Btrfs: Always use 64bit inode number
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
e02119d5
CM
21#include "ctree.h"
22#include "transaction.h"
23#include "disk-io.h"
24#include "locking.h"
25#include "print-tree.h"
26#include "compat.h"
b2950863 27#include "tree-log.h"
e02119d5
CM
28
29/* magic values for the inode_only field in btrfs_log_inode:
30 *
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
33 * during log replay
34 */
35#define LOG_INODE_ALL 0
36#define LOG_INODE_EXISTS 1
37
12fcfd22
CM
38/*
39 * directory trouble cases
40 *
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
45 *
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
51 *
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
55 *
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
58 *
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
62 *
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
65 *
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
68 *
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
73 *
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
79 */
80
e02119d5
CM
81/*
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
86 *
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
89 */
90#define LOG_WALK_PIN_ONLY 0
91#define LOG_WALK_REPLAY_INODES 1
92#define LOG_WALK_REPLAY_ALL 2
93
12fcfd22 94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
95 struct btrfs_root *root, struct inode *inode,
96 int inode_only);
ec051c0f
YZ
97static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
100static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_root *log,
103 struct btrfs_path *path,
104 u64 dirid, int del_all);
e02119d5
CM
105
106/*
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 *
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
113 *
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
119 *
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
123 *
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
127 */
128
e02119d5
CM
129/*
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
133 */
134static int start_log_trans(struct btrfs_trans_handle *trans,
135 struct btrfs_root *root)
136{
137 int ret;
4a500fd1 138 int err = 0;
7237f183
YZ
139
140 mutex_lock(&root->log_mutex);
141 if (root->log_root) {
ff782e0a
JB
142 if (!root->log_start_pid) {
143 root->log_start_pid = current->pid;
144 root->log_multiple_pids = false;
145 } else if (root->log_start_pid != current->pid) {
146 root->log_multiple_pids = true;
147 }
148
7237f183
YZ
149 root->log_batch++;
150 atomic_inc(&root->log_writers);
151 mutex_unlock(&root->log_mutex);
152 return 0;
153 }
ff782e0a
JB
154 root->log_multiple_pids = false;
155 root->log_start_pid = current->pid;
e02119d5
CM
156 mutex_lock(&root->fs_info->tree_log_mutex);
157 if (!root->fs_info->log_root_tree) {
158 ret = btrfs_init_log_root_tree(trans, root->fs_info);
4a500fd1
YZ
159 if (ret)
160 err = ret;
e02119d5 161 }
4a500fd1 162 if (err == 0 && !root->log_root) {
e02119d5 163 ret = btrfs_add_log_tree(trans, root);
4a500fd1
YZ
164 if (ret)
165 err = ret;
e02119d5 166 }
e02119d5 167 mutex_unlock(&root->fs_info->tree_log_mutex);
7237f183
YZ
168 root->log_batch++;
169 atomic_inc(&root->log_writers);
170 mutex_unlock(&root->log_mutex);
4a500fd1 171 return err;
e02119d5
CM
172}
173
174/*
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
177 * in progress
178 */
179static int join_running_log_trans(struct btrfs_root *root)
180{
181 int ret = -ENOENT;
182
183 smp_mb();
184 if (!root->log_root)
185 return -ENOENT;
186
7237f183 187 mutex_lock(&root->log_mutex);
e02119d5
CM
188 if (root->log_root) {
189 ret = 0;
7237f183 190 atomic_inc(&root->log_writers);
e02119d5 191 }
7237f183 192 mutex_unlock(&root->log_mutex);
e02119d5
CM
193 return ret;
194}
195
12fcfd22
CM
196/*
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
200 */
201int btrfs_pin_log_trans(struct btrfs_root *root)
202{
203 int ret = -ENOENT;
204
205 mutex_lock(&root->log_mutex);
206 atomic_inc(&root->log_writers);
207 mutex_unlock(&root->log_mutex);
208 return ret;
209}
210
e02119d5
CM
211/*
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
214 */
12fcfd22 215int btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 216{
7237f183
YZ
217 if (atomic_dec_and_test(&root->log_writers)) {
218 smp_mb();
219 if (waitqueue_active(&root->log_writer_wait))
220 wake_up(&root->log_writer_wait);
221 }
e02119d5
CM
222 return 0;
223}
224
225
226/*
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
231 */
232struct walk_control {
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
235 */
236 int free;
237
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
240 */
241 int write;
242
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
245 */
246 int wait;
247
248 /* pin only walk, we record which extents on disk belong to the
249 * log trees
250 */
251 int pin;
252
253 /* what stage of the replay code we're currently in */
254 int stage;
255
256 /* the root we are currently replaying */
257 struct btrfs_root *replay_dest;
258
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle *trans;
261
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
265 * inside it
266 */
267 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 struct walk_control *wc, u64 gen);
269};
270
271/*
272 * process_func used to pin down extents, write them or wait on them
273 */
274static int process_one_buffer(struct btrfs_root *log,
275 struct extent_buffer *eb,
276 struct walk_control *wc, u64 gen)
277{
04018de5 278 if (wc->pin)
11833d66
YZ
279 btrfs_pin_extent(log->fs_info->extent_root,
280 eb->start, eb->len, 0);
e02119d5
CM
281
282 if (btrfs_buffer_uptodate(eb, gen)) {
283 if (wc->write)
284 btrfs_write_tree_block(eb);
285 if (wc->wait)
286 btrfs_wait_tree_block_writeback(eb);
287 }
288 return 0;
289}
290
291/*
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
294 *
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
298 *
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
302 *
303 * If the key isn't in the destination yet, a new item is inserted.
304 */
305static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct btrfs_path *path,
308 struct extent_buffer *eb, int slot,
309 struct btrfs_key *key)
310{
311 int ret;
312 u32 item_size;
313 u64 saved_i_size = 0;
314 int save_old_i_size = 0;
315 unsigned long src_ptr;
316 unsigned long dst_ptr;
317 int overwrite_root = 0;
318
319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 overwrite_root = 1;
321
322 item_size = btrfs_item_size_nr(eb, slot);
323 src_ptr = btrfs_item_ptr_offset(eb, slot);
324
325 /* look for the key in the destination tree */
326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 if (ret == 0) {
328 char *src_copy;
329 char *dst_copy;
330 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 path->slots[0]);
332 if (dst_size != item_size)
333 goto insert;
334
335 if (item_size == 0) {
336 btrfs_release_path(root, path);
337 return 0;
338 }
339 dst_copy = kmalloc(item_size, GFP_NOFS);
340 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 341 if (!dst_copy || !src_copy) {
342 btrfs_release_path(root, path);
343 kfree(dst_copy);
344 kfree(src_copy);
345 return -ENOMEM;
346 }
e02119d5
CM
347
348 read_extent_buffer(eb, src_copy, src_ptr, item_size);
349
350 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 item_size);
353 ret = memcmp(dst_copy, src_copy, item_size);
354
355 kfree(dst_copy);
356 kfree(src_copy);
357 /*
358 * they have the same contents, just return, this saves
359 * us from cowing blocks in the destination tree and doing
360 * extra writes that may not have been done by a previous
361 * sync
362 */
363 if (ret == 0) {
364 btrfs_release_path(root, path);
365 return 0;
366 }
367
368 }
369insert:
370 btrfs_release_path(root, path);
371 /* try to insert the key into the destination tree */
372 ret = btrfs_insert_empty_item(trans, root, path,
373 key, item_size);
374
375 /* make sure any existing item is the correct size */
376 if (ret == -EEXIST) {
377 u32 found_size;
378 found_size = btrfs_item_size_nr(path->nodes[0],
379 path->slots[0]);
380 if (found_size > item_size) {
381 btrfs_truncate_item(trans, root, path, item_size, 1);
382 } else if (found_size < item_size) {
87b29b20
YZ
383 ret = btrfs_extend_item(trans, root, path,
384 item_size - found_size);
e02119d5
CM
385 BUG_ON(ret);
386 }
387 } else if (ret) {
4a500fd1 388 return ret;
e02119d5
CM
389 }
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
391 path->slots[0]);
392
393 /* don't overwrite an existing inode if the generation number
394 * was logged as zero. This is done when the tree logging code
395 * is just logging an inode to make sure it exists after recovery.
396 *
397 * Also, don't overwrite i_size on directories during replay.
398 * log replay inserts and removes directory items based on the
399 * state of the tree found in the subvolume, and i_size is modified
400 * as it goes
401 */
402 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
403 struct btrfs_inode_item *src_item;
404 struct btrfs_inode_item *dst_item;
405
406 src_item = (struct btrfs_inode_item *)src_ptr;
407 dst_item = (struct btrfs_inode_item *)dst_ptr;
408
409 if (btrfs_inode_generation(eb, src_item) == 0)
410 goto no_copy;
411
412 if (overwrite_root &&
413 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
414 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
415 save_old_i_size = 1;
416 saved_i_size = btrfs_inode_size(path->nodes[0],
417 dst_item);
418 }
419 }
420
421 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
422 src_ptr, item_size);
423
424 if (save_old_i_size) {
425 struct btrfs_inode_item *dst_item;
426 dst_item = (struct btrfs_inode_item *)dst_ptr;
427 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
428 }
429
430 /* make sure the generation is filled in */
431 if (key->type == BTRFS_INODE_ITEM_KEY) {
432 struct btrfs_inode_item *dst_item;
433 dst_item = (struct btrfs_inode_item *)dst_ptr;
434 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
435 btrfs_set_inode_generation(path->nodes[0], dst_item,
436 trans->transid);
437 }
438 }
439no_copy:
440 btrfs_mark_buffer_dirty(path->nodes[0]);
441 btrfs_release_path(root, path);
442 return 0;
443}
444
445/*
446 * simple helper to read an inode off the disk from a given root
447 * This can only be called for subvolume roots and not for the log
448 */
449static noinline struct inode *read_one_inode(struct btrfs_root *root,
450 u64 objectid)
451{
5d4f98a2 452 struct btrfs_key key;
e02119d5 453 struct inode *inode;
e02119d5 454
5d4f98a2
YZ
455 key.objectid = objectid;
456 key.type = BTRFS_INODE_ITEM_KEY;
457 key.offset = 0;
73f73415 458 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
459 if (IS_ERR(inode)) {
460 inode = NULL;
461 } else if (is_bad_inode(inode)) {
e02119d5
CM
462 iput(inode);
463 inode = NULL;
464 }
465 return inode;
466}
467
468/* replays a single extent in 'eb' at 'slot' with 'key' into the
469 * subvolume 'root'. path is released on entry and should be released
470 * on exit.
471 *
472 * extents in the log tree have not been allocated out of the extent
473 * tree yet. So, this completes the allocation, taking a reference
474 * as required if the extent already exists or creating a new extent
475 * if it isn't in the extent allocation tree yet.
476 *
477 * The extent is inserted into the file, dropping any existing extents
478 * from the file that overlap the new one.
479 */
480static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
481 struct btrfs_root *root,
482 struct btrfs_path *path,
483 struct extent_buffer *eb, int slot,
484 struct btrfs_key *key)
485{
486 int found_type;
487 u64 mask = root->sectorsize - 1;
488 u64 extent_end;
489 u64 alloc_hint;
490 u64 start = key->offset;
07d400a6 491 u64 saved_nbytes;
e02119d5
CM
492 struct btrfs_file_extent_item *item;
493 struct inode *inode = NULL;
494 unsigned long size;
495 int ret = 0;
496
497 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
498 found_type = btrfs_file_extent_type(eb, item);
499
d899e052
YZ
500 if (found_type == BTRFS_FILE_EXTENT_REG ||
501 found_type == BTRFS_FILE_EXTENT_PREALLOC)
e02119d5
CM
502 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
503 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818 504 size = btrfs_file_extent_inline_len(eb, item);
e02119d5
CM
505 extent_end = (start + size + mask) & ~mask;
506 } else {
507 ret = 0;
508 goto out;
509 }
510
511 inode = read_one_inode(root, key->objectid);
512 if (!inode) {
513 ret = -EIO;
514 goto out;
515 }
516
517 /*
518 * first check to see if we already have this extent in the
519 * file. This must be done before the btrfs_drop_extents run
520 * so we don't try to drop this extent.
521 */
33345d01 522 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
e02119d5
CM
523 start, 0);
524
d899e052
YZ
525 if (ret == 0 &&
526 (found_type == BTRFS_FILE_EXTENT_REG ||
527 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
528 struct btrfs_file_extent_item cmp1;
529 struct btrfs_file_extent_item cmp2;
530 struct btrfs_file_extent_item *existing;
531 struct extent_buffer *leaf;
532
533 leaf = path->nodes[0];
534 existing = btrfs_item_ptr(leaf, path->slots[0],
535 struct btrfs_file_extent_item);
536
537 read_extent_buffer(eb, &cmp1, (unsigned long)item,
538 sizeof(cmp1));
539 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
540 sizeof(cmp2));
541
542 /*
543 * we already have a pointer to this exact extent,
544 * we don't have to do anything
545 */
546 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
547 btrfs_release_path(root, path);
548 goto out;
549 }
550 }
551 btrfs_release_path(root, path);
552
07d400a6 553 saved_nbytes = inode_get_bytes(inode);
e02119d5 554 /* drop any overlapping extents */
920bbbfb
YZ
555 ret = btrfs_drop_extents(trans, inode, start, extent_end,
556 &alloc_hint, 1);
e02119d5
CM
557 BUG_ON(ret);
558
07d400a6
YZ
559 if (found_type == BTRFS_FILE_EXTENT_REG ||
560 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 561 u64 offset;
07d400a6
YZ
562 unsigned long dest_offset;
563 struct btrfs_key ins;
564
565 ret = btrfs_insert_empty_item(trans, root, path, key,
566 sizeof(*item));
567 BUG_ON(ret);
568 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
569 path->slots[0]);
570 copy_extent_buffer(path->nodes[0], eb, dest_offset,
571 (unsigned long)item, sizeof(*item));
572
573 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
574 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
575 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 576 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
577
578 if (ins.objectid > 0) {
579 u64 csum_start;
580 u64 csum_end;
581 LIST_HEAD(ordered_sums);
582 /*
583 * is this extent already allocated in the extent
584 * allocation tree? If so, just add a reference
585 */
586 ret = btrfs_lookup_extent(root, ins.objectid,
587 ins.offset);
588 if (ret == 0) {
589 ret = btrfs_inc_extent_ref(trans, root,
590 ins.objectid, ins.offset,
5d4f98a2
YZ
591 0, root->root_key.objectid,
592 key->objectid, offset);
07d400a6
YZ
593 } else {
594 /*
595 * insert the extent pointer in the extent
596 * allocation tree
597 */
5d4f98a2
YZ
598 ret = btrfs_alloc_logged_file_extent(trans,
599 root, root->root_key.objectid,
600 key->objectid, offset, &ins);
07d400a6
YZ
601 BUG_ON(ret);
602 }
603 btrfs_release_path(root, path);
604
605 if (btrfs_file_extent_compression(eb, item)) {
606 csum_start = ins.objectid;
607 csum_end = csum_start + ins.offset;
608 } else {
609 csum_start = ins.objectid +
610 btrfs_file_extent_offset(eb, item);
611 csum_end = csum_start +
612 btrfs_file_extent_num_bytes(eb, item);
613 }
614
615 ret = btrfs_lookup_csums_range(root->log_root,
616 csum_start, csum_end - 1,
617 &ordered_sums);
618 BUG_ON(ret);
619 while (!list_empty(&ordered_sums)) {
620 struct btrfs_ordered_sum *sums;
621 sums = list_entry(ordered_sums.next,
622 struct btrfs_ordered_sum,
623 list);
624 ret = btrfs_csum_file_blocks(trans,
625 root->fs_info->csum_root,
626 sums);
627 BUG_ON(ret);
628 list_del(&sums->list);
629 kfree(sums);
630 }
631 } else {
632 btrfs_release_path(root, path);
633 }
634 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 /* inline extents are easy, we just overwrite them */
636 ret = overwrite_item(trans, root, path, eb, slot, key);
637 BUG_ON(ret);
638 }
e02119d5 639
07d400a6 640 inode_set_bytes(inode, saved_nbytes);
e02119d5
CM
641 btrfs_update_inode(trans, root, inode);
642out:
643 if (inode)
644 iput(inode);
645 return ret;
646}
647
648/*
649 * when cleaning up conflicts between the directory names in the
650 * subvolume, directory names in the log and directory names in the
651 * inode back references, we may have to unlink inodes from directories.
652 *
653 * This is a helper function to do the unlink of a specific directory
654 * item
655 */
656static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct inode *dir,
660 struct btrfs_dir_item *di)
661{
662 struct inode *inode;
663 char *name;
664 int name_len;
665 struct extent_buffer *leaf;
666 struct btrfs_key location;
667 int ret;
668
669 leaf = path->nodes[0];
670
671 btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 name_len = btrfs_dir_name_len(leaf, di);
673 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 674 if (!name)
675 return -ENOMEM;
676
e02119d5
CM
677 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
678 btrfs_release_path(root, path);
679
680 inode = read_one_inode(root, location.objectid);
681 BUG_ON(!inode);
682
ec051c0f
YZ
683 ret = link_to_fixup_dir(trans, root, path, location.objectid);
684 BUG_ON(ret);
12fcfd22 685
e02119d5 686 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
ec051c0f 687 BUG_ON(ret);
e02119d5
CM
688 kfree(name);
689
690 iput(inode);
691 return ret;
692}
693
694/*
695 * helper function to see if a given name and sequence number found
696 * in an inode back reference are already in a directory and correctly
697 * point to this inode
698 */
699static noinline int inode_in_dir(struct btrfs_root *root,
700 struct btrfs_path *path,
701 u64 dirid, u64 objectid, u64 index,
702 const char *name, int name_len)
703{
704 struct btrfs_dir_item *di;
705 struct btrfs_key location;
706 int match = 0;
707
708 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
709 index, name, name_len, 0);
710 if (di && !IS_ERR(di)) {
711 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
712 if (location.objectid != objectid)
713 goto out;
714 } else
715 goto out;
716 btrfs_release_path(root, path);
717
718 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
719 if (di && !IS_ERR(di)) {
720 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
721 if (location.objectid != objectid)
722 goto out;
723 } else
724 goto out;
725 match = 1;
726out:
727 btrfs_release_path(root, path);
728 return match;
729}
730
731/*
732 * helper function to check a log tree for a named back reference in
733 * an inode. This is used to decide if a back reference that is
734 * found in the subvolume conflicts with what we find in the log.
735 *
736 * inode backreferences may have multiple refs in a single item,
737 * during replay we process one reference at a time, and we don't
738 * want to delete valid links to a file from the subvolume if that
739 * link is also in the log.
740 */
741static noinline int backref_in_log(struct btrfs_root *log,
742 struct btrfs_key *key,
743 char *name, int namelen)
744{
745 struct btrfs_path *path;
746 struct btrfs_inode_ref *ref;
747 unsigned long ptr;
748 unsigned long ptr_end;
749 unsigned long name_ptr;
750 int found_name_len;
751 int item_size;
752 int ret;
753 int match = 0;
754
755 path = btrfs_alloc_path();
2a29edc6 756 if (!path)
757 return -ENOMEM;
758
e02119d5
CM
759 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
760 if (ret != 0)
761 goto out;
762
763 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
764 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
765 ptr_end = ptr + item_size;
766 while (ptr < ptr_end) {
767 ref = (struct btrfs_inode_ref *)ptr;
768 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
769 if (found_name_len == namelen) {
770 name_ptr = (unsigned long)(ref + 1);
771 ret = memcmp_extent_buffer(path->nodes[0], name,
772 name_ptr, namelen);
773 if (ret == 0) {
774 match = 1;
775 goto out;
776 }
777 }
778 ptr = (unsigned long)(ref + 1) + found_name_len;
779 }
780out:
781 btrfs_free_path(path);
782 return match;
783}
784
785
786/*
787 * replay one inode back reference item found in the log tree.
788 * eb, slot and key refer to the buffer and key found in the log tree.
789 * root is the destination we are replaying into, and path is for temp
790 * use by this function. (it should be released on return).
791 */
792static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
793 struct btrfs_root *root,
794 struct btrfs_root *log,
795 struct btrfs_path *path,
796 struct extent_buffer *eb, int slot,
797 struct btrfs_key *key)
798{
799 struct inode *dir;
800 int ret;
e02119d5 801 struct btrfs_inode_ref *ref;
e02119d5
CM
802 struct inode *inode;
803 char *name;
804 int namelen;
805 unsigned long ref_ptr;
806 unsigned long ref_end;
c622ae60 807 int search_done = 0;
e02119d5 808
e02119d5
CM
809 /*
810 * it is possible that we didn't log all the parent directories
811 * for a given inode. If we don't find the dir, just don't
812 * copy the back ref in. The link count fixup code will take
813 * care of the rest
814 */
815 dir = read_one_inode(root, key->offset);
816 if (!dir)
817 return -ENOENT;
818
819 inode = read_one_inode(root, key->objectid);
631c07c8 820 BUG_ON(!inode);
e02119d5
CM
821
822 ref_ptr = btrfs_item_ptr_offset(eb, slot);
823 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
824
825again:
826 ref = (struct btrfs_inode_ref *)ref_ptr;
827
828 namelen = btrfs_inode_ref_name_len(eb, ref);
829 name = kmalloc(namelen, GFP_NOFS);
830 BUG_ON(!name);
831
832 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
833
834 /* if we already have a perfect match, we're done */
33345d01 835 if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
e02119d5
CM
836 btrfs_inode_ref_index(eb, ref),
837 name, namelen)) {
838 goto out;
839 }
840
841 /*
842 * look for a conflicting back reference in the metadata.
843 * if we find one we have to unlink that name of the file
844 * before we add our new link. Later on, we overwrite any
845 * existing back reference, and we don't want to create
846 * dangling pointers in the directory.
847 */
c622ae60 848
849 if (search_done)
850 goto insert;
851
e02119d5
CM
852 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
853 if (ret == 0) {
854 char *victim_name;
855 int victim_name_len;
856 struct btrfs_inode_ref *victim_ref;
857 unsigned long ptr;
858 unsigned long ptr_end;
859 struct extent_buffer *leaf = path->nodes[0];
860
861 /* are we trying to overwrite a back ref for the root directory
862 * if so, just jump out, we're done
863 */
864 if (key->objectid == key->offset)
865 goto out_nowrite;
866
867 /* check all the names in this back reference to see
868 * if they are in the log. if so, we allow them to stay
869 * otherwise they must be unlinked as a conflict
870 */
871 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
872 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 873 while (ptr < ptr_end) {
e02119d5
CM
874 victim_ref = (struct btrfs_inode_ref *)ptr;
875 victim_name_len = btrfs_inode_ref_name_len(leaf,
876 victim_ref);
877 victim_name = kmalloc(victim_name_len, GFP_NOFS);
878 BUG_ON(!victim_name);
879
880 read_extent_buffer(leaf, victim_name,
881 (unsigned long)(victim_ref + 1),
882 victim_name_len);
883
884 if (!backref_in_log(log, key, victim_name,
885 victim_name_len)) {
886 btrfs_inc_nlink(inode);
887 btrfs_release_path(root, path);
12fcfd22 888
e02119d5
CM
889 ret = btrfs_unlink_inode(trans, root, dir,
890 inode, victim_name,
891 victim_name_len);
e02119d5
CM
892 }
893 kfree(victim_name);
894 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
895 }
896 BUG_ON(ret);
e02119d5 897
c622ae60 898 /*
899 * NOTE: we have searched root tree and checked the
900 * coresponding ref, it does not need to check again.
901 */
902 search_done = 1;
e02119d5
CM
903 }
904 btrfs_release_path(root, path);
905
c622ae60 906insert:
e02119d5
CM
907 /* insert our name */
908 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
909 btrfs_inode_ref_index(eb, ref));
910 BUG_ON(ret);
911
912 btrfs_update_inode(trans, root, inode);
913
914out:
915 ref_ptr = (unsigned long)(ref + 1) + namelen;
916 kfree(name);
917 if (ref_ptr < ref_end)
918 goto again;
919
920 /* finally write the back reference in the inode */
921 ret = overwrite_item(trans, root, path, eb, slot, key);
922 BUG_ON(ret);
923
924out_nowrite:
925 btrfs_release_path(root, path);
926 iput(dir);
927 iput(inode);
928 return 0;
929}
930
c71bf099
YZ
931static int insert_orphan_item(struct btrfs_trans_handle *trans,
932 struct btrfs_root *root, u64 offset)
933{
934 int ret;
935 ret = btrfs_find_orphan_item(root, offset);
936 if (ret > 0)
937 ret = btrfs_insert_orphan_item(trans, root, offset);
938 return ret;
939}
940
941
e02119d5
CM
942/*
943 * There are a few corners where the link count of the file can't
944 * be properly maintained during replay. So, instead of adding
945 * lots of complexity to the log code, we just scan the backrefs
946 * for any file that has been through replay.
947 *
948 * The scan will update the link count on the inode to reflect the
949 * number of back refs found. If it goes down to zero, the iput
950 * will free the inode.
951 */
952static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
953 struct btrfs_root *root,
954 struct inode *inode)
955{
956 struct btrfs_path *path;
957 int ret;
958 struct btrfs_key key;
959 u64 nlink = 0;
960 unsigned long ptr;
961 unsigned long ptr_end;
962 int name_len;
33345d01 963 u64 ino = btrfs_ino(inode);
e02119d5 964
33345d01 965 key.objectid = ino;
e02119d5
CM
966 key.type = BTRFS_INODE_REF_KEY;
967 key.offset = (u64)-1;
968
969 path = btrfs_alloc_path();
2a29edc6 970 if (!path)
971 return -ENOMEM;
e02119d5 972
d397712b 973 while (1) {
e02119d5
CM
974 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
975 if (ret < 0)
976 break;
977 if (ret > 0) {
978 if (path->slots[0] == 0)
979 break;
980 path->slots[0]--;
981 }
982 btrfs_item_key_to_cpu(path->nodes[0], &key,
983 path->slots[0]);
33345d01 984 if (key.objectid != ino ||
e02119d5
CM
985 key.type != BTRFS_INODE_REF_KEY)
986 break;
987 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
988 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
989 path->slots[0]);
d397712b 990 while (ptr < ptr_end) {
e02119d5
CM
991 struct btrfs_inode_ref *ref;
992
993 ref = (struct btrfs_inode_ref *)ptr;
994 name_len = btrfs_inode_ref_name_len(path->nodes[0],
995 ref);
996 ptr = (unsigned long)(ref + 1) + name_len;
997 nlink++;
998 }
999
1000 if (key.offset == 0)
1001 break;
1002 key.offset--;
1003 btrfs_release_path(root, path);
1004 }
12fcfd22 1005 btrfs_release_path(root, path);
e02119d5
CM
1006 if (nlink != inode->i_nlink) {
1007 inode->i_nlink = nlink;
1008 btrfs_update_inode(trans, root, inode);
1009 }
8d5bf1cb 1010 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1011
c71bf099
YZ
1012 if (inode->i_nlink == 0) {
1013 if (S_ISDIR(inode->i_mode)) {
1014 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1015 ino, 1);
c71bf099
YZ
1016 BUG_ON(ret);
1017 }
33345d01 1018 ret = insert_orphan_item(trans, root, ino);
12fcfd22
CM
1019 BUG_ON(ret);
1020 }
1021 btrfs_free_path(path);
1022
e02119d5
CM
1023 return 0;
1024}
1025
1026static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1027 struct btrfs_root *root,
1028 struct btrfs_path *path)
1029{
1030 int ret;
1031 struct btrfs_key key;
1032 struct inode *inode;
1033
1034 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1035 key.type = BTRFS_ORPHAN_ITEM_KEY;
1036 key.offset = (u64)-1;
d397712b 1037 while (1) {
e02119d5
CM
1038 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1039 if (ret < 0)
1040 break;
1041
1042 if (ret == 1) {
1043 if (path->slots[0] == 0)
1044 break;
1045 path->slots[0]--;
1046 }
1047
1048 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1049 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1050 key.type != BTRFS_ORPHAN_ITEM_KEY)
1051 break;
1052
1053 ret = btrfs_del_item(trans, root, path);
1054 BUG_ON(ret);
1055
1056 btrfs_release_path(root, path);
1057 inode = read_one_inode(root, key.offset);
1058 BUG_ON(!inode);
1059
1060 ret = fixup_inode_link_count(trans, root, inode);
1061 BUG_ON(ret);
1062
1063 iput(inode);
1064
12fcfd22
CM
1065 /*
1066 * fixup on a directory may create new entries,
1067 * make sure we always look for the highset possible
1068 * offset
1069 */
1070 key.offset = (u64)-1;
e02119d5
CM
1071 }
1072 btrfs_release_path(root, path);
1073 return 0;
1074}
1075
1076
1077/*
1078 * record a given inode in the fixup dir so we can check its link
1079 * count when replay is done. The link count is incremented here
1080 * so the inode won't go away until we check it
1081 */
1082static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1083 struct btrfs_root *root,
1084 struct btrfs_path *path,
1085 u64 objectid)
1086{
1087 struct btrfs_key key;
1088 int ret = 0;
1089 struct inode *inode;
1090
1091 inode = read_one_inode(root, objectid);
1092 BUG_ON(!inode);
1093
1094 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1095 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1096 key.offset = objectid;
1097
1098 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1099
1100 btrfs_release_path(root, path);
1101 if (ret == 0) {
1102 btrfs_inc_nlink(inode);
1103 btrfs_update_inode(trans, root, inode);
1104 } else if (ret == -EEXIST) {
1105 ret = 0;
1106 } else {
1107 BUG();
1108 }
1109 iput(inode);
1110
1111 return ret;
1112}
1113
1114/*
1115 * when replaying the log for a directory, we only insert names
1116 * for inodes that actually exist. This means an fsync on a directory
1117 * does not implicitly fsync all the new files in it
1118 */
1119static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1120 struct btrfs_root *root,
1121 struct btrfs_path *path,
1122 u64 dirid, u64 index,
1123 char *name, int name_len, u8 type,
1124 struct btrfs_key *location)
1125{
1126 struct inode *inode;
1127 struct inode *dir;
1128 int ret;
1129
1130 inode = read_one_inode(root, location->objectid);
1131 if (!inode)
1132 return -ENOENT;
1133
1134 dir = read_one_inode(root, dirid);
1135 if (!dir) {
1136 iput(inode);
1137 return -EIO;
1138 }
1139 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1140
1141 /* FIXME, put inode into FIXUP list */
1142
1143 iput(inode);
1144 iput(dir);
1145 return ret;
1146}
1147
1148/*
1149 * take a single entry in a log directory item and replay it into
1150 * the subvolume.
1151 *
1152 * if a conflicting item exists in the subdirectory already,
1153 * the inode it points to is unlinked and put into the link count
1154 * fix up tree.
1155 *
1156 * If a name from the log points to a file or directory that does
1157 * not exist in the FS, it is skipped. fsyncs on directories
1158 * do not force down inodes inside that directory, just changes to the
1159 * names or unlinks in a directory.
1160 */
1161static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1162 struct btrfs_root *root,
1163 struct btrfs_path *path,
1164 struct extent_buffer *eb,
1165 struct btrfs_dir_item *di,
1166 struct btrfs_key *key)
1167{
1168 char *name;
1169 int name_len;
1170 struct btrfs_dir_item *dst_di;
1171 struct btrfs_key found_key;
1172 struct btrfs_key log_key;
1173 struct inode *dir;
e02119d5 1174 u8 log_type;
4bef0848 1175 int exists;
e02119d5
CM
1176 int ret;
1177
1178 dir = read_one_inode(root, key->objectid);
1179 BUG_ON(!dir);
1180
1181 name_len = btrfs_dir_name_len(eb, di);
1182 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 1183 if (!name)
1184 return -ENOMEM;
1185
e02119d5
CM
1186 log_type = btrfs_dir_type(eb, di);
1187 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1188 name_len);
1189
1190 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1191 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1192 if (exists == 0)
1193 exists = 1;
1194 else
1195 exists = 0;
1196 btrfs_release_path(root, path);
1197
e02119d5
CM
1198 if (key->type == BTRFS_DIR_ITEM_KEY) {
1199 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1200 name, name_len, 1);
d397712b 1201 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1202 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1203 key->objectid,
1204 key->offset, name,
1205 name_len, 1);
1206 } else {
1207 BUG();
1208 }
1209 if (!dst_di || IS_ERR(dst_di)) {
1210 /* we need a sequence number to insert, so we only
1211 * do inserts for the BTRFS_DIR_INDEX_KEY types
1212 */
1213 if (key->type != BTRFS_DIR_INDEX_KEY)
1214 goto out;
1215 goto insert;
1216 }
1217
1218 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1219 /* the existing item matches the logged item */
1220 if (found_key.objectid == log_key.objectid &&
1221 found_key.type == log_key.type &&
1222 found_key.offset == log_key.offset &&
1223 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1224 goto out;
1225 }
1226
1227 /*
1228 * don't drop the conflicting directory entry if the inode
1229 * for the new entry doesn't exist
1230 */
4bef0848 1231 if (!exists)
e02119d5
CM
1232 goto out;
1233
e02119d5
CM
1234 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1235 BUG_ON(ret);
1236
1237 if (key->type == BTRFS_DIR_INDEX_KEY)
1238 goto insert;
1239out:
1240 btrfs_release_path(root, path);
1241 kfree(name);
1242 iput(dir);
1243 return 0;
1244
1245insert:
1246 btrfs_release_path(root, path);
1247 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1248 name, name_len, log_type, &log_key);
1249
c293498b 1250 BUG_ON(ret && ret != -ENOENT);
e02119d5
CM
1251 goto out;
1252}
1253
1254/*
1255 * find all the names in a directory item and reconcile them into
1256 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1257 * one name in a directory item, but the same code gets used for
1258 * both directory index types
1259 */
1260static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1261 struct btrfs_root *root,
1262 struct btrfs_path *path,
1263 struct extent_buffer *eb, int slot,
1264 struct btrfs_key *key)
1265{
1266 int ret;
1267 u32 item_size = btrfs_item_size_nr(eb, slot);
1268 struct btrfs_dir_item *di;
1269 int name_len;
1270 unsigned long ptr;
1271 unsigned long ptr_end;
1272
1273 ptr = btrfs_item_ptr_offset(eb, slot);
1274 ptr_end = ptr + item_size;
d397712b 1275 while (ptr < ptr_end) {
e02119d5 1276 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1277 if (verify_dir_item(root, eb, di))
1278 return -EIO;
e02119d5
CM
1279 name_len = btrfs_dir_name_len(eb, di);
1280 ret = replay_one_name(trans, root, path, eb, di, key);
1281 BUG_ON(ret);
1282 ptr = (unsigned long)(di + 1);
1283 ptr += name_len;
1284 }
1285 return 0;
1286}
1287
1288/*
1289 * directory replay has two parts. There are the standard directory
1290 * items in the log copied from the subvolume, and range items
1291 * created in the log while the subvolume was logged.
1292 *
1293 * The range items tell us which parts of the key space the log
1294 * is authoritative for. During replay, if a key in the subvolume
1295 * directory is in a logged range item, but not actually in the log
1296 * that means it was deleted from the directory before the fsync
1297 * and should be removed.
1298 */
1299static noinline int find_dir_range(struct btrfs_root *root,
1300 struct btrfs_path *path,
1301 u64 dirid, int key_type,
1302 u64 *start_ret, u64 *end_ret)
1303{
1304 struct btrfs_key key;
1305 u64 found_end;
1306 struct btrfs_dir_log_item *item;
1307 int ret;
1308 int nritems;
1309
1310 if (*start_ret == (u64)-1)
1311 return 1;
1312
1313 key.objectid = dirid;
1314 key.type = key_type;
1315 key.offset = *start_ret;
1316
1317 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1318 if (ret < 0)
1319 goto out;
1320 if (ret > 0) {
1321 if (path->slots[0] == 0)
1322 goto out;
1323 path->slots[0]--;
1324 }
1325 if (ret != 0)
1326 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1327
1328 if (key.type != key_type || key.objectid != dirid) {
1329 ret = 1;
1330 goto next;
1331 }
1332 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1333 struct btrfs_dir_log_item);
1334 found_end = btrfs_dir_log_end(path->nodes[0], item);
1335
1336 if (*start_ret >= key.offset && *start_ret <= found_end) {
1337 ret = 0;
1338 *start_ret = key.offset;
1339 *end_ret = found_end;
1340 goto out;
1341 }
1342 ret = 1;
1343next:
1344 /* check the next slot in the tree to see if it is a valid item */
1345 nritems = btrfs_header_nritems(path->nodes[0]);
1346 if (path->slots[0] >= nritems) {
1347 ret = btrfs_next_leaf(root, path);
1348 if (ret)
1349 goto out;
1350 } else {
1351 path->slots[0]++;
1352 }
1353
1354 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1355
1356 if (key.type != key_type || key.objectid != dirid) {
1357 ret = 1;
1358 goto out;
1359 }
1360 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1361 struct btrfs_dir_log_item);
1362 found_end = btrfs_dir_log_end(path->nodes[0], item);
1363 *start_ret = key.offset;
1364 *end_ret = found_end;
1365 ret = 0;
1366out:
1367 btrfs_release_path(root, path);
1368 return ret;
1369}
1370
1371/*
1372 * this looks for a given directory item in the log. If the directory
1373 * item is not in the log, the item is removed and the inode it points
1374 * to is unlinked
1375 */
1376static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1377 struct btrfs_root *root,
1378 struct btrfs_root *log,
1379 struct btrfs_path *path,
1380 struct btrfs_path *log_path,
1381 struct inode *dir,
1382 struct btrfs_key *dir_key)
1383{
1384 int ret;
1385 struct extent_buffer *eb;
1386 int slot;
1387 u32 item_size;
1388 struct btrfs_dir_item *di;
1389 struct btrfs_dir_item *log_di;
1390 int name_len;
1391 unsigned long ptr;
1392 unsigned long ptr_end;
1393 char *name;
1394 struct inode *inode;
1395 struct btrfs_key location;
1396
1397again:
1398 eb = path->nodes[0];
1399 slot = path->slots[0];
1400 item_size = btrfs_item_size_nr(eb, slot);
1401 ptr = btrfs_item_ptr_offset(eb, slot);
1402 ptr_end = ptr + item_size;
d397712b 1403 while (ptr < ptr_end) {
e02119d5 1404 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1405 if (verify_dir_item(root, eb, di)) {
1406 ret = -EIO;
1407 goto out;
1408 }
1409
e02119d5
CM
1410 name_len = btrfs_dir_name_len(eb, di);
1411 name = kmalloc(name_len, GFP_NOFS);
1412 if (!name) {
1413 ret = -ENOMEM;
1414 goto out;
1415 }
1416 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1417 name_len);
1418 log_di = NULL;
12fcfd22 1419 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1420 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1421 dir_key->objectid,
1422 name, name_len, 0);
12fcfd22 1423 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1424 log_di = btrfs_lookup_dir_index_item(trans, log,
1425 log_path,
1426 dir_key->objectid,
1427 dir_key->offset,
1428 name, name_len, 0);
1429 }
1430 if (!log_di || IS_ERR(log_di)) {
1431 btrfs_dir_item_key_to_cpu(eb, di, &location);
1432 btrfs_release_path(root, path);
1433 btrfs_release_path(log, log_path);
1434 inode = read_one_inode(root, location.objectid);
1435 BUG_ON(!inode);
1436
1437 ret = link_to_fixup_dir(trans, root,
1438 path, location.objectid);
1439 BUG_ON(ret);
1440 btrfs_inc_nlink(inode);
1441 ret = btrfs_unlink_inode(trans, root, dir, inode,
1442 name, name_len);
1443 BUG_ON(ret);
1444 kfree(name);
1445 iput(inode);
1446
1447 /* there might still be more names under this key
1448 * check and repeat if required
1449 */
1450 ret = btrfs_search_slot(NULL, root, dir_key, path,
1451 0, 0);
1452 if (ret == 0)
1453 goto again;
1454 ret = 0;
1455 goto out;
1456 }
1457 btrfs_release_path(log, log_path);
1458 kfree(name);
1459
1460 ptr = (unsigned long)(di + 1);
1461 ptr += name_len;
1462 }
1463 ret = 0;
1464out:
1465 btrfs_release_path(root, path);
1466 btrfs_release_path(log, log_path);
1467 return ret;
1468}
1469
1470/*
1471 * deletion replay happens before we copy any new directory items
1472 * out of the log or out of backreferences from inodes. It
1473 * scans the log to find ranges of keys that log is authoritative for,
1474 * and then scans the directory to find items in those ranges that are
1475 * not present in the log.
1476 *
1477 * Anything we don't find in the log is unlinked and removed from the
1478 * directory.
1479 */
1480static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1481 struct btrfs_root *root,
1482 struct btrfs_root *log,
1483 struct btrfs_path *path,
12fcfd22 1484 u64 dirid, int del_all)
e02119d5
CM
1485{
1486 u64 range_start;
1487 u64 range_end;
1488 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1489 int ret = 0;
1490 struct btrfs_key dir_key;
1491 struct btrfs_key found_key;
1492 struct btrfs_path *log_path;
1493 struct inode *dir;
1494
1495 dir_key.objectid = dirid;
1496 dir_key.type = BTRFS_DIR_ITEM_KEY;
1497 log_path = btrfs_alloc_path();
1498 if (!log_path)
1499 return -ENOMEM;
1500
1501 dir = read_one_inode(root, dirid);
1502 /* it isn't an error if the inode isn't there, that can happen
1503 * because we replay the deletes before we copy in the inode item
1504 * from the log
1505 */
1506 if (!dir) {
1507 btrfs_free_path(log_path);
1508 return 0;
1509 }
1510again:
1511 range_start = 0;
1512 range_end = 0;
d397712b 1513 while (1) {
12fcfd22
CM
1514 if (del_all)
1515 range_end = (u64)-1;
1516 else {
1517 ret = find_dir_range(log, path, dirid, key_type,
1518 &range_start, &range_end);
1519 if (ret != 0)
1520 break;
1521 }
e02119d5
CM
1522
1523 dir_key.offset = range_start;
d397712b 1524 while (1) {
e02119d5
CM
1525 int nritems;
1526 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1527 0, 0);
1528 if (ret < 0)
1529 goto out;
1530
1531 nritems = btrfs_header_nritems(path->nodes[0]);
1532 if (path->slots[0] >= nritems) {
1533 ret = btrfs_next_leaf(root, path);
1534 if (ret)
1535 break;
1536 }
1537 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1538 path->slots[0]);
1539 if (found_key.objectid != dirid ||
1540 found_key.type != dir_key.type)
1541 goto next_type;
1542
1543 if (found_key.offset > range_end)
1544 break;
1545
1546 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
1547 log_path, dir,
1548 &found_key);
e02119d5
CM
1549 BUG_ON(ret);
1550 if (found_key.offset == (u64)-1)
1551 break;
1552 dir_key.offset = found_key.offset + 1;
1553 }
1554 btrfs_release_path(root, path);
1555 if (range_end == (u64)-1)
1556 break;
1557 range_start = range_end + 1;
1558 }
1559
1560next_type:
1561 ret = 0;
1562 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1563 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1564 dir_key.type = BTRFS_DIR_INDEX_KEY;
1565 btrfs_release_path(root, path);
1566 goto again;
1567 }
1568out:
1569 btrfs_release_path(root, path);
1570 btrfs_free_path(log_path);
1571 iput(dir);
1572 return ret;
1573}
1574
1575/*
1576 * the process_func used to replay items from the log tree. This
1577 * gets called in two different stages. The first stage just looks
1578 * for inodes and makes sure they are all copied into the subvolume.
1579 *
1580 * The second stage copies all the other item types from the log into
1581 * the subvolume. The two stage approach is slower, but gets rid of
1582 * lots of complexity around inodes referencing other inodes that exist
1583 * only in the log (references come from either directory items or inode
1584 * back refs).
1585 */
1586static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1587 struct walk_control *wc, u64 gen)
1588{
1589 int nritems;
1590 struct btrfs_path *path;
1591 struct btrfs_root *root = wc->replay_dest;
1592 struct btrfs_key key;
e02119d5
CM
1593 int level;
1594 int i;
1595 int ret;
1596
1597 btrfs_read_buffer(eb, gen);
1598
1599 level = btrfs_header_level(eb);
1600
1601 if (level != 0)
1602 return 0;
1603
1604 path = btrfs_alloc_path();
1605 BUG_ON(!path);
1606
1607 nritems = btrfs_header_nritems(eb);
1608 for (i = 0; i < nritems; i++) {
1609 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
1610
1611 /* inode keys are done during the first stage */
1612 if (key.type == BTRFS_INODE_ITEM_KEY &&
1613 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
1614 struct btrfs_inode_item *inode_item;
1615 u32 mode;
1616
1617 inode_item = btrfs_item_ptr(eb, i,
1618 struct btrfs_inode_item);
1619 mode = btrfs_inode_mode(eb, inode_item);
1620 if (S_ISDIR(mode)) {
1621 ret = replay_dir_deletes(wc->trans,
12fcfd22 1622 root, log, path, key.objectid, 0);
e02119d5
CM
1623 BUG_ON(ret);
1624 }
1625 ret = overwrite_item(wc->trans, root, path,
1626 eb, i, &key);
1627 BUG_ON(ret);
1628
c71bf099
YZ
1629 /* for regular files, make sure corresponding
1630 * orhpan item exist. extents past the new EOF
1631 * will be truncated later by orphan cleanup.
e02119d5
CM
1632 */
1633 if (S_ISREG(mode)) {
c71bf099
YZ
1634 ret = insert_orphan_item(wc->trans, root,
1635 key.objectid);
e02119d5 1636 BUG_ON(ret);
e02119d5 1637 }
c71bf099 1638
e02119d5
CM
1639 ret = link_to_fixup_dir(wc->trans, root,
1640 path, key.objectid);
1641 BUG_ON(ret);
1642 }
1643 if (wc->stage < LOG_WALK_REPLAY_ALL)
1644 continue;
1645
1646 /* these keys are simply copied */
1647 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1648 ret = overwrite_item(wc->trans, root, path,
1649 eb, i, &key);
1650 BUG_ON(ret);
1651 } else if (key.type == BTRFS_INODE_REF_KEY) {
1652 ret = add_inode_ref(wc->trans, root, log, path,
1653 eb, i, &key);
1654 BUG_ON(ret && ret != -ENOENT);
1655 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1656 ret = replay_one_extent(wc->trans, root, path,
1657 eb, i, &key);
1658 BUG_ON(ret);
e02119d5
CM
1659 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1660 key.type == BTRFS_DIR_INDEX_KEY) {
1661 ret = replay_one_dir_item(wc->trans, root, path,
1662 eb, i, &key);
1663 BUG_ON(ret);
1664 }
1665 }
1666 btrfs_free_path(path);
1667 return 0;
1668}
1669
d397712b 1670static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
1671 struct btrfs_root *root,
1672 struct btrfs_path *path, int *level,
1673 struct walk_control *wc)
1674{
1675 u64 root_owner;
e02119d5
CM
1676 u64 bytenr;
1677 u64 ptr_gen;
1678 struct extent_buffer *next;
1679 struct extent_buffer *cur;
1680 struct extent_buffer *parent;
1681 u32 blocksize;
1682 int ret = 0;
1683
1684 WARN_ON(*level < 0);
1685 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1686
d397712b 1687 while (*level > 0) {
e02119d5
CM
1688 WARN_ON(*level < 0);
1689 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1690 cur = path->nodes[*level];
1691
1692 if (btrfs_header_level(cur) != *level)
1693 WARN_ON(1);
1694
1695 if (path->slots[*level] >=
1696 btrfs_header_nritems(cur))
1697 break;
1698
1699 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1700 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1701 blocksize = btrfs_level_size(root, *level - 1);
1702
1703 parent = path->nodes[*level];
1704 root_owner = btrfs_header_owner(parent);
e02119d5
CM
1705
1706 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2a29edc6 1707 if (!next)
1708 return -ENOMEM;
e02119d5 1709
e02119d5 1710 if (*level == 1) {
4a500fd1
YZ
1711 wc->process_func(root, next, wc, ptr_gen);
1712
e02119d5
CM
1713 path->slots[*level]++;
1714 if (wc->free) {
1715 btrfs_read_buffer(next, ptr_gen);
1716
1717 btrfs_tree_lock(next);
1718 clean_tree_block(trans, root, next);
b4ce94de 1719 btrfs_set_lock_blocking(next);
e02119d5
CM
1720 btrfs_wait_tree_block_writeback(next);
1721 btrfs_tree_unlock(next);
1722
e02119d5
CM
1723 WARN_ON(root_owner !=
1724 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1725 ret = btrfs_free_reserved_extent(root,
1726 bytenr, blocksize);
e02119d5
CM
1727 BUG_ON(ret);
1728 }
1729 free_extent_buffer(next);
1730 continue;
1731 }
1732 btrfs_read_buffer(next, ptr_gen);
1733
1734 WARN_ON(*level <= 0);
1735 if (path->nodes[*level-1])
1736 free_extent_buffer(path->nodes[*level-1]);
1737 path->nodes[*level-1] = next;
1738 *level = btrfs_header_level(next);
1739 path->slots[*level] = 0;
1740 cond_resched();
1741 }
1742 WARN_ON(*level < 0);
1743 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1744
4a500fd1 1745 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
1746
1747 cond_resched();
1748 return 0;
1749}
1750
d397712b 1751static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
1752 struct btrfs_root *root,
1753 struct btrfs_path *path, int *level,
1754 struct walk_control *wc)
1755{
1756 u64 root_owner;
e02119d5
CM
1757 int i;
1758 int slot;
1759 int ret;
1760
d397712b 1761 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 1762 slot = path->slots[i];
4a500fd1 1763 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
1764 path->slots[i]++;
1765 *level = i;
1766 WARN_ON(*level == 0);
1767 return 0;
1768 } else {
31840ae1
ZY
1769 struct extent_buffer *parent;
1770 if (path->nodes[*level] == root->node)
1771 parent = path->nodes[*level];
1772 else
1773 parent = path->nodes[*level + 1];
1774
1775 root_owner = btrfs_header_owner(parent);
e02119d5
CM
1776 wc->process_func(root, path->nodes[*level], wc,
1777 btrfs_header_generation(path->nodes[*level]));
1778 if (wc->free) {
1779 struct extent_buffer *next;
1780
1781 next = path->nodes[*level];
1782
1783 btrfs_tree_lock(next);
1784 clean_tree_block(trans, root, next);
b4ce94de 1785 btrfs_set_lock_blocking(next);
e02119d5
CM
1786 btrfs_wait_tree_block_writeback(next);
1787 btrfs_tree_unlock(next);
1788
e02119d5 1789 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1790 ret = btrfs_free_reserved_extent(root,
e02119d5 1791 path->nodes[*level]->start,
d00aff00 1792 path->nodes[*level]->len);
e02119d5
CM
1793 BUG_ON(ret);
1794 }
1795 free_extent_buffer(path->nodes[*level]);
1796 path->nodes[*level] = NULL;
1797 *level = i + 1;
1798 }
1799 }
1800 return 1;
1801}
1802
1803/*
1804 * drop the reference count on the tree rooted at 'snap'. This traverses
1805 * the tree freeing any blocks that have a ref count of zero after being
1806 * decremented.
1807 */
1808static int walk_log_tree(struct btrfs_trans_handle *trans,
1809 struct btrfs_root *log, struct walk_control *wc)
1810{
1811 int ret = 0;
1812 int wret;
1813 int level;
1814 struct btrfs_path *path;
1815 int i;
1816 int orig_level;
1817
1818 path = btrfs_alloc_path();
db5b493a
TI
1819 if (!path)
1820 return -ENOMEM;
e02119d5
CM
1821
1822 level = btrfs_header_level(log->node);
1823 orig_level = level;
1824 path->nodes[level] = log->node;
1825 extent_buffer_get(log->node);
1826 path->slots[level] = 0;
1827
d397712b 1828 while (1) {
e02119d5
CM
1829 wret = walk_down_log_tree(trans, log, path, &level, wc);
1830 if (wret > 0)
1831 break;
1832 if (wret < 0)
1833 ret = wret;
1834
1835 wret = walk_up_log_tree(trans, log, path, &level, wc);
1836 if (wret > 0)
1837 break;
1838 if (wret < 0)
1839 ret = wret;
1840 }
1841
1842 /* was the root node processed? if not, catch it here */
1843 if (path->nodes[orig_level]) {
1844 wc->process_func(log, path->nodes[orig_level], wc,
1845 btrfs_header_generation(path->nodes[orig_level]));
1846 if (wc->free) {
1847 struct extent_buffer *next;
1848
1849 next = path->nodes[orig_level];
1850
1851 btrfs_tree_lock(next);
1852 clean_tree_block(trans, log, next);
b4ce94de 1853 btrfs_set_lock_blocking(next);
e02119d5
CM
1854 btrfs_wait_tree_block_writeback(next);
1855 btrfs_tree_unlock(next);
1856
e02119d5
CM
1857 WARN_ON(log->root_key.objectid !=
1858 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1859 ret = btrfs_free_reserved_extent(log, next->start,
1860 next->len);
e02119d5
CM
1861 BUG_ON(ret);
1862 }
1863 }
1864
1865 for (i = 0; i <= orig_level; i++) {
1866 if (path->nodes[i]) {
1867 free_extent_buffer(path->nodes[i]);
1868 path->nodes[i] = NULL;
1869 }
1870 }
1871 btrfs_free_path(path);
e02119d5
CM
1872 return ret;
1873}
1874
7237f183
YZ
1875/*
1876 * helper function to update the item for a given subvolumes log root
1877 * in the tree of log roots
1878 */
1879static int update_log_root(struct btrfs_trans_handle *trans,
1880 struct btrfs_root *log)
1881{
1882 int ret;
1883
1884 if (log->log_transid == 1) {
1885 /* insert root item on the first sync */
1886 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1887 &log->root_key, &log->root_item);
1888 } else {
1889 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1890 &log->root_key, &log->root_item);
1891 }
1892 return ret;
1893}
1894
12fcfd22
CM
1895static int wait_log_commit(struct btrfs_trans_handle *trans,
1896 struct btrfs_root *root, unsigned long transid)
e02119d5
CM
1897{
1898 DEFINE_WAIT(wait);
7237f183 1899 int index = transid % 2;
e02119d5 1900
7237f183
YZ
1901 /*
1902 * we only allow two pending log transactions at a time,
1903 * so we know that if ours is more than 2 older than the
1904 * current transaction, we're done
1905 */
e02119d5 1906 do {
7237f183
YZ
1907 prepare_to_wait(&root->log_commit_wait[index],
1908 &wait, TASK_UNINTERRUPTIBLE);
1909 mutex_unlock(&root->log_mutex);
12fcfd22
CM
1910
1911 if (root->fs_info->last_trans_log_full_commit !=
1912 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
1913 atomic_read(&root->log_commit[index]))
1914 schedule();
12fcfd22 1915
7237f183
YZ
1916 finish_wait(&root->log_commit_wait[index], &wait);
1917 mutex_lock(&root->log_mutex);
1918 } while (root->log_transid < transid + 2 &&
1919 atomic_read(&root->log_commit[index]));
1920 return 0;
1921}
1922
12fcfd22
CM
1923static int wait_for_writer(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root)
7237f183
YZ
1925{
1926 DEFINE_WAIT(wait);
1927 while (atomic_read(&root->log_writers)) {
1928 prepare_to_wait(&root->log_writer_wait,
1929 &wait, TASK_UNINTERRUPTIBLE);
1930 mutex_unlock(&root->log_mutex);
12fcfd22
CM
1931 if (root->fs_info->last_trans_log_full_commit !=
1932 trans->transid && atomic_read(&root->log_writers))
e02119d5 1933 schedule();
7237f183
YZ
1934 mutex_lock(&root->log_mutex);
1935 finish_wait(&root->log_writer_wait, &wait);
1936 }
e02119d5
CM
1937 return 0;
1938}
1939
1940/*
1941 * btrfs_sync_log does sends a given tree log down to the disk and
1942 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
1943 * you know that any inodes previously logged are safely on disk only
1944 * if it returns 0.
1945 *
1946 * Any other return value means you need to call btrfs_commit_transaction.
1947 * Some of the edge cases for fsyncing directories that have had unlinks
1948 * or renames done in the past mean that sometimes the only safe
1949 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1950 * that has happened.
e02119d5
CM
1951 */
1952int btrfs_sync_log(struct btrfs_trans_handle *trans,
1953 struct btrfs_root *root)
1954{
7237f183
YZ
1955 int index1;
1956 int index2;
8cef4e16 1957 int mark;
e02119d5 1958 int ret;
e02119d5 1959 struct btrfs_root *log = root->log_root;
7237f183 1960 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
8cef4e16 1961 unsigned long log_transid = 0;
e02119d5 1962
7237f183
YZ
1963 mutex_lock(&root->log_mutex);
1964 index1 = root->log_transid % 2;
1965 if (atomic_read(&root->log_commit[index1])) {
12fcfd22 1966 wait_log_commit(trans, root, root->log_transid);
7237f183
YZ
1967 mutex_unlock(&root->log_mutex);
1968 return 0;
e02119d5 1969 }
7237f183
YZ
1970 atomic_set(&root->log_commit[index1], 1);
1971
1972 /* wait for previous tree log sync to complete */
1973 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
12fcfd22 1974 wait_log_commit(trans, root, root->log_transid - 1);
e02119d5 1975
86df7eb9 1976 while (1) {
7237f183 1977 unsigned long batch = root->log_batch;
86df7eb9
YZ
1978 if (root->log_multiple_pids) {
1979 mutex_unlock(&root->log_mutex);
1980 schedule_timeout_uninterruptible(1);
1981 mutex_lock(&root->log_mutex);
1982 }
12fcfd22 1983 wait_for_writer(trans, root);
7237f183 1984 if (batch == root->log_batch)
e02119d5
CM
1985 break;
1986 }
e02119d5 1987
12fcfd22
CM
1988 /* bail out if we need to do a full commit */
1989 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
1990 ret = -EAGAIN;
1991 mutex_unlock(&root->log_mutex);
1992 goto out;
1993 }
1994
8cef4e16
YZ
1995 log_transid = root->log_transid;
1996 if (log_transid % 2 == 0)
1997 mark = EXTENT_DIRTY;
1998 else
1999 mark = EXTENT_NEW;
2000
690587d1
CM
2001 /* we start IO on all the marked extents here, but we don't actually
2002 * wait for them until later.
2003 */
8cef4e16 2004 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
e02119d5 2005 BUG_ON(ret);
7237f183 2006
5d4f98a2 2007 btrfs_set_root_node(&log->root_item, log->node);
7237f183
YZ
2008
2009 root->log_batch = 0;
2010 root->log_transid++;
2011 log->log_transid = root->log_transid;
ff782e0a 2012 root->log_start_pid = 0;
7237f183
YZ
2013 smp_mb();
2014 /*
8cef4e16
YZ
2015 * IO has been started, blocks of the log tree have WRITTEN flag set
2016 * in their headers. new modifications of the log will be written to
2017 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2018 */
2019 mutex_unlock(&root->log_mutex);
2020
2021 mutex_lock(&log_root_tree->log_mutex);
2022 log_root_tree->log_batch++;
2023 atomic_inc(&log_root_tree->log_writers);
2024 mutex_unlock(&log_root_tree->log_mutex);
2025
2026 ret = update_log_root(trans, log);
7237f183
YZ
2027
2028 mutex_lock(&log_root_tree->log_mutex);
2029 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2030 smp_mb();
2031 if (waitqueue_active(&log_root_tree->log_writer_wait))
2032 wake_up(&log_root_tree->log_writer_wait);
2033 }
2034
4a500fd1
YZ
2035 if (ret) {
2036 BUG_ON(ret != -ENOSPC);
2037 root->fs_info->last_trans_log_full_commit = trans->transid;
2038 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2039 mutex_unlock(&log_root_tree->log_mutex);
2040 ret = -EAGAIN;
2041 goto out;
2042 }
2043
7237f183
YZ
2044 index2 = log_root_tree->log_transid % 2;
2045 if (atomic_read(&log_root_tree->log_commit[index2])) {
8cef4e16 2046 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
12fcfd22
CM
2047 wait_log_commit(trans, log_root_tree,
2048 log_root_tree->log_transid);
7237f183 2049 mutex_unlock(&log_root_tree->log_mutex);
b31eabd8 2050 ret = 0;
7237f183
YZ
2051 goto out;
2052 }
2053 atomic_set(&log_root_tree->log_commit[index2], 1);
2054
12fcfd22
CM
2055 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2056 wait_log_commit(trans, log_root_tree,
2057 log_root_tree->log_transid - 1);
2058 }
2059
2060 wait_for_writer(trans, log_root_tree);
7237f183 2061
12fcfd22
CM
2062 /*
2063 * now that we've moved on to the tree of log tree roots,
2064 * check the full commit flag again
2065 */
2066 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
8cef4e16 2067 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
12fcfd22
CM
2068 mutex_unlock(&log_root_tree->log_mutex);
2069 ret = -EAGAIN;
2070 goto out_wake_log_root;
2071 }
7237f183
YZ
2072
2073 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
8cef4e16
YZ
2074 &log_root_tree->dirty_log_pages,
2075 EXTENT_DIRTY | EXTENT_NEW);
e02119d5 2076 BUG_ON(ret);
8cef4e16 2077 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
e02119d5
CM
2078
2079 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
7237f183 2080 log_root_tree->node->start);
e02119d5 2081 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
7237f183 2082 btrfs_header_level(log_root_tree->node));
e02119d5 2083
7237f183
YZ
2084 log_root_tree->log_batch = 0;
2085 log_root_tree->log_transid++;
e02119d5 2086 smp_mb();
7237f183
YZ
2087
2088 mutex_unlock(&log_root_tree->log_mutex);
2089
2090 /*
2091 * nobody else is going to jump in and write the the ctree
2092 * super here because the log_commit atomic below is protecting
2093 * us. We must be called with a transaction handle pinning
2094 * the running transaction open, so a full commit can't hop
2095 * in and cause problems either.
2096 */
4722607d 2097 write_ctree_super(trans, root->fs_info->tree_root, 1);
12fcfd22 2098 ret = 0;
7237f183 2099
257c62e1
CM
2100 mutex_lock(&root->log_mutex);
2101 if (root->last_log_commit < log_transid)
2102 root->last_log_commit = log_transid;
2103 mutex_unlock(&root->log_mutex);
2104
12fcfd22 2105out_wake_log_root:
7237f183
YZ
2106 atomic_set(&log_root_tree->log_commit[index2], 0);
2107 smp_mb();
2108 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2109 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2110out:
7237f183
YZ
2111 atomic_set(&root->log_commit[index1], 0);
2112 smp_mb();
2113 if (waitqueue_active(&root->log_commit_wait[index1]))
2114 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2115 return ret;
e02119d5
CM
2116}
2117
4a500fd1
YZ
2118static void free_log_tree(struct btrfs_trans_handle *trans,
2119 struct btrfs_root *log)
e02119d5
CM
2120{
2121 int ret;
d0c803c4
CM
2122 u64 start;
2123 u64 end;
e02119d5
CM
2124 struct walk_control wc = {
2125 .free = 1,
2126 .process_func = process_one_buffer
2127 };
2128
e02119d5
CM
2129 ret = walk_log_tree(trans, log, &wc);
2130 BUG_ON(ret);
2131
d397712b 2132 while (1) {
d0c803c4 2133 ret = find_first_extent_bit(&log->dirty_log_pages,
8cef4e16 2134 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
d0c803c4
CM
2135 if (ret)
2136 break;
2137
8cef4e16
YZ
2138 clear_extent_bits(&log->dirty_log_pages, start, end,
2139 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2140 }
2141
7237f183
YZ
2142 free_extent_buffer(log->node);
2143 kfree(log);
4a500fd1
YZ
2144}
2145
2146/*
2147 * free all the extents used by the tree log. This should be called
2148 * at commit time of the full transaction
2149 */
2150int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2151{
2152 if (root->log_root) {
2153 free_log_tree(trans, root->log_root);
2154 root->log_root = NULL;
2155 }
2156 return 0;
2157}
2158
2159int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2160 struct btrfs_fs_info *fs_info)
2161{
2162 if (fs_info->log_root_tree) {
2163 free_log_tree(trans, fs_info->log_root_tree);
2164 fs_info->log_root_tree = NULL;
2165 }
e02119d5
CM
2166 return 0;
2167}
2168
e02119d5
CM
2169/*
2170 * If both a file and directory are logged, and unlinks or renames are
2171 * mixed in, we have a few interesting corners:
2172 *
2173 * create file X in dir Y
2174 * link file X to X.link in dir Y
2175 * fsync file X
2176 * unlink file X but leave X.link
2177 * fsync dir Y
2178 *
2179 * After a crash we would expect only X.link to exist. But file X
2180 * didn't get fsync'd again so the log has back refs for X and X.link.
2181 *
2182 * We solve this by removing directory entries and inode backrefs from the
2183 * log when a file that was logged in the current transaction is
2184 * unlinked. Any later fsync will include the updated log entries, and
2185 * we'll be able to reconstruct the proper directory items from backrefs.
2186 *
2187 * This optimizations allows us to avoid relogging the entire inode
2188 * or the entire directory.
2189 */
2190int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2191 struct btrfs_root *root,
2192 const char *name, int name_len,
2193 struct inode *dir, u64 index)
2194{
2195 struct btrfs_root *log;
2196 struct btrfs_dir_item *di;
2197 struct btrfs_path *path;
2198 int ret;
4a500fd1 2199 int err = 0;
e02119d5 2200 int bytes_del = 0;
33345d01 2201 u64 dir_ino = btrfs_ino(dir);
e02119d5 2202
3a5f1d45
CM
2203 if (BTRFS_I(dir)->logged_trans < trans->transid)
2204 return 0;
2205
e02119d5
CM
2206 ret = join_running_log_trans(root);
2207 if (ret)
2208 return 0;
2209
2210 mutex_lock(&BTRFS_I(dir)->log_mutex);
2211
2212 log = root->log_root;
2213 path = btrfs_alloc_path();
2a29edc6 2214 if (!path)
2215 return -ENOMEM;
2216
33345d01 2217 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 2218 name, name_len, -1);
4a500fd1
YZ
2219 if (IS_ERR(di)) {
2220 err = PTR_ERR(di);
2221 goto fail;
2222 }
2223 if (di) {
e02119d5
CM
2224 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2225 bytes_del += name_len;
2226 BUG_ON(ret);
2227 }
2228 btrfs_release_path(log, path);
33345d01 2229 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 2230 index, name, name_len, -1);
4a500fd1
YZ
2231 if (IS_ERR(di)) {
2232 err = PTR_ERR(di);
2233 goto fail;
2234 }
2235 if (di) {
e02119d5
CM
2236 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2237 bytes_del += name_len;
2238 BUG_ON(ret);
2239 }
2240
2241 /* update the directory size in the log to reflect the names
2242 * we have removed
2243 */
2244 if (bytes_del) {
2245 struct btrfs_key key;
2246
33345d01 2247 key.objectid = dir_ino;
e02119d5
CM
2248 key.offset = 0;
2249 key.type = BTRFS_INODE_ITEM_KEY;
2250 btrfs_release_path(log, path);
2251
2252 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
2253 if (ret < 0) {
2254 err = ret;
2255 goto fail;
2256 }
e02119d5
CM
2257 if (ret == 0) {
2258 struct btrfs_inode_item *item;
2259 u64 i_size;
2260
2261 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2262 struct btrfs_inode_item);
2263 i_size = btrfs_inode_size(path->nodes[0], item);
2264 if (i_size > bytes_del)
2265 i_size -= bytes_del;
2266 else
2267 i_size = 0;
2268 btrfs_set_inode_size(path->nodes[0], item, i_size);
2269 btrfs_mark_buffer_dirty(path->nodes[0]);
2270 } else
2271 ret = 0;
2272 btrfs_release_path(log, path);
2273 }
4a500fd1 2274fail:
e02119d5
CM
2275 btrfs_free_path(path);
2276 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1
YZ
2277 if (ret == -ENOSPC) {
2278 root->fs_info->last_trans_log_full_commit = trans->transid;
2279 ret = 0;
2280 }
12fcfd22 2281 btrfs_end_log_trans(root);
e02119d5 2282
411fc6bc 2283 return err;
e02119d5
CM
2284}
2285
2286/* see comments for btrfs_del_dir_entries_in_log */
2287int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2288 struct btrfs_root *root,
2289 const char *name, int name_len,
2290 struct inode *inode, u64 dirid)
2291{
2292 struct btrfs_root *log;
2293 u64 index;
2294 int ret;
2295
3a5f1d45
CM
2296 if (BTRFS_I(inode)->logged_trans < trans->transid)
2297 return 0;
2298
e02119d5
CM
2299 ret = join_running_log_trans(root);
2300 if (ret)
2301 return 0;
2302 log = root->log_root;
2303 mutex_lock(&BTRFS_I(inode)->log_mutex);
2304
33345d01 2305 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5
CM
2306 dirid, &index);
2307 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1
YZ
2308 if (ret == -ENOSPC) {
2309 root->fs_info->last_trans_log_full_commit = trans->transid;
2310 ret = 0;
2311 }
12fcfd22 2312 btrfs_end_log_trans(root);
e02119d5 2313
e02119d5
CM
2314 return ret;
2315}
2316
2317/*
2318 * creates a range item in the log for 'dirid'. first_offset and
2319 * last_offset tell us which parts of the key space the log should
2320 * be considered authoritative for.
2321 */
2322static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2323 struct btrfs_root *log,
2324 struct btrfs_path *path,
2325 int key_type, u64 dirid,
2326 u64 first_offset, u64 last_offset)
2327{
2328 int ret;
2329 struct btrfs_key key;
2330 struct btrfs_dir_log_item *item;
2331
2332 key.objectid = dirid;
2333 key.offset = first_offset;
2334 if (key_type == BTRFS_DIR_ITEM_KEY)
2335 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2336 else
2337 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2338 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
2339 if (ret)
2340 return ret;
e02119d5
CM
2341
2342 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2343 struct btrfs_dir_log_item);
2344 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2345 btrfs_mark_buffer_dirty(path->nodes[0]);
2346 btrfs_release_path(log, path);
2347 return 0;
2348}
2349
2350/*
2351 * log all the items included in the current transaction for a given
2352 * directory. This also creates the range items in the log tree required
2353 * to replay anything deleted before the fsync
2354 */
2355static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2356 struct btrfs_root *root, struct inode *inode,
2357 struct btrfs_path *path,
2358 struct btrfs_path *dst_path, int key_type,
2359 u64 min_offset, u64 *last_offset_ret)
2360{
2361 struct btrfs_key min_key;
2362 struct btrfs_key max_key;
2363 struct btrfs_root *log = root->log_root;
2364 struct extent_buffer *src;
4a500fd1 2365 int err = 0;
e02119d5
CM
2366 int ret;
2367 int i;
2368 int nritems;
2369 u64 first_offset = min_offset;
2370 u64 last_offset = (u64)-1;
33345d01 2371 u64 ino = btrfs_ino(inode);
e02119d5
CM
2372
2373 log = root->log_root;
33345d01 2374 max_key.objectid = ino;
e02119d5
CM
2375 max_key.offset = (u64)-1;
2376 max_key.type = key_type;
2377
33345d01 2378 min_key.objectid = ino;
e02119d5
CM
2379 min_key.type = key_type;
2380 min_key.offset = min_offset;
2381
2382 path->keep_locks = 1;
2383
2384 ret = btrfs_search_forward(root, &min_key, &max_key,
2385 path, 0, trans->transid);
2386
2387 /*
2388 * we didn't find anything from this transaction, see if there
2389 * is anything at all
2390 */
33345d01
LZ
2391 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2392 min_key.objectid = ino;
e02119d5
CM
2393 min_key.type = key_type;
2394 min_key.offset = (u64)-1;
2395 btrfs_release_path(root, path);
2396 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2397 if (ret < 0) {
2398 btrfs_release_path(root, path);
2399 return ret;
2400 }
33345d01 2401 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
2402
2403 /* if ret == 0 there are items for this type,
2404 * create a range to tell us the last key of this type.
2405 * otherwise, there are no items in this directory after
2406 * *min_offset, and we create a range to indicate that.
2407 */
2408 if (ret == 0) {
2409 struct btrfs_key tmp;
2410 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2411 path->slots[0]);
d397712b 2412 if (key_type == tmp.type)
e02119d5 2413 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
2414 }
2415 goto done;
2416 }
2417
2418 /* go backward to find any previous key */
33345d01 2419 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
2420 if (ret == 0) {
2421 struct btrfs_key tmp;
2422 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2423 if (key_type == tmp.type) {
2424 first_offset = tmp.offset;
2425 ret = overwrite_item(trans, log, dst_path,
2426 path->nodes[0], path->slots[0],
2427 &tmp);
4a500fd1
YZ
2428 if (ret) {
2429 err = ret;
2430 goto done;
2431 }
e02119d5
CM
2432 }
2433 }
2434 btrfs_release_path(root, path);
2435
2436 /* find the first key from this transaction again */
2437 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2438 if (ret != 0) {
2439 WARN_ON(1);
2440 goto done;
2441 }
2442
2443 /*
2444 * we have a block from this transaction, log every item in it
2445 * from our directory
2446 */
d397712b 2447 while (1) {
e02119d5
CM
2448 struct btrfs_key tmp;
2449 src = path->nodes[0];
2450 nritems = btrfs_header_nritems(src);
2451 for (i = path->slots[0]; i < nritems; i++) {
2452 btrfs_item_key_to_cpu(src, &min_key, i);
2453
33345d01 2454 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
2455 goto done;
2456 ret = overwrite_item(trans, log, dst_path, src, i,
2457 &min_key);
4a500fd1
YZ
2458 if (ret) {
2459 err = ret;
2460 goto done;
2461 }
e02119d5
CM
2462 }
2463 path->slots[0] = nritems;
2464
2465 /*
2466 * look ahead to the next item and see if it is also
2467 * from this directory and from this transaction
2468 */
2469 ret = btrfs_next_leaf(root, path);
2470 if (ret == 1) {
2471 last_offset = (u64)-1;
2472 goto done;
2473 }
2474 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 2475 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
2476 last_offset = (u64)-1;
2477 goto done;
2478 }
2479 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2480 ret = overwrite_item(trans, log, dst_path,
2481 path->nodes[0], path->slots[0],
2482 &tmp);
4a500fd1
YZ
2483 if (ret)
2484 err = ret;
2485 else
2486 last_offset = tmp.offset;
e02119d5
CM
2487 goto done;
2488 }
2489 }
2490done:
e02119d5
CM
2491 btrfs_release_path(root, path);
2492 btrfs_release_path(log, dst_path);
2493
4a500fd1
YZ
2494 if (err == 0) {
2495 *last_offset_ret = last_offset;
2496 /*
2497 * insert the log range keys to indicate where the log
2498 * is valid
2499 */
2500 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 2501 ino, first_offset, last_offset);
4a500fd1
YZ
2502 if (ret)
2503 err = ret;
2504 }
2505 return err;
e02119d5
CM
2506}
2507
2508/*
2509 * logging directories is very similar to logging inodes, We find all the items
2510 * from the current transaction and write them to the log.
2511 *
2512 * The recovery code scans the directory in the subvolume, and if it finds a
2513 * key in the range logged that is not present in the log tree, then it means
2514 * that dir entry was unlinked during the transaction.
2515 *
2516 * In order for that scan to work, we must include one key smaller than
2517 * the smallest logged by this transaction and one key larger than the largest
2518 * key logged by this transaction.
2519 */
2520static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2521 struct btrfs_root *root, struct inode *inode,
2522 struct btrfs_path *path,
2523 struct btrfs_path *dst_path)
2524{
2525 u64 min_key;
2526 u64 max_key;
2527 int ret;
2528 int key_type = BTRFS_DIR_ITEM_KEY;
2529
2530again:
2531 min_key = 0;
2532 max_key = 0;
d397712b 2533 while (1) {
e02119d5
CM
2534 ret = log_dir_items(trans, root, inode, path,
2535 dst_path, key_type, min_key,
2536 &max_key);
4a500fd1
YZ
2537 if (ret)
2538 return ret;
e02119d5
CM
2539 if (max_key == (u64)-1)
2540 break;
2541 min_key = max_key + 1;
2542 }
2543
2544 if (key_type == BTRFS_DIR_ITEM_KEY) {
2545 key_type = BTRFS_DIR_INDEX_KEY;
2546 goto again;
2547 }
2548 return 0;
2549}
2550
2551/*
2552 * a helper function to drop items from the log before we relog an
2553 * inode. max_key_type indicates the highest item type to remove.
2554 * This cannot be run for file data extents because it does not
2555 * free the extents they point to.
2556 */
2557static int drop_objectid_items(struct btrfs_trans_handle *trans,
2558 struct btrfs_root *log,
2559 struct btrfs_path *path,
2560 u64 objectid, int max_key_type)
2561{
2562 int ret;
2563 struct btrfs_key key;
2564 struct btrfs_key found_key;
2565
2566 key.objectid = objectid;
2567 key.type = max_key_type;
2568 key.offset = (u64)-1;
2569
d397712b 2570 while (1) {
e02119d5 2571 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4a500fd1
YZ
2572 BUG_ON(ret == 0);
2573 if (ret < 0)
e02119d5
CM
2574 break;
2575
2576 if (path->slots[0] == 0)
2577 break;
2578
2579 path->slots[0]--;
2580 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2581 path->slots[0]);
2582
2583 if (found_key.objectid != objectid)
2584 break;
2585
2586 ret = btrfs_del_item(trans, log, path);
2587 BUG_ON(ret);
2588 btrfs_release_path(log, path);
2589 }
2590 btrfs_release_path(log, path);
4a500fd1 2591 return ret;
e02119d5
CM
2592}
2593
31ff1cd2
CM
2594static noinline int copy_items(struct btrfs_trans_handle *trans,
2595 struct btrfs_root *log,
2596 struct btrfs_path *dst_path,
2597 struct extent_buffer *src,
2598 int start_slot, int nr, int inode_only)
2599{
2600 unsigned long src_offset;
2601 unsigned long dst_offset;
2602 struct btrfs_file_extent_item *extent;
2603 struct btrfs_inode_item *inode_item;
2604 int ret;
2605 struct btrfs_key *ins_keys;
2606 u32 *ins_sizes;
2607 char *ins_data;
2608 int i;
d20f7043
CM
2609 struct list_head ordered_sums;
2610
2611 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
2612
2613 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2614 nr * sizeof(u32), GFP_NOFS);
2a29edc6 2615 if (!ins_data)
2616 return -ENOMEM;
2617
31ff1cd2
CM
2618 ins_sizes = (u32 *)ins_data;
2619 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2620
2621 for (i = 0; i < nr; i++) {
2622 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2623 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2624 }
2625 ret = btrfs_insert_empty_items(trans, log, dst_path,
2626 ins_keys, ins_sizes, nr);
4a500fd1
YZ
2627 if (ret) {
2628 kfree(ins_data);
2629 return ret;
2630 }
31ff1cd2 2631
5d4f98a2 2632 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
2633 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2634 dst_path->slots[0]);
2635
2636 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2637
2638 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2639 src_offset, ins_sizes[i]);
2640
2641 if (inode_only == LOG_INODE_EXISTS &&
2642 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2643 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2644 dst_path->slots[0],
2645 struct btrfs_inode_item);
2646 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2647
2648 /* set the generation to zero so the recover code
2649 * can tell the difference between an logging
2650 * just to say 'this inode exists' and a logging
2651 * to say 'update this inode with these values'
2652 */
2653 btrfs_set_inode_generation(dst_path->nodes[0],
2654 inode_item, 0);
2655 }
2656 /* take a reference on file data extents so that truncates
2657 * or deletes of this inode don't have to relog the inode
2658 * again
2659 */
2660 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2661 int found_type;
2662 extent = btrfs_item_ptr(src, start_slot + i,
2663 struct btrfs_file_extent_item);
2664
2665 found_type = btrfs_file_extent_type(src, extent);
d899e052
YZ
2666 if (found_type == BTRFS_FILE_EXTENT_REG ||
2667 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2
YZ
2668 u64 ds, dl, cs, cl;
2669 ds = btrfs_file_extent_disk_bytenr(src,
2670 extent);
2671 /* ds == 0 is a hole */
2672 if (ds == 0)
2673 continue;
2674
2675 dl = btrfs_file_extent_disk_num_bytes(src,
2676 extent);
2677 cs = btrfs_file_extent_offset(src, extent);
2678 cl = btrfs_file_extent_num_bytes(src,
a419aef8 2679 extent);
580afd76
CM
2680 if (btrfs_file_extent_compression(src,
2681 extent)) {
2682 cs = 0;
2683 cl = dl;
2684 }
5d4f98a2
YZ
2685
2686 ret = btrfs_lookup_csums_range(
2687 log->fs_info->csum_root,
2688 ds + cs, ds + cs + cl - 1,
2689 &ordered_sums);
2690 BUG_ON(ret);
31ff1cd2
CM
2691 }
2692 }
31ff1cd2
CM
2693 }
2694
2695 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2696 btrfs_release_path(log, dst_path);
2697 kfree(ins_data);
d20f7043
CM
2698
2699 /*
2700 * we have to do this after the loop above to avoid changing the
2701 * log tree while trying to change the log tree.
2702 */
4a500fd1 2703 ret = 0;
d397712b 2704 while (!list_empty(&ordered_sums)) {
d20f7043
CM
2705 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2706 struct btrfs_ordered_sum,
2707 list);
4a500fd1
YZ
2708 if (!ret)
2709 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
2710 list_del(&sums->list);
2711 kfree(sums);
2712 }
4a500fd1 2713 return ret;
31ff1cd2
CM
2714}
2715
e02119d5
CM
2716/* log a single inode in the tree log.
2717 * At least one parent directory for this inode must exist in the tree
2718 * or be logged already.
2719 *
2720 * Any items from this inode changed by the current transaction are copied
2721 * to the log tree. An extra reference is taken on any extents in this
2722 * file, allowing us to avoid a whole pile of corner cases around logging
2723 * blocks that have been removed from the tree.
2724 *
2725 * See LOG_INODE_ALL and related defines for a description of what inode_only
2726 * does.
2727 *
2728 * This handles both files and directories.
2729 */
12fcfd22 2730static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
2731 struct btrfs_root *root, struct inode *inode,
2732 int inode_only)
2733{
2734 struct btrfs_path *path;
2735 struct btrfs_path *dst_path;
2736 struct btrfs_key min_key;
2737 struct btrfs_key max_key;
2738 struct btrfs_root *log = root->log_root;
31ff1cd2 2739 struct extent_buffer *src = NULL;
4a500fd1 2740 int err = 0;
e02119d5 2741 int ret;
3a5f1d45 2742 int nritems;
31ff1cd2
CM
2743 int ins_start_slot = 0;
2744 int ins_nr;
33345d01 2745 u64 ino = btrfs_ino(inode);
e02119d5
CM
2746
2747 log = root->log_root;
2748
2749 path = btrfs_alloc_path();
5df67083
TI
2750 if (!path)
2751 return -ENOMEM;
e02119d5 2752 dst_path = btrfs_alloc_path();
5df67083
TI
2753 if (!dst_path) {
2754 btrfs_free_path(path);
2755 return -ENOMEM;
2756 }
e02119d5 2757
33345d01 2758 min_key.objectid = ino;
e02119d5
CM
2759 min_key.type = BTRFS_INODE_ITEM_KEY;
2760 min_key.offset = 0;
2761
33345d01 2762 max_key.objectid = ino;
12fcfd22
CM
2763
2764 /* today the code can only do partial logging of directories */
2765 if (!S_ISDIR(inode->i_mode))
2766 inode_only = LOG_INODE_ALL;
2767
e02119d5
CM
2768 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2769 max_key.type = BTRFS_XATTR_ITEM_KEY;
2770 else
2771 max_key.type = (u8)-1;
2772 max_key.offset = (u64)-1;
2773
e02119d5
CM
2774 mutex_lock(&BTRFS_I(inode)->log_mutex);
2775
2776 /*
2777 * a brute force approach to making sure we get the most uptodate
2778 * copies of everything.
2779 */
2780 if (S_ISDIR(inode->i_mode)) {
2781 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2782
2783 if (inode_only == LOG_INODE_EXISTS)
2784 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 2785 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5
CM
2786 } else {
2787 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2788 }
4a500fd1
YZ
2789 if (ret) {
2790 err = ret;
2791 goto out_unlock;
2792 }
e02119d5
CM
2793 path->keep_locks = 1;
2794
d397712b 2795 while (1) {
31ff1cd2 2796 ins_nr = 0;
e02119d5
CM
2797 ret = btrfs_search_forward(root, &min_key, &max_key,
2798 path, 0, trans->transid);
2799 if (ret != 0)
2800 break;
3a5f1d45 2801again:
31ff1cd2 2802 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 2803 if (min_key.objectid != ino)
e02119d5
CM
2804 break;
2805 if (min_key.type > max_key.type)
2806 break;
31ff1cd2 2807
e02119d5 2808 src = path->nodes[0];
31ff1cd2
CM
2809 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2810 ins_nr++;
2811 goto next_slot;
2812 } else if (!ins_nr) {
2813 ins_start_slot = path->slots[0];
2814 ins_nr = 1;
2815 goto next_slot;
e02119d5
CM
2816 }
2817
31ff1cd2
CM
2818 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2819 ins_nr, inode_only);
4a500fd1
YZ
2820 if (ret) {
2821 err = ret;
2822 goto out_unlock;
2823 }
31ff1cd2
CM
2824 ins_nr = 1;
2825 ins_start_slot = path->slots[0];
2826next_slot:
e02119d5 2827
3a5f1d45
CM
2828 nritems = btrfs_header_nritems(path->nodes[0]);
2829 path->slots[0]++;
2830 if (path->slots[0] < nritems) {
2831 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2832 path->slots[0]);
2833 goto again;
2834 }
31ff1cd2
CM
2835 if (ins_nr) {
2836 ret = copy_items(trans, log, dst_path, src,
2837 ins_start_slot,
2838 ins_nr, inode_only);
4a500fd1
YZ
2839 if (ret) {
2840 err = ret;
2841 goto out_unlock;
2842 }
31ff1cd2
CM
2843 ins_nr = 0;
2844 }
3a5f1d45
CM
2845 btrfs_release_path(root, path);
2846
e02119d5
CM
2847 if (min_key.offset < (u64)-1)
2848 min_key.offset++;
2849 else if (min_key.type < (u8)-1)
2850 min_key.type++;
2851 else if (min_key.objectid < (u64)-1)
2852 min_key.objectid++;
2853 else
2854 break;
2855 }
31ff1cd2
CM
2856 if (ins_nr) {
2857 ret = copy_items(trans, log, dst_path, src,
2858 ins_start_slot,
2859 ins_nr, inode_only);
4a500fd1
YZ
2860 if (ret) {
2861 err = ret;
2862 goto out_unlock;
2863 }
31ff1cd2
CM
2864 ins_nr = 0;
2865 }
2866 WARN_ON(ins_nr);
9623f9a3 2867 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5
CM
2868 btrfs_release_path(root, path);
2869 btrfs_release_path(log, dst_path);
2870 ret = log_directory_changes(trans, root, inode, path, dst_path);
4a500fd1
YZ
2871 if (ret) {
2872 err = ret;
2873 goto out_unlock;
2874 }
e02119d5 2875 }
3a5f1d45 2876 BTRFS_I(inode)->logged_trans = trans->transid;
4a500fd1 2877out_unlock:
e02119d5
CM
2878 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2879
2880 btrfs_free_path(path);
2881 btrfs_free_path(dst_path);
4a500fd1 2882 return err;
e02119d5
CM
2883}
2884
12fcfd22
CM
2885/*
2886 * follow the dentry parent pointers up the chain and see if any
2887 * of the directories in it require a full commit before they can
2888 * be logged. Returns zero if nothing special needs to be done or 1 if
2889 * a full commit is required.
2890 */
2891static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2892 struct inode *inode,
2893 struct dentry *parent,
2894 struct super_block *sb,
2895 u64 last_committed)
e02119d5 2896{
12fcfd22
CM
2897 int ret = 0;
2898 struct btrfs_root *root;
6a912213 2899 struct dentry *old_parent = NULL;
e02119d5 2900
af4176b4
CM
2901 /*
2902 * for regular files, if its inode is already on disk, we don't
2903 * have to worry about the parents at all. This is because
2904 * we can use the last_unlink_trans field to record renames
2905 * and other fun in this file.
2906 */
2907 if (S_ISREG(inode->i_mode) &&
2908 BTRFS_I(inode)->generation <= last_committed &&
2909 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2910 goto out;
2911
12fcfd22
CM
2912 if (!S_ISDIR(inode->i_mode)) {
2913 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2914 goto out;
2915 inode = parent->d_inode;
2916 }
2917
2918 while (1) {
2919 BTRFS_I(inode)->logged_trans = trans->transid;
2920 smp_mb();
2921
2922 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2923 root = BTRFS_I(inode)->root;
2924
2925 /*
2926 * make sure any commits to the log are forced
2927 * to be full commits
2928 */
2929 root->fs_info->last_trans_log_full_commit =
2930 trans->transid;
2931 ret = 1;
2932 break;
2933 }
2934
2935 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2936 break;
2937
76dda93c 2938 if (IS_ROOT(parent))
12fcfd22
CM
2939 break;
2940
6a912213
JB
2941 parent = dget_parent(parent);
2942 dput(old_parent);
2943 old_parent = parent;
12fcfd22
CM
2944 inode = parent->d_inode;
2945
2946 }
6a912213 2947 dput(old_parent);
12fcfd22 2948out:
e02119d5
CM
2949 return ret;
2950}
2951
257c62e1
CM
2952static int inode_in_log(struct btrfs_trans_handle *trans,
2953 struct inode *inode)
2954{
2955 struct btrfs_root *root = BTRFS_I(inode)->root;
2956 int ret = 0;
2957
2958 mutex_lock(&root->log_mutex);
2959 if (BTRFS_I(inode)->logged_trans == trans->transid &&
2960 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2961 ret = 1;
2962 mutex_unlock(&root->log_mutex);
2963 return ret;
2964}
2965
2966
e02119d5
CM
2967/*
2968 * helper function around btrfs_log_inode to make sure newly created
2969 * parent directories also end up in the log. A minimal inode and backref
2970 * only logging is done of any parent directories that are older than
2971 * the last committed transaction
2972 */
12fcfd22
CM
2973int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2974 struct btrfs_root *root, struct inode *inode,
2975 struct dentry *parent, int exists_only)
e02119d5 2976{
12fcfd22 2977 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 2978 struct super_block *sb;
6a912213 2979 struct dentry *old_parent = NULL;
12fcfd22
CM
2980 int ret = 0;
2981 u64 last_committed = root->fs_info->last_trans_committed;
2982
2983 sb = inode->i_sb;
2984
3a5e1404
SW
2985 if (btrfs_test_opt(root, NOTREELOG)) {
2986 ret = 1;
2987 goto end_no_trans;
2988 }
2989
12fcfd22
CM
2990 if (root->fs_info->last_trans_log_full_commit >
2991 root->fs_info->last_trans_committed) {
2992 ret = 1;
2993 goto end_no_trans;
2994 }
2995
76dda93c
YZ
2996 if (root != BTRFS_I(inode)->root ||
2997 btrfs_root_refs(&root->root_item) == 0) {
2998 ret = 1;
2999 goto end_no_trans;
3000 }
3001
12fcfd22
CM
3002 ret = check_parent_dirs_for_sync(trans, inode, parent,
3003 sb, last_committed);
3004 if (ret)
3005 goto end_no_trans;
e02119d5 3006
257c62e1
CM
3007 if (inode_in_log(trans, inode)) {
3008 ret = BTRFS_NO_LOG_SYNC;
3009 goto end_no_trans;
3010 }
3011
4a500fd1
YZ
3012 ret = start_log_trans(trans, root);
3013 if (ret)
3014 goto end_trans;
e02119d5 3015
12fcfd22 3016 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
3017 if (ret)
3018 goto end_trans;
12fcfd22 3019
af4176b4
CM
3020 /*
3021 * for regular files, if its inode is already on disk, we don't
3022 * have to worry about the parents at all. This is because
3023 * we can use the last_unlink_trans field to record renames
3024 * and other fun in this file.
3025 */
3026 if (S_ISREG(inode->i_mode) &&
3027 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
3028 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3029 ret = 0;
3030 goto end_trans;
3031 }
af4176b4
CM
3032
3033 inode_only = LOG_INODE_EXISTS;
12fcfd22
CM
3034 while (1) {
3035 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
3036 break;
3037
12fcfd22 3038 inode = parent->d_inode;
76dda93c
YZ
3039 if (root != BTRFS_I(inode)->root)
3040 break;
3041
12fcfd22
CM
3042 if (BTRFS_I(inode)->generation >
3043 root->fs_info->last_trans_committed) {
3044 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
3045 if (ret)
3046 goto end_trans;
12fcfd22 3047 }
76dda93c 3048 if (IS_ROOT(parent))
e02119d5 3049 break;
12fcfd22 3050
6a912213
JB
3051 parent = dget_parent(parent);
3052 dput(old_parent);
3053 old_parent = parent;
e02119d5 3054 }
12fcfd22 3055 ret = 0;
4a500fd1 3056end_trans:
6a912213 3057 dput(old_parent);
4a500fd1
YZ
3058 if (ret < 0) {
3059 BUG_ON(ret != -ENOSPC);
3060 root->fs_info->last_trans_log_full_commit = trans->transid;
3061 ret = 1;
3062 }
12fcfd22
CM
3063 btrfs_end_log_trans(root);
3064end_no_trans:
3065 return ret;
e02119d5
CM
3066}
3067
3068/*
3069 * it is not safe to log dentry if the chunk root has added new
3070 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3071 * If this returns 1, you must commit the transaction to safely get your
3072 * data on disk.
3073 */
3074int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3075 struct btrfs_root *root, struct dentry *dentry)
3076{
6a912213
JB
3077 struct dentry *parent = dget_parent(dentry);
3078 int ret;
3079
3080 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3081 dput(parent);
3082
3083 return ret;
e02119d5
CM
3084}
3085
3086/*
3087 * should be called during mount to recover any replay any log trees
3088 * from the FS
3089 */
3090int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3091{
3092 int ret;
3093 struct btrfs_path *path;
3094 struct btrfs_trans_handle *trans;
3095 struct btrfs_key key;
3096 struct btrfs_key found_key;
3097 struct btrfs_key tmp_key;
3098 struct btrfs_root *log;
3099 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3100 struct walk_control wc = {
3101 .process_func = process_one_buffer,
3102 .stage = 0,
3103 };
3104
e02119d5 3105 path = btrfs_alloc_path();
db5b493a
TI
3106 if (!path)
3107 return -ENOMEM;
3108
3109 fs_info->log_root_recovering = 1;
e02119d5 3110
4a500fd1 3111 trans = btrfs_start_transaction(fs_info->tree_root, 0);
98d5dc13 3112 BUG_ON(IS_ERR(trans));
e02119d5
CM
3113
3114 wc.trans = trans;
3115 wc.pin = 1;
3116
db5b493a
TI
3117 ret = walk_log_tree(trans, log_root_tree, &wc);
3118 BUG_ON(ret);
e02119d5
CM
3119
3120again:
3121 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3122 key.offset = (u64)-1;
3123 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3124
d397712b 3125 while (1) {
e02119d5
CM
3126 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3127 if (ret < 0)
3128 break;
3129 if (ret > 0) {
3130 if (path->slots[0] == 0)
3131 break;
3132 path->slots[0]--;
3133 }
3134 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3135 path->slots[0]);
3136 btrfs_release_path(log_root_tree, path);
3137 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3138 break;
3139
3140 log = btrfs_read_fs_root_no_radix(log_root_tree,
3141 &found_key);
db5b493a 3142 BUG_ON(IS_ERR(log));
e02119d5
CM
3143
3144 tmp_key.objectid = found_key.offset;
3145 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3146 tmp_key.offset = (u64)-1;
3147
3148 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
e02119d5
CM
3149 BUG_ON(!wc.replay_dest);
3150
07d400a6 3151 wc.replay_dest->log_root = log;
5d4f98a2 3152 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5
CM
3153 ret = walk_log_tree(trans, log, &wc);
3154 BUG_ON(ret);
3155
3156 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3157 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3158 path);
3159 BUG_ON(ret);
3160 }
3161
3162 key.offset = found_key.offset - 1;
07d400a6 3163 wc.replay_dest->log_root = NULL;
e02119d5 3164 free_extent_buffer(log->node);
b263c2c8 3165 free_extent_buffer(log->commit_root);
e02119d5
CM
3166 kfree(log);
3167
3168 if (found_key.offset == 0)
3169 break;
3170 }
3171 btrfs_release_path(log_root_tree, path);
3172
3173 /* step one is to pin it all, step two is to replay just inodes */
3174 if (wc.pin) {
3175 wc.pin = 0;
3176 wc.process_func = replay_one_buffer;
3177 wc.stage = LOG_WALK_REPLAY_INODES;
3178 goto again;
3179 }
3180 /* step three is to replay everything */
3181 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3182 wc.stage++;
3183 goto again;
3184 }
3185
3186 btrfs_free_path(path);
3187
3188 free_extent_buffer(log_root_tree->node);
3189 log_root_tree->log_root = NULL;
3190 fs_info->log_root_recovering = 0;
3191
3192 /* step 4: commit the transaction, which also unpins the blocks */
3193 btrfs_commit_transaction(trans, fs_info->tree_root);
3194
3195 kfree(log_root_tree);
3196 return 0;
3197}
12fcfd22
CM
3198
3199/*
3200 * there are some corner cases where we want to force a full
3201 * commit instead of allowing a directory to be logged.
3202 *
3203 * They revolve around files there were unlinked from the directory, and
3204 * this function updates the parent directory so that a full commit is
3205 * properly done if it is fsync'd later after the unlinks are done.
3206 */
3207void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3208 struct inode *dir, struct inode *inode,
3209 int for_rename)
3210{
af4176b4
CM
3211 /*
3212 * when we're logging a file, if it hasn't been renamed
3213 * or unlinked, and its inode is fully committed on disk,
3214 * we don't have to worry about walking up the directory chain
3215 * to log its parents.
3216 *
3217 * So, we use the last_unlink_trans field to put this transid
3218 * into the file. When the file is logged we check it and
3219 * don't log the parents if the file is fully on disk.
3220 */
3221 if (S_ISREG(inode->i_mode))
3222 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3223
12fcfd22
CM
3224 /*
3225 * if this directory was already logged any new
3226 * names for this file/dir will get recorded
3227 */
3228 smp_mb();
3229 if (BTRFS_I(dir)->logged_trans == trans->transid)
3230 return;
3231
3232 /*
3233 * if the inode we're about to unlink was logged,
3234 * the log will be properly updated for any new names
3235 */
3236 if (BTRFS_I(inode)->logged_trans == trans->transid)
3237 return;
3238
3239 /*
3240 * when renaming files across directories, if the directory
3241 * there we're unlinking from gets fsync'd later on, there's
3242 * no way to find the destination directory later and fsync it
3243 * properly. So, we have to be conservative and force commits
3244 * so the new name gets discovered.
3245 */
3246 if (for_rename)
3247 goto record;
3248
3249 /* we can safely do the unlink without any special recording */
3250 return;
3251
3252record:
3253 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3254}
3255
3256/*
3257 * Call this after adding a new name for a file and it will properly
3258 * update the log to reflect the new name.
3259 *
3260 * It will return zero if all goes well, and it will return 1 if a
3261 * full transaction commit is required.
3262 */
3263int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3264 struct inode *inode, struct inode *old_dir,
3265 struct dentry *parent)
3266{
3267 struct btrfs_root * root = BTRFS_I(inode)->root;
3268
af4176b4
CM
3269 /*
3270 * this will force the logging code to walk the dentry chain
3271 * up for the file
3272 */
3273 if (S_ISREG(inode->i_mode))
3274 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3275
12fcfd22
CM
3276 /*
3277 * if this inode hasn't been logged and directory we're renaming it
3278 * from hasn't been logged, we don't need to log it
3279 */
3280 if (BTRFS_I(inode)->logged_trans <=
3281 root->fs_info->last_trans_committed &&
3282 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3283 root->fs_info->last_trans_committed))
3284 return 0;
3285
3286 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3287}
3288