ceph: separate banner and connect during handshake into distinct stages
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ceph / caps.c
CommitLineData
a8599bd8
SW
1#include "ceph_debug.h"
2
3#include <linux/fs.h>
4#include <linux/kernel.h>
5#include <linux/sched.h>
6#include <linux/vmalloc.h>
7#include <linux/wait.h>
8
9#include "super.h"
10#include "decode.h"
11#include "messenger.h"
12
13/*
14 * Capability management
15 *
16 * The Ceph metadata servers control client access to inode metadata
17 * and file data by issuing capabilities, granting clients permission
18 * to read and/or write both inode field and file data to OSDs
19 * (storage nodes). Each capability consists of a set of bits
20 * indicating which operations are allowed.
21 *
22 * If the client holds a *_SHARED cap, the client has a coherent value
23 * that can be safely read from the cached inode.
24 *
25 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
26 * client is allowed to change inode attributes (e.g., file size,
27 * mtime), note its dirty state in the ceph_cap, and asynchronously
28 * flush that metadata change to the MDS.
29 *
30 * In the event of a conflicting operation (perhaps by another
31 * client), the MDS will revoke the conflicting client capabilities.
32 *
33 * In order for a client to cache an inode, it must hold a capability
34 * with at least one MDS server. When inodes are released, release
35 * notifications are batched and periodically sent en masse to the MDS
36 * cluster to release server state.
37 */
38
39
40/*
41 * Generate readable cap strings for debugging output.
42 */
43#define MAX_CAP_STR 20
44static char cap_str[MAX_CAP_STR][40];
45static DEFINE_SPINLOCK(cap_str_lock);
46static int last_cap_str;
47
48static char *gcap_string(char *s, int c)
49{
50 if (c & CEPH_CAP_GSHARED)
51 *s++ = 's';
52 if (c & CEPH_CAP_GEXCL)
53 *s++ = 'x';
54 if (c & CEPH_CAP_GCACHE)
55 *s++ = 'c';
56 if (c & CEPH_CAP_GRD)
57 *s++ = 'r';
58 if (c & CEPH_CAP_GWR)
59 *s++ = 'w';
60 if (c & CEPH_CAP_GBUFFER)
61 *s++ = 'b';
62 if (c & CEPH_CAP_GLAZYIO)
63 *s++ = 'l';
64 return s;
65}
66
67const char *ceph_cap_string(int caps)
68{
69 int i;
70 char *s;
71 int c;
72
73 spin_lock(&cap_str_lock);
74 i = last_cap_str++;
75 if (last_cap_str == MAX_CAP_STR)
76 last_cap_str = 0;
77 spin_unlock(&cap_str_lock);
78
79 s = cap_str[i];
80
81 if (caps & CEPH_CAP_PIN)
82 *s++ = 'p';
83
84 c = (caps >> CEPH_CAP_SAUTH) & 3;
85 if (c) {
86 *s++ = 'A';
87 s = gcap_string(s, c);
88 }
89
90 c = (caps >> CEPH_CAP_SLINK) & 3;
91 if (c) {
92 *s++ = 'L';
93 s = gcap_string(s, c);
94 }
95
96 c = (caps >> CEPH_CAP_SXATTR) & 3;
97 if (c) {
98 *s++ = 'X';
99 s = gcap_string(s, c);
100 }
101
102 c = caps >> CEPH_CAP_SFILE;
103 if (c) {
104 *s++ = 'F';
105 s = gcap_string(s, c);
106 }
107
108 if (s == cap_str[i])
109 *s++ = '-';
110 *s = 0;
111 return cap_str[i];
112}
113
114/*
115 * Cap reservations
116 *
117 * Maintain a global pool of preallocated struct ceph_caps, referenced
118 * by struct ceph_caps_reservations. This ensures that we preallocate
119 * memory needed to successfully process an MDS response. (If an MDS
120 * sends us cap information and we fail to process it, we will have
121 * problems due to the client and MDS being out of sync.)
122 *
123 * Reservations are 'owned' by a ceph_cap_reservation context.
124 */
125static spinlock_t caps_list_lock;
126static struct list_head caps_list; /* unused (reserved or unreserved) */
127static int caps_total_count; /* total caps allocated */
128static int caps_use_count; /* in use */
129static int caps_reserve_count; /* unused, reserved */
130static int caps_avail_count; /* unused, unreserved */
131
132void __init ceph_caps_init(void)
133{
134 INIT_LIST_HEAD(&caps_list);
135 spin_lock_init(&caps_list_lock);
136}
137
138void ceph_caps_finalize(void)
139{
140 struct ceph_cap *cap;
141
142 spin_lock(&caps_list_lock);
143 while (!list_empty(&caps_list)) {
144 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
145 list_del(&cap->caps_item);
146 kmem_cache_free(ceph_cap_cachep, cap);
147 }
148 caps_total_count = 0;
149 caps_avail_count = 0;
150 caps_use_count = 0;
151 caps_reserve_count = 0;
152 spin_unlock(&caps_list_lock);
153}
154
155int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need)
156{
157 int i;
158 struct ceph_cap *cap;
159 int have;
160 int alloc = 0;
161 LIST_HEAD(newcaps);
162 int ret = 0;
163
164 dout("reserve caps ctx=%p need=%d\n", ctx, need);
165
166 /* first reserve any caps that are already allocated */
167 spin_lock(&caps_list_lock);
168 if (caps_avail_count >= need)
169 have = need;
170 else
171 have = caps_avail_count;
172 caps_avail_count -= have;
173 caps_reserve_count += have;
174 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
175 caps_avail_count);
176 spin_unlock(&caps_list_lock);
177
178 for (i = have; i < need; i++) {
179 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
180 if (!cap) {
181 ret = -ENOMEM;
182 goto out_alloc_count;
183 }
184 list_add(&cap->caps_item, &newcaps);
185 alloc++;
186 }
187 BUG_ON(have + alloc != need);
188
189 spin_lock(&caps_list_lock);
190 caps_total_count += alloc;
191 caps_reserve_count += alloc;
192 list_splice(&newcaps, &caps_list);
193
194 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
195 caps_avail_count);
196 spin_unlock(&caps_list_lock);
197
198 ctx->count = need;
199 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
200 ctx, caps_total_count, caps_use_count, caps_reserve_count,
201 caps_avail_count);
202 return 0;
203
204out_alloc_count:
205 /* we didn't manage to reserve as much as we needed */
206 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
207 ctx, need, have);
208 return ret;
209}
210
211int ceph_unreserve_caps(struct ceph_cap_reservation *ctx)
212{
213 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
214 if (ctx->count) {
215 spin_lock(&caps_list_lock);
216 BUG_ON(caps_reserve_count < ctx->count);
217 caps_reserve_count -= ctx->count;
218 caps_avail_count += ctx->count;
219 ctx->count = 0;
220 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
221 caps_total_count, caps_use_count, caps_reserve_count,
222 caps_avail_count);
223 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
224 caps_avail_count);
225 spin_unlock(&caps_list_lock);
226 }
227 return 0;
228}
229
230static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx)
231{
232 struct ceph_cap *cap = NULL;
233
234 /* temporary, until we do something about cap import/export */
235 if (!ctx)
236 return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
237
238 spin_lock(&caps_list_lock);
239 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
240 ctx, ctx->count, caps_total_count, caps_use_count,
241 caps_reserve_count, caps_avail_count);
242 BUG_ON(!ctx->count);
243 BUG_ON(ctx->count > caps_reserve_count);
244 BUG_ON(list_empty(&caps_list));
245
246 ctx->count--;
247 caps_reserve_count--;
248 caps_use_count++;
249
250 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
251 list_del(&cap->caps_item);
252
253 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
254 caps_avail_count);
255 spin_unlock(&caps_list_lock);
256 return cap;
257}
258
259static void put_cap(struct ceph_cap *cap,
260 struct ceph_cap_reservation *ctx)
261{
262 spin_lock(&caps_list_lock);
263 dout("put_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
264 ctx, ctx ? ctx->count : 0, caps_total_count, caps_use_count,
265 caps_reserve_count, caps_avail_count);
266 caps_use_count--;
267 /*
268 * Keep some preallocated caps around, at least enough to do a
269 * readdir (which needs to preallocate lots of them), to avoid
270 * lots of free/alloc churn.
271 */
272 if (caps_avail_count >= caps_reserve_count +
6b805185 273 ceph_client(cap->ci->vfs_inode.i_sb)->mount_args->max_readdir) {
a8599bd8
SW
274 caps_total_count--;
275 kmem_cache_free(ceph_cap_cachep, cap);
276 } else {
277 if (ctx) {
278 ctx->count++;
279 caps_reserve_count++;
280 } else {
281 caps_avail_count++;
282 }
283 list_add(&cap->caps_item, &caps_list);
284 }
285
286 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
287 caps_avail_count);
288 spin_unlock(&caps_list_lock);
289}
290
291void ceph_reservation_status(struct ceph_client *client,
292 int *total, int *avail, int *used, int *reserved)
293{
294 if (total)
295 *total = caps_total_count;
296 if (avail)
297 *avail = caps_avail_count;
298 if (used)
299 *used = caps_use_count;
300 if (reserved)
301 *reserved = caps_reserve_count;
302}
303
304/*
305 * Find ceph_cap for given mds, if any.
306 *
307 * Called with i_lock held.
308 */
309static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
310{
311 struct ceph_cap *cap;
312 struct rb_node *n = ci->i_caps.rb_node;
313
314 while (n) {
315 cap = rb_entry(n, struct ceph_cap, ci_node);
316 if (mds < cap->mds)
317 n = n->rb_left;
318 else if (mds > cap->mds)
319 n = n->rb_right;
320 else
321 return cap;
322 }
323 return NULL;
324}
325
326/*
327 * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else
328 * -1.
329 */
330static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq)
331{
332 struct ceph_cap *cap;
333 int mds = -1;
334 struct rb_node *p;
335
336 /* prefer mds with WR|WRBUFFER|EXCL caps */
337 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
338 cap = rb_entry(p, struct ceph_cap, ci_node);
339 mds = cap->mds;
340 if (mseq)
341 *mseq = cap->mseq;
342 if (cap->issued & (CEPH_CAP_FILE_WR |
343 CEPH_CAP_FILE_BUFFER |
344 CEPH_CAP_FILE_EXCL))
345 break;
346 }
347 return mds;
348}
349
350int ceph_get_cap_mds(struct inode *inode)
351{
352 int mds;
353 spin_lock(&inode->i_lock);
354 mds = __ceph_get_cap_mds(ceph_inode(inode), NULL);
355 spin_unlock(&inode->i_lock);
356 return mds;
357}
358
359/*
360 * Called under i_lock.
361 */
362static void __insert_cap_node(struct ceph_inode_info *ci,
363 struct ceph_cap *new)
364{
365 struct rb_node **p = &ci->i_caps.rb_node;
366 struct rb_node *parent = NULL;
367 struct ceph_cap *cap = NULL;
368
369 while (*p) {
370 parent = *p;
371 cap = rb_entry(parent, struct ceph_cap, ci_node);
372 if (new->mds < cap->mds)
373 p = &(*p)->rb_left;
374 else if (new->mds > cap->mds)
375 p = &(*p)->rb_right;
376 else
377 BUG();
378 }
379
380 rb_link_node(&new->ci_node, parent, p);
381 rb_insert_color(&new->ci_node, &ci->i_caps);
382}
383
384/*
385 * (re)set cap hold timeouts, which control the delayed release
386 * of unused caps back to the MDS. Should be called on cap use.
387 */
388static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
389 struct ceph_inode_info *ci)
390{
6b805185 391 struct ceph_mount_args *ma = mdsc->client->mount_args;
a8599bd8
SW
392
393 ci->i_hold_caps_min = round_jiffies(jiffies +
394 ma->caps_wanted_delay_min * HZ);
395 ci->i_hold_caps_max = round_jiffies(jiffies +
396 ma->caps_wanted_delay_max * HZ);
397 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
398 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
399}
400
401/*
402 * (Re)queue cap at the end of the delayed cap release list.
403 *
404 * If I_FLUSH is set, leave the inode at the front of the list.
405 *
406 * Caller holds i_lock
407 * -> we take mdsc->cap_delay_lock
408 */
409static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
410 struct ceph_inode_info *ci)
411{
412 __cap_set_timeouts(mdsc, ci);
413 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
414 ci->i_ceph_flags, ci->i_hold_caps_max);
415 if (!mdsc->stopping) {
416 spin_lock(&mdsc->cap_delay_lock);
417 if (!list_empty(&ci->i_cap_delay_list)) {
418 if (ci->i_ceph_flags & CEPH_I_FLUSH)
419 goto no_change;
420 list_del_init(&ci->i_cap_delay_list);
421 }
422 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
423no_change:
424 spin_unlock(&mdsc->cap_delay_lock);
425 }
426}
427
428/*
429 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
430 * indicating we should send a cap message to flush dirty metadata
431 * asap, and move to the front of the delayed cap list.
432 */
433static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
434 struct ceph_inode_info *ci)
435{
436 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
437 spin_lock(&mdsc->cap_delay_lock);
438 ci->i_ceph_flags |= CEPH_I_FLUSH;
439 if (!list_empty(&ci->i_cap_delay_list))
440 list_del_init(&ci->i_cap_delay_list);
441 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
442 spin_unlock(&mdsc->cap_delay_lock);
443}
444
445/*
446 * Cancel delayed work on cap.
447 *
448 * Caller must hold i_lock.
449 */
450static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
451 struct ceph_inode_info *ci)
452{
453 dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
454 if (list_empty(&ci->i_cap_delay_list))
455 return;
456 spin_lock(&mdsc->cap_delay_lock);
457 list_del_init(&ci->i_cap_delay_list);
458 spin_unlock(&mdsc->cap_delay_lock);
459}
460
461/*
462 * Common issue checks for add_cap, handle_cap_grant.
463 */
464static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
465 unsigned issued)
466{
467 unsigned had = __ceph_caps_issued(ci, NULL);
468
469 /*
470 * Each time we receive FILE_CACHE anew, we increment
471 * i_rdcache_gen.
472 */
473 if ((issued & CEPH_CAP_FILE_CACHE) &&
474 (had & CEPH_CAP_FILE_CACHE) == 0)
475 ci->i_rdcache_gen++;
476
477 /*
478 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
479 * don't know what happened to this directory while we didn't
480 * have the cap.
481 */
482 if ((issued & CEPH_CAP_FILE_SHARED) &&
483 (had & CEPH_CAP_FILE_SHARED) == 0) {
484 ci->i_shared_gen++;
485 if (S_ISDIR(ci->vfs_inode.i_mode)) {
486 dout(" marking %p NOT complete\n", &ci->vfs_inode);
487 ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
488 }
489 }
490}
491
492/*
493 * Add a capability under the given MDS session.
494 *
495 * Caller should hold session snap_rwsem (read) and s_mutex.
496 *
497 * @fmode is the open file mode, if we are opening a file, otherwise
498 * it is < 0. (This is so we can atomically add the cap and add an
499 * open file reference to it.)
500 */
501int ceph_add_cap(struct inode *inode,
502 struct ceph_mds_session *session, u64 cap_id,
503 int fmode, unsigned issued, unsigned wanted,
504 unsigned seq, unsigned mseq, u64 realmino, int flags,
505 struct ceph_cap_reservation *caps_reservation)
506{
507 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
508 struct ceph_inode_info *ci = ceph_inode(inode);
509 struct ceph_cap *new_cap = NULL;
510 struct ceph_cap *cap;
511 int mds = session->s_mds;
512 int actual_wanted;
513
514 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
515 session->s_mds, cap_id, ceph_cap_string(issued), seq);
516
517 /*
518 * If we are opening the file, include file mode wanted bits
519 * in wanted.
520 */
521 if (fmode >= 0)
522 wanted |= ceph_caps_for_mode(fmode);
523
524retry:
525 spin_lock(&inode->i_lock);
526 cap = __get_cap_for_mds(ci, mds);
527 if (!cap) {
528 if (new_cap) {
529 cap = new_cap;
530 new_cap = NULL;
531 } else {
532 spin_unlock(&inode->i_lock);
533 new_cap = get_cap(caps_reservation);
534 if (new_cap == NULL)
535 return -ENOMEM;
536 goto retry;
537 }
538
539 cap->issued = 0;
540 cap->implemented = 0;
541 cap->mds = mds;
542 cap->mds_wanted = 0;
543
544 cap->ci = ci;
545 __insert_cap_node(ci, cap);
546
547 /* clear out old exporting info? (i.e. on cap import) */
548 if (ci->i_cap_exporting_mds == mds) {
549 ci->i_cap_exporting_issued = 0;
550 ci->i_cap_exporting_mseq = 0;
551 ci->i_cap_exporting_mds = -1;
552 }
553
554 /* add to session cap list */
555 cap->session = session;
556 spin_lock(&session->s_cap_lock);
557 list_add_tail(&cap->session_caps, &session->s_caps);
558 session->s_nr_caps++;
559 spin_unlock(&session->s_cap_lock);
560 }
561
562 if (!ci->i_snap_realm) {
563 /*
564 * add this inode to the appropriate snap realm
565 */
566 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
567 realmino);
568 if (realm) {
569 ceph_get_snap_realm(mdsc, realm);
570 spin_lock(&realm->inodes_with_caps_lock);
571 ci->i_snap_realm = realm;
572 list_add(&ci->i_snap_realm_item,
573 &realm->inodes_with_caps);
574 spin_unlock(&realm->inodes_with_caps_lock);
575 } else {
576 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
577 realmino);
578 }
579 }
580
581 __check_cap_issue(ci, cap, issued);
582
583 /*
584 * If we are issued caps we don't want, or the mds' wanted
585 * value appears to be off, queue a check so we'll release
586 * later and/or update the mds wanted value.
587 */
588 actual_wanted = __ceph_caps_wanted(ci);
589 if ((wanted & ~actual_wanted) ||
590 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
591 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
592 ceph_cap_string(issued), ceph_cap_string(wanted),
593 ceph_cap_string(actual_wanted));
594 __cap_delay_requeue(mdsc, ci);
595 }
596
597 if (flags & CEPH_CAP_FLAG_AUTH)
598 ci->i_auth_cap = cap;
599 else if (ci->i_auth_cap == cap)
600 ci->i_auth_cap = NULL;
601
602 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
603 inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
604 ceph_cap_string(issued|cap->issued), seq, mds);
605 cap->cap_id = cap_id;
606 cap->issued = issued;
607 cap->implemented |= issued;
608 cap->mds_wanted |= wanted;
609 cap->seq = seq;
610 cap->issue_seq = seq;
611 cap->mseq = mseq;
685f9a5d
SW
612 cap->cap_gen = session->s_cap_gen;
613 cap->recon_gen = session->s_recon_gen;
a8599bd8
SW
614
615 if (fmode >= 0)
616 __ceph_get_fmode(ci, fmode);
617 spin_unlock(&inode->i_lock);
618 wake_up(&ci->i_cap_wq);
619 return 0;
620}
621
622/*
623 * Return true if cap has not timed out and belongs to the current
624 * generation of the MDS session (i.e. has not gone 'stale' due to
625 * us losing touch with the mds).
626 */
627static int __cap_is_valid(struct ceph_cap *cap)
628{
629 unsigned long ttl;
685f9a5d 630 u32 gen, recon_gen;
a8599bd8
SW
631
632 spin_lock(&cap->session->s_cap_lock);
633 gen = cap->session->s_cap_gen;
685f9a5d 634 recon_gen = cap->session->s_recon_gen;
a8599bd8
SW
635 ttl = cap->session->s_cap_ttl;
636 spin_unlock(&cap->session->s_cap_lock);
637
685f9a5d
SW
638 if (cap->recon_gen != recon_gen) {
639 dout("__cap_is_valid %p cap %p issued %s "
640 "but DEAD (recon_gen %u vs %u)\n", &cap->ci->vfs_inode,
641 cap, ceph_cap_string(cap->issued), cap->recon_gen,
642 recon_gen);
643 return 0;
644 }
645 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
a8599bd8
SW
646 dout("__cap_is_valid %p cap %p issued %s "
647 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
685f9a5d 648 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
a8599bd8
SW
649 return 0;
650 }
651
652 return 1;
653}
654
655/*
656 * Return set of valid cap bits issued to us. Note that caps time
657 * out, and may be invalidated in bulk if the client session times out
658 * and session->s_cap_gen is bumped.
659 */
660int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
661{
662 int have = ci->i_snap_caps;
663 struct ceph_cap *cap;
664 struct rb_node *p;
665
666 if (implemented)
667 *implemented = 0;
668 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
669 cap = rb_entry(p, struct ceph_cap, ci_node);
670 if (!__cap_is_valid(cap))
671 continue;
672 dout("__ceph_caps_issued %p cap %p issued %s\n",
673 &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
674 have |= cap->issued;
675 if (implemented)
676 *implemented |= cap->implemented;
677 }
678 return have;
679}
680
681/*
682 * Get cap bits issued by caps other than @ocap
683 */
684int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
685{
686 int have = ci->i_snap_caps;
687 struct ceph_cap *cap;
688 struct rb_node *p;
689
690 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
691 cap = rb_entry(p, struct ceph_cap, ci_node);
692 if (cap == ocap)
693 continue;
694 if (!__cap_is_valid(cap))
695 continue;
696 have |= cap->issued;
697 }
698 return have;
699}
700
701/*
702 * Move a cap to the end of the LRU (oldest caps at list head, newest
703 * at list tail).
704 */
705static void __touch_cap(struct ceph_cap *cap)
706{
707 struct ceph_mds_session *s = cap->session;
708
709 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
710 s->s_mds);
711 spin_lock(&s->s_cap_lock);
712 list_move_tail(&cap->session_caps, &s->s_caps);
713 spin_unlock(&s->s_cap_lock);
714}
715
716/*
717 * Check if we hold the given mask. If so, move the cap(s) to the
718 * front of their respective LRUs. (This is the preferred way for
719 * callers to check for caps they want.)
720 */
721int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
722{
723 struct ceph_cap *cap;
724 struct rb_node *p;
725 int have = ci->i_snap_caps;
726
727 if ((have & mask) == mask) {
728 dout("__ceph_caps_issued_mask %p snap issued %s"
729 " (mask %s)\n", &ci->vfs_inode,
730 ceph_cap_string(have),
731 ceph_cap_string(mask));
732 return 1;
733 }
734
735 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
736 cap = rb_entry(p, struct ceph_cap, ci_node);
737 if (!__cap_is_valid(cap))
738 continue;
739 if ((cap->issued & mask) == mask) {
740 dout("__ceph_caps_issued_mask %p cap %p issued %s"
741 " (mask %s)\n", &ci->vfs_inode, cap,
742 ceph_cap_string(cap->issued),
743 ceph_cap_string(mask));
744 if (touch)
745 __touch_cap(cap);
746 return 1;
747 }
748
749 /* does a combination of caps satisfy mask? */
750 have |= cap->issued;
751 if ((have & mask) == mask) {
752 dout("__ceph_caps_issued_mask %p combo issued %s"
753 " (mask %s)\n", &ci->vfs_inode,
754 ceph_cap_string(cap->issued),
755 ceph_cap_string(mask));
756 if (touch) {
757 struct rb_node *q;
758
759 /* touch this + preceeding caps */
760 __touch_cap(cap);
761 for (q = rb_first(&ci->i_caps); q != p;
762 q = rb_next(q)) {
763 cap = rb_entry(q, struct ceph_cap,
764 ci_node);
765 if (!__cap_is_valid(cap))
766 continue;
767 __touch_cap(cap);
768 }
769 }
770 return 1;
771 }
772 }
773
774 return 0;
775}
776
777/*
778 * Return true if mask caps are currently being revoked by an MDS.
779 */
780int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
781{
782 struct inode *inode = &ci->vfs_inode;
783 struct ceph_cap *cap;
784 struct rb_node *p;
785 int ret = 0;
786
787 spin_lock(&inode->i_lock);
788 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
789 cap = rb_entry(p, struct ceph_cap, ci_node);
790 if (__cap_is_valid(cap) &&
791 (cap->implemented & ~cap->issued & mask)) {
792 ret = 1;
793 break;
794 }
795 }
796 spin_unlock(&inode->i_lock);
797 dout("ceph_caps_revoking %p %s = %d\n", inode,
798 ceph_cap_string(mask), ret);
799 return ret;
800}
801
802int __ceph_caps_used(struct ceph_inode_info *ci)
803{
804 int used = 0;
805 if (ci->i_pin_ref)
806 used |= CEPH_CAP_PIN;
807 if (ci->i_rd_ref)
808 used |= CEPH_CAP_FILE_RD;
809 if (ci->i_rdcache_ref || ci->i_rdcache_gen)
810 used |= CEPH_CAP_FILE_CACHE;
811 if (ci->i_wr_ref)
812 used |= CEPH_CAP_FILE_WR;
813 if (ci->i_wrbuffer_ref)
814 used |= CEPH_CAP_FILE_BUFFER;
815 return used;
816}
817
818/*
819 * wanted, by virtue of open file modes
820 */
821int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
822{
823 int want = 0;
824 int mode;
825 for (mode = 0; mode < 4; mode++)
826 if (ci->i_nr_by_mode[mode])
827 want |= ceph_caps_for_mode(mode);
828 return want;
829}
830
831/*
832 * Return caps we have registered with the MDS(s) as 'wanted'.
833 */
834int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
835{
836 struct ceph_cap *cap;
837 struct rb_node *p;
838 int mds_wanted = 0;
839
840 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
841 cap = rb_entry(p, struct ceph_cap, ci_node);
842 if (!__cap_is_valid(cap))
843 continue;
844 mds_wanted |= cap->mds_wanted;
845 }
846 return mds_wanted;
847}
848
849/*
850 * called under i_lock
851 */
852static int __ceph_is_any_caps(struct ceph_inode_info *ci)
853{
854 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
855}
856
857/*
858 * caller should hold i_lock, and session s_mutex.
859 * returns true if this is the last cap. if so, caller should iput.
860 */
861void __ceph_remove_cap(struct ceph_cap *cap,
862 struct ceph_cap_reservation *ctx)
863{
864 struct ceph_mds_session *session = cap->session;
865 struct ceph_inode_info *ci = cap->ci;
866 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
867
868 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
869
870 /* remove from session list */
871 spin_lock(&session->s_cap_lock);
872 list_del_init(&cap->session_caps);
873 session->s_nr_caps--;
874 spin_unlock(&session->s_cap_lock);
875
876 /* remove from inode list */
877 rb_erase(&cap->ci_node, &ci->i_caps);
878 cap->session = NULL;
879 if (ci->i_auth_cap == cap)
880 ci->i_auth_cap = NULL;
881
882 put_cap(cap, ctx);
883
884 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
885 struct ceph_snap_realm *realm = ci->i_snap_realm;
886 spin_lock(&realm->inodes_with_caps_lock);
887 list_del_init(&ci->i_snap_realm_item);
888 ci->i_snap_realm_counter++;
889 ci->i_snap_realm = NULL;
890 spin_unlock(&realm->inodes_with_caps_lock);
891 ceph_put_snap_realm(mdsc, realm);
892 }
893 if (!__ceph_is_any_real_caps(ci))
894 __cap_delay_cancel(mdsc, ci);
895}
896
897/*
898 * Build and send a cap message to the given MDS.
899 *
900 * Caller should be holding s_mutex.
901 */
902static int send_cap_msg(struct ceph_mds_session *session,
903 u64 ino, u64 cid, int op,
904 int caps, int wanted, int dirty,
905 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
906 u64 size, u64 max_size,
907 struct timespec *mtime, struct timespec *atime,
908 u64 time_warp_seq,
909 uid_t uid, gid_t gid, mode_t mode,
910 u64 xattr_version,
911 struct ceph_buffer *xattrs_buf,
912 u64 follows)
913{
914 struct ceph_mds_caps *fc;
915 struct ceph_msg *msg;
916
917 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
918 " seq %u/%u mseq %u follows %lld size %llu/%llu"
919 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
920 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
921 ceph_cap_string(dirty),
922 seq, issue_seq, mseq, follows, size, max_size,
923 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
924
925 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), 0, 0, NULL);
926 if (IS_ERR(msg))
927 return PTR_ERR(msg);
928
929 fc = msg->front.iov_base;
930
931 memset(fc, 0, sizeof(*fc));
932
933 fc->cap_id = cpu_to_le64(cid);
934 fc->op = cpu_to_le32(op);
935 fc->seq = cpu_to_le32(seq);
936 fc->client_tid = cpu_to_le64(flush_tid);
937 fc->issue_seq = cpu_to_le32(issue_seq);
938 fc->migrate_seq = cpu_to_le32(mseq);
939 fc->caps = cpu_to_le32(caps);
940 fc->wanted = cpu_to_le32(wanted);
941 fc->dirty = cpu_to_le32(dirty);
942 fc->ino = cpu_to_le64(ino);
943 fc->snap_follows = cpu_to_le64(follows);
944
945 fc->size = cpu_to_le64(size);
946 fc->max_size = cpu_to_le64(max_size);
947 if (mtime)
948 ceph_encode_timespec(&fc->mtime, mtime);
949 if (atime)
950 ceph_encode_timespec(&fc->atime, atime);
951 fc->time_warp_seq = cpu_to_le32(time_warp_seq);
952
953 fc->uid = cpu_to_le32(uid);
954 fc->gid = cpu_to_le32(gid);
955 fc->mode = cpu_to_le32(mode);
956
957 fc->xattr_version = cpu_to_le64(xattr_version);
958 if (xattrs_buf) {
959 msg->middle = ceph_buffer_get(xattrs_buf);
960 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
961 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
962 }
963
964 ceph_con_send(&session->s_con, msg);
965 return 0;
966}
967
968/*
969 * Queue cap releases when an inode is dropped from our
970 * cache.
971 */
972void ceph_queue_caps_release(struct inode *inode)
973{
974 struct ceph_inode_info *ci = ceph_inode(inode);
975 struct rb_node *p;
976
977 spin_lock(&inode->i_lock);
978 p = rb_first(&ci->i_caps);
979 while (p) {
980 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
981 struct ceph_mds_session *session = cap->session;
982 struct ceph_msg *msg;
983 struct ceph_mds_cap_release *head;
984 struct ceph_mds_cap_item *item;
985
986 spin_lock(&session->s_cap_lock);
987 BUG_ON(!session->s_num_cap_releases);
988 msg = list_first_entry(&session->s_cap_releases,
989 struct ceph_msg, list_head);
990
991 dout(" adding %p release to mds%d msg %p (%d left)\n",
992 inode, session->s_mds, msg, session->s_num_cap_releases);
993
994 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
995 head = msg->front.iov_base;
996 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
997 item = msg->front.iov_base + msg->front.iov_len;
998 item->ino = cpu_to_le64(ceph_ino(inode));
999 item->cap_id = cpu_to_le64(cap->cap_id);
1000 item->migrate_seq = cpu_to_le32(cap->mseq);
1001 item->seq = cpu_to_le32(cap->issue_seq);
1002
1003 session->s_num_cap_releases--;
1004
1005 msg->front.iov_len += sizeof(*item);
1006 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1007 dout(" release msg %p full\n", msg);
1008 list_move_tail(&msg->list_head,
afcdaea3 1009 &session->s_cap_releases_done);
a8599bd8
SW
1010 } else {
1011 dout(" release msg %p at %d/%d (%d)\n", msg,
1012 (int)le32_to_cpu(head->num),
1013 (int)CEPH_CAPS_PER_RELEASE,
1014 (int)msg->front.iov_len);
1015 }
1016 spin_unlock(&session->s_cap_lock);
1017 p = rb_next(p);
1018 __ceph_remove_cap(cap, NULL);
1019
1020 }
1021 spin_unlock(&inode->i_lock);
1022}
1023
1024/*
1025 * Send a cap msg on the given inode. Update our caps state, then
1026 * drop i_lock and send the message.
1027 *
1028 * Make note of max_size reported/requested from mds, revoked caps
1029 * that have now been implemented.
1030 *
1031 * Make half-hearted attempt ot to invalidate page cache if we are
1032 * dropping RDCACHE. Note that this will leave behind locked pages
1033 * that we'll then need to deal with elsewhere.
1034 *
1035 * Return non-zero if delayed release, or we experienced an error
1036 * such that the caller should requeue + retry later.
1037 *
1038 * called with i_lock, then drops it.
1039 * caller should hold snap_rwsem (read), s_mutex.
1040 */
1041static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1042 int op, int used, int want, int retain, int flushing,
1043 unsigned *pflush_tid)
1044 __releases(cap->ci->vfs_inode->i_lock)
1045{
1046 struct ceph_inode_info *ci = cap->ci;
1047 struct inode *inode = &ci->vfs_inode;
1048 u64 cap_id = cap->cap_id;
1049 int held = cap->issued | cap->implemented;
1050 int revoking = cap->implemented & ~cap->issued;
1051 int dropping = cap->issued & ~retain;
1052 int keep;
1053 u64 seq, issue_seq, mseq, time_warp_seq, follows;
1054 u64 size, max_size;
1055 struct timespec mtime, atime;
1056 int wake = 0;
1057 mode_t mode;
1058 uid_t uid;
1059 gid_t gid;
1060 struct ceph_mds_session *session;
1061 u64 xattr_version = 0;
1062 int delayed = 0;
1063 u64 flush_tid = 0;
1064 int i;
1065 int ret;
1066
1067 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1068 inode, cap, cap->session,
1069 ceph_cap_string(held), ceph_cap_string(held & retain),
1070 ceph_cap_string(revoking));
1071 BUG_ON((retain & CEPH_CAP_PIN) == 0);
1072
1073 session = cap->session;
1074
1075 /* don't release wanted unless we've waited a bit. */
1076 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1077 time_before(jiffies, ci->i_hold_caps_min)) {
1078 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1079 ceph_cap_string(cap->issued),
1080 ceph_cap_string(cap->issued & retain),
1081 ceph_cap_string(cap->mds_wanted),
1082 ceph_cap_string(want));
1083 want |= cap->mds_wanted;
1084 retain |= cap->issued;
1085 delayed = 1;
1086 }
1087 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1088
1089 cap->issued &= retain; /* drop bits we don't want */
1090 if (cap->implemented & ~cap->issued) {
1091 /*
1092 * Wake up any waiters on wanted -> needed transition.
1093 * This is due to the weird transition from buffered
1094 * to sync IO... we need to flush dirty pages _before_
1095 * allowing sync writes to avoid reordering.
1096 */
1097 wake = 1;
1098 }
1099 cap->implemented &= cap->issued | used;
1100 cap->mds_wanted = want;
1101
1102 if (flushing) {
1103 /*
1104 * assign a tid for flush operations so we can avoid
1105 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1106 * clean type races. track latest tid for every bit
1107 * so we can handle flush AxFw, flush Fw, and have the
1108 * first ack clean Ax.
1109 */
1110 flush_tid = ++ci->i_cap_flush_last_tid;
1111 if (pflush_tid)
1112 *pflush_tid = flush_tid;
1113 dout(" cap_flush_tid %d\n", (int)flush_tid);
1114 for (i = 0; i < CEPH_CAP_BITS; i++)
1115 if (flushing & (1 << i))
1116 ci->i_cap_flush_tid[i] = flush_tid;
1117 }
1118
1119 keep = cap->implemented;
1120 seq = cap->seq;
1121 issue_seq = cap->issue_seq;
1122 mseq = cap->mseq;
1123 size = inode->i_size;
1124 ci->i_reported_size = size;
1125 max_size = ci->i_wanted_max_size;
1126 ci->i_requested_max_size = max_size;
1127 mtime = inode->i_mtime;
1128 atime = inode->i_atime;
1129 time_warp_seq = ci->i_time_warp_seq;
1130 follows = ci->i_snap_realm->cached_context->seq;
1131 uid = inode->i_uid;
1132 gid = inode->i_gid;
1133 mode = inode->i_mode;
1134
1135 if (dropping & CEPH_CAP_XATTR_EXCL) {
1136 __ceph_build_xattrs_blob(ci);
1137 xattr_version = ci->i_xattrs.version + 1;
1138 }
1139
1140 spin_unlock(&inode->i_lock);
1141
1142 if (dropping & CEPH_CAP_FILE_CACHE) {
1143 /* invalidate what we can */
1144 dout("invalidating pages on %p\n", inode);
1145 invalidate_mapping_pages(&inode->i_data, 0, -1);
1146 }
1147
1148 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1149 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1150 size, max_size, &mtime, &atime, time_warp_seq,
1151 uid, gid, mode,
1152 xattr_version,
1153 (flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL,
1154 follows);
1155 if (ret < 0) {
1156 dout("error sending cap msg, must requeue %p\n", inode);
1157 delayed = 1;
1158 }
1159
1160 if (wake)
1161 wake_up(&ci->i_cap_wq);
1162
1163 return delayed;
1164}
1165
1166/*
1167 * When a snapshot is taken, clients accumulate dirty metadata on
1168 * inodes with capabilities in ceph_cap_snaps to describe the file
1169 * state at the time the snapshot was taken. This must be flushed
1170 * asynchronously back to the MDS once sync writes complete and dirty
1171 * data is written out.
1172 *
1173 * Called under i_lock. Takes s_mutex as needed.
1174 */
1175void __ceph_flush_snaps(struct ceph_inode_info *ci,
1176 struct ceph_mds_session **psession)
1177{
1178 struct inode *inode = &ci->vfs_inode;
1179 int mds;
1180 struct ceph_cap_snap *capsnap;
1181 u32 mseq;
1182 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
1183 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1184 session->s_mutex */
1185 u64 next_follows = 0; /* keep track of how far we've gotten through the
1186 i_cap_snaps list, and skip these entries next time
1187 around to avoid an infinite loop */
1188
1189 if (psession)
1190 session = *psession;
1191
1192 dout("__flush_snaps %p\n", inode);
1193retry:
1194 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1195 /* avoid an infiniute loop after retry */
1196 if (capsnap->follows < next_follows)
1197 continue;
1198 /*
1199 * we need to wait for sync writes to complete and for dirty
1200 * pages to be written out.
1201 */
1202 if (capsnap->dirty_pages || capsnap->writing)
1203 continue;
1204
1205 /* pick mds, take s_mutex */
1206 mds = __ceph_get_cap_mds(ci, &mseq);
1207 if (session && session->s_mds != mds) {
1208 dout("oops, wrong session %p mutex\n", session);
1209 mutex_unlock(&session->s_mutex);
1210 ceph_put_mds_session(session);
1211 session = NULL;
1212 }
1213 if (!session) {
1214 spin_unlock(&inode->i_lock);
1215 mutex_lock(&mdsc->mutex);
1216 session = __ceph_lookup_mds_session(mdsc, mds);
1217 mutex_unlock(&mdsc->mutex);
1218 if (session) {
1219 dout("inverting session/ino locks on %p\n",
1220 session);
1221 mutex_lock(&session->s_mutex);
1222 }
1223 /*
1224 * if session == NULL, we raced against a cap
1225 * deletion. retry, and we'll get a better
1226 * @mds value next time.
1227 */
1228 spin_lock(&inode->i_lock);
1229 goto retry;
1230 }
1231
1232 capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1233 atomic_inc(&capsnap->nref);
1234 if (!list_empty(&capsnap->flushing_item))
1235 list_del_init(&capsnap->flushing_item);
1236 list_add_tail(&capsnap->flushing_item,
1237 &session->s_cap_snaps_flushing);
1238 spin_unlock(&inode->i_lock);
1239
1240 dout("flush_snaps %p cap_snap %p follows %lld size %llu\n",
1241 inode, capsnap, next_follows, capsnap->size);
1242 send_cap_msg(session, ceph_vino(inode).ino, 0,
1243 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1244 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1245 capsnap->size, 0,
1246 &capsnap->mtime, &capsnap->atime,
1247 capsnap->time_warp_seq,
1248 capsnap->uid, capsnap->gid, capsnap->mode,
1249 0, NULL,
1250 capsnap->follows);
1251
1252 next_follows = capsnap->follows + 1;
1253 ceph_put_cap_snap(capsnap);
1254
1255 spin_lock(&inode->i_lock);
1256 goto retry;
1257 }
1258
1259 /* we flushed them all; remove this inode from the queue */
1260 spin_lock(&mdsc->snap_flush_lock);
1261 list_del_init(&ci->i_snap_flush_item);
1262 spin_unlock(&mdsc->snap_flush_lock);
1263
1264 if (psession)
1265 *psession = session;
1266 else if (session) {
1267 mutex_unlock(&session->s_mutex);
1268 ceph_put_mds_session(session);
1269 }
1270}
1271
1272static void ceph_flush_snaps(struct ceph_inode_info *ci)
1273{
1274 struct inode *inode = &ci->vfs_inode;
1275
1276 spin_lock(&inode->i_lock);
1277 __ceph_flush_snaps(ci, NULL);
1278 spin_unlock(&inode->i_lock);
1279}
1280
76e3b390
SW
1281/*
1282 * Mark caps dirty. If inode is newly dirty, add to the global dirty
1283 * list.
1284 */
1285void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1286{
1287 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
1288 struct inode *inode = &ci->vfs_inode;
1289 int was = ci->i_dirty_caps;
1290 int dirty = 0;
1291
1292 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1293 ceph_cap_string(mask), ceph_cap_string(was),
1294 ceph_cap_string(was | mask));
1295 ci->i_dirty_caps |= mask;
1296 if (was == 0) {
1297 dout(" inode %p now dirty\n", &ci->vfs_inode);
1298 BUG_ON(!list_empty(&ci->i_dirty_item));
1299 spin_lock(&mdsc->cap_dirty_lock);
1300 list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1301 spin_unlock(&mdsc->cap_dirty_lock);
1302 if (ci->i_flushing_caps == 0) {
1303 igrab(inode);
1304 dirty |= I_DIRTY_SYNC;
1305 }
1306 }
1307 BUG_ON(list_empty(&ci->i_dirty_item));
1308 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1309 (mask & CEPH_CAP_FILE_BUFFER))
1310 dirty |= I_DIRTY_DATASYNC;
1311 if (dirty)
1312 __mark_inode_dirty(inode, dirty);
1313 __cap_delay_requeue(mdsc, ci);
1314}
1315
a8599bd8
SW
1316/*
1317 * Add dirty inode to the flushing list. Assigned a seq number so we
1318 * can wait for caps to flush without starving.
cdc35f96
SW
1319 *
1320 * Called under i_lock.
a8599bd8 1321 */
cdc35f96 1322static int __mark_caps_flushing(struct inode *inode,
a8599bd8
SW
1323 struct ceph_mds_session *session)
1324{
1325 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1326 struct ceph_inode_info *ci = ceph_inode(inode);
cdc35f96
SW
1327 int flushing;
1328
1329 BUG_ON(ci->i_dirty_caps == 0);
a8599bd8 1330 BUG_ON(list_empty(&ci->i_dirty_item));
cdc35f96
SW
1331
1332 flushing = ci->i_dirty_caps;
1333 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1334 ceph_cap_string(flushing),
1335 ceph_cap_string(ci->i_flushing_caps),
1336 ceph_cap_string(ci->i_flushing_caps | flushing));
1337 ci->i_flushing_caps |= flushing;
1338 ci->i_dirty_caps = 0;
afcdaea3 1339 dout(" inode %p now !dirty\n", inode);
cdc35f96 1340
a8599bd8 1341 spin_lock(&mdsc->cap_dirty_lock);
afcdaea3
SW
1342 list_del_init(&ci->i_dirty_item);
1343
1344 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
a8599bd8
SW
1345 if (list_empty(&ci->i_flushing_item)) {
1346 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1347 mdsc->num_cap_flushing++;
afcdaea3
SW
1348 dout(" inode %p now flushing seq %lld\n", inode,
1349 ci->i_cap_flush_seq);
1350 } else {
1351 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1352 dout(" inode %p now flushing (more) seq %lld\n", inode,
a8599bd8
SW
1353 ci->i_cap_flush_seq);
1354 }
1355 spin_unlock(&mdsc->cap_dirty_lock);
cdc35f96
SW
1356
1357 return flushing;
a8599bd8
SW
1358}
1359
1360/*
1361 * Swiss army knife function to examine currently used and wanted
1362 * versus held caps. Release, flush, ack revoked caps to mds as
1363 * appropriate.
1364 *
1365 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1366 * cap release further.
1367 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1368 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1369 * further delay.
1370 */
1371void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1372 struct ceph_mds_session *session)
1373{
1374 struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode);
1375 struct ceph_mds_client *mdsc = &client->mdsc;
1376 struct inode *inode = &ci->vfs_inode;
1377 struct ceph_cap *cap;
1378 int file_wanted, used;
1379 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1380 int drop_session_lock = session ? 0 : 1;
1381 int want, retain, revoking, flushing = 0;
1382 int mds = -1; /* keep track of how far we've gone through i_caps list
1383 to avoid an infinite loop on retry */
1384 struct rb_node *p;
1385 int tried_invalidate = 0;
1386 int delayed = 0, sent = 0, force_requeue = 0, num;
1387 int is_delayed = flags & CHECK_CAPS_NODELAY;
1388
1389 /* if we are unmounting, flush any unused caps immediately. */
1390 if (mdsc->stopping)
1391 is_delayed = 1;
1392
1393 spin_lock(&inode->i_lock);
1394
1395 if (ci->i_ceph_flags & CEPH_I_FLUSH)
1396 flags |= CHECK_CAPS_FLUSH;
1397
1398 /* flush snaps first time around only */
1399 if (!list_empty(&ci->i_cap_snaps))
1400 __ceph_flush_snaps(ci, &session);
1401 goto retry_locked;
1402retry:
1403 spin_lock(&inode->i_lock);
1404retry_locked:
1405 file_wanted = __ceph_caps_file_wanted(ci);
1406 used = __ceph_caps_used(ci);
1407 want = file_wanted | used;
1408
1409 retain = want | CEPH_CAP_PIN;
1410 if (!mdsc->stopping && inode->i_nlink > 0) {
1411 if (want) {
1412 retain |= CEPH_CAP_ANY; /* be greedy */
1413 } else {
1414 retain |= CEPH_CAP_ANY_SHARED;
1415 /*
1416 * keep RD only if we didn't have the file open RW,
1417 * because then the mds would revoke it anyway to
1418 * journal max_size=0.
1419 */
1420 if (ci->i_max_size == 0)
1421 retain |= CEPH_CAP_ANY_RD;
1422 }
1423 }
1424
1425 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1426 " issued %s retain %s %s%s%s\n", inode,
1427 ceph_cap_string(file_wanted),
1428 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1429 ceph_cap_string(ci->i_flushing_caps),
1430 ceph_cap_string(__ceph_caps_issued(ci, NULL)),
1431 ceph_cap_string(retain),
1432 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1433 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1434 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1435
1436 /*
1437 * If we no longer need to hold onto old our caps, and we may
1438 * have cached pages, but don't want them, then try to invalidate.
1439 * If we fail, it's because pages are locked.... try again later.
1440 */
1441 if ((!is_delayed || mdsc->stopping) &&
1442 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1443 ci->i_rdcache_gen && /* may have cached pages */
1444 file_wanted == 0 && /* no open files */
1445 !ci->i_truncate_pending &&
1446 !tried_invalidate) {
1447 u32 invalidating_gen = ci->i_rdcache_gen;
1448 int ret;
1449
1450 dout("check_caps trying to invalidate on %p\n", inode);
1451 spin_unlock(&inode->i_lock);
1452 ret = invalidate_inode_pages2(&inode->i_data);
1453 spin_lock(&inode->i_lock);
1454 if (ret == 0 && invalidating_gen == ci->i_rdcache_gen) {
1455 /* success. */
1456 ci->i_rdcache_gen = 0;
1457 ci->i_rdcache_revoking = 0;
1458 } else {
1459 dout("check_caps failed to invalidate pages\n");
1460 /* we failed to invalidate pages. check these
1461 caps again later. */
1462 force_requeue = 1;
1463 __cap_set_timeouts(mdsc, ci);
1464 }
1465 tried_invalidate = 1;
1466 goto retry_locked;
1467 }
1468
1469 num = 0;
1470 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1471 cap = rb_entry(p, struct ceph_cap, ci_node);
1472 num++;
1473
1474 /* avoid looping forever */
1475 if (mds >= cap->mds ||
1476 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1477 continue;
1478
1479 /* NOTE: no side-effects allowed, until we take s_mutex */
1480
1481 revoking = cap->implemented & ~cap->issued;
1482 if (revoking)
1483 dout("mds%d revoking %s\n", cap->mds,
1484 ceph_cap_string(revoking));
1485
1486 if (cap == ci->i_auth_cap &&
1487 (cap->issued & CEPH_CAP_FILE_WR)) {
1488 /* request larger max_size from MDS? */
1489 if (ci->i_wanted_max_size > ci->i_max_size &&
1490 ci->i_wanted_max_size > ci->i_requested_max_size) {
1491 dout("requesting new max_size\n");
1492 goto ack;
1493 }
1494
1495 /* approaching file_max? */
1496 if ((inode->i_size << 1) >= ci->i_max_size &&
1497 (ci->i_reported_size << 1) < ci->i_max_size) {
1498 dout("i_size approaching max_size\n");
1499 goto ack;
1500 }
1501 }
1502 /* flush anything dirty? */
1503 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1504 ci->i_dirty_caps) {
1505 dout("flushing dirty caps\n");
1506 goto ack;
1507 }
1508
1509 /* completed revocation? going down and there are no caps? */
1510 if (revoking && (revoking & used) == 0) {
1511 dout("completed revocation of %s\n",
1512 ceph_cap_string(cap->implemented & ~cap->issued));
1513 goto ack;
1514 }
1515
1516 /* want more caps from mds? */
1517 if (want & ~(cap->mds_wanted | cap->issued))
1518 goto ack;
1519
1520 /* things we might delay */
1521 if ((cap->issued & ~retain) == 0 &&
1522 cap->mds_wanted == want)
1523 continue; /* nope, all good */
1524
1525 if (is_delayed)
1526 goto ack;
1527
1528 /* delay? */
1529 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1530 time_before(jiffies, ci->i_hold_caps_max)) {
1531 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1532 ceph_cap_string(cap->issued),
1533 ceph_cap_string(cap->issued & retain),
1534 ceph_cap_string(cap->mds_wanted),
1535 ceph_cap_string(want));
1536 delayed++;
1537 continue;
1538 }
1539
1540ack:
1541 if (session && session != cap->session) {
1542 dout("oops, wrong session %p mutex\n", session);
1543 mutex_unlock(&session->s_mutex);
1544 session = NULL;
1545 }
1546 if (!session) {
1547 session = cap->session;
1548 if (mutex_trylock(&session->s_mutex) == 0) {
1549 dout("inverting session/ino locks on %p\n",
1550 session);
1551 spin_unlock(&inode->i_lock);
1552 if (took_snap_rwsem) {
1553 up_read(&mdsc->snap_rwsem);
1554 took_snap_rwsem = 0;
1555 }
1556 mutex_lock(&session->s_mutex);
1557 goto retry;
1558 }
1559 }
1560 /* take snap_rwsem after session mutex */
1561 if (!took_snap_rwsem) {
1562 if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1563 dout("inverting snap/in locks on %p\n",
1564 inode);
1565 spin_unlock(&inode->i_lock);
1566 down_read(&mdsc->snap_rwsem);
1567 took_snap_rwsem = 1;
1568 goto retry;
1569 }
1570 took_snap_rwsem = 1;
1571 }
1572
cdc35f96
SW
1573 if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1574 flushing = __mark_caps_flushing(inode, session);
a8599bd8
SW
1575
1576 mds = cap->mds; /* remember mds, so we don't repeat */
1577 sent++;
1578
1579 /* __send_cap drops i_lock */
1580 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1581 retain, flushing, NULL);
1582 goto retry; /* retake i_lock and restart our cap scan. */
1583 }
1584
1585 /*
1586 * Reschedule delayed caps release if we delayed anything,
1587 * otherwise cancel.
1588 */
1589 if (delayed && is_delayed)
1590 force_requeue = 1; /* __send_cap delayed release; requeue */
1591 if (!delayed && !is_delayed)
1592 __cap_delay_cancel(mdsc, ci);
1593 else if (!is_delayed || force_requeue)
1594 __cap_delay_requeue(mdsc, ci);
1595
1596 spin_unlock(&inode->i_lock);
1597
1598 if (session && drop_session_lock)
1599 mutex_unlock(&session->s_mutex);
1600 if (took_snap_rwsem)
1601 up_read(&mdsc->snap_rwsem);
1602}
1603
a8599bd8
SW
1604/*
1605 * Try to flush dirty caps back to the auth mds.
1606 */
1607static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1608 unsigned *flush_tid)
1609{
1610 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1611 struct ceph_inode_info *ci = ceph_inode(inode);
1612 int unlock_session = session ? 0 : 1;
1613 int flushing = 0;
1614
1615retry:
1616 spin_lock(&inode->i_lock);
1617 if (ci->i_dirty_caps && ci->i_auth_cap) {
1618 struct ceph_cap *cap = ci->i_auth_cap;
1619 int used = __ceph_caps_used(ci);
1620 int want = __ceph_caps_wanted(ci);
1621 int delayed;
1622
1623 if (!session) {
1624 spin_unlock(&inode->i_lock);
1625 session = cap->session;
1626 mutex_lock(&session->s_mutex);
1627 goto retry;
1628 }
1629 BUG_ON(session != cap->session);
1630 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1631 goto out;
1632
cdc35f96 1633 flushing = __mark_caps_flushing(inode, session);
a8599bd8
SW
1634
1635 /* __send_cap drops i_lock */
1636 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1637 cap->issued | cap->implemented, flushing,
1638 flush_tid);
1639 if (!delayed)
1640 goto out_unlocked;
1641
1642 spin_lock(&inode->i_lock);
1643 __cap_delay_requeue(mdsc, ci);
1644 }
1645out:
1646 spin_unlock(&inode->i_lock);
1647out_unlocked:
1648 if (session && unlock_session)
1649 mutex_unlock(&session->s_mutex);
1650 return flushing;
1651}
1652
1653/*
1654 * Return true if we've flushed caps through the given flush_tid.
1655 */
1656static int caps_are_flushed(struct inode *inode, unsigned tid)
1657{
1658 struct ceph_inode_info *ci = ceph_inode(inode);
1659 int dirty, i, ret = 1;
1660
1661 spin_lock(&inode->i_lock);
1662 dirty = __ceph_caps_dirty(ci);
1663 for (i = 0; i < CEPH_CAP_BITS; i++)
1664 if ((ci->i_flushing_caps & (1 << i)) &&
1665 ci->i_cap_flush_tid[i] <= tid) {
1666 /* still flushing this bit */
1667 ret = 0;
1668 break;
1669 }
1670 spin_unlock(&inode->i_lock);
1671 return ret;
1672}
1673
1674/*
1675 * Wait on any unsafe replies for the given inode. First wait on the
1676 * newest request, and make that the upper bound. Then, if there are
1677 * more requests, keep waiting on the oldest as long as it is still older
1678 * than the original request.
1679 */
1680static void sync_write_wait(struct inode *inode)
1681{
1682 struct ceph_inode_info *ci = ceph_inode(inode);
1683 struct list_head *head = &ci->i_unsafe_writes;
1684 struct ceph_osd_request *req;
1685 u64 last_tid;
1686
1687 spin_lock(&ci->i_unsafe_lock);
1688 if (list_empty(head))
1689 goto out;
1690
1691 /* set upper bound as _last_ entry in chain */
1692 req = list_entry(head->prev, struct ceph_osd_request,
1693 r_unsafe_item);
1694 last_tid = req->r_tid;
1695
1696 do {
1697 ceph_osdc_get_request(req);
1698 spin_unlock(&ci->i_unsafe_lock);
1699 dout("sync_write_wait on tid %llu (until %llu)\n",
1700 req->r_tid, last_tid);
1701 wait_for_completion(&req->r_safe_completion);
1702 spin_lock(&ci->i_unsafe_lock);
1703 ceph_osdc_put_request(req);
1704
1705 /*
1706 * from here on look at first entry in chain, since we
1707 * only want to wait for anything older than last_tid
1708 */
1709 if (list_empty(head))
1710 break;
1711 req = list_entry(head->next, struct ceph_osd_request,
1712 r_unsafe_item);
1713 } while (req->r_tid < last_tid);
1714out:
1715 spin_unlock(&ci->i_unsafe_lock);
1716}
1717
1718int ceph_fsync(struct file *file, struct dentry *dentry, int datasync)
1719{
1720 struct inode *inode = dentry->d_inode;
1721 struct ceph_inode_info *ci = ceph_inode(inode);
1722 unsigned flush_tid;
1723 int ret;
1724 int dirty;
1725
1726 dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1727 sync_write_wait(inode);
1728
1729 ret = filemap_write_and_wait(inode->i_mapping);
1730 if (ret < 0)
1731 return ret;
1732
1733 dirty = try_flush_caps(inode, NULL, &flush_tid);
1734 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1735
1736 /*
1737 * only wait on non-file metadata writeback (the mds
1738 * can recover size and mtime, so we don't need to
1739 * wait for that)
1740 */
1741 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1742 dout("fsync waiting for flush_tid %u\n", flush_tid);
1743 ret = wait_event_interruptible(ci->i_cap_wq,
1744 caps_are_flushed(inode, flush_tid));
1745 }
1746
1747 dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1748 return ret;
1749}
1750
1751/*
1752 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1753 * queue inode for flush but don't do so immediately, because we can
1754 * get by with fewer MDS messages if we wait for data writeback to
1755 * complete first.
1756 */
1757int ceph_write_inode(struct inode *inode, int wait)
1758{
1759 struct ceph_inode_info *ci = ceph_inode(inode);
1760 unsigned flush_tid;
1761 int err = 0;
1762 int dirty;
1763
1764 dout("write_inode %p wait=%d\n", inode, wait);
1765 if (wait) {
1766 dirty = try_flush_caps(inode, NULL, &flush_tid);
1767 if (dirty)
1768 err = wait_event_interruptible(ci->i_cap_wq,
1769 caps_are_flushed(inode, flush_tid));
1770 } else {
1771 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1772
1773 spin_lock(&inode->i_lock);
1774 if (__ceph_caps_dirty(ci))
1775 __cap_delay_requeue_front(mdsc, ci);
1776 spin_unlock(&inode->i_lock);
1777 }
1778 return err;
1779}
1780
1781/*
1782 * After a recovering MDS goes active, we need to resend any caps
1783 * we were flushing.
1784 *
1785 * Caller holds session->s_mutex.
1786 */
1787static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1788 struct ceph_mds_session *session)
1789{
1790 struct ceph_cap_snap *capsnap;
1791
1792 dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1793 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1794 flushing_item) {
1795 struct ceph_inode_info *ci = capsnap->ci;
1796 struct inode *inode = &ci->vfs_inode;
1797 struct ceph_cap *cap;
1798
1799 spin_lock(&inode->i_lock);
1800 cap = ci->i_auth_cap;
1801 if (cap && cap->session == session) {
1802 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1803 cap, capsnap);
1804 __ceph_flush_snaps(ci, &session);
1805 } else {
1806 pr_err("%p auth cap %p not mds%d ???\n", inode,
1807 cap, session->s_mds);
1808 spin_unlock(&inode->i_lock);
1809 }
1810 }
1811}
1812
1813void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1814 struct ceph_mds_session *session)
1815{
1816 struct ceph_inode_info *ci;
1817
1818 kick_flushing_capsnaps(mdsc, session);
1819
1820 dout("kick_flushing_caps mds%d\n", session->s_mds);
1821 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1822 struct inode *inode = &ci->vfs_inode;
1823 struct ceph_cap *cap;
1824 int delayed = 0;
1825
1826 spin_lock(&inode->i_lock);
1827 cap = ci->i_auth_cap;
1828 if (cap && cap->session == session) {
1829 dout("kick_flushing_caps %p cap %p %s\n", inode,
1830 cap, ceph_cap_string(ci->i_flushing_caps));
1831 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1832 __ceph_caps_used(ci),
1833 __ceph_caps_wanted(ci),
1834 cap->issued | cap->implemented,
1835 ci->i_flushing_caps, NULL);
1836 if (delayed) {
1837 spin_lock(&inode->i_lock);
1838 __cap_delay_requeue(mdsc, ci);
1839 spin_unlock(&inode->i_lock);
1840 }
1841 } else {
1842 pr_err("%p auth cap %p not mds%d ???\n", inode,
1843 cap, session->s_mds);
1844 spin_unlock(&inode->i_lock);
1845 }
1846 }
1847}
1848
1849
1850/*
1851 * Take references to capabilities we hold, so that we don't release
1852 * them to the MDS prematurely.
1853 *
1854 * Protected by i_lock.
1855 */
1856static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1857{
1858 if (got & CEPH_CAP_PIN)
1859 ci->i_pin_ref++;
1860 if (got & CEPH_CAP_FILE_RD)
1861 ci->i_rd_ref++;
1862 if (got & CEPH_CAP_FILE_CACHE)
1863 ci->i_rdcache_ref++;
1864 if (got & CEPH_CAP_FILE_WR)
1865 ci->i_wr_ref++;
1866 if (got & CEPH_CAP_FILE_BUFFER) {
1867 if (ci->i_wrbuffer_ref == 0)
1868 igrab(&ci->vfs_inode);
1869 ci->i_wrbuffer_ref++;
1870 dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1871 &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref);
1872 }
1873}
1874
1875/*
1876 * Try to grab cap references. Specify those refs we @want, and the
1877 * minimal set we @need. Also include the larger offset we are writing
1878 * to (when applicable), and check against max_size here as well.
1879 * Note that caller is responsible for ensuring max_size increases are
1880 * requested from the MDS.
1881 */
1882static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
1883 int *got, loff_t endoff, int *check_max, int *err)
1884{
1885 struct inode *inode = &ci->vfs_inode;
1886 int ret = 0;
1887 int have, implemented;
1888
1889 dout("get_cap_refs %p need %s want %s\n", inode,
1890 ceph_cap_string(need), ceph_cap_string(want));
1891 spin_lock(&inode->i_lock);
1892
1893 /* make sure we _have_ some caps! */
1894 if (!__ceph_is_any_caps(ci)) {
1895 dout("get_cap_refs %p no real caps\n", inode);
1896 *err = -EBADF;
1897 ret = 1;
1898 goto out;
1899 }
1900
1901 if (need & CEPH_CAP_FILE_WR) {
1902 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
1903 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
1904 inode, endoff, ci->i_max_size);
1905 if (endoff > ci->i_wanted_max_size) {
1906 *check_max = 1;
1907 ret = 1;
1908 }
1909 goto out;
1910 }
1911 /*
1912 * If a sync write is in progress, we must wait, so that we
1913 * can get a final snapshot value for size+mtime.
1914 */
1915 if (__ceph_have_pending_cap_snap(ci)) {
1916 dout("get_cap_refs %p cap_snap_pending\n", inode);
1917 goto out;
1918 }
1919 }
1920 have = __ceph_caps_issued(ci, &implemented);
1921
1922 /*
1923 * disallow writes while a truncate is pending
1924 */
1925 if (ci->i_truncate_pending)
1926 have &= ~CEPH_CAP_FILE_WR;
1927
1928 if ((have & need) == need) {
1929 /*
1930 * Look at (implemented & ~have & not) so that we keep waiting
1931 * on transition from wanted -> needed caps. This is needed
1932 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
1933 * going before a prior buffered writeback happens.
1934 */
1935 int not = want & ~(have & need);
1936 int revoking = implemented & ~have;
1937 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
1938 inode, ceph_cap_string(have), ceph_cap_string(not),
1939 ceph_cap_string(revoking));
1940 if ((revoking & not) == 0) {
1941 *got = need | (have & want);
1942 __take_cap_refs(ci, *got);
1943 ret = 1;
1944 }
1945 } else {
1946 dout("get_cap_refs %p have %s needed %s\n", inode,
1947 ceph_cap_string(have), ceph_cap_string(need));
1948 }
1949out:
1950 spin_unlock(&inode->i_lock);
1951 dout("get_cap_refs %p ret %d got %s\n", inode,
1952 ret, ceph_cap_string(*got));
1953 return ret;
1954}
1955
1956/*
1957 * Check the offset we are writing up to against our current
1958 * max_size. If necessary, tell the MDS we want to write to
1959 * a larger offset.
1960 */
1961static void check_max_size(struct inode *inode, loff_t endoff)
1962{
1963 struct ceph_inode_info *ci = ceph_inode(inode);
1964 int check = 0;
1965
1966 /* do we need to explicitly request a larger max_size? */
1967 spin_lock(&inode->i_lock);
1968 if ((endoff >= ci->i_max_size ||
1969 endoff > (inode->i_size << 1)) &&
1970 endoff > ci->i_wanted_max_size) {
1971 dout("write %p at large endoff %llu, req max_size\n",
1972 inode, endoff);
1973 ci->i_wanted_max_size = endoff;
1974 check = 1;
1975 }
1976 spin_unlock(&inode->i_lock);
1977 if (check)
1978 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
1979}
1980
1981/*
1982 * Wait for caps, and take cap references. If we can't get a WR cap
1983 * due to a small max_size, make sure we check_max_size (and possibly
1984 * ask the mds) so we don't get hung up indefinitely.
1985 */
1986int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
1987 loff_t endoff)
1988{
1989 int check_max, ret, err;
1990
1991retry:
1992 if (endoff > 0)
1993 check_max_size(&ci->vfs_inode, endoff);
1994 check_max = 0;
1995 err = 0;
1996 ret = wait_event_interruptible(ci->i_cap_wq,
1997 try_get_cap_refs(ci, need, want,
1998 got, endoff,
1999 &check_max, &err));
2000 if (err)
2001 ret = err;
2002 if (check_max)
2003 goto retry;
2004 return ret;
2005}
2006
2007/*
2008 * Take cap refs. Caller must already know we hold at least one ref
2009 * on the caps in question or we don't know this is safe.
2010 */
2011void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2012{
2013 spin_lock(&ci->vfs_inode.i_lock);
2014 __take_cap_refs(ci, caps);
2015 spin_unlock(&ci->vfs_inode.i_lock);
2016}
2017
2018/*
2019 * Release cap refs.
2020 *
2021 * If we released the last ref on any given cap, call ceph_check_caps
2022 * to release (or schedule a release).
2023 *
2024 * If we are releasing a WR cap (from a sync write), finalize any affected
2025 * cap_snap, and wake up any waiters.
2026 */
2027void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2028{
2029 struct inode *inode = &ci->vfs_inode;
2030 int last = 0, put = 0, flushsnaps = 0, wake = 0;
2031 struct ceph_cap_snap *capsnap;
2032
2033 spin_lock(&inode->i_lock);
2034 if (had & CEPH_CAP_PIN)
2035 --ci->i_pin_ref;
2036 if (had & CEPH_CAP_FILE_RD)
2037 if (--ci->i_rd_ref == 0)
2038 last++;
2039 if (had & CEPH_CAP_FILE_CACHE)
2040 if (--ci->i_rdcache_ref == 0)
2041 last++;
2042 if (had & CEPH_CAP_FILE_BUFFER) {
2043 if (--ci->i_wrbuffer_ref == 0) {
2044 last++;
2045 put++;
2046 }
2047 dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2048 inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref);
2049 }
2050 if (had & CEPH_CAP_FILE_WR)
2051 if (--ci->i_wr_ref == 0) {
2052 last++;
2053 if (!list_empty(&ci->i_cap_snaps)) {
2054 capsnap = list_first_entry(&ci->i_cap_snaps,
2055 struct ceph_cap_snap,
2056 ci_item);
2057 if (capsnap->writing) {
2058 capsnap->writing = 0;
2059 flushsnaps =
2060 __ceph_finish_cap_snap(ci,
2061 capsnap);
2062 wake = 1;
2063 }
2064 }
2065 }
2066 spin_unlock(&inode->i_lock);
2067
2068 dout("put_cap_refs %p had %s %s\n", inode, ceph_cap_string(had),
2069 last ? "last" : "");
2070
2071 if (last && !flushsnaps)
2072 ceph_check_caps(ci, 0, NULL);
2073 else if (flushsnaps)
2074 ceph_flush_snaps(ci);
2075 if (wake)
2076 wake_up(&ci->i_cap_wq);
2077 if (put)
2078 iput(inode);
2079}
2080
2081/*
2082 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2083 * context. Adjust per-snap dirty page accounting as appropriate.
2084 * Once all dirty data for a cap_snap is flushed, flush snapped file
2085 * metadata back to the MDS. If we dropped the last ref, call
2086 * ceph_check_caps.
2087 */
2088void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2089 struct ceph_snap_context *snapc)
2090{
2091 struct inode *inode = &ci->vfs_inode;
2092 int last = 0;
2093 int last_snap = 0;
2094 int found = 0;
2095 struct ceph_cap_snap *capsnap = NULL;
2096
2097 spin_lock(&inode->i_lock);
2098 ci->i_wrbuffer_ref -= nr;
2099 last = !ci->i_wrbuffer_ref;
2100
2101 if (ci->i_head_snapc == snapc) {
2102 ci->i_wrbuffer_ref_head -= nr;
2103 if (!ci->i_wrbuffer_ref_head) {
2104 ceph_put_snap_context(ci->i_head_snapc);
2105 ci->i_head_snapc = NULL;
2106 }
2107 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2108 inode,
2109 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2110 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2111 last ? " LAST" : "");
2112 } else {
2113 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2114 if (capsnap->context == snapc) {
2115 found = 1;
2116 capsnap->dirty_pages -= nr;
2117 last_snap = !capsnap->dirty_pages;
2118 break;
2119 }
2120 }
2121 BUG_ON(!found);
2122 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2123 " snap %lld %d/%d -> %d/%d %s%s\n",
2124 inode, capsnap, capsnap->context->seq,
2125 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2126 ci->i_wrbuffer_ref, capsnap->dirty_pages,
2127 last ? " (wrbuffer last)" : "",
2128 last_snap ? " (capsnap last)" : "");
2129 }
2130
2131 spin_unlock(&inode->i_lock);
2132
2133 if (last) {
2134 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2135 iput(inode);
2136 } else if (last_snap) {
2137 ceph_flush_snaps(ci);
2138 wake_up(&ci->i_cap_wq);
2139 }
2140}
2141
2142/*
2143 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2144 * actually be a revocation if it specifies a smaller cap set.)
2145 *
2146 * caller holds s_mutex.
2147 * return value:
2148 * 0 - ok
2149 * 1 - check_caps on auth cap only (writeback)
2150 * 2 - check_caps (ack revoke)
2151 */
2152static int handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2153 struct ceph_mds_session *session,
2154 struct ceph_cap *cap,
2155 struct ceph_buffer *xattr_buf)
2156 __releases(inode->i_lock)
2157
2158{
2159 struct ceph_inode_info *ci = ceph_inode(inode);
2160 int mds = session->s_mds;
2161 int seq = le32_to_cpu(grant->seq);
2162 int newcaps = le32_to_cpu(grant->caps);
2163 int issued, implemented, used, wanted, dirty;
2164 u64 size = le64_to_cpu(grant->size);
2165 u64 max_size = le64_to_cpu(grant->max_size);
2166 struct timespec mtime, atime, ctime;
2167 int reply = 0;
2168 int wake = 0;
2169 int writeback = 0;
2170 int revoked_rdcache = 0;
2171 int invalidate_async = 0;
2172 int tried_invalidate = 0;
2173 int ret;
2174
2175 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2176 inode, cap, mds, seq, ceph_cap_string(newcaps));
2177 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2178 inode->i_size);
2179
2180 /*
2181 * If CACHE is being revoked, and we have no dirty buffers,
2182 * try to invalidate (once). (If there are dirty buffers, we
2183 * will invalidate _after_ writeback.)
2184 */
2185restart:
2186 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2187 !ci->i_wrbuffer_ref && !tried_invalidate) {
2188 dout("CACHE invalidation\n");
2189 spin_unlock(&inode->i_lock);
2190 tried_invalidate = 1;
2191
2192 ret = invalidate_inode_pages2(&inode->i_data);
2193 spin_lock(&inode->i_lock);
2194 if (ret < 0) {
2195 /* there were locked pages.. invalidate later
2196 in a separate thread. */
2197 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2198 invalidate_async = 1;
2199 ci->i_rdcache_revoking = ci->i_rdcache_gen;
2200 }
2201 } else {
2202 /* we successfully invalidated those pages */
2203 revoked_rdcache = 1;
2204 ci->i_rdcache_gen = 0;
2205 ci->i_rdcache_revoking = 0;
2206 }
2207 goto restart;
2208 }
2209
2210 /* side effects now are allowed */
2211
2212 issued = __ceph_caps_issued(ci, &implemented);
2213 issued |= implemented | __ceph_caps_dirty(ci);
2214
685f9a5d
SW
2215 cap->cap_gen = session->s_cap_gen;
2216 cap->recon_gen = session->s_recon_gen;
a8599bd8
SW
2217
2218 __check_cap_issue(ci, cap, newcaps);
2219
2220 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2221 inode->i_mode = le32_to_cpu(grant->mode);
2222 inode->i_uid = le32_to_cpu(grant->uid);
2223 inode->i_gid = le32_to_cpu(grant->gid);
2224 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2225 inode->i_uid, inode->i_gid);
2226 }
2227
2228 if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2229 inode->i_nlink = le32_to_cpu(grant->nlink);
2230
2231 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2232 int len = le32_to_cpu(grant->xattr_len);
2233 u64 version = le64_to_cpu(grant->xattr_version);
2234
2235 if (version > ci->i_xattrs.version) {
2236 dout(" got new xattrs v%llu on %p len %d\n",
2237 version, inode, len);
2238 if (ci->i_xattrs.blob)
2239 ceph_buffer_put(ci->i_xattrs.blob);
2240 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2241 ci->i_xattrs.version = version;
2242 }
2243 }
2244
2245 /* size/ctime/mtime/atime? */
2246 ceph_fill_file_size(inode, issued,
2247 le32_to_cpu(grant->truncate_seq),
2248 le64_to_cpu(grant->truncate_size), size);
2249 ceph_decode_timespec(&mtime, &grant->mtime);
2250 ceph_decode_timespec(&atime, &grant->atime);
2251 ceph_decode_timespec(&ctime, &grant->ctime);
2252 ceph_fill_file_time(inode, issued,
2253 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2254 &atime);
2255
2256 /* max size increase? */
2257 if (max_size != ci->i_max_size) {
2258 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2259 ci->i_max_size = max_size;
2260 if (max_size >= ci->i_wanted_max_size) {
2261 ci->i_wanted_max_size = 0; /* reset */
2262 ci->i_requested_max_size = 0;
2263 }
2264 wake = 1;
2265 }
2266
2267 /* check cap bits */
2268 wanted = __ceph_caps_wanted(ci);
2269 used = __ceph_caps_used(ci);
2270 dirty = __ceph_caps_dirty(ci);
2271 dout(" my wanted = %s, used = %s, dirty %s\n",
2272 ceph_cap_string(wanted),
2273 ceph_cap_string(used),
2274 ceph_cap_string(dirty));
2275 if (wanted != le32_to_cpu(grant->wanted)) {
2276 dout("mds wanted %s -> %s\n",
2277 ceph_cap_string(le32_to_cpu(grant->wanted)),
2278 ceph_cap_string(wanted));
2279 grant->wanted = cpu_to_le32(wanted);
2280 }
2281
2282 cap->seq = seq;
2283
2284 /* file layout may have changed */
2285 ci->i_layout = grant->layout;
2286
2287 /* revocation, grant, or no-op? */
2288 if (cap->issued & ~newcaps) {
2289 dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued),
2290 ceph_cap_string(newcaps));
2291 if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER)
2292 writeback = 1; /* will delay ack */
2293 else if (dirty & ~newcaps)
2294 reply = 1; /* initiate writeback in check_caps */
2295 else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 ||
2296 revoked_rdcache)
2297 reply = 2; /* send revoke ack in check_caps */
2298 cap->issued = newcaps;
2299 } else if (cap->issued == newcaps) {
2300 dout("caps unchanged: %s -> %s\n",
2301 ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2302 } else {
2303 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2304 ceph_cap_string(newcaps));
2305 cap->issued = newcaps;
2306 cap->implemented |= newcaps; /* add bits only, to
2307 * avoid stepping on a
2308 * pending revocation */
2309 wake = 1;
2310 }
2311
2312 spin_unlock(&inode->i_lock);
2313 if (writeback) {
2314 /*
2315 * queue inode for writeback: we can't actually call
2316 * filemap_write_and_wait, etc. from message handler
2317 * context.
2318 */
2319 dout("queueing %p for writeback\n", inode);
2320 if (ceph_queue_writeback(inode))
2321 igrab(inode);
2322 }
2323 if (invalidate_async) {
2324 dout("queueing %p for page invalidation\n", inode);
2325 if (ceph_queue_page_invalidation(inode))
2326 igrab(inode);
2327 }
2328 if (wake)
2329 wake_up(&ci->i_cap_wq);
2330 return reply;
2331}
2332
2333/*
2334 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2335 * MDS has been safely committed.
2336 */
2337static void handle_cap_flush_ack(struct inode *inode,
2338 struct ceph_mds_caps *m,
2339 struct ceph_mds_session *session,
2340 struct ceph_cap *cap)
2341 __releases(inode->i_lock)
2342{
2343 struct ceph_inode_info *ci = ceph_inode(inode);
2344 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
2345 unsigned seq = le32_to_cpu(m->seq);
2346 int dirty = le32_to_cpu(m->dirty);
2347 int cleaned = 0;
2348 u64 flush_tid = le64_to_cpu(m->client_tid);
afcdaea3 2349 int drop = 0;
a8599bd8
SW
2350 int i;
2351
2352 for (i = 0; i < CEPH_CAP_BITS; i++)
2353 if ((dirty & (1 << i)) &&
2354 flush_tid == ci->i_cap_flush_tid[i])
2355 cleaned |= 1 << i;
2356
2357 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2358 " flushing %s -> %s\n",
2359 inode, session->s_mds, seq, ceph_cap_string(dirty),
2360 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2361 ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2362
2363 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2364 goto out;
2365
a8599bd8 2366 ci->i_flushing_caps &= ~cleaned;
a8599bd8
SW
2367
2368 spin_lock(&mdsc->cap_dirty_lock);
2369 if (ci->i_flushing_caps == 0) {
2370 list_del_init(&ci->i_flushing_item);
2371 if (!list_empty(&session->s_cap_flushing))
2372 dout(" mds%d still flushing cap on %p\n",
2373 session->s_mds,
2374 &list_entry(session->s_cap_flushing.next,
2375 struct ceph_inode_info,
2376 i_flushing_item)->vfs_inode);
2377 mdsc->num_cap_flushing--;
2378 wake_up(&mdsc->cap_flushing_wq);
2379 dout(" inode %p now !flushing\n", inode);
afcdaea3
SW
2380
2381 if (ci->i_dirty_caps == 0) {
2382 dout(" inode %p now clean\n", inode);
2383 BUG_ON(!list_empty(&ci->i_dirty_item));
2384 drop = 1;
76e3b390
SW
2385 } else {
2386 BUG_ON(list_empty(&ci->i_dirty_item));
afcdaea3 2387 }
a8599bd8
SW
2388 }
2389 spin_unlock(&mdsc->cap_dirty_lock);
2390 wake_up(&ci->i_cap_wq);
2391
2392out:
2393 spin_unlock(&inode->i_lock);
afcdaea3 2394 if (drop)
a8599bd8
SW
2395 iput(inode);
2396}
2397
2398/*
2399 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2400 * throw away our cap_snap.
2401 *
2402 * Caller hold s_mutex.
2403 */
2404static void handle_cap_flushsnap_ack(struct inode *inode,
2405 struct ceph_mds_caps *m,
2406 struct ceph_mds_session *session)
2407{
2408 struct ceph_inode_info *ci = ceph_inode(inode);
2409 u64 follows = le64_to_cpu(m->snap_follows);
2410 u64 flush_tid = le64_to_cpu(m->client_tid);
2411 struct ceph_cap_snap *capsnap;
2412 int drop = 0;
2413
2414 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2415 inode, ci, session->s_mds, follows);
2416
2417 spin_lock(&inode->i_lock);
2418 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2419 if (capsnap->follows == follows) {
2420 if (capsnap->flush_tid != flush_tid) {
2421 dout(" cap_snap %p follows %lld tid %lld !="
2422 " %lld\n", capsnap, follows,
2423 flush_tid, capsnap->flush_tid);
2424 break;
2425 }
2426 WARN_ON(capsnap->dirty_pages || capsnap->writing);
2427 dout(" removing cap_snap %p follows %lld\n",
2428 capsnap, follows);
2429 ceph_put_snap_context(capsnap->context);
2430 list_del(&capsnap->ci_item);
2431 list_del(&capsnap->flushing_item);
2432 ceph_put_cap_snap(capsnap);
2433 drop = 1;
2434 break;
2435 } else {
2436 dout(" skipping cap_snap %p follows %lld\n",
2437 capsnap, capsnap->follows);
2438 }
2439 }
2440 spin_unlock(&inode->i_lock);
2441 if (drop)
2442 iput(inode);
2443}
2444
2445/*
2446 * Handle TRUNC from MDS, indicating file truncation.
2447 *
2448 * caller hold s_mutex.
2449 */
2450static void handle_cap_trunc(struct inode *inode,
2451 struct ceph_mds_caps *trunc,
2452 struct ceph_mds_session *session)
2453 __releases(inode->i_lock)
2454{
2455 struct ceph_inode_info *ci = ceph_inode(inode);
2456 int mds = session->s_mds;
2457 int seq = le32_to_cpu(trunc->seq);
2458 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2459 u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2460 u64 size = le64_to_cpu(trunc->size);
2461 int implemented = 0;
2462 int dirty = __ceph_caps_dirty(ci);
2463 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2464 int queue_trunc = 0;
2465
2466 issued |= implemented | dirty;
2467
2468 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2469 inode, mds, seq, truncate_size, truncate_seq);
2470 queue_trunc = ceph_fill_file_size(inode, issued,
2471 truncate_seq, truncate_size, size);
2472 spin_unlock(&inode->i_lock);
2473
2474 if (queue_trunc)
2475 if (queue_work(ceph_client(inode->i_sb)->trunc_wq,
2476 &ci->i_vmtruncate_work))
2477 igrab(inode);
2478}
2479
2480/*
2481 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2482 * different one. If we are the most recent migration we've seen (as
2483 * indicated by mseq), make note of the migrating cap bits for the
2484 * duration (until we see the corresponding IMPORT).
2485 *
2486 * caller holds s_mutex
2487 */
2488static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2489 struct ceph_mds_session *session)
2490{
2491 struct ceph_inode_info *ci = ceph_inode(inode);
2492 int mds = session->s_mds;
2493 unsigned mseq = le32_to_cpu(ex->migrate_seq);
2494 struct ceph_cap *cap = NULL, *t;
2495 struct rb_node *p;
2496 int remember = 1;
2497
2498 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2499 inode, ci, mds, mseq);
2500
2501 spin_lock(&inode->i_lock);
2502
2503 /* make sure we haven't seen a higher mseq */
2504 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2505 t = rb_entry(p, struct ceph_cap, ci_node);
2506 if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2507 dout(" higher mseq on cap from mds%d\n",
2508 t->session->s_mds);
2509 remember = 0;
2510 }
2511 if (t->session->s_mds == mds)
2512 cap = t;
2513 }
2514
2515 if (cap) {
2516 if (remember) {
2517 /* make note */
2518 ci->i_cap_exporting_mds = mds;
2519 ci->i_cap_exporting_mseq = mseq;
2520 ci->i_cap_exporting_issued = cap->issued;
2521 }
2522 __ceph_remove_cap(cap, NULL);
2523 } else {
2524 WARN_ON(!cap);
2525 }
2526
2527 spin_unlock(&inode->i_lock);
2528}
2529
2530/*
2531 * Handle cap IMPORT. If there are temp bits from an older EXPORT,
2532 * clean them up.
2533 *
2534 * caller holds s_mutex.
2535 */
2536static void handle_cap_import(struct ceph_mds_client *mdsc,
2537 struct inode *inode, struct ceph_mds_caps *im,
2538 struct ceph_mds_session *session,
2539 void *snaptrace, int snaptrace_len)
2540{
2541 struct ceph_inode_info *ci = ceph_inode(inode);
2542 int mds = session->s_mds;
2543 unsigned issued = le32_to_cpu(im->caps);
2544 unsigned wanted = le32_to_cpu(im->wanted);
2545 unsigned seq = le32_to_cpu(im->seq);
2546 unsigned mseq = le32_to_cpu(im->migrate_seq);
2547 u64 realmino = le64_to_cpu(im->realm);
2548 u64 cap_id = le64_to_cpu(im->cap_id);
2549
2550 if (ci->i_cap_exporting_mds >= 0 &&
2551 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2552 dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2553 " - cleared exporting from mds%d\n",
2554 inode, ci, mds, mseq,
2555 ci->i_cap_exporting_mds);
2556 ci->i_cap_exporting_issued = 0;
2557 ci->i_cap_exporting_mseq = 0;
2558 ci->i_cap_exporting_mds = -1;
2559 } else {
2560 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2561 inode, ci, mds, mseq);
2562 }
2563
2564 down_write(&mdsc->snap_rwsem);
2565 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2566 false);
2567 downgrade_write(&mdsc->snap_rwsem);
2568 ceph_add_cap(inode, session, cap_id, -1,
2569 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2570 NULL /* no caps context */);
2571 try_flush_caps(inode, session, NULL);
2572 up_read(&mdsc->snap_rwsem);
2573}
2574
2575/*
2576 * Handle a caps message from the MDS.
2577 *
2578 * Identify the appropriate session, inode, and call the right handler
2579 * based on the cap op.
2580 */
2581void ceph_handle_caps(struct ceph_mds_session *session,
2582 struct ceph_msg *msg)
2583{
2584 struct ceph_mds_client *mdsc = session->s_mdsc;
2585 struct super_block *sb = mdsc->client->sb;
2586 struct inode *inode;
2587 struct ceph_cap *cap;
2588 struct ceph_mds_caps *h;
2589 int mds = le64_to_cpu(msg->hdr.src.name.num);
2590 int op;
2591 u32 seq;
2592 struct ceph_vino vino;
2593 u64 cap_id;
2594 u64 size, max_size;
2595 int check_caps = 0;
2596 int r;
2597
2598 dout("handle_caps from mds%d\n", mds);
2599
2600 /* decode */
2601 if (msg->front.iov_len < sizeof(*h))
2602 goto bad;
2603 h = msg->front.iov_base;
2604 op = le32_to_cpu(h->op);
2605 vino.ino = le64_to_cpu(h->ino);
2606 vino.snap = CEPH_NOSNAP;
2607 cap_id = le64_to_cpu(h->cap_id);
2608 seq = le32_to_cpu(h->seq);
2609 size = le64_to_cpu(h->size);
2610 max_size = le64_to_cpu(h->max_size);
2611
2612 mutex_lock(&session->s_mutex);
2613 session->s_seq++;
2614 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2615 (unsigned)seq);
2616
2617 /* lookup ino */
2618 inode = ceph_find_inode(sb, vino);
2619 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2620 vino.snap, inode);
2621 if (!inode) {
2622 dout(" i don't have ino %llx\n", vino.ino);
2623 goto done;
2624 }
2625
2626 /* these will work even if we don't have a cap yet */
2627 switch (op) {
2628 case CEPH_CAP_OP_FLUSHSNAP_ACK:
2629 handle_cap_flushsnap_ack(inode, h, session);
2630 goto done;
2631
2632 case CEPH_CAP_OP_EXPORT:
2633 handle_cap_export(inode, h, session);
2634 goto done;
2635
2636 case CEPH_CAP_OP_IMPORT:
2637 handle_cap_import(mdsc, inode, h, session,
2638 msg->middle,
2639 le32_to_cpu(h->snap_trace_len));
2640 check_caps = 1; /* we may have sent a RELEASE to the old auth */
2641 goto done;
2642 }
2643
2644 /* the rest require a cap */
2645 spin_lock(&inode->i_lock);
2646 cap = __get_cap_for_mds(ceph_inode(inode), mds);
2647 if (!cap) {
2648 dout("no cap on %p ino %llx.%llx from mds%d, releasing\n",
2649 inode, ceph_ino(inode), ceph_snap(inode), mds);
2650 spin_unlock(&inode->i_lock);
2651 goto done;
2652 }
2653
2654 /* note that each of these drops i_lock for us */
2655 switch (op) {
2656 case CEPH_CAP_OP_REVOKE:
2657 case CEPH_CAP_OP_GRANT:
2658 r = handle_cap_grant(inode, h, session, cap, msg->middle);
2659 if (r == 1)
2660 ceph_check_caps(ceph_inode(inode),
2661 CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2662 session);
2663 else if (r == 2)
2664 ceph_check_caps(ceph_inode(inode),
2665 CHECK_CAPS_NODELAY,
2666 session);
2667 break;
2668
2669 case CEPH_CAP_OP_FLUSH_ACK:
2670 handle_cap_flush_ack(inode, h, session, cap);
2671 break;
2672
2673 case CEPH_CAP_OP_TRUNC:
2674 handle_cap_trunc(inode, h, session);
2675 break;
2676
2677 default:
2678 spin_unlock(&inode->i_lock);
2679 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2680 ceph_cap_op_name(op));
2681 }
2682
2683done:
2684 mutex_unlock(&session->s_mutex);
2685
2686 if (check_caps)
2687 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, NULL);
2688 if (inode)
2689 iput(inode);
2690 return;
2691
2692bad:
2693 pr_err("ceph_handle_caps: corrupt message\n");
2694 return;
2695}
2696
2697/*
2698 * Delayed work handler to process end of delayed cap release LRU list.
2699 */
afcdaea3 2700void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
a8599bd8
SW
2701{
2702 struct ceph_inode_info *ci;
2703 int flags = CHECK_CAPS_NODELAY;
2704
a8599bd8
SW
2705 dout("check_delayed_caps\n");
2706 while (1) {
2707 spin_lock(&mdsc->cap_delay_lock);
2708 if (list_empty(&mdsc->cap_delay_list))
2709 break;
2710 ci = list_first_entry(&mdsc->cap_delay_list,
2711 struct ceph_inode_info,
2712 i_cap_delay_list);
2713 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2714 time_before(jiffies, ci->i_hold_caps_max))
2715 break;
2716 list_del_init(&ci->i_cap_delay_list);
2717 spin_unlock(&mdsc->cap_delay_lock);
2718 dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2719 ceph_check_caps(ci, flags, NULL);
2720 }
2721 spin_unlock(&mdsc->cap_delay_lock);
2722}
2723
afcdaea3
SW
2724/*
2725 * Flush all dirty caps to the mds
2726 */
2727void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2728{
2729 struct ceph_inode_info *ci;
2730 struct inode *inode;
2731
2732 dout("flush_dirty_caps\n");
2733 spin_lock(&mdsc->cap_dirty_lock);
2734 while (!list_empty(&mdsc->cap_dirty)) {
2735 ci = list_first_entry(&mdsc->cap_dirty,
2736 struct ceph_inode_info,
2737 i_dirty_item);
2738 inode = igrab(&ci->vfs_inode);
2739 spin_unlock(&mdsc->cap_dirty_lock);
2740 if (inode) {
2741 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH,
2742 NULL);
2743 iput(inode);
2744 }
2745 spin_lock(&mdsc->cap_dirty_lock);
2746 }
2747 spin_unlock(&mdsc->cap_dirty_lock);
2748}
2749
a8599bd8
SW
2750/*
2751 * Drop open file reference. If we were the last open file,
2752 * we may need to release capabilities to the MDS (or schedule
2753 * their delayed release).
2754 */
2755void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2756{
2757 struct inode *inode = &ci->vfs_inode;
2758 int last = 0;
2759
2760 spin_lock(&inode->i_lock);
2761 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2762 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2763 BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2764 if (--ci->i_nr_by_mode[fmode] == 0)
2765 last++;
2766 spin_unlock(&inode->i_lock);
2767
2768 if (last && ci->i_vino.snap == CEPH_NOSNAP)
2769 ceph_check_caps(ci, 0, NULL);
2770}
2771
2772/*
2773 * Helpers for embedding cap and dentry lease releases into mds
2774 * requests.
2775 *
2776 * @force is used by dentry_release (below) to force inclusion of a
2777 * record for the directory inode, even when there aren't any caps to
2778 * drop.
2779 */
2780int ceph_encode_inode_release(void **p, struct inode *inode,
2781 int mds, int drop, int unless, int force)
2782{
2783 struct ceph_inode_info *ci = ceph_inode(inode);
2784 struct ceph_cap *cap;
2785 struct ceph_mds_request_release *rel = *p;
2786 int ret = 0;
2787
2788 dout("encode_inode_release %p mds%d drop %s unless %s\n", inode,
2789 mds, ceph_cap_string(drop), ceph_cap_string(unless));
2790
2791 spin_lock(&inode->i_lock);
2792 cap = __get_cap_for_mds(ci, mds);
2793 if (cap && __cap_is_valid(cap)) {
2794 if (force ||
2795 ((cap->issued & drop) &&
2796 (cap->issued & unless) == 0)) {
2797 if ((cap->issued & drop) &&
2798 (cap->issued & unless) == 0) {
2799 dout("encode_inode_release %p cap %p %s -> "
2800 "%s\n", inode, cap,
2801 ceph_cap_string(cap->issued),
2802 ceph_cap_string(cap->issued & ~drop));
2803 cap->issued &= ~drop;
2804 cap->implemented &= ~drop;
2805 if (ci->i_ceph_flags & CEPH_I_NODELAY) {
2806 int wanted = __ceph_caps_wanted(ci);
2807 dout(" wanted %s -> %s (act %s)\n",
2808 ceph_cap_string(cap->mds_wanted),
2809 ceph_cap_string(cap->mds_wanted &
2810 ~wanted),
2811 ceph_cap_string(wanted));
2812 cap->mds_wanted &= wanted;
2813 }
2814 } else {
2815 dout("encode_inode_release %p cap %p %s"
2816 " (force)\n", inode, cap,
2817 ceph_cap_string(cap->issued));
2818 }
2819
2820 rel->ino = cpu_to_le64(ceph_ino(inode));
2821 rel->cap_id = cpu_to_le64(cap->cap_id);
2822 rel->seq = cpu_to_le32(cap->seq);
2823 rel->issue_seq = cpu_to_le32(cap->issue_seq),
2824 rel->mseq = cpu_to_le32(cap->mseq);
2825 rel->caps = cpu_to_le32(cap->issued);
2826 rel->wanted = cpu_to_le32(cap->mds_wanted);
2827 rel->dname_len = 0;
2828 rel->dname_seq = 0;
2829 *p += sizeof(*rel);
2830 ret = 1;
2831 } else {
2832 dout("encode_inode_release %p cap %p %s\n",
2833 inode, cap, ceph_cap_string(cap->issued));
2834 }
2835 }
2836 spin_unlock(&inode->i_lock);
2837 return ret;
2838}
2839
2840int ceph_encode_dentry_release(void **p, struct dentry *dentry,
2841 int mds, int drop, int unless)
2842{
2843 struct inode *dir = dentry->d_parent->d_inode;
2844 struct ceph_mds_request_release *rel = *p;
2845 struct ceph_dentry_info *di = ceph_dentry(dentry);
2846 int force = 0;
2847 int ret;
2848
2849 /*
2850 * force an record for the directory caps if we have a dentry lease.
2851 * this is racy (can't take i_lock and d_lock together), but it
2852 * doesn't have to be perfect; the mds will revoke anything we don't
2853 * release.
2854 */
2855 spin_lock(&dentry->d_lock);
2856 if (di->lease_session && di->lease_session->s_mds == mds)
2857 force = 1;
2858 spin_unlock(&dentry->d_lock);
2859
2860 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
2861
2862 spin_lock(&dentry->d_lock);
2863 if (ret && di->lease_session && di->lease_session->s_mds == mds) {
2864 dout("encode_dentry_release %p mds%d seq %d\n",
2865 dentry, mds, (int)di->lease_seq);
2866 rel->dname_len = cpu_to_le32(dentry->d_name.len);
2867 memcpy(*p, dentry->d_name.name, dentry->d_name.len);
2868 *p += dentry->d_name.len;
2869 rel->dname_seq = cpu_to_le32(di->lease_seq);
2870 }
2871 spin_unlock(&dentry->d_lock);
2872 return ret;
2873}