Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
dc17ff8f 19#include <linux/slab.h>
d6bfde87 20#include <linux/blkdev.h>
f421950f
CM
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
dc17ff8f
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
e6dcd2dc 26#include "extent_io.h"
dc17ff8f 27
e6dcd2dc 28static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 29{
e6dcd2dc
CM
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
dc17ff8f
CM
33}
34
d352ac68
CM
35/* returns NULL if the insertion worked, or it returns the node it did find
36 * in the tree
37 */
e6dcd2dc
CM
38static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 struct rb_node *node)
dc17ff8f 40{
d397712b
CM
41 struct rb_node **p = &root->rb_node;
42 struct rb_node *parent = NULL;
e6dcd2dc 43 struct btrfs_ordered_extent *entry;
dc17ff8f 44
d397712b 45 while (*p) {
dc17ff8f 46 parent = *p;
e6dcd2dc 47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 48
e6dcd2dc 49 if (file_offset < entry->file_offset)
dc17ff8f 50 p = &(*p)->rb_left;
e6dcd2dc 51 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
52 p = &(*p)->rb_right;
53 else
54 return parent;
55 }
56
57 rb_link_node(node, parent, p);
58 rb_insert_color(node, root);
59 return NULL;
60}
61
d352ac68
CM
62/*
63 * look for a given offset in the tree, and if it can't be found return the
64 * first lesser offset
65 */
e6dcd2dc
CM
66static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
67 struct rb_node **prev_ret)
dc17ff8f 68{
d397712b 69 struct rb_node *n = root->rb_node;
dc17ff8f 70 struct rb_node *prev = NULL;
e6dcd2dc
CM
71 struct rb_node *test;
72 struct btrfs_ordered_extent *entry;
73 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 74
d397712b 75 while (n) {
e6dcd2dc 76 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
77 prev = n;
78 prev_entry = entry;
dc17ff8f 79
e6dcd2dc 80 if (file_offset < entry->file_offset)
dc17ff8f 81 n = n->rb_left;
e6dcd2dc 82 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
83 n = n->rb_right;
84 else
85 return n;
86 }
87 if (!prev_ret)
88 return NULL;
89
d397712b 90 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
91 test = rb_next(prev);
92 if (!test)
93 break;
94 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
95 rb_node);
96 if (file_offset < entry_end(prev_entry))
97 break;
98
99 prev = test;
100 }
101 if (prev)
102 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103 rb_node);
d397712b 104 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
105 test = rb_prev(prev);
106 if (!test)
107 break;
108 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109 rb_node);
110 prev = test;
dc17ff8f
CM
111 }
112 *prev_ret = prev;
113 return NULL;
114}
115
d352ac68
CM
116/*
117 * helper to check if a given offset is inside a given entry
118 */
e6dcd2dc
CM
119static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
120{
121 if (file_offset < entry->file_offset ||
122 entry->file_offset + entry->len <= file_offset)
123 return 0;
124 return 1;
125}
126
4b46fce2
JB
127static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
128 u64 len)
129{
130 if (file_offset + len <= entry->file_offset ||
131 entry->file_offset + entry->len <= file_offset)
132 return 0;
133 return 1;
134}
135
d352ac68
CM
136/*
137 * look find the first ordered struct that has this offset, otherwise
138 * the first one less than this offset
139 */
e6dcd2dc
CM
140static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
141 u64 file_offset)
dc17ff8f 142{
e6dcd2dc 143 struct rb_root *root = &tree->tree;
c87fb6fd 144 struct rb_node *prev = NULL;
dc17ff8f 145 struct rb_node *ret;
e6dcd2dc
CM
146 struct btrfs_ordered_extent *entry;
147
148 if (tree->last) {
149 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
150 rb_node);
151 if (offset_in_entry(entry, file_offset))
152 return tree->last;
153 }
154 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 155 if (!ret)
e6dcd2dc
CM
156 ret = prev;
157 if (ret)
158 tree->last = ret;
dc17ff8f
CM
159 return ret;
160}
161
eb84ae03
CM
162/* allocate and add a new ordered_extent into the per-inode tree.
163 * file_offset is the logical offset in the file
164 *
165 * start is the disk block number of an extent already reserved in the
166 * extent allocation tree
167 *
168 * len is the length of the extent
169 *
eb84ae03
CM
170 * The tree is given a single reference on the ordered extent that was
171 * inserted.
172 */
4b46fce2
JB
173static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
174 u64 start, u64 len, u64 disk_len,
261507a0 175 int type, int dio, int compress_type)
dc17ff8f 176{
dc17ff8f 177 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
178 struct rb_node *node;
179 struct btrfs_ordered_extent *entry;
dc17ff8f 180
e6dcd2dc
CM
181 tree = &BTRFS_I(inode)->ordered_tree;
182 entry = kzalloc(sizeof(*entry), GFP_NOFS);
dc17ff8f
CM
183 if (!entry)
184 return -ENOMEM;
185
e6dcd2dc
CM
186 entry->file_offset = file_offset;
187 entry->start = start;
188 entry->len = len;
c8b97818 189 entry->disk_len = disk_len;
8b62b72b 190 entry->bytes_left = len;
3eaa2885 191 entry->inode = inode;
261507a0 192 entry->compress_type = compress_type;
d899e052 193 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 194 set_bit(type, &entry->flags);
3eaa2885 195
4b46fce2
JB
196 if (dio)
197 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
198
e6dcd2dc
CM
199 /* one ref for the tree */
200 atomic_set(&entry->refs, 1);
201 init_waitqueue_head(&entry->wait);
202 INIT_LIST_HEAD(&entry->list);
3eaa2885 203 INIT_LIST_HEAD(&entry->root_extent_list);
dc17ff8f 204
1abe9b8a 205 trace_btrfs_ordered_extent_add(inode, entry);
206
49958fd7 207 spin_lock(&tree->lock);
e6dcd2dc
CM
208 node = tree_insert(&tree->tree, file_offset,
209 &entry->rb_node);
d397712b 210 BUG_ON(node);
49958fd7 211 spin_unlock(&tree->lock);
d397712b 212
3eaa2885
CM
213 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
214 list_add_tail(&entry->root_extent_list,
215 &BTRFS_I(inode)->root->fs_info->ordered_extents);
216 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
217
e6dcd2dc 218 BUG_ON(node);
dc17ff8f
CM
219 return 0;
220}
221
4b46fce2
JB
222int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
223 u64 start, u64 len, u64 disk_len, int type)
224{
225 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
226 disk_len, type, 0,
227 BTRFS_COMPRESS_NONE);
4b46fce2
JB
228}
229
230int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
231 u64 start, u64 len, u64 disk_len, int type)
232{
233 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
234 disk_len, type, 1,
235 BTRFS_COMPRESS_NONE);
236}
237
238int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
239 u64 start, u64 len, u64 disk_len,
240 int type, int compress_type)
241{
242 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
243 disk_len, type, 0,
244 compress_type);
4b46fce2
JB
245}
246
eb84ae03
CM
247/*
248 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
249 * when an ordered extent is finished. If the list covers more than one
250 * ordered extent, it is split across multiples.
eb84ae03 251 */
3edf7d33
CM
252int btrfs_add_ordered_sum(struct inode *inode,
253 struct btrfs_ordered_extent *entry,
254 struct btrfs_ordered_sum *sum)
dc17ff8f 255{
e6dcd2dc 256 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 257
e6dcd2dc 258 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 259 spin_lock(&tree->lock);
e6dcd2dc 260 list_add_tail(&sum->list, &entry->list);
49958fd7 261 spin_unlock(&tree->lock);
e6dcd2dc 262 return 0;
dc17ff8f
CM
263}
264
163cf09c
CM
265/*
266 * this is used to account for finished IO across a given range
267 * of the file. The IO may span ordered extents. If
268 * a given ordered_extent is completely done, 1 is returned, otherwise
269 * 0.
270 *
271 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
272 * to make sure this function only returns 1 once for a given ordered extent.
273 *
274 * file_offset is updated to one byte past the range that is recorded as
275 * complete. This allows you to walk forward in the file.
276 */
277int btrfs_dec_test_first_ordered_pending(struct inode *inode,
278 struct btrfs_ordered_extent **cached,
279 u64 *file_offset, u64 io_size)
280{
281 struct btrfs_ordered_inode_tree *tree;
282 struct rb_node *node;
283 struct btrfs_ordered_extent *entry = NULL;
284 int ret;
285 u64 dec_end;
286 u64 dec_start;
287 u64 to_dec;
288
289 tree = &BTRFS_I(inode)->ordered_tree;
290 spin_lock(&tree->lock);
291 node = tree_search(tree, *file_offset);
292 if (!node) {
293 ret = 1;
294 goto out;
295 }
296
297 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
298 if (!offset_in_entry(entry, *file_offset)) {
299 ret = 1;
300 goto out;
301 }
302
303 dec_start = max(*file_offset, entry->file_offset);
304 dec_end = min(*file_offset + io_size, entry->file_offset +
305 entry->len);
306 *file_offset = dec_end;
307 if (dec_start > dec_end) {
308 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
309 (unsigned long long)dec_start,
310 (unsigned long long)dec_end);
311 }
312 to_dec = dec_end - dec_start;
313 if (to_dec > entry->bytes_left) {
314 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
315 (unsigned long long)entry->bytes_left,
316 (unsigned long long)to_dec);
317 }
318 entry->bytes_left -= to_dec;
319 if (entry->bytes_left == 0)
320 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
321 else
322 ret = 1;
323out:
324 if (!ret && cached && entry) {
325 *cached = entry;
326 atomic_inc(&entry->refs);
327 }
328 spin_unlock(&tree->lock);
329 return ret == 0;
330}
331
eb84ae03
CM
332/*
333 * this is used to account for finished IO across a given range
334 * of the file. The IO should not span ordered extents. If
335 * a given ordered_extent is completely done, 1 is returned, otherwise
336 * 0.
337 *
338 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
339 * to make sure this function only returns 1 once for a given ordered extent.
340 */
e6dcd2dc 341int btrfs_dec_test_ordered_pending(struct inode *inode,
5a1a3df1 342 struct btrfs_ordered_extent **cached,
e6dcd2dc 343 u64 file_offset, u64 io_size)
dc17ff8f 344{
e6dcd2dc 345 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 346 struct rb_node *node;
5a1a3df1 347 struct btrfs_ordered_extent *entry = NULL;
e6dcd2dc
CM
348 int ret;
349
350 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 351 spin_lock(&tree->lock);
e6dcd2dc 352 node = tree_search(tree, file_offset);
dc17ff8f 353 if (!node) {
e6dcd2dc
CM
354 ret = 1;
355 goto out;
dc17ff8f
CM
356 }
357
e6dcd2dc
CM
358 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
359 if (!offset_in_entry(entry, file_offset)) {
360 ret = 1;
361 goto out;
dc17ff8f 362 }
e6dcd2dc 363
8b62b72b
CM
364 if (io_size > entry->bytes_left) {
365 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
366 (unsigned long long)entry->bytes_left,
367 (unsigned long long)io_size);
368 }
369 entry->bytes_left -= io_size;
370 if (entry->bytes_left == 0)
e6dcd2dc 371 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
8b62b72b
CM
372 else
373 ret = 1;
e6dcd2dc 374out:
5a1a3df1
JB
375 if (!ret && cached && entry) {
376 *cached = entry;
377 atomic_inc(&entry->refs);
378 }
49958fd7 379 spin_unlock(&tree->lock);
e6dcd2dc
CM
380 return ret == 0;
381}
dc17ff8f 382
eb84ae03
CM
383/*
384 * used to drop a reference on an ordered extent. This will free
385 * the extent if the last reference is dropped
386 */
e6dcd2dc
CM
387int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
388{
ba1da2f4
CM
389 struct list_head *cur;
390 struct btrfs_ordered_sum *sum;
391
1abe9b8a 392 trace_btrfs_ordered_extent_put(entry->inode, entry);
393
ba1da2f4 394 if (atomic_dec_and_test(&entry->refs)) {
d397712b 395 while (!list_empty(&entry->list)) {
ba1da2f4
CM
396 cur = entry->list.next;
397 sum = list_entry(cur, struct btrfs_ordered_sum, list);
398 list_del(&sum->list);
399 kfree(sum);
400 }
e6dcd2dc 401 kfree(entry);
ba1da2f4 402 }
e6dcd2dc 403 return 0;
dc17ff8f 404}
cee36a03 405
eb84ae03
CM
406/*
407 * remove an ordered extent from the tree. No references are dropped
49958fd7 408 * and you must wake_up entry->wait. You must hold the tree lock
c2167754 409 * while you call this function.
eb84ae03 410 */
c2167754 411static int __btrfs_remove_ordered_extent(struct inode *inode,
e6dcd2dc 412 struct btrfs_ordered_extent *entry)
cee36a03 413{
e6dcd2dc 414 struct btrfs_ordered_inode_tree *tree;
287a0ab9 415 struct btrfs_root *root = BTRFS_I(inode)->root;
cee36a03 416 struct rb_node *node;
cee36a03 417
e6dcd2dc 418 tree = &BTRFS_I(inode)->ordered_tree;
e6dcd2dc 419 node = &entry->rb_node;
cee36a03 420 rb_erase(node, &tree->tree);
e6dcd2dc
CM
421 tree->last = NULL;
422 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
3eaa2885 423
287a0ab9 424 spin_lock(&root->fs_info->ordered_extent_lock);
3eaa2885 425 list_del_init(&entry->root_extent_list);
5a3f23d5 426
1abe9b8a 427 trace_btrfs_ordered_extent_remove(inode, entry);
428
5a3f23d5
CM
429 /*
430 * we have no more ordered extents for this inode and
431 * no dirty pages. We can safely remove it from the
432 * list of ordered extents
433 */
434 if (RB_EMPTY_ROOT(&tree->tree) &&
435 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
436 list_del_init(&BTRFS_I(inode)->ordered_operations);
437 }
287a0ab9 438 spin_unlock(&root->fs_info->ordered_extent_lock);
3eaa2885 439
c2167754
YZ
440 return 0;
441}
442
443/*
444 * remove an ordered extent from the tree. No references are dropped
445 * but any waiters are woken.
446 */
447int btrfs_remove_ordered_extent(struct inode *inode,
448 struct btrfs_ordered_extent *entry)
449{
450 struct btrfs_ordered_inode_tree *tree;
451 int ret;
452
453 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 454 spin_lock(&tree->lock);
c2167754 455 ret = __btrfs_remove_ordered_extent(inode, entry);
49958fd7 456 spin_unlock(&tree->lock);
e6dcd2dc 457 wake_up(&entry->wait);
c2167754
YZ
458
459 return ret;
cee36a03
CM
460}
461
d352ac68
CM
462/*
463 * wait for all the ordered extents in a root. This is done when balancing
464 * space between drives.
465 */
24bbcf04
YZ
466int btrfs_wait_ordered_extents(struct btrfs_root *root,
467 int nocow_only, int delay_iput)
3eaa2885
CM
468{
469 struct list_head splice;
470 struct list_head *cur;
471 struct btrfs_ordered_extent *ordered;
472 struct inode *inode;
473
474 INIT_LIST_HEAD(&splice);
475
476 spin_lock(&root->fs_info->ordered_extent_lock);
477 list_splice_init(&root->fs_info->ordered_extents, &splice);
5b21f2ed 478 while (!list_empty(&splice)) {
3eaa2885
CM
479 cur = splice.next;
480 ordered = list_entry(cur, struct btrfs_ordered_extent,
481 root_extent_list);
7ea394f1 482 if (nocow_only &&
d899e052
YZ
483 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
484 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5b21f2ed
ZY
485 list_move(&ordered->root_extent_list,
486 &root->fs_info->ordered_extents);
7ea394f1
YZ
487 cond_resched_lock(&root->fs_info->ordered_extent_lock);
488 continue;
489 }
490
3eaa2885
CM
491 list_del_init(&ordered->root_extent_list);
492 atomic_inc(&ordered->refs);
3eaa2885
CM
493
494 /*
5b21f2ed 495 * the inode may be getting freed (in sys_unlink path).
3eaa2885 496 */
5b21f2ed
ZY
497 inode = igrab(ordered->inode);
498
3eaa2885
CM
499 spin_unlock(&root->fs_info->ordered_extent_lock);
500
5b21f2ed
ZY
501 if (inode) {
502 btrfs_start_ordered_extent(inode, ordered, 1);
503 btrfs_put_ordered_extent(ordered);
24bbcf04
YZ
504 if (delay_iput)
505 btrfs_add_delayed_iput(inode);
506 else
507 iput(inode);
5b21f2ed
ZY
508 } else {
509 btrfs_put_ordered_extent(ordered);
510 }
3eaa2885
CM
511
512 spin_lock(&root->fs_info->ordered_extent_lock);
513 }
514 spin_unlock(&root->fs_info->ordered_extent_lock);
515 return 0;
516}
517
5a3f23d5
CM
518/*
519 * this is used during transaction commit to write all the inodes
520 * added to the ordered operation list. These files must be fully on
521 * disk before the transaction commits.
522 *
523 * we have two modes here, one is to just start the IO via filemap_flush
524 * and the other is to wait for all the io. When we wait, we have an
525 * extra check to make sure the ordered operation list really is empty
526 * before we return
527 */
528int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
529{
530 struct btrfs_inode *btrfs_inode;
531 struct inode *inode;
532 struct list_head splice;
533
534 INIT_LIST_HEAD(&splice);
535
536 mutex_lock(&root->fs_info->ordered_operations_mutex);
537 spin_lock(&root->fs_info->ordered_extent_lock);
538again:
539 list_splice_init(&root->fs_info->ordered_operations, &splice);
540
541 while (!list_empty(&splice)) {
542 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
543 ordered_operations);
544
545 inode = &btrfs_inode->vfs_inode;
546
547 list_del_init(&btrfs_inode->ordered_operations);
548
549 /*
550 * the inode may be getting freed (in sys_unlink path).
551 */
552 inode = igrab(inode);
553
554 if (!wait && inode) {
555 list_add_tail(&BTRFS_I(inode)->ordered_operations,
556 &root->fs_info->ordered_operations);
557 }
558 spin_unlock(&root->fs_info->ordered_extent_lock);
559
560 if (inode) {
561 if (wait)
562 btrfs_wait_ordered_range(inode, 0, (u64)-1);
563 else
564 filemap_flush(inode->i_mapping);
24bbcf04 565 btrfs_add_delayed_iput(inode);
5a3f23d5
CM
566 }
567
568 cond_resched();
569 spin_lock(&root->fs_info->ordered_extent_lock);
570 }
571 if (wait && !list_empty(&root->fs_info->ordered_operations))
572 goto again;
573
574 spin_unlock(&root->fs_info->ordered_extent_lock);
575 mutex_unlock(&root->fs_info->ordered_operations_mutex);
576
577 return 0;
578}
579
eb84ae03
CM
580/*
581 * Used to start IO or wait for a given ordered extent to finish.
582 *
583 * If wait is one, this effectively waits on page writeback for all the pages
584 * in the extent, and it waits on the io completion code to insert
585 * metadata into the btree corresponding to the extent
586 */
587void btrfs_start_ordered_extent(struct inode *inode,
588 struct btrfs_ordered_extent *entry,
589 int wait)
e6dcd2dc
CM
590{
591 u64 start = entry->file_offset;
592 u64 end = start + entry->len - 1;
e1b81e67 593
1abe9b8a 594 trace_btrfs_ordered_extent_start(inode, entry);
595
eb84ae03
CM
596 /*
597 * pages in the range can be dirty, clean or writeback. We
598 * start IO on any dirty ones so the wait doesn't stall waiting
599 * for pdflush to find them
600 */
4b46fce2
JB
601 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
602 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 603 if (wait) {
e6dcd2dc
CM
604 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
605 &entry->flags));
c8b97818 606 }
e6dcd2dc 607}
cee36a03 608
eb84ae03
CM
609/*
610 * Used to wait on ordered extents across a large range of bytes.
611 */
cb843a6f 612int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc
CM
613{
614 u64 end;
e5a2217e 615 u64 orig_end;
e6dcd2dc 616 struct btrfs_ordered_extent *ordered;
8b62b72b 617 int found;
e5a2217e
CM
618
619 if (start + len < start) {
f421950f 620 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
621 } else {
622 orig_end = start + len - 1;
f421950f
CM
623 if (orig_end > INT_LIMIT(loff_t))
624 orig_end = INT_LIMIT(loff_t);
e5a2217e 625 }
4a096752 626again:
e5a2217e
CM
627 /* start IO across the range first to instantiate any delalloc
628 * extents
629 */
8aa38c31 630 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
f421950f 631
771ed689
CM
632 /* The compression code will leave pages locked but return from
633 * writepage without setting the page writeback. Starting again
634 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
635 */
8aa38c31 636 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
771ed689 637
8aa38c31 638 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
e5a2217e 639
f421950f 640 end = orig_end;
8b62b72b 641 found = 0;
d397712b 642 while (1) {
e6dcd2dc 643 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 644 if (!ordered)
e6dcd2dc 645 break;
e5a2217e 646 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
647 btrfs_put_ordered_extent(ordered);
648 break;
649 }
650 if (ordered->file_offset + ordered->len < start) {
651 btrfs_put_ordered_extent(ordered);
652 break;
653 }
8b62b72b 654 found++;
e5a2217e 655 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
656 end = ordered->file_offset;
657 btrfs_put_ordered_extent(ordered);
e5a2217e 658 if (end == 0 || end == start)
e6dcd2dc
CM
659 break;
660 end--;
661 }
8b62b72b
CM
662 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
663 EXTENT_DELALLOC, 0, NULL)) {
771ed689 664 schedule_timeout(1);
4a096752
CM
665 goto again;
666 }
cb843a6f 667 return 0;
cee36a03
CM
668}
669
eb84ae03
CM
670/*
671 * find an ordered extent corresponding to file_offset. return NULL if
672 * nothing is found, otherwise take a reference on the extent and return it
673 */
e6dcd2dc
CM
674struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
675 u64 file_offset)
676{
677 struct btrfs_ordered_inode_tree *tree;
678 struct rb_node *node;
679 struct btrfs_ordered_extent *entry = NULL;
680
681 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 682 spin_lock(&tree->lock);
e6dcd2dc
CM
683 node = tree_search(tree, file_offset);
684 if (!node)
685 goto out;
686
687 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
688 if (!offset_in_entry(entry, file_offset))
689 entry = NULL;
690 if (entry)
691 atomic_inc(&entry->refs);
692out:
49958fd7 693 spin_unlock(&tree->lock);
e6dcd2dc
CM
694 return entry;
695}
696
4b46fce2
JB
697/* Since the DIO code tries to lock a wide area we need to look for any ordered
698 * extents that exist in the range, rather than just the start of the range.
699 */
700struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
701 u64 file_offset,
702 u64 len)
703{
704 struct btrfs_ordered_inode_tree *tree;
705 struct rb_node *node;
706 struct btrfs_ordered_extent *entry = NULL;
707
708 tree = &BTRFS_I(inode)->ordered_tree;
709 spin_lock(&tree->lock);
710 node = tree_search(tree, file_offset);
711 if (!node) {
712 node = tree_search(tree, file_offset + len);
713 if (!node)
714 goto out;
715 }
716
717 while (1) {
718 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
719 if (range_overlaps(entry, file_offset, len))
720 break;
721
722 if (entry->file_offset >= file_offset + len) {
723 entry = NULL;
724 break;
725 }
726 entry = NULL;
727 node = rb_next(node);
728 if (!node)
729 break;
730 }
731out:
732 if (entry)
733 atomic_inc(&entry->refs);
734 spin_unlock(&tree->lock);
735 return entry;
736}
737
eb84ae03
CM
738/*
739 * lookup and return any extent before 'file_offset'. NULL is returned
740 * if none is found
741 */
e6dcd2dc 742struct btrfs_ordered_extent *
d397712b 743btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
744{
745 struct btrfs_ordered_inode_tree *tree;
746 struct rb_node *node;
747 struct btrfs_ordered_extent *entry = NULL;
748
749 tree = &BTRFS_I(inode)->ordered_tree;
49958fd7 750 spin_lock(&tree->lock);
e6dcd2dc
CM
751 node = tree_search(tree, file_offset);
752 if (!node)
753 goto out;
754
755 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
756 atomic_inc(&entry->refs);
757out:
49958fd7 758 spin_unlock(&tree->lock);
e6dcd2dc 759 return entry;
81d7ed29 760}
dbe674a9 761
eb84ae03
CM
762/*
763 * After an extent is done, call this to conditionally update the on disk
764 * i_size. i_size is updated to cover any fully written part of the file.
765 */
c2167754 766int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
dbe674a9
CM
767 struct btrfs_ordered_extent *ordered)
768{
769 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
770 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
771 u64 disk_i_size;
772 u64 new_i_size;
773 u64 i_size_test;
c2167754 774 u64 i_size = i_size_read(inode);
dbe674a9 775 struct rb_node *node;
c2167754 776 struct rb_node *prev = NULL;
dbe674a9 777 struct btrfs_ordered_extent *test;
c2167754
YZ
778 int ret = 1;
779
780 if (ordered)
781 offset = entry_end(ordered);
a038fab0
YZ
782 else
783 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
dbe674a9 784
49958fd7 785 spin_lock(&tree->lock);
dbe674a9
CM
786 disk_i_size = BTRFS_I(inode)->disk_i_size;
787
c2167754
YZ
788 /* truncate file */
789 if (disk_i_size > i_size) {
790 BTRFS_I(inode)->disk_i_size = i_size;
791 ret = 0;
792 goto out;
793 }
794
dbe674a9
CM
795 /*
796 * if the disk i_size is already at the inode->i_size, or
797 * this ordered extent is inside the disk i_size, we're done
798 */
c2167754 799 if (disk_i_size == i_size || offset <= disk_i_size) {
dbe674a9
CM
800 goto out;
801 }
802
803 /*
804 * we can't update the disk_isize if there are delalloc bytes
805 * between disk_i_size and this ordered extent
806 */
c2167754 807 if (test_range_bit(io_tree, disk_i_size, offset - 1,
9655d298 808 EXTENT_DELALLOC, 0, NULL)) {
dbe674a9
CM
809 goto out;
810 }
811 /*
812 * walk backward from this ordered extent to disk_i_size.
813 * if we find an ordered extent then we can't update disk i_size
814 * yet
815 */
c2167754
YZ
816 if (ordered) {
817 node = rb_prev(&ordered->rb_node);
818 } else {
819 prev = tree_search(tree, offset);
820 /*
821 * we insert file extents without involving ordered struct,
822 * so there should be no ordered struct cover this offset
823 */
824 if (prev) {
825 test = rb_entry(prev, struct btrfs_ordered_extent,
826 rb_node);
827 BUG_ON(offset_in_entry(test, offset));
828 }
829 node = prev;
830 }
831 while (node) {
dbe674a9
CM
832 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
833 if (test->file_offset + test->len <= disk_i_size)
834 break;
c2167754 835 if (test->file_offset >= i_size)
dbe674a9
CM
836 break;
837 if (test->file_offset >= disk_i_size)
838 goto out;
c2167754 839 node = rb_prev(node);
dbe674a9 840 }
c2167754 841 new_i_size = min_t(u64, offset, i_size);
dbe674a9
CM
842
843 /*
844 * at this point, we know we can safely update i_size to at least
845 * the offset from this ordered extent. But, we need to
846 * walk forward and see if ios from higher up in the file have
847 * finished.
848 */
c2167754
YZ
849 if (ordered) {
850 node = rb_next(&ordered->rb_node);
851 } else {
852 if (prev)
853 node = rb_next(prev);
854 else
855 node = rb_first(&tree->tree);
856 }
dbe674a9
CM
857 i_size_test = 0;
858 if (node) {
859 /*
860 * do we have an area where IO might have finished
861 * between our ordered extent and the next one.
862 */
863 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
c2167754 864 if (test->file_offset > offset)
b48652c1 865 i_size_test = test->file_offset;
dbe674a9 866 } else {
c2167754 867 i_size_test = i_size;
dbe674a9
CM
868 }
869
870 /*
871 * i_size_test is the end of a region after this ordered
872 * extent where there are no ordered extents. As long as there
873 * are no delalloc bytes in this area, it is safe to update
874 * disk_i_size to the end of the region.
875 */
c2167754
YZ
876 if (i_size_test > offset &&
877 !test_range_bit(io_tree, offset, i_size_test - 1,
878 EXTENT_DELALLOC, 0, NULL)) {
879 new_i_size = min_t(u64, i_size_test, i_size);
dbe674a9
CM
880 }
881 BTRFS_I(inode)->disk_i_size = new_i_size;
c2167754 882 ret = 0;
dbe674a9 883out:
c2167754
YZ
884 /*
885 * we need to remove the ordered extent with the tree lock held
886 * so that other people calling this function don't find our fully
887 * processed ordered entry and skip updating the i_size
888 */
889 if (ordered)
890 __btrfs_remove_ordered_extent(inode, ordered);
49958fd7 891 spin_unlock(&tree->lock);
c2167754
YZ
892 if (ordered)
893 wake_up(&ordered->wait);
894 return ret;
dbe674a9 895}
ba1da2f4 896
eb84ae03
CM
897/*
898 * search the ordered extents for one corresponding to 'offset' and
899 * try to find a checksum. This is used because we allow pages to
900 * be reclaimed before their checksum is actually put into the btree
901 */
d20f7043
CM
902int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
903 u32 *sum)
ba1da2f4
CM
904{
905 struct btrfs_ordered_sum *ordered_sum;
906 struct btrfs_sector_sum *sector_sums;
907 struct btrfs_ordered_extent *ordered;
908 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
909 unsigned long num_sectors;
910 unsigned long i;
911 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
ba1da2f4 912 int ret = 1;
ba1da2f4
CM
913
914 ordered = btrfs_lookup_ordered_extent(inode, offset);
915 if (!ordered)
916 return 1;
917
49958fd7 918 spin_lock(&tree->lock);
c6e30871 919 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
d20f7043 920 if (disk_bytenr >= ordered_sum->bytenr) {
3edf7d33 921 num_sectors = ordered_sum->len / sectorsize;
ed98b56a 922 sector_sums = ordered_sum->sums;
3edf7d33 923 for (i = 0; i < num_sectors; i++) {
d20f7043 924 if (sector_sums[i].bytenr == disk_bytenr) {
3edf7d33
CM
925 *sum = sector_sums[i].sum;
926 ret = 0;
927 goto out;
928 }
929 }
ba1da2f4
CM
930 }
931 }
932out:
49958fd7 933 spin_unlock(&tree->lock);
89642229 934 btrfs_put_ordered_extent(ordered);
ba1da2f4
CM
935 return ret;
936}
937
f421950f 938
5a3f23d5
CM
939/*
940 * add a given inode to the list of inodes that must be fully on
941 * disk before a transaction commit finishes.
942 *
943 * This basically gives us the ext3 style data=ordered mode, and it is mostly
944 * used to make sure renamed files are fully on disk.
945 *
946 * It is a noop if the inode is already fully on disk.
947 *
948 * If trans is not null, we'll do a friendly check for a transaction that
949 * is already flushing things and force the IO down ourselves.
950 */
951int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
952 struct btrfs_root *root,
953 struct inode *inode)
954{
955 u64 last_mod;
956
957 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
958
959 /*
960 * if this file hasn't been changed since the last transaction
961 * commit, we can safely return without doing anything
962 */
963 if (last_mod < root->fs_info->last_trans_committed)
964 return 0;
965
966 /*
967 * the transaction is already committing. Just start the IO and
968 * don't bother with all of this list nonsense
969 */
970 if (trans && root->fs_info->running_transaction->blocked) {
971 btrfs_wait_ordered_range(inode, 0, (u64)-1);
972 return 0;
973 }
974
975 spin_lock(&root->fs_info->ordered_extent_lock);
976 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
977 list_add_tail(&BTRFS_I(inode)->ordered_operations,
978 &root->fs_info->ordered_operations);
979 }
980 spin_unlock(&root->fs_info->ordered_extent_lock);
981
982 return 0;
983}