Btrfs: make sure to remove the orphan item from the in-memory list
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
dc89e982 53#include "free-space-cache.h"
39279cc3
CM
54
55struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58};
59
6e1d5dcc
AD
60static const struct inode_operations btrfs_dir_inode_operations;
61static const struct inode_operations btrfs_symlink_inode_operations;
62static const struct inode_operations btrfs_dir_ro_inode_operations;
63static const struct inode_operations btrfs_special_inode_operations;
64static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
65static const struct address_space_operations btrfs_aops;
66static const struct address_space_operations btrfs_symlink_aops;
828c0950 67static const struct file_operations btrfs_dir_file_operations;
d1310b2e 68static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
69
70static struct kmem_cache *btrfs_inode_cachep;
71struct kmem_cache *btrfs_trans_handle_cachep;
72struct kmem_cache *btrfs_transaction_cachep;
39279cc3 73struct kmem_cache *btrfs_path_cachep;
dc89e982 74struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
75
76#define S_SHIFT 12
77static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85};
86
a41ad394
JB
87static int btrfs_setsize(struct inode *inode, loff_t newsize);
88static int btrfs_truncate(struct inode *inode);
c8b97818 89static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
90static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, int *page_started,
93 unsigned long *nr_written, int unlock);
7b128766 94
f34f57a3
YZ
95static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96 struct inode *inode, struct inode *dir)
0279b4cd
JO
97{
98 int err;
99
f34f57a3 100 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 101 if (!err)
f34f57a3 102 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
103 return err;
104}
105
c8b97818
CM
106/*
107 * this does all the hard work for inserting an inline extent into
108 * the btree. The caller should have done a btrfs_drop_extents so that
109 * no overlapping inline items exist in the btree
110 */
d397712b 111static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
112 struct btrfs_root *root, struct inode *inode,
113 u64 start, size_t size, size_t compressed_size,
114 struct page **compressed_pages)
115{
116 struct btrfs_key key;
117 struct btrfs_path *path;
118 struct extent_buffer *leaf;
119 struct page *page = NULL;
120 char *kaddr;
121 unsigned long ptr;
122 struct btrfs_file_extent_item *ei;
123 int err = 0;
124 int ret;
125 size_t cur_size = size;
126 size_t datasize;
127 unsigned long offset;
261507a0 128 int compress_type = BTRFS_COMPRESS_NONE;
c8b97818
CM
129
130 if (compressed_size && compressed_pages) {
261507a0 131 compress_type = root->fs_info->compress_type;
c8b97818
CM
132 cur_size = compressed_size;
133 }
134
d397712b
CM
135 path = btrfs_alloc_path();
136 if (!path)
c8b97818
CM
137 return -ENOMEM;
138
b9473439 139 path->leave_spinning = 1;
c8b97818
CM
140 btrfs_set_trans_block_group(trans, inode);
141
142 key.objectid = inode->i_ino;
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
c8b97818
CM
153 goto fail;
154 }
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
164
261507a0 165 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
166 struct page *cpage;
167 int i = 0;
d397712b 168 while (compressed_size > 0) {
c8b97818 169 cpage = compressed_pages[i];
5b050f04 170 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
171 PAGE_CACHE_SIZE);
172
b9473439 173 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 175 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
176
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
180 }
181 btrfs_set_file_extent_compression(leaf, ei,
261507a0 182 compress_type);
c8b97818
CM
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
192 }
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
195
c2167754
YZ
196 /*
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
200 *
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
204 */
c8b97818
CM
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
c2167754 207
c8b97818
CM
208 return 0;
209fail:
210 btrfs_free_path(path);
211 return err;
212}
213
214
215/*
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
219 */
7f366cfe 220static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
223 size_t compressed_size,
224 struct page **compressed_pages)
225{
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
920bbbfb 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 249 &hint_byte, 1);
c8b97818
CM
250 BUG_ON(ret);
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
256 compressed_pages);
257 BUG_ON(ret);
0ca1f7ce 258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
260 return 0;
261}
262
771ed689
CM
263struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
261507a0 269 int compress_type;
771ed689
CM
270 struct list_head list;
271};
272
273struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
281};
282
283static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
261507a0
LZ
287 unsigned long nr_pages,
288 int compress_type)
771ed689
CM
289{
290 struct async_extent *async_extent;
291
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293 async_extent->start = start;
294 async_extent->ram_size = ram_size;
295 async_extent->compressed_size = compressed_size;
296 async_extent->pages = pages;
297 async_extent->nr_pages = nr_pages;
261507a0 298 async_extent->compress_type = compress_type;
771ed689
CM
299 list_add_tail(&async_extent->list, &cow->extents);
300 return 0;
301}
302
d352ac68 303/*
771ed689
CM
304 * we create compressed extents in two phases. The first
305 * phase compresses a range of pages that have already been
306 * locked (both pages and state bits are locked).
c8b97818 307 *
771ed689
CM
308 * This is done inside an ordered work queue, and the compression
309 * is spread across many cpus. The actual IO submission is step
310 * two, and the ordered work queue takes care of making sure that
311 * happens in the same order things were put onto the queue by
312 * writepages and friends.
c8b97818 313 *
771ed689
CM
314 * If this code finds it can't get good compression, it puts an
315 * entry onto the work queue to write the uncompressed bytes. This
316 * makes sure that both compressed inodes and uncompressed inodes
317 * are written in the same order that pdflush sent them down.
d352ac68 318 */
771ed689
CM
319static noinline int compress_file_range(struct inode *inode,
320 struct page *locked_page,
321 u64 start, u64 end,
322 struct async_cow *async_cow,
323 int *num_added)
b888db2b
CM
324{
325 struct btrfs_root *root = BTRFS_I(inode)->root;
326 struct btrfs_trans_handle *trans;
db94535d 327 u64 num_bytes;
db94535d 328 u64 blocksize = root->sectorsize;
c8b97818 329 u64 actual_end;
42dc7bab 330 u64 isize = i_size_read(inode);
e6dcd2dc 331 int ret = 0;
c8b97818
CM
332 struct page **pages = NULL;
333 unsigned long nr_pages;
334 unsigned long nr_pages_ret = 0;
335 unsigned long total_compressed = 0;
336 unsigned long total_in = 0;
337 unsigned long max_compressed = 128 * 1024;
771ed689 338 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
339 int i;
340 int will_compress;
261507a0 341 int compress_type = root->fs_info->compress_type;
b888db2b 342
42dc7bab 343 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
344again:
345 will_compress = 0;
346 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
347 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 348
f03d9301
CM
349 /*
350 * we don't want to send crud past the end of i_size through
351 * compression, that's just a waste of CPU time. So, if the
352 * end of the file is before the start of our current
353 * requested range of bytes, we bail out to the uncompressed
354 * cleanup code that can deal with all of this.
355 *
356 * It isn't really the fastest way to fix things, but this is a
357 * very uncommon corner.
358 */
359 if (actual_end <= start)
360 goto cleanup_and_bail_uncompressed;
361
c8b97818
CM
362 total_compressed = actual_end - start;
363
364 /* we want to make sure that amount of ram required to uncompress
365 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
366 * of a compressed extent to 128k. This is a crucial number
367 * because it also controls how easily we can spread reads across
368 * cpus for decompression.
369 *
370 * We also want to make sure the amount of IO required to do
371 * a random read is reasonably small, so we limit the size of
372 * a compressed extent to 128k.
c8b97818
CM
373 */
374 total_compressed = min(total_compressed, max_uncompressed);
db94535d 375 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 376 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
377 total_in = 0;
378 ret = 0;
db94535d 379
771ed689
CM
380 /*
381 * we do compression for mount -o compress and when the
382 * inode has not been flagged as nocompress. This flag can
383 * change at any time if we discover bad compression ratios.
c8b97818 384 */
6cbff00f 385 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32
CM
386 (btrfs_test_opt(root, COMPRESS) ||
387 (BTRFS_I(inode)->force_compress))) {
c8b97818 388 WARN_ON(pages);
cfbc246e 389 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 390
261507a0
LZ
391 if (BTRFS_I(inode)->force_compress)
392 compress_type = BTRFS_I(inode)->force_compress;
393
394 ret = btrfs_compress_pages(compress_type,
395 inode->i_mapping, start,
396 total_compressed, pages,
397 nr_pages, &nr_pages_ret,
398 &total_in,
399 &total_compressed,
400 max_compressed);
c8b97818
CM
401
402 if (!ret) {
403 unsigned long offset = total_compressed &
404 (PAGE_CACHE_SIZE - 1);
405 struct page *page = pages[nr_pages_ret - 1];
406 char *kaddr;
407
408 /* zero the tail end of the last page, we might be
409 * sending it down to disk
410 */
411 if (offset) {
412 kaddr = kmap_atomic(page, KM_USER0);
413 memset(kaddr + offset, 0,
414 PAGE_CACHE_SIZE - offset);
415 kunmap_atomic(kaddr, KM_USER0);
416 }
417 will_compress = 1;
418 }
419 }
420 if (start == 0) {
771ed689 421 trans = btrfs_join_transaction(root, 1);
3612b495 422 BUG_ON(IS_ERR(trans));
771ed689 423 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 424 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 425
c8b97818 426 /* lets try to make an inline extent */
771ed689 427 if (ret || total_in < (actual_end - start)) {
c8b97818 428 /* we didn't compress the entire range, try
771ed689 429 * to make an uncompressed inline extent.
c8b97818
CM
430 */
431 ret = cow_file_range_inline(trans, root, inode,
432 start, end, 0, NULL);
433 } else {
771ed689 434 /* try making a compressed inline extent */
c8b97818
CM
435 ret = cow_file_range_inline(trans, root, inode,
436 start, end,
437 total_compressed, pages);
438 }
439 if (ret == 0) {
771ed689
CM
440 /*
441 * inline extent creation worked, we don't need
442 * to create any more async work items. Unlock
443 * and free up our temp pages.
444 */
c8b97818 445 extent_clear_unlock_delalloc(inode,
a791e35e
CM
446 &BTRFS_I(inode)->io_tree,
447 start, end, NULL,
448 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 449 EXTENT_CLEAR_DELALLOC |
a791e35e 450 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
451
452 btrfs_end_transaction(trans, root);
c8b97818
CM
453 goto free_pages_out;
454 }
c2167754 455 btrfs_end_transaction(trans, root);
c8b97818
CM
456 }
457
458 if (will_compress) {
459 /*
460 * we aren't doing an inline extent round the compressed size
461 * up to a block size boundary so the allocator does sane
462 * things
463 */
464 total_compressed = (total_compressed + blocksize - 1) &
465 ~(blocksize - 1);
466
467 /*
468 * one last check to make sure the compression is really a
469 * win, compare the page count read with the blocks on disk
470 */
471 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
472 ~(PAGE_CACHE_SIZE - 1);
473 if (total_compressed >= total_in) {
474 will_compress = 0;
475 } else {
c8b97818
CM
476 num_bytes = total_in;
477 }
478 }
479 if (!will_compress && pages) {
480 /*
481 * the compression code ran but failed to make things smaller,
482 * free any pages it allocated and our page pointer array
483 */
484 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 485 WARN_ON(pages[i]->mapping);
c8b97818
CM
486 page_cache_release(pages[i]);
487 }
488 kfree(pages);
489 pages = NULL;
490 total_compressed = 0;
491 nr_pages_ret = 0;
492
493 /* flag the file so we don't compress in the future */
1e701a32
CM
494 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
495 !(BTRFS_I(inode)->force_compress)) {
a555f810 496 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 497 }
c8b97818 498 }
771ed689
CM
499 if (will_compress) {
500 *num_added += 1;
c8b97818 501
771ed689
CM
502 /* the async work queues will take care of doing actual
503 * allocation on disk for these compressed pages,
504 * and will submit them to the elevator.
505 */
506 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
507 total_compressed, pages, nr_pages_ret,
508 compress_type);
179e29e4 509
24ae6365 510 if (start + num_bytes < end) {
771ed689
CM
511 start += num_bytes;
512 pages = NULL;
513 cond_resched();
514 goto again;
515 }
516 } else {
f03d9301 517cleanup_and_bail_uncompressed:
771ed689
CM
518 /*
519 * No compression, but we still need to write the pages in
520 * the file we've been given so far. redirty the locked
521 * page if it corresponds to our extent and set things up
522 * for the async work queue to run cow_file_range to do
523 * the normal delalloc dance
524 */
525 if (page_offset(locked_page) >= start &&
526 page_offset(locked_page) <= end) {
527 __set_page_dirty_nobuffers(locked_page);
528 /* unlocked later on in the async handlers */
529 }
261507a0
LZ
530 add_async_extent(async_cow, start, end - start + 1,
531 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
532 *num_added += 1;
533 }
3b951516 534
771ed689
CM
535out:
536 return 0;
537
538free_pages_out:
539 for (i = 0; i < nr_pages_ret; i++) {
540 WARN_ON(pages[i]->mapping);
541 page_cache_release(pages[i]);
542 }
d397712b 543 kfree(pages);
771ed689
CM
544
545 goto out;
546}
547
548/*
549 * phase two of compressed writeback. This is the ordered portion
550 * of the code, which only gets called in the order the work was
551 * queued. We walk all the async extents created by compress_file_range
552 * and send them down to the disk.
553 */
554static noinline int submit_compressed_extents(struct inode *inode,
555 struct async_cow *async_cow)
556{
557 struct async_extent *async_extent;
558 u64 alloc_hint = 0;
559 struct btrfs_trans_handle *trans;
560 struct btrfs_key ins;
561 struct extent_map *em;
562 struct btrfs_root *root = BTRFS_I(inode)->root;
563 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
564 struct extent_io_tree *io_tree;
f5a84ee3 565 int ret = 0;
771ed689
CM
566
567 if (list_empty(&async_cow->extents))
568 return 0;
569
771ed689 570
d397712b 571 while (!list_empty(&async_cow->extents)) {
771ed689
CM
572 async_extent = list_entry(async_cow->extents.next,
573 struct async_extent, list);
574 list_del(&async_extent->list);
c8b97818 575
771ed689
CM
576 io_tree = &BTRFS_I(inode)->io_tree;
577
f5a84ee3 578retry:
771ed689
CM
579 /* did the compression code fall back to uncompressed IO? */
580 if (!async_extent->pages) {
581 int page_started = 0;
582 unsigned long nr_written = 0;
583
584 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
585 async_extent->start +
586 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
587
588 /* allocate blocks */
f5a84ee3
JB
589 ret = cow_file_range(inode, async_cow->locked_page,
590 async_extent->start,
591 async_extent->start +
592 async_extent->ram_size - 1,
593 &page_started, &nr_written, 0);
771ed689
CM
594
595 /*
596 * if page_started, cow_file_range inserted an
597 * inline extent and took care of all the unlocking
598 * and IO for us. Otherwise, we need to submit
599 * all those pages down to the drive.
600 */
f5a84ee3 601 if (!page_started && !ret)
771ed689
CM
602 extent_write_locked_range(io_tree,
603 inode, async_extent->start,
d397712b 604 async_extent->start +
771ed689
CM
605 async_extent->ram_size - 1,
606 btrfs_get_extent,
607 WB_SYNC_ALL);
608 kfree(async_extent);
609 cond_resched();
610 continue;
611 }
612
613 lock_extent(io_tree, async_extent->start,
614 async_extent->start + async_extent->ram_size - 1,
615 GFP_NOFS);
771ed689 616
c2167754 617 trans = btrfs_join_transaction(root, 1);
3612b495 618 BUG_ON(IS_ERR(trans));
771ed689
CM
619 ret = btrfs_reserve_extent(trans, root,
620 async_extent->compressed_size,
621 async_extent->compressed_size,
622 0, alloc_hint,
623 (u64)-1, &ins, 1);
c2167754
YZ
624 btrfs_end_transaction(trans, root);
625
f5a84ee3
JB
626 if (ret) {
627 int i;
628 for (i = 0; i < async_extent->nr_pages; i++) {
629 WARN_ON(async_extent->pages[i]->mapping);
630 page_cache_release(async_extent->pages[i]);
631 }
632 kfree(async_extent->pages);
633 async_extent->nr_pages = 0;
634 async_extent->pages = NULL;
635 unlock_extent(io_tree, async_extent->start,
636 async_extent->start +
637 async_extent->ram_size - 1, GFP_NOFS);
638 goto retry;
639 }
640
c2167754
YZ
641 /*
642 * here we're doing allocation and writeback of the
643 * compressed pages
644 */
645 btrfs_drop_extent_cache(inode, async_extent->start,
646 async_extent->start +
647 async_extent->ram_size - 1, 0);
648
771ed689 649 em = alloc_extent_map(GFP_NOFS);
c26a9203 650 BUG_ON(!em);
771ed689
CM
651 em->start = async_extent->start;
652 em->len = async_extent->ram_size;
445a6944 653 em->orig_start = em->start;
c8b97818 654
771ed689
CM
655 em->block_start = ins.objectid;
656 em->block_len = ins.offset;
657 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 658 em->compress_type = async_extent->compress_type;
771ed689
CM
659 set_bit(EXTENT_FLAG_PINNED, &em->flags);
660 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
661
d397712b 662 while (1) {
890871be 663 write_lock(&em_tree->lock);
771ed689 664 ret = add_extent_mapping(em_tree, em);
890871be 665 write_unlock(&em_tree->lock);
771ed689
CM
666 if (ret != -EEXIST) {
667 free_extent_map(em);
668 break;
669 }
670 btrfs_drop_extent_cache(inode, async_extent->start,
671 async_extent->start +
672 async_extent->ram_size - 1, 0);
673 }
674
261507a0
LZ
675 ret = btrfs_add_ordered_extent_compress(inode,
676 async_extent->start,
677 ins.objectid,
678 async_extent->ram_size,
679 ins.offset,
680 BTRFS_ORDERED_COMPRESSED,
681 async_extent->compress_type);
771ed689
CM
682 BUG_ON(ret);
683
771ed689
CM
684 /*
685 * clear dirty, set writeback and unlock the pages.
686 */
687 extent_clear_unlock_delalloc(inode,
a791e35e
CM
688 &BTRFS_I(inode)->io_tree,
689 async_extent->start,
690 async_extent->start +
691 async_extent->ram_size - 1,
692 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
693 EXTENT_CLEAR_UNLOCK |
a3429ab7 694 EXTENT_CLEAR_DELALLOC |
a791e35e 695 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
696
697 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
698 async_extent->start,
699 async_extent->ram_size,
700 ins.objectid,
701 ins.offset, async_extent->pages,
702 async_extent->nr_pages);
771ed689
CM
703
704 BUG_ON(ret);
771ed689
CM
705 alloc_hint = ins.objectid + ins.offset;
706 kfree(async_extent);
707 cond_resched();
708 }
709
771ed689
CM
710 return 0;
711}
712
4b46fce2
JB
713static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
714 u64 num_bytes)
715{
716 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
717 struct extent_map *em;
718 u64 alloc_hint = 0;
719
720 read_lock(&em_tree->lock);
721 em = search_extent_mapping(em_tree, start, num_bytes);
722 if (em) {
723 /*
724 * if block start isn't an actual block number then find the
725 * first block in this inode and use that as a hint. If that
726 * block is also bogus then just don't worry about it.
727 */
728 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
729 free_extent_map(em);
730 em = search_extent_mapping(em_tree, 0, 0);
731 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
732 alloc_hint = em->block_start;
733 if (em)
734 free_extent_map(em);
735 } else {
736 alloc_hint = em->block_start;
737 free_extent_map(em);
738 }
739 }
740 read_unlock(&em_tree->lock);
741
742 return alloc_hint;
743}
744
771ed689
CM
745/*
746 * when extent_io.c finds a delayed allocation range in the file,
747 * the call backs end up in this code. The basic idea is to
748 * allocate extents on disk for the range, and create ordered data structs
749 * in ram to track those extents.
750 *
751 * locked_page is the page that writepage had locked already. We use
752 * it to make sure we don't do extra locks or unlocks.
753 *
754 * *page_started is set to one if we unlock locked_page and do everything
755 * required to start IO on it. It may be clean and already done with
756 * IO when we return.
757 */
758static noinline int cow_file_range(struct inode *inode,
759 struct page *locked_page,
760 u64 start, u64 end, int *page_started,
761 unsigned long *nr_written,
762 int unlock)
763{
764 struct btrfs_root *root = BTRFS_I(inode)->root;
765 struct btrfs_trans_handle *trans;
766 u64 alloc_hint = 0;
767 u64 num_bytes;
768 unsigned long ram_size;
769 u64 disk_num_bytes;
770 u64 cur_alloc_size;
771 u64 blocksize = root->sectorsize;
771ed689
CM
772 struct btrfs_key ins;
773 struct extent_map *em;
774 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
775 int ret = 0;
776
0cb59c99 777 BUG_ON(root == root->fs_info->tree_root);
771ed689 778 trans = btrfs_join_transaction(root, 1);
3612b495 779 BUG_ON(IS_ERR(trans));
771ed689 780 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 781 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 782
771ed689
CM
783 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
784 num_bytes = max(blocksize, num_bytes);
785 disk_num_bytes = num_bytes;
786 ret = 0;
787
788 if (start == 0) {
789 /* lets try to make an inline extent */
790 ret = cow_file_range_inline(trans, root, inode,
791 start, end, 0, NULL);
792 if (ret == 0) {
793 extent_clear_unlock_delalloc(inode,
a791e35e
CM
794 &BTRFS_I(inode)->io_tree,
795 start, end, NULL,
796 EXTENT_CLEAR_UNLOCK_PAGE |
797 EXTENT_CLEAR_UNLOCK |
798 EXTENT_CLEAR_DELALLOC |
799 EXTENT_CLEAR_DIRTY |
800 EXTENT_SET_WRITEBACK |
801 EXTENT_END_WRITEBACK);
c2167754 802
771ed689
CM
803 *nr_written = *nr_written +
804 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
805 *page_started = 1;
806 ret = 0;
807 goto out;
808 }
809 }
810
811 BUG_ON(disk_num_bytes >
812 btrfs_super_total_bytes(&root->fs_info->super_copy));
813
4b46fce2 814 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
815 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
816
d397712b 817 while (disk_num_bytes > 0) {
a791e35e
CM
818 unsigned long op;
819
287a0ab9 820 cur_alloc_size = disk_num_bytes;
e6dcd2dc 821 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 822 root->sectorsize, 0, alloc_hint,
e6dcd2dc 823 (u64)-1, &ins, 1);
d397712b
CM
824 BUG_ON(ret);
825
e6dcd2dc 826 em = alloc_extent_map(GFP_NOFS);
c26a9203 827 BUG_ON(!em);
e6dcd2dc 828 em->start = start;
445a6944 829 em->orig_start = em->start;
771ed689
CM
830 ram_size = ins.offset;
831 em->len = ins.offset;
c8b97818 832
e6dcd2dc 833 em->block_start = ins.objectid;
c8b97818 834 em->block_len = ins.offset;
e6dcd2dc 835 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 836 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 837
d397712b 838 while (1) {
890871be 839 write_lock(&em_tree->lock);
e6dcd2dc 840 ret = add_extent_mapping(em_tree, em);
890871be 841 write_unlock(&em_tree->lock);
e6dcd2dc
CM
842 if (ret != -EEXIST) {
843 free_extent_map(em);
844 break;
845 }
846 btrfs_drop_extent_cache(inode, start,
c8b97818 847 start + ram_size - 1, 0);
e6dcd2dc
CM
848 }
849
98d20f67 850 cur_alloc_size = ins.offset;
e6dcd2dc 851 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 852 ram_size, cur_alloc_size, 0);
e6dcd2dc 853 BUG_ON(ret);
c8b97818 854
17d217fe
YZ
855 if (root->root_key.objectid ==
856 BTRFS_DATA_RELOC_TREE_OBJECTID) {
857 ret = btrfs_reloc_clone_csums(inode, start,
858 cur_alloc_size);
859 BUG_ON(ret);
860 }
861
d397712b 862 if (disk_num_bytes < cur_alloc_size)
3b951516 863 break;
d397712b 864
c8b97818
CM
865 /* we're not doing compressed IO, don't unlock the first
866 * page (which the caller expects to stay locked), don't
867 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
868 *
869 * Do set the Private2 bit so we know this page was properly
870 * setup for writepage
c8b97818 871 */
a791e35e
CM
872 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
873 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
874 EXTENT_SET_PRIVATE2;
875
c8b97818
CM
876 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
877 start, start + ram_size - 1,
a791e35e 878 locked_page, op);
c8b97818 879 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
880 num_bytes -= cur_alloc_size;
881 alloc_hint = ins.objectid + ins.offset;
882 start += cur_alloc_size;
b888db2b 883 }
b888db2b 884out:
771ed689 885 ret = 0;
b888db2b 886 btrfs_end_transaction(trans, root);
c8b97818 887
be20aa9d 888 return ret;
771ed689 889}
c8b97818 890
771ed689
CM
891/*
892 * work queue call back to started compression on a file and pages
893 */
894static noinline void async_cow_start(struct btrfs_work *work)
895{
896 struct async_cow *async_cow;
897 int num_added = 0;
898 async_cow = container_of(work, struct async_cow, work);
899
900 compress_file_range(async_cow->inode, async_cow->locked_page,
901 async_cow->start, async_cow->end, async_cow,
902 &num_added);
903 if (num_added == 0)
904 async_cow->inode = NULL;
905}
906
907/*
908 * work queue call back to submit previously compressed pages
909 */
910static noinline void async_cow_submit(struct btrfs_work *work)
911{
912 struct async_cow *async_cow;
913 struct btrfs_root *root;
914 unsigned long nr_pages;
915
916 async_cow = container_of(work, struct async_cow, work);
917
918 root = async_cow->root;
919 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
920 PAGE_CACHE_SHIFT;
921
922 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
923
924 if (atomic_read(&root->fs_info->async_delalloc_pages) <
925 5 * 1042 * 1024 &&
926 waitqueue_active(&root->fs_info->async_submit_wait))
927 wake_up(&root->fs_info->async_submit_wait);
928
d397712b 929 if (async_cow->inode)
771ed689 930 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 931}
c8b97818 932
771ed689
CM
933static noinline void async_cow_free(struct btrfs_work *work)
934{
935 struct async_cow *async_cow;
936 async_cow = container_of(work, struct async_cow, work);
937 kfree(async_cow);
938}
939
940static int cow_file_range_async(struct inode *inode, struct page *locked_page,
941 u64 start, u64 end, int *page_started,
942 unsigned long *nr_written)
943{
944 struct async_cow *async_cow;
945 struct btrfs_root *root = BTRFS_I(inode)->root;
946 unsigned long nr_pages;
947 u64 cur_end;
948 int limit = 10 * 1024 * 1042;
949
a3429ab7
CM
950 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
951 1, 0, NULL, GFP_NOFS);
d397712b 952 while (start < end) {
771ed689
CM
953 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
954 async_cow->inode = inode;
955 async_cow->root = root;
956 async_cow->locked_page = locked_page;
957 async_cow->start = start;
958
6cbff00f 959 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
960 cur_end = end;
961 else
962 cur_end = min(end, start + 512 * 1024 - 1);
963
964 async_cow->end = cur_end;
965 INIT_LIST_HEAD(&async_cow->extents);
966
967 async_cow->work.func = async_cow_start;
968 async_cow->work.ordered_func = async_cow_submit;
969 async_cow->work.ordered_free = async_cow_free;
970 async_cow->work.flags = 0;
971
771ed689
CM
972 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
973 PAGE_CACHE_SHIFT;
974 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
975
976 btrfs_queue_worker(&root->fs_info->delalloc_workers,
977 &async_cow->work);
978
979 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
980 wait_event(root->fs_info->async_submit_wait,
981 (atomic_read(&root->fs_info->async_delalloc_pages) <
982 limit));
983 }
984
d397712b 985 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
986 atomic_read(&root->fs_info->async_delalloc_pages)) {
987 wait_event(root->fs_info->async_submit_wait,
988 (atomic_read(&root->fs_info->async_delalloc_pages) ==
989 0));
990 }
991
992 *nr_written += nr_pages;
993 start = cur_end + 1;
994 }
995 *page_started = 1;
996 return 0;
be20aa9d
CM
997}
998
d397712b 999static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1000 u64 bytenr, u64 num_bytes)
1001{
1002 int ret;
1003 struct btrfs_ordered_sum *sums;
1004 LIST_HEAD(list);
1005
07d400a6
YZ
1006 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1007 bytenr + num_bytes - 1, &list);
17d217fe
YZ
1008 if (ret == 0 && list_empty(&list))
1009 return 0;
1010
1011 while (!list_empty(&list)) {
1012 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1013 list_del(&sums->list);
1014 kfree(sums);
1015 }
1016 return 1;
1017}
1018
d352ac68
CM
1019/*
1020 * when nowcow writeback call back. This checks for snapshots or COW copies
1021 * of the extents that exist in the file, and COWs the file as required.
1022 *
1023 * If no cow copies or snapshots exist, we write directly to the existing
1024 * blocks on disk
1025 */
7f366cfe
CM
1026static noinline int run_delalloc_nocow(struct inode *inode,
1027 struct page *locked_page,
771ed689
CM
1028 u64 start, u64 end, int *page_started, int force,
1029 unsigned long *nr_written)
be20aa9d 1030{
be20aa9d 1031 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1032 struct btrfs_trans_handle *trans;
be20aa9d 1033 struct extent_buffer *leaf;
be20aa9d 1034 struct btrfs_path *path;
80ff3856 1035 struct btrfs_file_extent_item *fi;
be20aa9d 1036 struct btrfs_key found_key;
80ff3856
YZ
1037 u64 cow_start;
1038 u64 cur_offset;
1039 u64 extent_end;
5d4f98a2 1040 u64 extent_offset;
80ff3856
YZ
1041 u64 disk_bytenr;
1042 u64 num_bytes;
1043 int extent_type;
1044 int ret;
d899e052 1045 int type;
80ff3856
YZ
1046 int nocow;
1047 int check_prev = 1;
0cb59c99 1048 bool nolock = false;
be20aa9d
CM
1049
1050 path = btrfs_alloc_path();
1051 BUG_ON(!path);
0cb59c99
JB
1052 if (root == root->fs_info->tree_root) {
1053 nolock = true;
1054 trans = btrfs_join_transaction_nolock(root, 1);
1055 } else {
1056 trans = btrfs_join_transaction(root, 1);
1057 }
3612b495 1058 BUG_ON(IS_ERR(trans));
be20aa9d 1059
80ff3856
YZ
1060 cow_start = (u64)-1;
1061 cur_offset = start;
1062 while (1) {
1063 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1064 cur_offset, 0);
1065 BUG_ON(ret < 0);
1066 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1067 leaf = path->nodes[0];
1068 btrfs_item_key_to_cpu(leaf, &found_key,
1069 path->slots[0] - 1);
1070 if (found_key.objectid == inode->i_ino &&
1071 found_key.type == BTRFS_EXTENT_DATA_KEY)
1072 path->slots[0]--;
1073 }
1074 check_prev = 0;
1075next_slot:
1076 leaf = path->nodes[0];
1077 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1078 ret = btrfs_next_leaf(root, path);
1079 if (ret < 0)
1080 BUG_ON(1);
1081 if (ret > 0)
1082 break;
1083 leaf = path->nodes[0];
1084 }
be20aa9d 1085
80ff3856
YZ
1086 nocow = 0;
1087 disk_bytenr = 0;
17d217fe 1088 num_bytes = 0;
80ff3856
YZ
1089 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1090
1091 if (found_key.objectid > inode->i_ino ||
1092 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1093 found_key.offset > end)
1094 break;
1095
1096 if (found_key.offset > cur_offset) {
1097 extent_end = found_key.offset;
e9061e21 1098 extent_type = 0;
80ff3856
YZ
1099 goto out_check;
1100 }
1101
1102 fi = btrfs_item_ptr(leaf, path->slots[0],
1103 struct btrfs_file_extent_item);
1104 extent_type = btrfs_file_extent_type(leaf, fi);
1105
d899e052
YZ
1106 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1107 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1108 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1109 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1110 extent_end = found_key.offset +
1111 btrfs_file_extent_num_bytes(leaf, fi);
1112 if (extent_end <= start) {
1113 path->slots[0]++;
1114 goto next_slot;
1115 }
17d217fe
YZ
1116 if (disk_bytenr == 0)
1117 goto out_check;
80ff3856
YZ
1118 if (btrfs_file_extent_compression(leaf, fi) ||
1119 btrfs_file_extent_encryption(leaf, fi) ||
1120 btrfs_file_extent_other_encoding(leaf, fi))
1121 goto out_check;
d899e052
YZ
1122 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1123 goto out_check;
d2fb3437 1124 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1125 goto out_check;
17d217fe 1126 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1127 found_key.offset -
1128 extent_offset, disk_bytenr))
17d217fe 1129 goto out_check;
5d4f98a2 1130 disk_bytenr += extent_offset;
17d217fe
YZ
1131 disk_bytenr += cur_offset - found_key.offset;
1132 num_bytes = min(end + 1, extent_end) - cur_offset;
1133 /*
1134 * force cow if csum exists in the range.
1135 * this ensure that csum for a given extent are
1136 * either valid or do not exist.
1137 */
1138 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1139 goto out_check;
80ff3856
YZ
1140 nocow = 1;
1141 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1142 extent_end = found_key.offset +
1143 btrfs_file_extent_inline_len(leaf, fi);
1144 extent_end = ALIGN(extent_end, root->sectorsize);
1145 } else {
1146 BUG_ON(1);
1147 }
1148out_check:
1149 if (extent_end <= start) {
1150 path->slots[0]++;
1151 goto next_slot;
1152 }
1153 if (!nocow) {
1154 if (cow_start == (u64)-1)
1155 cow_start = cur_offset;
1156 cur_offset = extent_end;
1157 if (cur_offset > end)
1158 break;
1159 path->slots[0]++;
1160 goto next_slot;
7ea394f1
YZ
1161 }
1162
1163 btrfs_release_path(root, path);
80ff3856
YZ
1164 if (cow_start != (u64)-1) {
1165 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1166 found_key.offset - 1, page_started,
1167 nr_written, 1);
80ff3856
YZ
1168 BUG_ON(ret);
1169 cow_start = (u64)-1;
7ea394f1 1170 }
80ff3856 1171
d899e052
YZ
1172 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1173 struct extent_map *em;
1174 struct extent_map_tree *em_tree;
1175 em_tree = &BTRFS_I(inode)->extent_tree;
1176 em = alloc_extent_map(GFP_NOFS);
c26a9203 1177 BUG_ON(!em);
d899e052 1178 em->start = cur_offset;
445a6944 1179 em->orig_start = em->start;
d899e052
YZ
1180 em->len = num_bytes;
1181 em->block_len = num_bytes;
1182 em->block_start = disk_bytenr;
1183 em->bdev = root->fs_info->fs_devices->latest_bdev;
1184 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1185 while (1) {
890871be 1186 write_lock(&em_tree->lock);
d899e052 1187 ret = add_extent_mapping(em_tree, em);
890871be 1188 write_unlock(&em_tree->lock);
d899e052
YZ
1189 if (ret != -EEXIST) {
1190 free_extent_map(em);
1191 break;
1192 }
1193 btrfs_drop_extent_cache(inode, em->start,
1194 em->start + em->len - 1, 0);
1195 }
1196 type = BTRFS_ORDERED_PREALLOC;
1197 } else {
1198 type = BTRFS_ORDERED_NOCOW;
1199 }
80ff3856
YZ
1200
1201 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1202 num_bytes, num_bytes, type);
1203 BUG_ON(ret);
771ed689 1204
efa56464
YZ
1205 if (root->root_key.objectid ==
1206 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1207 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1208 num_bytes);
1209 BUG_ON(ret);
1210 }
1211
d899e052 1212 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1213 cur_offset, cur_offset + num_bytes - 1,
1214 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1215 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1216 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1217 cur_offset = extent_end;
1218 if (cur_offset > end)
1219 break;
be20aa9d 1220 }
80ff3856
YZ
1221 btrfs_release_path(root, path);
1222
1223 if (cur_offset <= end && cow_start == (u64)-1)
1224 cow_start = cur_offset;
1225 if (cow_start != (u64)-1) {
1226 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1227 page_started, nr_written, 1);
80ff3856
YZ
1228 BUG_ON(ret);
1229 }
1230
0cb59c99
JB
1231 if (nolock) {
1232 ret = btrfs_end_transaction_nolock(trans, root);
1233 BUG_ON(ret);
1234 } else {
1235 ret = btrfs_end_transaction(trans, root);
1236 BUG_ON(ret);
1237 }
7ea394f1 1238 btrfs_free_path(path);
80ff3856 1239 return 0;
be20aa9d
CM
1240}
1241
d352ac68
CM
1242/*
1243 * extent_io.c call back to do delayed allocation processing
1244 */
c8b97818 1245static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1246 u64 start, u64 end, int *page_started,
1247 unsigned long *nr_written)
be20aa9d 1248{
be20aa9d 1249 int ret;
7f366cfe 1250 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1251
6cbff00f 1252 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1253 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1254 page_started, 1, nr_written);
6cbff00f 1255 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1256 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1257 page_started, 0, nr_written);
1e701a32
CM
1258 else if (!btrfs_test_opt(root, COMPRESS) &&
1259 !(BTRFS_I(inode)->force_compress))
7f366cfe
CM
1260 ret = cow_file_range(inode, locked_page, start, end,
1261 page_started, nr_written, 1);
be20aa9d 1262 else
771ed689 1263 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1264 page_started, nr_written);
b888db2b
CM
1265 return ret;
1266}
1267
9ed74f2d 1268static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1269 struct extent_state *orig, u64 split)
9ed74f2d 1270{
0ca1f7ce 1271 /* not delalloc, ignore it */
9ed74f2d
JB
1272 if (!(orig->state & EXTENT_DELALLOC))
1273 return 0;
1274
0ca1f7ce 1275 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1276 return 0;
1277}
1278
1279/*
1280 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1281 * extents so we can keep track of new extents that are just merged onto old
1282 * extents, such as when we are doing sequential writes, so we can properly
1283 * account for the metadata space we'll need.
1284 */
1285static int btrfs_merge_extent_hook(struct inode *inode,
1286 struct extent_state *new,
1287 struct extent_state *other)
1288{
9ed74f2d
JB
1289 /* not delalloc, ignore it */
1290 if (!(other->state & EXTENT_DELALLOC))
1291 return 0;
1292
0ca1f7ce 1293 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1294 return 0;
1295}
1296
d352ac68
CM
1297/*
1298 * extent_io.c set_bit_hook, used to track delayed allocation
1299 * bytes in this file, and to maintain the list of inodes that
1300 * have pending delalloc work to be done.
1301 */
0ca1f7ce
YZ
1302static int btrfs_set_bit_hook(struct inode *inode,
1303 struct extent_state *state, int *bits)
291d673e 1304{
9ed74f2d 1305
75eff68e
CM
1306 /*
1307 * set_bit and clear bit hooks normally require _irqsave/restore
1308 * but in this case, we are only testeing for the DELALLOC
1309 * bit, which is only set or cleared with irqs on
1310 */
0ca1f7ce 1311 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1312 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1313 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1314 int do_list = (root->root_key.objectid !=
1315 BTRFS_ROOT_TREE_OBJECTID);
9ed74f2d 1316
0ca1f7ce
YZ
1317 if (*bits & EXTENT_FIRST_DELALLOC)
1318 *bits &= ~EXTENT_FIRST_DELALLOC;
1319 else
1320 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1321
75eff68e 1322 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1323 BTRFS_I(inode)->delalloc_bytes += len;
1324 root->fs_info->delalloc_bytes += len;
0cb59c99 1325 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1326 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1327 &root->fs_info->delalloc_inodes);
1328 }
75eff68e 1329 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1330 }
1331 return 0;
1332}
1333
d352ac68
CM
1334/*
1335 * extent_io.c clear_bit_hook, see set_bit_hook for why
1336 */
9ed74f2d 1337static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1338 struct extent_state *state, int *bits)
291d673e 1339{
75eff68e
CM
1340 /*
1341 * set_bit and clear bit hooks normally require _irqsave/restore
1342 * but in this case, we are only testeing for the DELALLOC
1343 * bit, which is only set or cleared with irqs on
1344 */
0ca1f7ce 1345 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1346 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1347 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1348 int do_list = (root->root_key.objectid !=
1349 BTRFS_ROOT_TREE_OBJECTID);
bcbfce8a 1350
0ca1f7ce
YZ
1351 if (*bits & EXTENT_FIRST_DELALLOC)
1352 *bits &= ~EXTENT_FIRST_DELALLOC;
1353 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1354 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1355
1356 if (*bits & EXTENT_DO_ACCOUNTING)
1357 btrfs_delalloc_release_metadata(inode, len);
1358
0cb59c99
JB
1359 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1360 && do_list)
0ca1f7ce 1361 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1362
75eff68e 1363 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1364 root->fs_info->delalloc_bytes -= len;
1365 BTRFS_I(inode)->delalloc_bytes -= len;
1366
0cb59c99 1367 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1368 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1369 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1370 }
75eff68e 1371 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1372 }
1373 return 0;
1374}
1375
d352ac68
CM
1376/*
1377 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1378 * we don't create bios that span stripes or chunks
1379 */
239b14b3 1380int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1381 size_t size, struct bio *bio,
1382 unsigned long bio_flags)
239b14b3
CM
1383{
1384 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1385 struct btrfs_mapping_tree *map_tree;
a62b9401 1386 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1387 u64 length = 0;
1388 u64 map_length;
239b14b3
CM
1389 int ret;
1390
771ed689
CM
1391 if (bio_flags & EXTENT_BIO_COMPRESSED)
1392 return 0;
1393
f2d8d74d 1394 length = bio->bi_size;
239b14b3
CM
1395 map_tree = &root->fs_info->mapping_tree;
1396 map_length = length;
cea9e445 1397 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1398 &map_length, NULL, 0);
cea9e445 1399
d397712b 1400 if (map_length < length + size)
239b14b3 1401 return 1;
411fc6bc 1402 return ret;
239b14b3
CM
1403}
1404
d352ac68
CM
1405/*
1406 * in order to insert checksums into the metadata in large chunks,
1407 * we wait until bio submission time. All the pages in the bio are
1408 * checksummed and sums are attached onto the ordered extent record.
1409 *
1410 * At IO completion time the cums attached on the ordered extent record
1411 * are inserted into the btree
1412 */
d397712b
CM
1413static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1414 struct bio *bio, int mirror_num,
eaf25d93
CM
1415 unsigned long bio_flags,
1416 u64 bio_offset)
065631f6 1417{
065631f6 1418 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1419 int ret = 0;
e015640f 1420
d20f7043 1421 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1422 BUG_ON(ret);
4a69a410
CM
1423 return 0;
1424}
e015640f 1425
4a69a410
CM
1426/*
1427 * in order to insert checksums into the metadata in large chunks,
1428 * we wait until bio submission time. All the pages in the bio are
1429 * checksummed and sums are attached onto the ordered extent record.
1430 *
1431 * At IO completion time the cums attached on the ordered extent record
1432 * are inserted into the btree
1433 */
b2950863 1434static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1435 int mirror_num, unsigned long bio_flags,
1436 u64 bio_offset)
4a69a410
CM
1437{
1438 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1439 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1440}
1441
d352ac68 1442/*
cad321ad
CM
1443 * extent_io.c submission hook. This does the right thing for csum calculation
1444 * on write, or reading the csums from the tree before a read
d352ac68 1445 */
b2950863 1446static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1447 int mirror_num, unsigned long bio_flags,
1448 u64 bio_offset)
44b8bd7e
CM
1449{
1450 struct btrfs_root *root = BTRFS_I(inode)->root;
1451 int ret = 0;
19b9bdb0 1452 int skip_sum;
44b8bd7e 1453
6cbff00f 1454 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1455
0cb59c99
JB
1456 if (root == root->fs_info->tree_root)
1457 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1458 else
1459 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1460 BUG_ON(ret);
065631f6 1461
7b6d91da 1462 if (!(rw & REQ_WRITE)) {
d20f7043 1463 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1464 return btrfs_submit_compressed_read(inode, bio,
1465 mirror_num, bio_flags);
d20f7043
CM
1466 } else if (!skip_sum)
1467 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1468 goto mapit;
19b9bdb0 1469 } else if (!skip_sum) {
17d217fe
YZ
1470 /* csum items have already been cloned */
1471 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1472 goto mapit;
19b9bdb0
CM
1473 /* we're doing a write, do the async checksumming */
1474 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1475 inode, rw, bio, mirror_num,
eaf25d93
CM
1476 bio_flags, bio_offset,
1477 __btrfs_submit_bio_start,
4a69a410 1478 __btrfs_submit_bio_done);
19b9bdb0
CM
1479 }
1480
0b86a832 1481mapit:
8b712842 1482 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1483}
6885f308 1484
d352ac68
CM
1485/*
1486 * given a list of ordered sums record them in the inode. This happens
1487 * at IO completion time based on sums calculated at bio submission time.
1488 */
ba1da2f4 1489static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1490 struct inode *inode, u64 file_offset,
1491 struct list_head *list)
1492{
e6dcd2dc
CM
1493 struct btrfs_ordered_sum *sum;
1494
1495 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1496
1497 list_for_each_entry(sum, list, list) {
d20f7043
CM
1498 btrfs_csum_file_blocks(trans,
1499 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1500 }
1501 return 0;
1502}
1503
2ac55d41
JB
1504int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1505 struct extent_state **cached_state)
ea8c2819 1506{
d397712b 1507 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1508 WARN_ON(1);
ea8c2819 1509 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1510 cached_state, GFP_NOFS);
ea8c2819
CM
1511}
1512
d352ac68 1513/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1514struct btrfs_writepage_fixup {
1515 struct page *page;
1516 struct btrfs_work work;
1517};
1518
b2950863 1519static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1520{
1521 struct btrfs_writepage_fixup *fixup;
1522 struct btrfs_ordered_extent *ordered;
2ac55d41 1523 struct extent_state *cached_state = NULL;
247e743c
CM
1524 struct page *page;
1525 struct inode *inode;
1526 u64 page_start;
1527 u64 page_end;
1528
1529 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1530 page = fixup->page;
4a096752 1531again:
247e743c
CM
1532 lock_page(page);
1533 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1534 ClearPageChecked(page);
1535 goto out_page;
1536 }
1537
1538 inode = page->mapping->host;
1539 page_start = page_offset(page);
1540 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1541
2ac55d41
JB
1542 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1543 &cached_state, GFP_NOFS);
4a096752
CM
1544
1545 /* already ordered? We're done */
8b62b72b 1546 if (PagePrivate2(page))
247e743c 1547 goto out;
4a096752
CM
1548
1549 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1550 if (ordered) {
2ac55d41
JB
1551 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1552 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1553 unlock_page(page);
1554 btrfs_start_ordered_extent(inode, ordered, 1);
1555 goto again;
1556 }
247e743c 1557
0ca1f7ce 1558 BUG();
2ac55d41 1559 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1560 ClearPageChecked(page);
1561out:
2ac55d41
JB
1562 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1563 &cached_state, GFP_NOFS);
247e743c
CM
1564out_page:
1565 unlock_page(page);
1566 page_cache_release(page);
b897abec 1567 kfree(fixup);
247e743c
CM
1568}
1569
1570/*
1571 * There are a few paths in the higher layers of the kernel that directly
1572 * set the page dirty bit without asking the filesystem if it is a
1573 * good idea. This causes problems because we want to make sure COW
1574 * properly happens and the data=ordered rules are followed.
1575 *
c8b97818 1576 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1577 * hasn't been properly setup for IO. We kick off an async process
1578 * to fix it up. The async helper will wait for ordered extents, set
1579 * the delalloc bit and make it safe to write the page.
1580 */
b2950863 1581static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1582{
1583 struct inode *inode = page->mapping->host;
1584 struct btrfs_writepage_fixup *fixup;
1585 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1586
8b62b72b
CM
1587 /* this page is properly in the ordered list */
1588 if (TestClearPagePrivate2(page))
247e743c
CM
1589 return 0;
1590
1591 if (PageChecked(page))
1592 return -EAGAIN;
1593
1594 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1595 if (!fixup)
1596 return -EAGAIN;
f421950f 1597
247e743c
CM
1598 SetPageChecked(page);
1599 page_cache_get(page);
1600 fixup->work.func = btrfs_writepage_fixup_worker;
1601 fixup->page = page;
1602 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1603 return -EAGAIN;
1604}
1605
d899e052
YZ
1606static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1607 struct inode *inode, u64 file_pos,
1608 u64 disk_bytenr, u64 disk_num_bytes,
1609 u64 num_bytes, u64 ram_bytes,
1610 u8 compression, u8 encryption,
1611 u16 other_encoding, int extent_type)
1612{
1613 struct btrfs_root *root = BTRFS_I(inode)->root;
1614 struct btrfs_file_extent_item *fi;
1615 struct btrfs_path *path;
1616 struct extent_buffer *leaf;
1617 struct btrfs_key ins;
1618 u64 hint;
1619 int ret;
1620
1621 path = btrfs_alloc_path();
1622 BUG_ON(!path);
1623
b9473439 1624 path->leave_spinning = 1;
a1ed835e
CM
1625
1626 /*
1627 * we may be replacing one extent in the tree with another.
1628 * The new extent is pinned in the extent map, and we don't want
1629 * to drop it from the cache until it is completely in the btree.
1630 *
1631 * So, tell btrfs_drop_extents to leave this extent in the cache.
1632 * the caller is expected to unpin it and allow it to be merged
1633 * with the others.
1634 */
920bbbfb
YZ
1635 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1636 &hint, 0);
d899e052
YZ
1637 BUG_ON(ret);
1638
1639 ins.objectid = inode->i_ino;
1640 ins.offset = file_pos;
1641 ins.type = BTRFS_EXTENT_DATA_KEY;
1642 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1643 BUG_ON(ret);
1644 leaf = path->nodes[0];
1645 fi = btrfs_item_ptr(leaf, path->slots[0],
1646 struct btrfs_file_extent_item);
1647 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1648 btrfs_set_file_extent_type(leaf, fi, extent_type);
1649 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1650 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1651 btrfs_set_file_extent_offset(leaf, fi, 0);
1652 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1653 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1654 btrfs_set_file_extent_compression(leaf, fi, compression);
1655 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1656 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1657
1658 btrfs_unlock_up_safe(path, 1);
1659 btrfs_set_lock_blocking(leaf);
1660
d899e052
YZ
1661 btrfs_mark_buffer_dirty(leaf);
1662
1663 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1664
1665 ins.objectid = disk_bytenr;
1666 ins.offset = disk_num_bytes;
1667 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1668 ret = btrfs_alloc_reserved_file_extent(trans, root,
1669 root->root_key.objectid,
1670 inode->i_ino, file_pos, &ins);
d899e052 1671 BUG_ON(ret);
d899e052 1672 btrfs_free_path(path);
b9473439 1673
d899e052
YZ
1674 return 0;
1675}
1676
5d13a98f
CM
1677/*
1678 * helper function for btrfs_finish_ordered_io, this
1679 * just reads in some of the csum leaves to prime them into ram
1680 * before we start the transaction. It limits the amount of btree
1681 * reads required while inside the transaction.
1682 */
d352ac68
CM
1683/* as ordered data IO finishes, this gets called so we can finish
1684 * an ordered extent if the range of bytes in the file it covers are
1685 * fully written.
1686 */
211f90e6 1687static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1688{
e6dcd2dc 1689 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1690 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1691 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1692 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1693 struct extent_state *cached_state = NULL;
261507a0 1694 int compress_type = 0;
e6dcd2dc 1695 int ret;
0cb59c99 1696 bool nolock = false;
e6dcd2dc 1697
5a1a3df1
JB
1698 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1699 end - start + 1);
ba1da2f4 1700 if (!ret)
e6dcd2dc 1701 return 0;
e6dcd2dc 1702 BUG_ON(!ordered_extent);
efd049fb 1703
0cb59c99
JB
1704 nolock = (root == root->fs_info->tree_root);
1705
c2167754
YZ
1706 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1707 BUG_ON(!list_empty(&ordered_extent->list));
1708 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1709 if (!ret) {
0cb59c99
JB
1710 if (nolock)
1711 trans = btrfs_join_transaction_nolock(root, 1);
1712 else
1713 trans = btrfs_join_transaction(root, 1);
3612b495 1714 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1715 btrfs_set_trans_block_group(trans, inode);
1716 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1717 ret = btrfs_update_inode(trans, root, inode);
1718 BUG_ON(ret);
c2167754
YZ
1719 }
1720 goto out;
1721 }
e6dcd2dc 1722
2ac55d41
JB
1723 lock_extent_bits(io_tree, ordered_extent->file_offset,
1724 ordered_extent->file_offset + ordered_extent->len - 1,
1725 0, &cached_state, GFP_NOFS);
e6dcd2dc 1726
0cb59c99
JB
1727 if (nolock)
1728 trans = btrfs_join_transaction_nolock(root, 1);
1729 else
1730 trans = btrfs_join_transaction(root, 1);
3612b495 1731 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1732 btrfs_set_trans_block_group(trans, inode);
1733 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1734
c8b97818 1735 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1736 compress_type = ordered_extent->compress_type;
d899e052 1737 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1738 BUG_ON(compress_type);
920bbbfb 1739 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1740 ordered_extent->file_offset,
1741 ordered_extent->file_offset +
1742 ordered_extent->len);
1743 BUG_ON(ret);
1744 } else {
0af3d00b 1745 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1746 ret = insert_reserved_file_extent(trans, inode,
1747 ordered_extent->file_offset,
1748 ordered_extent->start,
1749 ordered_extent->disk_len,
1750 ordered_extent->len,
1751 ordered_extent->len,
261507a0 1752 compress_type, 0, 0,
d899e052 1753 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1754 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1755 ordered_extent->file_offset,
1756 ordered_extent->len);
d899e052
YZ
1757 BUG_ON(ret);
1758 }
2ac55d41
JB
1759 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1760 ordered_extent->file_offset +
1761 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1762
e6dcd2dc
CM
1763 add_pending_csums(trans, inode, ordered_extent->file_offset,
1764 &ordered_extent->list);
1765
c2167754
YZ
1766 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1767 ret = btrfs_update_inode(trans, root, inode);
1768 BUG_ON(ret);
c2167754 1769out:
0cb59c99
JB
1770 if (nolock) {
1771 if (trans)
1772 btrfs_end_transaction_nolock(trans, root);
1773 } else {
1774 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1775 if (trans)
1776 btrfs_end_transaction(trans, root);
1777 }
1778
e6dcd2dc
CM
1779 /* once for us */
1780 btrfs_put_ordered_extent(ordered_extent);
1781 /* once for the tree */
1782 btrfs_put_ordered_extent(ordered_extent);
1783
e6dcd2dc
CM
1784 return 0;
1785}
1786
b2950863 1787static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1788 struct extent_state *state, int uptodate)
1789{
8b62b72b 1790 ClearPagePrivate2(page);
211f90e6
CM
1791 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1792}
1793
d352ac68
CM
1794/*
1795 * When IO fails, either with EIO or csum verification fails, we
1796 * try other mirrors that might have a good copy of the data. This
1797 * io_failure_record is used to record state as we go through all the
1798 * mirrors. If another mirror has good data, the page is set up to date
1799 * and things continue. If a good mirror can't be found, the original
1800 * bio end_io callback is called to indicate things have failed.
1801 */
7e38326f
CM
1802struct io_failure_record {
1803 struct page *page;
1804 u64 start;
1805 u64 len;
1806 u64 logical;
d20f7043 1807 unsigned long bio_flags;
7e38326f
CM
1808 int last_mirror;
1809};
1810
b2950863 1811static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1812 struct page *page, u64 start, u64 end,
1813 struct extent_state *state)
7e38326f
CM
1814{
1815 struct io_failure_record *failrec = NULL;
1816 u64 private;
1817 struct extent_map *em;
1818 struct inode *inode = page->mapping->host;
1819 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1820 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1821 struct bio *bio;
1822 int num_copies;
1823 int ret;
1259ab75 1824 int rw;
7e38326f
CM
1825 u64 logical;
1826
1827 ret = get_state_private(failure_tree, start, &private);
1828 if (ret) {
7e38326f
CM
1829 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1830 if (!failrec)
1831 return -ENOMEM;
1832 failrec->start = start;
1833 failrec->len = end - start + 1;
1834 failrec->last_mirror = 0;
d20f7043 1835 failrec->bio_flags = 0;
7e38326f 1836
890871be 1837 read_lock(&em_tree->lock);
3b951516
CM
1838 em = lookup_extent_mapping(em_tree, start, failrec->len);
1839 if (em->start > start || em->start + em->len < start) {
1840 free_extent_map(em);
1841 em = NULL;
1842 }
890871be 1843 read_unlock(&em_tree->lock);
7e38326f
CM
1844
1845 if (!em || IS_ERR(em)) {
1846 kfree(failrec);
1847 return -EIO;
1848 }
1849 logical = start - em->start;
1850 logical = em->block_start + logical;
d20f7043
CM
1851 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1852 logical = em->block_start;
1853 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1854 extent_set_compress_type(&failrec->bio_flags,
1855 em->compress_type);
d20f7043 1856 }
7e38326f
CM
1857 failrec->logical = logical;
1858 free_extent_map(em);
1859 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1860 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1861 set_state_private(failure_tree, start,
1862 (u64)(unsigned long)failrec);
7e38326f 1863 } else {
587f7704 1864 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1865 }
1866 num_copies = btrfs_num_copies(
1867 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1868 failrec->logical, failrec->len);
1869 failrec->last_mirror++;
1870 if (!state) {
cad321ad 1871 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1872 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1873 failrec->start,
1874 EXTENT_LOCKED);
1875 if (state && state->start != failrec->start)
1876 state = NULL;
cad321ad 1877 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1878 }
1879 if (!state || failrec->last_mirror > num_copies) {
1880 set_state_private(failure_tree, failrec->start, 0);
1881 clear_extent_bits(failure_tree, failrec->start,
1882 failrec->start + failrec->len - 1,
1883 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1884 kfree(failrec);
1885 return -EIO;
1886 }
1887 bio = bio_alloc(GFP_NOFS, 1);
1888 bio->bi_private = state;
1889 bio->bi_end_io = failed_bio->bi_end_io;
1890 bio->bi_sector = failrec->logical >> 9;
1891 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1892 bio->bi_size = 0;
d20f7043 1893
7e38326f 1894 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1895 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1896 rw = WRITE;
1897 else
1898 rw = READ;
1899
1900 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1901 failrec->last_mirror,
eaf25d93 1902 failrec->bio_flags, 0);
1259ab75
CM
1903 return 0;
1904}
1905
d352ac68
CM
1906/*
1907 * each time an IO finishes, we do a fast check in the IO failure tree
1908 * to see if we need to process or clean up an io_failure_record
1909 */
b2950863 1910static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1911{
1912 u64 private;
1913 u64 private_failure;
1914 struct io_failure_record *failure;
1915 int ret;
1916
1917 private = 0;
1918 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1919 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1920 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1921 start, &private_failure);
1922 if (ret == 0) {
1923 failure = (struct io_failure_record *)(unsigned long)
1924 private_failure;
1925 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1926 failure->start, 0);
1927 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1928 failure->start,
1929 failure->start + failure->len - 1,
1930 EXTENT_DIRTY | EXTENT_LOCKED,
1931 GFP_NOFS);
1932 kfree(failure);
1933 }
1934 }
7e38326f
CM
1935 return 0;
1936}
1937
d352ac68
CM
1938/*
1939 * when reads are done, we need to check csums to verify the data is correct
1940 * if there's a match, we allow the bio to finish. If not, we go through
1941 * the io_failure_record routines to find good copies
1942 */
b2950863 1943static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1944 struct extent_state *state)
07157aac 1945{
35ebb934 1946 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1947 struct inode *inode = page->mapping->host;
d1310b2e 1948 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1949 char *kaddr;
aadfeb6e 1950 u64 private = ~(u32)0;
07157aac 1951 int ret;
ff79f819
CM
1952 struct btrfs_root *root = BTRFS_I(inode)->root;
1953 u32 csum = ~(u32)0;
d1310b2e 1954
d20f7043
CM
1955 if (PageChecked(page)) {
1956 ClearPageChecked(page);
1957 goto good;
1958 }
6cbff00f
CH
1959
1960 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1961 return 0;
1962
1963 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1964 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1965 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1966 GFP_NOFS);
b6cda9bc 1967 return 0;
17d217fe 1968 }
d20f7043 1969
c2e639f0 1970 if (state && state->start == start) {
70dec807
CM
1971 private = state->private;
1972 ret = 0;
1973 } else {
1974 ret = get_state_private(io_tree, start, &private);
1975 }
9ab86c8e 1976 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1977 if (ret)
07157aac 1978 goto zeroit;
d397712b 1979
ff79f819
CM
1980 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1981 btrfs_csum_final(csum, (char *)&csum);
d397712b 1982 if (csum != private)
07157aac 1983 goto zeroit;
d397712b 1984
9ab86c8e 1985 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1986good:
7e38326f
CM
1987 /* if the io failure tree for this inode is non-empty,
1988 * check to see if we've recovered from a failed IO
1989 */
1259ab75 1990 btrfs_clean_io_failures(inode, start);
07157aac
CM
1991 return 0;
1992
1993zeroit:
193f284d
CM
1994 if (printk_ratelimit()) {
1995 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1996 "private %llu\n", page->mapping->host->i_ino,
1997 (unsigned long long)start, csum,
1998 (unsigned long long)private);
1999 }
db94535d
CM
2000 memset(kaddr + offset, 1, end - start + 1);
2001 flush_dcache_page(page);
9ab86c8e 2002 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2003 if (private == 0)
2004 return 0;
7e38326f 2005 return -EIO;
07157aac 2006}
b888db2b 2007
24bbcf04
YZ
2008struct delayed_iput {
2009 struct list_head list;
2010 struct inode *inode;
2011};
2012
2013void btrfs_add_delayed_iput(struct inode *inode)
2014{
2015 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2016 struct delayed_iput *delayed;
2017
2018 if (atomic_add_unless(&inode->i_count, -1, 1))
2019 return;
2020
2021 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2022 delayed->inode = inode;
2023
2024 spin_lock(&fs_info->delayed_iput_lock);
2025 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2026 spin_unlock(&fs_info->delayed_iput_lock);
2027}
2028
2029void btrfs_run_delayed_iputs(struct btrfs_root *root)
2030{
2031 LIST_HEAD(list);
2032 struct btrfs_fs_info *fs_info = root->fs_info;
2033 struct delayed_iput *delayed;
2034 int empty;
2035
2036 spin_lock(&fs_info->delayed_iput_lock);
2037 empty = list_empty(&fs_info->delayed_iputs);
2038 spin_unlock(&fs_info->delayed_iput_lock);
2039 if (empty)
2040 return;
2041
2042 down_read(&root->fs_info->cleanup_work_sem);
2043 spin_lock(&fs_info->delayed_iput_lock);
2044 list_splice_init(&fs_info->delayed_iputs, &list);
2045 spin_unlock(&fs_info->delayed_iput_lock);
2046
2047 while (!list_empty(&list)) {
2048 delayed = list_entry(list.next, struct delayed_iput, list);
2049 list_del(&delayed->list);
2050 iput(delayed->inode);
2051 kfree(delayed);
2052 }
2053 up_read(&root->fs_info->cleanup_work_sem);
2054}
2055
d68fc57b
YZ
2056/*
2057 * calculate extra metadata reservation when snapshotting a subvolume
2058 * contains orphan files.
2059 */
2060void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2061 struct btrfs_pending_snapshot *pending,
2062 u64 *bytes_to_reserve)
2063{
2064 struct btrfs_root *root;
2065 struct btrfs_block_rsv *block_rsv;
2066 u64 num_bytes;
2067 int index;
2068
2069 root = pending->root;
2070 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2071 return;
2072
2073 block_rsv = root->orphan_block_rsv;
2074
2075 /* orphan block reservation for the snapshot */
2076 num_bytes = block_rsv->size;
2077
2078 /*
2079 * after the snapshot is created, COWing tree blocks may use more
2080 * space than it frees. So we should make sure there is enough
2081 * reserved space.
2082 */
2083 index = trans->transid & 0x1;
2084 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2085 num_bytes += block_rsv->size -
2086 (block_rsv->reserved + block_rsv->freed[index]);
2087 }
2088
2089 *bytes_to_reserve += num_bytes;
2090}
2091
2092void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2093 struct btrfs_pending_snapshot *pending)
2094{
2095 struct btrfs_root *root = pending->root;
2096 struct btrfs_root *snap = pending->snap;
2097 struct btrfs_block_rsv *block_rsv;
2098 u64 num_bytes;
2099 int index;
2100 int ret;
2101
2102 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2103 return;
2104
2105 /* refill source subvolume's orphan block reservation */
2106 block_rsv = root->orphan_block_rsv;
2107 index = trans->transid & 0x1;
2108 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2109 num_bytes = block_rsv->size -
2110 (block_rsv->reserved + block_rsv->freed[index]);
2111 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2112 root->orphan_block_rsv,
2113 num_bytes);
2114 BUG_ON(ret);
2115 }
2116
2117 /* setup orphan block reservation for the snapshot */
2118 block_rsv = btrfs_alloc_block_rsv(snap);
2119 BUG_ON(!block_rsv);
2120
2121 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2122 snap->orphan_block_rsv = block_rsv;
2123
2124 num_bytes = root->orphan_block_rsv->size;
2125 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2126 block_rsv, num_bytes);
2127 BUG_ON(ret);
2128
2129#if 0
2130 /* insert orphan item for the snapshot */
2131 WARN_ON(!root->orphan_item_inserted);
2132 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2133 snap->root_key.objectid);
2134 BUG_ON(ret);
2135 snap->orphan_item_inserted = 1;
2136#endif
2137}
2138
2139enum btrfs_orphan_cleanup_state {
2140 ORPHAN_CLEANUP_STARTED = 1,
2141 ORPHAN_CLEANUP_DONE = 2,
2142};
2143
2144/*
2145 * This is called in transaction commmit time. If there are no orphan
2146 * files in the subvolume, it removes orphan item and frees block_rsv
2147 * structure.
2148 */
2149void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2150 struct btrfs_root *root)
2151{
2152 int ret;
2153
2154 if (!list_empty(&root->orphan_list) ||
2155 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2156 return;
2157
2158 if (root->orphan_item_inserted &&
2159 btrfs_root_refs(&root->root_item) > 0) {
2160 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2161 root->root_key.objectid);
2162 BUG_ON(ret);
2163 root->orphan_item_inserted = 0;
2164 }
2165
2166 if (root->orphan_block_rsv) {
2167 WARN_ON(root->orphan_block_rsv->size > 0);
2168 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2169 root->orphan_block_rsv = NULL;
2170 }
2171}
2172
7b128766
JB
2173/*
2174 * This creates an orphan entry for the given inode in case something goes
2175 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2176 *
2177 * NOTE: caller of this function should reserve 5 units of metadata for
2178 * this function.
7b128766
JB
2179 */
2180int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2181{
2182 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2183 struct btrfs_block_rsv *block_rsv = NULL;
2184 int reserve = 0;
2185 int insert = 0;
2186 int ret;
7b128766 2187
d68fc57b
YZ
2188 if (!root->orphan_block_rsv) {
2189 block_rsv = btrfs_alloc_block_rsv(root);
2190 BUG_ON(!block_rsv);
2191 }
7b128766 2192
d68fc57b
YZ
2193 spin_lock(&root->orphan_lock);
2194 if (!root->orphan_block_rsv) {
2195 root->orphan_block_rsv = block_rsv;
2196 } else if (block_rsv) {
2197 btrfs_free_block_rsv(root, block_rsv);
2198 block_rsv = NULL;
7b128766 2199 }
7b128766 2200
d68fc57b
YZ
2201 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2202 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2203#if 0
2204 /*
2205 * For proper ENOSPC handling, we should do orphan
2206 * cleanup when mounting. But this introduces backward
2207 * compatibility issue.
2208 */
2209 if (!xchg(&root->orphan_item_inserted, 1))
2210 insert = 2;
2211 else
2212 insert = 1;
2213#endif
2214 insert = 1;
2215 } else {
2216 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
7b128766
JB
2217 }
2218
d68fc57b
YZ
2219 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2220 BTRFS_I(inode)->orphan_meta_reserved = 1;
2221 reserve = 1;
2222 }
2223 spin_unlock(&root->orphan_lock);
7b128766 2224
d68fc57b
YZ
2225 if (block_rsv)
2226 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2227
d68fc57b
YZ
2228 /* grab metadata reservation from transaction handle */
2229 if (reserve) {
2230 ret = btrfs_orphan_reserve_metadata(trans, inode);
2231 BUG_ON(ret);
2232 }
7b128766 2233
d68fc57b
YZ
2234 /* insert an orphan item to track this unlinked/truncated file */
2235 if (insert >= 1) {
2236 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2237 BUG_ON(ret);
2238 }
2239
2240 /* insert an orphan item to track subvolume contains orphan files */
2241 if (insert >= 2) {
2242 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2243 root->root_key.objectid);
2244 BUG_ON(ret);
2245 }
2246 return 0;
7b128766
JB
2247}
2248
2249/*
2250 * We have done the truncate/delete so we can go ahead and remove the orphan
2251 * item for this particular inode.
2252 */
2253int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2254{
2255 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2256 int delete_item = 0;
2257 int release_rsv = 0;
7b128766
JB
2258 int ret = 0;
2259
d68fc57b
YZ
2260 spin_lock(&root->orphan_lock);
2261 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2262 list_del_init(&BTRFS_I(inode)->i_orphan);
2263 delete_item = 1;
7b128766
JB
2264 }
2265
d68fc57b
YZ
2266 if (BTRFS_I(inode)->orphan_meta_reserved) {
2267 BTRFS_I(inode)->orphan_meta_reserved = 0;
2268 release_rsv = 1;
7b128766 2269 }
d68fc57b 2270 spin_unlock(&root->orphan_lock);
7b128766 2271
d68fc57b
YZ
2272 if (trans && delete_item) {
2273 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2274 BUG_ON(ret);
2275 }
7b128766 2276
d68fc57b
YZ
2277 if (release_rsv)
2278 btrfs_orphan_release_metadata(inode);
7b128766 2279
d68fc57b 2280 return 0;
7b128766
JB
2281}
2282
2283/*
2284 * this cleans up any orphans that may be left on the list from the last use
2285 * of this root.
2286 */
66b4ffd1 2287int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2288{
2289 struct btrfs_path *path;
2290 struct extent_buffer *leaf;
7b128766
JB
2291 struct btrfs_key key, found_key;
2292 struct btrfs_trans_handle *trans;
2293 struct inode *inode;
2294 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2295
d68fc57b 2296 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2297 return 0;
c71bf099
YZ
2298
2299 path = btrfs_alloc_path();
66b4ffd1
JB
2300 if (!path) {
2301 ret = -ENOMEM;
2302 goto out;
2303 }
7b128766
JB
2304 path->reada = -1;
2305
2306 key.objectid = BTRFS_ORPHAN_OBJECTID;
2307 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2308 key.offset = (u64)-1;
2309
7b128766
JB
2310 while (1) {
2311 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2312 if (ret < 0)
2313 goto out;
7b128766
JB
2314
2315 /*
2316 * if ret == 0 means we found what we were searching for, which
2317 * is weird, but possible, so only screw with path if we didnt
2318 * find the key and see if we have stuff that matches
2319 */
2320 if (ret > 0) {
66b4ffd1 2321 ret = 0;
7b128766
JB
2322 if (path->slots[0] == 0)
2323 break;
2324 path->slots[0]--;
2325 }
2326
2327 /* pull out the item */
2328 leaf = path->nodes[0];
7b128766
JB
2329 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2330
2331 /* make sure the item matches what we want */
2332 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2333 break;
2334 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2335 break;
2336
2337 /* release the path since we're done with it */
2338 btrfs_release_path(root, path);
2339
2340 /*
2341 * this is where we are basically btrfs_lookup, without the
2342 * crossing root thing. we store the inode number in the
2343 * offset of the orphan item.
2344 */
5d4f98a2
YZ
2345 found_key.objectid = found_key.offset;
2346 found_key.type = BTRFS_INODE_ITEM_KEY;
2347 found_key.offset = 0;
73f73415 2348 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2349 if (IS_ERR(inode)) {
2350 ret = PTR_ERR(inode);
2351 goto out;
2352 }
7b128766 2353
7b128766
JB
2354 /*
2355 * add this inode to the orphan list so btrfs_orphan_del does
2356 * the proper thing when we hit it
2357 */
d68fc57b 2358 spin_lock(&root->orphan_lock);
7b128766 2359 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2360 spin_unlock(&root->orphan_lock);
7b128766
JB
2361
2362 /*
2363 * if this is a bad inode, means we actually succeeded in
2364 * removing the inode, but not the orphan record, which means
2365 * we need to manually delete the orphan since iput will just
2366 * do a destroy_inode
2367 */
2368 if (is_bad_inode(inode)) {
a22285a6 2369 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2370 if (IS_ERR(trans)) {
2371 ret = PTR_ERR(trans);
2372 goto out;
2373 }
7b128766 2374 btrfs_orphan_del(trans, inode);
5b21f2ed 2375 btrfs_end_transaction(trans, root);
7b128766
JB
2376 iput(inode);
2377 continue;
2378 }
2379
2380 /* if we have links, this was a truncate, lets do that */
2381 if (inode->i_nlink) {
a41ad394
JB
2382 if (!S_ISREG(inode->i_mode)) {
2383 WARN_ON(1);
2384 iput(inode);
2385 continue;
2386 }
7b128766 2387 nr_truncate++;
66b4ffd1 2388 ret = btrfs_truncate(inode);
7b128766
JB
2389 } else {
2390 nr_unlink++;
2391 }
2392
2393 /* this will do delete_inode and everything for us */
2394 iput(inode);
66b4ffd1
JB
2395 if (ret)
2396 goto out;
7b128766 2397 }
d68fc57b
YZ
2398 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2399
2400 if (root->orphan_block_rsv)
2401 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2402 (u64)-1);
2403
2404 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2405 trans = btrfs_join_transaction(root, 1);
66b4ffd1
JB
2406 if (!IS_ERR(trans))
2407 btrfs_end_transaction(trans, root);
d68fc57b 2408 }
7b128766
JB
2409
2410 if (nr_unlink)
2411 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2412 if (nr_truncate)
2413 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2414
2415out:
2416 if (ret)
2417 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2418 btrfs_free_path(path);
2419 return ret;
7b128766
JB
2420}
2421
46a53cca
CM
2422/*
2423 * very simple check to peek ahead in the leaf looking for xattrs. If we
2424 * don't find any xattrs, we know there can't be any acls.
2425 *
2426 * slot is the slot the inode is in, objectid is the objectid of the inode
2427 */
2428static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2429 int slot, u64 objectid)
2430{
2431 u32 nritems = btrfs_header_nritems(leaf);
2432 struct btrfs_key found_key;
2433 int scanned = 0;
2434
2435 slot++;
2436 while (slot < nritems) {
2437 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2438
2439 /* we found a different objectid, there must not be acls */
2440 if (found_key.objectid != objectid)
2441 return 0;
2442
2443 /* we found an xattr, assume we've got an acl */
2444 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2445 return 1;
2446
2447 /*
2448 * we found a key greater than an xattr key, there can't
2449 * be any acls later on
2450 */
2451 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2452 return 0;
2453
2454 slot++;
2455 scanned++;
2456
2457 /*
2458 * it goes inode, inode backrefs, xattrs, extents,
2459 * so if there are a ton of hard links to an inode there can
2460 * be a lot of backrefs. Don't waste time searching too hard,
2461 * this is just an optimization
2462 */
2463 if (scanned >= 8)
2464 break;
2465 }
2466 /* we hit the end of the leaf before we found an xattr or
2467 * something larger than an xattr. We have to assume the inode
2468 * has acls
2469 */
2470 return 1;
2471}
2472
d352ac68
CM
2473/*
2474 * read an inode from the btree into the in-memory inode
2475 */
5d4f98a2 2476static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2477{
2478 struct btrfs_path *path;
5f39d397 2479 struct extent_buffer *leaf;
39279cc3 2480 struct btrfs_inode_item *inode_item;
0b86a832 2481 struct btrfs_timespec *tspec;
39279cc3
CM
2482 struct btrfs_root *root = BTRFS_I(inode)->root;
2483 struct btrfs_key location;
46a53cca 2484 int maybe_acls;
39279cc3 2485 u64 alloc_group_block;
618e21d5 2486 u32 rdev;
39279cc3
CM
2487 int ret;
2488
2489 path = btrfs_alloc_path();
2490 BUG_ON(!path);
39279cc3 2491 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2492
39279cc3 2493 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2494 if (ret)
39279cc3 2495 goto make_bad;
39279cc3 2496
5f39d397
CM
2497 leaf = path->nodes[0];
2498 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2499 struct btrfs_inode_item);
2500
2501 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2502 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2503 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2504 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2505 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2506
2507 tspec = btrfs_inode_atime(inode_item);
2508 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2509 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2510
2511 tspec = btrfs_inode_mtime(inode_item);
2512 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2513 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2514
2515 tspec = btrfs_inode_ctime(inode_item);
2516 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2517 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2518
a76a3cd4 2519 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2520 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2521 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2522 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2523 inode->i_rdev = 0;
5f39d397
CM
2524 rdev = btrfs_inode_rdev(leaf, inode_item);
2525
aec7477b 2526 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2527 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2528
5f39d397 2529 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2530
46a53cca
CM
2531 /*
2532 * try to precache a NULL acl entry for files that don't have
2533 * any xattrs or acls
2534 */
2535 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2536 if (!maybe_acls)
2537 cache_no_acl(inode);
46a53cca 2538
d2fb3437
YZ
2539 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2540 alloc_group_block, 0);
39279cc3
CM
2541 btrfs_free_path(path);
2542 inode_item = NULL;
2543
39279cc3 2544 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2545 case S_IFREG:
2546 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2547 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2548 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2549 inode->i_fop = &btrfs_file_operations;
2550 inode->i_op = &btrfs_file_inode_operations;
2551 break;
2552 case S_IFDIR:
2553 inode->i_fop = &btrfs_dir_file_operations;
2554 if (root == root->fs_info->tree_root)
2555 inode->i_op = &btrfs_dir_ro_inode_operations;
2556 else
2557 inode->i_op = &btrfs_dir_inode_operations;
2558 break;
2559 case S_IFLNK:
2560 inode->i_op = &btrfs_symlink_inode_operations;
2561 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2562 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2563 break;
618e21d5 2564 default:
0279b4cd 2565 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2566 init_special_inode(inode, inode->i_mode, rdev);
2567 break;
39279cc3 2568 }
6cbff00f
CH
2569
2570 btrfs_update_iflags(inode);
39279cc3
CM
2571 return;
2572
2573make_bad:
39279cc3 2574 btrfs_free_path(path);
39279cc3
CM
2575 make_bad_inode(inode);
2576}
2577
d352ac68
CM
2578/*
2579 * given a leaf and an inode, copy the inode fields into the leaf
2580 */
e02119d5
CM
2581static void fill_inode_item(struct btrfs_trans_handle *trans,
2582 struct extent_buffer *leaf,
5f39d397 2583 struct btrfs_inode_item *item,
39279cc3
CM
2584 struct inode *inode)
2585{
5f39d397
CM
2586 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2587 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2588 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2589 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2590 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2591
2592 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2593 inode->i_atime.tv_sec);
2594 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2595 inode->i_atime.tv_nsec);
2596
2597 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2598 inode->i_mtime.tv_sec);
2599 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2600 inode->i_mtime.tv_nsec);
2601
2602 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2603 inode->i_ctime.tv_sec);
2604 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2605 inode->i_ctime.tv_nsec);
2606
a76a3cd4 2607 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2608 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2609 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2610 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2611 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2612 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2613 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2614}
2615
d352ac68
CM
2616/*
2617 * copy everything in the in-memory inode into the btree.
2618 */
d397712b
CM
2619noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2620 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2621{
2622 struct btrfs_inode_item *inode_item;
2623 struct btrfs_path *path;
5f39d397 2624 struct extent_buffer *leaf;
39279cc3
CM
2625 int ret;
2626
2627 path = btrfs_alloc_path();
2628 BUG_ON(!path);
b9473439 2629 path->leave_spinning = 1;
39279cc3
CM
2630 ret = btrfs_lookup_inode(trans, root, path,
2631 &BTRFS_I(inode)->location, 1);
2632 if (ret) {
2633 if (ret > 0)
2634 ret = -ENOENT;
2635 goto failed;
2636 }
2637
b4ce94de 2638 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2639 leaf = path->nodes[0];
2640 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2641 struct btrfs_inode_item);
2642
e02119d5 2643 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2644 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2645 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2646 ret = 0;
2647failed:
39279cc3
CM
2648 btrfs_free_path(path);
2649 return ret;
2650}
2651
2652
d352ac68
CM
2653/*
2654 * unlink helper that gets used here in inode.c and in the tree logging
2655 * recovery code. It remove a link in a directory with a given name, and
2656 * also drops the back refs in the inode to the directory
2657 */
e02119d5
CM
2658int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2659 struct btrfs_root *root,
2660 struct inode *dir, struct inode *inode,
2661 const char *name, int name_len)
39279cc3
CM
2662{
2663 struct btrfs_path *path;
39279cc3 2664 int ret = 0;
5f39d397 2665 struct extent_buffer *leaf;
39279cc3 2666 struct btrfs_dir_item *di;
5f39d397 2667 struct btrfs_key key;
aec7477b 2668 u64 index;
39279cc3
CM
2669
2670 path = btrfs_alloc_path();
54aa1f4d
CM
2671 if (!path) {
2672 ret = -ENOMEM;
554233a6 2673 goto out;
54aa1f4d
CM
2674 }
2675
b9473439 2676 path->leave_spinning = 1;
39279cc3
CM
2677 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2678 name, name_len, -1);
2679 if (IS_ERR(di)) {
2680 ret = PTR_ERR(di);
2681 goto err;
2682 }
2683 if (!di) {
2684 ret = -ENOENT;
2685 goto err;
2686 }
5f39d397
CM
2687 leaf = path->nodes[0];
2688 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2689 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2690 if (ret)
2691 goto err;
39279cc3
CM
2692 btrfs_release_path(root, path);
2693
aec7477b 2694 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2695 inode->i_ino,
2696 dir->i_ino, &index);
aec7477b 2697 if (ret) {
d397712b 2698 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2699 "inode %lu parent %lu\n", name_len, name,
e02119d5 2700 inode->i_ino, dir->i_ino);
aec7477b
JB
2701 goto err;
2702 }
2703
39279cc3 2704 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2705 index, name, name_len, -1);
39279cc3
CM
2706 if (IS_ERR(di)) {
2707 ret = PTR_ERR(di);
2708 goto err;
2709 }
2710 if (!di) {
2711 ret = -ENOENT;
2712 goto err;
2713 }
2714 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2715 btrfs_release_path(root, path);
39279cc3 2716
e02119d5
CM
2717 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2718 inode, dir->i_ino);
49eb7e46 2719 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2720
2721 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2722 dir, index);
6418c961
CM
2723 if (ret == -ENOENT)
2724 ret = 0;
39279cc3
CM
2725err:
2726 btrfs_free_path(path);
e02119d5
CM
2727 if (ret)
2728 goto out;
2729
2730 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2731 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2732 btrfs_update_inode(trans, root, dir);
2733 btrfs_drop_nlink(inode);
2734 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2735out:
39279cc3
CM
2736 return ret;
2737}
2738
a22285a6
YZ
2739/* helper to check if there is any shared block in the path */
2740static int check_path_shared(struct btrfs_root *root,
2741 struct btrfs_path *path)
39279cc3 2742{
a22285a6
YZ
2743 struct extent_buffer *eb;
2744 int level;
0e4dcbef 2745 u64 refs = 1;
5df6a9f6 2746
a22285a6 2747 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2748 int ret;
2749
a22285a6
YZ
2750 if (!path->nodes[level])
2751 break;
2752 eb = path->nodes[level];
2753 if (!btrfs_block_can_be_shared(root, eb))
2754 continue;
2755 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2756 &refs, NULL);
2757 if (refs > 1)
2758 return 1;
5df6a9f6 2759 }
dedefd72 2760 return 0;
39279cc3
CM
2761}
2762
a22285a6
YZ
2763/*
2764 * helper to start transaction for unlink and rmdir.
2765 *
2766 * unlink and rmdir are special in btrfs, they do not always free space.
2767 * so in enospc case, we should make sure they will free space before
2768 * allowing them to use the global metadata reservation.
2769 */
2770static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2771 struct dentry *dentry)
4df27c4d 2772{
39279cc3 2773 struct btrfs_trans_handle *trans;
a22285a6 2774 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2775 struct btrfs_path *path;
a22285a6 2776 struct btrfs_inode_ref *ref;
4df27c4d 2777 struct btrfs_dir_item *di;
7b128766 2778 struct inode *inode = dentry->d_inode;
4df27c4d 2779 u64 index;
a22285a6
YZ
2780 int check_link = 1;
2781 int err = -ENOSPC;
4df27c4d
YZ
2782 int ret;
2783
a22285a6
YZ
2784 trans = btrfs_start_transaction(root, 10);
2785 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2786 return trans;
4df27c4d 2787
a22285a6
YZ
2788 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2789 return ERR_PTR(-ENOSPC);
4df27c4d 2790
a22285a6
YZ
2791 /* check if there is someone else holds reference */
2792 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2793 return ERR_PTR(-ENOSPC);
4df27c4d 2794
a22285a6
YZ
2795 if (atomic_read(&inode->i_count) > 2)
2796 return ERR_PTR(-ENOSPC);
4df27c4d 2797
a22285a6
YZ
2798 if (xchg(&root->fs_info->enospc_unlink, 1))
2799 return ERR_PTR(-ENOSPC);
2800
2801 path = btrfs_alloc_path();
2802 if (!path) {
2803 root->fs_info->enospc_unlink = 0;
2804 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2805 }
2806
a22285a6 2807 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2808 if (IS_ERR(trans)) {
a22285a6
YZ
2809 btrfs_free_path(path);
2810 root->fs_info->enospc_unlink = 0;
2811 return trans;
2812 }
4df27c4d 2813
a22285a6
YZ
2814 path->skip_locking = 1;
2815 path->search_commit_root = 1;
4df27c4d 2816
a22285a6
YZ
2817 ret = btrfs_lookup_inode(trans, root, path,
2818 &BTRFS_I(dir)->location, 0);
2819 if (ret < 0) {
2820 err = ret;
2821 goto out;
2822 }
2823 if (ret == 0) {
2824 if (check_path_shared(root, path))
2825 goto out;
2826 } else {
2827 check_link = 0;
5df6a9f6 2828 }
a22285a6
YZ
2829 btrfs_release_path(root, path);
2830
2831 ret = btrfs_lookup_inode(trans, root, path,
2832 &BTRFS_I(inode)->location, 0);
2833 if (ret < 0) {
2834 err = ret;
2835 goto out;
2836 }
2837 if (ret == 0) {
2838 if (check_path_shared(root, path))
2839 goto out;
2840 } else {
2841 check_link = 0;
2842 }
2843 btrfs_release_path(root, path);
2844
2845 if (ret == 0 && S_ISREG(inode->i_mode)) {
2846 ret = btrfs_lookup_file_extent(trans, root, path,
2847 inode->i_ino, (u64)-1, 0);
2848 if (ret < 0) {
2849 err = ret;
2850 goto out;
2851 }
2852 BUG_ON(ret == 0);
2853 if (check_path_shared(root, path))
2854 goto out;
2855 btrfs_release_path(root, path);
2856 }
2857
2858 if (!check_link) {
2859 err = 0;
2860 goto out;
2861 }
2862
2863 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2864 dentry->d_name.name, dentry->d_name.len, 0);
2865 if (IS_ERR(di)) {
2866 err = PTR_ERR(di);
2867 goto out;
2868 }
2869 if (di) {
2870 if (check_path_shared(root, path))
2871 goto out;
2872 } else {
2873 err = 0;
2874 goto out;
2875 }
2876 btrfs_release_path(root, path);
2877
2878 ref = btrfs_lookup_inode_ref(trans, root, path,
2879 dentry->d_name.name, dentry->d_name.len,
2880 inode->i_ino, dir->i_ino, 0);
2881 if (IS_ERR(ref)) {
2882 err = PTR_ERR(ref);
2883 goto out;
2884 }
2885 BUG_ON(!ref);
2886 if (check_path_shared(root, path))
2887 goto out;
2888 index = btrfs_inode_ref_index(path->nodes[0], ref);
2889 btrfs_release_path(root, path);
2890
2891 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2892 dentry->d_name.name, dentry->d_name.len, 0);
2893 if (IS_ERR(di)) {
2894 err = PTR_ERR(di);
2895 goto out;
2896 }
2897 BUG_ON(ret == -ENOENT);
2898 if (check_path_shared(root, path))
2899 goto out;
2900
2901 err = 0;
2902out:
2903 btrfs_free_path(path);
2904 if (err) {
2905 btrfs_end_transaction(trans, root);
2906 root->fs_info->enospc_unlink = 0;
2907 return ERR_PTR(err);
2908 }
2909
2910 trans->block_rsv = &root->fs_info->global_block_rsv;
2911 return trans;
2912}
2913
2914static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2915 struct btrfs_root *root)
2916{
2917 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2918 BUG_ON(!root->fs_info->enospc_unlink);
2919 root->fs_info->enospc_unlink = 0;
2920 }
2921 btrfs_end_transaction_throttle(trans, root);
2922}
2923
2924static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2925{
2926 struct btrfs_root *root = BTRFS_I(dir)->root;
2927 struct btrfs_trans_handle *trans;
2928 struct inode *inode = dentry->d_inode;
2929 int ret;
2930 unsigned long nr = 0;
2931
2932 trans = __unlink_start_trans(dir, dentry);
2933 if (IS_ERR(trans))
2934 return PTR_ERR(trans);
5f39d397 2935
39279cc3 2936 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2937
2938 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2939
e02119d5
CM
2940 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2941 dentry->d_name.name, dentry->d_name.len);
a22285a6 2942 BUG_ON(ret);
7b128766 2943
a22285a6 2944 if (inode->i_nlink == 0) {
7b128766 2945 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
2946 BUG_ON(ret);
2947 }
7b128766 2948
d3c2fdcf 2949 nr = trans->blocks_used;
a22285a6 2950 __unlink_end_trans(trans, root);
d3c2fdcf 2951 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2952 return ret;
2953}
2954
4df27c4d
YZ
2955int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2956 struct btrfs_root *root,
2957 struct inode *dir, u64 objectid,
2958 const char *name, int name_len)
2959{
2960 struct btrfs_path *path;
2961 struct extent_buffer *leaf;
2962 struct btrfs_dir_item *di;
2963 struct btrfs_key key;
2964 u64 index;
2965 int ret;
2966
2967 path = btrfs_alloc_path();
2968 if (!path)
2969 return -ENOMEM;
2970
2971 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2972 name, name_len, -1);
2973 BUG_ON(!di || IS_ERR(di));
2974
2975 leaf = path->nodes[0];
2976 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2977 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2978 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2979 BUG_ON(ret);
2980 btrfs_release_path(root, path);
2981
2982 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2983 objectid, root->root_key.objectid,
2984 dir->i_ino, &index, name, name_len);
2985 if (ret < 0) {
2986 BUG_ON(ret != -ENOENT);
2987 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2988 name, name_len);
2989 BUG_ON(!di || IS_ERR(di));
2990
2991 leaf = path->nodes[0];
2992 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2993 btrfs_release_path(root, path);
2994 index = key.offset;
2995 }
2996
2997 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2998 index, name, name_len, -1);
2999 BUG_ON(!di || IS_ERR(di));
3000
3001 leaf = path->nodes[0];
3002 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3003 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3004 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3005 BUG_ON(ret);
3006 btrfs_release_path(root, path);
3007
3008 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3009 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3010 ret = btrfs_update_inode(trans, root, dir);
3011 BUG_ON(ret);
4df27c4d
YZ
3012
3013 btrfs_free_path(path);
3014 return 0;
3015}
3016
39279cc3
CM
3017static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3018{
3019 struct inode *inode = dentry->d_inode;
1832a6d5 3020 int err = 0;
39279cc3 3021 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3022 struct btrfs_trans_handle *trans;
1832a6d5 3023 unsigned long nr = 0;
39279cc3 3024
3394e160 3025 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 3026 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3027 return -ENOTEMPTY;
3028
a22285a6
YZ
3029 trans = __unlink_start_trans(dir, dentry);
3030 if (IS_ERR(trans))
5df6a9f6 3031 return PTR_ERR(trans);
5df6a9f6 3032
39279cc3 3033 btrfs_set_trans_block_group(trans, dir);
39279cc3 3034
4df27c4d
YZ
3035 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3036 err = btrfs_unlink_subvol(trans, root, dir,
3037 BTRFS_I(inode)->location.objectid,
3038 dentry->d_name.name,
3039 dentry->d_name.len);
3040 goto out;
3041 }
3042
7b128766
JB
3043 err = btrfs_orphan_add(trans, inode);
3044 if (err)
4df27c4d 3045 goto out;
7b128766 3046
39279cc3 3047 /* now the directory is empty */
e02119d5
CM
3048 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3049 dentry->d_name.name, dentry->d_name.len);
d397712b 3050 if (!err)
dbe674a9 3051 btrfs_i_size_write(inode, 0);
4df27c4d 3052out:
d3c2fdcf 3053 nr = trans->blocks_used;
a22285a6 3054 __unlink_end_trans(trans, root);
d3c2fdcf 3055 btrfs_btree_balance_dirty(root, nr);
3954401f 3056
39279cc3
CM
3057 return err;
3058}
3059
d20f7043 3060#if 0
323ac95b
CM
3061/*
3062 * when truncating bytes in a file, it is possible to avoid reading
3063 * the leaves that contain only checksum items. This can be the
3064 * majority of the IO required to delete a large file, but it must
3065 * be done carefully.
3066 *
3067 * The keys in the level just above the leaves are checked to make sure
3068 * the lowest key in a given leaf is a csum key, and starts at an offset
3069 * after the new size.
3070 *
3071 * Then the key for the next leaf is checked to make sure it also has
3072 * a checksum item for the same file. If it does, we know our target leaf
3073 * contains only checksum items, and it can be safely freed without reading
3074 * it.
3075 *
3076 * This is just an optimization targeted at large files. It may do
3077 * nothing. It will return 0 unless things went badly.
3078 */
3079static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3080 struct btrfs_root *root,
3081 struct btrfs_path *path,
3082 struct inode *inode, u64 new_size)
3083{
3084 struct btrfs_key key;
3085 int ret;
3086 int nritems;
3087 struct btrfs_key found_key;
3088 struct btrfs_key other_key;
5b84e8d6
YZ
3089 struct btrfs_leaf_ref *ref;
3090 u64 leaf_gen;
3091 u64 leaf_start;
323ac95b
CM
3092
3093 path->lowest_level = 1;
3094 key.objectid = inode->i_ino;
3095 key.type = BTRFS_CSUM_ITEM_KEY;
3096 key.offset = new_size;
3097again:
3098 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3099 if (ret < 0)
3100 goto out;
3101
3102 if (path->nodes[1] == NULL) {
3103 ret = 0;
3104 goto out;
3105 }
3106 ret = 0;
3107 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3108 nritems = btrfs_header_nritems(path->nodes[1]);
3109
3110 if (!nritems)
3111 goto out;
3112
3113 if (path->slots[1] >= nritems)
3114 goto next_node;
3115
3116 /* did we find a key greater than anything we want to delete? */
3117 if (found_key.objectid > inode->i_ino ||
3118 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3119 goto out;
3120
3121 /* we check the next key in the node to make sure the leave contains
3122 * only checksum items. This comparison doesn't work if our
3123 * leaf is the last one in the node
3124 */
3125 if (path->slots[1] + 1 >= nritems) {
3126next_node:
3127 /* search forward from the last key in the node, this
3128 * will bring us into the next node in the tree
3129 */
3130 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3131
3132 /* unlikely, but we inc below, so check to be safe */
3133 if (found_key.offset == (u64)-1)
3134 goto out;
3135
3136 /* search_forward needs a path with locks held, do the
3137 * search again for the original key. It is possible
3138 * this will race with a balance and return a path that
3139 * we could modify, but this drop is just an optimization
3140 * and is allowed to miss some leaves.
3141 */
3142 btrfs_release_path(root, path);
3143 found_key.offset++;
3144
3145 /* setup a max key for search_forward */
3146 other_key.offset = (u64)-1;
3147 other_key.type = key.type;
3148 other_key.objectid = key.objectid;
3149
3150 path->keep_locks = 1;
3151 ret = btrfs_search_forward(root, &found_key, &other_key,
3152 path, 0, 0);
3153 path->keep_locks = 0;
3154 if (ret || found_key.objectid != key.objectid ||
3155 found_key.type != key.type) {
3156 ret = 0;
3157 goto out;
3158 }
3159
3160 key.offset = found_key.offset;
3161 btrfs_release_path(root, path);
3162 cond_resched();
3163 goto again;
3164 }
3165
3166 /* we know there's one more slot after us in the tree,
3167 * read that key so we can verify it is also a checksum item
3168 */
3169 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3170
3171 if (found_key.objectid < inode->i_ino)
3172 goto next_key;
3173
3174 if (found_key.type != key.type || found_key.offset < new_size)
3175 goto next_key;
3176
3177 /*
3178 * if the key for the next leaf isn't a csum key from this objectid,
3179 * we can't be sure there aren't good items inside this leaf.
3180 * Bail out
3181 */
3182 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3183 goto out;
3184
5b84e8d6
YZ
3185 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3186 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
3187 /*
3188 * it is safe to delete this leaf, it contains only
3189 * csum items from this inode at an offset >= new_size
3190 */
5b84e8d6 3191 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
3192 BUG_ON(ret);
3193
5b84e8d6
YZ
3194 if (root->ref_cows && leaf_gen < trans->transid) {
3195 ref = btrfs_alloc_leaf_ref(root, 0);
3196 if (ref) {
3197 ref->root_gen = root->root_key.offset;
3198 ref->bytenr = leaf_start;
3199 ref->owner = 0;
3200 ref->generation = leaf_gen;
3201 ref->nritems = 0;
3202
bd56b302
CM
3203 btrfs_sort_leaf_ref(ref);
3204
5b84e8d6
YZ
3205 ret = btrfs_add_leaf_ref(root, ref, 0);
3206 WARN_ON(ret);
3207 btrfs_free_leaf_ref(root, ref);
3208 } else {
3209 WARN_ON(1);
3210 }
3211 }
323ac95b
CM
3212next_key:
3213 btrfs_release_path(root, path);
3214
3215 if (other_key.objectid == inode->i_ino &&
3216 other_key.type == key.type && other_key.offset > key.offset) {
3217 key.offset = other_key.offset;
3218 cond_resched();
3219 goto again;
3220 }
3221 ret = 0;
3222out:
3223 /* fixup any changes we've made to the path */
3224 path->lowest_level = 0;
3225 path->keep_locks = 0;
3226 btrfs_release_path(root, path);
3227 return ret;
3228}
3229
d20f7043
CM
3230#endif
3231
39279cc3
CM
3232/*
3233 * this can truncate away extent items, csum items and directory items.
3234 * It starts at a high offset and removes keys until it can't find
d352ac68 3235 * any higher than new_size
39279cc3
CM
3236 *
3237 * csum items that cross the new i_size are truncated to the new size
3238 * as well.
7b128766
JB
3239 *
3240 * min_type is the minimum key type to truncate down to. If set to 0, this
3241 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3242 */
8082510e
YZ
3243int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3244 struct btrfs_root *root,
3245 struct inode *inode,
3246 u64 new_size, u32 min_type)
39279cc3 3247{
39279cc3 3248 struct btrfs_path *path;
5f39d397 3249 struct extent_buffer *leaf;
39279cc3 3250 struct btrfs_file_extent_item *fi;
8082510e
YZ
3251 struct btrfs_key key;
3252 struct btrfs_key found_key;
39279cc3 3253 u64 extent_start = 0;
db94535d 3254 u64 extent_num_bytes = 0;
5d4f98a2 3255 u64 extent_offset = 0;
39279cc3 3256 u64 item_end = 0;
8082510e
YZ
3257 u64 mask = root->sectorsize - 1;
3258 u32 found_type = (u8)-1;
39279cc3
CM
3259 int found_extent;
3260 int del_item;
85e21bac
CM
3261 int pending_del_nr = 0;
3262 int pending_del_slot = 0;
179e29e4 3263 int extent_type = -1;
771ed689 3264 int encoding;
8082510e
YZ
3265 int ret;
3266 int err = 0;
3267
3268 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3269
0af3d00b 3270 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3271 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3272
39279cc3
CM
3273 path = btrfs_alloc_path();
3274 BUG_ON(!path);
33c17ad5 3275 path->reada = -1;
5f39d397 3276
39279cc3
CM
3277 key.objectid = inode->i_ino;
3278 key.offset = (u64)-1;
5f39d397
CM
3279 key.type = (u8)-1;
3280
85e21bac 3281search_again:
b9473439 3282 path->leave_spinning = 1;
85e21bac 3283 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3284 if (ret < 0) {
3285 err = ret;
3286 goto out;
3287 }
d397712b 3288
85e21bac 3289 if (ret > 0) {
e02119d5
CM
3290 /* there are no items in the tree for us to truncate, we're
3291 * done
3292 */
8082510e
YZ
3293 if (path->slots[0] == 0)
3294 goto out;
85e21bac
CM
3295 path->slots[0]--;
3296 }
3297
d397712b 3298 while (1) {
39279cc3 3299 fi = NULL;
5f39d397
CM
3300 leaf = path->nodes[0];
3301 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3302 found_type = btrfs_key_type(&found_key);
771ed689 3303 encoding = 0;
39279cc3 3304
5f39d397 3305 if (found_key.objectid != inode->i_ino)
39279cc3 3306 break;
5f39d397 3307
85e21bac 3308 if (found_type < min_type)
39279cc3
CM
3309 break;
3310
5f39d397 3311 item_end = found_key.offset;
39279cc3 3312 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3313 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3314 struct btrfs_file_extent_item);
179e29e4 3315 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3316 encoding = btrfs_file_extent_compression(leaf, fi);
3317 encoding |= btrfs_file_extent_encryption(leaf, fi);
3318 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3319
179e29e4 3320 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3321 item_end +=
db94535d 3322 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3323 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3324 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3325 fi);
39279cc3 3326 }
008630c1 3327 item_end--;
39279cc3 3328 }
8082510e
YZ
3329 if (found_type > min_type) {
3330 del_item = 1;
3331 } else {
3332 if (item_end < new_size)
b888db2b 3333 break;
8082510e
YZ
3334 if (found_key.offset >= new_size)
3335 del_item = 1;
3336 else
3337 del_item = 0;
39279cc3 3338 }
39279cc3 3339 found_extent = 0;
39279cc3 3340 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3341 if (found_type != BTRFS_EXTENT_DATA_KEY)
3342 goto delete;
3343
3344 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3345 u64 num_dec;
db94535d 3346 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3347 if (!del_item && !encoding) {
db94535d
CM
3348 u64 orig_num_bytes =
3349 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3350 extent_num_bytes = new_size -
5f39d397 3351 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3352 extent_num_bytes = extent_num_bytes &
3353 ~((u64)root->sectorsize - 1);
db94535d
CM
3354 btrfs_set_file_extent_num_bytes(leaf, fi,
3355 extent_num_bytes);
3356 num_dec = (orig_num_bytes -
9069218d 3357 extent_num_bytes);
e02119d5 3358 if (root->ref_cows && extent_start != 0)
a76a3cd4 3359 inode_sub_bytes(inode, num_dec);
5f39d397 3360 btrfs_mark_buffer_dirty(leaf);
39279cc3 3361 } else {
db94535d
CM
3362 extent_num_bytes =
3363 btrfs_file_extent_disk_num_bytes(leaf,
3364 fi);
5d4f98a2
YZ
3365 extent_offset = found_key.offset -
3366 btrfs_file_extent_offset(leaf, fi);
3367
39279cc3 3368 /* FIXME blocksize != 4096 */
9069218d 3369 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3370 if (extent_start != 0) {
3371 found_extent = 1;
e02119d5 3372 if (root->ref_cows)
a76a3cd4 3373 inode_sub_bytes(inode, num_dec);
e02119d5 3374 }
39279cc3 3375 }
9069218d 3376 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3377 /*
3378 * we can't truncate inline items that have had
3379 * special encodings
3380 */
3381 if (!del_item &&
3382 btrfs_file_extent_compression(leaf, fi) == 0 &&
3383 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3384 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3385 u32 size = new_size - found_key.offset;
3386
3387 if (root->ref_cows) {
a76a3cd4
YZ
3388 inode_sub_bytes(inode, item_end + 1 -
3389 new_size);
e02119d5
CM
3390 }
3391 size =
3392 btrfs_file_extent_calc_inline_size(size);
9069218d 3393 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3394 size, 1);
9069218d 3395 BUG_ON(ret);
e02119d5 3396 } else if (root->ref_cows) {
a76a3cd4
YZ
3397 inode_sub_bytes(inode, item_end + 1 -
3398 found_key.offset);
9069218d 3399 }
39279cc3 3400 }
179e29e4 3401delete:
39279cc3 3402 if (del_item) {
85e21bac
CM
3403 if (!pending_del_nr) {
3404 /* no pending yet, add ourselves */
3405 pending_del_slot = path->slots[0];
3406 pending_del_nr = 1;
3407 } else if (pending_del_nr &&
3408 path->slots[0] + 1 == pending_del_slot) {
3409 /* hop on the pending chunk */
3410 pending_del_nr++;
3411 pending_del_slot = path->slots[0];
3412 } else {
d397712b 3413 BUG();
85e21bac 3414 }
39279cc3
CM
3415 } else {
3416 break;
3417 }
0af3d00b
JB
3418 if (found_extent && (root->ref_cows ||
3419 root == root->fs_info->tree_root)) {
b9473439 3420 btrfs_set_path_blocking(path);
39279cc3 3421 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3422 extent_num_bytes, 0,
3423 btrfs_header_owner(leaf),
3424 inode->i_ino, extent_offset);
39279cc3
CM
3425 BUG_ON(ret);
3426 }
85e21bac 3427
8082510e
YZ
3428 if (found_type == BTRFS_INODE_ITEM_KEY)
3429 break;
3430
3431 if (path->slots[0] == 0 ||
3432 path->slots[0] != pending_del_slot) {
3433 if (root->ref_cows) {
3434 err = -EAGAIN;
3435 goto out;
3436 }
3437 if (pending_del_nr) {
3438 ret = btrfs_del_items(trans, root, path,
3439 pending_del_slot,
3440 pending_del_nr);
3441 BUG_ON(ret);
3442 pending_del_nr = 0;
3443 }
85e21bac
CM
3444 btrfs_release_path(root, path);
3445 goto search_again;
8082510e
YZ
3446 } else {
3447 path->slots[0]--;
85e21bac 3448 }
39279cc3 3449 }
8082510e 3450out:
85e21bac
CM
3451 if (pending_del_nr) {
3452 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3453 pending_del_nr);
d68fc57b 3454 BUG_ON(ret);
85e21bac 3455 }
39279cc3 3456 btrfs_free_path(path);
8082510e 3457 return err;
39279cc3
CM
3458}
3459
3460/*
3461 * taken from block_truncate_page, but does cow as it zeros out
3462 * any bytes left in the last page in the file.
3463 */
3464static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3465{
3466 struct inode *inode = mapping->host;
db94535d 3467 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3468 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3469 struct btrfs_ordered_extent *ordered;
2ac55d41 3470 struct extent_state *cached_state = NULL;
e6dcd2dc 3471 char *kaddr;
db94535d 3472 u32 blocksize = root->sectorsize;
39279cc3
CM
3473 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3474 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3475 struct page *page;
39279cc3 3476 int ret = 0;
a52d9a80 3477 u64 page_start;
e6dcd2dc 3478 u64 page_end;
39279cc3
CM
3479
3480 if ((offset & (blocksize - 1)) == 0)
3481 goto out;
0ca1f7ce 3482 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3483 if (ret)
3484 goto out;
39279cc3
CM
3485
3486 ret = -ENOMEM;
211c17f5 3487again:
39279cc3 3488 page = grab_cache_page(mapping, index);
5d5e103a 3489 if (!page) {
0ca1f7ce 3490 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3491 goto out;
5d5e103a 3492 }
e6dcd2dc
CM
3493
3494 page_start = page_offset(page);
3495 page_end = page_start + PAGE_CACHE_SIZE - 1;
3496
39279cc3 3497 if (!PageUptodate(page)) {
9ebefb18 3498 ret = btrfs_readpage(NULL, page);
39279cc3 3499 lock_page(page);
211c17f5
CM
3500 if (page->mapping != mapping) {
3501 unlock_page(page);
3502 page_cache_release(page);
3503 goto again;
3504 }
39279cc3
CM
3505 if (!PageUptodate(page)) {
3506 ret = -EIO;
89642229 3507 goto out_unlock;
39279cc3
CM
3508 }
3509 }
211c17f5 3510 wait_on_page_writeback(page);
e6dcd2dc 3511
2ac55d41
JB
3512 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3513 GFP_NOFS);
e6dcd2dc
CM
3514 set_page_extent_mapped(page);
3515
3516 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3517 if (ordered) {
2ac55d41
JB
3518 unlock_extent_cached(io_tree, page_start, page_end,
3519 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3520 unlock_page(page);
3521 page_cache_release(page);
eb84ae03 3522 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3523 btrfs_put_ordered_extent(ordered);
3524 goto again;
3525 }
3526
2ac55d41 3527 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3528 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3529 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3530
2ac55d41
JB
3531 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3532 &cached_state);
9ed74f2d 3533 if (ret) {
2ac55d41
JB
3534 unlock_extent_cached(io_tree, page_start, page_end,
3535 &cached_state, GFP_NOFS);
9ed74f2d
JB
3536 goto out_unlock;
3537 }
3538
e6dcd2dc
CM
3539 ret = 0;
3540 if (offset != PAGE_CACHE_SIZE) {
3541 kaddr = kmap(page);
3542 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3543 flush_dcache_page(page);
3544 kunmap(page);
3545 }
247e743c 3546 ClearPageChecked(page);
e6dcd2dc 3547 set_page_dirty(page);
2ac55d41
JB
3548 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3549 GFP_NOFS);
39279cc3 3550
89642229 3551out_unlock:
5d5e103a 3552 if (ret)
0ca1f7ce 3553 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3554 unlock_page(page);
3555 page_cache_release(page);
3556out:
3557 return ret;
3558}
3559
a41ad394 3560int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3561{
9036c102
YZ
3562 struct btrfs_trans_handle *trans;
3563 struct btrfs_root *root = BTRFS_I(inode)->root;
3564 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3565 struct extent_map *em = NULL;
2ac55d41 3566 struct extent_state *cached_state = NULL;
9036c102 3567 u64 mask = root->sectorsize - 1;
a41ad394 3568 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3569 u64 block_end = (size + mask) & ~mask;
3570 u64 last_byte;
3571 u64 cur_offset;
3572 u64 hole_size;
9ed74f2d 3573 int err = 0;
39279cc3 3574
9036c102
YZ
3575 if (size <= hole_start)
3576 return 0;
3577
9036c102
YZ
3578 while (1) {
3579 struct btrfs_ordered_extent *ordered;
3580 btrfs_wait_ordered_range(inode, hole_start,
3581 block_end - hole_start);
2ac55d41
JB
3582 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3583 &cached_state, GFP_NOFS);
9036c102
YZ
3584 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3585 if (!ordered)
3586 break;
2ac55d41
JB
3587 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3588 &cached_state, GFP_NOFS);
9036c102
YZ
3589 btrfs_put_ordered_extent(ordered);
3590 }
39279cc3 3591
9036c102
YZ
3592 cur_offset = hole_start;
3593 while (1) {
3594 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3595 block_end - cur_offset, 0);
3596 BUG_ON(IS_ERR(em) || !em);
3597 last_byte = min(extent_map_end(em), block_end);
3598 last_byte = (last_byte + mask) & ~mask;
8082510e 3599 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3600 u64 hint_byte = 0;
9036c102 3601 hole_size = last_byte - cur_offset;
9ed74f2d 3602
a22285a6
YZ
3603 trans = btrfs_start_transaction(root, 2);
3604 if (IS_ERR(trans)) {
3605 err = PTR_ERR(trans);
9ed74f2d 3606 break;
a22285a6 3607 }
8082510e
YZ
3608 btrfs_set_trans_block_group(trans, inode);
3609
3610 err = btrfs_drop_extents(trans, inode, cur_offset,
3611 cur_offset + hole_size,
3612 &hint_byte, 1);
3893e33b
JB
3613 if (err)
3614 break;
8082510e 3615
9036c102
YZ
3616 err = btrfs_insert_file_extent(trans, root,
3617 inode->i_ino, cur_offset, 0,
3618 0, hole_size, 0, hole_size,
3619 0, 0, 0);
3893e33b
JB
3620 if (err)
3621 break;
8082510e 3622
9036c102
YZ
3623 btrfs_drop_extent_cache(inode, hole_start,
3624 last_byte - 1, 0);
8082510e
YZ
3625
3626 btrfs_end_transaction(trans, root);
9036c102
YZ
3627 }
3628 free_extent_map(em);
a22285a6 3629 em = NULL;
9036c102 3630 cur_offset = last_byte;
8082510e 3631 if (cur_offset >= block_end)
9036c102
YZ
3632 break;
3633 }
1832a6d5 3634
a22285a6 3635 free_extent_map(em);
2ac55d41
JB
3636 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3637 GFP_NOFS);
9036c102
YZ
3638 return err;
3639}
39279cc3 3640
a41ad394 3641static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e
YZ
3642{
3643 struct btrfs_root *root = BTRFS_I(inode)->root;
3644 struct btrfs_trans_handle *trans;
a41ad394 3645 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3646 unsigned long nr;
3647 int ret;
3648
a41ad394 3649 if (newsize == oldsize)
8082510e
YZ
3650 return 0;
3651
d68fc57b
YZ
3652 trans = btrfs_start_transaction(root, 5);
3653 if (IS_ERR(trans))
3654 return PTR_ERR(trans);
8082510e 3655
8082510e
YZ
3656 btrfs_set_trans_block_group(trans, inode);
3657
3658 ret = btrfs_orphan_add(trans, inode);
3893e33b
JB
3659 if (ret) {
3660 btrfs_end_transaction(trans, root);
3661 return ret;
3662 }
8082510e
YZ
3663
3664 nr = trans->blocks_used;
3665 btrfs_end_transaction(trans, root);
8082510e
YZ
3666 btrfs_btree_balance_dirty(root, nr);
3667
a41ad394
JB
3668 if (newsize > oldsize) {
3669 i_size_write(inode, newsize);
3670 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3671 truncate_pagecache(inode, oldsize, newsize);
3672 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3673 if (ret) {
a41ad394 3674 btrfs_setsize(inode, oldsize);
8082510e
YZ
3675 return ret;
3676 }
3677
d68fc57b 3678 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
3679 if (IS_ERR(trans))
3680 return PTR_ERR(trans);
3681
8082510e 3682 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3683 trans->block_rsv = root->orphan_block_rsv;
3684 BUG_ON(!trans->block_rsv);
8082510e 3685
3893e33b
JB
3686 /*
3687 * If this fails just leave the orphan item so that it can get
3688 * cleaned up next time we mount.
3689 */
8082510e 3690 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
3691 if (ret) {
3692 btrfs_end_transaction(trans, root);
3693 return ret;
8082510e 3694 }
3893e33b
JB
3695 if (inode->i_nlink > 0)
3696 ret = btrfs_orphan_del(trans, inode);
8082510e
YZ
3697 nr = trans->blocks_used;
3698 btrfs_end_transaction(trans, root);
3699 btrfs_btree_balance_dirty(root, nr);
a41ad394 3700 } else {
8082510e 3701
a41ad394
JB
3702 /*
3703 * We're truncating a file that used to have good data down to
3704 * zero. Make sure it gets into the ordered flush list so that
3705 * any new writes get down to disk quickly.
3706 */
3707 if (newsize == 0)
3708 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3709
a41ad394
JB
3710 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3711 truncate_setsize(inode, newsize);
3712 ret = btrfs_truncate(inode);
3713 }
8082510e 3714
a41ad394 3715 return ret;
8082510e
YZ
3716}
3717
9036c102
YZ
3718static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3719{
3720 struct inode *inode = dentry->d_inode;
b83cc969 3721 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3722 int err;
39279cc3 3723
b83cc969
LZ
3724 if (btrfs_root_readonly(root))
3725 return -EROFS;
3726
9036c102
YZ
3727 err = inode_change_ok(inode, attr);
3728 if (err)
3729 return err;
2bf5a725 3730
5a3f23d5 3731 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3732 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3733 if (err)
3734 return err;
39279cc3 3735 }
9036c102 3736
1025774c
CH
3737 if (attr->ia_valid) {
3738 setattr_copy(inode, attr);
3739 mark_inode_dirty(inode);
3740
3741 if (attr->ia_valid & ATTR_MODE)
3742 err = btrfs_acl_chmod(inode);
3743 }
33268eaf 3744
39279cc3
CM
3745 return err;
3746}
61295eb8 3747
bd555975 3748void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3749{
3750 struct btrfs_trans_handle *trans;
3751 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3752 unsigned long nr;
39279cc3
CM
3753 int ret;
3754
3755 truncate_inode_pages(&inode->i_data, 0);
0af3d00b
JB
3756 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3757 root == root->fs_info->tree_root))
bd555975
AV
3758 goto no_delete;
3759
39279cc3 3760 if (is_bad_inode(inode)) {
7b128766 3761 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3762 goto no_delete;
3763 }
bd555975 3764 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3765 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3766
c71bf099
YZ
3767 if (root->fs_info->log_root_recovering) {
3768 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3769 goto no_delete;
3770 }
3771
76dda93c
YZ
3772 if (inode->i_nlink > 0) {
3773 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3774 goto no_delete;
3775 }
3776
dbe674a9 3777 btrfs_i_size_write(inode, 0);
5f39d397 3778
8082510e 3779 while (1) {
d68fc57b
YZ
3780 trans = btrfs_start_transaction(root, 0);
3781 BUG_ON(IS_ERR(trans));
8082510e 3782 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3783 trans->block_rsv = root->orphan_block_rsv;
3784
3785 ret = btrfs_block_rsv_check(trans, root,
3786 root->orphan_block_rsv, 0, 5);
3787 if (ret) {
3788 BUG_ON(ret != -EAGAIN);
3789 ret = btrfs_commit_transaction(trans, root);
3790 BUG_ON(ret);
3791 continue;
3792 }
7b128766 3793
d68fc57b 3794 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3795 if (ret != -EAGAIN)
3796 break;
85e21bac 3797
8082510e
YZ
3798 nr = trans->blocks_used;
3799 btrfs_end_transaction(trans, root);
3800 trans = NULL;
3801 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3802
8082510e 3803 }
5f39d397 3804
8082510e
YZ
3805 if (ret == 0) {
3806 ret = btrfs_orphan_del(trans, inode);
3807 BUG_ON(ret);
3808 }
54aa1f4d 3809
d3c2fdcf 3810 nr = trans->blocks_used;
54aa1f4d 3811 btrfs_end_transaction(trans, root);
d3c2fdcf 3812 btrfs_btree_balance_dirty(root, nr);
39279cc3 3813no_delete:
bd555975 3814 end_writeback(inode);
8082510e 3815 return;
39279cc3
CM
3816}
3817
3818/*
3819 * this returns the key found in the dir entry in the location pointer.
3820 * If no dir entries were found, location->objectid is 0.
3821 */
3822static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3823 struct btrfs_key *location)
3824{
3825 const char *name = dentry->d_name.name;
3826 int namelen = dentry->d_name.len;
3827 struct btrfs_dir_item *di;
3828 struct btrfs_path *path;
3829 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3830 int ret = 0;
39279cc3
CM
3831
3832 path = btrfs_alloc_path();
3833 BUG_ON(!path);
3954401f 3834
39279cc3
CM
3835 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3836 namelen, 0);
0d9f7f3e
Y
3837 if (IS_ERR(di))
3838 ret = PTR_ERR(di);
d397712b
CM
3839
3840 if (!di || IS_ERR(di))
3954401f 3841 goto out_err;
d397712b 3842
5f39d397 3843 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3844out:
39279cc3
CM
3845 btrfs_free_path(path);
3846 return ret;
3954401f
CM
3847out_err:
3848 location->objectid = 0;
3849 goto out;
39279cc3
CM
3850}
3851
3852/*
3853 * when we hit a tree root in a directory, the btrfs part of the inode
3854 * needs to be changed to reflect the root directory of the tree root. This
3855 * is kind of like crossing a mount point.
3856 */
3857static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3858 struct inode *dir,
3859 struct dentry *dentry,
3860 struct btrfs_key *location,
3861 struct btrfs_root **sub_root)
39279cc3 3862{
4df27c4d
YZ
3863 struct btrfs_path *path;
3864 struct btrfs_root *new_root;
3865 struct btrfs_root_ref *ref;
3866 struct extent_buffer *leaf;
3867 int ret;
3868 int err = 0;
39279cc3 3869
4df27c4d
YZ
3870 path = btrfs_alloc_path();
3871 if (!path) {
3872 err = -ENOMEM;
3873 goto out;
3874 }
39279cc3 3875
4df27c4d
YZ
3876 err = -ENOENT;
3877 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3878 BTRFS_I(dir)->root->root_key.objectid,
3879 location->objectid);
3880 if (ret) {
3881 if (ret < 0)
3882 err = ret;
3883 goto out;
3884 }
39279cc3 3885
4df27c4d
YZ
3886 leaf = path->nodes[0];
3887 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3888 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3889 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3890 goto out;
39279cc3 3891
4df27c4d
YZ
3892 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3893 (unsigned long)(ref + 1),
3894 dentry->d_name.len);
3895 if (ret)
3896 goto out;
3897
3898 btrfs_release_path(root->fs_info->tree_root, path);
3899
3900 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3901 if (IS_ERR(new_root)) {
3902 err = PTR_ERR(new_root);
3903 goto out;
3904 }
3905
3906 if (btrfs_root_refs(&new_root->root_item) == 0) {
3907 err = -ENOENT;
3908 goto out;
3909 }
3910
3911 *sub_root = new_root;
3912 location->objectid = btrfs_root_dirid(&new_root->root_item);
3913 location->type = BTRFS_INODE_ITEM_KEY;
3914 location->offset = 0;
3915 err = 0;
3916out:
3917 btrfs_free_path(path);
3918 return err;
39279cc3
CM
3919}
3920
5d4f98a2
YZ
3921static void inode_tree_add(struct inode *inode)
3922{
3923 struct btrfs_root *root = BTRFS_I(inode)->root;
3924 struct btrfs_inode *entry;
03e860bd
FNP
3925 struct rb_node **p;
3926 struct rb_node *parent;
03e860bd
FNP
3927again:
3928 p = &root->inode_tree.rb_node;
3929 parent = NULL;
5d4f98a2 3930
1d3382cb 3931 if (inode_unhashed(inode))
76dda93c
YZ
3932 return;
3933
5d4f98a2
YZ
3934 spin_lock(&root->inode_lock);
3935 while (*p) {
3936 parent = *p;
3937 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3938
3939 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3940 p = &parent->rb_left;
5d4f98a2 3941 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3942 p = &parent->rb_right;
5d4f98a2
YZ
3943 else {
3944 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3945 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3946 rb_erase(parent, &root->inode_tree);
3947 RB_CLEAR_NODE(parent);
3948 spin_unlock(&root->inode_lock);
3949 goto again;
5d4f98a2
YZ
3950 }
3951 }
3952 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3953 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3954 spin_unlock(&root->inode_lock);
3955}
3956
3957static void inode_tree_del(struct inode *inode)
3958{
3959 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3960 int empty = 0;
5d4f98a2 3961
03e860bd 3962 spin_lock(&root->inode_lock);
5d4f98a2 3963 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3964 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3965 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3966 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3967 }
03e860bd 3968 spin_unlock(&root->inode_lock);
76dda93c 3969
0af3d00b
JB
3970 /*
3971 * Free space cache has inodes in the tree root, but the tree root has a
3972 * root_refs of 0, so this could end up dropping the tree root as a
3973 * snapshot, so we need the extra !root->fs_info->tree_root check to
3974 * make sure we don't drop it.
3975 */
3976 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3977 root != root->fs_info->tree_root) {
76dda93c
YZ
3978 synchronize_srcu(&root->fs_info->subvol_srcu);
3979 spin_lock(&root->inode_lock);
3980 empty = RB_EMPTY_ROOT(&root->inode_tree);
3981 spin_unlock(&root->inode_lock);
3982 if (empty)
3983 btrfs_add_dead_root(root);
3984 }
3985}
3986
3987int btrfs_invalidate_inodes(struct btrfs_root *root)
3988{
3989 struct rb_node *node;
3990 struct rb_node *prev;
3991 struct btrfs_inode *entry;
3992 struct inode *inode;
3993 u64 objectid = 0;
3994
3995 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3996
3997 spin_lock(&root->inode_lock);
3998again:
3999 node = root->inode_tree.rb_node;
4000 prev = NULL;
4001 while (node) {
4002 prev = node;
4003 entry = rb_entry(node, struct btrfs_inode, rb_node);
4004
4005 if (objectid < entry->vfs_inode.i_ino)
4006 node = node->rb_left;
4007 else if (objectid > entry->vfs_inode.i_ino)
4008 node = node->rb_right;
4009 else
4010 break;
4011 }
4012 if (!node) {
4013 while (prev) {
4014 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4015 if (objectid <= entry->vfs_inode.i_ino) {
4016 node = prev;
4017 break;
4018 }
4019 prev = rb_next(prev);
4020 }
4021 }
4022 while (node) {
4023 entry = rb_entry(node, struct btrfs_inode, rb_node);
4024 objectid = entry->vfs_inode.i_ino + 1;
4025 inode = igrab(&entry->vfs_inode);
4026 if (inode) {
4027 spin_unlock(&root->inode_lock);
4028 if (atomic_read(&inode->i_count) > 1)
4029 d_prune_aliases(inode);
4030 /*
45321ac5 4031 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4032 * the inode cache when its usage count
4033 * hits zero.
4034 */
4035 iput(inode);
4036 cond_resched();
4037 spin_lock(&root->inode_lock);
4038 goto again;
4039 }
4040
4041 if (cond_resched_lock(&root->inode_lock))
4042 goto again;
4043
4044 node = rb_next(node);
4045 }
4046 spin_unlock(&root->inode_lock);
4047 return 0;
5d4f98a2
YZ
4048}
4049
e02119d5
CM
4050static int btrfs_init_locked_inode(struct inode *inode, void *p)
4051{
4052 struct btrfs_iget_args *args = p;
4053 inode->i_ino = args->ino;
e02119d5 4054 BTRFS_I(inode)->root = args->root;
6a63209f 4055 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4056 return 0;
4057}
4058
4059static int btrfs_find_actor(struct inode *inode, void *opaque)
4060{
4061 struct btrfs_iget_args *args = opaque;
d397712b
CM
4062 return args->ino == inode->i_ino &&
4063 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4064}
4065
5d4f98a2
YZ
4066static struct inode *btrfs_iget_locked(struct super_block *s,
4067 u64 objectid,
4068 struct btrfs_root *root)
39279cc3
CM
4069{
4070 struct inode *inode;
4071 struct btrfs_iget_args args;
4072 args.ino = objectid;
4073 args.root = root;
4074
4075 inode = iget5_locked(s, objectid, btrfs_find_actor,
4076 btrfs_init_locked_inode,
4077 (void *)&args);
4078 return inode;
4079}
4080
1a54ef8c
BR
4081/* Get an inode object given its location and corresponding root.
4082 * Returns in *is_new if the inode was read from disk
4083 */
4084struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4085 struct btrfs_root *root, int *new)
1a54ef8c
BR
4086{
4087 struct inode *inode;
4088
4089 inode = btrfs_iget_locked(s, location->objectid, root);
4090 if (!inode)
5d4f98a2 4091 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4092
4093 if (inode->i_state & I_NEW) {
4094 BTRFS_I(inode)->root = root;
4095 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4096 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
4097
4098 inode_tree_add(inode);
1a54ef8c 4099 unlock_new_inode(inode);
73f73415
JB
4100 if (new)
4101 *new = 1;
1a54ef8c
BR
4102 }
4103
4104 return inode;
4105}
4106
4df27c4d
YZ
4107static struct inode *new_simple_dir(struct super_block *s,
4108 struct btrfs_key *key,
4109 struct btrfs_root *root)
4110{
4111 struct inode *inode = new_inode(s);
4112
4113 if (!inode)
4114 return ERR_PTR(-ENOMEM);
4115
4df27c4d
YZ
4116 BTRFS_I(inode)->root = root;
4117 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4118 BTRFS_I(inode)->dummy_inode = 1;
4119
4120 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4121 inode->i_op = &simple_dir_inode_operations;
4122 inode->i_fop = &simple_dir_operations;
4123 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4124 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4125
4126 return inode;
4127}
4128
3de4586c 4129struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4130{
d397712b 4131 struct inode *inode;
4df27c4d 4132 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4133 struct btrfs_root *sub_root = root;
4134 struct btrfs_key location;
76dda93c 4135 int index;
5d4f98a2 4136 int ret;
39279cc3
CM
4137
4138 if (dentry->d_name.len > BTRFS_NAME_LEN)
4139 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4140
39279cc3 4141 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4142
39279cc3
CM
4143 if (ret < 0)
4144 return ERR_PTR(ret);
5f39d397 4145
4df27c4d
YZ
4146 if (location.objectid == 0)
4147 return NULL;
4148
4149 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4150 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4151 return inode;
4152 }
4153
4154 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4155
76dda93c 4156 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4157 ret = fixup_tree_root_location(root, dir, dentry,
4158 &location, &sub_root);
4159 if (ret < 0) {
4160 if (ret != -ENOENT)
4161 inode = ERR_PTR(ret);
4162 else
4163 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4164 } else {
73f73415 4165 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4166 }
76dda93c
YZ
4167 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4168
34d19bad 4169 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4170 down_read(&root->fs_info->cleanup_work_sem);
4171 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4172 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4173 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4174 if (ret)
4175 inode = ERR_PTR(ret);
c71bf099
YZ
4176 }
4177
3de4586c
CM
4178 return inode;
4179}
4180
fe15ce44 4181static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4182{
4183 struct btrfs_root *root;
4184
efefb143
YZ
4185 if (!dentry->d_inode && !IS_ROOT(dentry))
4186 dentry = dentry->d_parent;
76dda93c 4187
efefb143
YZ
4188 if (dentry->d_inode) {
4189 root = BTRFS_I(dentry->d_inode)->root;
4190 if (btrfs_root_refs(&root->root_item) == 0)
4191 return 1;
4192 }
76dda93c
YZ
4193 return 0;
4194}
4195
3de4586c
CM
4196static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4197 struct nameidata *nd)
4198{
4199 struct inode *inode;
4200
3de4586c
CM
4201 inode = btrfs_lookup_dentry(dir, dentry);
4202 if (IS_ERR(inode))
4203 return ERR_CAST(inode);
7b128766 4204
39279cc3
CM
4205 return d_splice_alias(inode, dentry);
4206}
4207
39279cc3
CM
4208static unsigned char btrfs_filetype_table[] = {
4209 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4210};
4211
cbdf5a24
DW
4212static int btrfs_real_readdir(struct file *filp, void *dirent,
4213 filldir_t filldir)
39279cc3 4214{
6da6abae 4215 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4216 struct btrfs_root *root = BTRFS_I(inode)->root;
4217 struct btrfs_item *item;
4218 struct btrfs_dir_item *di;
4219 struct btrfs_key key;
5f39d397 4220 struct btrfs_key found_key;
39279cc3
CM
4221 struct btrfs_path *path;
4222 int ret;
4223 u32 nritems;
5f39d397 4224 struct extent_buffer *leaf;
39279cc3
CM
4225 int slot;
4226 int advance;
4227 unsigned char d_type;
4228 int over = 0;
4229 u32 di_cur;
4230 u32 di_total;
4231 u32 di_len;
4232 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4233 char tmp_name[32];
4234 char *name_ptr;
4235 int name_len;
39279cc3
CM
4236
4237 /* FIXME, use a real flag for deciding about the key type */
4238 if (root->fs_info->tree_root == root)
4239 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4240
3954401f
CM
4241 /* special case for "." */
4242 if (filp->f_pos == 0) {
4243 over = filldir(dirent, ".", 1,
4244 1, inode->i_ino,
4245 DT_DIR);
4246 if (over)
4247 return 0;
4248 filp->f_pos = 1;
4249 }
3954401f
CM
4250 /* special case for .., just use the back ref */
4251 if (filp->f_pos == 1) {
5ecc7e5d 4252 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4253 over = filldir(dirent, "..", 2,
5ecc7e5d 4254 2, pino, DT_DIR);
3954401f 4255 if (over)
49593bfa 4256 return 0;
3954401f
CM
4257 filp->f_pos = 2;
4258 }
49593bfa
DW
4259 path = btrfs_alloc_path();
4260 path->reada = 2;
4261
39279cc3
CM
4262 btrfs_set_key_type(&key, key_type);
4263 key.offset = filp->f_pos;
49593bfa 4264 key.objectid = inode->i_ino;
5f39d397 4265
39279cc3
CM
4266 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4267 if (ret < 0)
4268 goto err;
4269 advance = 0;
49593bfa
DW
4270
4271 while (1) {
5f39d397
CM
4272 leaf = path->nodes[0];
4273 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4274 slot = path->slots[0];
4275 if (advance || slot >= nritems) {
49593bfa 4276 if (slot >= nritems - 1) {
39279cc3
CM
4277 ret = btrfs_next_leaf(root, path);
4278 if (ret)
4279 break;
5f39d397
CM
4280 leaf = path->nodes[0];
4281 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4282 slot = path->slots[0];
4283 } else {
4284 slot++;
4285 path->slots[0]++;
4286 }
4287 }
3de4586c 4288
39279cc3 4289 advance = 1;
5f39d397
CM
4290 item = btrfs_item_nr(leaf, slot);
4291 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4292
4293 if (found_key.objectid != key.objectid)
39279cc3 4294 break;
5f39d397 4295 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4296 break;
5f39d397 4297 if (found_key.offset < filp->f_pos)
39279cc3 4298 continue;
5f39d397
CM
4299
4300 filp->f_pos = found_key.offset;
49593bfa 4301
39279cc3
CM
4302 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4303 di_cur = 0;
5f39d397 4304 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4305
4306 while (di_cur < di_total) {
5f39d397
CM
4307 struct btrfs_key location;
4308
4309 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4310 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4311 name_ptr = tmp_name;
4312 } else {
4313 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4314 if (!name_ptr) {
4315 ret = -ENOMEM;
4316 goto err;
4317 }
5f39d397
CM
4318 }
4319 read_extent_buffer(leaf, name_ptr,
4320 (unsigned long)(di + 1), name_len);
4321
4322 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4323 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4324
4325 /* is this a reference to our own snapshot? If so
4326 * skip it
4327 */
4328 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4329 location.objectid == root->root_key.objectid) {
4330 over = 0;
4331 goto skip;
4332 }
5f39d397 4333 over = filldir(dirent, name_ptr, name_len,
49593bfa 4334 found_key.offset, location.objectid,
39279cc3 4335 d_type);
5f39d397 4336
3de4586c 4337skip:
5f39d397
CM
4338 if (name_ptr != tmp_name)
4339 kfree(name_ptr);
4340
39279cc3
CM
4341 if (over)
4342 goto nopos;
5103e947 4343 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4344 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4345 di_cur += di_len;
4346 di = (struct btrfs_dir_item *)((char *)di + di_len);
4347 }
4348 }
49593bfa
DW
4349
4350 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4351 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4352 /*
4353 * 32-bit glibc will use getdents64, but then strtol -
4354 * so the last number we can serve is this.
4355 */
4356 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4357 else
4358 filp->f_pos++;
39279cc3
CM
4359nopos:
4360 ret = 0;
4361err:
39279cc3 4362 btrfs_free_path(path);
39279cc3
CM
4363 return ret;
4364}
4365
a9185b41 4366int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4367{
4368 struct btrfs_root *root = BTRFS_I(inode)->root;
4369 struct btrfs_trans_handle *trans;
4370 int ret = 0;
0af3d00b 4371 bool nolock = false;
39279cc3 4372
8929ecfa 4373 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4374 return 0;
4375
0af3d00b
JB
4376 smp_mb();
4377 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4378
a9185b41 4379 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b
JB
4380 if (nolock)
4381 trans = btrfs_join_transaction_nolock(root, 1);
4382 else
4383 trans = btrfs_join_transaction(root, 1);
3612b495
TI
4384 if (IS_ERR(trans))
4385 return PTR_ERR(trans);
39279cc3 4386 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4387 if (nolock)
4388 ret = btrfs_end_transaction_nolock(trans, root);
4389 else
4390 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4391 }
4392 return ret;
4393}
4394
4395/*
54aa1f4d 4396 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4397 * inode changes. But, it is most likely to find the inode in cache.
4398 * FIXME, needs more benchmarking...there are no reasons other than performance
4399 * to keep or drop this code.
4400 */
4401void btrfs_dirty_inode(struct inode *inode)
4402{
4403 struct btrfs_root *root = BTRFS_I(inode)->root;
4404 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4405 int ret;
4406
4407 if (BTRFS_I(inode)->dummy_inode)
4408 return;
39279cc3 4409
f9295749 4410 trans = btrfs_join_transaction(root, 1);
3612b495 4411 BUG_ON(IS_ERR(trans));
39279cc3 4412 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4413
4414 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4415 if (ret && ret == -ENOSPC) {
4416 /* whoops, lets try again with the full transaction */
4417 btrfs_end_transaction(trans, root);
4418 trans = btrfs_start_transaction(root, 1);
9aeead73
CM
4419 if (IS_ERR(trans)) {
4420 if (printk_ratelimit()) {
4421 printk(KERN_ERR "btrfs: fail to "
4422 "dirty inode %lu error %ld\n",
4423 inode->i_ino, PTR_ERR(trans));
4424 }
4425 return;
4426 }
94b60442 4427 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4428
94b60442
CM
4429 ret = btrfs_update_inode(trans, root, inode);
4430 if (ret) {
9aeead73
CM
4431 if (printk_ratelimit()) {
4432 printk(KERN_ERR "btrfs: fail to "
4433 "dirty inode %lu error %d\n",
4434 inode->i_ino, ret);
4435 }
94b60442
CM
4436 }
4437 }
39279cc3 4438 btrfs_end_transaction(trans, root);
39279cc3
CM
4439}
4440
d352ac68
CM
4441/*
4442 * find the highest existing sequence number in a directory
4443 * and then set the in-memory index_cnt variable to reflect
4444 * free sequence numbers
4445 */
aec7477b
JB
4446static int btrfs_set_inode_index_count(struct inode *inode)
4447{
4448 struct btrfs_root *root = BTRFS_I(inode)->root;
4449 struct btrfs_key key, found_key;
4450 struct btrfs_path *path;
4451 struct extent_buffer *leaf;
4452 int ret;
4453
4454 key.objectid = inode->i_ino;
4455 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4456 key.offset = (u64)-1;
4457
4458 path = btrfs_alloc_path();
4459 if (!path)
4460 return -ENOMEM;
4461
4462 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4463 if (ret < 0)
4464 goto out;
4465 /* FIXME: we should be able to handle this */
4466 if (ret == 0)
4467 goto out;
4468 ret = 0;
4469
4470 /*
4471 * MAGIC NUMBER EXPLANATION:
4472 * since we search a directory based on f_pos we have to start at 2
4473 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4474 * else has to start at 2
4475 */
4476 if (path->slots[0] == 0) {
4477 BTRFS_I(inode)->index_cnt = 2;
4478 goto out;
4479 }
4480
4481 path->slots[0]--;
4482
4483 leaf = path->nodes[0];
4484 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4485
4486 if (found_key.objectid != inode->i_ino ||
4487 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4488 BTRFS_I(inode)->index_cnt = 2;
4489 goto out;
4490 }
4491
4492 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4493out:
4494 btrfs_free_path(path);
4495 return ret;
4496}
4497
d352ac68
CM
4498/*
4499 * helper to find a free sequence number in a given directory. This current
4500 * code is very simple, later versions will do smarter things in the btree
4501 */
3de4586c 4502int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4503{
4504 int ret = 0;
4505
4506 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4507 ret = btrfs_set_inode_index_count(dir);
d397712b 4508 if (ret)
aec7477b
JB
4509 return ret;
4510 }
4511
00e4e6b3 4512 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4513 BTRFS_I(dir)->index_cnt++;
4514
4515 return ret;
4516}
4517
39279cc3
CM
4518static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4519 struct btrfs_root *root,
aec7477b 4520 struct inode *dir,
9c58309d 4521 const char *name, int name_len,
d2fb3437
YZ
4522 u64 ref_objectid, u64 objectid,
4523 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4524{
4525 struct inode *inode;
5f39d397 4526 struct btrfs_inode_item *inode_item;
39279cc3 4527 struct btrfs_key *location;
5f39d397 4528 struct btrfs_path *path;
9c58309d
CM
4529 struct btrfs_inode_ref *ref;
4530 struct btrfs_key key[2];
4531 u32 sizes[2];
4532 unsigned long ptr;
39279cc3
CM
4533 int ret;
4534 int owner;
4535
5f39d397
CM
4536 path = btrfs_alloc_path();
4537 BUG_ON(!path);
4538
39279cc3
CM
4539 inode = new_inode(root->fs_info->sb);
4540 if (!inode)
4541 return ERR_PTR(-ENOMEM);
4542
aec7477b 4543 if (dir) {
3de4586c 4544 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4545 if (ret) {
4546 iput(inode);
aec7477b 4547 return ERR_PTR(ret);
09771430 4548 }
aec7477b
JB
4549 }
4550 /*
4551 * index_cnt is ignored for everything but a dir,
4552 * btrfs_get_inode_index_count has an explanation for the magic
4553 * number
4554 */
4555 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4556 BTRFS_I(inode)->root = root;
e02119d5 4557 BTRFS_I(inode)->generation = trans->transid;
76195853 4558 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4559 btrfs_set_inode_space_info(root, inode);
b888db2b 4560
39279cc3
CM
4561 if (mode & S_IFDIR)
4562 owner = 0;
4563 else
4564 owner = 1;
d2fb3437
YZ
4565 BTRFS_I(inode)->block_group =
4566 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4567
4568 key[0].objectid = objectid;
4569 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4570 key[0].offset = 0;
4571
4572 key[1].objectid = objectid;
4573 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4574 key[1].offset = ref_objectid;
4575
4576 sizes[0] = sizeof(struct btrfs_inode_item);
4577 sizes[1] = name_len + sizeof(*ref);
4578
b9473439 4579 path->leave_spinning = 1;
9c58309d
CM
4580 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4581 if (ret != 0)
5f39d397
CM
4582 goto fail;
4583
ecc11fab 4584 inode_init_owner(inode, dir, mode);
39279cc3 4585 inode->i_ino = objectid;
a76a3cd4 4586 inode_set_bytes(inode, 0);
39279cc3 4587 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4588 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4589 struct btrfs_inode_item);
e02119d5 4590 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4591
4592 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4593 struct btrfs_inode_ref);
4594 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4595 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4596 ptr = (unsigned long)(ref + 1);
4597 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4598
5f39d397
CM
4599 btrfs_mark_buffer_dirty(path->nodes[0]);
4600 btrfs_free_path(path);
4601
39279cc3
CM
4602 location = &BTRFS_I(inode)->location;
4603 location->objectid = objectid;
39279cc3
CM
4604 location->offset = 0;
4605 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4606
6cbff00f
CH
4607 btrfs_inherit_iflags(inode, dir);
4608
94272164
CM
4609 if ((mode & S_IFREG)) {
4610 if (btrfs_test_opt(root, NODATASUM))
4611 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4612 if (btrfs_test_opt(root, NODATACOW))
4613 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4614 }
4615
39279cc3 4616 insert_inode_hash(inode);
5d4f98a2 4617 inode_tree_add(inode);
39279cc3 4618 return inode;
5f39d397 4619fail:
aec7477b
JB
4620 if (dir)
4621 BTRFS_I(dir)->index_cnt--;
5f39d397 4622 btrfs_free_path(path);
09771430 4623 iput(inode);
5f39d397 4624 return ERR_PTR(ret);
39279cc3
CM
4625}
4626
4627static inline u8 btrfs_inode_type(struct inode *inode)
4628{
4629 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4630}
4631
d352ac68
CM
4632/*
4633 * utility function to add 'inode' into 'parent_inode' with
4634 * a give name and a given sequence number.
4635 * if 'add_backref' is true, also insert a backref from the
4636 * inode to the parent directory.
4637 */
e02119d5
CM
4638int btrfs_add_link(struct btrfs_trans_handle *trans,
4639 struct inode *parent_inode, struct inode *inode,
4640 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4641{
4df27c4d 4642 int ret = 0;
39279cc3 4643 struct btrfs_key key;
e02119d5 4644 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4645
4df27c4d
YZ
4646 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4647 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4648 } else {
4649 key.objectid = inode->i_ino;
4650 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4651 key.offset = 0;
4652 }
4653
4654 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4655 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4656 key.objectid, root->root_key.objectid,
4657 parent_inode->i_ino,
4658 index, name, name_len);
4659 } else if (add_backref) {
4660 ret = btrfs_insert_inode_ref(trans, root,
4661 name, name_len, inode->i_ino,
4662 parent_inode->i_ino, index);
4663 }
39279cc3 4664
39279cc3 4665 if (ret == 0) {
4df27c4d
YZ
4666 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4667 parent_inode->i_ino, &key,
4668 btrfs_inode_type(inode), index);
4669 BUG_ON(ret);
4670
dbe674a9 4671 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4672 name_len * 2);
79c44584 4673 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4674 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4675 }
4676 return ret;
4677}
4678
4679static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4680 struct inode *dir, struct dentry *dentry,
4681 struct inode *inode, int backref, u64 index)
39279cc3 4682{
a1b075d2
JB
4683 int err = btrfs_add_link(trans, dir, inode,
4684 dentry->d_name.name, dentry->d_name.len,
4685 backref, index);
39279cc3
CM
4686 if (!err) {
4687 d_instantiate(dentry, inode);
4688 return 0;
4689 }
4690 if (err > 0)
4691 err = -EEXIST;
4692 return err;
4693}
4694
618e21d5
JB
4695static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4696 int mode, dev_t rdev)
4697{
4698 struct btrfs_trans_handle *trans;
4699 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4700 struct inode *inode = NULL;
618e21d5
JB
4701 int err;
4702 int drop_inode = 0;
4703 u64 objectid;
1832a6d5 4704 unsigned long nr = 0;
00e4e6b3 4705 u64 index = 0;
618e21d5
JB
4706
4707 if (!new_valid_dev(rdev))
4708 return -EINVAL;
4709
a22285a6
YZ
4710 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4711 if (err)
4712 return err;
4713
9ed74f2d
JB
4714 /*
4715 * 2 for inode item and ref
4716 * 2 for dir items
4717 * 1 for xattr if selinux is on
4718 */
a22285a6
YZ
4719 trans = btrfs_start_transaction(root, 5);
4720 if (IS_ERR(trans))
4721 return PTR_ERR(trans);
1832a6d5 4722
618e21d5
JB
4723 btrfs_set_trans_block_group(trans, dir);
4724
aec7477b 4725 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4726 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3 4727 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4728 err = PTR_ERR(inode);
4729 if (IS_ERR(inode))
4730 goto out_unlock;
4731
f34f57a3 4732 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4733 if (err) {
4734 drop_inode = 1;
4735 goto out_unlock;
4736 }
4737
618e21d5 4738 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4739 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4740 if (err)
4741 drop_inode = 1;
4742 else {
4743 inode->i_op = &btrfs_special_inode_operations;
4744 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4745 btrfs_update_inode(trans, root, inode);
618e21d5 4746 }
618e21d5
JB
4747 btrfs_update_inode_block_group(trans, inode);
4748 btrfs_update_inode_block_group(trans, dir);
4749out_unlock:
d3c2fdcf 4750 nr = trans->blocks_used;
89ce8a63 4751 btrfs_end_transaction_throttle(trans, root);
a22285a6 4752 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4753 if (drop_inode) {
4754 inode_dec_link_count(inode);
4755 iput(inode);
4756 }
618e21d5
JB
4757 return err;
4758}
4759
39279cc3
CM
4760static int btrfs_create(struct inode *dir, struct dentry *dentry,
4761 int mode, struct nameidata *nd)
4762{
4763 struct btrfs_trans_handle *trans;
4764 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4765 struct inode *inode = NULL;
39279cc3 4766 int drop_inode = 0;
a22285a6 4767 int err;
1832a6d5 4768 unsigned long nr = 0;
39279cc3 4769 u64 objectid;
00e4e6b3 4770 u64 index = 0;
39279cc3 4771
a22285a6
YZ
4772 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4773 if (err)
4774 return err;
9ed74f2d
JB
4775 /*
4776 * 2 for inode item and ref
4777 * 2 for dir items
4778 * 1 for xattr if selinux is on
4779 */
a22285a6
YZ
4780 trans = btrfs_start_transaction(root, 5);
4781 if (IS_ERR(trans))
4782 return PTR_ERR(trans);
9ed74f2d 4783
39279cc3
CM
4784 btrfs_set_trans_block_group(trans, dir);
4785
aec7477b 4786 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2
JB
4787 dentry->d_name.len, dir->i_ino, objectid,
4788 BTRFS_I(dir)->block_group, mode, &index);
39279cc3
CM
4789 err = PTR_ERR(inode);
4790 if (IS_ERR(inode))
4791 goto out_unlock;
4792
f34f57a3 4793 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4794 if (err) {
4795 drop_inode = 1;
4796 goto out_unlock;
4797 }
4798
39279cc3 4799 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4800 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4801 if (err)
4802 drop_inode = 1;
4803 else {
4804 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4805 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4806 inode->i_fop = &btrfs_file_operations;
4807 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4808 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4809 }
39279cc3
CM
4810 btrfs_update_inode_block_group(trans, inode);
4811 btrfs_update_inode_block_group(trans, dir);
4812out_unlock:
d3c2fdcf 4813 nr = trans->blocks_used;
ab78c84d 4814 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4815 if (drop_inode) {
4816 inode_dec_link_count(inode);
4817 iput(inode);
4818 }
d3c2fdcf 4819 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4820 return err;
4821}
4822
4823static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4824 struct dentry *dentry)
4825{
4826 struct btrfs_trans_handle *trans;
4827 struct btrfs_root *root = BTRFS_I(dir)->root;
4828 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4829 u64 index;
1832a6d5 4830 unsigned long nr = 0;
39279cc3
CM
4831 int err;
4832 int drop_inode = 0;
4833
4834 if (inode->i_nlink == 0)
4835 return -ENOENT;
4836
4a8be425
TH
4837 /* do not allow sys_link's with other subvols of the same device */
4838 if (root->objectid != BTRFS_I(inode)->root->objectid)
4839 return -EPERM;
4840
9ed74f2d 4841 btrfs_inc_nlink(inode);
bc1cbf1f 4842 inode->i_ctime = CURRENT_TIME;
9ed74f2d 4843
3de4586c 4844 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4845 if (err)
4846 goto fail;
4847
a22285a6 4848 /*
7e6b6465 4849 * 2 items for inode and inode ref
a22285a6 4850 * 2 items for dir items
7e6b6465 4851 * 1 item for parent inode
a22285a6 4852 */
7e6b6465 4853 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4854 if (IS_ERR(trans)) {
4855 err = PTR_ERR(trans);
4856 goto fail;
4857 }
5f39d397 4858
39279cc3 4859 btrfs_set_trans_block_group(trans, dir);
7de9c6ee 4860 ihold(inode);
aec7477b 4861
a1b075d2 4862 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4863
a5719521 4864 if (err) {
54aa1f4d 4865 drop_inode = 1;
a5719521 4866 } else {
6a912213 4867 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4868 btrfs_update_inode_block_group(trans, dir);
4869 err = btrfs_update_inode(trans, root, inode);
4870 BUG_ON(err);
6a912213
JB
4871 btrfs_log_new_name(trans, inode, NULL, parent);
4872 dput(parent);
a5719521 4873 }
39279cc3 4874
d3c2fdcf 4875 nr = trans->blocks_used;
ab78c84d 4876 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4877fail:
39279cc3
CM
4878 if (drop_inode) {
4879 inode_dec_link_count(inode);
4880 iput(inode);
4881 }
d3c2fdcf 4882 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4883 return err;
4884}
4885
39279cc3
CM
4886static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4887{
b9d86667 4888 struct inode *inode = NULL;
39279cc3
CM
4889 struct btrfs_trans_handle *trans;
4890 struct btrfs_root *root = BTRFS_I(dir)->root;
4891 int err = 0;
4892 int drop_on_err = 0;
b9d86667 4893 u64 objectid = 0;
00e4e6b3 4894 u64 index = 0;
d3c2fdcf 4895 unsigned long nr = 1;
39279cc3 4896
a22285a6
YZ
4897 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4898 if (err)
4899 return err;
4900
9ed74f2d
JB
4901 /*
4902 * 2 items for inode and ref
4903 * 2 items for dir items
4904 * 1 for xattr if selinux is on
4905 */
a22285a6
YZ
4906 trans = btrfs_start_transaction(root, 5);
4907 if (IS_ERR(trans))
4908 return PTR_ERR(trans);
9ed74f2d 4909 btrfs_set_trans_block_group(trans, dir);
39279cc3 4910
aec7477b 4911 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4912 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
4913 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4914 &index);
39279cc3
CM
4915 if (IS_ERR(inode)) {
4916 err = PTR_ERR(inode);
4917 goto out_fail;
4918 }
5f39d397 4919
39279cc3 4920 drop_on_err = 1;
33268eaf 4921
f34f57a3 4922 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4923 if (err)
4924 goto out_fail;
4925
39279cc3
CM
4926 inode->i_op = &btrfs_dir_inode_operations;
4927 inode->i_fop = &btrfs_dir_file_operations;
4928 btrfs_set_trans_block_group(trans, inode);
4929
dbe674a9 4930 btrfs_i_size_write(inode, 0);
39279cc3
CM
4931 err = btrfs_update_inode(trans, root, inode);
4932 if (err)
4933 goto out_fail;
5f39d397 4934
a1b075d2
JB
4935 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4936 dentry->d_name.len, 0, index);
39279cc3
CM
4937 if (err)
4938 goto out_fail;
5f39d397 4939
39279cc3
CM
4940 d_instantiate(dentry, inode);
4941 drop_on_err = 0;
39279cc3
CM
4942 btrfs_update_inode_block_group(trans, inode);
4943 btrfs_update_inode_block_group(trans, dir);
4944
4945out_fail:
d3c2fdcf 4946 nr = trans->blocks_used;
ab78c84d 4947 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4948 if (drop_on_err)
4949 iput(inode);
d3c2fdcf 4950 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4951 return err;
4952}
4953
d352ac68
CM
4954/* helper for btfs_get_extent. Given an existing extent in the tree,
4955 * and an extent that you want to insert, deal with overlap and insert
4956 * the new extent into the tree.
4957 */
3b951516
CM
4958static int merge_extent_mapping(struct extent_map_tree *em_tree,
4959 struct extent_map *existing,
e6dcd2dc
CM
4960 struct extent_map *em,
4961 u64 map_start, u64 map_len)
3b951516
CM
4962{
4963 u64 start_diff;
3b951516 4964
e6dcd2dc
CM
4965 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4966 start_diff = map_start - em->start;
4967 em->start = map_start;
4968 em->len = map_len;
c8b97818
CM
4969 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4970 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4971 em->block_start += start_diff;
c8b97818
CM
4972 em->block_len -= start_diff;
4973 }
e6dcd2dc 4974 return add_extent_mapping(em_tree, em);
3b951516
CM
4975}
4976
c8b97818
CM
4977static noinline int uncompress_inline(struct btrfs_path *path,
4978 struct inode *inode, struct page *page,
4979 size_t pg_offset, u64 extent_offset,
4980 struct btrfs_file_extent_item *item)
4981{
4982 int ret;
4983 struct extent_buffer *leaf = path->nodes[0];
4984 char *tmp;
4985 size_t max_size;
4986 unsigned long inline_size;
4987 unsigned long ptr;
261507a0 4988 int compress_type;
c8b97818
CM
4989
4990 WARN_ON(pg_offset != 0);
261507a0 4991 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4992 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4993 inline_size = btrfs_file_extent_inline_item_len(leaf,
4994 btrfs_item_nr(leaf, path->slots[0]));
4995 tmp = kmalloc(inline_size, GFP_NOFS);
4996 ptr = btrfs_file_extent_inline_start(item);
4997
4998 read_extent_buffer(leaf, tmp, ptr, inline_size);
4999
5b050f04 5000 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5001 ret = btrfs_decompress(compress_type, tmp, page,
5002 extent_offset, inline_size, max_size);
c8b97818
CM
5003 if (ret) {
5004 char *kaddr = kmap_atomic(page, KM_USER0);
5005 unsigned long copy_size = min_t(u64,
5006 PAGE_CACHE_SIZE - pg_offset,
5007 max_size - extent_offset);
5008 memset(kaddr + pg_offset, 0, copy_size);
5009 kunmap_atomic(kaddr, KM_USER0);
5010 }
5011 kfree(tmp);
5012 return 0;
5013}
5014
d352ac68
CM
5015/*
5016 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5017 * the ugly parts come from merging extents from the disk with the in-ram
5018 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5019 * where the in-ram extents might be locked pending data=ordered completion.
5020 *
5021 * This also copies inline extents directly into the page.
5022 */
d397712b 5023
a52d9a80 5024struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5025 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5026 int create)
5027{
5028 int ret;
5029 int err = 0;
db94535d 5030 u64 bytenr;
a52d9a80
CM
5031 u64 extent_start = 0;
5032 u64 extent_end = 0;
5033 u64 objectid = inode->i_ino;
5034 u32 found_type;
f421950f 5035 struct btrfs_path *path = NULL;
a52d9a80
CM
5036 struct btrfs_root *root = BTRFS_I(inode)->root;
5037 struct btrfs_file_extent_item *item;
5f39d397
CM
5038 struct extent_buffer *leaf;
5039 struct btrfs_key found_key;
a52d9a80
CM
5040 struct extent_map *em = NULL;
5041 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5042 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5043 struct btrfs_trans_handle *trans = NULL;
261507a0 5044 int compress_type;
a52d9a80 5045
a52d9a80 5046again:
890871be 5047 read_lock(&em_tree->lock);
d1310b2e 5048 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5049 if (em)
5050 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5051 read_unlock(&em_tree->lock);
d1310b2e 5052
a52d9a80 5053 if (em) {
e1c4b745
CM
5054 if (em->start > start || em->start + em->len <= start)
5055 free_extent_map(em);
5056 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5057 free_extent_map(em);
5058 else
5059 goto out;
a52d9a80 5060 }
d1310b2e 5061 em = alloc_extent_map(GFP_NOFS);
a52d9a80 5062 if (!em) {
d1310b2e
CM
5063 err = -ENOMEM;
5064 goto out;
a52d9a80 5065 }
e6dcd2dc 5066 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5067 em->start = EXTENT_MAP_HOLE;
445a6944 5068 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5069 em->len = (u64)-1;
c8b97818 5070 em->block_len = (u64)-1;
f421950f
CM
5071
5072 if (!path) {
5073 path = btrfs_alloc_path();
5074 BUG_ON(!path);
5075 }
5076
179e29e4
CM
5077 ret = btrfs_lookup_file_extent(trans, root, path,
5078 objectid, start, trans != NULL);
a52d9a80
CM
5079 if (ret < 0) {
5080 err = ret;
5081 goto out;
5082 }
5083
5084 if (ret != 0) {
5085 if (path->slots[0] == 0)
5086 goto not_found;
5087 path->slots[0]--;
5088 }
5089
5f39d397
CM
5090 leaf = path->nodes[0];
5091 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5092 struct btrfs_file_extent_item);
a52d9a80 5093 /* are we inside the extent that was found? */
5f39d397
CM
5094 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5095 found_type = btrfs_key_type(&found_key);
5096 if (found_key.objectid != objectid ||
a52d9a80
CM
5097 found_type != BTRFS_EXTENT_DATA_KEY) {
5098 goto not_found;
5099 }
5100
5f39d397
CM
5101 found_type = btrfs_file_extent_type(leaf, item);
5102 extent_start = found_key.offset;
261507a0 5103 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5104 if (found_type == BTRFS_FILE_EXTENT_REG ||
5105 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5106 extent_end = extent_start +
db94535d 5107 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5108 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5109 size_t size;
5110 size = btrfs_file_extent_inline_len(leaf, item);
5111 extent_end = (extent_start + size + root->sectorsize - 1) &
5112 ~((u64)root->sectorsize - 1);
5113 }
5114
5115 if (start >= extent_end) {
5116 path->slots[0]++;
5117 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5118 ret = btrfs_next_leaf(root, path);
5119 if (ret < 0) {
5120 err = ret;
5121 goto out;
a52d9a80 5122 }
9036c102
YZ
5123 if (ret > 0)
5124 goto not_found;
5125 leaf = path->nodes[0];
a52d9a80 5126 }
9036c102
YZ
5127 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5128 if (found_key.objectid != objectid ||
5129 found_key.type != BTRFS_EXTENT_DATA_KEY)
5130 goto not_found;
5131 if (start + len <= found_key.offset)
5132 goto not_found;
5133 em->start = start;
5134 em->len = found_key.offset - start;
5135 goto not_found_em;
5136 }
5137
d899e052
YZ
5138 if (found_type == BTRFS_FILE_EXTENT_REG ||
5139 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5140 em->start = extent_start;
5141 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5142 em->orig_start = extent_start -
5143 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5144 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5145 if (bytenr == 0) {
5f39d397 5146 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5147 goto insert;
5148 }
261507a0 5149 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5150 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5151 em->compress_type = compress_type;
c8b97818
CM
5152 em->block_start = bytenr;
5153 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5154 item);
5155 } else {
5156 bytenr += btrfs_file_extent_offset(leaf, item);
5157 em->block_start = bytenr;
5158 em->block_len = em->len;
d899e052
YZ
5159 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5160 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5161 }
a52d9a80
CM
5162 goto insert;
5163 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5164 unsigned long ptr;
a52d9a80 5165 char *map;
3326d1b0
CM
5166 size_t size;
5167 size_t extent_offset;
5168 size_t copy_size;
a52d9a80 5169
689f9346 5170 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5171 if (!page || create) {
689f9346 5172 em->start = extent_start;
9036c102 5173 em->len = extent_end - extent_start;
689f9346
Y
5174 goto out;
5175 }
5f39d397 5176
9036c102
YZ
5177 size = btrfs_file_extent_inline_len(leaf, item);
5178 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5179 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5180 size - extent_offset);
3326d1b0 5181 em->start = extent_start + extent_offset;
70dec807
CM
5182 em->len = (copy_size + root->sectorsize - 1) &
5183 ~((u64)root->sectorsize - 1);
ff5b7ee3 5184 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5185 if (compress_type) {
c8b97818 5186 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5187 em->compress_type = compress_type;
5188 }
689f9346 5189 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5190 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5191 if (btrfs_file_extent_compression(leaf, item) !=
5192 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5193 ret = uncompress_inline(path, inode, page,
5194 pg_offset,
5195 extent_offset, item);
5196 BUG_ON(ret);
5197 } else {
5198 map = kmap(page);
5199 read_extent_buffer(leaf, map + pg_offset, ptr,
5200 copy_size);
93c82d57
CM
5201 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5202 memset(map + pg_offset + copy_size, 0,
5203 PAGE_CACHE_SIZE - pg_offset -
5204 copy_size);
5205 }
c8b97818
CM
5206 kunmap(page);
5207 }
179e29e4
CM
5208 flush_dcache_page(page);
5209 } else if (create && PageUptodate(page)) {
0ca1f7ce 5210 WARN_ON(1);
179e29e4
CM
5211 if (!trans) {
5212 kunmap(page);
5213 free_extent_map(em);
5214 em = NULL;
5215 btrfs_release_path(root, path);
f9295749 5216 trans = btrfs_join_transaction(root, 1);
3612b495
TI
5217 if (IS_ERR(trans))
5218 return ERR_CAST(trans);
179e29e4
CM
5219 goto again;
5220 }
c8b97818 5221 map = kmap(page);
70dec807 5222 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5223 copy_size);
c8b97818 5224 kunmap(page);
179e29e4 5225 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5226 }
d1310b2e
CM
5227 set_extent_uptodate(io_tree, em->start,
5228 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
5229 goto insert;
5230 } else {
d397712b 5231 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5232 WARN_ON(1);
5233 }
5234not_found:
5235 em->start = start;
d1310b2e 5236 em->len = len;
a52d9a80 5237not_found_em:
5f39d397 5238 em->block_start = EXTENT_MAP_HOLE;
9036c102 5239 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
5240insert:
5241 btrfs_release_path(root, path);
d1310b2e 5242 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5243 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5244 "[%llu %llu]\n", (unsigned long long)em->start,
5245 (unsigned long long)em->len,
5246 (unsigned long long)start,
5247 (unsigned long long)len);
a52d9a80
CM
5248 err = -EIO;
5249 goto out;
5250 }
d1310b2e
CM
5251
5252 err = 0;
890871be 5253 write_lock(&em_tree->lock);
a52d9a80 5254 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5255 /* it is possible that someone inserted the extent into the tree
5256 * while we had the lock dropped. It is also possible that
5257 * an overlapping map exists in the tree
5258 */
a52d9a80 5259 if (ret == -EEXIST) {
3b951516 5260 struct extent_map *existing;
e6dcd2dc
CM
5261
5262 ret = 0;
5263
3b951516 5264 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5265 if (existing && (existing->start > start ||
5266 existing->start + existing->len <= start)) {
5267 free_extent_map(existing);
5268 existing = NULL;
5269 }
3b951516
CM
5270 if (!existing) {
5271 existing = lookup_extent_mapping(em_tree, em->start,
5272 em->len);
5273 if (existing) {
5274 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5275 em, start,
5276 root->sectorsize);
3b951516
CM
5277 free_extent_map(existing);
5278 if (err) {
5279 free_extent_map(em);
5280 em = NULL;
5281 }
5282 } else {
5283 err = -EIO;
3b951516
CM
5284 free_extent_map(em);
5285 em = NULL;
5286 }
5287 } else {
5288 free_extent_map(em);
5289 em = existing;
e6dcd2dc 5290 err = 0;
a52d9a80 5291 }
a52d9a80 5292 }
890871be 5293 write_unlock(&em_tree->lock);
a52d9a80 5294out:
f421950f
CM
5295 if (path)
5296 btrfs_free_path(path);
a52d9a80
CM
5297 if (trans) {
5298 ret = btrfs_end_transaction(trans, root);
d397712b 5299 if (!err)
a52d9a80
CM
5300 err = ret;
5301 }
a52d9a80
CM
5302 if (err) {
5303 free_extent_map(em);
a52d9a80
CM
5304 return ERR_PTR(err);
5305 }
5306 return em;
5307}
5308
ec29ed5b
CM
5309struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5310 size_t pg_offset, u64 start, u64 len,
5311 int create)
5312{
5313 struct extent_map *em;
5314 struct extent_map *hole_em = NULL;
5315 u64 range_start = start;
5316 u64 end;
5317 u64 found;
5318 u64 found_end;
5319 int err = 0;
5320
5321 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5322 if (IS_ERR(em))
5323 return em;
5324 if (em) {
5325 /*
5326 * if our em maps to a hole, there might
5327 * actually be delalloc bytes behind it
5328 */
5329 if (em->block_start != EXTENT_MAP_HOLE)
5330 return em;
5331 else
5332 hole_em = em;
5333 }
5334
5335 /* check to see if we've wrapped (len == -1 or similar) */
5336 end = start + len;
5337 if (end < start)
5338 end = (u64)-1;
5339 else
5340 end -= 1;
5341
5342 em = NULL;
5343
5344 /* ok, we didn't find anything, lets look for delalloc */
5345 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5346 end, len, EXTENT_DELALLOC, 1);
5347 found_end = range_start + found;
5348 if (found_end < range_start)
5349 found_end = (u64)-1;
5350
5351 /*
5352 * we didn't find anything useful, return
5353 * the original results from get_extent()
5354 */
5355 if (range_start > end || found_end <= start) {
5356 em = hole_em;
5357 hole_em = NULL;
5358 goto out;
5359 }
5360
5361 /* adjust the range_start to make sure it doesn't
5362 * go backwards from the start they passed in
5363 */
5364 range_start = max(start,range_start);
5365 found = found_end - range_start;
5366
5367 if (found > 0) {
5368 u64 hole_start = start;
5369 u64 hole_len = len;
5370
5371 em = alloc_extent_map(GFP_NOFS);
5372 if (!em) {
5373 err = -ENOMEM;
5374 goto out;
5375 }
5376 /*
5377 * when btrfs_get_extent can't find anything it
5378 * returns one huge hole
5379 *
5380 * make sure what it found really fits our range, and
5381 * adjust to make sure it is based on the start from
5382 * the caller
5383 */
5384 if (hole_em) {
5385 u64 calc_end = extent_map_end(hole_em);
5386
5387 if (calc_end <= start || (hole_em->start > end)) {
5388 free_extent_map(hole_em);
5389 hole_em = NULL;
5390 } else {
5391 hole_start = max(hole_em->start, start);
5392 hole_len = calc_end - hole_start;
5393 }
5394 }
5395 em->bdev = NULL;
5396 if (hole_em && range_start > hole_start) {
5397 /* our hole starts before our delalloc, so we
5398 * have to return just the parts of the hole
5399 * that go until the delalloc starts
5400 */
5401 em->len = min(hole_len,
5402 range_start - hole_start);
5403 em->start = hole_start;
5404 em->orig_start = hole_start;
5405 /*
5406 * don't adjust block start at all,
5407 * it is fixed at EXTENT_MAP_HOLE
5408 */
5409 em->block_start = hole_em->block_start;
5410 em->block_len = hole_len;
5411 } else {
5412 em->start = range_start;
5413 em->len = found;
5414 em->orig_start = range_start;
5415 em->block_start = EXTENT_MAP_DELALLOC;
5416 em->block_len = found;
5417 }
5418 } else if (hole_em) {
5419 return hole_em;
5420 }
5421out:
5422
5423 free_extent_map(hole_em);
5424 if (err) {
5425 free_extent_map(em);
5426 return ERR_PTR(err);
5427 }
5428 return em;
5429}
5430
4b46fce2
JB
5431static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5432 u64 start, u64 len)
5433{
5434 struct btrfs_root *root = BTRFS_I(inode)->root;
5435 struct btrfs_trans_handle *trans;
5436 struct extent_map *em;
5437 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5438 struct btrfs_key ins;
5439 u64 alloc_hint;
5440 int ret;
5441
5442 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5443
5444 trans = btrfs_join_transaction(root, 0);
3612b495
TI
5445 if (IS_ERR(trans))
5446 return ERR_CAST(trans);
4b46fce2
JB
5447
5448 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5449
5450 alloc_hint = get_extent_allocation_hint(inode, start, len);
5451 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5452 alloc_hint, (u64)-1, &ins, 1);
5453 if (ret) {
5454 em = ERR_PTR(ret);
5455 goto out;
5456 }
5457
5458 em = alloc_extent_map(GFP_NOFS);
5459 if (!em) {
5460 em = ERR_PTR(-ENOMEM);
5461 goto out;
5462 }
5463
5464 em->start = start;
5465 em->orig_start = em->start;
5466 em->len = ins.offset;
5467
5468 em->block_start = ins.objectid;
5469 em->block_len = ins.offset;
5470 em->bdev = root->fs_info->fs_devices->latest_bdev;
5471 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5472
5473 while (1) {
5474 write_lock(&em_tree->lock);
5475 ret = add_extent_mapping(em_tree, em);
5476 write_unlock(&em_tree->lock);
5477 if (ret != -EEXIST)
5478 break;
5479 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5480 }
5481
5482 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5483 ins.offset, ins.offset, 0);
5484 if (ret) {
5485 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5486 em = ERR_PTR(ret);
5487 }
5488out:
5489 btrfs_end_transaction(trans, root);
5490 return em;
5491}
5492
46bfbb5c
CM
5493/*
5494 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5495 * block must be cow'd
5496 */
5497static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5498 struct inode *inode, u64 offset, u64 len)
5499{
5500 struct btrfs_path *path;
5501 int ret;
5502 struct extent_buffer *leaf;
5503 struct btrfs_root *root = BTRFS_I(inode)->root;
5504 struct btrfs_file_extent_item *fi;
5505 struct btrfs_key key;
5506 u64 disk_bytenr;
5507 u64 backref_offset;
5508 u64 extent_end;
5509 u64 num_bytes;
5510 int slot;
5511 int found_type;
5512
5513 path = btrfs_alloc_path();
5514 if (!path)
5515 return -ENOMEM;
5516
5517 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5518 offset, 0);
5519 if (ret < 0)
5520 goto out;
5521
5522 slot = path->slots[0];
5523 if (ret == 1) {
5524 if (slot == 0) {
5525 /* can't find the item, must cow */
5526 ret = 0;
5527 goto out;
5528 }
5529 slot--;
5530 }
5531 ret = 0;
5532 leaf = path->nodes[0];
5533 btrfs_item_key_to_cpu(leaf, &key, slot);
5534 if (key.objectid != inode->i_ino ||
5535 key.type != BTRFS_EXTENT_DATA_KEY) {
5536 /* not our file or wrong item type, must cow */
5537 goto out;
5538 }
5539
5540 if (key.offset > offset) {
5541 /* Wrong offset, must cow */
5542 goto out;
5543 }
5544
5545 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5546 found_type = btrfs_file_extent_type(leaf, fi);
5547 if (found_type != BTRFS_FILE_EXTENT_REG &&
5548 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5549 /* not a regular extent, must cow */
5550 goto out;
5551 }
5552 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5553 backref_offset = btrfs_file_extent_offset(leaf, fi);
5554
5555 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5556 if (extent_end < offset + len) {
5557 /* extent doesn't include our full range, must cow */
5558 goto out;
5559 }
5560
5561 if (btrfs_extent_readonly(root, disk_bytenr))
5562 goto out;
5563
5564 /*
5565 * look for other files referencing this extent, if we
5566 * find any we must cow
5567 */
5568 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5569 key.offset - backref_offset, disk_bytenr))
5570 goto out;
5571
5572 /*
5573 * adjust disk_bytenr and num_bytes to cover just the bytes
5574 * in this extent we are about to write. If there
5575 * are any csums in that range we have to cow in order
5576 * to keep the csums correct
5577 */
5578 disk_bytenr += backref_offset;
5579 disk_bytenr += offset - key.offset;
5580 num_bytes = min(offset + len, extent_end) - offset;
5581 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5582 goto out;
5583 /*
5584 * all of the above have passed, it is safe to overwrite this extent
5585 * without cow
5586 */
5587 ret = 1;
5588out:
5589 btrfs_free_path(path);
5590 return ret;
5591}
5592
4b46fce2
JB
5593static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5594 struct buffer_head *bh_result, int create)
5595{
5596 struct extent_map *em;
5597 struct btrfs_root *root = BTRFS_I(inode)->root;
5598 u64 start = iblock << inode->i_blkbits;
5599 u64 len = bh_result->b_size;
46bfbb5c 5600 struct btrfs_trans_handle *trans;
4b46fce2
JB
5601
5602 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5603 if (IS_ERR(em))
5604 return PTR_ERR(em);
5605
5606 /*
5607 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5608 * io. INLINE is special, and we could probably kludge it in here, but
5609 * it's still buffered so for safety lets just fall back to the generic
5610 * buffered path.
5611 *
5612 * For COMPRESSED we _have_ to read the entire extent in so we can
5613 * decompress it, so there will be buffering required no matter what we
5614 * do, so go ahead and fallback to buffered.
5615 *
5616 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5617 * to buffered IO. Don't blame me, this is the price we pay for using
5618 * the generic code.
5619 */
5620 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5621 em->block_start == EXTENT_MAP_INLINE) {
5622 free_extent_map(em);
5623 return -ENOTBLK;
5624 }
5625
5626 /* Just a good old fashioned hole, return */
5627 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5628 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5629 free_extent_map(em);
5630 /* DIO will do one hole at a time, so just unlock a sector */
5631 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5632 start + root->sectorsize - 1, GFP_NOFS);
5633 return 0;
5634 }
5635
5636 /*
5637 * We don't allocate a new extent in the following cases
5638 *
5639 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5640 * existing extent.
5641 * 2) The extent is marked as PREALLOC. We're good to go here and can
5642 * just use the extent.
5643 *
5644 */
46bfbb5c
CM
5645 if (!create) {
5646 len = em->len - (start - em->start);
4b46fce2 5647 goto map;
46bfbb5c 5648 }
4b46fce2
JB
5649
5650 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5651 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5652 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5653 int type;
5654 int ret;
46bfbb5c 5655 u64 block_start;
4b46fce2
JB
5656
5657 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5658 type = BTRFS_ORDERED_PREALLOC;
5659 else
5660 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5661 len = min(len, em->len - (start - em->start));
4b46fce2 5662 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5663
5664 /*
5665 * we're not going to log anything, but we do need
5666 * to make sure the current transaction stays open
5667 * while we look for nocow cross refs
5668 */
5669 trans = btrfs_join_transaction(root, 0);
3612b495 5670 if (IS_ERR(trans))
46bfbb5c
CM
5671 goto must_cow;
5672
5673 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5674 ret = btrfs_add_ordered_extent_dio(inode, start,
5675 block_start, len, len, type);
5676 btrfs_end_transaction(trans, root);
5677 if (ret) {
5678 free_extent_map(em);
5679 return ret;
5680 }
5681 goto unlock;
4b46fce2 5682 }
46bfbb5c 5683 btrfs_end_transaction(trans, root);
4b46fce2 5684 }
46bfbb5c
CM
5685must_cow:
5686 /*
5687 * this will cow the extent, reset the len in case we changed
5688 * it above
5689 */
5690 len = bh_result->b_size;
5691 free_extent_map(em);
5692 em = btrfs_new_extent_direct(inode, start, len);
5693 if (IS_ERR(em))
5694 return PTR_ERR(em);
5695 len = min(len, em->len - (start - em->start));
5696unlock:
4845e44f
CM
5697 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5698 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5699 0, NULL, GFP_NOFS);
4b46fce2
JB
5700map:
5701 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5702 inode->i_blkbits;
46bfbb5c 5703 bh_result->b_size = len;
4b46fce2
JB
5704 bh_result->b_bdev = em->bdev;
5705 set_buffer_mapped(bh_result);
5706 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5707 set_buffer_new(bh_result);
5708
5709 free_extent_map(em);
5710
5711 return 0;
5712}
5713
5714struct btrfs_dio_private {
5715 struct inode *inode;
5716 u64 logical_offset;
5717 u64 disk_bytenr;
5718 u64 bytes;
5719 u32 *csums;
5720 void *private;
e65e1535
MX
5721
5722 /* number of bios pending for this dio */
5723 atomic_t pending_bios;
5724
5725 /* IO errors */
5726 int errors;
5727
5728 struct bio *orig_bio;
4b46fce2
JB
5729};
5730
5731static void btrfs_endio_direct_read(struct bio *bio, int err)
5732{
e65e1535 5733 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5734 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5735 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5736 struct inode *inode = dip->inode;
5737 struct btrfs_root *root = BTRFS_I(inode)->root;
5738 u64 start;
5739 u32 *private = dip->csums;
5740
5741 start = dip->logical_offset;
5742 do {
5743 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5744 struct page *page = bvec->bv_page;
5745 char *kaddr;
5746 u32 csum = ~(u32)0;
5747 unsigned long flags;
5748
5749 local_irq_save(flags);
5750 kaddr = kmap_atomic(page, KM_IRQ0);
5751 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5752 csum, bvec->bv_len);
5753 btrfs_csum_final(csum, (char *)&csum);
5754 kunmap_atomic(kaddr, KM_IRQ0);
5755 local_irq_restore(flags);
5756
5757 flush_dcache_page(bvec->bv_page);
5758 if (csum != *private) {
5759 printk(KERN_ERR "btrfs csum failed ino %lu off"
5760 " %llu csum %u private %u\n",
5761 inode->i_ino, (unsigned long long)start,
5762 csum, *private);
5763 err = -EIO;
5764 }
5765 }
5766
5767 start += bvec->bv_len;
5768 private++;
5769 bvec++;
5770 } while (bvec <= bvec_end);
5771
5772 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5773 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5774 bio->bi_private = dip->private;
5775
5776 kfree(dip->csums);
5777 kfree(dip);
5778 dio_end_io(bio, err);
5779}
5780
5781static void btrfs_endio_direct_write(struct bio *bio, int err)
5782{
5783 struct btrfs_dio_private *dip = bio->bi_private;
5784 struct inode *inode = dip->inode;
5785 struct btrfs_root *root = BTRFS_I(inode)->root;
5786 struct btrfs_trans_handle *trans;
5787 struct btrfs_ordered_extent *ordered = NULL;
5788 struct extent_state *cached_state = NULL;
163cf09c
CM
5789 u64 ordered_offset = dip->logical_offset;
5790 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5791 int ret;
5792
5793 if (err)
5794 goto out_done;
163cf09c
CM
5795again:
5796 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5797 &ordered_offset,
5798 ordered_bytes);
4b46fce2 5799 if (!ret)
163cf09c 5800 goto out_test;
4b46fce2
JB
5801
5802 BUG_ON(!ordered);
5803
5804 trans = btrfs_join_transaction(root, 1);
3612b495 5805 if (IS_ERR(trans)) {
4b46fce2
JB
5806 err = -ENOMEM;
5807 goto out;
5808 }
5809 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5810
5811 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5812 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5813 if (!ret)
5814 ret = btrfs_update_inode(trans, root, inode);
5815 err = ret;
5816 goto out;
5817 }
5818
5819 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5820 ordered->file_offset + ordered->len - 1, 0,
5821 &cached_state, GFP_NOFS);
5822
5823 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5824 ret = btrfs_mark_extent_written(trans, inode,
5825 ordered->file_offset,
5826 ordered->file_offset +
5827 ordered->len);
5828 if (ret) {
5829 err = ret;
5830 goto out_unlock;
5831 }
5832 } else {
5833 ret = insert_reserved_file_extent(trans, inode,
5834 ordered->file_offset,
5835 ordered->start,
5836 ordered->disk_len,
5837 ordered->len,
5838 ordered->len,
5839 0, 0, 0,
5840 BTRFS_FILE_EXTENT_REG);
5841 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5842 ordered->file_offset, ordered->len);
5843 if (ret) {
5844 err = ret;
5845 WARN_ON(1);
5846 goto out_unlock;
5847 }
5848 }
5849
5850 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5851 btrfs_ordered_update_i_size(inode, 0, ordered);
5852 btrfs_update_inode(trans, root, inode);
5853out_unlock:
5854 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5855 ordered->file_offset + ordered->len - 1,
5856 &cached_state, GFP_NOFS);
5857out:
5858 btrfs_delalloc_release_metadata(inode, ordered->len);
5859 btrfs_end_transaction(trans, root);
163cf09c 5860 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5861 btrfs_put_ordered_extent(ordered);
5862 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5863
5864out_test:
5865 /*
5866 * our bio might span multiple ordered extents. If we haven't
5867 * completed the accounting for the whole dio, go back and try again
5868 */
5869 if (ordered_offset < dip->logical_offset + dip->bytes) {
5870 ordered_bytes = dip->logical_offset + dip->bytes -
5871 ordered_offset;
5872 goto again;
5873 }
4b46fce2
JB
5874out_done:
5875 bio->bi_private = dip->private;
5876
5877 kfree(dip->csums);
5878 kfree(dip);
5879 dio_end_io(bio, err);
5880}
5881
eaf25d93
CM
5882static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5883 struct bio *bio, int mirror_num,
5884 unsigned long bio_flags, u64 offset)
5885{
5886 int ret;
5887 struct btrfs_root *root = BTRFS_I(inode)->root;
5888 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5889 BUG_ON(ret);
5890 return 0;
5891}
5892
e65e1535
MX
5893static void btrfs_end_dio_bio(struct bio *bio, int err)
5894{
5895 struct btrfs_dio_private *dip = bio->bi_private;
5896
5897 if (err) {
5898 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
3dd1462e
JB
5899 "sector %#Lx len %u err no %d\n",
5900 dip->inode->i_ino, bio->bi_rw,
5901 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5902 dip->errors = 1;
5903
5904 /*
5905 * before atomic variable goto zero, we must make sure
5906 * dip->errors is perceived to be set.
5907 */
5908 smp_mb__before_atomic_dec();
5909 }
5910
5911 /* if there are more bios still pending for this dio, just exit */
5912 if (!atomic_dec_and_test(&dip->pending_bios))
5913 goto out;
5914
5915 if (dip->errors)
5916 bio_io_error(dip->orig_bio);
5917 else {
5918 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5919 bio_endio(dip->orig_bio, 0);
5920 }
5921out:
5922 bio_put(bio);
5923}
5924
5925static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5926 u64 first_sector, gfp_t gfp_flags)
5927{
5928 int nr_vecs = bio_get_nr_vecs(bdev);
5929 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5930}
5931
5932static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5933 int rw, u64 file_offset, int skip_sum,
5934 u32 *csums)
5935{
5936 int write = rw & REQ_WRITE;
5937 struct btrfs_root *root = BTRFS_I(inode)->root;
5938 int ret;
5939
5940 bio_get(bio);
5941 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5942 if (ret)
5943 goto err;
5944
5945 if (write && !skip_sum) {
5946 ret = btrfs_wq_submit_bio(root->fs_info,
5947 inode, rw, bio, 0, 0,
5948 file_offset,
5949 __btrfs_submit_bio_start_direct_io,
5950 __btrfs_submit_bio_done);
5951 goto err;
5952 } else if (!skip_sum)
5953 btrfs_lookup_bio_sums_dio(root, inode, bio,
5954 file_offset, csums);
5955
5956 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5957err:
5958 bio_put(bio);
5959 return ret;
5960}
5961
5962static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5963 int skip_sum)
5964{
5965 struct inode *inode = dip->inode;
5966 struct btrfs_root *root = BTRFS_I(inode)->root;
5967 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5968 struct bio *bio;
5969 struct bio *orig_bio = dip->orig_bio;
5970 struct bio_vec *bvec = orig_bio->bi_io_vec;
5971 u64 start_sector = orig_bio->bi_sector;
5972 u64 file_offset = dip->logical_offset;
5973 u64 submit_len = 0;
5974 u64 map_length;
5975 int nr_pages = 0;
5976 u32 *csums = dip->csums;
5977 int ret = 0;
5978
5979 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5980 if (!bio)
5981 return -ENOMEM;
5982 bio->bi_private = dip;
5983 bio->bi_end_io = btrfs_end_dio_bio;
5984 atomic_inc(&dip->pending_bios);
5985
5986 map_length = orig_bio->bi_size;
5987 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5988 &map_length, NULL, 0);
5989 if (ret) {
5990 bio_put(bio);
5991 return -EIO;
5992 }
5993
5994 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5995 if (unlikely(map_length < submit_len + bvec->bv_len ||
5996 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5997 bvec->bv_offset) < bvec->bv_len)) {
5998 /*
5999 * inc the count before we submit the bio so
6000 * we know the end IO handler won't happen before
6001 * we inc the count. Otherwise, the dip might get freed
6002 * before we're done setting it up
6003 */
6004 atomic_inc(&dip->pending_bios);
6005 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6006 file_offset, skip_sum,
6007 csums);
6008 if (ret) {
6009 bio_put(bio);
6010 atomic_dec(&dip->pending_bios);
6011 goto out_err;
6012 }
6013
6014 if (!skip_sum)
6015 csums = csums + nr_pages;
6016 start_sector += submit_len >> 9;
6017 file_offset += submit_len;
6018
6019 submit_len = 0;
6020 nr_pages = 0;
6021
6022 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6023 start_sector, GFP_NOFS);
6024 if (!bio)
6025 goto out_err;
6026 bio->bi_private = dip;
6027 bio->bi_end_io = btrfs_end_dio_bio;
6028
6029 map_length = orig_bio->bi_size;
6030 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6031 &map_length, NULL, 0);
6032 if (ret) {
6033 bio_put(bio);
6034 goto out_err;
6035 }
6036 } else {
6037 submit_len += bvec->bv_len;
6038 nr_pages ++;
6039 bvec++;
6040 }
6041 }
6042
6043 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6044 csums);
6045 if (!ret)
6046 return 0;
6047
6048 bio_put(bio);
6049out_err:
6050 dip->errors = 1;
6051 /*
6052 * before atomic variable goto zero, we must
6053 * make sure dip->errors is perceived to be set.
6054 */
6055 smp_mb__before_atomic_dec();
6056 if (atomic_dec_and_test(&dip->pending_bios))
6057 bio_io_error(dip->orig_bio);
6058
6059 /* bio_end_io() will handle error, so we needn't return it */
6060 return 0;
6061}
6062
4b46fce2
JB
6063static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6064 loff_t file_offset)
6065{
6066 struct btrfs_root *root = BTRFS_I(inode)->root;
6067 struct btrfs_dio_private *dip;
6068 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6069 int skip_sum;
7b6d91da 6070 int write = rw & REQ_WRITE;
4b46fce2
JB
6071 int ret = 0;
6072
6073 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6074
6075 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6076 if (!dip) {
6077 ret = -ENOMEM;
6078 goto free_ordered;
6079 }
6080 dip->csums = NULL;
6081
6082 if (!skip_sum) {
6083 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6084 if (!dip->csums) {
b4966b77 6085 kfree(dip);
4b46fce2
JB
6086 ret = -ENOMEM;
6087 goto free_ordered;
6088 }
6089 }
6090
6091 dip->private = bio->bi_private;
6092 dip->inode = inode;
6093 dip->logical_offset = file_offset;
6094
4b46fce2
JB
6095 dip->bytes = 0;
6096 do {
6097 dip->bytes += bvec->bv_len;
6098 bvec++;
6099 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6100
46bfbb5c 6101 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6102 bio->bi_private = dip;
e65e1535
MX
6103 dip->errors = 0;
6104 dip->orig_bio = bio;
6105 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6106
6107 if (write)
6108 bio->bi_end_io = btrfs_endio_direct_write;
6109 else
6110 bio->bi_end_io = btrfs_endio_direct_read;
6111
e65e1535
MX
6112 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6113 if (!ret)
eaf25d93 6114 return;
4b46fce2
JB
6115free_ordered:
6116 /*
6117 * If this is a write, we need to clean up the reserved space and kill
6118 * the ordered extent.
6119 */
6120 if (write) {
6121 struct btrfs_ordered_extent *ordered;
955256f2 6122 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6123 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6124 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6125 btrfs_free_reserved_extent(root, ordered->start,
6126 ordered->disk_len);
6127 btrfs_put_ordered_extent(ordered);
6128 btrfs_put_ordered_extent(ordered);
6129 }
6130 bio_endio(bio, ret);
6131}
6132
5a5f79b5
CM
6133static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6134 const struct iovec *iov, loff_t offset,
6135 unsigned long nr_segs)
6136{
6137 int seg;
6138 size_t size;
6139 unsigned long addr;
6140 unsigned blocksize_mask = root->sectorsize - 1;
6141 ssize_t retval = -EINVAL;
6142 loff_t end = offset;
6143
6144 if (offset & blocksize_mask)
6145 goto out;
6146
6147 /* Check the memory alignment. Blocks cannot straddle pages */
6148 for (seg = 0; seg < nr_segs; seg++) {
6149 addr = (unsigned long)iov[seg].iov_base;
6150 size = iov[seg].iov_len;
6151 end += size;
6152 if ((addr & blocksize_mask) || (size & blocksize_mask))
6153 goto out;
6154 }
6155 retval = 0;
6156out:
6157 return retval;
6158}
16432985
CM
6159static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6160 const struct iovec *iov, loff_t offset,
6161 unsigned long nr_segs)
6162{
4b46fce2
JB
6163 struct file *file = iocb->ki_filp;
6164 struct inode *inode = file->f_mapping->host;
6165 struct btrfs_ordered_extent *ordered;
4845e44f 6166 struct extent_state *cached_state = NULL;
4b46fce2
JB
6167 u64 lockstart, lockend;
6168 ssize_t ret;
4845e44f
CM
6169 int writing = rw & WRITE;
6170 int write_bits = 0;
3f7c579c 6171 size_t count = iov_length(iov, nr_segs);
4b46fce2 6172
5a5f79b5
CM
6173 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6174 offset, nr_segs)) {
6175 return 0;
6176 }
6177
4b46fce2 6178 lockstart = offset;
3f7c579c
CM
6179 lockend = offset + count - 1;
6180
6181 if (writing) {
6182 ret = btrfs_delalloc_reserve_space(inode, count);
6183 if (ret)
6184 goto out;
6185 }
4845e44f 6186
4b46fce2 6187 while (1) {
4845e44f
CM
6188 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6189 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6190 /*
6191 * We're concerned with the entire range that we're going to be
6192 * doing DIO to, so we need to make sure theres no ordered
6193 * extents in this range.
6194 */
6195 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6196 lockend - lockstart + 1);
6197 if (!ordered)
6198 break;
4845e44f
CM
6199 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6200 &cached_state, GFP_NOFS);
4b46fce2
JB
6201 btrfs_start_ordered_extent(inode, ordered, 1);
6202 btrfs_put_ordered_extent(ordered);
6203 cond_resched();
6204 }
6205
4845e44f
CM
6206 /*
6207 * we don't use btrfs_set_extent_delalloc because we don't want
6208 * the dirty or uptodate bits
6209 */
6210 if (writing) {
6211 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6212 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6213 EXTENT_DELALLOC, 0, NULL, &cached_state,
6214 GFP_NOFS);
6215 if (ret) {
6216 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6217 lockend, EXTENT_LOCKED | write_bits,
6218 1, 0, &cached_state, GFP_NOFS);
6219 goto out;
6220 }
6221 }
6222
6223 free_extent_state(cached_state);
6224 cached_state = NULL;
6225
5a5f79b5
CM
6226 ret = __blockdev_direct_IO(rw, iocb, inode,
6227 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6228 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6229 btrfs_submit_direct, 0);
4b46fce2
JB
6230
6231 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6232 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6233 offset + iov_length(iov, nr_segs) - 1,
6234 EXTENT_LOCKED | write_bits, 1, 0,
6235 &cached_state, GFP_NOFS);
4b46fce2
JB
6236 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6237 /*
6238 * We're falling back to buffered, unlock the section we didn't
6239 * do IO on.
6240 */
4845e44f
CM
6241 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6242 offset + iov_length(iov, nr_segs) - 1,
6243 EXTENT_LOCKED | write_bits, 1, 0,
6244 &cached_state, GFP_NOFS);
4b46fce2 6245 }
4845e44f
CM
6246out:
6247 free_extent_state(cached_state);
4b46fce2 6248 return ret;
16432985
CM
6249}
6250
1506fcc8
YS
6251static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6252 __u64 start, __u64 len)
6253{
ec29ed5b 6254 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6255}
6256
a52d9a80 6257int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6258{
d1310b2e
CM
6259 struct extent_io_tree *tree;
6260 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6261 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6262}
1832a6d5 6263
a52d9a80 6264static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6265{
d1310b2e 6266 struct extent_io_tree *tree;
b888db2b
CM
6267
6268
6269 if (current->flags & PF_MEMALLOC) {
6270 redirty_page_for_writepage(wbc, page);
6271 unlock_page(page);
6272 return 0;
6273 }
d1310b2e 6274 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6275 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6276}
6277
f421950f
CM
6278int btrfs_writepages(struct address_space *mapping,
6279 struct writeback_control *wbc)
b293f02e 6280{
d1310b2e 6281 struct extent_io_tree *tree;
771ed689 6282
d1310b2e 6283 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6284 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6285}
6286
3ab2fb5a
CM
6287static int
6288btrfs_readpages(struct file *file, struct address_space *mapping,
6289 struct list_head *pages, unsigned nr_pages)
6290{
d1310b2e
CM
6291 struct extent_io_tree *tree;
6292 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6293 return extent_readpages(tree, mapping, pages, nr_pages,
6294 btrfs_get_extent);
6295}
e6dcd2dc 6296static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6297{
d1310b2e
CM
6298 struct extent_io_tree *tree;
6299 struct extent_map_tree *map;
a52d9a80 6300 int ret;
8c2383c3 6301
d1310b2e
CM
6302 tree = &BTRFS_I(page->mapping->host)->io_tree;
6303 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6304 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6305 if (ret == 1) {
6306 ClearPagePrivate(page);
6307 set_page_private(page, 0);
6308 page_cache_release(page);
39279cc3 6309 }
a52d9a80 6310 return ret;
39279cc3
CM
6311}
6312
e6dcd2dc
CM
6313static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6314{
98509cfc
CM
6315 if (PageWriteback(page) || PageDirty(page))
6316 return 0;
b335b003 6317 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6318}
6319
a52d9a80 6320static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6321{
d1310b2e 6322 struct extent_io_tree *tree;
e6dcd2dc 6323 struct btrfs_ordered_extent *ordered;
2ac55d41 6324 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6325 u64 page_start = page_offset(page);
6326 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6327
8b62b72b
CM
6328
6329 /*
6330 * we have the page locked, so new writeback can't start,
6331 * and the dirty bit won't be cleared while we are here.
6332 *
6333 * Wait for IO on this page so that we can safely clear
6334 * the PagePrivate2 bit and do ordered accounting
6335 */
e6dcd2dc 6336 wait_on_page_writeback(page);
8b62b72b 6337
d1310b2e 6338 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6339 if (offset) {
6340 btrfs_releasepage(page, GFP_NOFS);
6341 return;
6342 }
2ac55d41
JB
6343 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6344 GFP_NOFS);
e6dcd2dc
CM
6345 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6346 page_offset(page));
6347 if (ordered) {
eb84ae03
CM
6348 /*
6349 * IO on this page will never be started, so we need
6350 * to account for any ordered extents now
6351 */
e6dcd2dc
CM
6352 clear_extent_bit(tree, page_start, page_end,
6353 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6354 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6355 &cached_state, GFP_NOFS);
8b62b72b
CM
6356 /*
6357 * whoever cleared the private bit is responsible
6358 * for the finish_ordered_io
6359 */
6360 if (TestClearPagePrivate2(page)) {
6361 btrfs_finish_ordered_io(page->mapping->host,
6362 page_start, page_end);
6363 }
e6dcd2dc 6364 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6365 cached_state = NULL;
6366 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6367 GFP_NOFS);
e6dcd2dc
CM
6368 }
6369 clear_extent_bit(tree, page_start, page_end,
32c00aff 6370 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6371 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6372 __btrfs_releasepage(page, GFP_NOFS);
6373
4a096752 6374 ClearPageChecked(page);
9ad6b7bc 6375 if (PagePrivate(page)) {
9ad6b7bc
CM
6376 ClearPagePrivate(page);
6377 set_page_private(page, 0);
6378 page_cache_release(page);
6379 }
39279cc3
CM
6380}
6381
9ebefb18
CM
6382/*
6383 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6384 * called from a page fault handler when a page is first dirtied. Hence we must
6385 * be careful to check for EOF conditions here. We set the page up correctly
6386 * for a written page which means we get ENOSPC checking when writing into
6387 * holes and correct delalloc and unwritten extent mapping on filesystems that
6388 * support these features.
6389 *
6390 * We are not allowed to take the i_mutex here so we have to play games to
6391 * protect against truncate races as the page could now be beyond EOF. Because
6392 * vmtruncate() writes the inode size before removing pages, once we have the
6393 * page lock we can determine safely if the page is beyond EOF. If it is not
6394 * beyond EOF, then the page is guaranteed safe against truncation until we
6395 * unlock the page.
6396 */
c2ec175c 6397int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6398{
c2ec175c 6399 struct page *page = vmf->page;
6da6abae 6400 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6401 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6402 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6403 struct btrfs_ordered_extent *ordered;
2ac55d41 6404 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6405 char *kaddr;
6406 unsigned long zero_start;
9ebefb18 6407 loff_t size;
1832a6d5 6408 int ret;
a52d9a80 6409 u64 page_start;
e6dcd2dc 6410 u64 page_end;
9ebefb18 6411
0ca1f7ce 6412 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6413 if (ret) {
6414 if (ret == -ENOMEM)
6415 ret = VM_FAULT_OOM;
6416 else /* -ENOSPC, -EIO, etc */
6417 ret = VM_FAULT_SIGBUS;
1832a6d5 6418 goto out;
56a76f82 6419 }
1832a6d5 6420
56a76f82 6421 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6422again:
9ebefb18 6423 lock_page(page);
9ebefb18 6424 size = i_size_read(inode);
e6dcd2dc
CM
6425 page_start = page_offset(page);
6426 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6427
9ebefb18 6428 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6429 (page_start >= size)) {
9ebefb18
CM
6430 /* page got truncated out from underneath us */
6431 goto out_unlock;
6432 }
e6dcd2dc
CM
6433 wait_on_page_writeback(page);
6434
2ac55d41
JB
6435 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6436 GFP_NOFS);
e6dcd2dc
CM
6437 set_page_extent_mapped(page);
6438
eb84ae03
CM
6439 /*
6440 * we can't set the delalloc bits if there are pending ordered
6441 * extents. Drop our locks and wait for them to finish
6442 */
e6dcd2dc
CM
6443 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6444 if (ordered) {
2ac55d41
JB
6445 unlock_extent_cached(io_tree, page_start, page_end,
6446 &cached_state, GFP_NOFS);
e6dcd2dc 6447 unlock_page(page);
eb84ae03 6448 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6449 btrfs_put_ordered_extent(ordered);
6450 goto again;
6451 }
6452
fbf19087
JB
6453 /*
6454 * XXX - page_mkwrite gets called every time the page is dirtied, even
6455 * if it was already dirty, so for space accounting reasons we need to
6456 * clear any delalloc bits for the range we are fixing to save. There
6457 * is probably a better way to do this, but for now keep consistent with
6458 * prepare_pages in the normal write path.
6459 */
2ac55d41 6460 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6461 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6462 0, 0, &cached_state, GFP_NOFS);
fbf19087 6463
2ac55d41
JB
6464 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6465 &cached_state);
9ed74f2d 6466 if (ret) {
2ac55d41
JB
6467 unlock_extent_cached(io_tree, page_start, page_end,
6468 &cached_state, GFP_NOFS);
9ed74f2d
JB
6469 ret = VM_FAULT_SIGBUS;
6470 goto out_unlock;
6471 }
e6dcd2dc 6472 ret = 0;
9ebefb18
CM
6473
6474 /* page is wholly or partially inside EOF */
a52d9a80 6475 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6476 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6477 else
e6dcd2dc 6478 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6479
e6dcd2dc
CM
6480 if (zero_start != PAGE_CACHE_SIZE) {
6481 kaddr = kmap(page);
6482 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6483 flush_dcache_page(page);
6484 kunmap(page);
6485 }
247e743c 6486 ClearPageChecked(page);
e6dcd2dc 6487 set_page_dirty(page);
50a9b214 6488 SetPageUptodate(page);
5a3f23d5 6489
257c62e1
CM
6490 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6491 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6492
2ac55d41 6493 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6494
6495out_unlock:
50a9b214
CM
6496 if (!ret)
6497 return VM_FAULT_LOCKED;
9ebefb18 6498 unlock_page(page);
0ca1f7ce 6499 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6500out:
9ebefb18
CM
6501 return ret;
6502}
6503
a41ad394 6504static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6505{
6506 struct btrfs_root *root = BTRFS_I(inode)->root;
6507 int ret;
3893e33b 6508 int err = 0;
39279cc3 6509 struct btrfs_trans_handle *trans;
d3c2fdcf 6510 unsigned long nr;
dbe674a9 6511 u64 mask = root->sectorsize - 1;
39279cc3 6512
5d5e103a
JB
6513 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6514 if (ret)
a41ad394 6515 return ret;
8082510e 6516
4a096752 6517 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6518 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6519
d68fc57b 6520 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6521 if (IS_ERR(trans))
6522 return PTR_ERR(trans);
8082510e 6523 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6524 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6525
6526 /*
6527 * setattr is responsible for setting the ordered_data_close flag,
6528 * but that is only tested during the last file release. That
6529 * could happen well after the next commit, leaving a great big
6530 * window where new writes may get lost if someone chooses to write
6531 * to this file after truncating to zero
6532 *
6533 * The inode doesn't have any dirty data here, and so if we commit
6534 * this is a noop. If someone immediately starts writing to the inode
6535 * it is very likely we'll catch some of their writes in this
6536 * transaction, and the commit will find this file on the ordered
6537 * data list with good things to send down.
6538 *
6539 * This is a best effort solution, there is still a window where
6540 * using truncate to replace the contents of the file will
6541 * end up with a zero length file after a crash.
6542 */
6543 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6544 btrfs_add_ordered_operation(trans, root, inode);
6545
8082510e 6546 while (1) {
d68fc57b
YZ
6547 if (!trans) {
6548 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6549 if (IS_ERR(trans))
6550 return PTR_ERR(trans);
d68fc57b
YZ
6551 btrfs_set_trans_block_group(trans, inode);
6552 trans->block_rsv = root->orphan_block_rsv;
6553 }
6554
6555 ret = btrfs_block_rsv_check(trans, root,
6556 root->orphan_block_rsv, 0, 5);
3893e33b 6557 if (ret == -EAGAIN) {
d68fc57b 6558 ret = btrfs_commit_transaction(trans, root);
3893e33b
JB
6559 if (ret)
6560 return ret;
d68fc57b
YZ
6561 trans = NULL;
6562 continue;
3893e33b
JB
6563 } else if (ret) {
6564 err = ret;
6565 break;
d68fc57b
YZ
6566 }
6567
8082510e
YZ
6568 ret = btrfs_truncate_inode_items(trans, root, inode,
6569 inode->i_size,
6570 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6571 if (ret != -EAGAIN) {
6572 err = ret;
8082510e 6573 break;
3893e33b 6574 }
39279cc3 6575
8082510e 6576 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6577 if (ret) {
6578 err = ret;
6579 break;
6580 }
5f39d397 6581
8082510e
YZ
6582 nr = trans->blocks_used;
6583 btrfs_end_transaction(trans, root);
d68fc57b 6584 trans = NULL;
8082510e 6585 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6586 }
6587
6588 if (ret == 0 && inode->i_nlink > 0) {
6589 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6590 if (ret)
6591 err = ret;
ded5db9d
JB
6592 } else if (ret && inode->i_nlink > 0) {
6593 /*
6594 * Failed to do the truncate, remove us from the in memory
6595 * orphan list.
6596 */
6597 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6598 }
6599
6600 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6601 if (ret && !err)
6602 err = ret;
7b128766 6603
7b128766 6604 nr = trans->blocks_used;
89ce8a63 6605 ret = btrfs_end_transaction_throttle(trans, root);
3893e33b
JB
6606 if (ret && !err)
6607 err = ret;
d3c2fdcf 6608 btrfs_btree_balance_dirty(root, nr);
a41ad394 6609
3893e33b 6610 return err;
39279cc3
CM
6611}
6612
d352ac68
CM
6613/*
6614 * create a new subvolume directory/inode (helper for the ioctl).
6615 */
d2fb3437 6616int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6617 struct btrfs_root *new_root,
d2fb3437 6618 u64 new_dirid, u64 alloc_hint)
39279cc3 6619{
39279cc3 6620 struct inode *inode;
76dda93c 6621 int err;
00e4e6b3 6622 u64 index = 0;
39279cc3 6623
aec7477b 6624 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6625 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6626 if (IS_ERR(inode))
f46b5a66 6627 return PTR_ERR(inode);
39279cc3
CM
6628 inode->i_op = &btrfs_dir_inode_operations;
6629 inode->i_fop = &btrfs_dir_file_operations;
6630
39279cc3 6631 inode->i_nlink = 1;
dbe674a9 6632 btrfs_i_size_write(inode, 0);
3b96362c 6633
76dda93c
YZ
6634 err = btrfs_update_inode(trans, new_root, inode);
6635 BUG_ON(err);
cb8e7090 6636
76dda93c 6637 iput(inode);
cb8e7090 6638 return 0;
39279cc3
CM
6639}
6640
d352ac68
CM
6641/* helper function for file defrag and space balancing. This
6642 * forces readahead on a given range of bytes in an inode
6643 */
edbd8d4e 6644unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6645 struct file_ra_state *ra, struct file *file,
6646 pgoff_t offset, pgoff_t last_index)
6647{
8e7bf94f 6648 pgoff_t req_size = last_index - offset + 1;
86479a04 6649
86479a04
CM
6650 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6651 return offset + req_size;
86479a04
CM
6652}
6653
39279cc3
CM
6654struct inode *btrfs_alloc_inode(struct super_block *sb)
6655{
6656 struct btrfs_inode *ei;
2ead6ae7 6657 struct inode *inode;
39279cc3
CM
6658
6659 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6660 if (!ei)
6661 return NULL;
2ead6ae7
YZ
6662
6663 ei->root = NULL;
6664 ei->space_info = NULL;
6665 ei->generation = 0;
6666 ei->sequence = 0;
15ee9bc7 6667 ei->last_trans = 0;
257c62e1 6668 ei->last_sub_trans = 0;
e02119d5 6669 ei->logged_trans = 0;
2ead6ae7
YZ
6670 ei->delalloc_bytes = 0;
6671 ei->reserved_bytes = 0;
6672 ei->disk_i_size = 0;
6673 ei->flags = 0;
6674 ei->index_cnt = (u64)-1;
6675 ei->last_unlink_trans = 0;
6676
0ca1f7ce 6677 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6678 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6679
6680 ei->ordered_data_close = 0;
d68fc57b 6681 ei->orphan_meta_reserved = 0;
2ead6ae7 6682 ei->dummy_inode = 0;
261507a0 6683 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7
YZ
6684
6685 inode = &ei->vfs_inode;
6686 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6687 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6688 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6689 mutex_init(&ei->log_mutex);
e6dcd2dc 6690 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6691 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6692 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6693 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6694 RB_CLEAR_NODE(&ei->rb_node);
6695
6696 return inode;
39279cc3
CM
6697}
6698
fa0d7e3d
NP
6699static void btrfs_i_callback(struct rcu_head *head)
6700{
6701 struct inode *inode = container_of(head, struct inode, i_rcu);
6702 INIT_LIST_HEAD(&inode->i_dentry);
6703 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6704}
6705
39279cc3
CM
6706void btrfs_destroy_inode(struct inode *inode)
6707{
e6dcd2dc 6708 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6709 struct btrfs_root *root = BTRFS_I(inode)->root;
6710
39279cc3
CM
6711 WARN_ON(!list_empty(&inode->i_dentry));
6712 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6713 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6714 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6715
a6dbd429
JB
6716 /*
6717 * This can happen where we create an inode, but somebody else also
6718 * created the same inode and we need to destroy the one we already
6719 * created.
6720 */
6721 if (!root)
6722 goto free;
6723
5a3f23d5
CM
6724 /*
6725 * Make sure we're properly removed from the ordered operation
6726 * lists.
6727 */
6728 smp_mb();
6729 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6730 spin_lock(&root->fs_info->ordered_extent_lock);
6731 list_del_init(&BTRFS_I(inode)->ordered_operations);
6732 spin_unlock(&root->fs_info->ordered_extent_lock);
6733 }
6734
0af3d00b
JB
6735 if (root == root->fs_info->tree_root) {
6736 struct btrfs_block_group_cache *block_group;
6737
6738 block_group = btrfs_lookup_block_group(root->fs_info,
6739 BTRFS_I(inode)->block_group);
6740 if (block_group && block_group->inode == inode) {
6741 spin_lock(&block_group->lock);
6742 block_group->inode = NULL;
6743 spin_unlock(&block_group->lock);
6744 btrfs_put_block_group(block_group);
6745 } else if (block_group) {
6746 btrfs_put_block_group(block_group);
6747 }
6748 }
6749
d68fc57b 6750 spin_lock(&root->orphan_lock);
7b128766 6751 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
6752 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6753 inode->i_ino);
6754 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6755 }
d68fc57b 6756 spin_unlock(&root->orphan_lock);
7b128766 6757
d397712b 6758 while (1) {
e6dcd2dc
CM
6759 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6760 if (!ordered)
6761 break;
6762 else {
d397712b
CM
6763 printk(KERN_ERR "btrfs found ordered "
6764 "extent %llu %llu on inode cleanup\n",
6765 (unsigned long long)ordered->file_offset,
6766 (unsigned long long)ordered->len);
e6dcd2dc
CM
6767 btrfs_remove_ordered_extent(inode, ordered);
6768 btrfs_put_ordered_extent(ordered);
6769 btrfs_put_ordered_extent(ordered);
6770 }
6771 }
5d4f98a2 6772 inode_tree_del(inode);
5b21f2ed 6773 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6774free:
fa0d7e3d 6775 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6776}
6777
45321ac5 6778int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6779{
6780 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6781
0af3d00b
JB
6782 if (btrfs_root_refs(&root->root_item) == 0 &&
6783 root != root->fs_info->tree_root)
45321ac5 6784 return 1;
76dda93c 6785 else
45321ac5 6786 return generic_drop_inode(inode);
76dda93c
YZ
6787}
6788
0ee0fda0 6789static void init_once(void *foo)
39279cc3
CM
6790{
6791 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6792
6793 inode_init_once(&ei->vfs_inode);
6794}
6795
6796void btrfs_destroy_cachep(void)
6797{
6798 if (btrfs_inode_cachep)
6799 kmem_cache_destroy(btrfs_inode_cachep);
6800 if (btrfs_trans_handle_cachep)
6801 kmem_cache_destroy(btrfs_trans_handle_cachep);
6802 if (btrfs_transaction_cachep)
6803 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6804 if (btrfs_path_cachep)
6805 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6806 if (btrfs_free_space_cachep)
6807 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6808}
6809
6810int btrfs_init_cachep(void)
6811{
9601e3f6
CH
6812 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6813 sizeof(struct btrfs_inode), 0,
6814 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6815 if (!btrfs_inode_cachep)
6816 goto fail;
9601e3f6
CH
6817
6818 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6819 sizeof(struct btrfs_trans_handle), 0,
6820 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6821 if (!btrfs_trans_handle_cachep)
6822 goto fail;
9601e3f6
CH
6823
6824 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6825 sizeof(struct btrfs_transaction), 0,
6826 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6827 if (!btrfs_transaction_cachep)
6828 goto fail;
9601e3f6
CH
6829
6830 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6831 sizeof(struct btrfs_path), 0,
6832 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6833 if (!btrfs_path_cachep)
6834 goto fail;
9601e3f6 6835
dc89e982
JB
6836 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6837 sizeof(struct btrfs_free_space), 0,
6838 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6839 if (!btrfs_free_space_cachep)
6840 goto fail;
6841
39279cc3
CM
6842 return 0;
6843fail:
6844 btrfs_destroy_cachep();
6845 return -ENOMEM;
6846}
6847
6848static int btrfs_getattr(struct vfsmount *mnt,
6849 struct dentry *dentry, struct kstat *stat)
6850{
6851 struct inode *inode = dentry->d_inode;
6852 generic_fillattr(inode, stat);
3394e160 6853 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6854 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6855 stat->blocks = (inode_get_bytes(inode) +
6856 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6857 return 0;
6858}
6859
d397712b
CM
6860static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6861 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6862{
6863 struct btrfs_trans_handle *trans;
6864 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6865 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6866 struct inode *new_inode = new_dentry->d_inode;
6867 struct inode *old_inode = old_dentry->d_inode;
6868 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6869 u64 index = 0;
4df27c4d 6870 u64 root_objectid;
39279cc3
CM
6871 int ret;
6872
f679a840
YZ
6873 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6874 return -EPERM;
6875
4df27c4d
YZ
6876 /* we only allow rename subvolume link between subvolumes */
6877 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6878 return -EXDEV;
6879
4df27c4d
YZ
6880 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6881 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6882 return -ENOTEMPTY;
5f39d397 6883
4df27c4d
YZ
6884 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6885 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6886 return -ENOTEMPTY;
5a3f23d5
CM
6887 /*
6888 * we're using rename to replace one file with another.
6889 * and the replacement file is large. Start IO on it now so
6890 * we don't add too much work to the end of the transaction
6891 */
4baf8c92 6892 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6893 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6894 filemap_flush(old_inode->i_mapping);
6895
76dda93c
YZ
6896 /* close the racy window with snapshot create/destroy ioctl */
6897 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6898 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6899 /*
6900 * We want to reserve the absolute worst case amount of items. So if
6901 * both inodes are subvols and we need to unlink them then that would
6902 * require 4 item modifications, but if they are both normal inodes it
6903 * would require 5 item modifications, so we'll assume their normal
6904 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6905 * should cover the worst case number of items we'll modify.
6906 */
6907 trans = btrfs_start_transaction(root, 20);
6908 if (IS_ERR(trans))
6909 return PTR_ERR(trans);
76dda93c 6910
a5719521 6911 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 6912
4df27c4d
YZ
6913 if (dest != root)
6914 btrfs_record_root_in_trans(trans, dest);
5f39d397 6915
a5719521
YZ
6916 ret = btrfs_set_inode_index(new_dir, &index);
6917 if (ret)
6918 goto out_fail;
5a3f23d5 6919
a5719521 6920 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6921 /* force full log commit if subvolume involved. */
6922 root->fs_info->last_trans_log_full_commit = trans->transid;
6923 } else {
a5719521
YZ
6924 ret = btrfs_insert_inode_ref(trans, dest,
6925 new_dentry->d_name.name,
6926 new_dentry->d_name.len,
6927 old_inode->i_ino,
6928 new_dir->i_ino, index);
6929 if (ret)
6930 goto out_fail;
4df27c4d
YZ
6931 /*
6932 * this is an ugly little race, but the rename is required
6933 * to make sure that if we crash, the inode is either at the
6934 * old name or the new one. pinning the log transaction lets
6935 * us make sure we don't allow a log commit to come in after
6936 * we unlink the name but before we add the new name back in.
6937 */
6938 btrfs_pin_log_trans(root);
6939 }
5a3f23d5
CM
6940 /*
6941 * make sure the inode gets flushed if it is replacing
6942 * something.
6943 */
6944 if (new_inode && new_inode->i_size &&
6945 old_inode && S_ISREG(old_inode->i_mode)) {
6946 btrfs_add_ordered_operation(trans, root, old_inode);
6947 }
6948
39279cc3
CM
6949 old_dir->i_ctime = old_dir->i_mtime = ctime;
6950 new_dir->i_ctime = new_dir->i_mtime = ctime;
6951 old_inode->i_ctime = ctime;
5f39d397 6952
12fcfd22
CM
6953 if (old_dentry->d_parent != new_dentry->d_parent)
6954 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6955
4df27c4d
YZ
6956 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6957 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6958 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6959 old_dentry->d_name.name,
6960 old_dentry->d_name.len);
6961 } else {
6962 btrfs_inc_nlink(old_dentry->d_inode);
6963 ret = btrfs_unlink_inode(trans, root, old_dir,
6964 old_dentry->d_inode,
6965 old_dentry->d_name.name,
6966 old_dentry->d_name.len);
6967 }
6968 BUG_ON(ret);
39279cc3
CM
6969
6970 if (new_inode) {
6971 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
6972 if (unlikely(new_inode->i_ino ==
6973 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6974 root_objectid = BTRFS_I(new_inode)->location.objectid;
6975 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6976 root_objectid,
6977 new_dentry->d_name.name,
6978 new_dentry->d_name.len);
6979 BUG_ON(new_inode->i_nlink == 0);
6980 } else {
6981 ret = btrfs_unlink_inode(trans, dest, new_dir,
6982 new_dentry->d_inode,
6983 new_dentry->d_name.name,
6984 new_dentry->d_name.len);
6985 }
6986 BUG_ON(ret);
7b128766 6987 if (new_inode->i_nlink == 0) {
e02119d5 6988 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 6989 BUG_ON(ret);
7b128766 6990 }
39279cc3 6991 }
aec7477b 6992
4df27c4d
YZ
6993 ret = btrfs_add_link(trans, new_dir, old_inode,
6994 new_dentry->d_name.name,
a5719521 6995 new_dentry->d_name.len, 0, index);
4df27c4d 6996 BUG_ON(ret);
39279cc3 6997
4df27c4d 6998 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
6999 struct dentry *parent = dget_parent(new_dentry);
7000 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7001 dput(parent);
4df27c4d
YZ
7002 btrfs_end_log_trans(root);
7003 }
39279cc3 7004out_fail:
ab78c84d 7005 btrfs_end_transaction_throttle(trans, root);
4df27c4d 7006
76dda93c
YZ
7007 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7008 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7009
39279cc3
CM
7010 return ret;
7011}
7012
d352ac68
CM
7013/*
7014 * some fairly slow code that needs optimization. This walks the list
7015 * of all the inodes with pending delalloc and forces them to disk.
7016 */
24bbcf04 7017int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7018{
7019 struct list_head *head = &root->fs_info->delalloc_inodes;
7020 struct btrfs_inode *binode;
5b21f2ed 7021 struct inode *inode;
ea8c2819 7022
c146afad
YZ
7023 if (root->fs_info->sb->s_flags & MS_RDONLY)
7024 return -EROFS;
7025
75eff68e 7026 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7027 while (!list_empty(head)) {
ea8c2819
CM
7028 binode = list_entry(head->next, struct btrfs_inode,
7029 delalloc_inodes);
5b21f2ed
ZY
7030 inode = igrab(&binode->vfs_inode);
7031 if (!inode)
7032 list_del_init(&binode->delalloc_inodes);
75eff68e 7033 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7034 if (inode) {
8c8bee1d 7035 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7036 if (delay_iput)
7037 btrfs_add_delayed_iput(inode);
7038 else
7039 iput(inode);
5b21f2ed
ZY
7040 }
7041 cond_resched();
75eff68e 7042 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7043 }
75eff68e 7044 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7045
7046 /* the filemap_flush will queue IO into the worker threads, but
7047 * we have to make sure the IO is actually started and that
7048 * ordered extents get created before we return
7049 */
7050 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7051 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7052 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7053 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7054 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7055 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7056 }
7057 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7058 return 0;
7059}
7060
0019f10d
JB
7061int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7062 int sync)
5da9d01b
YZ
7063{
7064 struct btrfs_inode *binode;
7065 struct inode *inode = NULL;
7066
7067 spin_lock(&root->fs_info->delalloc_lock);
7068 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7069 binode = list_entry(root->fs_info->delalloc_inodes.next,
7070 struct btrfs_inode, delalloc_inodes);
7071 inode = igrab(&binode->vfs_inode);
7072 if (inode) {
7073 list_move_tail(&binode->delalloc_inodes,
7074 &root->fs_info->delalloc_inodes);
7075 break;
7076 }
7077
7078 list_del_init(&binode->delalloc_inodes);
7079 cond_resched_lock(&root->fs_info->delalloc_lock);
7080 }
7081 spin_unlock(&root->fs_info->delalloc_lock);
7082
7083 if (inode) {
0019f10d
JB
7084 if (sync) {
7085 filemap_write_and_wait(inode->i_mapping);
7086 /*
7087 * We have to do this because compression doesn't
7088 * actually set PG_writeback until it submits the pages
7089 * for IO, which happens in an async thread, so we could
7090 * race and not actually wait for any writeback pages
7091 * because they've not been submitted yet. Technically
7092 * this could still be the case for the ordered stuff
7093 * since the async thread may not have started to do its
7094 * work yet. If this becomes the case then we need to
7095 * figure out a way to make sure that in writepage we
7096 * wait for any async pages to be submitted before
7097 * returning so that fdatawait does what its supposed to
7098 * do.
7099 */
7100 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7101 } else {
7102 filemap_flush(inode->i_mapping);
7103 }
5da9d01b
YZ
7104 if (delay_iput)
7105 btrfs_add_delayed_iput(inode);
7106 else
7107 iput(inode);
7108 return 1;
7109 }
7110 return 0;
7111}
7112
39279cc3
CM
7113static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7114 const char *symname)
7115{
7116 struct btrfs_trans_handle *trans;
7117 struct btrfs_root *root = BTRFS_I(dir)->root;
7118 struct btrfs_path *path;
7119 struct btrfs_key key;
1832a6d5 7120 struct inode *inode = NULL;
39279cc3
CM
7121 int err;
7122 int drop_inode = 0;
7123 u64 objectid;
00e4e6b3 7124 u64 index = 0 ;
39279cc3
CM
7125 int name_len;
7126 int datasize;
5f39d397 7127 unsigned long ptr;
39279cc3 7128 struct btrfs_file_extent_item *ei;
5f39d397 7129 struct extent_buffer *leaf;
1832a6d5 7130 unsigned long nr = 0;
39279cc3
CM
7131
7132 name_len = strlen(symname) + 1;
7133 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7134 return -ENAMETOOLONG;
1832a6d5 7135
a22285a6
YZ
7136 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7137 if (err)
7138 return err;
9ed74f2d
JB
7139 /*
7140 * 2 items for inode item and ref
7141 * 2 items for dir items
7142 * 1 item for xattr if selinux is on
7143 */
a22285a6
YZ
7144 trans = btrfs_start_transaction(root, 5);
7145 if (IS_ERR(trans))
7146 return PTR_ERR(trans);
1832a6d5 7147
39279cc3
CM
7148 btrfs_set_trans_block_group(trans, dir);
7149
aec7477b 7150 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 7151 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
7152 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7153 &index);
39279cc3
CM
7154 err = PTR_ERR(inode);
7155 if (IS_ERR(inode))
7156 goto out_unlock;
7157
f34f57a3 7158 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
7159 if (err) {
7160 drop_inode = 1;
7161 goto out_unlock;
7162 }
7163
39279cc3 7164 btrfs_set_trans_block_group(trans, inode);
a1b075d2 7165 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7166 if (err)
7167 drop_inode = 1;
7168 else {
7169 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7170 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7171 inode->i_fop = &btrfs_file_operations;
7172 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7173 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7174 }
39279cc3
CM
7175 btrfs_update_inode_block_group(trans, inode);
7176 btrfs_update_inode_block_group(trans, dir);
7177 if (drop_inode)
7178 goto out_unlock;
7179
7180 path = btrfs_alloc_path();
7181 BUG_ON(!path);
7182 key.objectid = inode->i_ino;
7183 key.offset = 0;
39279cc3
CM
7184 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7185 datasize = btrfs_file_extent_calc_inline_size(name_len);
7186 err = btrfs_insert_empty_item(trans, root, path, &key,
7187 datasize);
54aa1f4d
CM
7188 if (err) {
7189 drop_inode = 1;
7190 goto out_unlock;
7191 }
5f39d397
CM
7192 leaf = path->nodes[0];
7193 ei = btrfs_item_ptr(leaf, path->slots[0],
7194 struct btrfs_file_extent_item);
7195 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7196 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7197 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7198 btrfs_set_file_extent_encryption(leaf, ei, 0);
7199 btrfs_set_file_extent_compression(leaf, ei, 0);
7200 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7201 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7202
39279cc3 7203 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7204 write_extent_buffer(leaf, symname, ptr, name_len);
7205 btrfs_mark_buffer_dirty(leaf);
39279cc3 7206 btrfs_free_path(path);
5f39d397 7207
39279cc3
CM
7208 inode->i_op = &btrfs_symlink_inode_operations;
7209 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7210 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7211 inode_set_bytes(inode, name_len);
dbe674a9 7212 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7213 err = btrfs_update_inode(trans, root, inode);
7214 if (err)
7215 drop_inode = 1;
39279cc3
CM
7216
7217out_unlock:
d3c2fdcf 7218 nr = trans->blocks_used;
ab78c84d 7219 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7220 if (drop_inode) {
7221 inode_dec_link_count(inode);
7222 iput(inode);
7223 }
d3c2fdcf 7224 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7225 return err;
7226}
16432985 7227
0af3d00b
JB
7228static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7229 u64 start, u64 num_bytes, u64 min_size,
7230 loff_t actual_len, u64 *alloc_hint,
7231 struct btrfs_trans_handle *trans)
d899e052 7232{
d899e052
YZ
7233 struct btrfs_root *root = BTRFS_I(inode)->root;
7234 struct btrfs_key ins;
d899e052 7235 u64 cur_offset = start;
55a61d1d 7236 u64 i_size;
d899e052 7237 int ret = 0;
0af3d00b 7238 bool own_trans = true;
d899e052 7239
0af3d00b
JB
7240 if (trans)
7241 own_trans = false;
d899e052 7242 while (num_bytes > 0) {
0af3d00b
JB
7243 if (own_trans) {
7244 trans = btrfs_start_transaction(root, 3);
7245 if (IS_ERR(trans)) {
7246 ret = PTR_ERR(trans);
7247 break;
7248 }
5a303d5d
YZ
7249 }
7250
efa56464
YZ
7251 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7252 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7253 if (ret) {
0af3d00b
JB
7254 if (own_trans)
7255 btrfs_end_transaction(trans, root);
a22285a6 7256 break;
d899e052 7257 }
5a303d5d 7258
d899e052
YZ
7259 ret = insert_reserved_file_extent(trans, inode,
7260 cur_offset, ins.objectid,
7261 ins.offset, ins.offset,
920bbbfb 7262 ins.offset, 0, 0, 0,
d899e052
YZ
7263 BTRFS_FILE_EXTENT_PREALLOC);
7264 BUG_ON(ret);
a1ed835e
CM
7265 btrfs_drop_extent_cache(inode, cur_offset,
7266 cur_offset + ins.offset -1, 0);
5a303d5d 7267
d899e052
YZ
7268 num_bytes -= ins.offset;
7269 cur_offset += ins.offset;
efa56464 7270 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7271
d899e052 7272 inode->i_ctime = CURRENT_TIME;
6cbff00f 7273 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7274 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7275 (actual_len > inode->i_size) &&
7276 (cur_offset > inode->i_size)) {
d1ea6a61 7277 if (cur_offset > actual_len)
55a61d1d 7278 i_size = actual_len;
d1ea6a61 7279 else
55a61d1d
JB
7280 i_size = cur_offset;
7281 i_size_write(inode, i_size);
7282 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7283 }
7284
d899e052
YZ
7285 ret = btrfs_update_inode(trans, root, inode);
7286 BUG_ON(ret);
d899e052 7287
0af3d00b
JB
7288 if (own_trans)
7289 btrfs_end_transaction(trans, root);
5a303d5d 7290 }
d899e052
YZ
7291 return ret;
7292}
7293
0af3d00b
JB
7294int btrfs_prealloc_file_range(struct inode *inode, int mode,
7295 u64 start, u64 num_bytes, u64 min_size,
7296 loff_t actual_len, u64 *alloc_hint)
7297{
7298 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7299 min_size, actual_len, alloc_hint,
7300 NULL);
7301}
7302
7303int btrfs_prealloc_file_range_trans(struct inode *inode,
7304 struct btrfs_trans_handle *trans, int mode,
7305 u64 start, u64 num_bytes, u64 min_size,
7306 loff_t actual_len, u64 *alloc_hint)
7307{
7308 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7309 min_size, actual_len, alloc_hint, trans);
7310}
7311
e6dcd2dc
CM
7312static int btrfs_set_page_dirty(struct page *page)
7313{
e6dcd2dc
CM
7314 return __set_page_dirty_nobuffers(page);
7315}
7316
b74c79e9 7317static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7318{
b83cc969
LZ
7319 struct btrfs_root *root = BTRFS_I(inode)->root;
7320
7321 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7322 return -EROFS;
6cbff00f 7323 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7324 return -EACCES;
b74c79e9 7325 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7326}
39279cc3 7327
6e1d5dcc 7328static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7329 .getattr = btrfs_getattr,
39279cc3
CM
7330 .lookup = btrfs_lookup,
7331 .create = btrfs_create,
7332 .unlink = btrfs_unlink,
7333 .link = btrfs_link,
7334 .mkdir = btrfs_mkdir,
7335 .rmdir = btrfs_rmdir,
7336 .rename = btrfs_rename,
7337 .symlink = btrfs_symlink,
7338 .setattr = btrfs_setattr,
618e21d5 7339 .mknod = btrfs_mknod,
95819c05
CH
7340 .setxattr = btrfs_setxattr,
7341 .getxattr = btrfs_getxattr,
5103e947 7342 .listxattr = btrfs_listxattr,
95819c05 7343 .removexattr = btrfs_removexattr,
fdebe2bd 7344 .permission = btrfs_permission,
39279cc3 7345};
6e1d5dcc 7346static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7347 .lookup = btrfs_lookup,
fdebe2bd 7348 .permission = btrfs_permission,
39279cc3 7349};
76dda93c 7350
828c0950 7351static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7352 .llseek = generic_file_llseek,
7353 .read = generic_read_dir,
cbdf5a24 7354 .readdir = btrfs_real_readdir,
34287aa3 7355 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7356#ifdef CONFIG_COMPAT
34287aa3 7357 .compat_ioctl = btrfs_ioctl,
39279cc3 7358#endif
6bf13c0c 7359 .release = btrfs_release_file,
e02119d5 7360 .fsync = btrfs_sync_file,
39279cc3
CM
7361};
7362
d1310b2e 7363static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7364 .fill_delalloc = run_delalloc_range,
065631f6 7365 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7366 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7367 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7368 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7369 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7370 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7371 .set_bit_hook = btrfs_set_bit_hook,
7372 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7373 .merge_extent_hook = btrfs_merge_extent_hook,
7374 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7375};
7376
35054394
CM
7377/*
7378 * btrfs doesn't support the bmap operation because swapfiles
7379 * use bmap to make a mapping of extents in the file. They assume
7380 * these extents won't change over the life of the file and they
7381 * use the bmap result to do IO directly to the drive.
7382 *
7383 * the btrfs bmap call would return logical addresses that aren't
7384 * suitable for IO and they also will change frequently as COW
7385 * operations happen. So, swapfile + btrfs == corruption.
7386 *
7387 * For now we're avoiding this by dropping bmap.
7388 */
7f09410b 7389static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7390 .readpage = btrfs_readpage,
7391 .writepage = btrfs_writepage,
b293f02e 7392 .writepages = btrfs_writepages,
3ab2fb5a 7393 .readpages = btrfs_readpages,
39279cc3 7394 .sync_page = block_sync_page,
16432985 7395 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7396 .invalidatepage = btrfs_invalidatepage,
7397 .releasepage = btrfs_releasepage,
e6dcd2dc 7398 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7399 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7400};
7401
7f09410b 7402static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7403 .readpage = btrfs_readpage,
7404 .writepage = btrfs_writepage,
2bf5a725
CM
7405 .invalidatepage = btrfs_invalidatepage,
7406 .releasepage = btrfs_releasepage,
39279cc3
CM
7407};
7408
6e1d5dcc 7409static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7410 .getattr = btrfs_getattr,
7411 .setattr = btrfs_setattr,
95819c05
CH
7412 .setxattr = btrfs_setxattr,
7413 .getxattr = btrfs_getxattr,
5103e947 7414 .listxattr = btrfs_listxattr,
95819c05 7415 .removexattr = btrfs_removexattr,
fdebe2bd 7416 .permission = btrfs_permission,
1506fcc8 7417 .fiemap = btrfs_fiemap,
39279cc3 7418};
6e1d5dcc 7419static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7420 .getattr = btrfs_getattr,
7421 .setattr = btrfs_setattr,
fdebe2bd 7422 .permission = btrfs_permission,
95819c05
CH
7423 .setxattr = btrfs_setxattr,
7424 .getxattr = btrfs_getxattr,
33268eaf 7425 .listxattr = btrfs_listxattr,
95819c05 7426 .removexattr = btrfs_removexattr,
618e21d5 7427};
6e1d5dcc 7428static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7429 .readlink = generic_readlink,
7430 .follow_link = page_follow_link_light,
7431 .put_link = page_put_link,
f209561a 7432 .getattr = btrfs_getattr,
fdebe2bd 7433 .permission = btrfs_permission,
0279b4cd
JO
7434 .setxattr = btrfs_setxattr,
7435 .getxattr = btrfs_getxattr,
7436 .listxattr = btrfs_listxattr,
7437 .removexattr = btrfs_removexattr,
39279cc3 7438};
76dda93c 7439
82d339d9 7440const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7441 .d_delete = btrfs_dentry_delete,
7442};