Merge branch 'master' of ssh://master.kernel.org/pub/scm/linux/kernel/git/rusty/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/gfp.h>
20#include <linux/slab.h>
d6bfde87 21#include <linux/blkdev.h>
f421950f
CM
22#include <linux/writeback.h>
23#include <linux/pagevec.h>
dc17ff8f
CM
24#include "ctree.h"
25#include "transaction.h"
26#include "btrfs_inode.h"
e6dcd2dc 27#include "extent_io.h"
dc17ff8f 28
e6dcd2dc 29static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 30{
e6dcd2dc
CM
31 if (entry->file_offset + entry->len < entry->file_offset)
32 return (u64)-1;
33 return entry->file_offset + entry->len;
dc17ff8f
CM
34}
35
d352ac68
CM
36/* returns NULL if the insertion worked, or it returns the node it did find
37 * in the tree
38 */
e6dcd2dc
CM
39static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
40 struct rb_node *node)
dc17ff8f 41{
d397712b
CM
42 struct rb_node **p = &root->rb_node;
43 struct rb_node *parent = NULL;
e6dcd2dc 44 struct btrfs_ordered_extent *entry;
dc17ff8f 45
d397712b 46 while (*p) {
dc17ff8f 47 parent = *p;
e6dcd2dc 48 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 49
e6dcd2dc 50 if (file_offset < entry->file_offset)
dc17ff8f 51 p = &(*p)->rb_left;
e6dcd2dc 52 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
53 p = &(*p)->rb_right;
54 else
55 return parent;
56 }
57
58 rb_link_node(node, parent, p);
59 rb_insert_color(node, root);
60 return NULL;
61}
62
d352ac68
CM
63/*
64 * look for a given offset in the tree, and if it can't be found return the
65 * first lesser offset
66 */
e6dcd2dc
CM
67static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
68 struct rb_node **prev_ret)
dc17ff8f 69{
d397712b 70 struct rb_node *n = root->rb_node;
dc17ff8f 71 struct rb_node *prev = NULL;
e6dcd2dc
CM
72 struct rb_node *test;
73 struct btrfs_ordered_extent *entry;
74 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 75
d397712b 76 while (n) {
e6dcd2dc 77 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
78 prev = n;
79 prev_entry = entry;
dc17ff8f 80
e6dcd2dc 81 if (file_offset < entry->file_offset)
dc17ff8f 82 n = n->rb_left;
e6dcd2dc 83 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
84 n = n->rb_right;
85 else
86 return n;
87 }
88 if (!prev_ret)
89 return NULL;
90
d397712b 91 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
92 test = rb_next(prev);
93 if (!test)
94 break;
95 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
96 rb_node);
97 if (file_offset < entry_end(prev_entry))
98 break;
99
100 prev = test;
101 }
102 if (prev)
103 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
104 rb_node);
d397712b 105 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
106 test = rb_prev(prev);
107 if (!test)
108 break;
109 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
110 rb_node);
111 prev = test;
dc17ff8f
CM
112 }
113 *prev_ret = prev;
114 return NULL;
115}
116
d352ac68
CM
117/*
118 * helper to check if a given offset is inside a given entry
119 */
e6dcd2dc
CM
120static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
121{
122 if (file_offset < entry->file_offset ||
123 entry->file_offset + entry->len <= file_offset)
124 return 0;
125 return 1;
126}
127
d352ac68
CM
128/*
129 * look find the first ordered struct that has this offset, otherwise
130 * the first one less than this offset
131 */
e6dcd2dc
CM
132static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
133 u64 file_offset)
dc17ff8f 134{
e6dcd2dc 135 struct rb_root *root = &tree->tree;
dc17ff8f
CM
136 struct rb_node *prev;
137 struct rb_node *ret;
e6dcd2dc
CM
138 struct btrfs_ordered_extent *entry;
139
140 if (tree->last) {
141 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
142 rb_node);
143 if (offset_in_entry(entry, file_offset))
144 return tree->last;
145 }
146 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 147 if (!ret)
e6dcd2dc
CM
148 ret = prev;
149 if (ret)
150 tree->last = ret;
dc17ff8f
CM
151 return ret;
152}
153
eb84ae03
CM
154/* allocate and add a new ordered_extent into the per-inode tree.
155 * file_offset is the logical offset in the file
156 *
157 * start is the disk block number of an extent already reserved in the
158 * extent allocation tree
159 *
160 * len is the length of the extent
161 *
eb84ae03
CM
162 * The tree is given a single reference on the ordered extent that was
163 * inserted.
164 */
e6dcd2dc 165int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
80ff3856 166 u64 start, u64 len, u64 disk_len, int type)
dc17ff8f 167{
dc17ff8f 168 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
169 struct rb_node *node;
170 struct btrfs_ordered_extent *entry;
dc17ff8f 171
e6dcd2dc
CM
172 tree = &BTRFS_I(inode)->ordered_tree;
173 entry = kzalloc(sizeof(*entry), GFP_NOFS);
dc17ff8f
CM
174 if (!entry)
175 return -ENOMEM;
176
e6dcd2dc
CM
177 mutex_lock(&tree->mutex);
178 entry->file_offset = file_offset;
179 entry->start = start;
180 entry->len = len;
c8b97818 181 entry->disk_len = disk_len;
8b62b72b 182 entry->bytes_left = len;
3eaa2885 183 entry->inode = inode;
d899e052 184 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 185 set_bit(type, &entry->flags);
3eaa2885 186
e6dcd2dc
CM
187 /* one ref for the tree */
188 atomic_set(&entry->refs, 1);
189 init_waitqueue_head(&entry->wait);
190 INIT_LIST_HEAD(&entry->list);
3eaa2885 191 INIT_LIST_HEAD(&entry->root_extent_list);
dc17ff8f 192
e6dcd2dc
CM
193 node = tree_insert(&tree->tree, file_offset,
194 &entry->rb_node);
d397712b
CM
195 BUG_ON(node);
196
3eaa2885
CM
197 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
198 list_add_tail(&entry->root_extent_list,
199 &BTRFS_I(inode)->root->fs_info->ordered_extents);
200 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
201
e6dcd2dc
CM
202 mutex_unlock(&tree->mutex);
203 BUG_ON(node);
dc17ff8f
CM
204 return 0;
205}
206
eb84ae03
CM
207/*
208 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
209 * when an ordered extent is finished. If the list covers more than one
210 * ordered extent, it is split across multiples.
eb84ae03 211 */
3edf7d33
CM
212int btrfs_add_ordered_sum(struct inode *inode,
213 struct btrfs_ordered_extent *entry,
214 struct btrfs_ordered_sum *sum)
dc17ff8f 215{
e6dcd2dc 216 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 217
e6dcd2dc
CM
218 tree = &BTRFS_I(inode)->ordered_tree;
219 mutex_lock(&tree->mutex);
e6dcd2dc
CM
220 list_add_tail(&sum->list, &entry->list);
221 mutex_unlock(&tree->mutex);
222 return 0;
dc17ff8f
CM
223}
224
eb84ae03
CM
225/*
226 * this is used to account for finished IO across a given range
227 * of the file. The IO should not span ordered extents. If
228 * a given ordered_extent is completely done, 1 is returned, otherwise
229 * 0.
230 *
231 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
232 * to make sure this function only returns 1 once for a given ordered extent.
233 */
e6dcd2dc
CM
234int btrfs_dec_test_ordered_pending(struct inode *inode,
235 u64 file_offset, u64 io_size)
dc17ff8f 236{
e6dcd2dc 237 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 238 struct rb_node *node;
e6dcd2dc 239 struct btrfs_ordered_extent *entry;
e6dcd2dc
CM
240 int ret;
241
242 tree = &BTRFS_I(inode)->ordered_tree;
243 mutex_lock(&tree->mutex);
e6dcd2dc 244 node = tree_search(tree, file_offset);
dc17ff8f 245 if (!node) {
e6dcd2dc
CM
246 ret = 1;
247 goto out;
dc17ff8f
CM
248 }
249
e6dcd2dc
CM
250 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
251 if (!offset_in_entry(entry, file_offset)) {
252 ret = 1;
253 goto out;
dc17ff8f 254 }
e6dcd2dc 255
8b62b72b
CM
256 if (io_size > entry->bytes_left) {
257 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
258 (unsigned long long)entry->bytes_left,
259 (unsigned long long)io_size);
260 }
261 entry->bytes_left -= io_size;
262 if (entry->bytes_left == 0)
e6dcd2dc 263 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
8b62b72b
CM
264 else
265 ret = 1;
e6dcd2dc
CM
266out:
267 mutex_unlock(&tree->mutex);
268 return ret == 0;
269}
dc17ff8f 270
eb84ae03
CM
271/*
272 * used to drop a reference on an ordered extent. This will free
273 * the extent if the last reference is dropped
274 */
e6dcd2dc
CM
275int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
276{
ba1da2f4
CM
277 struct list_head *cur;
278 struct btrfs_ordered_sum *sum;
279
280 if (atomic_dec_and_test(&entry->refs)) {
d397712b 281 while (!list_empty(&entry->list)) {
ba1da2f4
CM
282 cur = entry->list.next;
283 sum = list_entry(cur, struct btrfs_ordered_sum, list);
284 list_del(&sum->list);
285 kfree(sum);
286 }
e6dcd2dc 287 kfree(entry);
ba1da2f4 288 }
e6dcd2dc 289 return 0;
dc17ff8f 290}
cee36a03 291
eb84ae03
CM
292/*
293 * remove an ordered extent from the tree. No references are dropped
294 * but, anyone waiting on this extent is woken up.
295 */
e6dcd2dc
CM
296int btrfs_remove_ordered_extent(struct inode *inode,
297 struct btrfs_ordered_extent *entry)
cee36a03 298{
e6dcd2dc 299 struct btrfs_ordered_inode_tree *tree;
cee36a03 300 struct rb_node *node;
cee36a03 301
e6dcd2dc
CM
302 tree = &BTRFS_I(inode)->ordered_tree;
303 mutex_lock(&tree->mutex);
304 node = &entry->rb_node;
cee36a03 305 rb_erase(node, &tree->tree);
e6dcd2dc
CM
306 tree->last = NULL;
307 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
3eaa2885
CM
308
309 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
310 list_del_init(&entry->root_extent_list);
5a3f23d5
CM
311
312 /*
313 * we have no more ordered extents for this inode and
314 * no dirty pages. We can safely remove it from the
315 * list of ordered extents
316 */
317 if (RB_EMPTY_ROOT(&tree->tree) &&
318 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
319 list_del_init(&BTRFS_I(inode)->ordered_operations);
320 }
3eaa2885
CM
321 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
322
e6dcd2dc
CM
323 mutex_unlock(&tree->mutex);
324 wake_up(&entry->wait);
325 return 0;
cee36a03
CM
326}
327
d352ac68
CM
328/*
329 * wait for all the ordered extents in a root. This is done when balancing
330 * space between drives.
331 */
7ea394f1 332int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only)
3eaa2885
CM
333{
334 struct list_head splice;
335 struct list_head *cur;
336 struct btrfs_ordered_extent *ordered;
337 struct inode *inode;
338
339 INIT_LIST_HEAD(&splice);
340
341 spin_lock(&root->fs_info->ordered_extent_lock);
342 list_splice_init(&root->fs_info->ordered_extents, &splice);
5b21f2ed 343 while (!list_empty(&splice)) {
3eaa2885
CM
344 cur = splice.next;
345 ordered = list_entry(cur, struct btrfs_ordered_extent,
346 root_extent_list);
7ea394f1 347 if (nocow_only &&
d899e052
YZ
348 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
349 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5b21f2ed
ZY
350 list_move(&ordered->root_extent_list,
351 &root->fs_info->ordered_extents);
7ea394f1
YZ
352 cond_resched_lock(&root->fs_info->ordered_extent_lock);
353 continue;
354 }
355
3eaa2885
CM
356 list_del_init(&ordered->root_extent_list);
357 atomic_inc(&ordered->refs);
3eaa2885
CM
358
359 /*
5b21f2ed 360 * the inode may be getting freed (in sys_unlink path).
3eaa2885 361 */
5b21f2ed
ZY
362 inode = igrab(ordered->inode);
363
3eaa2885
CM
364 spin_unlock(&root->fs_info->ordered_extent_lock);
365
5b21f2ed
ZY
366 if (inode) {
367 btrfs_start_ordered_extent(inode, ordered, 1);
368 btrfs_put_ordered_extent(ordered);
369 iput(inode);
370 } else {
371 btrfs_put_ordered_extent(ordered);
372 }
3eaa2885
CM
373
374 spin_lock(&root->fs_info->ordered_extent_lock);
375 }
376 spin_unlock(&root->fs_info->ordered_extent_lock);
377 return 0;
378}
379
5a3f23d5
CM
380/*
381 * this is used during transaction commit to write all the inodes
382 * added to the ordered operation list. These files must be fully on
383 * disk before the transaction commits.
384 *
385 * we have two modes here, one is to just start the IO via filemap_flush
386 * and the other is to wait for all the io. When we wait, we have an
387 * extra check to make sure the ordered operation list really is empty
388 * before we return
389 */
390int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
391{
392 struct btrfs_inode *btrfs_inode;
393 struct inode *inode;
394 struct list_head splice;
395
396 INIT_LIST_HEAD(&splice);
397
398 mutex_lock(&root->fs_info->ordered_operations_mutex);
399 spin_lock(&root->fs_info->ordered_extent_lock);
400again:
401 list_splice_init(&root->fs_info->ordered_operations, &splice);
402
403 while (!list_empty(&splice)) {
404 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
405 ordered_operations);
406
407 inode = &btrfs_inode->vfs_inode;
408
409 list_del_init(&btrfs_inode->ordered_operations);
410
411 /*
412 * the inode may be getting freed (in sys_unlink path).
413 */
414 inode = igrab(inode);
415
416 if (!wait && inode) {
417 list_add_tail(&BTRFS_I(inode)->ordered_operations,
418 &root->fs_info->ordered_operations);
419 }
420 spin_unlock(&root->fs_info->ordered_extent_lock);
421
422 if (inode) {
423 if (wait)
424 btrfs_wait_ordered_range(inode, 0, (u64)-1);
425 else
426 filemap_flush(inode->i_mapping);
427 iput(inode);
428 }
429
430 cond_resched();
431 spin_lock(&root->fs_info->ordered_extent_lock);
432 }
433 if (wait && !list_empty(&root->fs_info->ordered_operations))
434 goto again;
435
436 spin_unlock(&root->fs_info->ordered_extent_lock);
437 mutex_unlock(&root->fs_info->ordered_operations_mutex);
438
439 return 0;
440}
441
eb84ae03
CM
442/*
443 * Used to start IO or wait for a given ordered extent to finish.
444 *
445 * If wait is one, this effectively waits on page writeback for all the pages
446 * in the extent, and it waits on the io completion code to insert
447 * metadata into the btree corresponding to the extent
448 */
449void btrfs_start_ordered_extent(struct inode *inode,
450 struct btrfs_ordered_extent *entry,
451 int wait)
e6dcd2dc
CM
452{
453 u64 start = entry->file_offset;
454 u64 end = start + entry->len - 1;
e1b81e67 455
eb84ae03
CM
456 /*
457 * pages in the range can be dirty, clean or writeback. We
458 * start IO on any dirty ones so the wait doesn't stall waiting
459 * for pdflush to find them
460 */
771ed689 461 btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_ALL);
c8b97818 462 if (wait) {
e6dcd2dc
CM
463 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
464 &entry->flags));
c8b97818 465 }
e6dcd2dc 466}
cee36a03 467
eb84ae03
CM
468/*
469 * Used to wait on ordered extents across a large range of bytes.
470 */
cb843a6f 471int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc
CM
472{
473 u64 end;
e5a2217e
CM
474 u64 orig_end;
475 u64 wait_end;
e6dcd2dc 476 struct btrfs_ordered_extent *ordered;
8b62b72b 477 int found;
e5a2217e
CM
478
479 if (start + len < start) {
f421950f 480 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
481 } else {
482 orig_end = start + len - 1;
f421950f
CM
483 if (orig_end > INT_LIMIT(loff_t))
484 orig_end = INT_LIMIT(loff_t);
e5a2217e 485 }
f421950f 486 wait_end = orig_end;
4a096752 487again:
e5a2217e
CM
488 /* start IO across the range first to instantiate any delalloc
489 * extents
490 */
ffbd517d 491 btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL);
f421950f 492
771ed689
CM
493 /* The compression code will leave pages locked but return from
494 * writepage without setting the page writeback. Starting again
495 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
496 */
497 btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL);
498
f421950f
CM
499 btrfs_wait_on_page_writeback_range(inode->i_mapping,
500 start >> PAGE_CACHE_SHIFT,
501 orig_end >> PAGE_CACHE_SHIFT);
e5a2217e 502
f421950f 503 end = orig_end;
8b62b72b 504 found = 0;
d397712b 505 while (1) {
e6dcd2dc 506 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 507 if (!ordered)
e6dcd2dc 508 break;
e5a2217e 509 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
510 btrfs_put_ordered_extent(ordered);
511 break;
512 }
513 if (ordered->file_offset + ordered->len < start) {
514 btrfs_put_ordered_extent(ordered);
515 break;
516 }
8b62b72b 517 found++;
e5a2217e 518 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
519 end = ordered->file_offset;
520 btrfs_put_ordered_extent(ordered);
e5a2217e 521 if (end == 0 || end == start)
e6dcd2dc
CM
522 break;
523 end--;
524 }
8b62b72b
CM
525 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
526 EXTENT_DELALLOC, 0, NULL)) {
771ed689 527 schedule_timeout(1);
4a096752
CM
528 goto again;
529 }
cb843a6f 530 return 0;
cee36a03
CM
531}
532
eb84ae03
CM
533/*
534 * find an ordered extent corresponding to file_offset. return NULL if
535 * nothing is found, otherwise take a reference on the extent and return it
536 */
e6dcd2dc
CM
537struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
538 u64 file_offset)
539{
540 struct btrfs_ordered_inode_tree *tree;
541 struct rb_node *node;
542 struct btrfs_ordered_extent *entry = NULL;
543
544 tree = &BTRFS_I(inode)->ordered_tree;
545 mutex_lock(&tree->mutex);
546 node = tree_search(tree, file_offset);
547 if (!node)
548 goto out;
549
550 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
551 if (!offset_in_entry(entry, file_offset))
552 entry = NULL;
553 if (entry)
554 atomic_inc(&entry->refs);
555out:
556 mutex_unlock(&tree->mutex);
557 return entry;
558}
559
eb84ae03
CM
560/*
561 * lookup and return any extent before 'file_offset'. NULL is returned
562 * if none is found
563 */
e6dcd2dc 564struct btrfs_ordered_extent *
d397712b 565btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
566{
567 struct btrfs_ordered_inode_tree *tree;
568 struct rb_node *node;
569 struct btrfs_ordered_extent *entry = NULL;
570
571 tree = &BTRFS_I(inode)->ordered_tree;
572 mutex_lock(&tree->mutex);
573 node = tree_search(tree, file_offset);
574 if (!node)
575 goto out;
576
577 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
578 atomic_inc(&entry->refs);
579out:
580 mutex_unlock(&tree->mutex);
581 return entry;
81d7ed29 582}
dbe674a9 583
eb84ae03
CM
584/*
585 * After an extent is done, call this to conditionally update the on disk
586 * i_size. i_size is updated to cover any fully written part of the file.
587 */
dbe674a9
CM
588int btrfs_ordered_update_i_size(struct inode *inode,
589 struct btrfs_ordered_extent *ordered)
590{
591 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
592 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
593 u64 disk_i_size;
594 u64 new_i_size;
595 u64 i_size_test;
596 struct rb_node *node;
597 struct btrfs_ordered_extent *test;
598
599 mutex_lock(&tree->mutex);
600 disk_i_size = BTRFS_I(inode)->disk_i_size;
601
602 /*
603 * if the disk i_size is already at the inode->i_size, or
604 * this ordered extent is inside the disk i_size, we're done
605 */
606 if (disk_i_size >= inode->i_size ||
607 ordered->file_offset + ordered->len <= disk_i_size) {
608 goto out;
609 }
610
611 /*
612 * we can't update the disk_isize if there are delalloc bytes
613 * between disk_i_size and this ordered extent
614 */
615 if (test_range_bit(io_tree, disk_i_size,
616 ordered->file_offset + ordered->len - 1,
9655d298 617 EXTENT_DELALLOC, 0, NULL)) {
dbe674a9
CM
618 goto out;
619 }
620 /*
621 * walk backward from this ordered extent to disk_i_size.
622 * if we find an ordered extent then we can't update disk i_size
623 * yet
624 */
ba1da2f4 625 node = &ordered->rb_node;
d397712b 626 while (1) {
ba1da2f4 627 node = rb_prev(node);
dbe674a9
CM
628 if (!node)
629 break;
630 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
631 if (test->file_offset + test->len <= disk_i_size)
632 break;
633 if (test->file_offset >= inode->i_size)
634 break;
635 if (test->file_offset >= disk_i_size)
636 goto out;
637 }
638 new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
639
640 /*
641 * at this point, we know we can safely update i_size to at least
642 * the offset from this ordered extent. But, we need to
643 * walk forward and see if ios from higher up in the file have
644 * finished.
645 */
646 node = rb_next(&ordered->rb_node);
647 i_size_test = 0;
648 if (node) {
649 /*
650 * do we have an area where IO might have finished
651 * between our ordered extent and the next one.
652 */
653 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
d397712b 654 if (test->file_offset > entry_end(ordered))
b48652c1 655 i_size_test = test->file_offset;
dbe674a9
CM
656 } else {
657 i_size_test = i_size_read(inode);
658 }
659
660 /*
661 * i_size_test is the end of a region after this ordered
662 * extent where there are no ordered extents. As long as there
663 * are no delalloc bytes in this area, it is safe to update
664 * disk_i_size to the end of the region.
665 */
666 if (i_size_test > entry_end(ordered) &&
b48652c1 667 !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1,
9655d298 668 EXTENT_DELALLOC, 0, NULL)) {
dbe674a9
CM
669 new_i_size = min_t(u64, i_size_test, i_size_read(inode));
670 }
671 BTRFS_I(inode)->disk_i_size = new_i_size;
672out:
673 mutex_unlock(&tree->mutex);
674 return 0;
675}
ba1da2f4 676
eb84ae03
CM
677/*
678 * search the ordered extents for one corresponding to 'offset' and
679 * try to find a checksum. This is used because we allow pages to
680 * be reclaimed before their checksum is actually put into the btree
681 */
d20f7043
CM
682int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
683 u32 *sum)
ba1da2f4
CM
684{
685 struct btrfs_ordered_sum *ordered_sum;
686 struct btrfs_sector_sum *sector_sums;
687 struct btrfs_ordered_extent *ordered;
688 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
689 unsigned long num_sectors;
690 unsigned long i;
691 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
ba1da2f4 692 int ret = 1;
ba1da2f4
CM
693
694 ordered = btrfs_lookup_ordered_extent(inode, offset);
695 if (!ordered)
696 return 1;
697
698 mutex_lock(&tree->mutex);
c6e30871 699 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
d20f7043 700 if (disk_bytenr >= ordered_sum->bytenr) {
3edf7d33 701 num_sectors = ordered_sum->len / sectorsize;
ed98b56a 702 sector_sums = ordered_sum->sums;
3edf7d33 703 for (i = 0; i < num_sectors; i++) {
d20f7043 704 if (sector_sums[i].bytenr == disk_bytenr) {
3edf7d33
CM
705 *sum = sector_sums[i].sum;
706 ret = 0;
707 goto out;
708 }
709 }
ba1da2f4
CM
710 }
711 }
712out:
713 mutex_unlock(&tree->mutex);
89642229 714 btrfs_put_ordered_extent(ordered);
ba1da2f4
CM
715 return ret;
716}
717
f421950f
CM
718
719/**
720 * taken from mm/filemap.c because it isn't exported
721 *
722 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
723 * @mapping: address space structure to write
724 * @start: offset in bytes where the range starts
725 * @end: offset in bytes where the range ends (inclusive)
726 * @sync_mode: enable synchronous operation
727 *
728 * Start writeback against all of a mapping's dirty pages that lie
729 * within the byte offsets <start, end> inclusive.
730 *
731 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
732 * opposed to a regular memory cleansing writeback. The difference between
733 * these two operations is that if a dirty page/buffer is encountered, it must
734 * be waited upon, and not just skipped over.
735 */
736int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
737 loff_t end, int sync_mode)
738{
739 struct writeback_control wbc = {
740 .sync_mode = sync_mode,
741 .nr_to_write = mapping->nrpages * 2,
742 .range_start = start,
743 .range_end = end,
f421950f
CM
744 };
745 return btrfs_writepages(mapping, &wbc);
746}
747
748/**
749 * taken from mm/filemap.c because it isn't exported
750 *
751 * wait_on_page_writeback_range - wait for writeback to complete
752 * @mapping: target address_space
753 * @start: beginning page index
754 * @end: ending page index
755 *
756 * Wait for writeback to complete against pages indexed by start->end
757 * inclusive
758 */
759int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
760 pgoff_t start, pgoff_t end)
761{
762 struct pagevec pvec;
763 int nr_pages;
764 int ret = 0;
765 pgoff_t index;
766
767 if (end < start)
768 return 0;
769
770 pagevec_init(&pvec, 0);
771 index = start;
772 while ((index <= end) &&
773 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
774 PAGECACHE_TAG_WRITEBACK,
775 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
776 unsigned i;
777
778 for (i = 0; i < nr_pages; i++) {
779 struct page *page = pvec.pages[i];
780
781 /* until radix tree lookup accepts end_index */
782 if (page->index > end)
783 continue;
784
785 wait_on_page_writeback(page);
786 if (PageError(page))
787 ret = -EIO;
788 }
789 pagevec_release(&pvec);
790 cond_resched();
791 }
792
793 /* Check for outstanding write errors */
794 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
795 ret = -ENOSPC;
796 if (test_and_clear_bit(AS_EIO, &mapping->flags))
797 ret = -EIO;
798
799 return ret;
800}
5a3f23d5
CM
801
802/*
803 * add a given inode to the list of inodes that must be fully on
804 * disk before a transaction commit finishes.
805 *
806 * This basically gives us the ext3 style data=ordered mode, and it is mostly
807 * used to make sure renamed files are fully on disk.
808 *
809 * It is a noop if the inode is already fully on disk.
810 *
811 * If trans is not null, we'll do a friendly check for a transaction that
812 * is already flushing things and force the IO down ourselves.
813 */
814int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
815 struct btrfs_root *root,
816 struct inode *inode)
817{
818 u64 last_mod;
819
820 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
821
822 /*
823 * if this file hasn't been changed since the last transaction
824 * commit, we can safely return without doing anything
825 */
826 if (last_mod < root->fs_info->last_trans_committed)
827 return 0;
828
829 /*
830 * the transaction is already committing. Just start the IO and
831 * don't bother with all of this list nonsense
832 */
833 if (trans && root->fs_info->running_transaction->blocked) {
834 btrfs_wait_ordered_range(inode, 0, (u64)-1);
835 return 0;
836 }
837
838 spin_lock(&root->fs_info->ordered_extent_lock);
839 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
840 list_add_tail(&BTRFS_I(inode)->ordered_operations,
841 &root->fs_info->ordered_operations);
842 }
843 spin_unlock(&root->fs_info->ordered_extent_lock);
844
845 return 0;
846}