /*
626 * This gets called from truncate / punch_hole path. As such, the caller
627 * must hold locks protecting against concurrent modifications of the
628 * radix tree (usually fs-private i_mmap_sem for writing). Since the
629 * caller has seen exceptional entry for this index, we better find it
630 * at that index as well...
631 */
632 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
633 spin_unlock_irq(&mapping->tree_lock);
634 return 0;
635 }
636 radix_tree_delete(&mapping->page_tree, index);
637 mapping->nrexceptional--;
638 spin_unlock_irq(&mapping->tree_lock);
63e95b5c 639 dax_wake_mapping_entry_waiter(mapping, index, entry, true);
ac401cc7
JK
640
641 return 1;
642}
643
f7ca90b1
MW
644/*
645 * The user has performed a load from a hole in the file. Allocating
646 * a new page in the file would cause excessive storage usage for
647 * workloads with sparse files. We allocate a page cache page instead.
648 * We'll kick it out of the page cache if it's ever written to,
649 * otherwise it will simply fall out of the page cache under memory
650 * pressure without ever having been dirtied.
651 */
ac401cc7
JK
652static int dax_load_hole(struct address_space *mapping, void *entry,
653 struct vm_fault *vmf)
f7ca90b1 654{
ac401cc7 655 struct page *page;
f7ca90b1 656
ac401cc7
JK
657 /* Hole page already exists? Return it... */
658 if (!radix_tree_exceptional_entry(entry)) {
659 vmf->page = entry;
660 return VM_FAULT_LOCKED;
661 }
f7ca90b1 662
ac401cc7
JK
663 /* This will replace locked radix tree entry with a hole page */
664 page = find_or_create_page(mapping, vmf->pgoff,
665 vmf->gfp_mask | __GFP_ZERO);
666 if (!page) {
667 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
668 return VM_FAULT_OOM;
669 }
f7ca90b1
MW
670 vmf->page = page;
671 return VM_FAULT_LOCKED;
672}
673
b0d5e82f
CH
674static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
675 struct page *to, unsigned long vaddr)
f7ca90b1 676{
b2e0d162 677 struct blk_dax_ctl dax = {
b0d5e82f
CH
678 .sector = sector,
679 .size = size,
b2e0d162 680 };
e2e05394
RZ
681 void *vto;
682
b2e0d162
DW
683 if (dax_map_atomic(bdev, &dax) < 0)
684 return PTR_ERR(dax.addr);
f7ca90b1 685 vto = kmap_atomic(to);
b2e0d162 686 copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
f7ca90b1 687 kunmap_atomic(vto);
b2e0d162 688 dax_unmap_atomic(bdev, &dax);
f7ca90b1
MW
689 return 0;
690}
691
642261ac
RZ
692/*
693 * By this point grab_mapping_entry() has ensured that we have a locked entry
694 * of the appropriate size so we don't have to worry about downgrading PMDs to
695 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
696 * already in the tree, we will skip the insertion and just dirty the PMD as
697 * appropriate.
698 */
ac401cc7
JK
699static void *dax_insert_mapping_entry(struct address_space *mapping,
700 struct vm_fault *vmf,
642261ac
RZ
701 void *entry, sector_t sector,
702 unsigned long flags)
9973c98e
RZ
703{
704 struct radix_tree_root *page_tree = &mapping->page_tree;
ac401cc7
JK
705 int error = 0;
706 bool hole_fill = false;
707 void *new_entry;
708 pgoff_t index = vmf->pgoff;
9973c98e 709
ac401cc7 710 if (vmf->flags & FAULT_FLAG_WRITE)
d2b2a28e 711 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
9973c98e 712
ac401cc7
JK
713 /* Replacing hole page with block mapping? */
714 if (!radix_tree_exceptional_entry(entry)) {
715 hole_fill = true;
716 /*
717 * Unmap the page now before we remove it from page cache below.
718 * The page is locked so it cannot be faulted in again.
719 */
720 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
721 PAGE_SIZE, 0);
722 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
723 if (error)
724 return ERR_PTR(error);
642261ac
RZ
725 } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
726 /* replacing huge zero page with PMD block mapping */
727 unmap_mapping_range(mapping,
728 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
9973c98e
RZ
729 }
730
ac401cc7 731 spin_lock_irq(&mapping->tree_lock);
642261ac
RZ
732 new_entry = dax_radix_locked_entry(sector, flags);
733
ac401cc7
JK
734 if (hole_fill) {
735 __delete_from_page_cache(entry, NULL);
736 /* Drop pagecache reference */
737 put_page(entry);
642261ac
RZ
738 error = __radix_tree_insert(page_tree, index,
739 dax_radix_order(new_entry), new_entry);
ac401cc7
JK
740 if (error) {
741 new_entry = ERR_PTR(error);
9973c98e
RZ
742 goto unlock;
743 }
ac401cc7 744 mapping->nrexceptional++;
642261ac
RZ
745 } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
746 /*
747 * Only swap our new entry into the radix tree if the current
748 * entry is a zero page or an empty entry. If a normal PTE or
749 * PMD entry is already in the tree, we leave it alone. This
750 * means that if we are trying to insert a PTE and the
751 * existing entry is a PMD, we will just leave the PMD in the
752 * tree and dirty it if necessary.
753 */
ac401cc7
JK
754 void **slot;
755 void *ret;
9973c98e 756
ac401cc7
JK
757 ret = __radix_tree_lookup(page_tree, index, NULL, &slot);
758 WARN_ON_ONCE(ret != entry);
759 radix_tree_replace_slot(slot, new_entry);
9973c98e 760 }
ac401cc7 761 if (vmf->flags & FAULT_FLAG_WRITE)
9973c98e
RZ
762 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
763 unlock:
764 spin_unlock_irq(&mapping->tree_lock);
ac401cc7
JK
765 if (hole_fill) {
766 radix_tree_preload_end();
767 /*
768 * We don't need hole page anymore, it has been replaced with
769 * locked radix tree entry now.
770 */
771 if (mapping->a_ops->freepage)
772 mapping->a_ops->freepage(entry);
773 unlock_page(entry);
774 put_page(entry);
775 }
776 return new_entry;
9973c98e
RZ
777}
778
779static int dax_writeback_one(struct block_device *bdev,
780 struct address_space *mapping, pgoff_t index, void *entry)
781{
782 struct radix_tree_root *page_tree = &mapping->page_tree;
9973c98e
RZ
783 struct radix_tree_node *node;
784 struct blk_dax_ctl dax;
785 void **slot;
786 int ret = 0;
787
788 spin_lock_irq(&mapping->tree_lock);
789 /*
790 * Regular page slots are stabilized by the page lock even
791 * without the tree itself locked. These unlocked entries
792 * need verification under the tree lock.
793 */
794 if (!__radix_tree_lookup(page_tree, index, &node, &slot))
795 goto unlock;
796 if (*slot != entry)
797 goto unlock;
798
799 /* another fsync thread may have already written back this entry */
800 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
801 goto unlock;
802
642261ac
RZ
803 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
804 dax_is_zero_entry(entry))) {
9973c98e
RZ
805 ret = -EIO;
806 goto unlock;
807 }
808
642261ac
RZ
809 /*
810 * Even if dax_writeback_mapping_range() was given a wbc->range_start
811 * in the middle of a PMD, the 'index' we are given will be aligned to
812 * the start index of the PMD, as will the sector we pull from
813 * 'entry'. This allows us to flush for PMD_SIZE and not have to
814 * worry about partial PMD writebacks.
815 */
816 dax.sector = dax_radix_sector(entry);
817 dax.size = PAGE_SIZE << dax_radix_order(entry);
9973c98e
RZ
818 spin_unlock_irq(&mapping->tree_lock);
819
820 /*
821 * We cannot hold tree_lock while calling dax_map_atomic() because it
822 * eventually calls cond_resched().
823 */
824 ret = dax_map_atomic(bdev, &dax);
825 if (ret < 0)
826 return ret;
827
828 if (WARN_ON_ONCE(ret < dax.size)) {
829 ret = -EIO;
830 goto unmap;
831 }
832
833 wb_cache_pmem(dax.addr, dax.size);
834
835 spin_lock_irq(&mapping->tree_lock);
836 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
837 spin_unlock_irq(&mapping->tree_lock);
838 unmap:
839 dax_unmap_atomic(bdev, &dax);
840 return ret;
841
842 unlock:
843 spin_unlock_irq(&mapping->tree_lock);
844 return ret;
845}
846
847/*
848 * Flush the mapping to the persistent domain within the byte range of [start,
849 * end]. This is required by data integrity operations to ensure file data is
850 * on persistent storage prior to completion of the operation.
851 */
7f6d5b52
RZ
852int dax_writeback_mapping_range(struct address_space *mapping,
853 struct block_device *bdev, struct writeback_control *wbc)
9973c98e
RZ
854{
855 struct inode *inode = mapping->host;
642261ac 856 pgoff_t start_index, end_index;
9973c98e
RZ
857 pgoff_t indices[PAGEVEC_SIZE];
858 struct pagevec pvec;
859 bool done = false;
860 int i, ret = 0;
9973c98e
RZ
861
862 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
863 return -EIO;
864
7f6d5b52
RZ
865 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
866 return 0;
867
09cbfeaf
KS
868 start_index = wbc->range_start >> PAGE_SHIFT;
869 end_index = wbc->range_end >> PAGE_SHIFT;
9973c98e
RZ
870
871 tag_pages_for_writeback(mapping, start_index, end_index);
872
873 pagevec_init(&pvec, 0);
874 while (!done) {
875 pvec.nr = find_get_entries_tag(mapping, start_index,
876 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
877 pvec.pages, indices);
878
879 if (pvec.nr == 0)
880 break;
881
882 for (i = 0; i < pvec.nr; i++) {
883 if (indices[i] > end_index) {
884 done = true;
885 break;
886 }
887
888 ret = dax_writeback_one(bdev, mapping, indices[i],
889 pvec.pages[i]);
890 if (ret < 0)
891 return ret;
892 }
893 }
9973c98e
RZ
894 return 0;
895}
896EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
897
ac401cc7 898static int dax_insert_mapping(struct address_space *mapping,
1aaba095
CH
899 struct block_device *bdev, sector_t sector, size_t size,
900 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
f7ca90b1 901{
f7ca90b1 902 unsigned long vaddr = (unsigned long)vmf->virtual_address;
b2e0d162 903 struct blk_dax_ctl dax = {
1aaba095
CH
904 .sector = sector,
905 .size = size,
b2e0d162 906 };
ac401cc7
JK
907 void *ret;
908 void *entry = *entryp;
f7ca90b1 909
4d9a2c87
JK
910 if (dax_map_atomic(bdev, &dax) < 0)
911 return PTR_ERR(dax.addr);
b2e0d162 912 dax_unmap_atomic(bdev, &dax);
f7ca90b1 913
642261ac 914 ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
4d9a2c87
JK
915 if (IS_ERR(ret))
916 return PTR_ERR(ret);
ac401cc7 917 *entryp = ret;
9973c98e 918
4d9a2c87 919 return vm_insert_mixed(vma, vaddr, dax.pfn);
f7ca90b1
MW
920}
921
ce5c5d55 922/**
6b524995 923 * dax_fault - handle a page fault on a DAX file
ce5c5d55
DC
924 * @vma: The virtual memory area where the fault occurred
925 * @vmf: The description of the fault
926 * @get_block: The filesystem method used to translate file offsets to blocks
927 *
928 * When a page fault occurs, filesystems may call this helper in their
6b524995 929 * fault handler for DAX files. dax_fault() assumes the caller has done all
ce5c5d55
DC
930 * the necessary locking for the page fault to proceed successfully.
931 */
6b524995 932int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
02fbd139 933 get_block_t get_block)
f7ca90b1
MW
934{
935 struct file *file = vma->vm_file;
936 struct address_space *mapping = file->f_mapping;
937 struct inode *inode = mapping->host;
ac401cc7 938 void *entry;
f7ca90b1
MW
939 struct buffer_head bh;
940 unsigned long vaddr = (unsigned long)vmf->virtual_address;
941 unsigned blkbits = inode->i_blkbits;
942 sector_t block;
943 pgoff_t size;
944 int error;
945 int major = 0;
946
ac401cc7
JK
947 /*
948 * Check whether offset isn't beyond end of file now. Caller is supposed
949 * to hold locks serializing us with truncate / punch hole so this is
950 * a reliable test.
951 */
f7ca90b1
MW
952 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
953 if (vmf->pgoff >= size)
954 return VM_FAULT_SIGBUS;
955
956 memset(&bh, 0, sizeof(bh));
957 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
eab95db6 958 bh.b_bdev = inode->i_sb->s_bdev;
f7ca90b1
MW
959 bh.b_size = PAGE_SIZE;
960
642261ac 961 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
ac401cc7
JK
962 if (IS_ERR(entry)) {
963 error = PTR_ERR(entry);
964 goto out;
f7ca90b1
MW
965 }
966
967 error = get_block(inode, block, &bh, 0);
968 if (!error && (bh.b_size < PAGE_SIZE))
969 error = -EIO; /* fs corruption? */
970 if (error)
ac401cc7 971 goto unlock_entry;
f7ca90b1
MW
972
973 if (vmf->cow_page) {
974 struct page *new_page = vmf->cow_page;
975 if (buffer_written(&bh))
b0d5e82f
CH
976 error = copy_user_dax(bh.b_bdev, to_sector(&bh, inode),
977 bh.b_size, new_page, vaddr);
f7ca90b1
MW
978 else
979 clear_user_highpage(new_page, vaddr);
980 if (error)
ac401cc7
JK
981 goto unlock_entry;
982 if (!radix_tree_exceptional_entry(entry)) {
983 vmf->page = entry;
bc2466e4 984 return VM_FAULT_LOCKED;
ac401cc7 985 }
bc2466e4
JK
986 vmf->entry = entry;
987 return VM_FAULT_DAX_LOCKED;
f7ca90b1 988 }
f7ca90b1 989
ac401cc7 990 if (!buffer_mapped(&bh)) {
f7ca90b1
MW
991 if (vmf->flags & FAULT_FLAG_WRITE) {
992 error = get_block(inode, block, &bh, 1);
993 count_vm_event(PGMAJFAULT);
994 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
995 major = VM_FAULT_MAJOR;
996 if (!error && (bh.b_size < PAGE_SIZE))
997 error = -EIO;
998 if (error)
ac401cc7 999 goto unlock_entry;
f7ca90b1 1000 } else {
ac401cc7 1001 return dax_load_hole(mapping, entry, vmf);
f7ca90b1
MW
1002 }
1003 }
1004
02fbd139 1005 /* Filesystem should not return unwritten buffers to us! */
2b10945c 1006 WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
1aaba095
CH
1007 error = dax_insert_mapping(mapping, bh.b_bdev, to_sector(&bh, inode),
1008 bh.b_size, &entry, vma, vmf);
ac401cc7
JK
1009 unlock_entry:
1010 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
f7ca90b1
MW
1011 out:
1012 if (error == -ENOMEM)
1013 return VM_FAULT_OOM | major;
1014 /* -EBUSY is fine, somebody else faulted on the same PTE */
1015 if ((error < 0) && (error != -EBUSY))
1016 return VM_FAULT_SIGBUS | major;
1017 return VM_FAULT_NOPAGE | major;
f7ca90b1 1018}
f7ca90b1 1019EXPORT_SYMBOL_GPL(dax_fault);
4c0ccfef 1020
0e3b210c
BH
1021/**
1022 * dax_pfn_mkwrite - handle first write to DAX page
1023 * @vma: The virtual memory area where the fault occurred
1024 * @vmf: The description of the fault
0e3b210c
BH
1025 */
1026int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1027{
9973c98e 1028 struct file *file = vma->vm_file;
ac401cc7
JK
1029 struct address_space *mapping = file->f_mapping;
1030 void *entry;
1031 pgoff_t index = vmf->pgoff;
30f471fd 1032
ac401cc7
JK
1033 spin_lock_irq(&mapping->tree_lock);
1034 entry = get_unlocked_mapping_entry(mapping, index, NULL);
1035 if (!entry || !radix_tree_exceptional_entry(entry))
1036 goto out;
1037 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
1038 put_unlocked_mapping_entry(mapping, index, entry);
1039out:
1040 spin_unlock_irq(&mapping->tree_lock);
0e3b210c
BH
1041 return VM_FAULT_NOPAGE;
1042}
1043EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1044
4b0228fa
VV
1045static bool dax_range_is_aligned(struct block_device *bdev,
1046 unsigned int offset, unsigned int length)
1047{
1048 unsigned short sector_size = bdev_logical_block_size(bdev);
1049
1050 if (!IS_ALIGNED(offset, sector_size))
1051 return false;
1052 if (!IS_ALIGNED(length, sector_size))
1053 return false;
1054
1055 return true;
1056}
1057
679c8bd3
CH
1058int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
1059 unsigned int offset, unsigned int length)
1060{
1061 struct blk_dax_ctl dax = {
1062 .sector = sector,
1063 .size = PAGE_SIZE,
1064 };
1065
4b0228fa
VV
1066 if (dax_range_is_aligned(bdev, offset, length)) {
1067 sector_t start_sector = dax.sector + (offset >> 9);
1068
1069 return blkdev_issue_zeroout(bdev, start_sector,
1070 length >> 9, GFP_NOFS, true);
1071 } else {
1072 if (dax_map_atomic(bdev, &dax) < 0)
1073 return PTR_ERR(dax.addr);
1074 clear_pmem(dax.addr + offset, length);
4b0228fa
VV
1075 dax_unmap_atomic(bdev, &dax);
1076 }
679c8bd3
CH
1077 return 0;
1078}
1079EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1080
4c0ccfef 1081/**
25726bc1 1082 * dax_zero_page_range - zero a range within a page of a DAX file
4c0ccfef
MW
1083 * @inode: The file being truncated
1084 * @from: The file offset that is being truncated to
25726bc1 1085 * @length: The number of bytes to zero
4c0ccfef
MW
1086 * @get_block: The filesystem method used to translate file offsets to blocks
1087 *
25726bc1
MW
1088 * This function can be called by a filesystem when it is zeroing part of a
1089 * page in a DAX file. This is intended for hole-punch operations. If
1090 * you are truncating a file, the helper function dax_truncate_page() may be
1091 * more convenient.
4c0ccfef 1092 */
25726bc1
MW
1093int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1094 get_block_t get_block)
4c0ccfef
MW
1095{
1096 struct buffer_head bh;
09cbfeaf
KS
1097 pgoff_t index = from >> PAGE_SHIFT;
1098 unsigned offset = from & (PAGE_SIZE-1);
4c0ccfef
MW
1099 int err;
1100
1101 /* Block boundary? Nothing to do */
1102 if (!length)
1103 return 0;
aada54f9
RZ
1104 if (WARN_ON_ONCE((offset + length) > PAGE_SIZE))
1105 return -EINVAL;
4c0ccfef
MW
1106
1107 memset(&bh, 0, sizeof(bh));
eab95db6 1108 bh.b_bdev = inode->i_sb->s_bdev;
09cbfeaf 1109 bh.b_size = PAGE_SIZE;
4c0ccfef 1110 err = get_block(inode, index, &bh, 0);
679c8bd3 1111 if (err < 0 || !buffer_written(&bh))
4c0ccfef 1112 return err;
4c0ccfef 1113
679c8bd3
CH
1114 return __dax_zero_page_range(bh.b_bdev, to_sector(&bh, inode),
1115 offset, length);
4c0ccfef 1116}
25726bc1
MW
1117EXPORT_SYMBOL_GPL(dax_zero_page_range);
1118
1119/**
1120 * dax_truncate_page - handle a partial page being truncated in a DAX file
1121 * @inode: The file being truncated
1122 * @from: The file offset that is being truncated to
1123 * @get_block: The filesystem method used to translate file offsets to blocks
1124 *
1125 * Similar to block_truncate_page(), this function can be called by a
1126 * filesystem when it is truncating a DAX file to handle the partial page.
25726bc1
MW
1127 */
1128int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1129{
09cbfeaf 1130 unsigned length = PAGE_ALIGN(from) - from;
25726bc1
MW
1131 return dax_zero_page_range(inode, from, length, get_block);
1132}
4c0ccfef 1133EXPORT_SYMBOL_GPL(dax_truncate_page);
a254e568
CH
1134
1135#ifdef CONFIG_FS_IOMAP
333ccc97
RZ
1136static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1137{
1138 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
1139}
1140
a254e568 1141static loff_t
11c59c92 1142dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
a254e568
CH
1143 struct iomap *iomap)
1144{
1145 struct iov_iter *iter = data;
1146 loff_t end = pos + length, done = 0;
1147 ssize_t ret = 0;
1148
1149 if (iov_iter_rw(iter) == READ) {
1150 end = min(end, i_size_read(inode));
1151 if (pos >= end)
1152 return 0;
1153
1154 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1155 return iov_iter_zero(min(length, end - pos), iter);
1156 }
1157
1158 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1159 return -EIO;
1160
1161 while (pos < end) {
1162 unsigned offset = pos & (PAGE_SIZE - 1);
1163 struct blk_dax_ctl dax = { 0 };
1164 ssize_t map_len;
1165
333ccc97 1166 dax.sector = dax_iomap_sector(iomap, pos);
a254e568
CH
1167 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
1168 map_len = dax_map_atomic(iomap->bdev, &dax);
1169 if (map_len < 0) {
1170 ret = map_len;
1171 break;
1172 }
1173
1174 dax.addr += offset;
1175 map_len -= offset;
1176 if (map_len > end - pos)
1177 map_len = end - pos;
1178
1179 if (iov_iter_rw(iter) == WRITE)
1180 map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
1181 else
1182 map_len = copy_to_iter(dax.addr, map_len, iter);
1183 dax_unmap_atomic(iomap->bdev, &dax);
1184 if (map_len <= 0) {
1185 ret = map_len ? map_len : -EFAULT;
1186 break;
1187 }
1188
1189 pos += map_len;
1190 length -= map_len;
1191 done += map_len;
1192 }
1193
1194 return done ? done : ret;
1195}
1196
1197/**
11c59c92 1198 * dax_iomap_rw - Perform I/O to a DAX file
a254e568
CH
1199 * @iocb: The control block for this I/O
1200 * @iter: The addresses to do I/O from or to
1201 * @ops: iomap ops passed from the file system
1202 *
1203 * This function performs read and write operations to directly mapped
1204 * persistent memory. The callers needs to take care of read/write exclusion
1205 * and evicting any page cache pages in the region under I/O.
1206 */
1207ssize_t
11c59c92 1208dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
a254e568
CH
1209 struct iomap_ops *ops)
1210{
1211 struct address_space *mapping = iocb->ki_filp->f_mapping;
1212 struct inode *inode = mapping->host;
1213 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1214 unsigned flags = 0;
1215
1216 if (iov_iter_rw(iter) == WRITE)
1217 flags |= IOMAP_WRITE;
1218
1219 /*
1220 * Yes, even DAX files can have page cache attached to them: A zeroed
1221 * page is inserted into the pagecache when we have to serve a write
1222 * fault on a hole. It should never be dirtied and can simply be
1223 * dropped from the pagecache once we get real data for the page.
1224 *
1225 * XXX: This is racy against mmap, and there's nothing we can do about
1226 * it. We'll eventually need to shift this down even further so that
1227 * we can check if we allocated blocks over a hole first.
1228 */
1229 if (mapping->nrpages) {
1230 ret = invalidate_inode_pages2_range(mapping,
1231 pos >> PAGE_SHIFT,
1232 (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT);
1233 WARN_ON_ONCE(ret);
1234 }
1235
1236 while (iov_iter_count(iter)) {
1237 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
11c59c92 1238 iter, dax_iomap_actor);
a254e568
CH
1239 if (ret <= 0)
1240 break;
1241 pos += ret;
1242 done += ret;
1243 }
1244
1245 iocb->ki_pos += done;
1246 return done ? done : ret;
1247}
11c59c92 1248EXPORT_SYMBOL_GPL(dax_iomap_rw);
a7d73fe6
CH
1249
1250/**
11c59c92 1251 * dax_iomap_fault - handle a page fault on a DAX file
a7d73fe6
CH
1252 * @vma: The virtual memory area where the fault occurred
1253 * @vmf: The description of the fault
1254 * @ops: iomap ops passed from the file system
1255 *
1256 * When a page fault occurs, filesystems may call this helper in their fault
1257 * or mkwrite handler for DAX files. Assumes the caller has done all the
1258 * necessary locking for the page fault to proceed successfully.
1259 */
11c59c92 1260int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
a7d73fe6
CH
1261 struct iomap_ops *ops)
1262{
1263 struct address_space *mapping = vma->vm_file->f_mapping;
1264 struct inode *inode = mapping->host;
1265 unsigned long vaddr = (unsigned long)vmf->virtual_address;
1266 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1267 sector_t sector;
1268 struct iomap iomap = { 0 };
1269 unsigned flags = 0;
1270 int error, major = 0;
1550290b 1271 int locked_status = 0;
a7d73fe6
CH
1272 void *entry;
1273
1274 /*
1275 * Check whether offset isn't beyond end of file now. Caller is supposed
1276 * to hold locks serializing us with truncate / punch hole so this is
1277 * a reliable test.
1278 */
1279 if (pos >= i_size_read(inode))
1280 return VM_FAULT_SIGBUS;
1281
642261ac 1282 entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
a7d73fe6
CH
1283 if (IS_ERR(entry)) {
1284 error = PTR_ERR(entry);
1285 goto out;
1286 }
1287
1288 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1289 flags |= IOMAP_WRITE;
1290
1291 /*
1292 * Note that we don't bother to use iomap_apply here: DAX required
1293 * the file system block size to be equal the page size, which means
1294 * that we never have to deal with more than a single extent here.
1295 */
1296 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1297 if (error)
1298 goto unlock_entry;
1299 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1300 error = -EIO; /* fs corruption? */
1550290b 1301 goto finish_iomap;
a7d73fe6
CH
1302 }
1303
333ccc97 1304 sector = dax_iomap_sector(&iomap, pos);
a7d73fe6
CH
1305
1306 if (vmf->cow_page) {
1307 switch (iomap.type) {
1308 case IOMAP_HOLE:
1309 case IOMAP_UNWRITTEN:
1310 clear_user_highpage(vmf->cow_page, vaddr);
1311 break;
1312 case IOMAP_MAPPED:
1313 error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1314 vmf->cow_page, vaddr);
1315 break;
1316 default:
1317 WARN_ON_ONCE(1);
1318 error = -EIO;
1319 break;
1320 }
1321
1322 if (error)
1550290b 1323 goto finish_iomap;
a7d73fe6
CH
1324 if (!radix_tree_exceptional_entry(entry)) {
1325 vmf->page = entry;
1550290b
RZ
1326 locked_status = VM_FAULT_LOCKED;
1327 } else {
1328 vmf->entry = entry;
1329 locked_status = VM_FAULT_DAX_LOCKED;
a7d73fe6 1330 }
1550290b 1331 goto finish_iomap;
a7d73fe6
CH
1332 }
1333
1334 switch (iomap.type) {
1335 case IOMAP_MAPPED:
1336 if (iomap.flags & IOMAP_F_NEW) {
1337 count_vm_event(PGMAJFAULT);
1338 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1339 major = VM_FAULT_MAJOR;
1340 }
1341 error = dax_insert_mapping(mapping, iomap.bdev, sector,
1342 PAGE_SIZE, &entry, vma, vmf);
1343 break;
1344 case IOMAP_UNWRITTEN:
1345 case IOMAP_HOLE:
1550290b
RZ
1346 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1347 locked_status = dax_load_hole(mapping, entry, vmf);
1348 break;
1349 }
a7d73fe6
CH
1350 /*FALLTHRU*/
1351 default:
1352 WARN_ON_ONCE(1);
1353 error = -EIO;
1354 break;
1355 }
1356
1550290b
RZ
1357 finish_iomap:
1358 if (ops->iomap_end) {
1359 if (error) {
1360 /* keep previous error */
1361 ops->iomap_end(inode, pos, PAGE_SIZE, 0, flags,
1362 &iomap);
1363 } else {
1364 error = ops->iomap_end(inode, pos, PAGE_SIZE,
1365 PAGE_SIZE, flags, &iomap);
1366 }
1367 }
a7d73fe6 1368 unlock_entry:
1550290b
RZ
1369 if (!locked_status || error)
1370 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
a7d73fe6
CH
1371 out:
1372 if (error == -ENOMEM)
1373 return VM_FAULT_OOM | major;
1374 /* -EBUSY is fine, somebody else faulted on the same PTE */
1375 if (error < 0 && error != -EBUSY)
1376 return VM_FAULT_SIGBUS | major;
1550290b
RZ
1377 if (locked_status) {
1378 WARN_ON_ONCE(error); /* -EBUSY from ops->iomap_end? */
1379 return locked_status;
1380 }
a7d73fe6
CH
1381 return VM_FAULT_NOPAGE | major;
1382}
11c59c92 1383EXPORT_SYMBOL_GPL(dax_iomap_fault);
642261ac
RZ
1384
1385#ifdef CONFIG_FS_DAX_PMD
1386/*
1387 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
1388 * more often than one might expect in the below functions.
1389 */
1390#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
1391
1392static int dax_pmd_insert_mapping(struct vm_area_struct *vma, pmd_t *pmd,
1393 struct vm_fault *vmf, unsigned long address,
1394 struct iomap *iomap, loff_t pos, bool write, void **entryp)
1395{
1396 struct address_space *mapping = vma->vm_file->f_mapping;
1397 struct block_device *bdev = iomap->bdev;
1398 struct blk_dax_ctl dax = {
1399 .sector = dax_iomap_sector(iomap, pos),
1400 .size = PMD_SIZE,
1401 };
1402 long length = dax_map_atomic(bdev, &dax);
1403 void *ret;
1404
1405 if (length < 0) /* dax_map_atomic() failed */
1406 return VM_FAULT_FALLBACK;
1407 if (length < PMD_SIZE)
1408 goto unmap_fallback;
1409 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1410 goto unmap_fallback;
1411 if (!pfn_t_devmap(dax.pfn))
1412 goto unmap_fallback;
1413
1414 dax_unmap_atomic(bdev, &dax);
1415
1416 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1417 RADIX_DAX_PMD);
1418 if (IS_ERR(ret))
1419 return VM_FAULT_FALLBACK;
1420 *entryp = ret;
1421
1422 return vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write);
1423
1424 unmap_fallback:
1425 dax_unmap_atomic(bdev, &dax);
1426 return VM_FAULT_FALLBACK;
1427}
1428
1429static int dax_pmd_load_hole(struct vm_area_struct *vma, pmd_t *pmd,
1430 struct vm_fault *vmf, unsigned long address,
1431 struct iomap *iomap, void **entryp)
1432{
1433 struct address_space *mapping = vma->vm_file->f_mapping;
1434 unsigned long pmd_addr = address & PMD_MASK;
1435 struct page *zero_page;
1436 spinlock_t *ptl;
1437 pmd_t pmd_entry;
1438 void *ret;
1439
1440 zero_page = mm_get_huge_zero_page(vma->vm_mm);
1441
1442 if (unlikely(!zero_page))
1443 return VM_FAULT_FALLBACK;
1444
1445 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1446 RADIX_DAX_PMD | RADIX_DAX_HZP);
1447 if (IS_ERR(ret))
1448 return VM_FAULT_FALLBACK;
1449 *entryp = ret;
1450
1451 ptl = pmd_lock(vma->vm_mm, pmd);
1452 if (!pmd_none(*pmd)) {
1453 spin_unlock(ptl);
1454 return VM_FAULT_FALLBACK;
1455 }
1456
1457 pmd_entry = mk_pmd(zero_page, vma->vm_page_prot);
1458 pmd_entry = pmd_mkhuge(pmd_entry);
1459 set_pmd_at(vma->vm_mm, pmd_addr, pmd, pmd_entry);
1460 spin_unlock(ptl);
1461 return VM_FAULT_NOPAGE;
1462}
1463
1464int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1465 pmd_t *pmd, unsigned int flags, struct iomap_ops *ops)
1466{
1467 struct address_space *mapping = vma->vm_file->f_mapping;
1468 unsigned long pmd_addr = address & PMD_MASK;
1469 bool write = flags & FAULT_FLAG_WRITE;
1470 unsigned int iomap_flags = write ? IOMAP_WRITE : 0;
1471 struct inode *inode = mapping->host;
1472 int result = VM_FAULT_FALLBACK;
1473 struct iomap iomap = { 0 };
1474 pgoff_t max_pgoff, pgoff;
1475 struct vm_fault vmf;
1476 void *entry;
1477 loff_t pos;
1478 int error;
1479
1480 /* Fall back to PTEs if we're going to COW */
1481 if (write && !(vma->vm_flags & VM_SHARED))
1482 goto fallback;
1483
1484 /* If the PMD would extend outside the VMA */
1485 if (pmd_addr < vma->vm_start)
1486 goto fallback;
1487 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1488 goto fallback;
1489
1490 /*
1491 * Check whether offset isn't beyond end of file now. Caller is
1492 * supposed to hold locks serializing us with truncate / punch hole so
1493 * this is a reliable test.
1494 */
1495 pgoff = linear_page_index(vma, pmd_addr);
1496 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1497
1498 if (pgoff > max_pgoff)
1499 return VM_FAULT_SIGBUS;
1500
1501 /* If the PMD would extend beyond the file size */
1502 if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1503 goto fallback;
1504
1505 /*
1506 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1507 * PMD or a HZP entry. If it can't (because a 4k page is already in
1508 * the tree, for instance), it will return -EEXIST and we just fall
1509 * back to 4k entries.
1510 */
1511 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1512 if (IS_ERR(entry))
1513 goto fallback;
1514
1515 /*
1516 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1517 * setting up a mapping, so really we're using iomap_begin() as a way
1518 * to look up our filesystem block.
1519 */
1520 pos = (loff_t)pgoff << PAGE_SHIFT;
1521 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1522 if (error)
1523 goto unlock_entry;
1524 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1525 goto finish_iomap;
1526
1527 vmf.pgoff = pgoff;
1528 vmf.flags = flags;
1529 vmf.gfp_mask = mapping_gfp_mask(mapping) | __GFP_IO;
1530
1531 switch (iomap.type) {
1532 case IOMAP_MAPPED:
1533 result = dax_pmd_insert_mapping(vma, pmd, &vmf, address,
1534 &iomap, pos, write, &entry);
1535 break;
1536 case IOMAP_UNWRITTEN:
1537 case IOMAP_HOLE:
1538 if (WARN_ON_ONCE(write))
1539 goto finish_iomap;
1540 result = dax_pmd_load_hole(vma, pmd, &vmf, address, &iomap,
1541 &entry);
1542 break;
1543 default:
1544 WARN_ON_ONCE(1);
1545 break;
1546 }
1547
1548 finish_iomap:
1549 if (ops->iomap_end) {
1550 if (result == VM_FAULT_FALLBACK) {
1551 ops->iomap_end(inode, pos, PMD_SIZE, 0, iomap_flags,
1552 &iomap);
1553 } else {
1554 error = ops->iomap_end(inode, pos, PMD_SIZE, PMD_SIZE,
1555 iomap_flags, &iomap);
1556 if (error)
1557 result = VM_FAULT_FALLBACK;
1558 }
1559 }
1560 unlock_entry:
1561 put_locked_mapping_entry(mapping, pgoff, entry);
1562 fallback:
1563 if (result == VM_FAULT_FALLBACK) {
1564 split_huge_pmd(vma, pmd, address);
1565 count_vm_event(THP_FAULT_FALLBACK);
1566 }
1567 return result;
1568}
1569EXPORT_SYMBOL_GPL(dax_iomap_pmd_fault);
1570#endif /* CONFIG_FS_DAX_PMD */
a254e568 1571#endif /* CONFIG_FS_IOMAP */