include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
39279cc3
CM
53
54struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57};
58
6e1d5dcc
AD
59static const struct inode_operations btrfs_dir_inode_operations;
60static const struct inode_operations btrfs_symlink_inode_operations;
61static const struct inode_operations btrfs_dir_ro_inode_operations;
62static const struct inode_operations btrfs_special_inode_operations;
63static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
64static const struct address_space_operations btrfs_aops;
65static const struct address_space_operations btrfs_symlink_aops;
828c0950 66static const struct file_operations btrfs_dir_file_operations;
d1310b2e 67static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
68
69static struct kmem_cache *btrfs_inode_cachep;
70struct kmem_cache *btrfs_trans_handle_cachep;
71struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
72struct kmem_cache *btrfs_path_cachep;
73
74#define S_SHIFT 12
75static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83};
84
7b128766 85static void btrfs_truncate(struct inode *inode);
c8b97818 86static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
87static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
7b128766 91
f34f57a3
YZ
92static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 struct inode *inode, struct inode *dir)
0279b4cd
JO
94{
95 int err;
96
f34f57a3 97 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 98 if (!err)
f34f57a3 99 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
100 return err;
101}
102
c8b97818
CM
103/*
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
107 */
d397712b 108static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
112{
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
117 char *kaddr;
118 unsigned long ptr;
119 struct btrfs_file_extent_item *ei;
120 int err = 0;
121 int ret;
122 size_t cur_size = size;
123 size_t datasize;
124 unsigned long offset;
125 int use_compress = 0;
126
127 if (compressed_size && compressed_pages) {
128 use_compress = 1;
129 cur_size = compressed_size;
130 }
131
d397712b
CM
132 path = btrfs_alloc_path();
133 if (!path)
c8b97818
CM
134 return -ENOMEM;
135
b9473439 136 path->leave_spinning = 1;
c8b97818
CM
137 btrfs_set_trans_block_group(trans, inode);
138
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
c8b97818
CM
150 goto fail;
151 }
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
161
162 if (use_compress) {
163 struct page *cpage;
164 int i = 0;
d397712b 165 while (compressed_size > 0) {
c8b97818 166 cpage = compressed_pages[i];
5b050f04 167 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
168 PAGE_CACHE_SIZE);
169
b9473439 170 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 172 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
173
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
177 }
178 btrfs_set_file_extent_compression(leaf, ei,
179 BTRFS_COMPRESS_ZLIB);
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
189 }
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
192
c2167754
YZ
193 /*
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
197 *
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
201 */
c8b97818
CM
202 BTRFS_I(inode)->disk_i_size = inode->i_size;
203 btrfs_update_inode(trans, root, inode);
c2167754 204
c8b97818
CM
205 return 0;
206fail:
207 btrfs_free_path(path);
208 return err;
209}
210
211
212/*
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
216 */
7f366cfe 217static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
218 struct btrfs_root *root,
219 struct inode *inode, u64 start, u64 end,
220 size_t compressed_size,
221 struct page **compressed_pages)
222{
223 u64 isize = i_size_read(inode);
224 u64 actual_end = min(end + 1, isize);
225 u64 inline_len = actual_end - start;
226 u64 aligned_end = (end + root->sectorsize - 1) &
227 ~((u64)root->sectorsize - 1);
228 u64 hint_byte;
229 u64 data_len = inline_len;
230 int ret;
231
232 if (compressed_size)
233 data_len = compressed_size;
234
235 if (start > 0 ||
70b99e69 236 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 (!compressed_size &&
239 (actual_end & (root->sectorsize - 1)) == 0) ||
240 end + 1 < isize ||
241 data_len > root->fs_info->max_inline) {
242 return 1;
243 }
244
920bbbfb 245 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 246 &hint_byte, 1);
c8b97818
CM
247 BUG_ON(ret);
248
249 if (isize > actual_end)
250 inline_len = min_t(u64, isize, actual_end);
251 ret = insert_inline_extent(trans, root, inode, start,
252 inline_len, compressed_size,
253 compressed_pages);
254 BUG_ON(ret);
a1ed835e 255 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
256 return 0;
257}
258
771ed689
CM
259struct async_extent {
260 u64 start;
261 u64 ram_size;
262 u64 compressed_size;
263 struct page **pages;
264 unsigned long nr_pages;
265 struct list_head list;
266};
267
268struct async_cow {
269 struct inode *inode;
270 struct btrfs_root *root;
271 struct page *locked_page;
272 u64 start;
273 u64 end;
274 struct list_head extents;
275 struct btrfs_work work;
276};
277
278static noinline int add_async_extent(struct async_cow *cow,
279 u64 start, u64 ram_size,
280 u64 compressed_size,
281 struct page **pages,
282 unsigned long nr_pages)
283{
284 struct async_extent *async_extent;
285
286 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
287 async_extent->start = start;
288 async_extent->ram_size = ram_size;
289 async_extent->compressed_size = compressed_size;
290 async_extent->pages = pages;
291 async_extent->nr_pages = nr_pages;
292 list_add_tail(&async_extent->list, &cow->extents);
293 return 0;
294}
295
d352ac68 296/*
771ed689
CM
297 * we create compressed extents in two phases. The first
298 * phase compresses a range of pages that have already been
299 * locked (both pages and state bits are locked).
c8b97818 300 *
771ed689
CM
301 * This is done inside an ordered work queue, and the compression
302 * is spread across many cpus. The actual IO submission is step
303 * two, and the ordered work queue takes care of making sure that
304 * happens in the same order things were put onto the queue by
305 * writepages and friends.
c8b97818 306 *
771ed689
CM
307 * If this code finds it can't get good compression, it puts an
308 * entry onto the work queue to write the uncompressed bytes. This
309 * makes sure that both compressed inodes and uncompressed inodes
310 * are written in the same order that pdflush sent them down.
d352ac68 311 */
771ed689
CM
312static noinline int compress_file_range(struct inode *inode,
313 struct page *locked_page,
314 u64 start, u64 end,
315 struct async_cow *async_cow,
316 int *num_added)
b888db2b
CM
317{
318 struct btrfs_root *root = BTRFS_I(inode)->root;
319 struct btrfs_trans_handle *trans;
db94535d 320 u64 num_bytes;
c8b97818
CM
321 u64 orig_start;
322 u64 disk_num_bytes;
db94535d 323 u64 blocksize = root->sectorsize;
c8b97818 324 u64 actual_end;
42dc7bab 325 u64 isize = i_size_read(inode);
e6dcd2dc 326 int ret = 0;
c8b97818
CM
327 struct page **pages = NULL;
328 unsigned long nr_pages;
329 unsigned long nr_pages_ret = 0;
330 unsigned long total_compressed = 0;
331 unsigned long total_in = 0;
332 unsigned long max_compressed = 128 * 1024;
771ed689 333 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
334 int i;
335 int will_compress;
b888db2b 336
c8b97818
CM
337 orig_start = start;
338
42dc7bab 339 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
340again:
341 will_compress = 0;
342 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
343 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 344
f03d9301
CM
345 /*
346 * we don't want to send crud past the end of i_size through
347 * compression, that's just a waste of CPU time. So, if the
348 * end of the file is before the start of our current
349 * requested range of bytes, we bail out to the uncompressed
350 * cleanup code that can deal with all of this.
351 *
352 * It isn't really the fastest way to fix things, but this is a
353 * very uncommon corner.
354 */
355 if (actual_end <= start)
356 goto cleanup_and_bail_uncompressed;
357
c8b97818
CM
358 total_compressed = actual_end - start;
359
360 /* we want to make sure that amount of ram required to uncompress
361 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
362 * of a compressed extent to 128k. This is a crucial number
363 * because it also controls how easily we can spread reads across
364 * cpus for decompression.
365 *
366 * We also want to make sure the amount of IO required to do
367 * a random read is reasonably small, so we limit the size of
368 * a compressed extent to 128k.
c8b97818
CM
369 */
370 total_compressed = min(total_compressed, max_uncompressed);
db94535d 371 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 372 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
373 disk_num_bytes = num_bytes;
374 total_in = 0;
375 ret = 0;
db94535d 376
771ed689
CM
377 /*
378 * we do compression for mount -o compress and when the
379 * inode has not been flagged as nocompress. This flag can
380 * change at any time if we discover bad compression ratios.
c8b97818 381 */
6cbff00f 382 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32
CM
383 (btrfs_test_opt(root, COMPRESS) ||
384 (BTRFS_I(inode)->force_compress))) {
c8b97818 385 WARN_ON(pages);
cfbc246e 386 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 387
c8b97818
CM
388 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
389 total_compressed, pages,
390 nr_pages, &nr_pages_ret,
391 &total_in,
392 &total_compressed,
393 max_compressed);
394
395 if (!ret) {
396 unsigned long offset = total_compressed &
397 (PAGE_CACHE_SIZE - 1);
398 struct page *page = pages[nr_pages_ret - 1];
399 char *kaddr;
400
401 /* zero the tail end of the last page, we might be
402 * sending it down to disk
403 */
404 if (offset) {
405 kaddr = kmap_atomic(page, KM_USER0);
406 memset(kaddr + offset, 0,
407 PAGE_CACHE_SIZE - offset);
408 kunmap_atomic(kaddr, KM_USER0);
409 }
410 will_compress = 1;
411 }
412 }
413 if (start == 0) {
771ed689
CM
414 trans = btrfs_join_transaction(root, 1);
415 BUG_ON(!trans);
416 btrfs_set_trans_block_group(trans, inode);
417
c8b97818 418 /* lets try to make an inline extent */
771ed689 419 if (ret || total_in < (actual_end - start)) {
c8b97818 420 /* we didn't compress the entire range, try
771ed689 421 * to make an uncompressed inline extent.
c8b97818
CM
422 */
423 ret = cow_file_range_inline(trans, root, inode,
424 start, end, 0, NULL);
425 } else {
771ed689 426 /* try making a compressed inline extent */
c8b97818
CM
427 ret = cow_file_range_inline(trans, root, inode,
428 start, end,
429 total_compressed, pages);
430 }
431 if (ret == 0) {
771ed689
CM
432 /*
433 * inline extent creation worked, we don't need
434 * to create any more async work items. Unlock
435 * and free up our temp pages.
436 */
c8b97818 437 extent_clear_unlock_delalloc(inode,
a791e35e
CM
438 &BTRFS_I(inode)->io_tree,
439 start, end, NULL,
440 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 441 EXTENT_CLEAR_DELALLOC |
32c00aff 442 EXTENT_CLEAR_ACCOUNTING |
a791e35e 443 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
444
445 btrfs_end_transaction(trans, root);
c8b97818
CM
446 goto free_pages_out;
447 }
c2167754 448 btrfs_end_transaction(trans, root);
c8b97818
CM
449 }
450
451 if (will_compress) {
452 /*
453 * we aren't doing an inline extent round the compressed size
454 * up to a block size boundary so the allocator does sane
455 * things
456 */
457 total_compressed = (total_compressed + blocksize - 1) &
458 ~(blocksize - 1);
459
460 /*
461 * one last check to make sure the compression is really a
462 * win, compare the page count read with the blocks on disk
463 */
464 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
465 ~(PAGE_CACHE_SIZE - 1);
466 if (total_compressed >= total_in) {
467 will_compress = 0;
468 } else {
469 disk_num_bytes = total_compressed;
470 num_bytes = total_in;
471 }
472 }
473 if (!will_compress && pages) {
474 /*
475 * the compression code ran but failed to make things smaller,
476 * free any pages it allocated and our page pointer array
477 */
478 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 479 WARN_ON(pages[i]->mapping);
c8b97818
CM
480 page_cache_release(pages[i]);
481 }
482 kfree(pages);
483 pages = NULL;
484 total_compressed = 0;
485 nr_pages_ret = 0;
486
487 /* flag the file so we don't compress in the future */
1e701a32
CM
488 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
489 !(BTRFS_I(inode)->force_compress)) {
a555f810 490 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 491 }
c8b97818 492 }
771ed689
CM
493 if (will_compress) {
494 *num_added += 1;
c8b97818 495
771ed689
CM
496 /* the async work queues will take care of doing actual
497 * allocation on disk for these compressed pages,
498 * and will submit them to the elevator.
499 */
500 add_async_extent(async_cow, start, num_bytes,
501 total_compressed, pages, nr_pages_ret);
179e29e4 502
42dc7bab 503 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
504 start += num_bytes;
505 pages = NULL;
506 cond_resched();
507 goto again;
508 }
509 } else {
f03d9301 510cleanup_and_bail_uncompressed:
771ed689
CM
511 /*
512 * No compression, but we still need to write the pages in
513 * the file we've been given so far. redirty the locked
514 * page if it corresponds to our extent and set things up
515 * for the async work queue to run cow_file_range to do
516 * the normal delalloc dance
517 */
518 if (page_offset(locked_page) >= start &&
519 page_offset(locked_page) <= end) {
520 __set_page_dirty_nobuffers(locked_page);
521 /* unlocked later on in the async handlers */
522 }
523 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
524 *num_added += 1;
525 }
3b951516 526
771ed689
CM
527out:
528 return 0;
529
530free_pages_out:
531 for (i = 0; i < nr_pages_ret; i++) {
532 WARN_ON(pages[i]->mapping);
533 page_cache_release(pages[i]);
534 }
d397712b 535 kfree(pages);
771ed689
CM
536
537 goto out;
538}
539
540/*
541 * phase two of compressed writeback. This is the ordered portion
542 * of the code, which only gets called in the order the work was
543 * queued. We walk all the async extents created by compress_file_range
544 * and send them down to the disk.
545 */
546static noinline int submit_compressed_extents(struct inode *inode,
547 struct async_cow *async_cow)
548{
549 struct async_extent *async_extent;
550 u64 alloc_hint = 0;
551 struct btrfs_trans_handle *trans;
552 struct btrfs_key ins;
553 struct extent_map *em;
554 struct btrfs_root *root = BTRFS_I(inode)->root;
555 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
556 struct extent_io_tree *io_tree;
f5a84ee3 557 int ret = 0;
771ed689
CM
558
559 if (list_empty(&async_cow->extents))
560 return 0;
561
771ed689 562
d397712b 563 while (!list_empty(&async_cow->extents)) {
771ed689
CM
564 async_extent = list_entry(async_cow->extents.next,
565 struct async_extent, list);
566 list_del(&async_extent->list);
c8b97818 567
771ed689
CM
568 io_tree = &BTRFS_I(inode)->io_tree;
569
f5a84ee3 570retry:
771ed689
CM
571 /* did the compression code fall back to uncompressed IO? */
572 if (!async_extent->pages) {
573 int page_started = 0;
574 unsigned long nr_written = 0;
575
576 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
577 async_extent->start +
578 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
579
580 /* allocate blocks */
f5a84ee3
JB
581 ret = cow_file_range(inode, async_cow->locked_page,
582 async_extent->start,
583 async_extent->start +
584 async_extent->ram_size - 1,
585 &page_started, &nr_written, 0);
771ed689
CM
586
587 /*
588 * if page_started, cow_file_range inserted an
589 * inline extent and took care of all the unlocking
590 * and IO for us. Otherwise, we need to submit
591 * all those pages down to the drive.
592 */
f5a84ee3 593 if (!page_started && !ret)
771ed689
CM
594 extent_write_locked_range(io_tree,
595 inode, async_extent->start,
d397712b 596 async_extent->start +
771ed689
CM
597 async_extent->ram_size - 1,
598 btrfs_get_extent,
599 WB_SYNC_ALL);
600 kfree(async_extent);
601 cond_resched();
602 continue;
603 }
604
605 lock_extent(io_tree, async_extent->start,
606 async_extent->start + async_extent->ram_size - 1,
607 GFP_NOFS);
771ed689 608
c2167754 609 trans = btrfs_join_transaction(root, 1);
771ed689
CM
610 ret = btrfs_reserve_extent(trans, root,
611 async_extent->compressed_size,
612 async_extent->compressed_size,
613 0, alloc_hint,
614 (u64)-1, &ins, 1);
c2167754
YZ
615 btrfs_end_transaction(trans, root);
616
f5a84ee3
JB
617 if (ret) {
618 int i;
619 for (i = 0; i < async_extent->nr_pages; i++) {
620 WARN_ON(async_extent->pages[i]->mapping);
621 page_cache_release(async_extent->pages[i]);
622 }
623 kfree(async_extent->pages);
624 async_extent->nr_pages = 0;
625 async_extent->pages = NULL;
626 unlock_extent(io_tree, async_extent->start,
627 async_extent->start +
628 async_extent->ram_size - 1, GFP_NOFS);
629 goto retry;
630 }
631
c2167754
YZ
632 /*
633 * here we're doing allocation and writeback of the
634 * compressed pages
635 */
636 btrfs_drop_extent_cache(inode, async_extent->start,
637 async_extent->start +
638 async_extent->ram_size - 1, 0);
639
771ed689
CM
640 em = alloc_extent_map(GFP_NOFS);
641 em->start = async_extent->start;
642 em->len = async_extent->ram_size;
445a6944 643 em->orig_start = em->start;
c8b97818 644
771ed689
CM
645 em->block_start = ins.objectid;
646 em->block_len = ins.offset;
647 em->bdev = root->fs_info->fs_devices->latest_bdev;
648 set_bit(EXTENT_FLAG_PINNED, &em->flags);
649 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
650
d397712b 651 while (1) {
890871be 652 write_lock(&em_tree->lock);
771ed689 653 ret = add_extent_mapping(em_tree, em);
890871be 654 write_unlock(&em_tree->lock);
771ed689
CM
655 if (ret != -EEXIST) {
656 free_extent_map(em);
657 break;
658 }
659 btrfs_drop_extent_cache(inode, async_extent->start,
660 async_extent->start +
661 async_extent->ram_size - 1, 0);
662 }
663
664 ret = btrfs_add_ordered_extent(inode, async_extent->start,
665 ins.objectid,
666 async_extent->ram_size,
667 ins.offset,
668 BTRFS_ORDERED_COMPRESSED);
669 BUG_ON(ret);
670
771ed689
CM
671 /*
672 * clear dirty, set writeback and unlock the pages.
673 */
674 extent_clear_unlock_delalloc(inode,
a791e35e
CM
675 &BTRFS_I(inode)->io_tree,
676 async_extent->start,
677 async_extent->start +
678 async_extent->ram_size - 1,
679 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
680 EXTENT_CLEAR_UNLOCK |
a3429ab7 681 EXTENT_CLEAR_DELALLOC |
a791e35e 682 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
683
684 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
685 async_extent->start,
686 async_extent->ram_size,
687 ins.objectid,
688 ins.offset, async_extent->pages,
689 async_extent->nr_pages);
771ed689
CM
690
691 BUG_ON(ret);
771ed689
CM
692 alloc_hint = ins.objectid + ins.offset;
693 kfree(async_extent);
694 cond_resched();
695 }
696
771ed689
CM
697 return 0;
698}
699
700/*
701 * when extent_io.c finds a delayed allocation range in the file,
702 * the call backs end up in this code. The basic idea is to
703 * allocate extents on disk for the range, and create ordered data structs
704 * in ram to track those extents.
705 *
706 * locked_page is the page that writepage had locked already. We use
707 * it to make sure we don't do extra locks or unlocks.
708 *
709 * *page_started is set to one if we unlock locked_page and do everything
710 * required to start IO on it. It may be clean and already done with
711 * IO when we return.
712 */
713static noinline int cow_file_range(struct inode *inode,
714 struct page *locked_page,
715 u64 start, u64 end, int *page_started,
716 unsigned long *nr_written,
717 int unlock)
718{
719 struct btrfs_root *root = BTRFS_I(inode)->root;
720 struct btrfs_trans_handle *trans;
721 u64 alloc_hint = 0;
722 u64 num_bytes;
723 unsigned long ram_size;
724 u64 disk_num_bytes;
725 u64 cur_alloc_size;
726 u64 blocksize = root->sectorsize;
727 u64 actual_end;
42dc7bab 728 u64 isize = i_size_read(inode);
771ed689
CM
729 struct btrfs_key ins;
730 struct extent_map *em;
731 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
732 int ret = 0;
733
734 trans = btrfs_join_transaction(root, 1);
735 BUG_ON(!trans);
736 btrfs_set_trans_block_group(trans, inode);
737
42dc7bab 738 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
739
740 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
741 num_bytes = max(blocksize, num_bytes);
742 disk_num_bytes = num_bytes;
743 ret = 0;
744
745 if (start == 0) {
746 /* lets try to make an inline extent */
747 ret = cow_file_range_inline(trans, root, inode,
748 start, end, 0, NULL);
749 if (ret == 0) {
750 extent_clear_unlock_delalloc(inode,
a791e35e
CM
751 &BTRFS_I(inode)->io_tree,
752 start, end, NULL,
753 EXTENT_CLEAR_UNLOCK_PAGE |
754 EXTENT_CLEAR_UNLOCK |
755 EXTENT_CLEAR_DELALLOC |
32c00aff 756 EXTENT_CLEAR_ACCOUNTING |
a791e35e
CM
757 EXTENT_CLEAR_DIRTY |
758 EXTENT_SET_WRITEBACK |
759 EXTENT_END_WRITEBACK);
c2167754 760
771ed689
CM
761 *nr_written = *nr_written +
762 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
763 *page_started = 1;
764 ret = 0;
765 goto out;
766 }
767 }
768
769 BUG_ON(disk_num_bytes >
770 btrfs_super_total_bytes(&root->fs_info->super_copy));
771
b917b7c3
CM
772
773 read_lock(&BTRFS_I(inode)->extent_tree.lock);
774 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
775 start, num_bytes);
776 if (em) {
6346c939
JB
777 /*
778 * if block start isn't an actual block number then find the
779 * first block in this inode and use that as a hint. If that
780 * block is also bogus then just don't worry about it.
781 */
782 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
783 free_extent_map(em);
784 em = search_extent_mapping(em_tree, 0, 0);
785 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
786 alloc_hint = em->block_start;
787 if (em)
788 free_extent_map(em);
789 } else {
790 alloc_hint = em->block_start;
791 free_extent_map(em);
792 }
b917b7c3
CM
793 }
794 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
771ed689
CM
795 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
796
d397712b 797 while (disk_num_bytes > 0) {
a791e35e
CM
798 unsigned long op;
799
c8b97818 800 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
e6dcd2dc 801 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 802 root->sectorsize, 0, alloc_hint,
e6dcd2dc 803 (u64)-1, &ins, 1);
d397712b
CM
804 BUG_ON(ret);
805
e6dcd2dc
CM
806 em = alloc_extent_map(GFP_NOFS);
807 em->start = start;
445a6944 808 em->orig_start = em->start;
771ed689
CM
809 ram_size = ins.offset;
810 em->len = ins.offset;
c8b97818 811
e6dcd2dc 812 em->block_start = ins.objectid;
c8b97818 813 em->block_len = ins.offset;
e6dcd2dc 814 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 815 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 816
d397712b 817 while (1) {
890871be 818 write_lock(&em_tree->lock);
e6dcd2dc 819 ret = add_extent_mapping(em_tree, em);
890871be 820 write_unlock(&em_tree->lock);
e6dcd2dc
CM
821 if (ret != -EEXIST) {
822 free_extent_map(em);
823 break;
824 }
825 btrfs_drop_extent_cache(inode, start,
c8b97818 826 start + ram_size - 1, 0);
e6dcd2dc
CM
827 }
828
98d20f67 829 cur_alloc_size = ins.offset;
e6dcd2dc 830 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 831 ram_size, cur_alloc_size, 0);
e6dcd2dc 832 BUG_ON(ret);
c8b97818 833
17d217fe
YZ
834 if (root->root_key.objectid ==
835 BTRFS_DATA_RELOC_TREE_OBJECTID) {
836 ret = btrfs_reloc_clone_csums(inode, start,
837 cur_alloc_size);
838 BUG_ON(ret);
839 }
840
d397712b 841 if (disk_num_bytes < cur_alloc_size)
3b951516 842 break;
d397712b 843
c8b97818
CM
844 /* we're not doing compressed IO, don't unlock the first
845 * page (which the caller expects to stay locked), don't
846 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
847 *
848 * Do set the Private2 bit so we know this page was properly
849 * setup for writepage
c8b97818 850 */
a791e35e
CM
851 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
852 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
853 EXTENT_SET_PRIVATE2;
854
c8b97818
CM
855 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
856 start, start + ram_size - 1,
a791e35e 857 locked_page, op);
c8b97818 858 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
859 num_bytes -= cur_alloc_size;
860 alloc_hint = ins.objectid + ins.offset;
861 start += cur_alloc_size;
b888db2b 862 }
b888db2b 863out:
771ed689 864 ret = 0;
b888db2b 865 btrfs_end_transaction(trans, root);
c8b97818 866
be20aa9d 867 return ret;
771ed689 868}
c8b97818 869
771ed689
CM
870/*
871 * work queue call back to started compression on a file and pages
872 */
873static noinline void async_cow_start(struct btrfs_work *work)
874{
875 struct async_cow *async_cow;
876 int num_added = 0;
877 async_cow = container_of(work, struct async_cow, work);
878
879 compress_file_range(async_cow->inode, async_cow->locked_page,
880 async_cow->start, async_cow->end, async_cow,
881 &num_added);
882 if (num_added == 0)
883 async_cow->inode = NULL;
884}
885
886/*
887 * work queue call back to submit previously compressed pages
888 */
889static noinline void async_cow_submit(struct btrfs_work *work)
890{
891 struct async_cow *async_cow;
892 struct btrfs_root *root;
893 unsigned long nr_pages;
894
895 async_cow = container_of(work, struct async_cow, work);
896
897 root = async_cow->root;
898 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
899 PAGE_CACHE_SHIFT;
900
901 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
902
903 if (atomic_read(&root->fs_info->async_delalloc_pages) <
904 5 * 1042 * 1024 &&
905 waitqueue_active(&root->fs_info->async_submit_wait))
906 wake_up(&root->fs_info->async_submit_wait);
907
d397712b 908 if (async_cow->inode)
771ed689 909 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 910}
c8b97818 911
771ed689
CM
912static noinline void async_cow_free(struct btrfs_work *work)
913{
914 struct async_cow *async_cow;
915 async_cow = container_of(work, struct async_cow, work);
916 kfree(async_cow);
917}
918
919static int cow_file_range_async(struct inode *inode, struct page *locked_page,
920 u64 start, u64 end, int *page_started,
921 unsigned long *nr_written)
922{
923 struct async_cow *async_cow;
924 struct btrfs_root *root = BTRFS_I(inode)->root;
925 unsigned long nr_pages;
926 u64 cur_end;
927 int limit = 10 * 1024 * 1042;
928
a3429ab7
CM
929 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
930 1, 0, NULL, GFP_NOFS);
d397712b 931 while (start < end) {
771ed689
CM
932 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
933 async_cow->inode = inode;
934 async_cow->root = root;
935 async_cow->locked_page = locked_page;
936 async_cow->start = start;
937
6cbff00f 938 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
939 cur_end = end;
940 else
941 cur_end = min(end, start + 512 * 1024 - 1);
942
943 async_cow->end = cur_end;
944 INIT_LIST_HEAD(&async_cow->extents);
945
946 async_cow->work.func = async_cow_start;
947 async_cow->work.ordered_func = async_cow_submit;
948 async_cow->work.ordered_free = async_cow_free;
949 async_cow->work.flags = 0;
950
771ed689
CM
951 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
952 PAGE_CACHE_SHIFT;
953 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
954
955 btrfs_queue_worker(&root->fs_info->delalloc_workers,
956 &async_cow->work);
957
958 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
959 wait_event(root->fs_info->async_submit_wait,
960 (atomic_read(&root->fs_info->async_delalloc_pages) <
961 limit));
962 }
963
d397712b 964 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
965 atomic_read(&root->fs_info->async_delalloc_pages)) {
966 wait_event(root->fs_info->async_submit_wait,
967 (atomic_read(&root->fs_info->async_delalloc_pages) ==
968 0));
969 }
970
971 *nr_written += nr_pages;
972 start = cur_end + 1;
973 }
974 *page_started = 1;
975 return 0;
be20aa9d
CM
976}
977
d397712b 978static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
979 u64 bytenr, u64 num_bytes)
980{
981 int ret;
982 struct btrfs_ordered_sum *sums;
983 LIST_HEAD(list);
984
07d400a6
YZ
985 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
986 bytenr + num_bytes - 1, &list);
17d217fe
YZ
987 if (ret == 0 && list_empty(&list))
988 return 0;
989
990 while (!list_empty(&list)) {
991 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
992 list_del(&sums->list);
993 kfree(sums);
994 }
995 return 1;
996}
997
d352ac68
CM
998/*
999 * when nowcow writeback call back. This checks for snapshots or COW copies
1000 * of the extents that exist in the file, and COWs the file as required.
1001 *
1002 * If no cow copies or snapshots exist, we write directly to the existing
1003 * blocks on disk
1004 */
7f366cfe
CM
1005static noinline int run_delalloc_nocow(struct inode *inode,
1006 struct page *locked_page,
771ed689
CM
1007 u64 start, u64 end, int *page_started, int force,
1008 unsigned long *nr_written)
be20aa9d 1009{
be20aa9d 1010 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1011 struct btrfs_trans_handle *trans;
be20aa9d 1012 struct extent_buffer *leaf;
be20aa9d 1013 struct btrfs_path *path;
80ff3856 1014 struct btrfs_file_extent_item *fi;
be20aa9d 1015 struct btrfs_key found_key;
80ff3856
YZ
1016 u64 cow_start;
1017 u64 cur_offset;
1018 u64 extent_end;
5d4f98a2 1019 u64 extent_offset;
80ff3856
YZ
1020 u64 disk_bytenr;
1021 u64 num_bytes;
1022 int extent_type;
1023 int ret;
d899e052 1024 int type;
80ff3856
YZ
1025 int nocow;
1026 int check_prev = 1;
be20aa9d
CM
1027
1028 path = btrfs_alloc_path();
1029 BUG_ON(!path);
7ea394f1
YZ
1030 trans = btrfs_join_transaction(root, 1);
1031 BUG_ON(!trans);
be20aa9d 1032
80ff3856
YZ
1033 cow_start = (u64)-1;
1034 cur_offset = start;
1035 while (1) {
1036 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1037 cur_offset, 0);
1038 BUG_ON(ret < 0);
1039 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1040 leaf = path->nodes[0];
1041 btrfs_item_key_to_cpu(leaf, &found_key,
1042 path->slots[0] - 1);
1043 if (found_key.objectid == inode->i_ino &&
1044 found_key.type == BTRFS_EXTENT_DATA_KEY)
1045 path->slots[0]--;
1046 }
1047 check_prev = 0;
1048next_slot:
1049 leaf = path->nodes[0];
1050 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1051 ret = btrfs_next_leaf(root, path);
1052 if (ret < 0)
1053 BUG_ON(1);
1054 if (ret > 0)
1055 break;
1056 leaf = path->nodes[0];
1057 }
be20aa9d 1058
80ff3856
YZ
1059 nocow = 0;
1060 disk_bytenr = 0;
17d217fe 1061 num_bytes = 0;
80ff3856
YZ
1062 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1063
1064 if (found_key.objectid > inode->i_ino ||
1065 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1066 found_key.offset > end)
1067 break;
1068
1069 if (found_key.offset > cur_offset) {
1070 extent_end = found_key.offset;
e9061e21 1071 extent_type = 0;
80ff3856
YZ
1072 goto out_check;
1073 }
1074
1075 fi = btrfs_item_ptr(leaf, path->slots[0],
1076 struct btrfs_file_extent_item);
1077 extent_type = btrfs_file_extent_type(leaf, fi);
1078
d899e052
YZ
1079 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1080 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1081 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1082 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1083 extent_end = found_key.offset +
1084 btrfs_file_extent_num_bytes(leaf, fi);
1085 if (extent_end <= start) {
1086 path->slots[0]++;
1087 goto next_slot;
1088 }
17d217fe
YZ
1089 if (disk_bytenr == 0)
1090 goto out_check;
80ff3856
YZ
1091 if (btrfs_file_extent_compression(leaf, fi) ||
1092 btrfs_file_extent_encryption(leaf, fi) ||
1093 btrfs_file_extent_other_encoding(leaf, fi))
1094 goto out_check;
d899e052
YZ
1095 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1096 goto out_check;
d2fb3437 1097 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1098 goto out_check;
17d217fe 1099 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1100 found_key.offset -
1101 extent_offset, disk_bytenr))
17d217fe 1102 goto out_check;
5d4f98a2 1103 disk_bytenr += extent_offset;
17d217fe
YZ
1104 disk_bytenr += cur_offset - found_key.offset;
1105 num_bytes = min(end + 1, extent_end) - cur_offset;
1106 /*
1107 * force cow if csum exists in the range.
1108 * this ensure that csum for a given extent are
1109 * either valid or do not exist.
1110 */
1111 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1112 goto out_check;
80ff3856
YZ
1113 nocow = 1;
1114 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1115 extent_end = found_key.offset +
1116 btrfs_file_extent_inline_len(leaf, fi);
1117 extent_end = ALIGN(extent_end, root->sectorsize);
1118 } else {
1119 BUG_ON(1);
1120 }
1121out_check:
1122 if (extent_end <= start) {
1123 path->slots[0]++;
1124 goto next_slot;
1125 }
1126 if (!nocow) {
1127 if (cow_start == (u64)-1)
1128 cow_start = cur_offset;
1129 cur_offset = extent_end;
1130 if (cur_offset > end)
1131 break;
1132 path->slots[0]++;
1133 goto next_slot;
7ea394f1
YZ
1134 }
1135
1136 btrfs_release_path(root, path);
80ff3856
YZ
1137 if (cow_start != (u64)-1) {
1138 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1139 found_key.offset - 1, page_started,
1140 nr_written, 1);
80ff3856
YZ
1141 BUG_ON(ret);
1142 cow_start = (u64)-1;
7ea394f1 1143 }
80ff3856 1144
d899e052
YZ
1145 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1146 struct extent_map *em;
1147 struct extent_map_tree *em_tree;
1148 em_tree = &BTRFS_I(inode)->extent_tree;
1149 em = alloc_extent_map(GFP_NOFS);
1150 em->start = cur_offset;
445a6944 1151 em->orig_start = em->start;
d899e052
YZ
1152 em->len = num_bytes;
1153 em->block_len = num_bytes;
1154 em->block_start = disk_bytenr;
1155 em->bdev = root->fs_info->fs_devices->latest_bdev;
1156 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1157 while (1) {
890871be 1158 write_lock(&em_tree->lock);
d899e052 1159 ret = add_extent_mapping(em_tree, em);
890871be 1160 write_unlock(&em_tree->lock);
d899e052
YZ
1161 if (ret != -EEXIST) {
1162 free_extent_map(em);
1163 break;
1164 }
1165 btrfs_drop_extent_cache(inode, em->start,
1166 em->start + em->len - 1, 0);
1167 }
1168 type = BTRFS_ORDERED_PREALLOC;
1169 } else {
1170 type = BTRFS_ORDERED_NOCOW;
1171 }
80ff3856
YZ
1172
1173 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1174 num_bytes, num_bytes, type);
1175 BUG_ON(ret);
771ed689 1176
d899e052 1177 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1178 cur_offset, cur_offset + num_bytes - 1,
1179 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1180 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1181 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1182 cur_offset = extent_end;
1183 if (cur_offset > end)
1184 break;
be20aa9d 1185 }
80ff3856
YZ
1186 btrfs_release_path(root, path);
1187
1188 if (cur_offset <= end && cow_start == (u64)-1)
1189 cow_start = cur_offset;
1190 if (cow_start != (u64)-1) {
1191 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1192 page_started, nr_written, 1);
80ff3856
YZ
1193 BUG_ON(ret);
1194 }
1195
1196 ret = btrfs_end_transaction(trans, root);
1197 BUG_ON(ret);
7ea394f1 1198 btrfs_free_path(path);
80ff3856 1199 return 0;
be20aa9d
CM
1200}
1201
d352ac68
CM
1202/*
1203 * extent_io.c call back to do delayed allocation processing
1204 */
c8b97818 1205static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1206 u64 start, u64 end, int *page_started,
1207 unsigned long *nr_written)
be20aa9d 1208{
be20aa9d 1209 int ret;
7f366cfe 1210 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1211
6cbff00f 1212 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1213 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1214 page_started, 1, nr_written);
6cbff00f 1215 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1216 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1217 page_started, 0, nr_written);
1e701a32
CM
1218 else if (!btrfs_test_opt(root, COMPRESS) &&
1219 !(BTRFS_I(inode)->force_compress))
7f366cfe
CM
1220 ret = cow_file_range(inode, locked_page, start, end,
1221 page_started, nr_written, 1);
be20aa9d 1222 else
771ed689 1223 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1224 page_started, nr_written);
b888db2b
CM
1225 return ret;
1226}
1227
9ed74f2d
JB
1228static int btrfs_split_extent_hook(struct inode *inode,
1229 struct extent_state *orig, u64 split)
1230{
1231 struct btrfs_root *root = BTRFS_I(inode)->root;
1232 u64 size;
1233
1234 if (!(orig->state & EXTENT_DELALLOC))
1235 return 0;
1236
1237 size = orig->end - orig->start + 1;
1238 if (size > root->fs_info->max_extent) {
1239 u64 num_extents;
1240 u64 new_size;
1241
1242 new_size = orig->end - split + 1;
1243 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1244 root->fs_info->max_extent);
1245
1246 /*
32c00aff
JB
1247 * if we break a large extent up then leave oustanding_extents
1248 * be, since we've already accounted for the large extent.
9ed74f2d
JB
1249 */
1250 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1251 root->fs_info->max_extent) < num_extents)
1252 return 0;
1253 }
1254
32c00aff
JB
1255 spin_lock(&BTRFS_I(inode)->accounting_lock);
1256 BTRFS_I(inode)->outstanding_extents++;
1257 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1258
1259 return 0;
1260}
1261
1262/*
1263 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1264 * extents so we can keep track of new extents that are just merged onto old
1265 * extents, such as when we are doing sequential writes, so we can properly
1266 * account for the metadata space we'll need.
1267 */
1268static int btrfs_merge_extent_hook(struct inode *inode,
1269 struct extent_state *new,
1270 struct extent_state *other)
1271{
1272 struct btrfs_root *root = BTRFS_I(inode)->root;
1273 u64 new_size, old_size;
1274 u64 num_extents;
1275
1276 /* not delalloc, ignore it */
1277 if (!(other->state & EXTENT_DELALLOC))
1278 return 0;
1279
1280 old_size = other->end - other->start + 1;
1281 if (new->start < other->start)
1282 new_size = other->end - new->start + 1;
1283 else
1284 new_size = new->end - other->start + 1;
1285
1286 /* we're not bigger than the max, unreserve the space and go */
1287 if (new_size <= root->fs_info->max_extent) {
32c00aff
JB
1288 spin_lock(&BTRFS_I(inode)->accounting_lock);
1289 BTRFS_I(inode)->outstanding_extents--;
1290 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1291 return 0;
1292 }
1293
1294 /*
1295 * If we grew by another max_extent, just return, we want to keep that
1296 * reserved amount.
1297 */
1298 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1299 root->fs_info->max_extent);
1300 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1301 root->fs_info->max_extent) > num_extents)
1302 return 0;
1303
32c00aff
JB
1304 spin_lock(&BTRFS_I(inode)->accounting_lock);
1305 BTRFS_I(inode)->outstanding_extents--;
1306 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1307
1308 return 0;
1309}
1310
d352ac68
CM
1311/*
1312 * extent_io.c set_bit_hook, used to track delayed allocation
1313 * bytes in this file, and to maintain the list of inodes that
1314 * have pending delalloc work to be done.
1315 */
b2950863 1316static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1317 unsigned long old, unsigned long bits)
291d673e 1318{
9ed74f2d 1319
75eff68e
CM
1320 /*
1321 * set_bit and clear bit hooks normally require _irqsave/restore
1322 * but in this case, we are only testeing for the DELALLOC
1323 * bit, which is only set or cleared with irqs on
1324 */
b0c68f8b 1325 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1326 struct btrfs_root *root = BTRFS_I(inode)->root;
9ed74f2d 1327
32c00aff
JB
1328 spin_lock(&BTRFS_I(inode)->accounting_lock);
1329 BTRFS_I(inode)->outstanding_extents++;
1330 spin_unlock(&BTRFS_I(inode)->accounting_lock);
6a63209f 1331 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
75eff68e 1332 spin_lock(&root->fs_info->delalloc_lock);
9069218d 1333 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
291d673e 1334 root->fs_info->delalloc_bytes += end - start + 1;
ea8c2819
CM
1335 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1336 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1337 &root->fs_info->delalloc_inodes);
1338 }
75eff68e 1339 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1340 }
1341 return 0;
1342}
1343
d352ac68
CM
1344/*
1345 * extent_io.c clear_bit_hook, see set_bit_hook for why
1346 */
9ed74f2d
JB
1347static int btrfs_clear_bit_hook(struct inode *inode,
1348 struct extent_state *state, unsigned long bits)
291d673e 1349{
75eff68e
CM
1350 /*
1351 * set_bit and clear bit hooks normally require _irqsave/restore
1352 * but in this case, we are only testeing for the DELALLOC
1353 * bit, which is only set or cleared with irqs on
1354 */
9ed74f2d 1355 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1356 struct btrfs_root *root = BTRFS_I(inode)->root;
bcbfce8a 1357
32c00aff
JB
1358 if (bits & EXTENT_DO_ACCOUNTING) {
1359 spin_lock(&BTRFS_I(inode)->accounting_lock);
1360 BTRFS_I(inode)->outstanding_extents--;
1361 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1362 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1363 }
9ed74f2d 1364
75eff68e 1365 spin_lock(&root->fs_info->delalloc_lock);
9ed74f2d
JB
1366 if (state->end - state->start + 1 >
1367 root->fs_info->delalloc_bytes) {
d397712b
CM
1368 printk(KERN_INFO "btrfs warning: delalloc account "
1369 "%llu %llu\n",
9ed74f2d
JB
1370 (unsigned long long)
1371 state->end - state->start + 1,
d397712b
CM
1372 (unsigned long long)
1373 root->fs_info->delalloc_bytes);
6a63209f 1374 btrfs_delalloc_free_space(root, inode, (u64)-1);
b0c68f8b 1375 root->fs_info->delalloc_bytes = 0;
9069218d 1376 BTRFS_I(inode)->delalloc_bytes = 0;
b0c68f8b 1377 } else {
6a63209f 1378 btrfs_delalloc_free_space(root, inode,
9ed74f2d
JB
1379 state->end -
1380 state->start + 1);
1381 root->fs_info->delalloc_bytes -= state->end -
1382 state->start + 1;
1383 BTRFS_I(inode)->delalloc_bytes -= state->end -
1384 state->start + 1;
b0c68f8b 1385 }
ea8c2819
CM
1386 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1387 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1388 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1389 }
75eff68e 1390 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1391 }
1392 return 0;
1393}
1394
d352ac68
CM
1395/*
1396 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1397 * we don't create bios that span stripes or chunks
1398 */
239b14b3 1399int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1400 size_t size, struct bio *bio,
1401 unsigned long bio_flags)
239b14b3
CM
1402{
1403 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1404 struct btrfs_mapping_tree *map_tree;
a62b9401 1405 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1406 u64 length = 0;
1407 u64 map_length;
239b14b3
CM
1408 int ret;
1409
771ed689
CM
1410 if (bio_flags & EXTENT_BIO_COMPRESSED)
1411 return 0;
1412
f2d8d74d 1413 length = bio->bi_size;
239b14b3
CM
1414 map_tree = &root->fs_info->mapping_tree;
1415 map_length = length;
cea9e445 1416 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1417 &map_length, NULL, 0);
cea9e445 1418
d397712b 1419 if (map_length < length + size)
239b14b3 1420 return 1;
239b14b3
CM
1421 return 0;
1422}
1423
d352ac68
CM
1424/*
1425 * in order to insert checksums into the metadata in large chunks,
1426 * we wait until bio submission time. All the pages in the bio are
1427 * checksummed and sums are attached onto the ordered extent record.
1428 *
1429 * At IO completion time the cums attached on the ordered extent record
1430 * are inserted into the btree
1431 */
d397712b
CM
1432static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1433 struct bio *bio, int mirror_num,
1434 unsigned long bio_flags)
065631f6 1435{
065631f6 1436 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1437 int ret = 0;
e015640f 1438
d20f7043 1439 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1440 BUG_ON(ret);
4a69a410
CM
1441 return 0;
1442}
e015640f 1443
4a69a410
CM
1444/*
1445 * in order to insert checksums into the metadata in large chunks,
1446 * we wait until bio submission time. All the pages in the bio are
1447 * checksummed and sums are attached onto the ordered extent record.
1448 *
1449 * At IO completion time the cums attached on the ordered extent record
1450 * are inserted into the btree
1451 */
b2950863 1452static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1453 int mirror_num, unsigned long bio_flags)
1454{
1455 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1456 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1457}
1458
d352ac68 1459/*
cad321ad
CM
1460 * extent_io.c submission hook. This does the right thing for csum calculation
1461 * on write, or reading the csums from the tree before a read
d352ac68 1462 */
b2950863 1463static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1464 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1465{
1466 struct btrfs_root *root = BTRFS_I(inode)->root;
1467 int ret = 0;
19b9bdb0 1468 int skip_sum;
44b8bd7e 1469
6cbff00f 1470 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1471
e6dcd2dc
CM
1472 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1473 BUG_ON(ret);
065631f6 1474
4d1b5fb4 1475 if (!(rw & (1 << BIO_RW))) {
d20f7043 1476 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1477 return btrfs_submit_compressed_read(inode, bio,
1478 mirror_num, bio_flags);
d20f7043
CM
1479 } else if (!skip_sum)
1480 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1481 goto mapit;
19b9bdb0 1482 } else if (!skip_sum) {
17d217fe
YZ
1483 /* csum items have already been cloned */
1484 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1485 goto mapit;
19b9bdb0
CM
1486 /* we're doing a write, do the async checksumming */
1487 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1488 inode, rw, bio, mirror_num,
4a69a410
CM
1489 bio_flags, __btrfs_submit_bio_start,
1490 __btrfs_submit_bio_done);
19b9bdb0
CM
1491 }
1492
0b86a832 1493mapit:
8b712842 1494 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1495}
6885f308 1496
d352ac68
CM
1497/*
1498 * given a list of ordered sums record them in the inode. This happens
1499 * at IO completion time based on sums calculated at bio submission time.
1500 */
ba1da2f4 1501static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1502 struct inode *inode, u64 file_offset,
1503 struct list_head *list)
1504{
e6dcd2dc
CM
1505 struct btrfs_ordered_sum *sum;
1506
1507 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1508
1509 list_for_each_entry(sum, list, list) {
d20f7043
CM
1510 btrfs_csum_file_blocks(trans,
1511 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1512 }
1513 return 0;
1514}
1515
2ac55d41
JB
1516int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1517 struct extent_state **cached_state)
ea8c2819 1518{
d397712b 1519 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1520 WARN_ON(1);
ea8c2819 1521 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1522 cached_state, GFP_NOFS);
ea8c2819
CM
1523}
1524
d352ac68 1525/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1526struct btrfs_writepage_fixup {
1527 struct page *page;
1528 struct btrfs_work work;
1529};
1530
b2950863 1531static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1532{
1533 struct btrfs_writepage_fixup *fixup;
1534 struct btrfs_ordered_extent *ordered;
2ac55d41 1535 struct extent_state *cached_state = NULL;
247e743c
CM
1536 struct page *page;
1537 struct inode *inode;
1538 u64 page_start;
1539 u64 page_end;
1540
1541 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1542 page = fixup->page;
4a096752 1543again:
247e743c
CM
1544 lock_page(page);
1545 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1546 ClearPageChecked(page);
1547 goto out_page;
1548 }
1549
1550 inode = page->mapping->host;
1551 page_start = page_offset(page);
1552 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1553
2ac55d41
JB
1554 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1555 &cached_state, GFP_NOFS);
4a096752
CM
1556
1557 /* already ordered? We're done */
8b62b72b 1558 if (PagePrivate2(page))
247e743c 1559 goto out;
4a096752
CM
1560
1561 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1562 if (ordered) {
2ac55d41
JB
1563 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1564 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1565 unlock_page(page);
1566 btrfs_start_ordered_extent(inode, ordered, 1);
1567 goto again;
1568 }
247e743c 1569
2ac55d41 1570 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1571 ClearPageChecked(page);
1572out:
2ac55d41
JB
1573 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1574 &cached_state, GFP_NOFS);
247e743c
CM
1575out_page:
1576 unlock_page(page);
1577 page_cache_release(page);
1578}
1579
1580/*
1581 * There are a few paths in the higher layers of the kernel that directly
1582 * set the page dirty bit without asking the filesystem if it is a
1583 * good idea. This causes problems because we want to make sure COW
1584 * properly happens and the data=ordered rules are followed.
1585 *
c8b97818 1586 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1587 * hasn't been properly setup for IO. We kick off an async process
1588 * to fix it up. The async helper will wait for ordered extents, set
1589 * the delalloc bit and make it safe to write the page.
1590 */
b2950863 1591static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1592{
1593 struct inode *inode = page->mapping->host;
1594 struct btrfs_writepage_fixup *fixup;
1595 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1596
8b62b72b
CM
1597 /* this page is properly in the ordered list */
1598 if (TestClearPagePrivate2(page))
247e743c
CM
1599 return 0;
1600
1601 if (PageChecked(page))
1602 return -EAGAIN;
1603
1604 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1605 if (!fixup)
1606 return -EAGAIN;
f421950f 1607
247e743c
CM
1608 SetPageChecked(page);
1609 page_cache_get(page);
1610 fixup->work.func = btrfs_writepage_fixup_worker;
1611 fixup->page = page;
1612 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1613 return -EAGAIN;
1614}
1615
d899e052
YZ
1616static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1617 struct inode *inode, u64 file_pos,
1618 u64 disk_bytenr, u64 disk_num_bytes,
1619 u64 num_bytes, u64 ram_bytes,
1620 u8 compression, u8 encryption,
1621 u16 other_encoding, int extent_type)
1622{
1623 struct btrfs_root *root = BTRFS_I(inode)->root;
1624 struct btrfs_file_extent_item *fi;
1625 struct btrfs_path *path;
1626 struct extent_buffer *leaf;
1627 struct btrfs_key ins;
1628 u64 hint;
1629 int ret;
1630
1631 path = btrfs_alloc_path();
1632 BUG_ON(!path);
1633
b9473439 1634 path->leave_spinning = 1;
a1ed835e
CM
1635
1636 /*
1637 * we may be replacing one extent in the tree with another.
1638 * The new extent is pinned in the extent map, and we don't want
1639 * to drop it from the cache until it is completely in the btree.
1640 *
1641 * So, tell btrfs_drop_extents to leave this extent in the cache.
1642 * the caller is expected to unpin it and allow it to be merged
1643 * with the others.
1644 */
920bbbfb
YZ
1645 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1646 &hint, 0);
d899e052
YZ
1647 BUG_ON(ret);
1648
1649 ins.objectid = inode->i_ino;
1650 ins.offset = file_pos;
1651 ins.type = BTRFS_EXTENT_DATA_KEY;
1652 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1653 BUG_ON(ret);
1654 leaf = path->nodes[0];
1655 fi = btrfs_item_ptr(leaf, path->slots[0],
1656 struct btrfs_file_extent_item);
1657 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1658 btrfs_set_file_extent_type(leaf, fi, extent_type);
1659 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1660 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1661 btrfs_set_file_extent_offset(leaf, fi, 0);
1662 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1663 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1664 btrfs_set_file_extent_compression(leaf, fi, compression);
1665 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1666 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1667
1668 btrfs_unlock_up_safe(path, 1);
1669 btrfs_set_lock_blocking(leaf);
1670
d899e052
YZ
1671 btrfs_mark_buffer_dirty(leaf);
1672
1673 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1674
1675 ins.objectid = disk_bytenr;
1676 ins.offset = disk_num_bytes;
1677 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1678 ret = btrfs_alloc_reserved_file_extent(trans, root,
1679 root->root_key.objectid,
1680 inode->i_ino, file_pos, &ins);
d899e052 1681 BUG_ON(ret);
d899e052 1682 btrfs_free_path(path);
b9473439 1683
d899e052
YZ
1684 return 0;
1685}
1686
5d13a98f
CM
1687/*
1688 * helper function for btrfs_finish_ordered_io, this
1689 * just reads in some of the csum leaves to prime them into ram
1690 * before we start the transaction. It limits the amount of btree
1691 * reads required while inside the transaction.
1692 */
d352ac68
CM
1693/* as ordered data IO finishes, this gets called so we can finish
1694 * an ordered extent if the range of bytes in the file it covers are
1695 * fully written.
1696 */
211f90e6 1697static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1698{
e6dcd2dc
CM
1699 struct btrfs_root *root = BTRFS_I(inode)->root;
1700 struct btrfs_trans_handle *trans;
5d13a98f 1701 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1702 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1703 struct extent_state *cached_state = NULL;
d899e052 1704 int compressed = 0;
e6dcd2dc
CM
1705 int ret;
1706
5a1a3df1
JB
1707 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1708 end - start + 1);
ba1da2f4 1709 if (!ret)
e6dcd2dc 1710 return 0;
e6dcd2dc 1711 BUG_ON(!ordered_extent);
efd049fb 1712
c2167754
YZ
1713 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1714 BUG_ON(!list_empty(&ordered_extent->list));
1715 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1716 if (!ret) {
1717 trans = btrfs_join_transaction(root, 1);
1718 ret = btrfs_update_inode(trans, root, inode);
1719 BUG_ON(ret);
1720 btrfs_end_transaction(trans, root);
1721 }
1722 goto out;
1723 }
e6dcd2dc 1724
2ac55d41
JB
1725 lock_extent_bits(io_tree, ordered_extent->file_offset,
1726 ordered_extent->file_offset + ordered_extent->len - 1,
1727 0, &cached_state, GFP_NOFS);
e6dcd2dc 1728
c2167754
YZ
1729 trans = btrfs_join_transaction(root, 1);
1730
c8b97818 1731 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1732 compressed = 1;
1733 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1734 BUG_ON(compressed);
920bbbfb 1735 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1736 ordered_extent->file_offset,
1737 ordered_extent->file_offset +
1738 ordered_extent->len);
1739 BUG_ON(ret);
1740 } else {
1741 ret = insert_reserved_file_extent(trans, inode,
1742 ordered_extent->file_offset,
1743 ordered_extent->start,
1744 ordered_extent->disk_len,
1745 ordered_extent->len,
1746 ordered_extent->len,
1747 compressed, 0, 0,
1748 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1749 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1750 ordered_extent->file_offset,
1751 ordered_extent->len);
d899e052
YZ
1752 BUG_ON(ret);
1753 }
2ac55d41
JB
1754 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1755 ordered_extent->file_offset +
1756 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1757
e6dcd2dc
CM
1758 add_pending_csums(trans, inode, ordered_extent->file_offset,
1759 &ordered_extent->list);
1760
c2167754
YZ
1761 /* this also removes the ordered extent from the tree */
1762 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1763 ret = btrfs_update_inode(trans, root, inode);
1764 BUG_ON(ret);
1765 btrfs_end_transaction(trans, root);
1766out:
e6dcd2dc
CM
1767 /* once for us */
1768 btrfs_put_ordered_extent(ordered_extent);
1769 /* once for the tree */
1770 btrfs_put_ordered_extent(ordered_extent);
1771
e6dcd2dc
CM
1772 return 0;
1773}
1774
b2950863 1775static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1776 struct extent_state *state, int uptodate)
1777{
8b62b72b 1778 ClearPagePrivate2(page);
211f90e6
CM
1779 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1780}
1781
d352ac68
CM
1782/*
1783 * When IO fails, either with EIO or csum verification fails, we
1784 * try other mirrors that might have a good copy of the data. This
1785 * io_failure_record is used to record state as we go through all the
1786 * mirrors. If another mirror has good data, the page is set up to date
1787 * and things continue. If a good mirror can't be found, the original
1788 * bio end_io callback is called to indicate things have failed.
1789 */
7e38326f
CM
1790struct io_failure_record {
1791 struct page *page;
1792 u64 start;
1793 u64 len;
1794 u64 logical;
d20f7043 1795 unsigned long bio_flags;
7e38326f
CM
1796 int last_mirror;
1797};
1798
b2950863 1799static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1800 struct page *page, u64 start, u64 end,
1801 struct extent_state *state)
7e38326f
CM
1802{
1803 struct io_failure_record *failrec = NULL;
1804 u64 private;
1805 struct extent_map *em;
1806 struct inode *inode = page->mapping->host;
1807 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1808 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1809 struct bio *bio;
1810 int num_copies;
1811 int ret;
1259ab75 1812 int rw;
7e38326f
CM
1813 u64 logical;
1814
1815 ret = get_state_private(failure_tree, start, &private);
1816 if (ret) {
7e38326f
CM
1817 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1818 if (!failrec)
1819 return -ENOMEM;
1820 failrec->start = start;
1821 failrec->len = end - start + 1;
1822 failrec->last_mirror = 0;
d20f7043 1823 failrec->bio_flags = 0;
7e38326f 1824
890871be 1825 read_lock(&em_tree->lock);
3b951516
CM
1826 em = lookup_extent_mapping(em_tree, start, failrec->len);
1827 if (em->start > start || em->start + em->len < start) {
1828 free_extent_map(em);
1829 em = NULL;
1830 }
890871be 1831 read_unlock(&em_tree->lock);
7e38326f
CM
1832
1833 if (!em || IS_ERR(em)) {
1834 kfree(failrec);
1835 return -EIO;
1836 }
1837 logical = start - em->start;
1838 logical = em->block_start + logical;
d20f7043
CM
1839 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1840 logical = em->block_start;
1841 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1842 }
7e38326f
CM
1843 failrec->logical = logical;
1844 free_extent_map(em);
1845 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1846 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1847 set_state_private(failure_tree, start,
1848 (u64)(unsigned long)failrec);
7e38326f 1849 } else {
587f7704 1850 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1851 }
1852 num_copies = btrfs_num_copies(
1853 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1854 failrec->logical, failrec->len);
1855 failrec->last_mirror++;
1856 if (!state) {
cad321ad 1857 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1858 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1859 failrec->start,
1860 EXTENT_LOCKED);
1861 if (state && state->start != failrec->start)
1862 state = NULL;
cad321ad 1863 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1864 }
1865 if (!state || failrec->last_mirror > num_copies) {
1866 set_state_private(failure_tree, failrec->start, 0);
1867 clear_extent_bits(failure_tree, failrec->start,
1868 failrec->start + failrec->len - 1,
1869 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1870 kfree(failrec);
1871 return -EIO;
1872 }
1873 bio = bio_alloc(GFP_NOFS, 1);
1874 bio->bi_private = state;
1875 bio->bi_end_io = failed_bio->bi_end_io;
1876 bio->bi_sector = failrec->logical >> 9;
1877 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1878 bio->bi_size = 0;
d20f7043 1879
7e38326f 1880 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1881 if (failed_bio->bi_rw & (1 << BIO_RW))
1882 rw = WRITE;
1883 else
1884 rw = READ;
1885
1886 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1887 failrec->last_mirror,
d20f7043 1888 failrec->bio_flags);
1259ab75
CM
1889 return 0;
1890}
1891
d352ac68
CM
1892/*
1893 * each time an IO finishes, we do a fast check in the IO failure tree
1894 * to see if we need to process or clean up an io_failure_record
1895 */
b2950863 1896static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1897{
1898 u64 private;
1899 u64 private_failure;
1900 struct io_failure_record *failure;
1901 int ret;
1902
1903 private = 0;
1904 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1905 (u64)-1, 1, EXTENT_DIRTY)) {
1906 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1907 start, &private_failure);
1908 if (ret == 0) {
1909 failure = (struct io_failure_record *)(unsigned long)
1910 private_failure;
1911 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1912 failure->start, 0);
1913 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1914 failure->start,
1915 failure->start + failure->len - 1,
1916 EXTENT_DIRTY | EXTENT_LOCKED,
1917 GFP_NOFS);
1918 kfree(failure);
1919 }
1920 }
7e38326f
CM
1921 return 0;
1922}
1923
d352ac68
CM
1924/*
1925 * when reads are done, we need to check csums to verify the data is correct
1926 * if there's a match, we allow the bio to finish. If not, we go through
1927 * the io_failure_record routines to find good copies
1928 */
b2950863 1929static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1930 struct extent_state *state)
07157aac 1931{
35ebb934 1932 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1933 struct inode *inode = page->mapping->host;
d1310b2e 1934 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1935 char *kaddr;
aadfeb6e 1936 u64 private = ~(u32)0;
07157aac 1937 int ret;
ff79f819
CM
1938 struct btrfs_root *root = BTRFS_I(inode)->root;
1939 u32 csum = ~(u32)0;
d1310b2e 1940
d20f7043
CM
1941 if (PageChecked(page)) {
1942 ClearPageChecked(page);
1943 goto good;
1944 }
6cbff00f
CH
1945
1946 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1947 return 0;
1948
1949 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1950 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1951 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1952 GFP_NOFS);
b6cda9bc 1953 return 0;
17d217fe 1954 }
d20f7043 1955
c2e639f0 1956 if (state && state->start == start) {
70dec807
CM
1957 private = state->private;
1958 ret = 0;
1959 } else {
1960 ret = get_state_private(io_tree, start, &private);
1961 }
9ab86c8e 1962 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1963 if (ret)
07157aac 1964 goto zeroit;
d397712b 1965
ff79f819
CM
1966 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1967 btrfs_csum_final(csum, (char *)&csum);
d397712b 1968 if (csum != private)
07157aac 1969 goto zeroit;
d397712b 1970
9ab86c8e 1971 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1972good:
7e38326f
CM
1973 /* if the io failure tree for this inode is non-empty,
1974 * check to see if we've recovered from a failed IO
1975 */
1259ab75 1976 btrfs_clean_io_failures(inode, start);
07157aac
CM
1977 return 0;
1978
1979zeroit:
193f284d
CM
1980 if (printk_ratelimit()) {
1981 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1982 "private %llu\n", page->mapping->host->i_ino,
1983 (unsigned long long)start, csum,
1984 (unsigned long long)private);
1985 }
db94535d
CM
1986 memset(kaddr + offset, 1, end - start + 1);
1987 flush_dcache_page(page);
9ab86c8e 1988 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1989 if (private == 0)
1990 return 0;
7e38326f 1991 return -EIO;
07157aac 1992}
b888db2b 1993
24bbcf04
YZ
1994struct delayed_iput {
1995 struct list_head list;
1996 struct inode *inode;
1997};
1998
1999void btrfs_add_delayed_iput(struct inode *inode)
2000{
2001 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2002 struct delayed_iput *delayed;
2003
2004 if (atomic_add_unless(&inode->i_count, -1, 1))
2005 return;
2006
2007 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2008 delayed->inode = inode;
2009
2010 spin_lock(&fs_info->delayed_iput_lock);
2011 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2012 spin_unlock(&fs_info->delayed_iput_lock);
2013}
2014
2015void btrfs_run_delayed_iputs(struct btrfs_root *root)
2016{
2017 LIST_HEAD(list);
2018 struct btrfs_fs_info *fs_info = root->fs_info;
2019 struct delayed_iput *delayed;
2020 int empty;
2021
2022 spin_lock(&fs_info->delayed_iput_lock);
2023 empty = list_empty(&fs_info->delayed_iputs);
2024 spin_unlock(&fs_info->delayed_iput_lock);
2025 if (empty)
2026 return;
2027
2028 down_read(&root->fs_info->cleanup_work_sem);
2029 spin_lock(&fs_info->delayed_iput_lock);
2030 list_splice_init(&fs_info->delayed_iputs, &list);
2031 spin_unlock(&fs_info->delayed_iput_lock);
2032
2033 while (!list_empty(&list)) {
2034 delayed = list_entry(list.next, struct delayed_iput, list);
2035 list_del(&delayed->list);
2036 iput(delayed->inode);
2037 kfree(delayed);
2038 }
2039 up_read(&root->fs_info->cleanup_work_sem);
2040}
2041
7b128766
JB
2042/*
2043 * This creates an orphan entry for the given inode in case something goes
2044 * wrong in the middle of an unlink/truncate.
2045 */
2046int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2047{
2048 struct btrfs_root *root = BTRFS_I(inode)->root;
2049 int ret = 0;
2050
bcc63abb 2051 spin_lock(&root->list_lock);
7b128766
JB
2052
2053 /* already on the orphan list, we're good */
2054 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2055 spin_unlock(&root->list_lock);
7b128766
JB
2056 return 0;
2057 }
2058
2059 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2060
bcc63abb 2061 spin_unlock(&root->list_lock);
7b128766
JB
2062
2063 /*
2064 * insert an orphan item to track this unlinked/truncated file
2065 */
2066 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2067
2068 return ret;
2069}
2070
2071/*
2072 * We have done the truncate/delete so we can go ahead and remove the orphan
2073 * item for this particular inode.
2074 */
2075int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2076{
2077 struct btrfs_root *root = BTRFS_I(inode)->root;
2078 int ret = 0;
2079
bcc63abb 2080 spin_lock(&root->list_lock);
7b128766
JB
2081
2082 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2083 spin_unlock(&root->list_lock);
7b128766
JB
2084 return 0;
2085 }
2086
2087 list_del_init(&BTRFS_I(inode)->i_orphan);
2088 if (!trans) {
bcc63abb 2089 spin_unlock(&root->list_lock);
7b128766
JB
2090 return 0;
2091 }
2092
bcc63abb 2093 spin_unlock(&root->list_lock);
7b128766
JB
2094
2095 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2096
2097 return ret;
2098}
2099
2100/*
2101 * this cleans up any orphans that may be left on the list from the last use
2102 * of this root.
2103 */
2104void btrfs_orphan_cleanup(struct btrfs_root *root)
2105{
2106 struct btrfs_path *path;
2107 struct extent_buffer *leaf;
2108 struct btrfs_item *item;
2109 struct btrfs_key key, found_key;
2110 struct btrfs_trans_handle *trans;
2111 struct inode *inode;
2112 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2113
c71bf099 2114 if (!xchg(&root->clean_orphans, 0))
7b128766 2115 return;
c71bf099
YZ
2116
2117 path = btrfs_alloc_path();
2118 BUG_ON(!path);
7b128766
JB
2119 path->reada = -1;
2120
2121 key.objectid = BTRFS_ORPHAN_OBJECTID;
2122 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2123 key.offset = (u64)-1;
2124
7b128766
JB
2125 while (1) {
2126 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2127 if (ret < 0) {
2128 printk(KERN_ERR "Error searching slot for orphan: %d"
2129 "\n", ret);
2130 break;
2131 }
2132
2133 /*
2134 * if ret == 0 means we found what we were searching for, which
2135 * is weird, but possible, so only screw with path if we didnt
2136 * find the key and see if we have stuff that matches
2137 */
2138 if (ret > 0) {
2139 if (path->slots[0] == 0)
2140 break;
2141 path->slots[0]--;
2142 }
2143
2144 /* pull out the item */
2145 leaf = path->nodes[0];
2146 item = btrfs_item_nr(leaf, path->slots[0]);
2147 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2148
2149 /* make sure the item matches what we want */
2150 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2151 break;
2152 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2153 break;
2154
2155 /* release the path since we're done with it */
2156 btrfs_release_path(root, path);
2157
2158 /*
2159 * this is where we are basically btrfs_lookup, without the
2160 * crossing root thing. we store the inode number in the
2161 * offset of the orphan item.
2162 */
5d4f98a2
YZ
2163 found_key.objectid = found_key.offset;
2164 found_key.type = BTRFS_INODE_ITEM_KEY;
2165 found_key.offset = 0;
73f73415 2166 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
5d4f98a2 2167 if (IS_ERR(inode))
7b128766
JB
2168 break;
2169
7b128766
JB
2170 /*
2171 * add this inode to the orphan list so btrfs_orphan_del does
2172 * the proper thing when we hit it
2173 */
bcc63abb 2174 spin_lock(&root->list_lock);
7b128766 2175 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 2176 spin_unlock(&root->list_lock);
7b128766
JB
2177
2178 /*
2179 * if this is a bad inode, means we actually succeeded in
2180 * removing the inode, but not the orphan record, which means
2181 * we need to manually delete the orphan since iput will just
2182 * do a destroy_inode
2183 */
2184 if (is_bad_inode(inode)) {
5b21f2ed 2185 trans = btrfs_start_transaction(root, 1);
7b128766 2186 btrfs_orphan_del(trans, inode);
5b21f2ed 2187 btrfs_end_transaction(trans, root);
7b128766
JB
2188 iput(inode);
2189 continue;
2190 }
2191
2192 /* if we have links, this was a truncate, lets do that */
2193 if (inode->i_nlink) {
2194 nr_truncate++;
2195 btrfs_truncate(inode);
2196 } else {
2197 nr_unlink++;
2198 }
2199
2200 /* this will do delete_inode and everything for us */
2201 iput(inode);
2202 }
2203
2204 if (nr_unlink)
2205 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2206 if (nr_truncate)
2207 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2208
2209 btrfs_free_path(path);
7b128766
JB
2210}
2211
46a53cca
CM
2212/*
2213 * very simple check to peek ahead in the leaf looking for xattrs. If we
2214 * don't find any xattrs, we know there can't be any acls.
2215 *
2216 * slot is the slot the inode is in, objectid is the objectid of the inode
2217 */
2218static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2219 int slot, u64 objectid)
2220{
2221 u32 nritems = btrfs_header_nritems(leaf);
2222 struct btrfs_key found_key;
2223 int scanned = 0;
2224
2225 slot++;
2226 while (slot < nritems) {
2227 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2228
2229 /* we found a different objectid, there must not be acls */
2230 if (found_key.objectid != objectid)
2231 return 0;
2232
2233 /* we found an xattr, assume we've got an acl */
2234 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2235 return 1;
2236
2237 /*
2238 * we found a key greater than an xattr key, there can't
2239 * be any acls later on
2240 */
2241 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2242 return 0;
2243
2244 slot++;
2245 scanned++;
2246
2247 /*
2248 * it goes inode, inode backrefs, xattrs, extents,
2249 * so if there are a ton of hard links to an inode there can
2250 * be a lot of backrefs. Don't waste time searching too hard,
2251 * this is just an optimization
2252 */
2253 if (scanned >= 8)
2254 break;
2255 }
2256 /* we hit the end of the leaf before we found an xattr or
2257 * something larger than an xattr. We have to assume the inode
2258 * has acls
2259 */
2260 return 1;
2261}
2262
d352ac68
CM
2263/*
2264 * read an inode from the btree into the in-memory inode
2265 */
5d4f98a2 2266static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2267{
2268 struct btrfs_path *path;
5f39d397 2269 struct extent_buffer *leaf;
39279cc3 2270 struct btrfs_inode_item *inode_item;
0b86a832 2271 struct btrfs_timespec *tspec;
39279cc3
CM
2272 struct btrfs_root *root = BTRFS_I(inode)->root;
2273 struct btrfs_key location;
46a53cca 2274 int maybe_acls;
39279cc3 2275 u64 alloc_group_block;
618e21d5 2276 u32 rdev;
39279cc3
CM
2277 int ret;
2278
2279 path = btrfs_alloc_path();
2280 BUG_ON(!path);
39279cc3 2281 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2282
39279cc3 2283 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2284 if (ret)
39279cc3 2285 goto make_bad;
39279cc3 2286
5f39d397
CM
2287 leaf = path->nodes[0];
2288 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2289 struct btrfs_inode_item);
2290
2291 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2292 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2293 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2294 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2295 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2296
2297 tspec = btrfs_inode_atime(inode_item);
2298 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2299 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2300
2301 tspec = btrfs_inode_mtime(inode_item);
2302 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2303 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2304
2305 tspec = btrfs_inode_ctime(inode_item);
2306 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2307 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2308
a76a3cd4 2309 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2310 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2311 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2312 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2313 inode->i_rdev = 0;
5f39d397
CM
2314 rdev = btrfs_inode_rdev(leaf, inode_item);
2315
aec7477b 2316 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2317 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2318
5f39d397 2319 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2320
46a53cca
CM
2321 /*
2322 * try to precache a NULL acl entry for files that don't have
2323 * any xattrs or acls
2324 */
2325 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2326 if (!maybe_acls)
2327 cache_no_acl(inode);
46a53cca 2328
d2fb3437
YZ
2329 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2330 alloc_group_block, 0);
39279cc3
CM
2331 btrfs_free_path(path);
2332 inode_item = NULL;
2333
39279cc3 2334 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2335 case S_IFREG:
2336 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2337 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2338 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2339 inode->i_fop = &btrfs_file_operations;
2340 inode->i_op = &btrfs_file_inode_operations;
2341 break;
2342 case S_IFDIR:
2343 inode->i_fop = &btrfs_dir_file_operations;
2344 if (root == root->fs_info->tree_root)
2345 inode->i_op = &btrfs_dir_ro_inode_operations;
2346 else
2347 inode->i_op = &btrfs_dir_inode_operations;
2348 break;
2349 case S_IFLNK:
2350 inode->i_op = &btrfs_symlink_inode_operations;
2351 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2352 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2353 break;
618e21d5 2354 default:
0279b4cd 2355 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2356 init_special_inode(inode, inode->i_mode, rdev);
2357 break;
39279cc3 2358 }
6cbff00f
CH
2359
2360 btrfs_update_iflags(inode);
39279cc3
CM
2361 return;
2362
2363make_bad:
39279cc3 2364 btrfs_free_path(path);
39279cc3
CM
2365 make_bad_inode(inode);
2366}
2367
d352ac68
CM
2368/*
2369 * given a leaf and an inode, copy the inode fields into the leaf
2370 */
e02119d5
CM
2371static void fill_inode_item(struct btrfs_trans_handle *trans,
2372 struct extent_buffer *leaf,
5f39d397 2373 struct btrfs_inode_item *item,
39279cc3
CM
2374 struct inode *inode)
2375{
5f39d397
CM
2376 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2377 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2378 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2379 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2380 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2381
2382 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2383 inode->i_atime.tv_sec);
2384 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2385 inode->i_atime.tv_nsec);
2386
2387 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2388 inode->i_mtime.tv_sec);
2389 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2390 inode->i_mtime.tv_nsec);
2391
2392 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2393 inode->i_ctime.tv_sec);
2394 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2395 inode->i_ctime.tv_nsec);
2396
a76a3cd4 2397 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2398 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2399 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2400 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2401 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2402 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2403 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2404}
2405
d352ac68
CM
2406/*
2407 * copy everything in the in-memory inode into the btree.
2408 */
d397712b
CM
2409noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2410 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2411{
2412 struct btrfs_inode_item *inode_item;
2413 struct btrfs_path *path;
5f39d397 2414 struct extent_buffer *leaf;
39279cc3
CM
2415 int ret;
2416
2417 path = btrfs_alloc_path();
2418 BUG_ON(!path);
b9473439 2419 path->leave_spinning = 1;
39279cc3
CM
2420 ret = btrfs_lookup_inode(trans, root, path,
2421 &BTRFS_I(inode)->location, 1);
2422 if (ret) {
2423 if (ret > 0)
2424 ret = -ENOENT;
2425 goto failed;
2426 }
2427
b4ce94de 2428 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2429 leaf = path->nodes[0];
2430 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2431 struct btrfs_inode_item);
2432
e02119d5 2433 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2434 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2435 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2436 ret = 0;
2437failed:
39279cc3
CM
2438 btrfs_free_path(path);
2439 return ret;
2440}
2441
2442
d352ac68
CM
2443/*
2444 * unlink helper that gets used here in inode.c and in the tree logging
2445 * recovery code. It remove a link in a directory with a given name, and
2446 * also drops the back refs in the inode to the directory
2447 */
e02119d5
CM
2448int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2449 struct btrfs_root *root,
2450 struct inode *dir, struct inode *inode,
2451 const char *name, int name_len)
39279cc3
CM
2452{
2453 struct btrfs_path *path;
39279cc3 2454 int ret = 0;
5f39d397 2455 struct extent_buffer *leaf;
39279cc3 2456 struct btrfs_dir_item *di;
5f39d397 2457 struct btrfs_key key;
aec7477b 2458 u64 index;
39279cc3
CM
2459
2460 path = btrfs_alloc_path();
54aa1f4d
CM
2461 if (!path) {
2462 ret = -ENOMEM;
2463 goto err;
2464 }
2465
b9473439 2466 path->leave_spinning = 1;
39279cc3
CM
2467 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2468 name, name_len, -1);
2469 if (IS_ERR(di)) {
2470 ret = PTR_ERR(di);
2471 goto err;
2472 }
2473 if (!di) {
2474 ret = -ENOENT;
2475 goto err;
2476 }
5f39d397
CM
2477 leaf = path->nodes[0];
2478 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2479 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2480 if (ret)
2481 goto err;
39279cc3
CM
2482 btrfs_release_path(root, path);
2483
aec7477b 2484 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2485 inode->i_ino,
2486 dir->i_ino, &index);
aec7477b 2487 if (ret) {
d397712b 2488 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2489 "inode %lu parent %lu\n", name_len, name,
e02119d5 2490 inode->i_ino, dir->i_ino);
aec7477b
JB
2491 goto err;
2492 }
2493
39279cc3 2494 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2495 index, name, name_len, -1);
39279cc3
CM
2496 if (IS_ERR(di)) {
2497 ret = PTR_ERR(di);
2498 goto err;
2499 }
2500 if (!di) {
2501 ret = -ENOENT;
2502 goto err;
2503 }
2504 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2505 btrfs_release_path(root, path);
39279cc3 2506
e02119d5
CM
2507 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2508 inode, dir->i_ino);
49eb7e46 2509 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2510
2511 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2512 dir, index);
2513 BUG_ON(ret);
39279cc3
CM
2514err:
2515 btrfs_free_path(path);
e02119d5
CM
2516 if (ret)
2517 goto out;
2518
2519 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2520 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2521 btrfs_update_inode(trans, root, dir);
2522 btrfs_drop_nlink(inode);
2523 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2524out:
39279cc3
CM
2525 return ret;
2526}
2527
2528static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2529{
2530 struct btrfs_root *root;
2531 struct btrfs_trans_handle *trans;
7b128766 2532 struct inode *inode = dentry->d_inode;
39279cc3 2533 int ret;
1832a6d5 2534 unsigned long nr = 0;
39279cc3
CM
2535
2536 root = BTRFS_I(dir)->root;
1832a6d5 2537
5df6a9f6
JB
2538 /*
2539 * 5 items for unlink inode
2540 * 1 for orphan
2541 */
2542 ret = btrfs_reserve_metadata_space(root, 6);
2543 if (ret)
2544 return ret;
2545
39279cc3 2546 trans = btrfs_start_transaction(root, 1);
5df6a9f6
JB
2547 if (IS_ERR(trans)) {
2548 btrfs_unreserve_metadata_space(root, 6);
2549 return PTR_ERR(trans);
2550 }
5f39d397 2551
39279cc3 2552 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2553
2554 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2555
e02119d5
CM
2556 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2557 dentry->d_name.name, dentry->d_name.len);
7b128766
JB
2558
2559 if (inode->i_nlink == 0)
2560 ret = btrfs_orphan_add(trans, inode);
2561
d3c2fdcf 2562 nr = trans->blocks_used;
5f39d397 2563
89ce8a63 2564 btrfs_end_transaction_throttle(trans, root);
5df6a9f6 2565 btrfs_unreserve_metadata_space(root, 6);
d3c2fdcf 2566 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2567 return ret;
2568}
2569
4df27c4d
YZ
2570int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2571 struct btrfs_root *root,
2572 struct inode *dir, u64 objectid,
2573 const char *name, int name_len)
2574{
2575 struct btrfs_path *path;
2576 struct extent_buffer *leaf;
2577 struct btrfs_dir_item *di;
2578 struct btrfs_key key;
2579 u64 index;
2580 int ret;
2581
2582 path = btrfs_alloc_path();
2583 if (!path)
2584 return -ENOMEM;
2585
2586 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2587 name, name_len, -1);
2588 BUG_ON(!di || IS_ERR(di));
2589
2590 leaf = path->nodes[0];
2591 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2592 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2593 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2594 BUG_ON(ret);
2595 btrfs_release_path(root, path);
2596
2597 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2598 objectid, root->root_key.objectid,
2599 dir->i_ino, &index, name, name_len);
2600 if (ret < 0) {
2601 BUG_ON(ret != -ENOENT);
2602 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2603 name, name_len);
2604 BUG_ON(!di || IS_ERR(di));
2605
2606 leaf = path->nodes[0];
2607 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2608 btrfs_release_path(root, path);
2609 index = key.offset;
2610 }
2611
2612 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2613 index, name, name_len, -1);
2614 BUG_ON(!di || IS_ERR(di));
2615
2616 leaf = path->nodes[0];
2617 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2618 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2619 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2620 BUG_ON(ret);
2621 btrfs_release_path(root, path);
2622
2623 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2624 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2625 ret = btrfs_update_inode(trans, root, dir);
2626 BUG_ON(ret);
2627 dir->i_sb->s_dirt = 1;
2628
2629 btrfs_free_path(path);
2630 return 0;
2631}
2632
39279cc3
CM
2633static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2634{
2635 struct inode *inode = dentry->d_inode;
1832a6d5 2636 int err = 0;
39279cc3
CM
2637 int ret;
2638 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2639 struct btrfs_trans_handle *trans;
1832a6d5 2640 unsigned long nr = 0;
39279cc3 2641
3394e160 2642 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 2643 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2644 return -ENOTEMPTY;
2645
5df6a9f6
JB
2646 ret = btrfs_reserve_metadata_space(root, 5);
2647 if (ret)
2648 return ret;
2649
39279cc3 2650 trans = btrfs_start_transaction(root, 1);
5df6a9f6
JB
2651 if (IS_ERR(trans)) {
2652 btrfs_unreserve_metadata_space(root, 5);
2653 return PTR_ERR(trans);
2654 }
2655
39279cc3 2656 btrfs_set_trans_block_group(trans, dir);
39279cc3 2657
4df27c4d
YZ
2658 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2659 err = btrfs_unlink_subvol(trans, root, dir,
2660 BTRFS_I(inode)->location.objectid,
2661 dentry->d_name.name,
2662 dentry->d_name.len);
2663 goto out;
2664 }
2665
7b128766
JB
2666 err = btrfs_orphan_add(trans, inode);
2667 if (err)
4df27c4d 2668 goto out;
7b128766 2669
39279cc3 2670 /* now the directory is empty */
e02119d5
CM
2671 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2672 dentry->d_name.name, dentry->d_name.len);
d397712b 2673 if (!err)
dbe674a9 2674 btrfs_i_size_write(inode, 0);
4df27c4d 2675out:
d3c2fdcf 2676 nr = trans->blocks_used;
89ce8a63 2677 ret = btrfs_end_transaction_throttle(trans, root);
5df6a9f6 2678 btrfs_unreserve_metadata_space(root, 5);
d3c2fdcf 2679 btrfs_btree_balance_dirty(root, nr);
3954401f 2680
39279cc3
CM
2681 if (ret && !err)
2682 err = ret;
2683 return err;
2684}
2685
d20f7043 2686#if 0
323ac95b
CM
2687/*
2688 * when truncating bytes in a file, it is possible to avoid reading
2689 * the leaves that contain only checksum items. This can be the
2690 * majority of the IO required to delete a large file, but it must
2691 * be done carefully.
2692 *
2693 * The keys in the level just above the leaves are checked to make sure
2694 * the lowest key in a given leaf is a csum key, and starts at an offset
2695 * after the new size.
2696 *
2697 * Then the key for the next leaf is checked to make sure it also has
2698 * a checksum item for the same file. If it does, we know our target leaf
2699 * contains only checksum items, and it can be safely freed without reading
2700 * it.
2701 *
2702 * This is just an optimization targeted at large files. It may do
2703 * nothing. It will return 0 unless things went badly.
2704 */
2705static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2706 struct btrfs_root *root,
2707 struct btrfs_path *path,
2708 struct inode *inode, u64 new_size)
2709{
2710 struct btrfs_key key;
2711 int ret;
2712 int nritems;
2713 struct btrfs_key found_key;
2714 struct btrfs_key other_key;
5b84e8d6
YZ
2715 struct btrfs_leaf_ref *ref;
2716 u64 leaf_gen;
2717 u64 leaf_start;
323ac95b
CM
2718
2719 path->lowest_level = 1;
2720 key.objectid = inode->i_ino;
2721 key.type = BTRFS_CSUM_ITEM_KEY;
2722 key.offset = new_size;
2723again:
2724 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2725 if (ret < 0)
2726 goto out;
2727
2728 if (path->nodes[1] == NULL) {
2729 ret = 0;
2730 goto out;
2731 }
2732 ret = 0;
2733 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2734 nritems = btrfs_header_nritems(path->nodes[1]);
2735
2736 if (!nritems)
2737 goto out;
2738
2739 if (path->slots[1] >= nritems)
2740 goto next_node;
2741
2742 /* did we find a key greater than anything we want to delete? */
2743 if (found_key.objectid > inode->i_ino ||
2744 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2745 goto out;
2746
2747 /* we check the next key in the node to make sure the leave contains
2748 * only checksum items. This comparison doesn't work if our
2749 * leaf is the last one in the node
2750 */
2751 if (path->slots[1] + 1 >= nritems) {
2752next_node:
2753 /* search forward from the last key in the node, this
2754 * will bring us into the next node in the tree
2755 */
2756 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2757
2758 /* unlikely, but we inc below, so check to be safe */
2759 if (found_key.offset == (u64)-1)
2760 goto out;
2761
2762 /* search_forward needs a path with locks held, do the
2763 * search again for the original key. It is possible
2764 * this will race with a balance and return a path that
2765 * we could modify, but this drop is just an optimization
2766 * and is allowed to miss some leaves.
2767 */
2768 btrfs_release_path(root, path);
2769 found_key.offset++;
2770
2771 /* setup a max key for search_forward */
2772 other_key.offset = (u64)-1;
2773 other_key.type = key.type;
2774 other_key.objectid = key.objectid;
2775
2776 path->keep_locks = 1;
2777 ret = btrfs_search_forward(root, &found_key, &other_key,
2778 path, 0, 0);
2779 path->keep_locks = 0;
2780 if (ret || found_key.objectid != key.objectid ||
2781 found_key.type != key.type) {
2782 ret = 0;
2783 goto out;
2784 }
2785
2786 key.offset = found_key.offset;
2787 btrfs_release_path(root, path);
2788 cond_resched();
2789 goto again;
2790 }
2791
2792 /* we know there's one more slot after us in the tree,
2793 * read that key so we can verify it is also a checksum item
2794 */
2795 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2796
2797 if (found_key.objectid < inode->i_ino)
2798 goto next_key;
2799
2800 if (found_key.type != key.type || found_key.offset < new_size)
2801 goto next_key;
2802
2803 /*
2804 * if the key for the next leaf isn't a csum key from this objectid,
2805 * we can't be sure there aren't good items inside this leaf.
2806 * Bail out
2807 */
2808 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2809 goto out;
2810
5b84e8d6
YZ
2811 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2812 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2813 /*
2814 * it is safe to delete this leaf, it contains only
2815 * csum items from this inode at an offset >= new_size
2816 */
5b84e8d6 2817 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2818 BUG_ON(ret);
2819
5b84e8d6
YZ
2820 if (root->ref_cows && leaf_gen < trans->transid) {
2821 ref = btrfs_alloc_leaf_ref(root, 0);
2822 if (ref) {
2823 ref->root_gen = root->root_key.offset;
2824 ref->bytenr = leaf_start;
2825 ref->owner = 0;
2826 ref->generation = leaf_gen;
2827 ref->nritems = 0;
2828
bd56b302
CM
2829 btrfs_sort_leaf_ref(ref);
2830
5b84e8d6
YZ
2831 ret = btrfs_add_leaf_ref(root, ref, 0);
2832 WARN_ON(ret);
2833 btrfs_free_leaf_ref(root, ref);
2834 } else {
2835 WARN_ON(1);
2836 }
2837 }
323ac95b
CM
2838next_key:
2839 btrfs_release_path(root, path);
2840
2841 if (other_key.objectid == inode->i_ino &&
2842 other_key.type == key.type && other_key.offset > key.offset) {
2843 key.offset = other_key.offset;
2844 cond_resched();
2845 goto again;
2846 }
2847 ret = 0;
2848out:
2849 /* fixup any changes we've made to the path */
2850 path->lowest_level = 0;
2851 path->keep_locks = 0;
2852 btrfs_release_path(root, path);
2853 return ret;
2854}
2855
d20f7043
CM
2856#endif
2857
39279cc3
CM
2858/*
2859 * this can truncate away extent items, csum items and directory items.
2860 * It starts at a high offset and removes keys until it can't find
d352ac68 2861 * any higher than new_size
39279cc3
CM
2862 *
2863 * csum items that cross the new i_size are truncated to the new size
2864 * as well.
7b128766
JB
2865 *
2866 * min_type is the minimum key type to truncate down to. If set to 0, this
2867 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2868 */
8082510e
YZ
2869int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2870 struct btrfs_root *root,
2871 struct inode *inode,
2872 u64 new_size, u32 min_type)
39279cc3 2873{
39279cc3 2874 struct btrfs_path *path;
5f39d397 2875 struct extent_buffer *leaf;
39279cc3 2876 struct btrfs_file_extent_item *fi;
8082510e
YZ
2877 struct btrfs_key key;
2878 struct btrfs_key found_key;
39279cc3 2879 u64 extent_start = 0;
db94535d 2880 u64 extent_num_bytes = 0;
5d4f98a2 2881 u64 extent_offset = 0;
39279cc3 2882 u64 item_end = 0;
8082510e
YZ
2883 u64 mask = root->sectorsize - 1;
2884 u32 found_type = (u8)-1;
39279cc3
CM
2885 int found_extent;
2886 int del_item;
85e21bac
CM
2887 int pending_del_nr = 0;
2888 int pending_del_slot = 0;
179e29e4 2889 int extent_type = -1;
771ed689 2890 int encoding;
8082510e
YZ
2891 int ret;
2892 int err = 0;
2893
2894 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 2895
e02119d5 2896 if (root->ref_cows)
5b21f2ed 2897 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 2898
39279cc3
CM
2899 path = btrfs_alloc_path();
2900 BUG_ON(!path);
33c17ad5 2901 path->reada = -1;
5f39d397 2902
39279cc3
CM
2903 key.objectid = inode->i_ino;
2904 key.offset = (u64)-1;
5f39d397
CM
2905 key.type = (u8)-1;
2906
85e21bac 2907search_again:
b9473439 2908 path->leave_spinning = 1;
85e21bac 2909 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
2910 if (ret < 0) {
2911 err = ret;
2912 goto out;
2913 }
d397712b 2914
85e21bac 2915 if (ret > 0) {
e02119d5
CM
2916 /* there are no items in the tree for us to truncate, we're
2917 * done
2918 */
8082510e
YZ
2919 if (path->slots[0] == 0)
2920 goto out;
85e21bac
CM
2921 path->slots[0]--;
2922 }
2923
d397712b 2924 while (1) {
39279cc3 2925 fi = NULL;
5f39d397
CM
2926 leaf = path->nodes[0];
2927 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2928 found_type = btrfs_key_type(&found_key);
771ed689 2929 encoding = 0;
39279cc3 2930
5f39d397 2931 if (found_key.objectid != inode->i_ino)
39279cc3 2932 break;
5f39d397 2933
85e21bac 2934 if (found_type < min_type)
39279cc3
CM
2935 break;
2936
5f39d397 2937 item_end = found_key.offset;
39279cc3 2938 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 2939 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 2940 struct btrfs_file_extent_item);
179e29e4 2941 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
2942 encoding = btrfs_file_extent_compression(leaf, fi);
2943 encoding |= btrfs_file_extent_encryption(leaf, fi);
2944 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2945
179e29e4 2946 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 2947 item_end +=
db94535d 2948 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 2949 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 2950 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 2951 fi);
39279cc3 2952 }
008630c1 2953 item_end--;
39279cc3 2954 }
8082510e
YZ
2955 if (found_type > min_type) {
2956 del_item = 1;
2957 } else {
2958 if (item_end < new_size)
b888db2b 2959 break;
8082510e
YZ
2960 if (found_key.offset >= new_size)
2961 del_item = 1;
2962 else
2963 del_item = 0;
39279cc3 2964 }
39279cc3 2965 found_extent = 0;
39279cc3 2966 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
2967 if (found_type != BTRFS_EXTENT_DATA_KEY)
2968 goto delete;
2969
2970 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 2971 u64 num_dec;
db94535d 2972 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 2973 if (!del_item && !encoding) {
db94535d
CM
2974 u64 orig_num_bytes =
2975 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 2976 extent_num_bytes = new_size -
5f39d397 2977 found_key.offset + root->sectorsize - 1;
b1632b10
Y
2978 extent_num_bytes = extent_num_bytes &
2979 ~((u64)root->sectorsize - 1);
db94535d
CM
2980 btrfs_set_file_extent_num_bytes(leaf, fi,
2981 extent_num_bytes);
2982 num_dec = (orig_num_bytes -
9069218d 2983 extent_num_bytes);
e02119d5 2984 if (root->ref_cows && extent_start != 0)
a76a3cd4 2985 inode_sub_bytes(inode, num_dec);
5f39d397 2986 btrfs_mark_buffer_dirty(leaf);
39279cc3 2987 } else {
db94535d
CM
2988 extent_num_bytes =
2989 btrfs_file_extent_disk_num_bytes(leaf,
2990 fi);
5d4f98a2
YZ
2991 extent_offset = found_key.offset -
2992 btrfs_file_extent_offset(leaf, fi);
2993
39279cc3 2994 /* FIXME blocksize != 4096 */
9069218d 2995 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
2996 if (extent_start != 0) {
2997 found_extent = 1;
e02119d5 2998 if (root->ref_cows)
a76a3cd4 2999 inode_sub_bytes(inode, num_dec);
e02119d5 3000 }
39279cc3 3001 }
9069218d 3002 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3003 /*
3004 * we can't truncate inline items that have had
3005 * special encodings
3006 */
3007 if (!del_item &&
3008 btrfs_file_extent_compression(leaf, fi) == 0 &&
3009 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3010 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3011 u32 size = new_size - found_key.offset;
3012
3013 if (root->ref_cows) {
a76a3cd4
YZ
3014 inode_sub_bytes(inode, item_end + 1 -
3015 new_size);
e02119d5
CM
3016 }
3017 size =
3018 btrfs_file_extent_calc_inline_size(size);
9069218d 3019 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3020 size, 1);
9069218d 3021 BUG_ON(ret);
e02119d5 3022 } else if (root->ref_cows) {
a76a3cd4
YZ
3023 inode_sub_bytes(inode, item_end + 1 -
3024 found_key.offset);
9069218d 3025 }
39279cc3 3026 }
179e29e4 3027delete:
39279cc3 3028 if (del_item) {
85e21bac
CM
3029 if (!pending_del_nr) {
3030 /* no pending yet, add ourselves */
3031 pending_del_slot = path->slots[0];
3032 pending_del_nr = 1;
3033 } else if (pending_del_nr &&
3034 path->slots[0] + 1 == pending_del_slot) {
3035 /* hop on the pending chunk */
3036 pending_del_nr++;
3037 pending_del_slot = path->slots[0];
3038 } else {
d397712b 3039 BUG();
85e21bac 3040 }
39279cc3
CM
3041 } else {
3042 break;
3043 }
5d4f98a2 3044 if (found_extent && root->ref_cows) {
b9473439 3045 btrfs_set_path_blocking(path);
39279cc3 3046 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3047 extent_num_bytes, 0,
3048 btrfs_header_owner(leaf),
3049 inode->i_ino, extent_offset);
39279cc3
CM
3050 BUG_ON(ret);
3051 }
85e21bac 3052
8082510e
YZ
3053 if (found_type == BTRFS_INODE_ITEM_KEY)
3054 break;
3055
3056 if (path->slots[0] == 0 ||
3057 path->slots[0] != pending_del_slot) {
3058 if (root->ref_cows) {
3059 err = -EAGAIN;
3060 goto out;
3061 }
3062 if (pending_del_nr) {
3063 ret = btrfs_del_items(trans, root, path,
3064 pending_del_slot,
3065 pending_del_nr);
3066 BUG_ON(ret);
3067 pending_del_nr = 0;
3068 }
85e21bac
CM
3069 btrfs_release_path(root, path);
3070 goto search_again;
8082510e
YZ
3071 } else {
3072 path->slots[0]--;
85e21bac 3073 }
39279cc3 3074 }
8082510e 3075out:
85e21bac
CM
3076 if (pending_del_nr) {
3077 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3078 pending_del_nr);
3079 }
39279cc3 3080 btrfs_free_path(path);
8082510e 3081 return err;
39279cc3
CM
3082}
3083
3084/*
3085 * taken from block_truncate_page, but does cow as it zeros out
3086 * any bytes left in the last page in the file.
3087 */
3088static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3089{
3090 struct inode *inode = mapping->host;
db94535d 3091 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3092 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3093 struct btrfs_ordered_extent *ordered;
2ac55d41 3094 struct extent_state *cached_state = NULL;
e6dcd2dc 3095 char *kaddr;
db94535d 3096 u32 blocksize = root->sectorsize;
39279cc3
CM
3097 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3098 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3099 struct page *page;
39279cc3 3100 int ret = 0;
a52d9a80 3101 u64 page_start;
e6dcd2dc 3102 u64 page_end;
39279cc3
CM
3103
3104 if ((offset & (blocksize - 1)) == 0)
3105 goto out;
5d5e103a
JB
3106 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3107 if (ret)
3108 goto out;
3109
3110 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3111 if (ret)
3112 goto out;
39279cc3
CM
3113
3114 ret = -ENOMEM;
211c17f5 3115again:
39279cc3 3116 page = grab_cache_page(mapping, index);
5d5e103a
JB
3117 if (!page) {
3118 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3119 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
39279cc3 3120 goto out;
5d5e103a 3121 }
e6dcd2dc
CM
3122
3123 page_start = page_offset(page);
3124 page_end = page_start + PAGE_CACHE_SIZE - 1;
3125
39279cc3 3126 if (!PageUptodate(page)) {
9ebefb18 3127 ret = btrfs_readpage(NULL, page);
39279cc3 3128 lock_page(page);
211c17f5
CM
3129 if (page->mapping != mapping) {
3130 unlock_page(page);
3131 page_cache_release(page);
3132 goto again;
3133 }
39279cc3
CM
3134 if (!PageUptodate(page)) {
3135 ret = -EIO;
89642229 3136 goto out_unlock;
39279cc3
CM
3137 }
3138 }
211c17f5 3139 wait_on_page_writeback(page);
e6dcd2dc 3140
2ac55d41
JB
3141 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3142 GFP_NOFS);
e6dcd2dc
CM
3143 set_page_extent_mapped(page);
3144
3145 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3146 if (ordered) {
2ac55d41
JB
3147 unlock_extent_cached(io_tree, page_start, page_end,
3148 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3149 unlock_page(page);
3150 page_cache_release(page);
eb84ae03 3151 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3152 btrfs_put_ordered_extent(ordered);
3153 goto again;
3154 }
3155
2ac55d41 3156 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3157 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3158 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3159
2ac55d41
JB
3160 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3161 &cached_state);
9ed74f2d 3162 if (ret) {
2ac55d41
JB
3163 unlock_extent_cached(io_tree, page_start, page_end,
3164 &cached_state, GFP_NOFS);
9ed74f2d
JB
3165 goto out_unlock;
3166 }
3167
e6dcd2dc
CM
3168 ret = 0;
3169 if (offset != PAGE_CACHE_SIZE) {
3170 kaddr = kmap(page);
3171 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3172 flush_dcache_page(page);
3173 kunmap(page);
3174 }
247e743c 3175 ClearPageChecked(page);
e6dcd2dc 3176 set_page_dirty(page);
2ac55d41
JB
3177 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3178 GFP_NOFS);
39279cc3 3179
89642229 3180out_unlock:
5d5e103a
JB
3181 if (ret)
3182 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3183 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
39279cc3
CM
3184 unlock_page(page);
3185 page_cache_release(page);
3186out:
3187 return ret;
3188}
3189
9036c102 3190int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 3191{
9036c102
YZ
3192 struct btrfs_trans_handle *trans;
3193 struct btrfs_root *root = BTRFS_I(inode)->root;
3194 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3195 struct extent_map *em;
2ac55d41 3196 struct extent_state *cached_state = NULL;
9036c102
YZ
3197 u64 mask = root->sectorsize - 1;
3198 u64 hole_start = (inode->i_size + mask) & ~mask;
3199 u64 block_end = (size + mask) & ~mask;
3200 u64 last_byte;
3201 u64 cur_offset;
3202 u64 hole_size;
9ed74f2d 3203 int err = 0;
39279cc3 3204
9036c102
YZ
3205 if (size <= hole_start)
3206 return 0;
3207
9036c102
YZ
3208 while (1) {
3209 struct btrfs_ordered_extent *ordered;
3210 btrfs_wait_ordered_range(inode, hole_start,
3211 block_end - hole_start);
2ac55d41
JB
3212 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3213 &cached_state, GFP_NOFS);
9036c102
YZ
3214 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3215 if (!ordered)
3216 break;
2ac55d41
JB
3217 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3218 &cached_state, GFP_NOFS);
9036c102
YZ
3219 btrfs_put_ordered_extent(ordered);
3220 }
39279cc3 3221
9036c102
YZ
3222 cur_offset = hole_start;
3223 while (1) {
3224 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3225 block_end - cur_offset, 0);
3226 BUG_ON(IS_ERR(em) || !em);
3227 last_byte = min(extent_map_end(em), block_end);
3228 last_byte = (last_byte + mask) & ~mask;
8082510e 3229 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3230 u64 hint_byte = 0;
9036c102 3231 hole_size = last_byte - cur_offset;
9ed74f2d 3232
8082510e 3233 err = btrfs_reserve_metadata_space(root, 2);
9ed74f2d
JB
3234 if (err)
3235 break;
3236
8082510e
YZ
3237 trans = btrfs_start_transaction(root, 1);
3238 btrfs_set_trans_block_group(trans, inode);
3239
3240 err = btrfs_drop_extents(trans, inode, cur_offset,
3241 cur_offset + hole_size,
3242 &hint_byte, 1);
3243 BUG_ON(err);
3244
9036c102
YZ
3245 err = btrfs_insert_file_extent(trans, root,
3246 inode->i_ino, cur_offset, 0,
3247 0, hole_size, 0, hole_size,
3248 0, 0, 0);
8082510e
YZ
3249 BUG_ON(err);
3250
9036c102
YZ
3251 btrfs_drop_extent_cache(inode, hole_start,
3252 last_byte - 1, 0);
8082510e
YZ
3253
3254 btrfs_end_transaction(trans, root);
3255 btrfs_unreserve_metadata_space(root, 2);
9036c102
YZ
3256 }
3257 free_extent_map(em);
3258 cur_offset = last_byte;
8082510e 3259 if (cur_offset >= block_end)
9036c102
YZ
3260 break;
3261 }
1832a6d5 3262
2ac55d41
JB
3263 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3264 GFP_NOFS);
9036c102
YZ
3265 return err;
3266}
39279cc3 3267
8082510e
YZ
3268static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3269{
3270 struct btrfs_root *root = BTRFS_I(inode)->root;
3271 struct btrfs_trans_handle *trans;
3272 unsigned long nr;
3273 int ret;
3274
3275 if (attr->ia_size == inode->i_size)
3276 return 0;
3277
3278 if (attr->ia_size > inode->i_size) {
3279 unsigned long limit;
3280 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3281 if (attr->ia_size > inode->i_sb->s_maxbytes)
3282 return -EFBIG;
3283 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3284 send_sig(SIGXFSZ, current, 0);
3285 return -EFBIG;
3286 }
3287 }
3288
3289 ret = btrfs_reserve_metadata_space(root, 1);
3290 if (ret)
3291 return ret;
3292
3293 trans = btrfs_start_transaction(root, 1);
3294 btrfs_set_trans_block_group(trans, inode);
3295
3296 ret = btrfs_orphan_add(trans, inode);
3297 BUG_ON(ret);
3298
3299 nr = trans->blocks_used;
3300 btrfs_end_transaction(trans, root);
3301 btrfs_unreserve_metadata_space(root, 1);
3302 btrfs_btree_balance_dirty(root, nr);
3303
3304 if (attr->ia_size > inode->i_size) {
3305 ret = btrfs_cont_expand(inode, attr->ia_size);
3306 if (ret) {
3307 btrfs_truncate(inode);
3308 return ret;
3309 }
3310
3311 i_size_write(inode, attr->ia_size);
3312 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3313
3314 trans = btrfs_start_transaction(root, 1);
3315 btrfs_set_trans_block_group(trans, inode);
3316
3317 ret = btrfs_update_inode(trans, root, inode);
3318 BUG_ON(ret);
3319 if (inode->i_nlink > 0) {
3320 ret = btrfs_orphan_del(trans, inode);
3321 BUG_ON(ret);
3322 }
3323 nr = trans->blocks_used;
3324 btrfs_end_transaction(trans, root);
3325 btrfs_btree_balance_dirty(root, nr);
3326 return 0;
3327 }
3328
3329 /*
3330 * We're truncating a file that used to have good data down to
3331 * zero. Make sure it gets into the ordered flush list so that
3332 * any new writes get down to disk quickly.
3333 */
3334 if (attr->ia_size == 0)
3335 BTRFS_I(inode)->ordered_data_close = 1;
3336
3337 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3338 ret = vmtruncate(inode, attr->ia_size);
3339 BUG_ON(ret);
3340
3341 return 0;
3342}
3343
9036c102
YZ
3344static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3345{
3346 struct inode *inode = dentry->d_inode;
3347 int err;
39279cc3 3348
9036c102
YZ
3349 err = inode_change_ok(inode, attr);
3350 if (err)
3351 return err;
2bf5a725 3352
5a3f23d5 3353 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
8082510e
YZ
3354 err = btrfs_setattr_size(inode, attr);
3355 if (err)
3356 return err;
39279cc3 3357 }
8082510e 3358 attr->ia_valid &= ~ATTR_SIZE;
9036c102 3359
8082510e
YZ
3360 if (attr->ia_valid)
3361 err = inode_setattr(inode, attr);
33268eaf
JB
3362
3363 if (!err && ((attr->ia_valid & ATTR_MODE)))
3364 err = btrfs_acl_chmod(inode);
39279cc3
CM
3365 return err;
3366}
61295eb8 3367
39279cc3
CM
3368void btrfs_delete_inode(struct inode *inode)
3369{
3370 struct btrfs_trans_handle *trans;
3371 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3372 unsigned long nr;
39279cc3
CM
3373 int ret;
3374
3375 truncate_inode_pages(&inode->i_data, 0);
3376 if (is_bad_inode(inode)) {
7b128766 3377 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3378 goto no_delete;
3379 }
4a096752 3380 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3381
c71bf099
YZ
3382 if (root->fs_info->log_root_recovering) {
3383 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3384 goto no_delete;
3385 }
3386
76dda93c
YZ
3387 if (inode->i_nlink > 0) {
3388 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3389 goto no_delete;
3390 }
3391
dbe674a9 3392 btrfs_i_size_write(inode, 0);
5f39d397 3393
8082510e
YZ
3394 while (1) {
3395 trans = btrfs_start_transaction(root, 1);
3396 btrfs_set_trans_block_group(trans, inode);
3397 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
7b128766 3398
8082510e
YZ
3399 if (ret != -EAGAIN)
3400 break;
85e21bac 3401
8082510e
YZ
3402 nr = trans->blocks_used;
3403 btrfs_end_transaction(trans, root);
3404 trans = NULL;
3405 btrfs_btree_balance_dirty(root, nr);
3406 }
5f39d397 3407
8082510e
YZ
3408 if (ret == 0) {
3409 ret = btrfs_orphan_del(trans, inode);
3410 BUG_ON(ret);
3411 }
54aa1f4d 3412
d3c2fdcf 3413 nr = trans->blocks_used;
54aa1f4d 3414 btrfs_end_transaction(trans, root);
d3c2fdcf 3415 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3416no_delete:
3417 clear_inode(inode);
8082510e 3418 return;
39279cc3
CM
3419}
3420
3421/*
3422 * this returns the key found in the dir entry in the location pointer.
3423 * If no dir entries were found, location->objectid is 0.
3424 */
3425static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3426 struct btrfs_key *location)
3427{
3428 const char *name = dentry->d_name.name;
3429 int namelen = dentry->d_name.len;
3430 struct btrfs_dir_item *di;
3431 struct btrfs_path *path;
3432 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3433 int ret = 0;
39279cc3
CM
3434
3435 path = btrfs_alloc_path();
3436 BUG_ON(!path);
3954401f 3437
39279cc3
CM
3438 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3439 namelen, 0);
0d9f7f3e
Y
3440 if (IS_ERR(di))
3441 ret = PTR_ERR(di);
d397712b
CM
3442
3443 if (!di || IS_ERR(di))
3954401f 3444 goto out_err;
d397712b 3445
5f39d397 3446 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3447out:
39279cc3
CM
3448 btrfs_free_path(path);
3449 return ret;
3954401f
CM
3450out_err:
3451 location->objectid = 0;
3452 goto out;
39279cc3
CM
3453}
3454
3455/*
3456 * when we hit a tree root in a directory, the btrfs part of the inode
3457 * needs to be changed to reflect the root directory of the tree root. This
3458 * is kind of like crossing a mount point.
3459 */
3460static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3461 struct inode *dir,
3462 struct dentry *dentry,
3463 struct btrfs_key *location,
3464 struct btrfs_root **sub_root)
39279cc3 3465{
4df27c4d
YZ
3466 struct btrfs_path *path;
3467 struct btrfs_root *new_root;
3468 struct btrfs_root_ref *ref;
3469 struct extent_buffer *leaf;
3470 int ret;
3471 int err = 0;
39279cc3 3472
4df27c4d
YZ
3473 path = btrfs_alloc_path();
3474 if (!path) {
3475 err = -ENOMEM;
3476 goto out;
3477 }
39279cc3 3478
4df27c4d
YZ
3479 err = -ENOENT;
3480 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3481 BTRFS_I(dir)->root->root_key.objectid,
3482 location->objectid);
3483 if (ret) {
3484 if (ret < 0)
3485 err = ret;
3486 goto out;
3487 }
39279cc3 3488
4df27c4d
YZ
3489 leaf = path->nodes[0];
3490 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3491 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3492 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3493 goto out;
39279cc3 3494
4df27c4d
YZ
3495 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3496 (unsigned long)(ref + 1),
3497 dentry->d_name.len);
3498 if (ret)
3499 goto out;
3500
3501 btrfs_release_path(root->fs_info->tree_root, path);
3502
3503 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3504 if (IS_ERR(new_root)) {
3505 err = PTR_ERR(new_root);
3506 goto out;
3507 }
3508
3509 if (btrfs_root_refs(&new_root->root_item) == 0) {
3510 err = -ENOENT;
3511 goto out;
3512 }
3513
3514 *sub_root = new_root;
3515 location->objectid = btrfs_root_dirid(&new_root->root_item);
3516 location->type = BTRFS_INODE_ITEM_KEY;
3517 location->offset = 0;
3518 err = 0;
3519out:
3520 btrfs_free_path(path);
3521 return err;
39279cc3
CM
3522}
3523
5d4f98a2
YZ
3524static void inode_tree_add(struct inode *inode)
3525{
3526 struct btrfs_root *root = BTRFS_I(inode)->root;
3527 struct btrfs_inode *entry;
03e860bd
FNP
3528 struct rb_node **p;
3529 struct rb_node *parent;
03e860bd
FNP
3530again:
3531 p = &root->inode_tree.rb_node;
3532 parent = NULL;
5d4f98a2 3533
76dda93c
YZ
3534 if (hlist_unhashed(&inode->i_hash))
3535 return;
3536
5d4f98a2
YZ
3537 spin_lock(&root->inode_lock);
3538 while (*p) {
3539 parent = *p;
3540 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3541
3542 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3543 p = &parent->rb_left;
5d4f98a2 3544 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3545 p = &parent->rb_right;
5d4f98a2
YZ
3546 else {
3547 WARN_ON(!(entry->vfs_inode.i_state &
3548 (I_WILL_FREE | I_FREEING | I_CLEAR)));
03e860bd
FNP
3549 rb_erase(parent, &root->inode_tree);
3550 RB_CLEAR_NODE(parent);
3551 spin_unlock(&root->inode_lock);
3552 goto again;
5d4f98a2
YZ
3553 }
3554 }
3555 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3556 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3557 spin_unlock(&root->inode_lock);
3558}
3559
3560static void inode_tree_del(struct inode *inode)
3561{
3562 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3563 int empty = 0;
5d4f98a2 3564
03e860bd 3565 spin_lock(&root->inode_lock);
5d4f98a2 3566 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3567 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3568 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3569 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3570 }
03e860bd 3571 spin_unlock(&root->inode_lock);
76dda93c
YZ
3572
3573 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3574 synchronize_srcu(&root->fs_info->subvol_srcu);
3575 spin_lock(&root->inode_lock);
3576 empty = RB_EMPTY_ROOT(&root->inode_tree);
3577 spin_unlock(&root->inode_lock);
3578 if (empty)
3579 btrfs_add_dead_root(root);
3580 }
3581}
3582
3583int btrfs_invalidate_inodes(struct btrfs_root *root)
3584{
3585 struct rb_node *node;
3586 struct rb_node *prev;
3587 struct btrfs_inode *entry;
3588 struct inode *inode;
3589 u64 objectid = 0;
3590
3591 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3592
3593 spin_lock(&root->inode_lock);
3594again:
3595 node = root->inode_tree.rb_node;
3596 prev = NULL;
3597 while (node) {
3598 prev = node;
3599 entry = rb_entry(node, struct btrfs_inode, rb_node);
3600
3601 if (objectid < entry->vfs_inode.i_ino)
3602 node = node->rb_left;
3603 else if (objectid > entry->vfs_inode.i_ino)
3604 node = node->rb_right;
3605 else
3606 break;
3607 }
3608 if (!node) {
3609 while (prev) {
3610 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3611 if (objectid <= entry->vfs_inode.i_ino) {
3612 node = prev;
3613 break;
3614 }
3615 prev = rb_next(prev);
3616 }
3617 }
3618 while (node) {
3619 entry = rb_entry(node, struct btrfs_inode, rb_node);
3620 objectid = entry->vfs_inode.i_ino + 1;
3621 inode = igrab(&entry->vfs_inode);
3622 if (inode) {
3623 spin_unlock(&root->inode_lock);
3624 if (atomic_read(&inode->i_count) > 1)
3625 d_prune_aliases(inode);
3626 /*
3627 * btrfs_drop_inode will remove it from
3628 * the inode cache when its usage count
3629 * hits zero.
3630 */
3631 iput(inode);
3632 cond_resched();
3633 spin_lock(&root->inode_lock);
3634 goto again;
3635 }
3636
3637 if (cond_resched_lock(&root->inode_lock))
3638 goto again;
3639
3640 node = rb_next(node);
3641 }
3642 spin_unlock(&root->inode_lock);
3643 return 0;
5d4f98a2
YZ
3644}
3645
e02119d5 3646static noinline void init_btrfs_i(struct inode *inode)
39279cc3 3647{
e02119d5
CM
3648 struct btrfs_inode *bi = BTRFS_I(inode);
3649
e02119d5 3650 bi->generation = 0;
c3027eb5 3651 bi->sequence = 0;
e02119d5 3652 bi->last_trans = 0;
257c62e1 3653 bi->last_sub_trans = 0;
e02119d5
CM
3654 bi->logged_trans = 0;
3655 bi->delalloc_bytes = 0;
6a63209f 3656 bi->reserved_bytes = 0;
e02119d5
CM
3657 bi->disk_i_size = 0;
3658 bi->flags = 0;
3659 bi->index_cnt = (u64)-1;
12fcfd22 3660 bi->last_unlink_trans = 0;
2757495c 3661 bi->ordered_data_close = 0;
1e701a32 3662 bi->force_compress = 0;
d1310b2e
CM
3663 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3664 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
b888db2b 3665 inode->i_mapping, GFP_NOFS);
7e38326f
CM
3666 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3667 inode->i_mapping, GFP_NOFS);
ea8c2819 3668 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
5a3f23d5 3669 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
5d4f98a2 3670 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
ba1da2f4 3671 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
e02119d5
CM
3672 mutex_init(&BTRFS_I(inode)->log_mutex);
3673}
3674
3675static int btrfs_init_locked_inode(struct inode *inode, void *p)
3676{
3677 struct btrfs_iget_args *args = p;
3678 inode->i_ino = args->ino;
3679 init_btrfs_i(inode);
3680 BTRFS_I(inode)->root = args->root;
6a63209f 3681 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3682 return 0;
3683}
3684
3685static int btrfs_find_actor(struct inode *inode, void *opaque)
3686{
3687 struct btrfs_iget_args *args = opaque;
d397712b
CM
3688 return args->ino == inode->i_ino &&
3689 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3690}
3691
5d4f98a2
YZ
3692static struct inode *btrfs_iget_locked(struct super_block *s,
3693 u64 objectid,
3694 struct btrfs_root *root)
39279cc3
CM
3695{
3696 struct inode *inode;
3697 struct btrfs_iget_args args;
3698 args.ino = objectid;
3699 args.root = root;
3700
3701 inode = iget5_locked(s, objectid, btrfs_find_actor,
3702 btrfs_init_locked_inode,
3703 (void *)&args);
3704 return inode;
3705}
3706
1a54ef8c
BR
3707/* Get an inode object given its location and corresponding root.
3708 * Returns in *is_new if the inode was read from disk
3709 */
3710struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3711 struct btrfs_root *root, int *new)
1a54ef8c
BR
3712{
3713 struct inode *inode;
3714
3715 inode = btrfs_iget_locked(s, location->objectid, root);
3716 if (!inode)
5d4f98a2 3717 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3718
3719 if (inode->i_state & I_NEW) {
3720 BTRFS_I(inode)->root = root;
3721 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3722 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
3723
3724 inode_tree_add(inode);
1a54ef8c 3725 unlock_new_inode(inode);
73f73415
JB
3726 if (new)
3727 *new = 1;
1a54ef8c
BR
3728 }
3729
3730 return inode;
3731}
3732
4df27c4d
YZ
3733static struct inode *new_simple_dir(struct super_block *s,
3734 struct btrfs_key *key,
3735 struct btrfs_root *root)
3736{
3737 struct inode *inode = new_inode(s);
3738
3739 if (!inode)
3740 return ERR_PTR(-ENOMEM);
3741
3742 init_btrfs_i(inode);
3743
3744 BTRFS_I(inode)->root = root;
3745 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3746 BTRFS_I(inode)->dummy_inode = 1;
3747
3748 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3749 inode->i_op = &simple_dir_inode_operations;
3750 inode->i_fop = &simple_dir_operations;
3751 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3752 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3753
3754 return inode;
3755}
3756
3de4586c 3757struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3758{
d397712b 3759 struct inode *inode;
4df27c4d 3760 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3761 struct btrfs_root *sub_root = root;
3762 struct btrfs_key location;
76dda93c 3763 int index;
5d4f98a2 3764 int ret;
39279cc3 3765
76dda93c
YZ
3766 dentry->d_op = &btrfs_dentry_operations;
3767
39279cc3
CM
3768 if (dentry->d_name.len > BTRFS_NAME_LEN)
3769 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3770
39279cc3 3771 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3772
39279cc3
CM
3773 if (ret < 0)
3774 return ERR_PTR(ret);
5f39d397 3775
4df27c4d
YZ
3776 if (location.objectid == 0)
3777 return NULL;
3778
3779 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 3780 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
3781 return inode;
3782 }
3783
3784 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3785
76dda93c 3786 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3787 ret = fixup_tree_root_location(root, dir, dentry,
3788 &location, &sub_root);
3789 if (ret < 0) {
3790 if (ret != -ENOENT)
3791 inode = ERR_PTR(ret);
3792 else
3793 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3794 } else {
73f73415 3795 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 3796 }
76dda93c
YZ
3797 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3798
c71bf099
YZ
3799 if (root != sub_root) {
3800 down_read(&root->fs_info->cleanup_work_sem);
3801 if (!(inode->i_sb->s_flags & MS_RDONLY))
3802 btrfs_orphan_cleanup(sub_root);
3803 up_read(&root->fs_info->cleanup_work_sem);
3804 }
3805
3de4586c
CM
3806 return inode;
3807}
3808
76dda93c
YZ
3809static int btrfs_dentry_delete(struct dentry *dentry)
3810{
3811 struct btrfs_root *root;
3812
efefb143
YZ
3813 if (!dentry->d_inode && !IS_ROOT(dentry))
3814 dentry = dentry->d_parent;
76dda93c 3815
efefb143
YZ
3816 if (dentry->d_inode) {
3817 root = BTRFS_I(dentry->d_inode)->root;
3818 if (btrfs_root_refs(&root->root_item) == 0)
3819 return 1;
3820 }
76dda93c
YZ
3821 return 0;
3822}
3823
3de4586c
CM
3824static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3825 struct nameidata *nd)
3826{
3827 struct inode *inode;
3828
3de4586c
CM
3829 inode = btrfs_lookup_dentry(dir, dentry);
3830 if (IS_ERR(inode))
3831 return ERR_CAST(inode);
7b128766 3832
39279cc3
CM
3833 return d_splice_alias(inode, dentry);
3834}
3835
39279cc3
CM
3836static unsigned char btrfs_filetype_table[] = {
3837 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3838};
3839
cbdf5a24
DW
3840static int btrfs_real_readdir(struct file *filp, void *dirent,
3841 filldir_t filldir)
39279cc3 3842{
6da6abae 3843 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3844 struct btrfs_root *root = BTRFS_I(inode)->root;
3845 struct btrfs_item *item;
3846 struct btrfs_dir_item *di;
3847 struct btrfs_key key;
5f39d397 3848 struct btrfs_key found_key;
39279cc3
CM
3849 struct btrfs_path *path;
3850 int ret;
3851 u32 nritems;
5f39d397 3852 struct extent_buffer *leaf;
39279cc3
CM
3853 int slot;
3854 int advance;
3855 unsigned char d_type;
3856 int over = 0;
3857 u32 di_cur;
3858 u32 di_total;
3859 u32 di_len;
3860 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3861 char tmp_name[32];
3862 char *name_ptr;
3863 int name_len;
39279cc3
CM
3864
3865 /* FIXME, use a real flag for deciding about the key type */
3866 if (root->fs_info->tree_root == root)
3867 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3868
3954401f
CM
3869 /* special case for "." */
3870 if (filp->f_pos == 0) {
3871 over = filldir(dirent, ".", 1,
3872 1, inode->i_ino,
3873 DT_DIR);
3874 if (over)
3875 return 0;
3876 filp->f_pos = 1;
3877 }
3954401f
CM
3878 /* special case for .., just use the back ref */
3879 if (filp->f_pos == 1) {
5ecc7e5d 3880 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3881 over = filldir(dirent, "..", 2,
5ecc7e5d 3882 2, pino, DT_DIR);
3954401f 3883 if (over)
49593bfa 3884 return 0;
3954401f
CM
3885 filp->f_pos = 2;
3886 }
49593bfa
DW
3887 path = btrfs_alloc_path();
3888 path->reada = 2;
3889
39279cc3
CM
3890 btrfs_set_key_type(&key, key_type);
3891 key.offset = filp->f_pos;
49593bfa 3892 key.objectid = inode->i_ino;
5f39d397 3893
39279cc3
CM
3894 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3895 if (ret < 0)
3896 goto err;
3897 advance = 0;
49593bfa
DW
3898
3899 while (1) {
5f39d397
CM
3900 leaf = path->nodes[0];
3901 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3902 slot = path->slots[0];
3903 if (advance || slot >= nritems) {
49593bfa 3904 if (slot >= nritems - 1) {
39279cc3
CM
3905 ret = btrfs_next_leaf(root, path);
3906 if (ret)
3907 break;
5f39d397
CM
3908 leaf = path->nodes[0];
3909 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3910 slot = path->slots[0];
3911 } else {
3912 slot++;
3913 path->slots[0]++;
3914 }
3915 }
3de4586c 3916
39279cc3 3917 advance = 1;
5f39d397
CM
3918 item = btrfs_item_nr(leaf, slot);
3919 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3920
3921 if (found_key.objectid != key.objectid)
39279cc3 3922 break;
5f39d397 3923 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3924 break;
5f39d397 3925 if (found_key.offset < filp->f_pos)
39279cc3 3926 continue;
5f39d397
CM
3927
3928 filp->f_pos = found_key.offset;
49593bfa 3929
39279cc3
CM
3930 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3931 di_cur = 0;
5f39d397 3932 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3933
3934 while (di_cur < di_total) {
5f39d397
CM
3935 struct btrfs_key location;
3936
3937 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 3938 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
3939 name_ptr = tmp_name;
3940 } else {
3941 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
3942 if (!name_ptr) {
3943 ret = -ENOMEM;
3944 goto err;
3945 }
5f39d397
CM
3946 }
3947 read_extent_buffer(leaf, name_ptr,
3948 (unsigned long)(di + 1), name_len);
3949
3950 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3951 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
3952
3953 /* is this a reference to our own snapshot? If so
3954 * skip it
3955 */
3956 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3957 location.objectid == root->root_key.objectid) {
3958 over = 0;
3959 goto skip;
3960 }
5f39d397 3961 over = filldir(dirent, name_ptr, name_len,
49593bfa 3962 found_key.offset, location.objectid,
39279cc3 3963 d_type);
5f39d397 3964
3de4586c 3965skip:
5f39d397
CM
3966 if (name_ptr != tmp_name)
3967 kfree(name_ptr);
3968
39279cc3
CM
3969 if (over)
3970 goto nopos;
5103e947 3971 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 3972 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
3973 di_cur += di_len;
3974 di = (struct btrfs_dir_item *)((char *)di + di_len);
3975 }
3976 }
49593bfa
DW
3977
3978 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 3979 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
3980 /*
3981 * 32-bit glibc will use getdents64, but then strtol -
3982 * so the last number we can serve is this.
3983 */
3984 filp->f_pos = 0x7fffffff;
5e591a07
YZ
3985 else
3986 filp->f_pos++;
39279cc3
CM
3987nopos:
3988 ret = 0;
3989err:
39279cc3 3990 btrfs_free_path(path);
39279cc3
CM
3991 return ret;
3992}
3993
a9185b41 3994int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
3995{
3996 struct btrfs_root *root = BTRFS_I(inode)->root;
3997 struct btrfs_trans_handle *trans;
3998 int ret = 0;
3999
c146afad 4000 if (root->fs_info->btree_inode == inode)
4ca8b41e
CM
4001 return 0;
4002
a9185b41 4003 if (wbc->sync_mode == WB_SYNC_ALL) {
f9295749 4004 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
4005 btrfs_set_trans_block_group(trans, inode);
4006 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4007 }
4008 return ret;
4009}
4010
4011/*
54aa1f4d 4012 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4013 * inode changes. But, it is most likely to find the inode in cache.
4014 * FIXME, needs more benchmarking...there are no reasons other than performance
4015 * to keep or drop this code.
4016 */
4017void btrfs_dirty_inode(struct inode *inode)
4018{
4019 struct btrfs_root *root = BTRFS_I(inode)->root;
4020 struct btrfs_trans_handle *trans;
4021
f9295749 4022 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
4023 btrfs_set_trans_block_group(trans, inode);
4024 btrfs_update_inode(trans, root, inode);
4025 btrfs_end_transaction(trans, root);
39279cc3
CM
4026}
4027
d352ac68
CM
4028/*
4029 * find the highest existing sequence number in a directory
4030 * and then set the in-memory index_cnt variable to reflect
4031 * free sequence numbers
4032 */
aec7477b
JB
4033static int btrfs_set_inode_index_count(struct inode *inode)
4034{
4035 struct btrfs_root *root = BTRFS_I(inode)->root;
4036 struct btrfs_key key, found_key;
4037 struct btrfs_path *path;
4038 struct extent_buffer *leaf;
4039 int ret;
4040
4041 key.objectid = inode->i_ino;
4042 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4043 key.offset = (u64)-1;
4044
4045 path = btrfs_alloc_path();
4046 if (!path)
4047 return -ENOMEM;
4048
4049 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4050 if (ret < 0)
4051 goto out;
4052 /* FIXME: we should be able to handle this */
4053 if (ret == 0)
4054 goto out;
4055 ret = 0;
4056
4057 /*
4058 * MAGIC NUMBER EXPLANATION:
4059 * since we search a directory based on f_pos we have to start at 2
4060 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4061 * else has to start at 2
4062 */
4063 if (path->slots[0] == 0) {
4064 BTRFS_I(inode)->index_cnt = 2;
4065 goto out;
4066 }
4067
4068 path->slots[0]--;
4069
4070 leaf = path->nodes[0];
4071 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4072
4073 if (found_key.objectid != inode->i_ino ||
4074 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4075 BTRFS_I(inode)->index_cnt = 2;
4076 goto out;
4077 }
4078
4079 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4080out:
4081 btrfs_free_path(path);
4082 return ret;
4083}
4084
d352ac68
CM
4085/*
4086 * helper to find a free sequence number in a given directory. This current
4087 * code is very simple, later versions will do smarter things in the btree
4088 */
3de4586c 4089int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4090{
4091 int ret = 0;
4092
4093 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4094 ret = btrfs_set_inode_index_count(dir);
d397712b 4095 if (ret)
aec7477b
JB
4096 return ret;
4097 }
4098
00e4e6b3 4099 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4100 BTRFS_I(dir)->index_cnt++;
4101
4102 return ret;
4103}
4104
39279cc3
CM
4105static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4106 struct btrfs_root *root,
aec7477b 4107 struct inode *dir,
9c58309d 4108 const char *name, int name_len,
d2fb3437
YZ
4109 u64 ref_objectid, u64 objectid,
4110 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4111{
4112 struct inode *inode;
5f39d397 4113 struct btrfs_inode_item *inode_item;
39279cc3 4114 struct btrfs_key *location;
5f39d397 4115 struct btrfs_path *path;
9c58309d
CM
4116 struct btrfs_inode_ref *ref;
4117 struct btrfs_key key[2];
4118 u32 sizes[2];
4119 unsigned long ptr;
39279cc3
CM
4120 int ret;
4121 int owner;
4122
5f39d397
CM
4123 path = btrfs_alloc_path();
4124 BUG_ON(!path);
4125
39279cc3
CM
4126 inode = new_inode(root->fs_info->sb);
4127 if (!inode)
4128 return ERR_PTR(-ENOMEM);
4129
aec7477b 4130 if (dir) {
3de4586c 4131 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4132 if (ret) {
4133 iput(inode);
aec7477b 4134 return ERR_PTR(ret);
09771430 4135 }
aec7477b
JB
4136 }
4137 /*
4138 * index_cnt is ignored for everything but a dir,
4139 * btrfs_get_inode_index_count has an explanation for the magic
4140 * number
4141 */
e02119d5 4142 init_btrfs_i(inode);
aec7477b 4143 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4144 BTRFS_I(inode)->root = root;
e02119d5 4145 BTRFS_I(inode)->generation = trans->transid;
6a63209f 4146 btrfs_set_inode_space_info(root, inode);
b888db2b 4147
39279cc3
CM
4148 if (mode & S_IFDIR)
4149 owner = 0;
4150 else
4151 owner = 1;
d2fb3437
YZ
4152 BTRFS_I(inode)->block_group =
4153 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4154
4155 key[0].objectid = objectid;
4156 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4157 key[0].offset = 0;
4158
4159 key[1].objectid = objectid;
4160 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4161 key[1].offset = ref_objectid;
4162
4163 sizes[0] = sizeof(struct btrfs_inode_item);
4164 sizes[1] = name_len + sizeof(*ref);
4165
b9473439 4166 path->leave_spinning = 1;
9c58309d
CM
4167 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4168 if (ret != 0)
5f39d397
CM
4169 goto fail;
4170
79683f2d 4171 inode->i_uid = current_fsuid();
8c087b51 4172
42f15d77 4173 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
4174 inode->i_gid = dir->i_gid;
4175 if (S_ISDIR(mode))
4176 mode |= S_ISGID;
4177 } else
4178 inode->i_gid = current_fsgid();
4179
39279cc3
CM
4180 inode->i_mode = mode;
4181 inode->i_ino = objectid;
a76a3cd4 4182 inode_set_bytes(inode, 0);
39279cc3 4183 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4184 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4185 struct btrfs_inode_item);
e02119d5 4186 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4187
4188 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4189 struct btrfs_inode_ref);
4190 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4191 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4192 ptr = (unsigned long)(ref + 1);
4193 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4194
5f39d397
CM
4195 btrfs_mark_buffer_dirty(path->nodes[0]);
4196 btrfs_free_path(path);
4197
39279cc3
CM
4198 location = &BTRFS_I(inode)->location;
4199 location->objectid = objectid;
39279cc3
CM
4200 location->offset = 0;
4201 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4202
6cbff00f
CH
4203 btrfs_inherit_iflags(inode, dir);
4204
94272164
CM
4205 if ((mode & S_IFREG)) {
4206 if (btrfs_test_opt(root, NODATASUM))
4207 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4208 if (btrfs_test_opt(root, NODATACOW))
4209 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4210 }
4211
39279cc3 4212 insert_inode_hash(inode);
5d4f98a2 4213 inode_tree_add(inode);
39279cc3 4214 return inode;
5f39d397 4215fail:
aec7477b
JB
4216 if (dir)
4217 BTRFS_I(dir)->index_cnt--;
5f39d397 4218 btrfs_free_path(path);
09771430 4219 iput(inode);
5f39d397 4220 return ERR_PTR(ret);
39279cc3
CM
4221}
4222
4223static inline u8 btrfs_inode_type(struct inode *inode)
4224{
4225 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4226}
4227
d352ac68
CM
4228/*
4229 * utility function to add 'inode' into 'parent_inode' with
4230 * a give name and a given sequence number.
4231 * if 'add_backref' is true, also insert a backref from the
4232 * inode to the parent directory.
4233 */
e02119d5
CM
4234int btrfs_add_link(struct btrfs_trans_handle *trans,
4235 struct inode *parent_inode, struct inode *inode,
4236 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4237{
4df27c4d 4238 int ret = 0;
39279cc3 4239 struct btrfs_key key;
e02119d5 4240 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4241
4df27c4d
YZ
4242 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4243 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4244 } else {
4245 key.objectid = inode->i_ino;
4246 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4247 key.offset = 0;
4248 }
4249
4250 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4251 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4252 key.objectid, root->root_key.objectid,
4253 parent_inode->i_ino,
4254 index, name, name_len);
4255 } else if (add_backref) {
4256 ret = btrfs_insert_inode_ref(trans, root,
4257 name, name_len, inode->i_ino,
4258 parent_inode->i_ino, index);
4259 }
39279cc3 4260
39279cc3 4261 if (ret == 0) {
4df27c4d
YZ
4262 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4263 parent_inode->i_ino, &key,
4264 btrfs_inode_type(inode), index);
4265 BUG_ON(ret);
4266
dbe674a9 4267 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4268 name_len * 2);
79c44584 4269 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4270 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4271 }
4272 return ret;
4273}
4274
4275static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 4276 struct dentry *dentry, struct inode *inode,
00e4e6b3 4277 int backref, u64 index)
39279cc3 4278{
e02119d5
CM
4279 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4280 inode, dentry->d_name.name,
4281 dentry->d_name.len, backref, index);
39279cc3
CM
4282 if (!err) {
4283 d_instantiate(dentry, inode);
4284 return 0;
4285 }
4286 if (err > 0)
4287 err = -EEXIST;
4288 return err;
4289}
4290
618e21d5
JB
4291static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4292 int mode, dev_t rdev)
4293{
4294 struct btrfs_trans_handle *trans;
4295 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4296 struct inode *inode = NULL;
618e21d5
JB
4297 int err;
4298 int drop_inode = 0;
4299 u64 objectid;
1832a6d5 4300 unsigned long nr = 0;
00e4e6b3 4301 u64 index = 0;
618e21d5
JB
4302
4303 if (!new_valid_dev(rdev))
4304 return -EINVAL;
4305
9ed74f2d
JB
4306 /*
4307 * 2 for inode item and ref
4308 * 2 for dir items
4309 * 1 for xattr if selinux is on
4310 */
4311 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4312 if (err)
9ed74f2d 4313 return err;
1832a6d5 4314
618e21d5 4315 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4316 if (!trans)
4317 goto fail;
618e21d5
JB
4318 btrfs_set_trans_block_group(trans, dir);
4319
4320 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4321 if (err) {
4322 err = -ENOSPC;
4323 goto out_unlock;
4324 }
4325
aec7477b 4326 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4327 dentry->d_name.len,
4328 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 4329 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4330 err = PTR_ERR(inode);
4331 if (IS_ERR(inode))
4332 goto out_unlock;
4333
f34f57a3 4334 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4335 if (err) {
4336 drop_inode = 1;
4337 goto out_unlock;
4338 }
4339
618e21d5 4340 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4341 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
4342 if (err)
4343 drop_inode = 1;
4344 else {
4345 inode->i_op = &btrfs_special_inode_operations;
4346 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4347 btrfs_update_inode(trans, root, inode);
618e21d5 4348 }
618e21d5
JB
4349 btrfs_update_inode_block_group(trans, inode);
4350 btrfs_update_inode_block_group(trans, dir);
4351out_unlock:
d3c2fdcf 4352 nr = trans->blocks_used;
89ce8a63 4353 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4354fail:
9ed74f2d 4355 btrfs_unreserve_metadata_space(root, 5);
618e21d5
JB
4356 if (drop_inode) {
4357 inode_dec_link_count(inode);
4358 iput(inode);
4359 }
d3c2fdcf 4360 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4361 return err;
4362}
4363
39279cc3
CM
4364static int btrfs_create(struct inode *dir, struct dentry *dentry,
4365 int mode, struct nameidata *nd)
4366{
4367 struct btrfs_trans_handle *trans;
4368 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4369 struct inode *inode = NULL;
39279cc3
CM
4370 int err;
4371 int drop_inode = 0;
1832a6d5 4372 unsigned long nr = 0;
39279cc3 4373 u64 objectid;
00e4e6b3 4374 u64 index = 0;
39279cc3 4375
9ed74f2d
JB
4376 /*
4377 * 2 for inode item and ref
4378 * 2 for dir items
4379 * 1 for xattr if selinux is on
4380 */
4381 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4382 if (err)
9ed74f2d
JB
4383 return err;
4384
39279cc3 4385 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4386 if (!trans)
4387 goto fail;
39279cc3
CM
4388 btrfs_set_trans_block_group(trans, dir);
4389
4390 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4391 if (err) {
4392 err = -ENOSPC;
4393 goto out_unlock;
4394 }
4395
aec7477b 4396 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4397 dentry->d_name.len,
4398 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
4399 objectid, BTRFS_I(dir)->block_group, mode,
4400 &index);
39279cc3
CM
4401 err = PTR_ERR(inode);
4402 if (IS_ERR(inode))
4403 goto out_unlock;
4404
f34f57a3 4405 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4406 if (err) {
4407 drop_inode = 1;
4408 goto out_unlock;
4409 }
4410
39279cc3 4411 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4412 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
4413 if (err)
4414 drop_inode = 1;
4415 else {
4416 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4417 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4418 inode->i_fop = &btrfs_file_operations;
4419 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4420 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4421 }
39279cc3
CM
4422 btrfs_update_inode_block_group(trans, inode);
4423 btrfs_update_inode_block_group(trans, dir);
4424out_unlock:
d3c2fdcf 4425 nr = trans->blocks_used;
ab78c84d 4426 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4427fail:
9ed74f2d 4428 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4429 if (drop_inode) {
4430 inode_dec_link_count(inode);
4431 iput(inode);
4432 }
d3c2fdcf 4433 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4434 return err;
4435}
4436
4437static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4438 struct dentry *dentry)
4439{
4440 struct btrfs_trans_handle *trans;
4441 struct btrfs_root *root = BTRFS_I(dir)->root;
4442 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4443 u64 index;
1832a6d5 4444 unsigned long nr = 0;
39279cc3
CM
4445 int err;
4446 int drop_inode = 0;
4447
4448 if (inode->i_nlink == 0)
4449 return -ENOENT;
4450
4a8be425
TH
4451 /* do not allow sys_link's with other subvols of the same device */
4452 if (root->objectid != BTRFS_I(inode)->root->objectid)
4453 return -EPERM;
4454
9ed74f2d
JB
4455 /*
4456 * 1 item for inode ref
4457 * 2 items for dir items
4458 */
4459 err = btrfs_reserve_metadata_space(root, 3);
1832a6d5 4460 if (err)
9ed74f2d
JB
4461 return err;
4462
4463 btrfs_inc_nlink(inode);
4464
3de4586c 4465 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4466 if (err)
4467 goto fail;
4468
39279cc3 4469 trans = btrfs_start_transaction(root, 1);
5f39d397 4470
39279cc3
CM
4471 btrfs_set_trans_block_group(trans, dir);
4472 atomic_inc(&inode->i_count);
aec7477b 4473
00e4e6b3 4474 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 4475
a5719521 4476 if (err) {
54aa1f4d 4477 drop_inode = 1;
a5719521
YZ
4478 } else {
4479 btrfs_update_inode_block_group(trans, dir);
4480 err = btrfs_update_inode(trans, root, inode);
4481 BUG_ON(err);
4482 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4483 }
39279cc3 4484
d3c2fdcf 4485 nr = trans->blocks_used;
ab78c84d 4486 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4487fail:
9ed74f2d 4488 btrfs_unreserve_metadata_space(root, 3);
39279cc3
CM
4489 if (drop_inode) {
4490 inode_dec_link_count(inode);
4491 iput(inode);
4492 }
d3c2fdcf 4493 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4494 return err;
4495}
4496
39279cc3
CM
4497static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4498{
b9d86667 4499 struct inode *inode = NULL;
39279cc3
CM
4500 struct btrfs_trans_handle *trans;
4501 struct btrfs_root *root = BTRFS_I(dir)->root;
4502 int err = 0;
4503 int drop_on_err = 0;
b9d86667 4504 u64 objectid = 0;
00e4e6b3 4505 u64 index = 0;
d3c2fdcf 4506 unsigned long nr = 1;
39279cc3 4507
9ed74f2d
JB
4508 /*
4509 * 2 items for inode and ref
4510 * 2 items for dir items
4511 * 1 for xattr if selinux is on
4512 */
4513 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4514 if (err)
9ed74f2d 4515 return err;
1832a6d5 4516
39279cc3 4517 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4518 if (!trans) {
4519 err = -ENOMEM;
39279cc3
CM
4520 goto out_unlock;
4521 }
9ed74f2d 4522 btrfs_set_trans_block_group(trans, dir);
39279cc3
CM
4523
4524 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4525 if (err) {
4526 err = -ENOSPC;
0be2e981 4527 goto out_fail;
39279cc3
CM
4528 }
4529
aec7477b 4530 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4531 dentry->d_name.len,
4532 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4533 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4534 &index);
39279cc3
CM
4535 if (IS_ERR(inode)) {
4536 err = PTR_ERR(inode);
4537 goto out_fail;
4538 }
5f39d397 4539
39279cc3 4540 drop_on_err = 1;
33268eaf 4541
f34f57a3 4542 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4543 if (err)
4544 goto out_fail;
4545
39279cc3
CM
4546 inode->i_op = &btrfs_dir_inode_operations;
4547 inode->i_fop = &btrfs_dir_file_operations;
4548 btrfs_set_trans_block_group(trans, inode);
4549
dbe674a9 4550 btrfs_i_size_write(inode, 0);
39279cc3
CM
4551 err = btrfs_update_inode(trans, root, inode);
4552 if (err)
4553 goto out_fail;
5f39d397 4554
e02119d5
CM
4555 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4556 inode, dentry->d_name.name,
4557 dentry->d_name.len, 0, index);
39279cc3
CM
4558 if (err)
4559 goto out_fail;
5f39d397 4560
39279cc3
CM
4561 d_instantiate(dentry, inode);
4562 drop_on_err = 0;
39279cc3
CM
4563 btrfs_update_inode_block_group(trans, inode);
4564 btrfs_update_inode_block_group(trans, dir);
4565
4566out_fail:
d3c2fdcf 4567 nr = trans->blocks_used;
ab78c84d 4568 btrfs_end_transaction_throttle(trans, root);
5f39d397 4569
39279cc3 4570out_unlock:
9ed74f2d 4571 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4572 if (drop_on_err)
4573 iput(inode);
d3c2fdcf 4574 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4575 return err;
4576}
4577
d352ac68
CM
4578/* helper for btfs_get_extent. Given an existing extent in the tree,
4579 * and an extent that you want to insert, deal with overlap and insert
4580 * the new extent into the tree.
4581 */
3b951516
CM
4582static int merge_extent_mapping(struct extent_map_tree *em_tree,
4583 struct extent_map *existing,
e6dcd2dc
CM
4584 struct extent_map *em,
4585 u64 map_start, u64 map_len)
3b951516
CM
4586{
4587 u64 start_diff;
3b951516 4588
e6dcd2dc
CM
4589 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4590 start_diff = map_start - em->start;
4591 em->start = map_start;
4592 em->len = map_len;
c8b97818
CM
4593 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4594 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4595 em->block_start += start_diff;
c8b97818
CM
4596 em->block_len -= start_diff;
4597 }
e6dcd2dc 4598 return add_extent_mapping(em_tree, em);
3b951516
CM
4599}
4600
c8b97818
CM
4601static noinline int uncompress_inline(struct btrfs_path *path,
4602 struct inode *inode, struct page *page,
4603 size_t pg_offset, u64 extent_offset,
4604 struct btrfs_file_extent_item *item)
4605{
4606 int ret;
4607 struct extent_buffer *leaf = path->nodes[0];
4608 char *tmp;
4609 size_t max_size;
4610 unsigned long inline_size;
4611 unsigned long ptr;
4612
4613 WARN_ON(pg_offset != 0);
4614 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4615 inline_size = btrfs_file_extent_inline_item_len(leaf,
4616 btrfs_item_nr(leaf, path->slots[0]));
4617 tmp = kmalloc(inline_size, GFP_NOFS);
4618 ptr = btrfs_file_extent_inline_start(item);
4619
4620 read_extent_buffer(leaf, tmp, ptr, inline_size);
4621
5b050f04 4622 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4623 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4624 inline_size, max_size);
4625 if (ret) {
4626 char *kaddr = kmap_atomic(page, KM_USER0);
4627 unsigned long copy_size = min_t(u64,
4628 PAGE_CACHE_SIZE - pg_offset,
4629 max_size - extent_offset);
4630 memset(kaddr + pg_offset, 0, copy_size);
4631 kunmap_atomic(kaddr, KM_USER0);
4632 }
4633 kfree(tmp);
4634 return 0;
4635}
4636
d352ac68
CM
4637/*
4638 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4639 * the ugly parts come from merging extents from the disk with the in-ram
4640 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4641 * where the in-ram extents might be locked pending data=ordered completion.
4642 *
4643 * This also copies inline extents directly into the page.
4644 */
d397712b 4645
a52d9a80 4646struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4647 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4648 int create)
4649{
4650 int ret;
4651 int err = 0;
db94535d 4652 u64 bytenr;
a52d9a80
CM
4653 u64 extent_start = 0;
4654 u64 extent_end = 0;
4655 u64 objectid = inode->i_ino;
4656 u32 found_type;
f421950f 4657 struct btrfs_path *path = NULL;
a52d9a80
CM
4658 struct btrfs_root *root = BTRFS_I(inode)->root;
4659 struct btrfs_file_extent_item *item;
5f39d397
CM
4660 struct extent_buffer *leaf;
4661 struct btrfs_key found_key;
a52d9a80
CM
4662 struct extent_map *em = NULL;
4663 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4664 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4665 struct btrfs_trans_handle *trans = NULL;
c8b97818 4666 int compressed;
a52d9a80 4667
a52d9a80 4668again:
890871be 4669 read_lock(&em_tree->lock);
d1310b2e 4670 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4671 if (em)
4672 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4673 read_unlock(&em_tree->lock);
d1310b2e 4674
a52d9a80 4675 if (em) {
e1c4b745
CM
4676 if (em->start > start || em->start + em->len <= start)
4677 free_extent_map(em);
4678 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4679 free_extent_map(em);
4680 else
4681 goto out;
a52d9a80 4682 }
d1310b2e 4683 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4684 if (!em) {
d1310b2e
CM
4685 err = -ENOMEM;
4686 goto out;
a52d9a80 4687 }
e6dcd2dc 4688 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4689 em->start = EXTENT_MAP_HOLE;
445a6944 4690 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4691 em->len = (u64)-1;
c8b97818 4692 em->block_len = (u64)-1;
f421950f
CM
4693
4694 if (!path) {
4695 path = btrfs_alloc_path();
4696 BUG_ON(!path);
4697 }
4698
179e29e4
CM
4699 ret = btrfs_lookup_file_extent(trans, root, path,
4700 objectid, start, trans != NULL);
a52d9a80
CM
4701 if (ret < 0) {
4702 err = ret;
4703 goto out;
4704 }
4705
4706 if (ret != 0) {
4707 if (path->slots[0] == 0)
4708 goto not_found;
4709 path->slots[0]--;
4710 }
4711
5f39d397
CM
4712 leaf = path->nodes[0];
4713 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4714 struct btrfs_file_extent_item);
a52d9a80 4715 /* are we inside the extent that was found? */
5f39d397
CM
4716 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4717 found_type = btrfs_key_type(&found_key);
4718 if (found_key.objectid != objectid ||
a52d9a80
CM
4719 found_type != BTRFS_EXTENT_DATA_KEY) {
4720 goto not_found;
4721 }
4722
5f39d397
CM
4723 found_type = btrfs_file_extent_type(leaf, item);
4724 extent_start = found_key.offset;
c8b97818 4725 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4726 if (found_type == BTRFS_FILE_EXTENT_REG ||
4727 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4728 extent_end = extent_start +
db94535d 4729 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4730 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4731 size_t size;
4732 size = btrfs_file_extent_inline_len(leaf, item);
4733 extent_end = (extent_start + size + root->sectorsize - 1) &
4734 ~((u64)root->sectorsize - 1);
4735 }
4736
4737 if (start >= extent_end) {
4738 path->slots[0]++;
4739 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4740 ret = btrfs_next_leaf(root, path);
4741 if (ret < 0) {
4742 err = ret;
4743 goto out;
a52d9a80 4744 }
9036c102
YZ
4745 if (ret > 0)
4746 goto not_found;
4747 leaf = path->nodes[0];
a52d9a80 4748 }
9036c102
YZ
4749 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4750 if (found_key.objectid != objectid ||
4751 found_key.type != BTRFS_EXTENT_DATA_KEY)
4752 goto not_found;
4753 if (start + len <= found_key.offset)
4754 goto not_found;
4755 em->start = start;
4756 em->len = found_key.offset - start;
4757 goto not_found_em;
4758 }
4759
d899e052
YZ
4760 if (found_type == BTRFS_FILE_EXTENT_REG ||
4761 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4762 em->start = extent_start;
4763 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4764 em->orig_start = extent_start -
4765 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4766 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4767 if (bytenr == 0) {
5f39d397 4768 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4769 goto insert;
4770 }
c8b97818
CM
4771 if (compressed) {
4772 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4773 em->block_start = bytenr;
4774 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4775 item);
4776 } else {
4777 bytenr += btrfs_file_extent_offset(leaf, item);
4778 em->block_start = bytenr;
4779 em->block_len = em->len;
d899e052
YZ
4780 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4781 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4782 }
a52d9a80
CM
4783 goto insert;
4784 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4785 unsigned long ptr;
a52d9a80 4786 char *map;
3326d1b0
CM
4787 size_t size;
4788 size_t extent_offset;
4789 size_t copy_size;
a52d9a80 4790
689f9346 4791 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4792 if (!page || create) {
689f9346 4793 em->start = extent_start;
9036c102 4794 em->len = extent_end - extent_start;
689f9346
Y
4795 goto out;
4796 }
5f39d397 4797
9036c102
YZ
4798 size = btrfs_file_extent_inline_len(leaf, item);
4799 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4800 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4801 size - extent_offset);
3326d1b0 4802 em->start = extent_start + extent_offset;
70dec807
CM
4803 em->len = (copy_size + root->sectorsize - 1) &
4804 ~((u64)root->sectorsize - 1);
ff5b7ee3 4805 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4806 if (compressed)
4807 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4808 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4809 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4810 if (btrfs_file_extent_compression(leaf, item) ==
4811 BTRFS_COMPRESS_ZLIB) {
4812 ret = uncompress_inline(path, inode, page,
4813 pg_offset,
4814 extent_offset, item);
4815 BUG_ON(ret);
4816 } else {
4817 map = kmap(page);
4818 read_extent_buffer(leaf, map + pg_offset, ptr,
4819 copy_size);
93c82d57
CM
4820 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4821 memset(map + pg_offset + copy_size, 0,
4822 PAGE_CACHE_SIZE - pg_offset -
4823 copy_size);
4824 }
c8b97818
CM
4825 kunmap(page);
4826 }
179e29e4
CM
4827 flush_dcache_page(page);
4828 } else if (create && PageUptodate(page)) {
4829 if (!trans) {
4830 kunmap(page);
4831 free_extent_map(em);
4832 em = NULL;
4833 btrfs_release_path(root, path);
f9295749 4834 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4835 goto again;
4836 }
c8b97818 4837 map = kmap(page);
70dec807 4838 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4839 copy_size);
c8b97818 4840 kunmap(page);
179e29e4 4841 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4842 }
d1310b2e
CM
4843 set_extent_uptodate(io_tree, em->start,
4844 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4845 goto insert;
4846 } else {
d397712b 4847 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4848 WARN_ON(1);
4849 }
4850not_found:
4851 em->start = start;
d1310b2e 4852 em->len = len;
a52d9a80 4853not_found_em:
5f39d397 4854 em->block_start = EXTENT_MAP_HOLE;
9036c102 4855 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4856insert:
4857 btrfs_release_path(root, path);
d1310b2e 4858 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4859 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4860 "[%llu %llu]\n", (unsigned long long)em->start,
4861 (unsigned long long)em->len,
4862 (unsigned long long)start,
4863 (unsigned long long)len);
a52d9a80
CM
4864 err = -EIO;
4865 goto out;
4866 }
d1310b2e
CM
4867
4868 err = 0;
890871be 4869 write_lock(&em_tree->lock);
a52d9a80 4870 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4871 /* it is possible that someone inserted the extent into the tree
4872 * while we had the lock dropped. It is also possible that
4873 * an overlapping map exists in the tree
4874 */
a52d9a80 4875 if (ret == -EEXIST) {
3b951516 4876 struct extent_map *existing;
e6dcd2dc
CM
4877
4878 ret = 0;
4879
3b951516 4880 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4881 if (existing && (existing->start > start ||
4882 existing->start + existing->len <= start)) {
4883 free_extent_map(existing);
4884 existing = NULL;
4885 }
3b951516
CM
4886 if (!existing) {
4887 existing = lookup_extent_mapping(em_tree, em->start,
4888 em->len);
4889 if (existing) {
4890 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4891 em, start,
4892 root->sectorsize);
3b951516
CM
4893 free_extent_map(existing);
4894 if (err) {
4895 free_extent_map(em);
4896 em = NULL;
4897 }
4898 } else {
4899 err = -EIO;
3b951516
CM
4900 free_extent_map(em);
4901 em = NULL;
4902 }
4903 } else {
4904 free_extent_map(em);
4905 em = existing;
e6dcd2dc 4906 err = 0;
a52d9a80 4907 }
a52d9a80 4908 }
890871be 4909 write_unlock(&em_tree->lock);
a52d9a80 4910out:
f421950f
CM
4911 if (path)
4912 btrfs_free_path(path);
a52d9a80
CM
4913 if (trans) {
4914 ret = btrfs_end_transaction(trans, root);
d397712b 4915 if (!err)
a52d9a80
CM
4916 err = ret;
4917 }
a52d9a80
CM
4918 if (err) {
4919 free_extent_map(em);
a52d9a80
CM
4920 return ERR_PTR(err);
4921 }
4922 return em;
4923}
4924
16432985
CM
4925static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4926 const struct iovec *iov, loff_t offset,
4927 unsigned long nr_segs)
4928{
e1c4b745 4929 return -EINVAL;
16432985
CM
4930}
4931
1506fcc8
YS
4932static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4933 __u64 start, __u64 len)
4934{
4935 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4936}
4937
a52d9a80 4938int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4939{
d1310b2e
CM
4940 struct extent_io_tree *tree;
4941 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4942 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4943}
1832a6d5 4944
a52d9a80 4945static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4946{
d1310b2e 4947 struct extent_io_tree *tree;
b888db2b
CM
4948
4949
4950 if (current->flags & PF_MEMALLOC) {
4951 redirty_page_for_writepage(wbc, page);
4952 unlock_page(page);
4953 return 0;
4954 }
d1310b2e 4955 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4956 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
4957}
4958
f421950f
CM
4959int btrfs_writepages(struct address_space *mapping,
4960 struct writeback_control *wbc)
b293f02e 4961{
d1310b2e 4962 struct extent_io_tree *tree;
771ed689 4963
d1310b2e 4964 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
4965 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4966}
4967
3ab2fb5a
CM
4968static int
4969btrfs_readpages(struct file *file, struct address_space *mapping,
4970 struct list_head *pages, unsigned nr_pages)
4971{
d1310b2e
CM
4972 struct extent_io_tree *tree;
4973 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
4974 return extent_readpages(tree, mapping, pages, nr_pages,
4975 btrfs_get_extent);
4976}
e6dcd2dc 4977static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 4978{
d1310b2e
CM
4979 struct extent_io_tree *tree;
4980 struct extent_map_tree *map;
a52d9a80 4981 int ret;
8c2383c3 4982
d1310b2e
CM
4983 tree = &BTRFS_I(page->mapping->host)->io_tree;
4984 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 4985 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
4986 if (ret == 1) {
4987 ClearPagePrivate(page);
4988 set_page_private(page, 0);
4989 page_cache_release(page);
39279cc3 4990 }
a52d9a80 4991 return ret;
39279cc3
CM
4992}
4993
e6dcd2dc
CM
4994static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4995{
98509cfc
CM
4996 if (PageWriteback(page) || PageDirty(page))
4997 return 0;
b335b003 4998 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
4999}
5000
a52d9a80 5001static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 5002{
d1310b2e 5003 struct extent_io_tree *tree;
e6dcd2dc 5004 struct btrfs_ordered_extent *ordered;
2ac55d41 5005 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
5006 u64 page_start = page_offset(page);
5007 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 5008
8b62b72b
CM
5009
5010 /*
5011 * we have the page locked, so new writeback can't start,
5012 * and the dirty bit won't be cleared while we are here.
5013 *
5014 * Wait for IO on this page so that we can safely clear
5015 * the PagePrivate2 bit and do ordered accounting
5016 */
e6dcd2dc 5017 wait_on_page_writeback(page);
8b62b72b 5018
d1310b2e 5019 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
5020 if (offset) {
5021 btrfs_releasepage(page, GFP_NOFS);
5022 return;
5023 }
2ac55d41
JB
5024 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5025 GFP_NOFS);
e6dcd2dc
CM
5026 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5027 page_offset(page));
5028 if (ordered) {
eb84ae03
CM
5029 /*
5030 * IO on this page will never be started, so we need
5031 * to account for any ordered extents now
5032 */
e6dcd2dc
CM
5033 clear_extent_bit(tree, page_start, page_end,
5034 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 5035 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 5036 &cached_state, GFP_NOFS);
8b62b72b
CM
5037 /*
5038 * whoever cleared the private bit is responsible
5039 * for the finish_ordered_io
5040 */
5041 if (TestClearPagePrivate2(page)) {
5042 btrfs_finish_ordered_io(page->mapping->host,
5043 page_start, page_end);
5044 }
e6dcd2dc 5045 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
5046 cached_state = NULL;
5047 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5048 GFP_NOFS);
e6dcd2dc
CM
5049 }
5050 clear_extent_bit(tree, page_start, page_end,
32c00aff 5051 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 5052 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
5053 __btrfs_releasepage(page, GFP_NOFS);
5054
4a096752 5055 ClearPageChecked(page);
9ad6b7bc 5056 if (PagePrivate(page)) {
9ad6b7bc
CM
5057 ClearPagePrivate(page);
5058 set_page_private(page, 0);
5059 page_cache_release(page);
5060 }
39279cc3
CM
5061}
5062
9ebefb18
CM
5063/*
5064 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5065 * called from a page fault handler when a page is first dirtied. Hence we must
5066 * be careful to check for EOF conditions here. We set the page up correctly
5067 * for a written page which means we get ENOSPC checking when writing into
5068 * holes and correct delalloc and unwritten extent mapping on filesystems that
5069 * support these features.
5070 *
5071 * We are not allowed to take the i_mutex here so we have to play games to
5072 * protect against truncate races as the page could now be beyond EOF. Because
5073 * vmtruncate() writes the inode size before removing pages, once we have the
5074 * page lock we can determine safely if the page is beyond EOF. If it is not
5075 * beyond EOF, then the page is guaranteed safe against truncation until we
5076 * unlock the page.
5077 */
c2ec175c 5078int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 5079{
c2ec175c 5080 struct page *page = vmf->page;
6da6abae 5081 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 5082 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
5083 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5084 struct btrfs_ordered_extent *ordered;
2ac55d41 5085 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
5086 char *kaddr;
5087 unsigned long zero_start;
9ebefb18 5088 loff_t size;
1832a6d5 5089 int ret;
a52d9a80 5090 u64 page_start;
e6dcd2dc 5091 u64 page_end;
9ebefb18 5092
6a63209f 5093 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
56a76f82
NP
5094 if (ret) {
5095 if (ret == -ENOMEM)
5096 ret = VM_FAULT_OOM;
5097 else /* -ENOSPC, -EIO, etc */
5098 ret = VM_FAULT_SIGBUS;
1832a6d5 5099 goto out;
56a76f82 5100 }
1832a6d5 5101
9ed74f2d
JB
5102 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5103 if (ret) {
5104 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5105 ret = VM_FAULT_SIGBUS;
5106 goto out;
5107 }
5108
56a76f82 5109 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 5110again:
9ebefb18 5111 lock_page(page);
9ebefb18 5112 size = i_size_read(inode);
e6dcd2dc
CM
5113 page_start = page_offset(page);
5114 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 5115
9ebefb18 5116 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 5117 (page_start >= size)) {
6a63209f 5118 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ebefb18
CM
5119 /* page got truncated out from underneath us */
5120 goto out_unlock;
5121 }
e6dcd2dc
CM
5122 wait_on_page_writeback(page);
5123
2ac55d41
JB
5124 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
5125 GFP_NOFS);
e6dcd2dc
CM
5126 set_page_extent_mapped(page);
5127
eb84ae03
CM
5128 /*
5129 * we can't set the delalloc bits if there are pending ordered
5130 * extents. Drop our locks and wait for them to finish
5131 */
e6dcd2dc
CM
5132 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5133 if (ordered) {
2ac55d41
JB
5134 unlock_extent_cached(io_tree, page_start, page_end,
5135 &cached_state, GFP_NOFS);
e6dcd2dc 5136 unlock_page(page);
eb84ae03 5137 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
5138 btrfs_put_ordered_extent(ordered);
5139 goto again;
5140 }
5141
fbf19087
JB
5142 /*
5143 * XXX - page_mkwrite gets called every time the page is dirtied, even
5144 * if it was already dirty, so for space accounting reasons we need to
5145 * clear any delalloc bits for the range we are fixing to save. There
5146 * is probably a better way to do this, but for now keep consistent with
5147 * prepare_pages in the normal write path.
5148 */
2ac55d41 5149 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 5150 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 5151 0, 0, &cached_state, GFP_NOFS);
fbf19087 5152
2ac55d41
JB
5153 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
5154 &cached_state);
9ed74f2d 5155 if (ret) {
2ac55d41
JB
5156 unlock_extent_cached(io_tree, page_start, page_end,
5157 &cached_state, GFP_NOFS);
9ed74f2d 5158 ret = VM_FAULT_SIGBUS;
fbf19087 5159 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ed74f2d
JB
5160 goto out_unlock;
5161 }
e6dcd2dc 5162 ret = 0;
9ebefb18
CM
5163
5164 /* page is wholly or partially inside EOF */
a52d9a80 5165 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 5166 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 5167 else
e6dcd2dc 5168 zero_start = PAGE_CACHE_SIZE;
9ebefb18 5169
e6dcd2dc
CM
5170 if (zero_start != PAGE_CACHE_SIZE) {
5171 kaddr = kmap(page);
5172 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5173 flush_dcache_page(page);
5174 kunmap(page);
5175 }
247e743c 5176 ClearPageChecked(page);
e6dcd2dc 5177 set_page_dirty(page);
50a9b214 5178 SetPageUptodate(page);
5a3f23d5 5179
257c62e1
CM
5180 BTRFS_I(inode)->last_trans = root->fs_info->generation;
5181 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5182
2ac55d41 5183 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
5184
5185out_unlock:
9ed74f2d 5186 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
50a9b214
CM
5187 if (!ret)
5188 return VM_FAULT_LOCKED;
9ebefb18 5189 unlock_page(page);
1832a6d5 5190out:
9ebefb18
CM
5191 return ret;
5192}
5193
39279cc3
CM
5194static void btrfs_truncate(struct inode *inode)
5195{
5196 struct btrfs_root *root = BTRFS_I(inode)->root;
5197 int ret;
5198 struct btrfs_trans_handle *trans;
d3c2fdcf 5199 unsigned long nr;
dbe674a9 5200 u64 mask = root->sectorsize - 1;
39279cc3 5201
8082510e
YZ
5202 if (!S_ISREG(inode->i_mode)) {
5203 WARN_ON(1);
39279cc3 5204 return;
8082510e 5205 }
39279cc3 5206
5d5e103a
JB
5207 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5208 if (ret)
5209 return;
8082510e 5210
4a096752 5211 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 5212 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 5213
39279cc3 5214 trans = btrfs_start_transaction(root, 1);
8082510e 5215 btrfs_set_trans_block_group(trans, inode);
5a3f23d5
CM
5216
5217 /*
5218 * setattr is responsible for setting the ordered_data_close flag,
5219 * but that is only tested during the last file release. That
5220 * could happen well after the next commit, leaving a great big
5221 * window where new writes may get lost if someone chooses to write
5222 * to this file after truncating to zero
5223 *
5224 * The inode doesn't have any dirty data here, and so if we commit
5225 * this is a noop. If someone immediately starts writing to the inode
5226 * it is very likely we'll catch some of their writes in this
5227 * transaction, and the commit will find this file on the ordered
5228 * data list with good things to send down.
5229 *
5230 * This is a best effort solution, there is still a window where
5231 * using truncate to replace the contents of the file will
5232 * end up with a zero length file after a crash.
5233 */
5234 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5235 btrfs_add_ordered_operation(trans, root, inode);
5236
8082510e
YZ
5237 while (1) {
5238 ret = btrfs_truncate_inode_items(trans, root, inode,
5239 inode->i_size,
5240 BTRFS_EXTENT_DATA_KEY);
5241 if (ret != -EAGAIN)
5242 break;
39279cc3 5243
8082510e
YZ
5244 ret = btrfs_update_inode(trans, root, inode);
5245 BUG_ON(ret);
5f39d397 5246
8082510e
YZ
5247 nr = trans->blocks_used;
5248 btrfs_end_transaction(trans, root);
5249 btrfs_btree_balance_dirty(root, nr);
5250
5251 trans = btrfs_start_transaction(root, 1);
5252 btrfs_set_trans_block_group(trans, inode);
5253 }
5254
5255 if (ret == 0 && inode->i_nlink > 0) {
5256 ret = btrfs_orphan_del(trans, inode);
5257 BUG_ON(ret);
5258 }
5259
5260 ret = btrfs_update_inode(trans, root, inode);
7b128766
JB
5261 BUG_ON(ret);
5262
7b128766 5263 nr = trans->blocks_used;
89ce8a63 5264 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 5265 BUG_ON(ret);
d3c2fdcf 5266 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5267}
5268
d352ac68
CM
5269/*
5270 * create a new subvolume directory/inode (helper for the ioctl).
5271 */
d2fb3437 5272int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 5273 struct btrfs_root *new_root,
d2fb3437 5274 u64 new_dirid, u64 alloc_hint)
39279cc3 5275{
39279cc3 5276 struct inode *inode;
76dda93c 5277 int err;
00e4e6b3 5278 u64 index = 0;
39279cc3 5279
aec7477b 5280 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 5281 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 5282 if (IS_ERR(inode))
f46b5a66 5283 return PTR_ERR(inode);
39279cc3
CM
5284 inode->i_op = &btrfs_dir_inode_operations;
5285 inode->i_fop = &btrfs_dir_file_operations;
5286
39279cc3 5287 inode->i_nlink = 1;
dbe674a9 5288 btrfs_i_size_write(inode, 0);
3b96362c 5289
76dda93c
YZ
5290 err = btrfs_update_inode(trans, new_root, inode);
5291 BUG_ON(err);
cb8e7090 5292
76dda93c 5293 iput(inode);
cb8e7090 5294 return 0;
39279cc3
CM
5295}
5296
d352ac68
CM
5297/* helper function for file defrag and space balancing. This
5298 * forces readahead on a given range of bytes in an inode
5299 */
edbd8d4e 5300unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
5301 struct file_ra_state *ra, struct file *file,
5302 pgoff_t offset, pgoff_t last_index)
5303{
8e7bf94f 5304 pgoff_t req_size = last_index - offset + 1;
86479a04 5305
86479a04
CM
5306 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5307 return offset + req_size;
86479a04
CM
5308}
5309
39279cc3
CM
5310struct inode *btrfs_alloc_inode(struct super_block *sb)
5311{
5312 struct btrfs_inode *ei;
5313
5314 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5315 if (!ei)
5316 return NULL;
15ee9bc7 5317 ei->last_trans = 0;
257c62e1 5318 ei->last_sub_trans = 0;
e02119d5 5319 ei->logged_trans = 0;
32c00aff
JB
5320 ei->outstanding_extents = 0;
5321 ei->reserved_extents = 0;
a6dbd429 5322 ei->root = NULL;
32c00aff 5323 spin_lock_init(&ei->accounting_lock);
e6dcd2dc 5324 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 5325 INIT_LIST_HEAD(&ei->i_orphan);
5a3f23d5 5326 INIT_LIST_HEAD(&ei->ordered_operations);
39279cc3
CM
5327 return &ei->vfs_inode;
5328}
5329
5330void btrfs_destroy_inode(struct inode *inode)
5331{
e6dcd2dc 5332 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
5333 struct btrfs_root *root = BTRFS_I(inode)->root;
5334
39279cc3
CM
5335 WARN_ON(!list_empty(&inode->i_dentry));
5336 WARN_ON(inode->i_data.nrpages);
5337
a6dbd429
JB
5338 /*
5339 * This can happen where we create an inode, but somebody else also
5340 * created the same inode and we need to destroy the one we already
5341 * created.
5342 */
5343 if (!root)
5344 goto free;
5345
5a3f23d5
CM
5346 /*
5347 * Make sure we're properly removed from the ordered operation
5348 * lists.
5349 */
5350 smp_mb();
5351 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5352 spin_lock(&root->fs_info->ordered_extent_lock);
5353 list_del_init(&BTRFS_I(inode)->ordered_operations);
5354 spin_unlock(&root->fs_info->ordered_extent_lock);
5355 }
5356
5357 spin_lock(&root->list_lock);
7b128766 5358 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
5359 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5360 inode->i_ino);
5361 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 5362 }
5a3f23d5 5363 spin_unlock(&root->list_lock);
7b128766 5364
d397712b 5365 while (1) {
e6dcd2dc
CM
5366 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5367 if (!ordered)
5368 break;
5369 else {
d397712b
CM
5370 printk(KERN_ERR "btrfs found ordered "
5371 "extent %llu %llu on inode cleanup\n",
5372 (unsigned long long)ordered->file_offset,
5373 (unsigned long long)ordered->len);
e6dcd2dc
CM
5374 btrfs_remove_ordered_extent(inode, ordered);
5375 btrfs_put_ordered_extent(ordered);
5376 btrfs_put_ordered_extent(ordered);
5377 }
5378 }
5d4f98a2 5379 inode_tree_del(inode);
5b21f2ed 5380 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 5381free:
39279cc3
CM
5382 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5383}
5384
76dda93c
YZ
5385void btrfs_drop_inode(struct inode *inode)
5386{
5387 struct btrfs_root *root = BTRFS_I(inode)->root;
5388
5389 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5390 generic_delete_inode(inode);
5391 else
5392 generic_drop_inode(inode);
5393}
5394
0ee0fda0 5395static void init_once(void *foo)
39279cc3
CM
5396{
5397 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5398
5399 inode_init_once(&ei->vfs_inode);
5400}
5401
5402void btrfs_destroy_cachep(void)
5403{
5404 if (btrfs_inode_cachep)
5405 kmem_cache_destroy(btrfs_inode_cachep);
5406 if (btrfs_trans_handle_cachep)
5407 kmem_cache_destroy(btrfs_trans_handle_cachep);
5408 if (btrfs_transaction_cachep)
5409 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
5410 if (btrfs_path_cachep)
5411 kmem_cache_destroy(btrfs_path_cachep);
5412}
5413
5414int btrfs_init_cachep(void)
5415{
9601e3f6
CH
5416 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5417 sizeof(struct btrfs_inode), 0,
5418 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
5419 if (!btrfs_inode_cachep)
5420 goto fail;
9601e3f6
CH
5421
5422 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5423 sizeof(struct btrfs_trans_handle), 0,
5424 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5425 if (!btrfs_trans_handle_cachep)
5426 goto fail;
9601e3f6
CH
5427
5428 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5429 sizeof(struct btrfs_transaction), 0,
5430 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5431 if (!btrfs_transaction_cachep)
5432 goto fail;
9601e3f6
CH
5433
5434 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5435 sizeof(struct btrfs_path), 0,
5436 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5437 if (!btrfs_path_cachep)
5438 goto fail;
9601e3f6 5439
39279cc3
CM
5440 return 0;
5441fail:
5442 btrfs_destroy_cachep();
5443 return -ENOMEM;
5444}
5445
5446static int btrfs_getattr(struct vfsmount *mnt,
5447 struct dentry *dentry, struct kstat *stat)
5448{
5449 struct inode *inode = dentry->d_inode;
5450 generic_fillattr(inode, stat);
3394e160 5451 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 5452 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
5453 stat->blocks = (inode_get_bytes(inode) +
5454 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
5455 return 0;
5456}
5457
d397712b
CM
5458static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5459 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
5460{
5461 struct btrfs_trans_handle *trans;
5462 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 5463 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
5464 struct inode *new_inode = new_dentry->d_inode;
5465 struct inode *old_inode = old_dentry->d_inode;
5466 struct timespec ctime = CURRENT_TIME;
00e4e6b3 5467 u64 index = 0;
4df27c4d 5468 u64 root_objectid;
39279cc3
CM
5469 int ret;
5470
f679a840
YZ
5471 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5472 return -EPERM;
5473
4df27c4d
YZ
5474 /* we only allow rename subvolume link between subvolumes */
5475 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
5476 return -EXDEV;
5477
4df27c4d
YZ
5478 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5479 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 5480 return -ENOTEMPTY;
5f39d397 5481
4df27c4d
YZ
5482 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5483 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5484 return -ENOTEMPTY;
0660b5af 5485
9ed74f2d 5486 /*
5df6a9f6
JB
5487 * We want to reserve the absolute worst case amount of items. So if
5488 * both inodes are subvols and we need to unlink them then that would
5489 * require 4 item modifications, but if they are both normal inodes it
5490 * would require 5 item modifications, so we'll assume their normal
5491 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5492 * should cover the worst case number of items we'll modify.
9ed74f2d 5493 */
5df6a9f6 5494 ret = btrfs_reserve_metadata_space(root, 11);
1832a6d5 5495 if (ret)
4df27c4d 5496 return ret;
1832a6d5 5497
5a3f23d5
CM
5498 /*
5499 * we're using rename to replace one file with another.
5500 * and the replacement file is large. Start IO on it now so
5501 * we don't add too much work to the end of the transaction
5502 */
4baf8c92 5503 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
5504 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5505 filemap_flush(old_inode->i_mapping);
5506
76dda93c
YZ
5507 /* close the racy window with snapshot create/destroy ioctl */
5508 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5509 down_read(&root->fs_info->subvol_sem);
5510
39279cc3 5511 trans = btrfs_start_transaction(root, 1);
a5719521 5512 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 5513
4df27c4d
YZ
5514 if (dest != root)
5515 btrfs_record_root_in_trans(trans, dest);
5f39d397 5516
a5719521
YZ
5517 ret = btrfs_set_inode_index(new_dir, &index);
5518 if (ret)
5519 goto out_fail;
5a3f23d5 5520
a5719521 5521 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5522 /* force full log commit if subvolume involved. */
5523 root->fs_info->last_trans_log_full_commit = trans->transid;
5524 } else {
a5719521
YZ
5525 ret = btrfs_insert_inode_ref(trans, dest,
5526 new_dentry->d_name.name,
5527 new_dentry->d_name.len,
5528 old_inode->i_ino,
5529 new_dir->i_ino, index);
5530 if (ret)
5531 goto out_fail;
4df27c4d
YZ
5532 /*
5533 * this is an ugly little race, but the rename is required
5534 * to make sure that if we crash, the inode is either at the
5535 * old name or the new one. pinning the log transaction lets
5536 * us make sure we don't allow a log commit to come in after
5537 * we unlink the name but before we add the new name back in.
5538 */
5539 btrfs_pin_log_trans(root);
5540 }
5a3f23d5
CM
5541 /*
5542 * make sure the inode gets flushed if it is replacing
5543 * something.
5544 */
5545 if (new_inode && new_inode->i_size &&
5546 old_inode && S_ISREG(old_inode->i_mode)) {
5547 btrfs_add_ordered_operation(trans, root, old_inode);
5548 }
5549
39279cc3
CM
5550 old_dir->i_ctime = old_dir->i_mtime = ctime;
5551 new_dir->i_ctime = new_dir->i_mtime = ctime;
5552 old_inode->i_ctime = ctime;
5f39d397 5553
12fcfd22
CM
5554 if (old_dentry->d_parent != new_dentry->d_parent)
5555 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5556
4df27c4d
YZ
5557 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5558 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5559 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5560 old_dentry->d_name.name,
5561 old_dentry->d_name.len);
5562 } else {
5563 btrfs_inc_nlink(old_dentry->d_inode);
5564 ret = btrfs_unlink_inode(trans, root, old_dir,
5565 old_dentry->d_inode,
5566 old_dentry->d_name.name,
5567 old_dentry->d_name.len);
5568 }
5569 BUG_ON(ret);
39279cc3
CM
5570
5571 if (new_inode) {
5572 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
5573 if (unlikely(new_inode->i_ino ==
5574 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5575 root_objectid = BTRFS_I(new_inode)->location.objectid;
5576 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5577 root_objectid,
5578 new_dentry->d_name.name,
5579 new_dentry->d_name.len);
5580 BUG_ON(new_inode->i_nlink == 0);
5581 } else {
5582 ret = btrfs_unlink_inode(trans, dest, new_dir,
5583 new_dentry->d_inode,
5584 new_dentry->d_name.name,
5585 new_dentry->d_name.len);
5586 }
5587 BUG_ON(ret);
7b128766 5588 if (new_inode->i_nlink == 0) {
e02119d5 5589 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 5590 BUG_ON(ret);
7b128766 5591 }
39279cc3 5592 }
aec7477b 5593
4df27c4d
YZ
5594 ret = btrfs_add_link(trans, new_dir, old_inode,
5595 new_dentry->d_name.name,
a5719521 5596 new_dentry->d_name.len, 0, index);
4df27c4d 5597 BUG_ON(ret);
39279cc3 5598
4df27c4d
YZ
5599 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5600 btrfs_log_new_name(trans, old_inode, old_dir,
5601 new_dentry->d_parent);
5602 btrfs_end_log_trans(root);
5603 }
39279cc3 5604out_fail:
ab78c84d 5605 btrfs_end_transaction_throttle(trans, root);
4df27c4d 5606
76dda93c
YZ
5607 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5608 up_read(&root->fs_info->subvol_sem);
9ed74f2d 5609
5df6a9f6 5610 btrfs_unreserve_metadata_space(root, 11);
39279cc3
CM
5611 return ret;
5612}
5613
d352ac68
CM
5614/*
5615 * some fairly slow code that needs optimization. This walks the list
5616 * of all the inodes with pending delalloc and forces them to disk.
5617 */
24bbcf04 5618int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
5619{
5620 struct list_head *head = &root->fs_info->delalloc_inodes;
5621 struct btrfs_inode *binode;
5b21f2ed 5622 struct inode *inode;
ea8c2819 5623
c146afad
YZ
5624 if (root->fs_info->sb->s_flags & MS_RDONLY)
5625 return -EROFS;
5626
75eff68e 5627 spin_lock(&root->fs_info->delalloc_lock);
d397712b 5628 while (!list_empty(head)) {
ea8c2819
CM
5629 binode = list_entry(head->next, struct btrfs_inode,
5630 delalloc_inodes);
5b21f2ed
ZY
5631 inode = igrab(&binode->vfs_inode);
5632 if (!inode)
5633 list_del_init(&binode->delalloc_inodes);
75eff68e 5634 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 5635 if (inode) {
8c8bee1d 5636 filemap_flush(inode->i_mapping);
24bbcf04
YZ
5637 if (delay_iput)
5638 btrfs_add_delayed_iput(inode);
5639 else
5640 iput(inode);
5b21f2ed
ZY
5641 }
5642 cond_resched();
75eff68e 5643 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 5644 }
75eff68e 5645 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
5646
5647 /* the filemap_flush will queue IO into the worker threads, but
5648 * we have to make sure the IO is actually started and that
5649 * ordered extents get created before we return
5650 */
5651 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 5652 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 5653 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 5654 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
5655 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5656 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
5657 }
5658 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
5659 return 0;
5660}
5661
39279cc3
CM
5662static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5663 const char *symname)
5664{
5665 struct btrfs_trans_handle *trans;
5666 struct btrfs_root *root = BTRFS_I(dir)->root;
5667 struct btrfs_path *path;
5668 struct btrfs_key key;
1832a6d5 5669 struct inode *inode = NULL;
39279cc3
CM
5670 int err;
5671 int drop_inode = 0;
5672 u64 objectid;
00e4e6b3 5673 u64 index = 0 ;
39279cc3
CM
5674 int name_len;
5675 int datasize;
5f39d397 5676 unsigned long ptr;
39279cc3 5677 struct btrfs_file_extent_item *ei;
5f39d397 5678 struct extent_buffer *leaf;
1832a6d5 5679 unsigned long nr = 0;
39279cc3
CM
5680
5681 name_len = strlen(symname) + 1;
5682 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5683 return -ENAMETOOLONG;
1832a6d5 5684
9ed74f2d
JB
5685 /*
5686 * 2 items for inode item and ref
5687 * 2 items for dir items
5688 * 1 item for xattr if selinux is on
5689 */
5690 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 5691 if (err)
9ed74f2d 5692 return err;
1832a6d5 5693
39279cc3 5694 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
5695 if (!trans)
5696 goto out_fail;
39279cc3
CM
5697 btrfs_set_trans_block_group(trans, dir);
5698
5699 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5700 if (err) {
5701 err = -ENOSPC;
5702 goto out_unlock;
5703 }
5704
aec7477b 5705 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
5706 dentry->d_name.len,
5707 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
5708 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5709 &index);
39279cc3
CM
5710 err = PTR_ERR(inode);
5711 if (IS_ERR(inode))
5712 goto out_unlock;
5713
f34f57a3 5714 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
5715 if (err) {
5716 drop_inode = 1;
5717 goto out_unlock;
5718 }
5719
39279cc3 5720 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 5721 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
5722 if (err)
5723 drop_inode = 1;
5724 else {
5725 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5726 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
5727 inode->i_fop = &btrfs_file_operations;
5728 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 5729 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 5730 }
39279cc3
CM
5731 btrfs_update_inode_block_group(trans, inode);
5732 btrfs_update_inode_block_group(trans, dir);
5733 if (drop_inode)
5734 goto out_unlock;
5735
5736 path = btrfs_alloc_path();
5737 BUG_ON(!path);
5738 key.objectid = inode->i_ino;
5739 key.offset = 0;
39279cc3
CM
5740 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5741 datasize = btrfs_file_extent_calc_inline_size(name_len);
5742 err = btrfs_insert_empty_item(trans, root, path, &key,
5743 datasize);
54aa1f4d
CM
5744 if (err) {
5745 drop_inode = 1;
5746 goto out_unlock;
5747 }
5f39d397
CM
5748 leaf = path->nodes[0];
5749 ei = btrfs_item_ptr(leaf, path->slots[0],
5750 struct btrfs_file_extent_item);
5751 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5752 btrfs_set_file_extent_type(leaf, ei,
39279cc3 5753 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
5754 btrfs_set_file_extent_encryption(leaf, ei, 0);
5755 btrfs_set_file_extent_compression(leaf, ei, 0);
5756 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5757 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5758
39279cc3 5759 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
5760 write_extent_buffer(leaf, symname, ptr, name_len);
5761 btrfs_mark_buffer_dirty(leaf);
39279cc3 5762 btrfs_free_path(path);
5f39d397 5763
39279cc3
CM
5764 inode->i_op = &btrfs_symlink_inode_operations;
5765 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 5766 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 5767 inode_set_bytes(inode, name_len);
dbe674a9 5768 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
5769 err = btrfs_update_inode(trans, root, inode);
5770 if (err)
5771 drop_inode = 1;
39279cc3
CM
5772
5773out_unlock:
d3c2fdcf 5774 nr = trans->blocks_used;
ab78c84d 5775 btrfs_end_transaction_throttle(trans, root);
1832a6d5 5776out_fail:
9ed74f2d 5777 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
5778 if (drop_inode) {
5779 inode_dec_link_count(inode);
5780 iput(inode);
5781 }
d3c2fdcf 5782 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5783 return err;
5784}
16432985 5785
5a303d5d 5786static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
d1ea6a61 5787 u64 alloc_hint, int mode, loff_t actual_len)
d899e052 5788{
5a303d5d 5789 struct btrfs_trans_handle *trans;
d899e052
YZ
5790 struct btrfs_root *root = BTRFS_I(inode)->root;
5791 struct btrfs_key ins;
5792 u64 alloc_size;
5793 u64 cur_offset = start;
5794 u64 num_bytes = end - start;
5795 int ret = 0;
d1ea6a61 5796 u64 i_size;
d899e052 5797
d899e052
YZ
5798 while (num_bytes > 0) {
5799 alloc_size = min(num_bytes, root->fs_info->max_extent);
9ed74f2d 5800
3a1abec9
CM
5801 trans = btrfs_start_transaction(root, 1);
5802
d899e052
YZ
5803 ret = btrfs_reserve_extent(trans, root, alloc_size,
5804 root->sectorsize, 0, alloc_hint,
5805 (u64)-1, &ins, 1);
5806 if (ret) {
5807 WARN_ON(1);
3a1abec9 5808 goto stop_trans;
5a303d5d
YZ
5809 }
5810
5811 ret = btrfs_reserve_metadata_space(root, 3);
5812 if (ret) {
5813 btrfs_free_reserved_extent(root, ins.objectid,
5814 ins.offset);
3a1abec9 5815 goto stop_trans;
d899e052 5816 }
5a303d5d 5817
d899e052
YZ
5818 ret = insert_reserved_file_extent(trans, inode,
5819 cur_offset, ins.objectid,
5820 ins.offset, ins.offset,
920bbbfb 5821 ins.offset, 0, 0, 0,
d899e052
YZ
5822 BTRFS_FILE_EXTENT_PREALLOC);
5823 BUG_ON(ret);
a1ed835e
CM
5824 btrfs_drop_extent_cache(inode, cur_offset,
5825 cur_offset + ins.offset -1, 0);
5a303d5d 5826
d899e052
YZ
5827 num_bytes -= ins.offset;
5828 cur_offset += ins.offset;
5829 alloc_hint = ins.objectid + ins.offset;
5a303d5d 5830
d899e052 5831 inode->i_ctime = CURRENT_TIME;
6cbff00f 5832 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 5833 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
23b5c509
AK
5834 (actual_len > inode->i_size) &&
5835 (cur_offset > inode->i_size)) {
5836
d1ea6a61
AK
5837 if (cur_offset > actual_len)
5838 i_size = actual_len;
5839 else
5840 i_size = cur_offset;
5841 i_size_write(inode, i_size);
5842 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
5843 }
5844
d899e052
YZ
5845 ret = btrfs_update_inode(trans, root, inode);
5846 BUG_ON(ret);
d899e052 5847
5a303d5d
YZ
5848 btrfs_end_transaction(trans, root);
5849 btrfs_unreserve_metadata_space(root, 3);
5850 }
d899e052 5851 return ret;
3a1abec9
CM
5852
5853stop_trans:
5854 btrfs_end_transaction(trans, root);
5855 return ret;
5856
d899e052
YZ
5857}
5858
5859static long btrfs_fallocate(struct inode *inode, int mode,
5860 loff_t offset, loff_t len)
5861{
2ac55d41 5862 struct extent_state *cached_state = NULL;
d899e052
YZ
5863 u64 cur_offset;
5864 u64 last_byte;
5865 u64 alloc_start;
5866 u64 alloc_end;
5867 u64 alloc_hint = 0;
e980b50c 5868 u64 locked_end;
d899e052
YZ
5869 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5870 struct extent_map *em;
5871 int ret;
5872
5873 alloc_start = offset & ~mask;
5874 alloc_end = (offset + len + mask) & ~mask;
5875
546888da
CM
5876 /*
5877 * wait for ordered IO before we have any locks. We'll loop again
5878 * below with the locks held.
5879 */
5880 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5881
d899e052
YZ
5882 mutex_lock(&inode->i_mutex);
5883 if (alloc_start > inode->i_size) {
5884 ret = btrfs_cont_expand(inode, alloc_start);
5885 if (ret)
5886 goto out;
5887 }
5888
5a303d5d 5889 ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
a970b0a1
JB
5890 alloc_end - alloc_start);
5891 if (ret)
5892 goto out;
5893
e980b50c 5894 locked_end = alloc_end - 1;
d899e052
YZ
5895 while (1) {
5896 struct btrfs_ordered_extent *ordered;
546888da 5897
546888da
CM
5898 /* the extent lock is ordered inside the running
5899 * transaction
5900 */
2ac55d41
JB
5901 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
5902 locked_end, 0, &cached_state, GFP_NOFS);
d899e052
YZ
5903 ordered = btrfs_lookup_first_ordered_extent(inode,
5904 alloc_end - 1);
5905 if (ordered &&
5906 ordered->file_offset + ordered->len > alloc_start &&
5907 ordered->file_offset < alloc_end) {
5908 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
5909 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
5910 alloc_start, locked_end,
5911 &cached_state, GFP_NOFS);
546888da
CM
5912 /*
5913 * we can't wait on the range with the transaction
5914 * running or with the extent lock held
5915 */
d899e052
YZ
5916 btrfs_wait_ordered_range(inode, alloc_start,
5917 alloc_end - alloc_start);
5918 } else {
5919 if (ordered)
5920 btrfs_put_ordered_extent(ordered);
5921 break;
5922 }
5923 }
5924
5925 cur_offset = alloc_start;
5926 while (1) {
5927 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5928 alloc_end - cur_offset, 0);
5929 BUG_ON(IS_ERR(em) || !em);
5930 last_byte = min(extent_map_end(em), alloc_end);
5931 last_byte = (last_byte + mask) & ~mask;
5a303d5d
YZ
5932 if (em->block_start == EXTENT_MAP_HOLE ||
5933 (cur_offset >= inode->i_size &&
5934 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5935 ret = prealloc_file_range(inode,
5936 cur_offset, last_byte,
d1ea6a61 5937 alloc_hint, mode, offset+len);
d899e052
YZ
5938 if (ret < 0) {
5939 free_extent_map(em);
5940 break;
5941 }
5942 }
5943 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5944 alloc_hint = em->block_start;
5945 free_extent_map(em);
5946
5947 cur_offset = last_byte;
5948 if (cur_offset >= alloc_end) {
5949 ret = 0;
5950 break;
5951 }
5952 }
2ac55d41
JB
5953 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5954 &cached_state, GFP_NOFS);
546888da 5955
5a303d5d
YZ
5956 btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5957 alloc_end - alloc_start);
d899e052
YZ
5958out:
5959 mutex_unlock(&inode->i_mutex);
5960 return ret;
5961}
5962
e6dcd2dc
CM
5963static int btrfs_set_page_dirty(struct page *page)
5964{
e6dcd2dc
CM
5965 return __set_page_dirty_nobuffers(page);
5966}
5967
0ee0fda0 5968static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 5969{
6cbff00f 5970 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 5971 return -EACCES;
33268eaf 5972 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 5973}
39279cc3 5974
6e1d5dcc 5975static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 5976 .getattr = btrfs_getattr,
39279cc3
CM
5977 .lookup = btrfs_lookup,
5978 .create = btrfs_create,
5979 .unlink = btrfs_unlink,
5980 .link = btrfs_link,
5981 .mkdir = btrfs_mkdir,
5982 .rmdir = btrfs_rmdir,
5983 .rename = btrfs_rename,
5984 .symlink = btrfs_symlink,
5985 .setattr = btrfs_setattr,
618e21d5 5986 .mknod = btrfs_mknod,
95819c05
CH
5987 .setxattr = btrfs_setxattr,
5988 .getxattr = btrfs_getxattr,
5103e947 5989 .listxattr = btrfs_listxattr,
95819c05 5990 .removexattr = btrfs_removexattr,
fdebe2bd 5991 .permission = btrfs_permission,
39279cc3 5992};
6e1d5dcc 5993static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 5994 .lookup = btrfs_lookup,
fdebe2bd 5995 .permission = btrfs_permission,
39279cc3 5996};
76dda93c 5997
828c0950 5998static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
5999 .llseek = generic_file_llseek,
6000 .read = generic_read_dir,
cbdf5a24 6001 .readdir = btrfs_real_readdir,
34287aa3 6002 .unlocked_ioctl = btrfs_ioctl,
39279cc3 6003#ifdef CONFIG_COMPAT
34287aa3 6004 .compat_ioctl = btrfs_ioctl,
39279cc3 6005#endif
6bf13c0c 6006 .release = btrfs_release_file,
e02119d5 6007 .fsync = btrfs_sync_file,
39279cc3
CM
6008};
6009
d1310b2e 6010static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 6011 .fill_delalloc = run_delalloc_range,
065631f6 6012 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 6013 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 6014 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 6015 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 6016 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 6017 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
6018 .set_bit_hook = btrfs_set_bit_hook,
6019 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
6020 .merge_extent_hook = btrfs_merge_extent_hook,
6021 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
6022};
6023
35054394
CM
6024/*
6025 * btrfs doesn't support the bmap operation because swapfiles
6026 * use bmap to make a mapping of extents in the file. They assume
6027 * these extents won't change over the life of the file and they
6028 * use the bmap result to do IO directly to the drive.
6029 *
6030 * the btrfs bmap call would return logical addresses that aren't
6031 * suitable for IO and they also will change frequently as COW
6032 * operations happen. So, swapfile + btrfs == corruption.
6033 *
6034 * For now we're avoiding this by dropping bmap.
6035 */
7f09410b 6036static const struct address_space_operations btrfs_aops = {
39279cc3
CM
6037 .readpage = btrfs_readpage,
6038 .writepage = btrfs_writepage,
b293f02e 6039 .writepages = btrfs_writepages,
3ab2fb5a 6040 .readpages = btrfs_readpages,
39279cc3 6041 .sync_page = block_sync_page,
16432985 6042 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
6043 .invalidatepage = btrfs_invalidatepage,
6044 .releasepage = btrfs_releasepage,
e6dcd2dc 6045 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 6046 .error_remove_page = generic_error_remove_page,
39279cc3
CM
6047};
6048
7f09410b 6049static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
6050 .readpage = btrfs_readpage,
6051 .writepage = btrfs_writepage,
2bf5a725
CM
6052 .invalidatepage = btrfs_invalidatepage,
6053 .releasepage = btrfs_releasepage,
39279cc3
CM
6054};
6055
6e1d5dcc 6056static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
6057 .truncate = btrfs_truncate,
6058 .getattr = btrfs_getattr,
6059 .setattr = btrfs_setattr,
95819c05
CH
6060 .setxattr = btrfs_setxattr,
6061 .getxattr = btrfs_getxattr,
5103e947 6062 .listxattr = btrfs_listxattr,
95819c05 6063 .removexattr = btrfs_removexattr,
fdebe2bd 6064 .permission = btrfs_permission,
d899e052 6065 .fallocate = btrfs_fallocate,
1506fcc8 6066 .fiemap = btrfs_fiemap,
39279cc3 6067};
6e1d5dcc 6068static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
6069 .getattr = btrfs_getattr,
6070 .setattr = btrfs_setattr,
fdebe2bd 6071 .permission = btrfs_permission,
95819c05
CH
6072 .setxattr = btrfs_setxattr,
6073 .getxattr = btrfs_getxattr,
33268eaf 6074 .listxattr = btrfs_listxattr,
95819c05 6075 .removexattr = btrfs_removexattr,
618e21d5 6076};
6e1d5dcc 6077static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
6078 .readlink = generic_readlink,
6079 .follow_link = page_follow_link_light,
6080 .put_link = page_put_link,
fdebe2bd 6081 .permission = btrfs_permission,
0279b4cd
JO
6082 .setxattr = btrfs_setxattr,
6083 .getxattr = btrfs_getxattr,
6084 .listxattr = btrfs_listxattr,
6085 .removexattr = btrfs_removexattr,
39279cc3 6086};
76dda93c 6087
82d339d9 6088const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
6089 .d_delete = btrfs_dentry_delete,
6090};