fs/vfs/security: pass last path component to LSM on inode creation
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
39279cc3
CM
53
54struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57};
58
6e1d5dcc
AD
59static const struct inode_operations btrfs_dir_inode_operations;
60static const struct inode_operations btrfs_symlink_inode_operations;
61static const struct inode_operations btrfs_dir_ro_inode_operations;
62static const struct inode_operations btrfs_special_inode_operations;
63static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
64static const struct address_space_operations btrfs_aops;
65static const struct address_space_operations btrfs_symlink_aops;
828c0950 66static const struct file_operations btrfs_dir_file_operations;
d1310b2e 67static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
68
69static struct kmem_cache *btrfs_inode_cachep;
70struct kmem_cache *btrfs_trans_handle_cachep;
71struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
72struct kmem_cache *btrfs_path_cachep;
73
74#define S_SHIFT 12
75static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83};
84
7b128766 85static void btrfs_truncate(struct inode *inode);
c8b97818 86static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
87static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
7b128766 91
f34f57a3 92static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
93 struct inode *inode, struct inode *dir,
94 const struct qstr *qstr)
0279b4cd
JO
95{
96 int err;
97
f34f57a3 98 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 99 if (!err)
2a7dba39 100 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
101 return err;
102}
103
c8b97818
CM
104/*
105 * this does all the hard work for inserting an inline extent into
106 * the btree. The caller should have done a btrfs_drop_extents so that
107 * no overlapping inline items exist in the btree
108 */
d397712b 109static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
110 struct btrfs_root *root, struct inode *inode,
111 u64 start, size_t size, size_t compressed_size,
112 struct page **compressed_pages)
113{
114 struct btrfs_key key;
115 struct btrfs_path *path;
116 struct extent_buffer *leaf;
117 struct page *page = NULL;
118 char *kaddr;
119 unsigned long ptr;
120 struct btrfs_file_extent_item *ei;
121 int err = 0;
122 int ret;
123 size_t cur_size = size;
124 size_t datasize;
125 unsigned long offset;
126 int use_compress = 0;
127
128 if (compressed_size && compressed_pages) {
129 use_compress = 1;
130 cur_size = compressed_size;
131 }
132
d397712b
CM
133 path = btrfs_alloc_path();
134 if (!path)
c8b97818
CM
135 return -ENOMEM;
136
b9473439 137 path->leave_spinning = 1;
c8b97818
CM
138 btrfs_set_trans_block_group(trans, inode);
139
140 key.objectid = inode->i_ino;
141 key.offset = start;
142 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
143 datasize = btrfs_file_extent_calc_inline_size(cur_size);
144
145 inode_add_bytes(inode, size);
146 ret = btrfs_insert_empty_item(trans, root, path, &key,
147 datasize);
148 BUG_ON(ret);
149 if (ret) {
150 err = ret;
c8b97818
CM
151 goto fail;
152 }
153 leaf = path->nodes[0];
154 ei = btrfs_item_ptr(leaf, path->slots[0],
155 struct btrfs_file_extent_item);
156 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
157 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
158 btrfs_set_file_extent_encryption(leaf, ei, 0);
159 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
160 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
161 ptr = btrfs_file_extent_inline_start(ei);
162
163 if (use_compress) {
164 struct page *cpage;
165 int i = 0;
d397712b 166 while (compressed_size > 0) {
c8b97818 167 cpage = compressed_pages[i];
5b050f04 168 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
169 PAGE_CACHE_SIZE);
170
b9473439 171 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 172 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 173 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
174
175 i++;
176 ptr += cur_size;
177 compressed_size -= cur_size;
178 }
179 btrfs_set_file_extent_compression(leaf, ei,
180 BTRFS_COMPRESS_ZLIB);
181 } else {
182 page = find_get_page(inode->i_mapping,
183 start >> PAGE_CACHE_SHIFT);
184 btrfs_set_file_extent_compression(leaf, ei, 0);
185 kaddr = kmap_atomic(page, KM_USER0);
186 offset = start & (PAGE_CACHE_SIZE - 1);
187 write_extent_buffer(leaf, kaddr + offset, ptr, size);
188 kunmap_atomic(kaddr, KM_USER0);
189 page_cache_release(page);
190 }
191 btrfs_mark_buffer_dirty(leaf);
192 btrfs_free_path(path);
193
c2167754
YZ
194 /*
195 * we're an inline extent, so nobody can
196 * extend the file past i_size without locking
197 * a page we already have locked.
198 *
199 * We must do any isize and inode updates
200 * before we unlock the pages. Otherwise we
201 * could end up racing with unlink.
202 */
c8b97818
CM
203 BTRFS_I(inode)->disk_i_size = inode->i_size;
204 btrfs_update_inode(trans, root, inode);
c2167754 205
c8b97818
CM
206 return 0;
207fail:
208 btrfs_free_path(path);
209 return err;
210}
211
212
213/*
214 * conditionally insert an inline extent into the file. This
215 * does the checks required to make sure the data is small enough
216 * to fit as an inline extent.
217 */
7f366cfe 218static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
219 struct btrfs_root *root,
220 struct inode *inode, u64 start, u64 end,
221 size_t compressed_size,
222 struct page **compressed_pages)
223{
224 u64 isize = i_size_read(inode);
225 u64 actual_end = min(end + 1, isize);
226 u64 inline_len = actual_end - start;
227 u64 aligned_end = (end + root->sectorsize - 1) &
228 ~((u64)root->sectorsize - 1);
229 u64 hint_byte;
230 u64 data_len = inline_len;
231 int ret;
232
233 if (compressed_size)
234 data_len = compressed_size;
235
236 if (start > 0 ||
70b99e69 237 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
238 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
239 (!compressed_size &&
240 (actual_end & (root->sectorsize - 1)) == 0) ||
241 end + 1 < isize ||
242 data_len > root->fs_info->max_inline) {
243 return 1;
244 }
245
920bbbfb 246 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 247 &hint_byte, 1);
c8b97818
CM
248 BUG_ON(ret);
249
250 if (isize > actual_end)
251 inline_len = min_t(u64, isize, actual_end);
252 ret = insert_inline_extent(trans, root, inode, start,
253 inline_len, compressed_size,
254 compressed_pages);
255 BUG_ON(ret);
0ca1f7ce 256 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 257 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
258 return 0;
259}
260
771ed689
CM
261struct async_extent {
262 u64 start;
263 u64 ram_size;
264 u64 compressed_size;
265 struct page **pages;
266 unsigned long nr_pages;
267 struct list_head list;
268};
269
270struct async_cow {
271 struct inode *inode;
272 struct btrfs_root *root;
273 struct page *locked_page;
274 u64 start;
275 u64 end;
276 struct list_head extents;
277 struct btrfs_work work;
278};
279
280static noinline int add_async_extent(struct async_cow *cow,
281 u64 start, u64 ram_size,
282 u64 compressed_size,
283 struct page **pages,
284 unsigned long nr_pages)
285{
286 struct async_extent *async_extent;
287
288 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
289 async_extent->start = start;
290 async_extent->ram_size = ram_size;
291 async_extent->compressed_size = compressed_size;
292 async_extent->pages = pages;
293 async_extent->nr_pages = nr_pages;
294 list_add_tail(&async_extent->list, &cow->extents);
295 return 0;
296}
297
d352ac68 298/*
771ed689
CM
299 * we create compressed extents in two phases. The first
300 * phase compresses a range of pages that have already been
301 * locked (both pages and state bits are locked).
c8b97818 302 *
771ed689
CM
303 * This is done inside an ordered work queue, and the compression
304 * is spread across many cpus. The actual IO submission is step
305 * two, and the ordered work queue takes care of making sure that
306 * happens in the same order things were put onto the queue by
307 * writepages and friends.
c8b97818 308 *
771ed689
CM
309 * If this code finds it can't get good compression, it puts an
310 * entry onto the work queue to write the uncompressed bytes. This
311 * makes sure that both compressed inodes and uncompressed inodes
312 * are written in the same order that pdflush sent them down.
d352ac68 313 */
771ed689
CM
314static noinline int compress_file_range(struct inode *inode,
315 struct page *locked_page,
316 u64 start, u64 end,
317 struct async_cow *async_cow,
318 int *num_added)
b888db2b
CM
319{
320 struct btrfs_root *root = BTRFS_I(inode)->root;
321 struct btrfs_trans_handle *trans;
db94535d 322 u64 num_bytes;
db94535d 323 u64 blocksize = root->sectorsize;
c8b97818 324 u64 actual_end;
42dc7bab 325 u64 isize = i_size_read(inode);
e6dcd2dc 326 int ret = 0;
c8b97818
CM
327 struct page **pages = NULL;
328 unsigned long nr_pages;
329 unsigned long nr_pages_ret = 0;
330 unsigned long total_compressed = 0;
331 unsigned long total_in = 0;
332 unsigned long max_compressed = 128 * 1024;
771ed689 333 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
334 int i;
335 int will_compress;
b888db2b 336
42dc7bab 337 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
338again:
339 will_compress = 0;
340 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
341 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 342
f03d9301
CM
343 /*
344 * we don't want to send crud past the end of i_size through
345 * compression, that's just a waste of CPU time. So, if the
346 * end of the file is before the start of our current
347 * requested range of bytes, we bail out to the uncompressed
348 * cleanup code that can deal with all of this.
349 *
350 * It isn't really the fastest way to fix things, but this is a
351 * very uncommon corner.
352 */
353 if (actual_end <= start)
354 goto cleanup_and_bail_uncompressed;
355
c8b97818
CM
356 total_compressed = actual_end - start;
357
358 /* we want to make sure that amount of ram required to uncompress
359 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
360 * of a compressed extent to 128k. This is a crucial number
361 * because it also controls how easily we can spread reads across
362 * cpus for decompression.
363 *
364 * We also want to make sure the amount of IO required to do
365 * a random read is reasonably small, so we limit the size of
366 * a compressed extent to 128k.
c8b97818
CM
367 */
368 total_compressed = min(total_compressed, max_uncompressed);
db94535d 369 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 370 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
371 total_in = 0;
372 ret = 0;
db94535d 373
771ed689
CM
374 /*
375 * we do compression for mount -o compress and when the
376 * inode has not been flagged as nocompress. This flag can
377 * change at any time if we discover bad compression ratios.
c8b97818 378 */
6cbff00f 379 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32
CM
380 (btrfs_test_opt(root, COMPRESS) ||
381 (BTRFS_I(inode)->force_compress))) {
c8b97818 382 WARN_ON(pages);
cfbc246e 383 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 384
c8b97818
CM
385 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
386 total_compressed, pages,
387 nr_pages, &nr_pages_ret,
388 &total_in,
389 &total_compressed,
390 max_compressed);
391
392 if (!ret) {
393 unsigned long offset = total_compressed &
394 (PAGE_CACHE_SIZE - 1);
395 struct page *page = pages[nr_pages_ret - 1];
396 char *kaddr;
397
398 /* zero the tail end of the last page, we might be
399 * sending it down to disk
400 */
401 if (offset) {
402 kaddr = kmap_atomic(page, KM_USER0);
403 memset(kaddr + offset, 0,
404 PAGE_CACHE_SIZE - offset);
405 kunmap_atomic(kaddr, KM_USER0);
406 }
407 will_compress = 1;
408 }
409 }
410 if (start == 0) {
771ed689
CM
411 trans = btrfs_join_transaction(root, 1);
412 BUG_ON(!trans);
413 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 414 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 415
c8b97818 416 /* lets try to make an inline extent */
771ed689 417 if (ret || total_in < (actual_end - start)) {
c8b97818 418 /* we didn't compress the entire range, try
771ed689 419 * to make an uncompressed inline extent.
c8b97818
CM
420 */
421 ret = cow_file_range_inline(trans, root, inode,
422 start, end, 0, NULL);
423 } else {
771ed689 424 /* try making a compressed inline extent */
c8b97818
CM
425 ret = cow_file_range_inline(trans, root, inode,
426 start, end,
427 total_compressed, pages);
428 }
429 if (ret == 0) {
771ed689
CM
430 /*
431 * inline extent creation worked, we don't need
432 * to create any more async work items. Unlock
433 * and free up our temp pages.
434 */
c8b97818 435 extent_clear_unlock_delalloc(inode,
a791e35e
CM
436 &BTRFS_I(inode)->io_tree,
437 start, end, NULL,
438 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 439 EXTENT_CLEAR_DELALLOC |
a791e35e 440 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
441
442 btrfs_end_transaction(trans, root);
c8b97818
CM
443 goto free_pages_out;
444 }
c2167754 445 btrfs_end_transaction(trans, root);
c8b97818
CM
446 }
447
448 if (will_compress) {
449 /*
450 * we aren't doing an inline extent round the compressed size
451 * up to a block size boundary so the allocator does sane
452 * things
453 */
454 total_compressed = (total_compressed + blocksize - 1) &
455 ~(blocksize - 1);
456
457 /*
458 * one last check to make sure the compression is really a
459 * win, compare the page count read with the blocks on disk
460 */
461 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
462 ~(PAGE_CACHE_SIZE - 1);
463 if (total_compressed >= total_in) {
464 will_compress = 0;
465 } else {
c8b97818
CM
466 num_bytes = total_in;
467 }
468 }
469 if (!will_compress && pages) {
470 /*
471 * the compression code ran but failed to make things smaller,
472 * free any pages it allocated and our page pointer array
473 */
474 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 475 WARN_ON(pages[i]->mapping);
c8b97818
CM
476 page_cache_release(pages[i]);
477 }
478 kfree(pages);
479 pages = NULL;
480 total_compressed = 0;
481 nr_pages_ret = 0;
482
483 /* flag the file so we don't compress in the future */
1e701a32
CM
484 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
485 !(BTRFS_I(inode)->force_compress)) {
a555f810 486 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 487 }
c8b97818 488 }
771ed689
CM
489 if (will_compress) {
490 *num_added += 1;
c8b97818 491
771ed689
CM
492 /* the async work queues will take care of doing actual
493 * allocation on disk for these compressed pages,
494 * and will submit them to the elevator.
495 */
496 add_async_extent(async_cow, start, num_bytes,
497 total_compressed, pages, nr_pages_ret);
179e29e4 498
24ae6365 499 if (start + num_bytes < end) {
771ed689
CM
500 start += num_bytes;
501 pages = NULL;
502 cond_resched();
503 goto again;
504 }
505 } else {
f03d9301 506cleanup_and_bail_uncompressed:
771ed689
CM
507 /*
508 * No compression, but we still need to write the pages in
509 * the file we've been given so far. redirty the locked
510 * page if it corresponds to our extent and set things up
511 * for the async work queue to run cow_file_range to do
512 * the normal delalloc dance
513 */
514 if (page_offset(locked_page) >= start &&
515 page_offset(locked_page) <= end) {
516 __set_page_dirty_nobuffers(locked_page);
517 /* unlocked later on in the async handlers */
518 }
519 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
520 *num_added += 1;
521 }
3b951516 522
771ed689
CM
523out:
524 return 0;
525
526free_pages_out:
527 for (i = 0; i < nr_pages_ret; i++) {
528 WARN_ON(pages[i]->mapping);
529 page_cache_release(pages[i]);
530 }
d397712b 531 kfree(pages);
771ed689
CM
532
533 goto out;
534}
535
536/*
537 * phase two of compressed writeback. This is the ordered portion
538 * of the code, which only gets called in the order the work was
539 * queued. We walk all the async extents created by compress_file_range
540 * and send them down to the disk.
541 */
542static noinline int submit_compressed_extents(struct inode *inode,
543 struct async_cow *async_cow)
544{
545 struct async_extent *async_extent;
546 u64 alloc_hint = 0;
547 struct btrfs_trans_handle *trans;
548 struct btrfs_key ins;
549 struct extent_map *em;
550 struct btrfs_root *root = BTRFS_I(inode)->root;
551 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
552 struct extent_io_tree *io_tree;
f5a84ee3 553 int ret = 0;
771ed689
CM
554
555 if (list_empty(&async_cow->extents))
556 return 0;
557
771ed689 558
d397712b 559 while (!list_empty(&async_cow->extents)) {
771ed689
CM
560 async_extent = list_entry(async_cow->extents.next,
561 struct async_extent, list);
562 list_del(&async_extent->list);
c8b97818 563
771ed689
CM
564 io_tree = &BTRFS_I(inode)->io_tree;
565
f5a84ee3 566retry:
771ed689
CM
567 /* did the compression code fall back to uncompressed IO? */
568 if (!async_extent->pages) {
569 int page_started = 0;
570 unsigned long nr_written = 0;
571
572 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
573 async_extent->start +
574 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
575
576 /* allocate blocks */
f5a84ee3
JB
577 ret = cow_file_range(inode, async_cow->locked_page,
578 async_extent->start,
579 async_extent->start +
580 async_extent->ram_size - 1,
581 &page_started, &nr_written, 0);
771ed689
CM
582
583 /*
584 * if page_started, cow_file_range inserted an
585 * inline extent and took care of all the unlocking
586 * and IO for us. Otherwise, we need to submit
587 * all those pages down to the drive.
588 */
f5a84ee3 589 if (!page_started && !ret)
771ed689
CM
590 extent_write_locked_range(io_tree,
591 inode, async_extent->start,
d397712b 592 async_extent->start +
771ed689
CM
593 async_extent->ram_size - 1,
594 btrfs_get_extent,
595 WB_SYNC_ALL);
596 kfree(async_extent);
597 cond_resched();
598 continue;
599 }
600
601 lock_extent(io_tree, async_extent->start,
602 async_extent->start + async_extent->ram_size - 1,
603 GFP_NOFS);
771ed689 604
c2167754 605 trans = btrfs_join_transaction(root, 1);
771ed689
CM
606 ret = btrfs_reserve_extent(trans, root,
607 async_extent->compressed_size,
608 async_extent->compressed_size,
609 0, alloc_hint,
610 (u64)-1, &ins, 1);
c2167754
YZ
611 btrfs_end_transaction(trans, root);
612
f5a84ee3
JB
613 if (ret) {
614 int i;
615 for (i = 0; i < async_extent->nr_pages; i++) {
616 WARN_ON(async_extent->pages[i]->mapping);
617 page_cache_release(async_extent->pages[i]);
618 }
619 kfree(async_extent->pages);
620 async_extent->nr_pages = 0;
621 async_extent->pages = NULL;
622 unlock_extent(io_tree, async_extent->start,
623 async_extent->start +
624 async_extent->ram_size - 1, GFP_NOFS);
625 goto retry;
626 }
627
c2167754
YZ
628 /*
629 * here we're doing allocation and writeback of the
630 * compressed pages
631 */
632 btrfs_drop_extent_cache(inode, async_extent->start,
633 async_extent->start +
634 async_extent->ram_size - 1, 0);
635
771ed689
CM
636 em = alloc_extent_map(GFP_NOFS);
637 em->start = async_extent->start;
638 em->len = async_extent->ram_size;
445a6944 639 em->orig_start = em->start;
c8b97818 640
771ed689
CM
641 em->block_start = ins.objectid;
642 em->block_len = ins.offset;
643 em->bdev = root->fs_info->fs_devices->latest_bdev;
644 set_bit(EXTENT_FLAG_PINNED, &em->flags);
645 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
646
d397712b 647 while (1) {
890871be 648 write_lock(&em_tree->lock);
771ed689 649 ret = add_extent_mapping(em_tree, em);
890871be 650 write_unlock(&em_tree->lock);
771ed689
CM
651 if (ret != -EEXIST) {
652 free_extent_map(em);
653 break;
654 }
655 btrfs_drop_extent_cache(inode, async_extent->start,
656 async_extent->start +
657 async_extent->ram_size - 1, 0);
658 }
659
660 ret = btrfs_add_ordered_extent(inode, async_extent->start,
661 ins.objectid,
662 async_extent->ram_size,
663 ins.offset,
664 BTRFS_ORDERED_COMPRESSED);
665 BUG_ON(ret);
666
771ed689
CM
667 /*
668 * clear dirty, set writeback and unlock the pages.
669 */
670 extent_clear_unlock_delalloc(inode,
a791e35e
CM
671 &BTRFS_I(inode)->io_tree,
672 async_extent->start,
673 async_extent->start +
674 async_extent->ram_size - 1,
675 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
676 EXTENT_CLEAR_UNLOCK |
a3429ab7 677 EXTENT_CLEAR_DELALLOC |
a791e35e 678 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
679
680 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
681 async_extent->start,
682 async_extent->ram_size,
683 ins.objectid,
684 ins.offset, async_extent->pages,
685 async_extent->nr_pages);
771ed689
CM
686
687 BUG_ON(ret);
771ed689
CM
688 alloc_hint = ins.objectid + ins.offset;
689 kfree(async_extent);
690 cond_resched();
691 }
692
771ed689
CM
693 return 0;
694}
695
4b46fce2
JB
696static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
697 u64 num_bytes)
698{
699 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
700 struct extent_map *em;
701 u64 alloc_hint = 0;
702
703 read_lock(&em_tree->lock);
704 em = search_extent_mapping(em_tree, start, num_bytes);
705 if (em) {
706 /*
707 * if block start isn't an actual block number then find the
708 * first block in this inode and use that as a hint. If that
709 * block is also bogus then just don't worry about it.
710 */
711 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
712 free_extent_map(em);
713 em = search_extent_mapping(em_tree, 0, 0);
714 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
715 alloc_hint = em->block_start;
716 if (em)
717 free_extent_map(em);
718 } else {
719 alloc_hint = em->block_start;
720 free_extent_map(em);
721 }
722 }
723 read_unlock(&em_tree->lock);
724
725 return alloc_hint;
726}
727
771ed689
CM
728/*
729 * when extent_io.c finds a delayed allocation range in the file,
730 * the call backs end up in this code. The basic idea is to
731 * allocate extents on disk for the range, and create ordered data structs
732 * in ram to track those extents.
733 *
734 * locked_page is the page that writepage had locked already. We use
735 * it to make sure we don't do extra locks or unlocks.
736 *
737 * *page_started is set to one if we unlock locked_page and do everything
738 * required to start IO on it. It may be clean and already done with
739 * IO when we return.
740 */
741static noinline int cow_file_range(struct inode *inode,
742 struct page *locked_page,
743 u64 start, u64 end, int *page_started,
744 unsigned long *nr_written,
745 int unlock)
746{
747 struct btrfs_root *root = BTRFS_I(inode)->root;
748 struct btrfs_trans_handle *trans;
749 u64 alloc_hint = 0;
750 u64 num_bytes;
751 unsigned long ram_size;
752 u64 disk_num_bytes;
753 u64 cur_alloc_size;
754 u64 blocksize = root->sectorsize;
771ed689
CM
755 struct btrfs_key ins;
756 struct extent_map *em;
757 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
758 int ret = 0;
759
0cb59c99 760 BUG_ON(root == root->fs_info->tree_root);
771ed689
CM
761 trans = btrfs_join_transaction(root, 1);
762 BUG_ON(!trans);
763 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 764 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 765
771ed689
CM
766 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
767 num_bytes = max(blocksize, num_bytes);
768 disk_num_bytes = num_bytes;
769 ret = 0;
770
771 if (start == 0) {
772 /* lets try to make an inline extent */
773 ret = cow_file_range_inline(trans, root, inode,
774 start, end, 0, NULL);
775 if (ret == 0) {
776 extent_clear_unlock_delalloc(inode,
a791e35e
CM
777 &BTRFS_I(inode)->io_tree,
778 start, end, NULL,
779 EXTENT_CLEAR_UNLOCK_PAGE |
780 EXTENT_CLEAR_UNLOCK |
781 EXTENT_CLEAR_DELALLOC |
782 EXTENT_CLEAR_DIRTY |
783 EXTENT_SET_WRITEBACK |
784 EXTENT_END_WRITEBACK);
c2167754 785
771ed689
CM
786 *nr_written = *nr_written +
787 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
788 *page_started = 1;
789 ret = 0;
790 goto out;
791 }
792 }
793
794 BUG_ON(disk_num_bytes >
795 btrfs_super_total_bytes(&root->fs_info->super_copy));
796
4b46fce2 797 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
798 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
799
d397712b 800 while (disk_num_bytes > 0) {
a791e35e
CM
801 unsigned long op;
802
287a0ab9 803 cur_alloc_size = disk_num_bytes;
e6dcd2dc 804 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 805 root->sectorsize, 0, alloc_hint,
e6dcd2dc 806 (u64)-1, &ins, 1);
d397712b
CM
807 BUG_ON(ret);
808
e6dcd2dc
CM
809 em = alloc_extent_map(GFP_NOFS);
810 em->start = start;
445a6944 811 em->orig_start = em->start;
771ed689
CM
812 ram_size = ins.offset;
813 em->len = ins.offset;
c8b97818 814
e6dcd2dc 815 em->block_start = ins.objectid;
c8b97818 816 em->block_len = ins.offset;
e6dcd2dc 817 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 818 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 819
d397712b 820 while (1) {
890871be 821 write_lock(&em_tree->lock);
e6dcd2dc 822 ret = add_extent_mapping(em_tree, em);
890871be 823 write_unlock(&em_tree->lock);
e6dcd2dc
CM
824 if (ret != -EEXIST) {
825 free_extent_map(em);
826 break;
827 }
828 btrfs_drop_extent_cache(inode, start,
c8b97818 829 start + ram_size - 1, 0);
e6dcd2dc
CM
830 }
831
98d20f67 832 cur_alloc_size = ins.offset;
e6dcd2dc 833 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 834 ram_size, cur_alloc_size, 0);
e6dcd2dc 835 BUG_ON(ret);
c8b97818 836
17d217fe
YZ
837 if (root->root_key.objectid ==
838 BTRFS_DATA_RELOC_TREE_OBJECTID) {
839 ret = btrfs_reloc_clone_csums(inode, start,
840 cur_alloc_size);
841 BUG_ON(ret);
842 }
843
d397712b 844 if (disk_num_bytes < cur_alloc_size)
3b951516 845 break;
d397712b 846
c8b97818
CM
847 /* we're not doing compressed IO, don't unlock the first
848 * page (which the caller expects to stay locked), don't
849 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
850 *
851 * Do set the Private2 bit so we know this page was properly
852 * setup for writepage
c8b97818 853 */
a791e35e
CM
854 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
855 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
856 EXTENT_SET_PRIVATE2;
857
c8b97818
CM
858 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
859 start, start + ram_size - 1,
a791e35e 860 locked_page, op);
c8b97818 861 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
862 num_bytes -= cur_alloc_size;
863 alloc_hint = ins.objectid + ins.offset;
864 start += cur_alloc_size;
b888db2b 865 }
b888db2b 866out:
771ed689 867 ret = 0;
b888db2b 868 btrfs_end_transaction(trans, root);
c8b97818 869
be20aa9d 870 return ret;
771ed689 871}
c8b97818 872
771ed689
CM
873/*
874 * work queue call back to started compression on a file and pages
875 */
876static noinline void async_cow_start(struct btrfs_work *work)
877{
878 struct async_cow *async_cow;
879 int num_added = 0;
880 async_cow = container_of(work, struct async_cow, work);
881
882 compress_file_range(async_cow->inode, async_cow->locked_page,
883 async_cow->start, async_cow->end, async_cow,
884 &num_added);
885 if (num_added == 0)
886 async_cow->inode = NULL;
887}
888
889/*
890 * work queue call back to submit previously compressed pages
891 */
892static noinline void async_cow_submit(struct btrfs_work *work)
893{
894 struct async_cow *async_cow;
895 struct btrfs_root *root;
896 unsigned long nr_pages;
897
898 async_cow = container_of(work, struct async_cow, work);
899
900 root = async_cow->root;
901 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
902 PAGE_CACHE_SHIFT;
903
904 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
905
906 if (atomic_read(&root->fs_info->async_delalloc_pages) <
907 5 * 1042 * 1024 &&
908 waitqueue_active(&root->fs_info->async_submit_wait))
909 wake_up(&root->fs_info->async_submit_wait);
910
d397712b 911 if (async_cow->inode)
771ed689 912 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 913}
c8b97818 914
771ed689
CM
915static noinline void async_cow_free(struct btrfs_work *work)
916{
917 struct async_cow *async_cow;
918 async_cow = container_of(work, struct async_cow, work);
919 kfree(async_cow);
920}
921
922static int cow_file_range_async(struct inode *inode, struct page *locked_page,
923 u64 start, u64 end, int *page_started,
924 unsigned long *nr_written)
925{
926 struct async_cow *async_cow;
927 struct btrfs_root *root = BTRFS_I(inode)->root;
928 unsigned long nr_pages;
929 u64 cur_end;
930 int limit = 10 * 1024 * 1042;
931
a3429ab7
CM
932 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
933 1, 0, NULL, GFP_NOFS);
d397712b 934 while (start < end) {
771ed689
CM
935 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
936 async_cow->inode = inode;
937 async_cow->root = root;
938 async_cow->locked_page = locked_page;
939 async_cow->start = start;
940
6cbff00f 941 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
942 cur_end = end;
943 else
944 cur_end = min(end, start + 512 * 1024 - 1);
945
946 async_cow->end = cur_end;
947 INIT_LIST_HEAD(&async_cow->extents);
948
949 async_cow->work.func = async_cow_start;
950 async_cow->work.ordered_func = async_cow_submit;
951 async_cow->work.ordered_free = async_cow_free;
952 async_cow->work.flags = 0;
953
771ed689
CM
954 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
955 PAGE_CACHE_SHIFT;
956 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
957
958 btrfs_queue_worker(&root->fs_info->delalloc_workers,
959 &async_cow->work);
960
961 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
962 wait_event(root->fs_info->async_submit_wait,
963 (atomic_read(&root->fs_info->async_delalloc_pages) <
964 limit));
965 }
966
d397712b 967 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
968 atomic_read(&root->fs_info->async_delalloc_pages)) {
969 wait_event(root->fs_info->async_submit_wait,
970 (atomic_read(&root->fs_info->async_delalloc_pages) ==
971 0));
972 }
973
974 *nr_written += nr_pages;
975 start = cur_end + 1;
976 }
977 *page_started = 1;
978 return 0;
be20aa9d
CM
979}
980
d397712b 981static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
982 u64 bytenr, u64 num_bytes)
983{
984 int ret;
985 struct btrfs_ordered_sum *sums;
986 LIST_HEAD(list);
987
07d400a6
YZ
988 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
989 bytenr + num_bytes - 1, &list);
17d217fe
YZ
990 if (ret == 0 && list_empty(&list))
991 return 0;
992
993 while (!list_empty(&list)) {
994 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
995 list_del(&sums->list);
996 kfree(sums);
997 }
998 return 1;
999}
1000
d352ac68
CM
1001/*
1002 * when nowcow writeback call back. This checks for snapshots or COW copies
1003 * of the extents that exist in the file, and COWs the file as required.
1004 *
1005 * If no cow copies or snapshots exist, we write directly to the existing
1006 * blocks on disk
1007 */
7f366cfe
CM
1008static noinline int run_delalloc_nocow(struct inode *inode,
1009 struct page *locked_page,
771ed689
CM
1010 u64 start, u64 end, int *page_started, int force,
1011 unsigned long *nr_written)
be20aa9d 1012{
be20aa9d 1013 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1014 struct btrfs_trans_handle *trans;
be20aa9d 1015 struct extent_buffer *leaf;
be20aa9d 1016 struct btrfs_path *path;
80ff3856 1017 struct btrfs_file_extent_item *fi;
be20aa9d 1018 struct btrfs_key found_key;
80ff3856
YZ
1019 u64 cow_start;
1020 u64 cur_offset;
1021 u64 extent_end;
5d4f98a2 1022 u64 extent_offset;
80ff3856
YZ
1023 u64 disk_bytenr;
1024 u64 num_bytes;
1025 int extent_type;
1026 int ret;
d899e052 1027 int type;
80ff3856
YZ
1028 int nocow;
1029 int check_prev = 1;
0cb59c99 1030 bool nolock = false;
be20aa9d
CM
1031
1032 path = btrfs_alloc_path();
1033 BUG_ON(!path);
0cb59c99
JB
1034 if (root == root->fs_info->tree_root) {
1035 nolock = true;
1036 trans = btrfs_join_transaction_nolock(root, 1);
1037 } else {
1038 trans = btrfs_join_transaction(root, 1);
1039 }
7ea394f1 1040 BUG_ON(!trans);
be20aa9d 1041
80ff3856
YZ
1042 cow_start = (u64)-1;
1043 cur_offset = start;
1044 while (1) {
1045 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1046 cur_offset, 0);
1047 BUG_ON(ret < 0);
1048 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1049 leaf = path->nodes[0];
1050 btrfs_item_key_to_cpu(leaf, &found_key,
1051 path->slots[0] - 1);
1052 if (found_key.objectid == inode->i_ino &&
1053 found_key.type == BTRFS_EXTENT_DATA_KEY)
1054 path->slots[0]--;
1055 }
1056 check_prev = 0;
1057next_slot:
1058 leaf = path->nodes[0];
1059 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1060 ret = btrfs_next_leaf(root, path);
1061 if (ret < 0)
1062 BUG_ON(1);
1063 if (ret > 0)
1064 break;
1065 leaf = path->nodes[0];
1066 }
be20aa9d 1067
80ff3856
YZ
1068 nocow = 0;
1069 disk_bytenr = 0;
17d217fe 1070 num_bytes = 0;
80ff3856
YZ
1071 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1072
1073 if (found_key.objectid > inode->i_ino ||
1074 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1075 found_key.offset > end)
1076 break;
1077
1078 if (found_key.offset > cur_offset) {
1079 extent_end = found_key.offset;
e9061e21 1080 extent_type = 0;
80ff3856
YZ
1081 goto out_check;
1082 }
1083
1084 fi = btrfs_item_ptr(leaf, path->slots[0],
1085 struct btrfs_file_extent_item);
1086 extent_type = btrfs_file_extent_type(leaf, fi);
1087
d899e052
YZ
1088 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1089 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1090 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1091 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1092 extent_end = found_key.offset +
1093 btrfs_file_extent_num_bytes(leaf, fi);
1094 if (extent_end <= start) {
1095 path->slots[0]++;
1096 goto next_slot;
1097 }
17d217fe
YZ
1098 if (disk_bytenr == 0)
1099 goto out_check;
80ff3856
YZ
1100 if (btrfs_file_extent_compression(leaf, fi) ||
1101 btrfs_file_extent_encryption(leaf, fi) ||
1102 btrfs_file_extent_other_encoding(leaf, fi))
1103 goto out_check;
d899e052
YZ
1104 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1105 goto out_check;
d2fb3437 1106 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1107 goto out_check;
17d217fe 1108 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1109 found_key.offset -
1110 extent_offset, disk_bytenr))
17d217fe 1111 goto out_check;
5d4f98a2 1112 disk_bytenr += extent_offset;
17d217fe
YZ
1113 disk_bytenr += cur_offset - found_key.offset;
1114 num_bytes = min(end + 1, extent_end) - cur_offset;
1115 /*
1116 * force cow if csum exists in the range.
1117 * this ensure that csum for a given extent are
1118 * either valid or do not exist.
1119 */
1120 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1121 goto out_check;
80ff3856
YZ
1122 nocow = 1;
1123 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1124 extent_end = found_key.offset +
1125 btrfs_file_extent_inline_len(leaf, fi);
1126 extent_end = ALIGN(extent_end, root->sectorsize);
1127 } else {
1128 BUG_ON(1);
1129 }
1130out_check:
1131 if (extent_end <= start) {
1132 path->slots[0]++;
1133 goto next_slot;
1134 }
1135 if (!nocow) {
1136 if (cow_start == (u64)-1)
1137 cow_start = cur_offset;
1138 cur_offset = extent_end;
1139 if (cur_offset > end)
1140 break;
1141 path->slots[0]++;
1142 goto next_slot;
7ea394f1
YZ
1143 }
1144
1145 btrfs_release_path(root, path);
80ff3856
YZ
1146 if (cow_start != (u64)-1) {
1147 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1148 found_key.offset - 1, page_started,
1149 nr_written, 1);
80ff3856
YZ
1150 BUG_ON(ret);
1151 cow_start = (u64)-1;
7ea394f1 1152 }
80ff3856 1153
d899e052
YZ
1154 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1155 struct extent_map *em;
1156 struct extent_map_tree *em_tree;
1157 em_tree = &BTRFS_I(inode)->extent_tree;
1158 em = alloc_extent_map(GFP_NOFS);
1159 em->start = cur_offset;
445a6944 1160 em->orig_start = em->start;
d899e052
YZ
1161 em->len = num_bytes;
1162 em->block_len = num_bytes;
1163 em->block_start = disk_bytenr;
1164 em->bdev = root->fs_info->fs_devices->latest_bdev;
1165 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1166 while (1) {
890871be 1167 write_lock(&em_tree->lock);
d899e052 1168 ret = add_extent_mapping(em_tree, em);
890871be 1169 write_unlock(&em_tree->lock);
d899e052
YZ
1170 if (ret != -EEXIST) {
1171 free_extent_map(em);
1172 break;
1173 }
1174 btrfs_drop_extent_cache(inode, em->start,
1175 em->start + em->len - 1, 0);
1176 }
1177 type = BTRFS_ORDERED_PREALLOC;
1178 } else {
1179 type = BTRFS_ORDERED_NOCOW;
1180 }
80ff3856
YZ
1181
1182 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1183 num_bytes, num_bytes, type);
1184 BUG_ON(ret);
771ed689 1185
efa56464
YZ
1186 if (root->root_key.objectid ==
1187 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1188 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1189 num_bytes);
1190 BUG_ON(ret);
1191 }
1192
d899e052 1193 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1194 cur_offset, cur_offset + num_bytes - 1,
1195 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1196 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1197 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1198 cur_offset = extent_end;
1199 if (cur_offset > end)
1200 break;
be20aa9d 1201 }
80ff3856
YZ
1202 btrfs_release_path(root, path);
1203
1204 if (cur_offset <= end && cow_start == (u64)-1)
1205 cow_start = cur_offset;
1206 if (cow_start != (u64)-1) {
1207 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1208 page_started, nr_written, 1);
80ff3856
YZ
1209 BUG_ON(ret);
1210 }
1211
0cb59c99
JB
1212 if (nolock) {
1213 ret = btrfs_end_transaction_nolock(trans, root);
1214 BUG_ON(ret);
1215 } else {
1216 ret = btrfs_end_transaction(trans, root);
1217 BUG_ON(ret);
1218 }
7ea394f1 1219 btrfs_free_path(path);
80ff3856 1220 return 0;
be20aa9d
CM
1221}
1222
d352ac68
CM
1223/*
1224 * extent_io.c call back to do delayed allocation processing
1225 */
c8b97818 1226static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1227 u64 start, u64 end, int *page_started,
1228 unsigned long *nr_written)
be20aa9d 1229{
be20aa9d 1230 int ret;
7f366cfe 1231 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1232
6cbff00f 1233 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1234 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1235 page_started, 1, nr_written);
6cbff00f 1236 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1237 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1238 page_started, 0, nr_written);
1e701a32
CM
1239 else if (!btrfs_test_opt(root, COMPRESS) &&
1240 !(BTRFS_I(inode)->force_compress))
7f366cfe
CM
1241 ret = cow_file_range(inode, locked_page, start, end,
1242 page_started, nr_written, 1);
be20aa9d 1243 else
771ed689 1244 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1245 page_started, nr_written);
b888db2b
CM
1246 return ret;
1247}
1248
9ed74f2d 1249static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1250 struct extent_state *orig, u64 split)
9ed74f2d 1251{
0ca1f7ce 1252 /* not delalloc, ignore it */
9ed74f2d
JB
1253 if (!(orig->state & EXTENT_DELALLOC))
1254 return 0;
1255
0ca1f7ce 1256 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1257 return 0;
1258}
1259
1260/*
1261 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1262 * extents so we can keep track of new extents that are just merged onto old
1263 * extents, such as when we are doing sequential writes, so we can properly
1264 * account for the metadata space we'll need.
1265 */
1266static int btrfs_merge_extent_hook(struct inode *inode,
1267 struct extent_state *new,
1268 struct extent_state *other)
1269{
9ed74f2d
JB
1270 /* not delalloc, ignore it */
1271 if (!(other->state & EXTENT_DELALLOC))
1272 return 0;
1273
0ca1f7ce 1274 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1275 return 0;
1276}
1277
d352ac68
CM
1278/*
1279 * extent_io.c set_bit_hook, used to track delayed allocation
1280 * bytes in this file, and to maintain the list of inodes that
1281 * have pending delalloc work to be done.
1282 */
0ca1f7ce
YZ
1283static int btrfs_set_bit_hook(struct inode *inode,
1284 struct extent_state *state, int *bits)
291d673e 1285{
9ed74f2d 1286
75eff68e
CM
1287 /*
1288 * set_bit and clear bit hooks normally require _irqsave/restore
1289 * but in this case, we are only testeing for the DELALLOC
1290 * bit, which is only set or cleared with irqs on
1291 */
0ca1f7ce 1292 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1293 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1294 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1295 int do_list = (root->root_key.objectid !=
1296 BTRFS_ROOT_TREE_OBJECTID);
9ed74f2d 1297
0ca1f7ce
YZ
1298 if (*bits & EXTENT_FIRST_DELALLOC)
1299 *bits &= ~EXTENT_FIRST_DELALLOC;
1300 else
1301 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1302
75eff68e 1303 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1304 BTRFS_I(inode)->delalloc_bytes += len;
1305 root->fs_info->delalloc_bytes += len;
0cb59c99 1306 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1307 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1308 &root->fs_info->delalloc_inodes);
1309 }
75eff68e 1310 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1311 }
1312 return 0;
1313}
1314
d352ac68
CM
1315/*
1316 * extent_io.c clear_bit_hook, see set_bit_hook for why
1317 */
9ed74f2d 1318static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1319 struct extent_state *state, int *bits)
291d673e 1320{
75eff68e
CM
1321 /*
1322 * set_bit and clear bit hooks normally require _irqsave/restore
1323 * but in this case, we are only testeing for the DELALLOC
1324 * bit, which is only set or cleared with irqs on
1325 */
0ca1f7ce 1326 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1327 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1328 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1329 int do_list = (root->root_key.objectid !=
1330 BTRFS_ROOT_TREE_OBJECTID);
bcbfce8a 1331
0ca1f7ce
YZ
1332 if (*bits & EXTENT_FIRST_DELALLOC)
1333 *bits &= ~EXTENT_FIRST_DELALLOC;
1334 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1335 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1336
1337 if (*bits & EXTENT_DO_ACCOUNTING)
1338 btrfs_delalloc_release_metadata(inode, len);
1339
0cb59c99
JB
1340 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1341 && do_list)
0ca1f7ce 1342 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1343
75eff68e 1344 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1345 root->fs_info->delalloc_bytes -= len;
1346 BTRFS_I(inode)->delalloc_bytes -= len;
1347
0cb59c99 1348 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1349 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1350 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1351 }
75eff68e 1352 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1353 }
1354 return 0;
1355}
1356
d352ac68
CM
1357/*
1358 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1359 * we don't create bios that span stripes or chunks
1360 */
239b14b3 1361int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1362 size_t size, struct bio *bio,
1363 unsigned long bio_flags)
239b14b3
CM
1364{
1365 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1366 struct btrfs_mapping_tree *map_tree;
a62b9401 1367 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1368 u64 length = 0;
1369 u64 map_length;
239b14b3
CM
1370 int ret;
1371
771ed689
CM
1372 if (bio_flags & EXTENT_BIO_COMPRESSED)
1373 return 0;
1374
f2d8d74d 1375 length = bio->bi_size;
239b14b3
CM
1376 map_tree = &root->fs_info->mapping_tree;
1377 map_length = length;
cea9e445 1378 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1379 &map_length, NULL, 0);
cea9e445 1380
d397712b 1381 if (map_length < length + size)
239b14b3 1382 return 1;
411fc6bc 1383 return ret;
239b14b3
CM
1384}
1385
d352ac68
CM
1386/*
1387 * in order to insert checksums into the metadata in large chunks,
1388 * we wait until bio submission time. All the pages in the bio are
1389 * checksummed and sums are attached onto the ordered extent record.
1390 *
1391 * At IO completion time the cums attached on the ordered extent record
1392 * are inserted into the btree
1393 */
d397712b
CM
1394static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1395 struct bio *bio, int mirror_num,
eaf25d93
CM
1396 unsigned long bio_flags,
1397 u64 bio_offset)
065631f6 1398{
065631f6 1399 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1400 int ret = 0;
e015640f 1401
d20f7043 1402 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1403 BUG_ON(ret);
4a69a410
CM
1404 return 0;
1405}
e015640f 1406
4a69a410
CM
1407/*
1408 * in order to insert checksums into the metadata in large chunks,
1409 * we wait until bio submission time. All the pages in the bio are
1410 * checksummed and sums are attached onto the ordered extent record.
1411 *
1412 * At IO completion time the cums attached on the ordered extent record
1413 * are inserted into the btree
1414 */
b2950863 1415static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1416 int mirror_num, unsigned long bio_flags,
1417 u64 bio_offset)
4a69a410
CM
1418{
1419 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1420 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1421}
1422
d352ac68 1423/*
cad321ad
CM
1424 * extent_io.c submission hook. This does the right thing for csum calculation
1425 * on write, or reading the csums from the tree before a read
d352ac68 1426 */
b2950863 1427static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1428 int mirror_num, unsigned long bio_flags,
1429 u64 bio_offset)
44b8bd7e
CM
1430{
1431 struct btrfs_root *root = BTRFS_I(inode)->root;
1432 int ret = 0;
19b9bdb0 1433 int skip_sum;
44b8bd7e 1434
6cbff00f 1435 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1436
0cb59c99
JB
1437 if (root == root->fs_info->tree_root)
1438 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1439 else
1440 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1441 BUG_ON(ret);
065631f6 1442
7b6d91da 1443 if (!(rw & REQ_WRITE)) {
d20f7043 1444 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1445 return btrfs_submit_compressed_read(inode, bio,
1446 mirror_num, bio_flags);
d20f7043
CM
1447 } else if (!skip_sum)
1448 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1449 goto mapit;
19b9bdb0 1450 } else if (!skip_sum) {
17d217fe
YZ
1451 /* csum items have already been cloned */
1452 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1453 goto mapit;
19b9bdb0
CM
1454 /* we're doing a write, do the async checksumming */
1455 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1456 inode, rw, bio, mirror_num,
eaf25d93
CM
1457 bio_flags, bio_offset,
1458 __btrfs_submit_bio_start,
4a69a410 1459 __btrfs_submit_bio_done);
19b9bdb0
CM
1460 }
1461
0b86a832 1462mapit:
8b712842 1463 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1464}
6885f308 1465
d352ac68
CM
1466/*
1467 * given a list of ordered sums record them in the inode. This happens
1468 * at IO completion time based on sums calculated at bio submission time.
1469 */
ba1da2f4 1470static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1471 struct inode *inode, u64 file_offset,
1472 struct list_head *list)
1473{
e6dcd2dc
CM
1474 struct btrfs_ordered_sum *sum;
1475
1476 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1477
1478 list_for_each_entry(sum, list, list) {
d20f7043
CM
1479 btrfs_csum_file_blocks(trans,
1480 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1481 }
1482 return 0;
1483}
1484
2ac55d41
JB
1485int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1486 struct extent_state **cached_state)
ea8c2819 1487{
d397712b 1488 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1489 WARN_ON(1);
ea8c2819 1490 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1491 cached_state, GFP_NOFS);
ea8c2819
CM
1492}
1493
d352ac68 1494/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1495struct btrfs_writepage_fixup {
1496 struct page *page;
1497 struct btrfs_work work;
1498};
1499
b2950863 1500static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1501{
1502 struct btrfs_writepage_fixup *fixup;
1503 struct btrfs_ordered_extent *ordered;
2ac55d41 1504 struct extent_state *cached_state = NULL;
247e743c
CM
1505 struct page *page;
1506 struct inode *inode;
1507 u64 page_start;
1508 u64 page_end;
1509
1510 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1511 page = fixup->page;
4a096752 1512again:
247e743c
CM
1513 lock_page(page);
1514 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1515 ClearPageChecked(page);
1516 goto out_page;
1517 }
1518
1519 inode = page->mapping->host;
1520 page_start = page_offset(page);
1521 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1522
2ac55d41
JB
1523 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1524 &cached_state, GFP_NOFS);
4a096752
CM
1525
1526 /* already ordered? We're done */
8b62b72b 1527 if (PagePrivate2(page))
247e743c 1528 goto out;
4a096752
CM
1529
1530 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1531 if (ordered) {
2ac55d41
JB
1532 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1533 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1534 unlock_page(page);
1535 btrfs_start_ordered_extent(inode, ordered, 1);
1536 goto again;
1537 }
247e743c 1538
0ca1f7ce 1539 BUG();
2ac55d41 1540 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1541 ClearPageChecked(page);
1542out:
2ac55d41
JB
1543 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1544 &cached_state, GFP_NOFS);
247e743c
CM
1545out_page:
1546 unlock_page(page);
1547 page_cache_release(page);
1548}
1549
1550/*
1551 * There are a few paths in the higher layers of the kernel that directly
1552 * set the page dirty bit without asking the filesystem if it is a
1553 * good idea. This causes problems because we want to make sure COW
1554 * properly happens and the data=ordered rules are followed.
1555 *
c8b97818 1556 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1557 * hasn't been properly setup for IO. We kick off an async process
1558 * to fix it up. The async helper will wait for ordered extents, set
1559 * the delalloc bit and make it safe to write the page.
1560 */
b2950863 1561static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1562{
1563 struct inode *inode = page->mapping->host;
1564 struct btrfs_writepage_fixup *fixup;
1565 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1566
8b62b72b
CM
1567 /* this page is properly in the ordered list */
1568 if (TestClearPagePrivate2(page))
247e743c
CM
1569 return 0;
1570
1571 if (PageChecked(page))
1572 return -EAGAIN;
1573
1574 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1575 if (!fixup)
1576 return -EAGAIN;
f421950f 1577
247e743c
CM
1578 SetPageChecked(page);
1579 page_cache_get(page);
1580 fixup->work.func = btrfs_writepage_fixup_worker;
1581 fixup->page = page;
1582 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1583 return -EAGAIN;
1584}
1585
d899e052
YZ
1586static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1587 struct inode *inode, u64 file_pos,
1588 u64 disk_bytenr, u64 disk_num_bytes,
1589 u64 num_bytes, u64 ram_bytes,
1590 u8 compression, u8 encryption,
1591 u16 other_encoding, int extent_type)
1592{
1593 struct btrfs_root *root = BTRFS_I(inode)->root;
1594 struct btrfs_file_extent_item *fi;
1595 struct btrfs_path *path;
1596 struct extent_buffer *leaf;
1597 struct btrfs_key ins;
1598 u64 hint;
1599 int ret;
1600
1601 path = btrfs_alloc_path();
1602 BUG_ON(!path);
1603
b9473439 1604 path->leave_spinning = 1;
a1ed835e
CM
1605
1606 /*
1607 * we may be replacing one extent in the tree with another.
1608 * The new extent is pinned in the extent map, and we don't want
1609 * to drop it from the cache until it is completely in the btree.
1610 *
1611 * So, tell btrfs_drop_extents to leave this extent in the cache.
1612 * the caller is expected to unpin it and allow it to be merged
1613 * with the others.
1614 */
920bbbfb
YZ
1615 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1616 &hint, 0);
d899e052
YZ
1617 BUG_ON(ret);
1618
1619 ins.objectid = inode->i_ino;
1620 ins.offset = file_pos;
1621 ins.type = BTRFS_EXTENT_DATA_KEY;
1622 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1623 BUG_ON(ret);
1624 leaf = path->nodes[0];
1625 fi = btrfs_item_ptr(leaf, path->slots[0],
1626 struct btrfs_file_extent_item);
1627 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1628 btrfs_set_file_extent_type(leaf, fi, extent_type);
1629 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1630 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1631 btrfs_set_file_extent_offset(leaf, fi, 0);
1632 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1633 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1634 btrfs_set_file_extent_compression(leaf, fi, compression);
1635 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1636 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1637
1638 btrfs_unlock_up_safe(path, 1);
1639 btrfs_set_lock_blocking(leaf);
1640
d899e052
YZ
1641 btrfs_mark_buffer_dirty(leaf);
1642
1643 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1644
1645 ins.objectid = disk_bytenr;
1646 ins.offset = disk_num_bytes;
1647 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1648 ret = btrfs_alloc_reserved_file_extent(trans, root,
1649 root->root_key.objectid,
1650 inode->i_ino, file_pos, &ins);
d899e052 1651 BUG_ON(ret);
d899e052 1652 btrfs_free_path(path);
b9473439 1653
d899e052
YZ
1654 return 0;
1655}
1656
5d13a98f
CM
1657/*
1658 * helper function for btrfs_finish_ordered_io, this
1659 * just reads in some of the csum leaves to prime them into ram
1660 * before we start the transaction. It limits the amount of btree
1661 * reads required while inside the transaction.
1662 */
d352ac68
CM
1663/* as ordered data IO finishes, this gets called so we can finish
1664 * an ordered extent if the range of bytes in the file it covers are
1665 * fully written.
1666 */
211f90e6 1667static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1668{
e6dcd2dc 1669 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1670 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1671 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1672 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1673 struct extent_state *cached_state = NULL;
d899e052 1674 int compressed = 0;
e6dcd2dc 1675 int ret;
0cb59c99 1676 bool nolock = false;
e6dcd2dc 1677
5a1a3df1
JB
1678 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1679 end - start + 1);
ba1da2f4 1680 if (!ret)
e6dcd2dc 1681 return 0;
e6dcd2dc 1682 BUG_ON(!ordered_extent);
efd049fb 1683
0cb59c99
JB
1684 nolock = (root == root->fs_info->tree_root);
1685
c2167754
YZ
1686 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1687 BUG_ON(!list_empty(&ordered_extent->list));
1688 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1689 if (!ret) {
0cb59c99
JB
1690 if (nolock)
1691 trans = btrfs_join_transaction_nolock(root, 1);
1692 else
1693 trans = btrfs_join_transaction(root, 1);
1694 BUG_ON(!trans);
0ca1f7ce
YZ
1695 btrfs_set_trans_block_group(trans, inode);
1696 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1697 ret = btrfs_update_inode(trans, root, inode);
1698 BUG_ON(ret);
c2167754
YZ
1699 }
1700 goto out;
1701 }
e6dcd2dc 1702
2ac55d41
JB
1703 lock_extent_bits(io_tree, ordered_extent->file_offset,
1704 ordered_extent->file_offset + ordered_extent->len - 1,
1705 0, &cached_state, GFP_NOFS);
e6dcd2dc 1706
0cb59c99
JB
1707 if (nolock)
1708 trans = btrfs_join_transaction_nolock(root, 1);
1709 else
1710 trans = btrfs_join_transaction(root, 1);
0ca1f7ce
YZ
1711 btrfs_set_trans_block_group(trans, inode);
1712 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1713
c8b97818 1714 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1715 compressed = 1;
1716 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1717 BUG_ON(compressed);
920bbbfb 1718 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1719 ordered_extent->file_offset,
1720 ordered_extent->file_offset +
1721 ordered_extent->len);
1722 BUG_ON(ret);
1723 } else {
0af3d00b 1724 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1725 ret = insert_reserved_file_extent(trans, inode,
1726 ordered_extent->file_offset,
1727 ordered_extent->start,
1728 ordered_extent->disk_len,
1729 ordered_extent->len,
1730 ordered_extent->len,
1731 compressed, 0, 0,
1732 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1733 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1734 ordered_extent->file_offset,
1735 ordered_extent->len);
d899e052
YZ
1736 BUG_ON(ret);
1737 }
2ac55d41
JB
1738 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1739 ordered_extent->file_offset +
1740 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1741
e6dcd2dc
CM
1742 add_pending_csums(trans, inode, ordered_extent->file_offset,
1743 &ordered_extent->list);
1744
c2167754
YZ
1745 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1746 ret = btrfs_update_inode(trans, root, inode);
1747 BUG_ON(ret);
c2167754 1748out:
0cb59c99
JB
1749 if (nolock) {
1750 if (trans)
1751 btrfs_end_transaction_nolock(trans, root);
1752 } else {
1753 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1754 if (trans)
1755 btrfs_end_transaction(trans, root);
1756 }
1757
e6dcd2dc
CM
1758 /* once for us */
1759 btrfs_put_ordered_extent(ordered_extent);
1760 /* once for the tree */
1761 btrfs_put_ordered_extent(ordered_extent);
1762
e6dcd2dc
CM
1763 return 0;
1764}
1765
b2950863 1766static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1767 struct extent_state *state, int uptodate)
1768{
8b62b72b 1769 ClearPagePrivate2(page);
211f90e6
CM
1770 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1771}
1772
d352ac68
CM
1773/*
1774 * When IO fails, either with EIO or csum verification fails, we
1775 * try other mirrors that might have a good copy of the data. This
1776 * io_failure_record is used to record state as we go through all the
1777 * mirrors. If another mirror has good data, the page is set up to date
1778 * and things continue. If a good mirror can't be found, the original
1779 * bio end_io callback is called to indicate things have failed.
1780 */
7e38326f
CM
1781struct io_failure_record {
1782 struct page *page;
1783 u64 start;
1784 u64 len;
1785 u64 logical;
d20f7043 1786 unsigned long bio_flags;
7e38326f
CM
1787 int last_mirror;
1788};
1789
b2950863 1790static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1791 struct page *page, u64 start, u64 end,
1792 struct extent_state *state)
7e38326f
CM
1793{
1794 struct io_failure_record *failrec = NULL;
1795 u64 private;
1796 struct extent_map *em;
1797 struct inode *inode = page->mapping->host;
1798 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1799 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1800 struct bio *bio;
1801 int num_copies;
1802 int ret;
1259ab75 1803 int rw;
7e38326f
CM
1804 u64 logical;
1805
1806 ret = get_state_private(failure_tree, start, &private);
1807 if (ret) {
7e38326f
CM
1808 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1809 if (!failrec)
1810 return -ENOMEM;
1811 failrec->start = start;
1812 failrec->len = end - start + 1;
1813 failrec->last_mirror = 0;
d20f7043 1814 failrec->bio_flags = 0;
7e38326f 1815
890871be 1816 read_lock(&em_tree->lock);
3b951516
CM
1817 em = lookup_extent_mapping(em_tree, start, failrec->len);
1818 if (em->start > start || em->start + em->len < start) {
1819 free_extent_map(em);
1820 em = NULL;
1821 }
890871be 1822 read_unlock(&em_tree->lock);
7e38326f
CM
1823
1824 if (!em || IS_ERR(em)) {
1825 kfree(failrec);
1826 return -EIO;
1827 }
1828 logical = start - em->start;
1829 logical = em->block_start + logical;
d20f7043
CM
1830 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1831 logical = em->block_start;
1832 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1833 }
7e38326f
CM
1834 failrec->logical = logical;
1835 free_extent_map(em);
1836 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1837 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1838 set_state_private(failure_tree, start,
1839 (u64)(unsigned long)failrec);
7e38326f 1840 } else {
587f7704 1841 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1842 }
1843 num_copies = btrfs_num_copies(
1844 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1845 failrec->logical, failrec->len);
1846 failrec->last_mirror++;
1847 if (!state) {
cad321ad 1848 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1849 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1850 failrec->start,
1851 EXTENT_LOCKED);
1852 if (state && state->start != failrec->start)
1853 state = NULL;
cad321ad 1854 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1855 }
1856 if (!state || failrec->last_mirror > num_copies) {
1857 set_state_private(failure_tree, failrec->start, 0);
1858 clear_extent_bits(failure_tree, failrec->start,
1859 failrec->start + failrec->len - 1,
1860 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1861 kfree(failrec);
1862 return -EIO;
1863 }
1864 bio = bio_alloc(GFP_NOFS, 1);
1865 bio->bi_private = state;
1866 bio->bi_end_io = failed_bio->bi_end_io;
1867 bio->bi_sector = failrec->logical >> 9;
1868 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1869 bio->bi_size = 0;
d20f7043 1870
7e38326f 1871 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1872 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1873 rw = WRITE;
1874 else
1875 rw = READ;
1876
1877 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1878 failrec->last_mirror,
eaf25d93 1879 failrec->bio_flags, 0);
1259ab75
CM
1880 return 0;
1881}
1882
d352ac68
CM
1883/*
1884 * each time an IO finishes, we do a fast check in the IO failure tree
1885 * to see if we need to process or clean up an io_failure_record
1886 */
b2950863 1887static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1888{
1889 u64 private;
1890 u64 private_failure;
1891 struct io_failure_record *failure;
1892 int ret;
1893
1894 private = 0;
1895 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1896 (u64)-1, 1, EXTENT_DIRTY)) {
1897 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1898 start, &private_failure);
1899 if (ret == 0) {
1900 failure = (struct io_failure_record *)(unsigned long)
1901 private_failure;
1902 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1903 failure->start, 0);
1904 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1905 failure->start,
1906 failure->start + failure->len - 1,
1907 EXTENT_DIRTY | EXTENT_LOCKED,
1908 GFP_NOFS);
1909 kfree(failure);
1910 }
1911 }
7e38326f
CM
1912 return 0;
1913}
1914
d352ac68
CM
1915/*
1916 * when reads are done, we need to check csums to verify the data is correct
1917 * if there's a match, we allow the bio to finish. If not, we go through
1918 * the io_failure_record routines to find good copies
1919 */
b2950863 1920static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1921 struct extent_state *state)
07157aac 1922{
35ebb934 1923 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1924 struct inode *inode = page->mapping->host;
d1310b2e 1925 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1926 char *kaddr;
aadfeb6e 1927 u64 private = ~(u32)0;
07157aac 1928 int ret;
ff79f819
CM
1929 struct btrfs_root *root = BTRFS_I(inode)->root;
1930 u32 csum = ~(u32)0;
d1310b2e 1931
d20f7043
CM
1932 if (PageChecked(page)) {
1933 ClearPageChecked(page);
1934 goto good;
1935 }
6cbff00f
CH
1936
1937 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1938 return 0;
1939
1940 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1941 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1942 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1943 GFP_NOFS);
b6cda9bc 1944 return 0;
17d217fe 1945 }
d20f7043 1946
c2e639f0 1947 if (state && state->start == start) {
70dec807
CM
1948 private = state->private;
1949 ret = 0;
1950 } else {
1951 ret = get_state_private(io_tree, start, &private);
1952 }
9ab86c8e 1953 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1954 if (ret)
07157aac 1955 goto zeroit;
d397712b 1956
ff79f819
CM
1957 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1958 btrfs_csum_final(csum, (char *)&csum);
d397712b 1959 if (csum != private)
07157aac 1960 goto zeroit;
d397712b 1961
9ab86c8e 1962 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1963good:
7e38326f
CM
1964 /* if the io failure tree for this inode is non-empty,
1965 * check to see if we've recovered from a failed IO
1966 */
1259ab75 1967 btrfs_clean_io_failures(inode, start);
07157aac
CM
1968 return 0;
1969
1970zeroit:
193f284d
CM
1971 if (printk_ratelimit()) {
1972 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1973 "private %llu\n", page->mapping->host->i_ino,
1974 (unsigned long long)start, csum,
1975 (unsigned long long)private);
1976 }
db94535d
CM
1977 memset(kaddr + offset, 1, end - start + 1);
1978 flush_dcache_page(page);
9ab86c8e 1979 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1980 if (private == 0)
1981 return 0;
7e38326f 1982 return -EIO;
07157aac 1983}
b888db2b 1984
24bbcf04
YZ
1985struct delayed_iput {
1986 struct list_head list;
1987 struct inode *inode;
1988};
1989
1990void btrfs_add_delayed_iput(struct inode *inode)
1991{
1992 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1993 struct delayed_iput *delayed;
1994
1995 if (atomic_add_unless(&inode->i_count, -1, 1))
1996 return;
1997
1998 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1999 delayed->inode = inode;
2000
2001 spin_lock(&fs_info->delayed_iput_lock);
2002 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2003 spin_unlock(&fs_info->delayed_iput_lock);
2004}
2005
2006void btrfs_run_delayed_iputs(struct btrfs_root *root)
2007{
2008 LIST_HEAD(list);
2009 struct btrfs_fs_info *fs_info = root->fs_info;
2010 struct delayed_iput *delayed;
2011 int empty;
2012
2013 spin_lock(&fs_info->delayed_iput_lock);
2014 empty = list_empty(&fs_info->delayed_iputs);
2015 spin_unlock(&fs_info->delayed_iput_lock);
2016 if (empty)
2017 return;
2018
2019 down_read(&root->fs_info->cleanup_work_sem);
2020 spin_lock(&fs_info->delayed_iput_lock);
2021 list_splice_init(&fs_info->delayed_iputs, &list);
2022 spin_unlock(&fs_info->delayed_iput_lock);
2023
2024 while (!list_empty(&list)) {
2025 delayed = list_entry(list.next, struct delayed_iput, list);
2026 list_del(&delayed->list);
2027 iput(delayed->inode);
2028 kfree(delayed);
2029 }
2030 up_read(&root->fs_info->cleanup_work_sem);
2031}
2032
d68fc57b
YZ
2033/*
2034 * calculate extra metadata reservation when snapshotting a subvolume
2035 * contains orphan files.
2036 */
2037void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2038 struct btrfs_pending_snapshot *pending,
2039 u64 *bytes_to_reserve)
2040{
2041 struct btrfs_root *root;
2042 struct btrfs_block_rsv *block_rsv;
2043 u64 num_bytes;
2044 int index;
2045
2046 root = pending->root;
2047 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2048 return;
2049
2050 block_rsv = root->orphan_block_rsv;
2051
2052 /* orphan block reservation for the snapshot */
2053 num_bytes = block_rsv->size;
2054
2055 /*
2056 * after the snapshot is created, COWing tree blocks may use more
2057 * space than it frees. So we should make sure there is enough
2058 * reserved space.
2059 */
2060 index = trans->transid & 0x1;
2061 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2062 num_bytes += block_rsv->size -
2063 (block_rsv->reserved + block_rsv->freed[index]);
2064 }
2065
2066 *bytes_to_reserve += num_bytes;
2067}
2068
2069void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2070 struct btrfs_pending_snapshot *pending)
2071{
2072 struct btrfs_root *root = pending->root;
2073 struct btrfs_root *snap = pending->snap;
2074 struct btrfs_block_rsv *block_rsv;
2075 u64 num_bytes;
2076 int index;
2077 int ret;
2078
2079 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2080 return;
2081
2082 /* refill source subvolume's orphan block reservation */
2083 block_rsv = root->orphan_block_rsv;
2084 index = trans->transid & 0x1;
2085 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2086 num_bytes = block_rsv->size -
2087 (block_rsv->reserved + block_rsv->freed[index]);
2088 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2089 root->orphan_block_rsv,
2090 num_bytes);
2091 BUG_ON(ret);
2092 }
2093
2094 /* setup orphan block reservation for the snapshot */
2095 block_rsv = btrfs_alloc_block_rsv(snap);
2096 BUG_ON(!block_rsv);
2097
2098 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2099 snap->orphan_block_rsv = block_rsv;
2100
2101 num_bytes = root->orphan_block_rsv->size;
2102 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2103 block_rsv, num_bytes);
2104 BUG_ON(ret);
2105
2106#if 0
2107 /* insert orphan item for the snapshot */
2108 WARN_ON(!root->orphan_item_inserted);
2109 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2110 snap->root_key.objectid);
2111 BUG_ON(ret);
2112 snap->orphan_item_inserted = 1;
2113#endif
2114}
2115
2116enum btrfs_orphan_cleanup_state {
2117 ORPHAN_CLEANUP_STARTED = 1,
2118 ORPHAN_CLEANUP_DONE = 2,
2119};
2120
2121/*
2122 * This is called in transaction commmit time. If there are no orphan
2123 * files in the subvolume, it removes orphan item and frees block_rsv
2124 * structure.
2125 */
2126void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2127 struct btrfs_root *root)
2128{
2129 int ret;
2130
2131 if (!list_empty(&root->orphan_list) ||
2132 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2133 return;
2134
2135 if (root->orphan_item_inserted &&
2136 btrfs_root_refs(&root->root_item) > 0) {
2137 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2138 root->root_key.objectid);
2139 BUG_ON(ret);
2140 root->orphan_item_inserted = 0;
2141 }
2142
2143 if (root->orphan_block_rsv) {
2144 WARN_ON(root->orphan_block_rsv->size > 0);
2145 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2146 root->orphan_block_rsv = NULL;
2147 }
2148}
2149
7b128766
JB
2150/*
2151 * This creates an orphan entry for the given inode in case something goes
2152 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2153 *
2154 * NOTE: caller of this function should reserve 5 units of metadata for
2155 * this function.
7b128766
JB
2156 */
2157int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2158{
2159 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2160 struct btrfs_block_rsv *block_rsv = NULL;
2161 int reserve = 0;
2162 int insert = 0;
2163 int ret;
7b128766 2164
d68fc57b
YZ
2165 if (!root->orphan_block_rsv) {
2166 block_rsv = btrfs_alloc_block_rsv(root);
2167 BUG_ON(!block_rsv);
2168 }
7b128766 2169
d68fc57b
YZ
2170 spin_lock(&root->orphan_lock);
2171 if (!root->orphan_block_rsv) {
2172 root->orphan_block_rsv = block_rsv;
2173 } else if (block_rsv) {
2174 btrfs_free_block_rsv(root, block_rsv);
2175 block_rsv = NULL;
7b128766 2176 }
7b128766 2177
d68fc57b
YZ
2178 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2179 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2180#if 0
2181 /*
2182 * For proper ENOSPC handling, we should do orphan
2183 * cleanup when mounting. But this introduces backward
2184 * compatibility issue.
2185 */
2186 if (!xchg(&root->orphan_item_inserted, 1))
2187 insert = 2;
2188 else
2189 insert = 1;
2190#endif
2191 insert = 1;
2192 } else {
2193 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
7b128766
JB
2194 }
2195
d68fc57b
YZ
2196 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2197 BTRFS_I(inode)->orphan_meta_reserved = 1;
2198 reserve = 1;
2199 }
2200 spin_unlock(&root->orphan_lock);
7b128766 2201
d68fc57b
YZ
2202 if (block_rsv)
2203 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2204
d68fc57b
YZ
2205 /* grab metadata reservation from transaction handle */
2206 if (reserve) {
2207 ret = btrfs_orphan_reserve_metadata(trans, inode);
2208 BUG_ON(ret);
2209 }
7b128766 2210
d68fc57b
YZ
2211 /* insert an orphan item to track this unlinked/truncated file */
2212 if (insert >= 1) {
2213 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2214 BUG_ON(ret);
2215 }
2216
2217 /* insert an orphan item to track subvolume contains orphan files */
2218 if (insert >= 2) {
2219 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2220 root->root_key.objectid);
2221 BUG_ON(ret);
2222 }
2223 return 0;
7b128766
JB
2224}
2225
2226/*
2227 * We have done the truncate/delete so we can go ahead and remove the orphan
2228 * item for this particular inode.
2229 */
2230int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2231{
2232 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2233 int delete_item = 0;
2234 int release_rsv = 0;
7b128766
JB
2235 int ret = 0;
2236
d68fc57b
YZ
2237 spin_lock(&root->orphan_lock);
2238 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2239 list_del_init(&BTRFS_I(inode)->i_orphan);
2240 delete_item = 1;
7b128766
JB
2241 }
2242
d68fc57b
YZ
2243 if (BTRFS_I(inode)->orphan_meta_reserved) {
2244 BTRFS_I(inode)->orphan_meta_reserved = 0;
2245 release_rsv = 1;
7b128766 2246 }
d68fc57b 2247 spin_unlock(&root->orphan_lock);
7b128766 2248
d68fc57b
YZ
2249 if (trans && delete_item) {
2250 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2251 BUG_ON(ret);
2252 }
7b128766 2253
d68fc57b
YZ
2254 if (release_rsv)
2255 btrfs_orphan_release_metadata(inode);
7b128766 2256
d68fc57b 2257 return 0;
7b128766
JB
2258}
2259
2260/*
2261 * this cleans up any orphans that may be left on the list from the last use
2262 * of this root.
2263 */
2264void btrfs_orphan_cleanup(struct btrfs_root *root)
2265{
2266 struct btrfs_path *path;
2267 struct extent_buffer *leaf;
7b128766
JB
2268 struct btrfs_key key, found_key;
2269 struct btrfs_trans_handle *trans;
2270 struct inode *inode;
2271 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2272
d68fc57b 2273 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
7b128766 2274 return;
c71bf099
YZ
2275
2276 path = btrfs_alloc_path();
2277 BUG_ON(!path);
7b128766
JB
2278 path->reada = -1;
2279
2280 key.objectid = BTRFS_ORPHAN_OBJECTID;
2281 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2282 key.offset = (u64)-1;
2283
7b128766
JB
2284 while (1) {
2285 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2286 if (ret < 0) {
2287 printk(KERN_ERR "Error searching slot for orphan: %d"
2288 "\n", ret);
2289 break;
2290 }
2291
2292 /*
2293 * if ret == 0 means we found what we were searching for, which
2294 * is weird, but possible, so only screw with path if we didnt
2295 * find the key and see if we have stuff that matches
2296 */
2297 if (ret > 0) {
2298 if (path->slots[0] == 0)
2299 break;
2300 path->slots[0]--;
2301 }
2302
2303 /* pull out the item */
2304 leaf = path->nodes[0];
7b128766
JB
2305 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2306
2307 /* make sure the item matches what we want */
2308 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2309 break;
2310 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2311 break;
2312
2313 /* release the path since we're done with it */
2314 btrfs_release_path(root, path);
2315
2316 /*
2317 * this is where we are basically btrfs_lookup, without the
2318 * crossing root thing. we store the inode number in the
2319 * offset of the orphan item.
2320 */
5d4f98a2
YZ
2321 found_key.objectid = found_key.offset;
2322 found_key.type = BTRFS_INODE_ITEM_KEY;
2323 found_key.offset = 0;
73f73415 2324 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
d68fc57b 2325 BUG_ON(IS_ERR(inode));
7b128766 2326
7b128766
JB
2327 /*
2328 * add this inode to the orphan list so btrfs_orphan_del does
2329 * the proper thing when we hit it
2330 */
d68fc57b 2331 spin_lock(&root->orphan_lock);
7b128766 2332 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2333 spin_unlock(&root->orphan_lock);
7b128766
JB
2334
2335 /*
2336 * if this is a bad inode, means we actually succeeded in
2337 * removing the inode, but not the orphan record, which means
2338 * we need to manually delete the orphan since iput will just
2339 * do a destroy_inode
2340 */
2341 if (is_bad_inode(inode)) {
a22285a6 2342 trans = btrfs_start_transaction(root, 0);
7b128766 2343 btrfs_orphan_del(trans, inode);
5b21f2ed 2344 btrfs_end_transaction(trans, root);
7b128766
JB
2345 iput(inode);
2346 continue;
2347 }
2348
2349 /* if we have links, this was a truncate, lets do that */
2350 if (inode->i_nlink) {
2351 nr_truncate++;
2352 btrfs_truncate(inode);
2353 } else {
2354 nr_unlink++;
2355 }
2356
2357 /* this will do delete_inode and everything for us */
2358 iput(inode);
2359 }
d68fc57b
YZ
2360 btrfs_free_path(path);
2361
2362 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2363
2364 if (root->orphan_block_rsv)
2365 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2366 (u64)-1);
2367
2368 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2369 trans = btrfs_join_transaction(root, 1);
2370 btrfs_end_transaction(trans, root);
2371 }
7b128766
JB
2372
2373 if (nr_unlink)
2374 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2375 if (nr_truncate)
2376 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
7b128766
JB
2377}
2378
46a53cca
CM
2379/*
2380 * very simple check to peek ahead in the leaf looking for xattrs. If we
2381 * don't find any xattrs, we know there can't be any acls.
2382 *
2383 * slot is the slot the inode is in, objectid is the objectid of the inode
2384 */
2385static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2386 int slot, u64 objectid)
2387{
2388 u32 nritems = btrfs_header_nritems(leaf);
2389 struct btrfs_key found_key;
2390 int scanned = 0;
2391
2392 slot++;
2393 while (slot < nritems) {
2394 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2395
2396 /* we found a different objectid, there must not be acls */
2397 if (found_key.objectid != objectid)
2398 return 0;
2399
2400 /* we found an xattr, assume we've got an acl */
2401 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2402 return 1;
2403
2404 /*
2405 * we found a key greater than an xattr key, there can't
2406 * be any acls later on
2407 */
2408 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2409 return 0;
2410
2411 slot++;
2412 scanned++;
2413
2414 /*
2415 * it goes inode, inode backrefs, xattrs, extents,
2416 * so if there are a ton of hard links to an inode there can
2417 * be a lot of backrefs. Don't waste time searching too hard,
2418 * this is just an optimization
2419 */
2420 if (scanned >= 8)
2421 break;
2422 }
2423 /* we hit the end of the leaf before we found an xattr or
2424 * something larger than an xattr. We have to assume the inode
2425 * has acls
2426 */
2427 return 1;
2428}
2429
d352ac68
CM
2430/*
2431 * read an inode from the btree into the in-memory inode
2432 */
5d4f98a2 2433static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2434{
2435 struct btrfs_path *path;
5f39d397 2436 struct extent_buffer *leaf;
39279cc3 2437 struct btrfs_inode_item *inode_item;
0b86a832 2438 struct btrfs_timespec *tspec;
39279cc3
CM
2439 struct btrfs_root *root = BTRFS_I(inode)->root;
2440 struct btrfs_key location;
46a53cca 2441 int maybe_acls;
39279cc3 2442 u64 alloc_group_block;
618e21d5 2443 u32 rdev;
39279cc3
CM
2444 int ret;
2445
2446 path = btrfs_alloc_path();
2447 BUG_ON(!path);
39279cc3 2448 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2449
39279cc3 2450 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2451 if (ret)
39279cc3 2452 goto make_bad;
39279cc3 2453
5f39d397
CM
2454 leaf = path->nodes[0];
2455 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2456 struct btrfs_inode_item);
2457
2458 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2459 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2460 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2461 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2462 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2463
2464 tspec = btrfs_inode_atime(inode_item);
2465 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2466 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2467
2468 tspec = btrfs_inode_mtime(inode_item);
2469 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2470 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2471
2472 tspec = btrfs_inode_ctime(inode_item);
2473 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2474 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2475
a76a3cd4 2476 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2477 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2478 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2479 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2480 inode->i_rdev = 0;
5f39d397
CM
2481 rdev = btrfs_inode_rdev(leaf, inode_item);
2482
aec7477b 2483 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2484 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2485
5f39d397 2486 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2487
46a53cca
CM
2488 /*
2489 * try to precache a NULL acl entry for files that don't have
2490 * any xattrs or acls
2491 */
2492 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2493 if (!maybe_acls)
2494 cache_no_acl(inode);
46a53cca 2495
d2fb3437
YZ
2496 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2497 alloc_group_block, 0);
39279cc3
CM
2498 btrfs_free_path(path);
2499 inode_item = NULL;
2500
39279cc3 2501 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2502 case S_IFREG:
2503 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2504 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2505 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2506 inode->i_fop = &btrfs_file_operations;
2507 inode->i_op = &btrfs_file_inode_operations;
2508 break;
2509 case S_IFDIR:
2510 inode->i_fop = &btrfs_dir_file_operations;
2511 if (root == root->fs_info->tree_root)
2512 inode->i_op = &btrfs_dir_ro_inode_operations;
2513 else
2514 inode->i_op = &btrfs_dir_inode_operations;
2515 break;
2516 case S_IFLNK:
2517 inode->i_op = &btrfs_symlink_inode_operations;
2518 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2519 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2520 break;
618e21d5 2521 default:
0279b4cd 2522 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2523 init_special_inode(inode, inode->i_mode, rdev);
2524 break;
39279cc3 2525 }
6cbff00f
CH
2526
2527 btrfs_update_iflags(inode);
39279cc3
CM
2528 return;
2529
2530make_bad:
39279cc3 2531 btrfs_free_path(path);
39279cc3
CM
2532 make_bad_inode(inode);
2533}
2534
d352ac68
CM
2535/*
2536 * given a leaf and an inode, copy the inode fields into the leaf
2537 */
e02119d5
CM
2538static void fill_inode_item(struct btrfs_trans_handle *trans,
2539 struct extent_buffer *leaf,
5f39d397 2540 struct btrfs_inode_item *item,
39279cc3
CM
2541 struct inode *inode)
2542{
5f39d397
CM
2543 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2544 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2545 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2546 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2547 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2548
2549 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2550 inode->i_atime.tv_sec);
2551 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2552 inode->i_atime.tv_nsec);
2553
2554 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2555 inode->i_mtime.tv_sec);
2556 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2557 inode->i_mtime.tv_nsec);
2558
2559 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2560 inode->i_ctime.tv_sec);
2561 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2562 inode->i_ctime.tv_nsec);
2563
a76a3cd4 2564 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2565 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2566 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2567 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2568 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2569 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2570 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2571}
2572
d352ac68
CM
2573/*
2574 * copy everything in the in-memory inode into the btree.
2575 */
d397712b
CM
2576noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2577 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2578{
2579 struct btrfs_inode_item *inode_item;
2580 struct btrfs_path *path;
5f39d397 2581 struct extent_buffer *leaf;
39279cc3
CM
2582 int ret;
2583
2584 path = btrfs_alloc_path();
2585 BUG_ON(!path);
b9473439 2586 path->leave_spinning = 1;
39279cc3
CM
2587 ret = btrfs_lookup_inode(trans, root, path,
2588 &BTRFS_I(inode)->location, 1);
2589 if (ret) {
2590 if (ret > 0)
2591 ret = -ENOENT;
2592 goto failed;
2593 }
2594
b4ce94de 2595 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2596 leaf = path->nodes[0];
2597 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2598 struct btrfs_inode_item);
2599
e02119d5 2600 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2601 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2602 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2603 ret = 0;
2604failed:
39279cc3
CM
2605 btrfs_free_path(path);
2606 return ret;
2607}
2608
2609
d352ac68
CM
2610/*
2611 * unlink helper that gets used here in inode.c and in the tree logging
2612 * recovery code. It remove a link in a directory with a given name, and
2613 * also drops the back refs in the inode to the directory
2614 */
e02119d5
CM
2615int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2616 struct btrfs_root *root,
2617 struct inode *dir, struct inode *inode,
2618 const char *name, int name_len)
39279cc3
CM
2619{
2620 struct btrfs_path *path;
39279cc3 2621 int ret = 0;
5f39d397 2622 struct extent_buffer *leaf;
39279cc3 2623 struct btrfs_dir_item *di;
5f39d397 2624 struct btrfs_key key;
aec7477b 2625 u64 index;
39279cc3
CM
2626
2627 path = btrfs_alloc_path();
54aa1f4d
CM
2628 if (!path) {
2629 ret = -ENOMEM;
2630 goto err;
2631 }
2632
b9473439 2633 path->leave_spinning = 1;
39279cc3
CM
2634 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2635 name, name_len, -1);
2636 if (IS_ERR(di)) {
2637 ret = PTR_ERR(di);
2638 goto err;
2639 }
2640 if (!di) {
2641 ret = -ENOENT;
2642 goto err;
2643 }
5f39d397
CM
2644 leaf = path->nodes[0];
2645 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2646 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2647 if (ret)
2648 goto err;
39279cc3
CM
2649 btrfs_release_path(root, path);
2650
aec7477b 2651 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2652 inode->i_ino,
2653 dir->i_ino, &index);
aec7477b 2654 if (ret) {
d397712b 2655 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2656 "inode %lu parent %lu\n", name_len, name,
e02119d5 2657 inode->i_ino, dir->i_ino);
aec7477b
JB
2658 goto err;
2659 }
2660
39279cc3 2661 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2662 index, name, name_len, -1);
39279cc3
CM
2663 if (IS_ERR(di)) {
2664 ret = PTR_ERR(di);
2665 goto err;
2666 }
2667 if (!di) {
2668 ret = -ENOENT;
2669 goto err;
2670 }
2671 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2672 btrfs_release_path(root, path);
39279cc3 2673
e02119d5
CM
2674 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2675 inode, dir->i_ino);
49eb7e46 2676 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2677
2678 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2679 dir, index);
6418c961
CM
2680 if (ret == -ENOENT)
2681 ret = 0;
39279cc3
CM
2682err:
2683 btrfs_free_path(path);
e02119d5
CM
2684 if (ret)
2685 goto out;
2686
2687 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2688 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2689 btrfs_update_inode(trans, root, dir);
2690 btrfs_drop_nlink(inode);
2691 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2692out:
39279cc3
CM
2693 return ret;
2694}
2695
a22285a6
YZ
2696/* helper to check if there is any shared block in the path */
2697static int check_path_shared(struct btrfs_root *root,
2698 struct btrfs_path *path)
39279cc3 2699{
a22285a6
YZ
2700 struct extent_buffer *eb;
2701 int level;
0e4dcbef 2702 u64 refs = 1;
411fc6bc 2703 int uninitialized_var(ret);
5df6a9f6 2704
a22285a6
YZ
2705 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2706 if (!path->nodes[level])
2707 break;
2708 eb = path->nodes[level];
2709 if (!btrfs_block_can_be_shared(root, eb))
2710 continue;
2711 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2712 &refs, NULL);
2713 if (refs > 1)
2714 return 1;
5df6a9f6 2715 }
411fc6bc 2716 return ret; /* XXX callers? */
39279cc3
CM
2717}
2718
a22285a6
YZ
2719/*
2720 * helper to start transaction for unlink and rmdir.
2721 *
2722 * unlink and rmdir are special in btrfs, they do not always free space.
2723 * so in enospc case, we should make sure they will free space before
2724 * allowing them to use the global metadata reservation.
2725 */
2726static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2727 struct dentry *dentry)
4df27c4d 2728{
39279cc3 2729 struct btrfs_trans_handle *trans;
a22285a6 2730 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2731 struct btrfs_path *path;
a22285a6 2732 struct btrfs_inode_ref *ref;
4df27c4d 2733 struct btrfs_dir_item *di;
7b128766 2734 struct inode *inode = dentry->d_inode;
4df27c4d 2735 u64 index;
a22285a6
YZ
2736 int check_link = 1;
2737 int err = -ENOSPC;
4df27c4d
YZ
2738 int ret;
2739
a22285a6
YZ
2740 trans = btrfs_start_transaction(root, 10);
2741 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2742 return trans;
4df27c4d 2743
a22285a6
YZ
2744 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2745 return ERR_PTR(-ENOSPC);
4df27c4d 2746
a22285a6
YZ
2747 /* check if there is someone else holds reference */
2748 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2749 return ERR_PTR(-ENOSPC);
4df27c4d 2750
a22285a6
YZ
2751 if (atomic_read(&inode->i_count) > 2)
2752 return ERR_PTR(-ENOSPC);
4df27c4d 2753
a22285a6
YZ
2754 if (xchg(&root->fs_info->enospc_unlink, 1))
2755 return ERR_PTR(-ENOSPC);
2756
2757 path = btrfs_alloc_path();
2758 if (!path) {
2759 root->fs_info->enospc_unlink = 0;
2760 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2761 }
2762
a22285a6 2763 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2764 if (IS_ERR(trans)) {
a22285a6
YZ
2765 btrfs_free_path(path);
2766 root->fs_info->enospc_unlink = 0;
2767 return trans;
2768 }
4df27c4d 2769
a22285a6
YZ
2770 path->skip_locking = 1;
2771 path->search_commit_root = 1;
4df27c4d 2772
a22285a6
YZ
2773 ret = btrfs_lookup_inode(trans, root, path,
2774 &BTRFS_I(dir)->location, 0);
2775 if (ret < 0) {
2776 err = ret;
2777 goto out;
2778 }
2779 if (ret == 0) {
2780 if (check_path_shared(root, path))
2781 goto out;
2782 } else {
2783 check_link = 0;
5df6a9f6 2784 }
a22285a6
YZ
2785 btrfs_release_path(root, path);
2786
2787 ret = btrfs_lookup_inode(trans, root, path,
2788 &BTRFS_I(inode)->location, 0);
2789 if (ret < 0) {
2790 err = ret;
2791 goto out;
2792 }
2793 if (ret == 0) {
2794 if (check_path_shared(root, path))
2795 goto out;
2796 } else {
2797 check_link = 0;
2798 }
2799 btrfs_release_path(root, path);
2800
2801 if (ret == 0 && S_ISREG(inode->i_mode)) {
2802 ret = btrfs_lookup_file_extent(trans, root, path,
2803 inode->i_ino, (u64)-1, 0);
2804 if (ret < 0) {
2805 err = ret;
2806 goto out;
2807 }
2808 BUG_ON(ret == 0);
2809 if (check_path_shared(root, path))
2810 goto out;
2811 btrfs_release_path(root, path);
2812 }
2813
2814 if (!check_link) {
2815 err = 0;
2816 goto out;
2817 }
2818
2819 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2820 dentry->d_name.name, dentry->d_name.len, 0);
2821 if (IS_ERR(di)) {
2822 err = PTR_ERR(di);
2823 goto out;
2824 }
2825 if (di) {
2826 if (check_path_shared(root, path))
2827 goto out;
2828 } else {
2829 err = 0;
2830 goto out;
2831 }
2832 btrfs_release_path(root, path);
2833
2834 ref = btrfs_lookup_inode_ref(trans, root, path,
2835 dentry->d_name.name, dentry->d_name.len,
2836 inode->i_ino, dir->i_ino, 0);
2837 if (IS_ERR(ref)) {
2838 err = PTR_ERR(ref);
2839 goto out;
2840 }
2841 BUG_ON(!ref);
2842 if (check_path_shared(root, path))
2843 goto out;
2844 index = btrfs_inode_ref_index(path->nodes[0], ref);
2845 btrfs_release_path(root, path);
2846
2847 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2848 dentry->d_name.name, dentry->d_name.len, 0);
2849 if (IS_ERR(di)) {
2850 err = PTR_ERR(di);
2851 goto out;
2852 }
2853 BUG_ON(ret == -ENOENT);
2854 if (check_path_shared(root, path))
2855 goto out;
2856
2857 err = 0;
2858out:
2859 btrfs_free_path(path);
2860 if (err) {
2861 btrfs_end_transaction(trans, root);
2862 root->fs_info->enospc_unlink = 0;
2863 return ERR_PTR(err);
2864 }
2865
2866 trans->block_rsv = &root->fs_info->global_block_rsv;
2867 return trans;
2868}
2869
2870static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2871 struct btrfs_root *root)
2872{
2873 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2874 BUG_ON(!root->fs_info->enospc_unlink);
2875 root->fs_info->enospc_unlink = 0;
2876 }
2877 btrfs_end_transaction_throttle(trans, root);
2878}
2879
2880static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2881{
2882 struct btrfs_root *root = BTRFS_I(dir)->root;
2883 struct btrfs_trans_handle *trans;
2884 struct inode *inode = dentry->d_inode;
2885 int ret;
2886 unsigned long nr = 0;
2887
2888 trans = __unlink_start_trans(dir, dentry);
2889 if (IS_ERR(trans))
2890 return PTR_ERR(trans);
5f39d397 2891
39279cc3 2892 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2893
2894 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2895
e02119d5
CM
2896 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2897 dentry->d_name.name, dentry->d_name.len);
a22285a6 2898 BUG_ON(ret);
7b128766 2899
a22285a6 2900 if (inode->i_nlink == 0) {
7b128766 2901 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
2902 BUG_ON(ret);
2903 }
7b128766 2904
d3c2fdcf 2905 nr = trans->blocks_used;
a22285a6 2906 __unlink_end_trans(trans, root);
d3c2fdcf 2907 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2908 return ret;
2909}
2910
4df27c4d
YZ
2911int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2912 struct btrfs_root *root,
2913 struct inode *dir, u64 objectid,
2914 const char *name, int name_len)
2915{
2916 struct btrfs_path *path;
2917 struct extent_buffer *leaf;
2918 struct btrfs_dir_item *di;
2919 struct btrfs_key key;
2920 u64 index;
2921 int ret;
2922
2923 path = btrfs_alloc_path();
2924 if (!path)
2925 return -ENOMEM;
2926
2927 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2928 name, name_len, -1);
2929 BUG_ON(!di || IS_ERR(di));
2930
2931 leaf = path->nodes[0];
2932 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2933 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2934 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2935 BUG_ON(ret);
2936 btrfs_release_path(root, path);
2937
2938 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2939 objectid, root->root_key.objectid,
2940 dir->i_ino, &index, name, name_len);
2941 if (ret < 0) {
2942 BUG_ON(ret != -ENOENT);
2943 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2944 name, name_len);
2945 BUG_ON(!di || IS_ERR(di));
2946
2947 leaf = path->nodes[0];
2948 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2949 btrfs_release_path(root, path);
2950 index = key.offset;
2951 }
2952
2953 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2954 index, name, name_len, -1);
2955 BUG_ON(!di || IS_ERR(di));
2956
2957 leaf = path->nodes[0];
2958 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2959 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2960 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2961 BUG_ON(ret);
2962 btrfs_release_path(root, path);
2963
2964 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2965 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2966 ret = btrfs_update_inode(trans, root, dir);
2967 BUG_ON(ret);
4df27c4d
YZ
2968
2969 btrfs_free_path(path);
2970 return 0;
2971}
2972
39279cc3
CM
2973static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2974{
2975 struct inode *inode = dentry->d_inode;
1832a6d5 2976 int err = 0;
39279cc3 2977 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2978 struct btrfs_trans_handle *trans;
1832a6d5 2979 unsigned long nr = 0;
39279cc3 2980
3394e160 2981 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 2982 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2983 return -ENOTEMPTY;
2984
a22285a6
YZ
2985 trans = __unlink_start_trans(dir, dentry);
2986 if (IS_ERR(trans))
5df6a9f6 2987 return PTR_ERR(trans);
5df6a9f6 2988
39279cc3 2989 btrfs_set_trans_block_group(trans, dir);
39279cc3 2990
4df27c4d
YZ
2991 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2992 err = btrfs_unlink_subvol(trans, root, dir,
2993 BTRFS_I(inode)->location.objectid,
2994 dentry->d_name.name,
2995 dentry->d_name.len);
2996 goto out;
2997 }
2998
7b128766
JB
2999 err = btrfs_orphan_add(trans, inode);
3000 if (err)
4df27c4d 3001 goto out;
7b128766 3002
39279cc3 3003 /* now the directory is empty */
e02119d5
CM
3004 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3005 dentry->d_name.name, dentry->d_name.len);
d397712b 3006 if (!err)
dbe674a9 3007 btrfs_i_size_write(inode, 0);
4df27c4d 3008out:
d3c2fdcf 3009 nr = trans->blocks_used;
a22285a6 3010 __unlink_end_trans(trans, root);
d3c2fdcf 3011 btrfs_btree_balance_dirty(root, nr);
3954401f 3012
39279cc3
CM
3013 return err;
3014}
3015
d20f7043 3016#if 0
323ac95b
CM
3017/*
3018 * when truncating bytes in a file, it is possible to avoid reading
3019 * the leaves that contain only checksum items. This can be the
3020 * majority of the IO required to delete a large file, but it must
3021 * be done carefully.
3022 *
3023 * The keys in the level just above the leaves are checked to make sure
3024 * the lowest key in a given leaf is a csum key, and starts at an offset
3025 * after the new size.
3026 *
3027 * Then the key for the next leaf is checked to make sure it also has
3028 * a checksum item for the same file. If it does, we know our target leaf
3029 * contains only checksum items, and it can be safely freed without reading
3030 * it.
3031 *
3032 * This is just an optimization targeted at large files. It may do
3033 * nothing. It will return 0 unless things went badly.
3034 */
3035static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3036 struct btrfs_root *root,
3037 struct btrfs_path *path,
3038 struct inode *inode, u64 new_size)
3039{
3040 struct btrfs_key key;
3041 int ret;
3042 int nritems;
3043 struct btrfs_key found_key;
3044 struct btrfs_key other_key;
5b84e8d6
YZ
3045 struct btrfs_leaf_ref *ref;
3046 u64 leaf_gen;
3047 u64 leaf_start;
323ac95b
CM
3048
3049 path->lowest_level = 1;
3050 key.objectid = inode->i_ino;
3051 key.type = BTRFS_CSUM_ITEM_KEY;
3052 key.offset = new_size;
3053again:
3054 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3055 if (ret < 0)
3056 goto out;
3057
3058 if (path->nodes[1] == NULL) {
3059 ret = 0;
3060 goto out;
3061 }
3062 ret = 0;
3063 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3064 nritems = btrfs_header_nritems(path->nodes[1]);
3065
3066 if (!nritems)
3067 goto out;
3068
3069 if (path->slots[1] >= nritems)
3070 goto next_node;
3071
3072 /* did we find a key greater than anything we want to delete? */
3073 if (found_key.objectid > inode->i_ino ||
3074 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3075 goto out;
3076
3077 /* we check the next key in the node to make sure the leave contains
3078 * only checksum items. This comparison doesn't work if our
3079 * leaf is the last one in the node
3080 */
3081 if (path->slots[1] + 1 >= nritems) {
3082next_node:
3083 /* search forward from the last key in the node, this
3084 * will bring us into the next node in the tree
3085 */
3086 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3087
3088 /* unlikely, but we inc below, so check to be safe */
3089 if (found_key.offset == (u64)-1)
3090 goto out;
3091
3092 /* search_forward needs a path with locks held, do the
3093 * search again for the original key. It is possible
3094 * this will race with a balance and return a path that
3095 * we could modify, but this drop is just an optimization
3096 * and is allowed to miss some leaves.
3097 */
3098 btrfs_release_path(root, path);
3099 found_key.offset++;
3100
3101 /* setup a max key for search_forward */
3102 other_key.offset = (u64)-1;
3103 other_key.type = key.type;
3104 other_key.objectid = key.objectid;
3105
3106 path->keep_locks = 1;
3107 ret = btrfs_search_forward(root, &found_key, &other_key,
3108 path, 0, 0);
3109 path->keep_locks = 0;
3110 if (ret || found_key.objectid != key.objectid ||
3111 found_key.type != key.type) {
3112 ret = 0;
3113 goto out;
3114 }
3115
3116 key.offset = found_key.offset;
3117 btrfs_release_path(root, path);
3118 cond_resched();
3119 goto again;
3120 }
3121
3122 /* we know there's one more slot after us in the tree,
3123 * read that key so we can verify it is also a checksum item
3124 */
3125 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3126
3127 if (found_key.objectid < inode->i_ino)
3128 goto next_key;
3129
3130 if (found_key.type != key.type || found_key.offset < new_size)
3131 goto next_key;
3132
3133 /*
3134 * if the key for the next leaf isn't a csum key from this objectid,
3135 * we can't be sure there aren't good items inside this leaf.
3136 * Bail out
3137 */
3138 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3139 goto out;
3140
5b84e8d6
YZ
3141 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3142 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
3143 /*
3144 * it is safe to delete this leaf, it contains only
3145 * csum items from this inode at an offset >= new_size
3146 */
5b84e8d6 3147 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
3148 BUG_ON(ret);
3149
5b84e8d6
YZ
3150 if (root->ref_cows && leaf_gen < trans->transid) {
3151 ref = btrfs_alloc_leaf_ref(root, 0);
3152 if (ref) {
3153 ref->root_gen = root->root_key.offset;
3154 ref->bytenr = leaf_start;
3155 ref->owner = 0;
3156 ref->generation = leaf_gen;
3157 ref->nritems = 0;
3158
bd56b302
CM
3159 btrfs_sort_leaf_ref(ref);
3160
5b84e8d6
YZ
3161 ret = btrfs_add_leaf_ref(root, ref, 0);
3162 WARN_ON(ret);
3163 btrfs_free_leaf_ref(root, ref);
3164 } else {
3165 WARN_ON(1);
3166 }
3167 }
323ac95b
CM
3168next_key:
3169 btrfs_release_path(root, path);
3170
3171 if (other_key.objectid == inode->i_ino &&
3172 other_key.type == key.type && other_key.offset > key.offset) {
3173 key.offset = other_key.offset;
3174 cond_resched();
3175 goto again;
3176 }
3177 ret = 0;
3178out:
3179 /* fixup any changes we've made to the path */
3180 path->lowest_level = 0;
3181 path->keep_locks = 0;
3182 btrfs_release_path(root, path);
3183 return ret;
3184}
3185
d20f7043
CM
3186#endif
3187
39279cc3
CM
3188/*
3189 * this can truncate away extent items, csum items and directory items.
3190 * It starts at a high offset and removes keys until it can't find
d352ac68 3191 * any higher than new_size
39279cc3
CM
3192 *
3193 * csum items that cross the new i_size are truncated to the new size
3194 * as well.
7b128766
JB
3195 *
3196 * min_type is the minimum key type to truncate down to. If set to 0, this
3197 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3198 */
8082510e
YZ
3199int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3200 struct btrfs_root *root,
3201 struct inode *inode,
3202 u64 new_size, u32 min_type)
39279cc3 3203{
39279cc3 3204 struct btrfs_path *path;
5f39d397 3205 struct extent_buffer *leaf;
39279cc3 3206 struct btrfs_file_extent_item *fi;
8082510e
YZ
3207 struct btrfs_key key;
3208 struct btrfs_key found_key;
39279cc3 3209 u64 extent_start = 0;
db94535d 3210 u64 extent_num_bytes = 0;
5d4f98a2 3211 u64 extent_offset = 0;
39279cc3 3212 u64 item_end = 0;
8082510e
YZ
3213 u64 mask = root->sectorsize - 1;
3214 u32 found_type = (u8)-1;
39279cc3
CM
3215 int found_extent;
3216 int del_item;
85e21bac
CM
3217 int pending_del_nr = 0;
3218 int pending_del_slot = 0;
179e29e4 3219 int extent_type = -1;
771ed689 3220 int encoding;
8082510e
YZ
3221 int ret;
3222 int err = 0;
3223
3224 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3225
0af3d00b 3226 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3227 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3228
39279cc3
CM
3229 path = btrfs_alloc_path();
3230 BUG_ON(!path);
33c17ad5 3231 path->reada = -1;
5f39d397 3232
39279cc3
CM
3233 key.objectid = inode->i_ino;
3234 key.offset = (u64)-1;
5f39d397
CM
3235 key.type = (u8)-1;
3236
85e21bac 3237search_again:
b9473439 3238 path->leave_spinning = 1;
85e21bac 3239 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3240 if (ret < 0) {
3241 err = ret;
3242 goto out;
3243 }
d397712b 3244
85e21bac 3245 if (ret > 0) {
e02119d5
CM
3246 /* there are no items in the tree for us to truncate, we're
3247 * done
3248 */
8082510e
YZ
3249 if (path->slots[0] == 0)
3250 goto out;
85e21bac
CM
3251 path->slots[0]--;
3252 }
3253
d397712b 3254 while (1) {
39279cc3 3255 fi = NULL;
5f39d397
CM
3256 leaf = path->nodes[0];
3257 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3258 found_type = btrfs_key_type(&found_key);
771ed689 3259 encoding = 0;
39279cc3 3260
5f39d397 3261 if (found_key.objectid != inode->i_ino)
39279cc3 3262 break;
5f39d397 3263
85e21bac 3264 if (found_type < min_type)
39279cc3
CM
3265 break;
3266
5f39d397 3267 item_end = found_key.offset;
39279cc3 3268 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3269 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3270 struct btrfs_file_extent_item);
179e29e4 3271 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3272 encoding = btrfs_file_extent_compression(leaf, fi);
3273 encoding |= btrfs_file_extent_encryption(leaf, fi);
3274 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3275
179e29e4 3276 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3277 item_end +=
db94535d 3278 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3279 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3280 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3281 fi);
39279cc3 3282 }
008630c1 3283 item_end--;
39279cc3 3284 }
8082510e
YZ
3285 if (found_type > min_type) {
3286 del_item = 1;
3287 } else {
3288 if (item_end < new_size)
b888db2b 3289 break;
8082510e
YZ
3290 if (found_key.offset >= new_size)
3291 del_item = 1;
3292 else
3293 del_item = 0;
39279cc3 3294 }
39279cc3 3295 found_extent = 0;
39279cc3 3296 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3297 if (found_type != BTRFS_EXTENT_DATA_KEY)
3298 goto delete;
3299
3300 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3301 u64 num_dec;
db94535d 3302 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3303 if (!del_item && !encoding) {
db94535d
CM
3304 u64 orig_num_bytes =
3305 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3306 extent_num_bytes = new_size -
5f39d397 3307 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3308 extent_num_bytes = extent_num_bytes &
3309 ~((u64)root->sectorsize - 1);
db94535d
CM
3310 btrfs_set_file_extent_num_bytes(leaf, fi,
3311 extent_num_bytes);
3312 num_dec = (orig_num_bytes -
9069218d 3313 extent_num_bytes);
e02119d5 3314 if (root->ref_cows && extent_start != 0)
a76a3cd4 3315 inode_sub_bytes(inode, num_dec);
5f39d397 3316 btrfs_mark_buffer_dirty(leaf);
39279cc3 3317 } else {
db94535d
CM
3318 extent_num_bytes =
3319 btrfs_file_extent_disk_num_bytes(leaf,
3320 fi);
5d4f98a2
YZ
3321 extent_offset = found_key.offset -
3322 btrfs_file_extent_offset(leaf, fi);
3323
39279cc3 3324 /* FIXME blocksize != 4096 */
9069218d 3325 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3326 if (extent_start != 0) {
3327 found_extent = 1;
e02119d5 3328 if (root->ref_cows)
a76a3cd4 3329 inode_sub_bytes(inode, num_dec);
e02119d5 3330 }
39279cc3 3331 }
9069218d 3332 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3333 /*
3334 * we can't truncate inline items that have had
3335 * special encodings
3336 */
3337 if (!del_item &&
3338 btrfs_file_extent_compression(leaf, fi) == 0 &&
3339 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3340 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3341 u32 size = new_size - found_key.offset;
3342
3343 if (root->ref_cows) {
a76a3cd4
YZ
3344 inode_sub_bytes(inode, item_end + 1 -
3345 new_size);
e02119d5
CM
3346 }
3347 size =
3348 btrfs_file_extent_calc_inline_size(size);
9069218d 3349 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3350 size, 1);
9069218d 3351 BUG_ON(ret);
e02119d5 3352 } else if (root->ref_cows) {
a76a3cd4
YZ
3353 inode_sub_bytes(inode, item_end + 1 -
3354 found_key.offset);
9069218d 3355 }
39279cc3 3356 }
179e29e4 3357delete:
39279cc3 3358 if (del_item) {
85e21bac
CM
3359 if (!pending_del_nr) {
3360 /* no pending yet, add ourselves */
3361 pending_del_slot = path->slots[0];
3362 pending_del_nr = 1;
3363 } else if (pending_del_nr &&
3364 path->slots[0] + 1 == pending_del_slot) {
3365 /* hop on the pending chunk */
3366 pending_del_nr++;
3367 pending_del_slot = path->slots[0];
3368 } else {
d397712b 3369 BUG();
85e21bac 3370 }
39279cc3
CM
3371 } else {
3372 break;
3373 }
0af3d00b
JB
3374 if (found_extent && (root->ref_cows ||
3375 root == root->fs_info->tree_root)) {
b9473439 3376 btrfs_set_path_blocking(path);
39279cc3 3377 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3378 extent_num_bytes, 0,
3379 btrfs_header_owner(leaf),
3380 inode->i_ino, extent_offset);
39279cc3
CM
3381 BUG_ON(ret);
3382 }
85e21bac 3383
8082510e
YZ
3384 if (found_type == BTRFS_INODE_ITEM_KEY)
3385 break;
3386
3387 if (path->slots[0] == 0 ||
3388 path->slots[0] != pending_del_slot) {
3389 if (root->ref_cows) {
3390 err = -EAGAIN;
3391 goto out;
3392 }
3393 if (pending_del_nr) {
3394 ret = btrfs_del_items(trans, root, path,
3395 pending_del_slot,
3396 pending_del_nr);
3397 BUG_ON(ret);
3398 pending_del_nr = 0;
3399 }
85e21bac
CM
3400 btrfs_release_path(root, path);
3401 goto search_again;
8082510e
YZ
3402 } else {
3403 path->slots[0]--;
85e21bac 3404 }
39279cc3 3405 }
8082510e 3406out:
85e21bac
CM
3407 if (pending_del_nr) {
3408 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3409 pending_del_nr);
d68fc57b 3410 BUG_ON(ret);
85e21bac 3411 }
39279cc3 3412 btrfs_free_path(path);
8082510e 3413 return err;
39279cc3
CM
3414}
3415
3416/*
3417 * taken from block_truncate_page, but does cow as it zeros out
3418 * any bytes left in the last page in the file.
3419 */
3420static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3421{
3422 struct inode *inode = mapping->host;
db94535d 3423 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3424 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3425 struct btrfs_ordered_extent *ordered;
2ac55d41 3426 struct extent_state *cached_state = NULL;
e6dcd2dc 3427 char *kaddr;
db94535d 3428 u32 blocksize = root->sectorsize;
39279cc3
CM
3429 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3430 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3431 struct page *page;
39279cc3 3432 int ret = 0;
a52d9a80 3433 u64 page_start;
e6dcd2dc 3434 u64 page_end;
39279cc3
CM
3435
3436 if ((offset & (blocksize - 1)) == 0)
3437 goto out;
0ca1f7ce 3438 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3439 if (ret)
3440 goto out;
39279cc3
CM
3441
3442 ret = -ENOMEM;
211c17f5 3443again:
39279cc3 3444 page = grab_cache_page(mapping, index);
5d5e103a 3445 if (!page) {
0ca1f7ce 3446 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3447 goto out;
5d5e103a 3448 }
e6dcd2dc
CM
3449
3450 page_start = page_offset(page);
3451 page_end = page_start + PAGE_CACHE_SIZE - 1;
3452
39279cc3 3453 if (!PageUptodate(page)) {
9ebefb18 3454 ret = btrfs_readpage(NULL, page);
39279cc3 3455 lock_page(page);
211c17f5
CM
3456 if (page->mapping != mapping) {
3457 unlock_page(page);
3458 page_cache_release(page);
3459 goto again;
3460 }
39279cc3
CM
3461 if (!PageUptodate(page)) {
3462 ret = -EIO;
89642229 3463 goto out_unlock;
39279cc3
CM
3464 }
3465 }
211c17f5 3466 wait_on_page_writeback(page);
e6dcd2dc 3467
2ac55d41
JB
3468 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3469 GFP_NOFS);
e6dcd2dc
CM
3470 set_page_extent_mapped(page);
3471
3472 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3473 if (ordered) {
2ac55d41
JB
3474 unlock_extent_cached(io_tree, page_start, page_end,
3475 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3476 unlock_page(page);
3477 page_cache_release(page);
eb84ae03 3478 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3479 btrfs_put_ordered_extent(ordered);
3480 goto again;
3481 }
3482
2ac55d41 3483 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3484 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3485 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3486
2ac55d41
JB
3487 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3488 &cached_state);
9ed74f2d 3489 if (ret) {
2ac55d41
JB
3490 unlock_extent_cached(io_tree, page_start, page_end,
3491 &cached_state, GFP_NOFS);
9ed74f2d
JB
3492 goto out_unlock;
3493 }
3494
e6dcd2dc
CM
3495 ret = 0;
3496 if (offset != PAGE_CACHE_SIZE) {
3497 kaddr = kmap(page);
3498 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3499 flush_dcache_page(page);
3500 kunmap(page);
3501 }
247e743c 3502 ClearPageChecked(page);
e6dcd2dc 3503 set_page_dirty(page);
2ac55d41
JB
3504 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3505 GFP_NOFS);
39279cc3 3506
89642229 3507out_unlock:
5d5e103a 3508 if (ret)
0ca1f7ce 3509 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3510 unlock_page(page);
3511 page_cache_release(page);
3512out:
3513 return ret;
3514}
3515
9036c102 3516int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 3517{
9036c102
YZ
3518 struct btrfs_trans_handle *trans;
3519 struct btrfs_root *root = BTRFS_I(inode)->root;
3520 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3521 struct extent_map *em = NULL;
2ac55d41 3522 struct extent_state *cached_state = NULL;
9036c102
YZ
3523 u64 mask = root->sectorsize - 1;
3524 u64 hole_start = (inode->i_size + mask) & ~mask;
3525 u64 block_end = (size + mask) & ~mask;
3526 u64 last_byte;
3527 u64 cur_offset;
3528 u64 hole_size;
9ed74f2d 3529 int err = 0;
39279cc3 3530
9036c102
YZ
3531 if (size <= hole_start)
3532 return 0;
3533
9036c102
YZ
3534 while (1) {
3535 struct btrfs_ordered_extent *ordered;
3536 btrfs_wait_ordered_range(inode, hole_start,
3537 block_end - hole_start);
2ac55d41
JB
3538 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3539 &cached_state, GFP_NOFS);
9036c102
YZ
3540 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3541 if (!ordered)
3542 break;
2ac55d41
JB
3543 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3544 &cached_state, GFP_NOFS);
9036c102
YZ
3545 btrfs_put_ordered_extent(ordered);
3546 }
39279cc3 3547
9036c102
YZ
3548 cur_offset = hole_start;
3549 while (1) {
3550 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3551 block_end - cur_offset, 0);
3552 BUG_ON(IS_ERR(em) || !em);
3553 last_byte = min(extent_map_end(em), block_end);
3554 last_byte = (last_byte + mask) & ~mask;
8082510e 3555 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3556 u64 hint_byte = 0;
9036c102 3557 hole_size = last_byte - cur_offset;
9ed74f2d 3558
a22285a6
YZ
3559 trans = btrfs_start_transaction(root, 2);
3560 if (IS_ERR(trans)) {
3561 err = PTR_ERR(trans);
9ed74f2d 3562 break;
a22285a6 3563 }
8082510e
YZ
3564 btrfs_set_trans_block_group(trans, inode);
3565
3566 err = btrfs_drop_extents(trans, inode, cur_offset,
3567 cur_offset + hole_size,
3568 &hint_byte, 1);
3569 BUG_ON(err);
3570
9036c102
YZ
3571 err = btrfs_insert_file_extent(trans, root,
3572 inode->i_ino, cur_offset, 0,
3573 0, hole_size, 0, hole_size,
3574 0, 0, 0);
8082510e
YZ
3575 BUG_ON(err);
3576
9036c102
YZ
3577 btrfs_drop_extent_cache(inode, hole_start,
3578 last_byte - 1, 0);
8082510e
YZ
3579
3580 btrfs_end_transaction(trans, root);
9036c102
YZ
3581 }
3582 free_extent_map(em);
a22285a6 3583 em = NULL;
9036c102 3584 cur_offset = last_byte;
8082510e 3585 if (cur_offset >= block_end)
9036c102
YZ
3586 break;
3587 }
1832a6d5 3588
a22285a6 3589 free_extent_map(em);
2ac55d41
JB
3590 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3591 GFP_NOFS);
9036c102
YZ
3592 return err;
3593}
39279cc3 3594
8082510e
YZ
3595static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3596{
3597 struct btrfs_root *root = BTRFS_I(inode)->root;
3598 struct btrfs_trans_handle *trans;
3599 unsigned long nr;
3600 int ret;
3601
3602 if (attr->ia_size == inode->i_size)
3603 return 0;
3604
3605 if (attr->ia_size > inode->i_size) {
3606 unsigned long limit;
3607 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3608 if (attr->ia_size > inode->i_sb->s_maxbytes)
3609 return -EFBIG;
3610 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3611 send_sig(SIGXFSZ, current, 0);
3612 return -EFBIG;
3613 }
3614 }
3615
d68fc57b
YZ
3616 trans = btrfs_start_transaction(root, 5);
3617 if (IS_ERR(trans))
3618 return PTR_ERR(trans);
8082510e 3619
8082510e
YZ
3620 btrfs_set_trans_block_group(trans, inode);
3621
3622 ret = btrfs_orphan_add(trans, inode);
3623 BUG_ON(ret);
3624
3625 nr = trans->blocks_used;
3626 btrfs_end_transaction(trans, root);
8082510e
YZ
3627 btrfs_btree_balance_dirty(root, nr);
3628
3629 if (attr->ia_size > inode->i_size) {
3630 ret = btrfs_cont_expand(inode, attr->ia_size);
3631 if (ret) {
3632 btrfs_truncate(inode);
3633 return ret;
3634 }
3635
3636 i_size_write(inode, attr->ia_size);
3637 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3638
d68fc57b
YZ
3639 trans = btrfs_start_transaction(root, 0);
3640 BUG_ON(IS_ERR(trans));
8082510e 3641 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3642 trans->block_rsv = root->orphan_block_rsv;
3643 BUG_ON(!trans->block_rsv);
8082510e
YZ
3644
3645 ret = btrfs_update_inode(trans, root, inode);
3646 BUG_ON(ret);
3647 if (inode->i_nlink > 0) {
3648 ret = btrfs_orphan_del(trans, inode);
3649 BUG_ON(ret);
3650 }
3651 nr = trans->blocks_used;
3652 btrfs_end_transaction(trans, root);
3653 btrfs_btree_balance_dirty(root, nr);
3654 return 0;
3655 }
3656
3657 /*
3658 * We're truncating a file that used to have good data down to
3659 * zero. Make sure it gets into the ordered flush list so that
3660 * any new writes get down to disk quickly.
3661 */
3662 if (attr->ia_size == 0)
3663 BTRFS_I(inode)->ordered_data_close = 1;
3664
3665 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3666 ret = vmtruncate(inode, attr->ia_size);
3667 BUG_ON(ret);
3668
3669 return 0;
3670}
3671
9036c102
YZ
3672static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3673{
3674 struct inode *inode = dentry->d_inode;
3675 int err;
39279cc3 3676
9036c102
YZ
3677 err = inode_change_ok(inode, attr);
3678 if (err)
3679 return err;
2bf5a725 3680
5a3f23d5 3681 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
8082510e
YZ
3682 err = btrfs_setattr_size(inode, attr);
3683 if (err)
3684 return err;
39279cc3 3685 }
9036c102 3686
1025774c
CH
3687 if (attr->ia_valid) {
3688 setattr_copy(inode, attr);
3689 mark_inode_dirty(inode);
3690
3691 if (attr->ia_valid & ATTR_MODE)
3692 err = btrfs_acl_chmod(inode);
3693 }
33268eaf 3694
39279cc3
CM
3695 return err;
3696}
61295eb8 3697
bd555975 3698void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3699{
3700 struct btrfs_trans_handle *trans;
3701 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3702 unsigned long nr;
39279cc3
CM
3703 int ret;
3704
3705 truncate_inode_pages(&inode->i_data, 0);
0af3d00b
JB
3706 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3707 root == root->fs_info->tree_root))
bd555975
AV
3708 goto no_delete;
3709
39279cc3 3710 if (is_bad_inode(inode)) {
7b128766 3711 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3712 goto no_delete;
3713 }
bd555975 3714 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3715 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3716
c71bf099
YZ
3717 if (root->fs_info->log_root_recovering) {
3718 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3719 goto no_delete;
3720 }
3721
76dda93c
YZ
3722 if (inode->i_nlink > 0) {
3723 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3724 goto no_delete;
3725 }
3726
dbe674a9 3727 btrfs_i_size_write(inode, 0);
5f39d397 3728
8082510e 3729 while (1) {
d68fc57b
YZ
3730 trans = btrfs_start_transaction(root, 0);
3731 BUG_ON(IS_ERR(trans));
8082510e 3732 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3733 trans->block_rsv = root->orphan_block_rsv;
3734
3735 ret = btrfs_block_rsv_check(trans, root,
3736 root->orphan_block_rsv, 0, 5);
3737 if (ret) {
3738 BUG_ON(ret != -EAGAIN);
3739 ret = btrfs_commit_transaction(trans, root);
3740 BUG_ON(ret);
3741 continue;
3742 }
7b128766 3743
d68fc57b 3744 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3745 if (ret != -EAGAIN)
3746 break;
85e21bac 3747
8082510e
YZ
3748 nr = trans->blocks_used;
3749 btrfs_end_transaction(trans, root);
3750 trans = NULL;
3751 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3752
8082510e 3753 }
5f39d397 3754
8082510e
YZ
3755 if (ret == 0) {
3756 ret = btrfs_orphan_del(trans, inode);
3757 BUG_ON(ret);
3758 }
54aa1f4d 3759
d3c2fdcf 3760 nr = trans->blocks_used;
54aa1f4d 3761 btrfs_end_transaction(trans, root);
d3c2fdcf 3762 btrfs_btree_balance_dirty(root, nr);
39279cc3 3763no_delete:
bd555975 3764 end_writeback(inode);
8082510e 3765 return;
39279cc3
CM
3766}
3767
3768/*
3769 * this returns the key found in the dir entry in the location pointer.
3770 * If no dir entries were found, location->objectid is 0.
3771 */
3772static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3773 struct btrfs_key *location)
3774{
3775 const char *name = dentry->d_name.name;
3776 int namelen = dentry->d_name.len;
3777 struct btrfs_dir_item *di;
3778 struct btrfs_path *path;
3779 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3780 int ret = 0;
39279cc3
CM
3781
3782 path = btrfs_alloc_path();
3783 BUG_ON(!path);
3954401f 3784
39279cc3
CM
3785 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3786 namelen, 0);
0d9f7f3e
Y
3787 if (IS_ERR(di))
3788 ret = PTR_ERR(di);
d397712b
CM
3789
3790 if (!di || IS_ERR(di))
3954401f 3791 goto out_err;
d397712b 3792
5f39d397 3793 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3794out:
39279cc3
CM
3795 btrfs_free_path(path);
3796 return ret;
3954401f
CM
3797out_err:
3798 location->objectid = 0;
3799 goto out;
39279cc3
CM
3800}
3801
3802/*
3803 * when we hit a tree root in a directory, the btrfs part of the inode
3804 * needs to be changed to reflect the root directory of the tree root. This
3805 * is kind of like crossing a mount point.
3806 */
3807static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3808 struct inode *dir,
3809 struct dentry *dentry,
3810 struct btrfs_key *location,
3811 struct btrfs_root **sub_root)
39279cc3 3812{
4df27c4d
YZ
3813 struct btrfs_path *path;
3814 struct btrfs_root *new_root;
3815 struct btrfs_root_ref *ref;
3816 struct extent_buffer *leaf;
3817 int ret;
3818 int err = 0;
39279cc3 3819
4df27c4d
YZ
3820 path = btrfs_alloc_path();
3821 if (!path) {
3822 err = -ENOMEM;
3823 goto out;
3824 }
39279cc3 3825
4df27c4d
YZ
3826 err = -ENOENT;
3827 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3828 BTRFS_I(dir)->root->root_key.objectid,
3829 location->objectid);
3830 if (ret) {
3831 if (ret < 0)
3832 err = ret;
3833 goto out;
3834 }
39279cc3 3835
4df27c4d
YZ
3836 leaf = path->nodes[0];
3837 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3838 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3839 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3840 goto out;
39279cc3 3841
4df27c4d
YZ
3842 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3843 (unsigned long)(ref + 1),
3844 dentry->d_name.len);
3845 if (ret)
3846 goto out;
3847
3848 btrfs_release_path(root->fs_info->tree_root, path);
3849
3850 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3851 if (IS_ERR(new_root)) {
3852 err = PTR_ERR(new_root);
3853 goto out;
3854 }
3855
3856 if (btrfs_root_refs(&new_root->root_item) == 0) {
3857 err = -ENOENT;
3858 goto out;
3859 }
3860
3861 *sub_root = new_root;
3862 location->objectid = btrfs_root_dirid(&new_root->root_item);
3863 location->type = BTRFS_INODE_ITEM_KEY;
3864 location->offset = 0;
3865 err = 0;
3866out:
3867 btrfs_free_path(path);
3868 return err;
39279cc3
CM
3869}
3870
5d4f98a2
YZ
3871static void inode_tree_add(struct inode *inode)
3872{
3873 struct btrfs_root *root = BTRFS_I(inode)->root;
3874 struct btrfs_inode *entry;
03e860bd
FNP
3875 struct rb_node **p;
3876 struct rb_node *parent;
03e860bd
FNP
3877again:
3878 p = &root->inode_tree.rb_node;
3879 parent = NULL;
5d4f98a2 3880
1d3382cb 3881 if (inode_unhashed(inode))
76dda93c
YZ
3882 return;
3883
5d4f98a2
YZ
3884 spin_lock(&root->inode_lock);
3885 while (*p) {
3886 parent = *p;
3887 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3888
3889 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3890 p = &parent->rb_left;
5d4f98a2 3891 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3892 p = &parent->rb_right;
5d4f98a2
YZ
3893 else {
3894 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3895 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3896 rb_erase(parent, &root->inode_tree);
3897 RB_CLEAR_NODE(parent);
3898 spin_unlock(&root->inode_lock);
3899 goto again;
5d4f98a2
YZ
3900 }
3901 }
3902 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3903 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3904 spin_unlock(&root->inode_lock);
3905}
3906
3907static void inode_tree_del(struct inode *inode)
3908{
3909 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3910 int empty = 0;
5d4f98a2 3911
03e860bd 3912 spin_lock(&root->inode_lock);
5d4f98a2 3913 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3914 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3915 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3916 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3917 }
03e860bd 3918 spin_unlock(&root->inode_lock);
76dda93c 3919
0af3d00b
JB
3920 /*
3921 * Free space cache has inodes in the tree root, but the tree root has a
3922 * root_refs of 0, so this could end up dropping the tree root as a
3923 * snapshot, so we need the extra !root->fs_info->tree_root check to
3924 * make sure we don't drop it.
3925 */
3926 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3927 root != root->fs_info->tree_root) {
76dda93c
YZ
3928 synchronize_srcu(&root->fs_info->subvol_srcu);
3929 spin_lock(&root->inode_lock);
3930 empty = RB_EMPTY_ROOT(&root->inode_tree);
3931 spin_unlock(&root->inode_lock);
3932 if (empty)
3933 btrfs_add_dead_root(root);
3934 }
3935}
3936
3937int btrfs_invalidate_inodes(struct btrfs_root *root)
3938{
3939 struct rb_node *node;
3940 struct rb_node *prev;
3941 struct btrfs_inode *entry;
3942 struct inode *inode;
3943 u64 objectid = 0;
3944
3945 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3946
3947 spin_lock(&root->inode_lock);
3948again:
3949 node = root->inode_tree.rb_node;
3950 prev = NULL;
3951 while (node) {
3952 prev = node;
3953 entry = rb_entry(node, struct btrfs_inode, rb_node);
3954
3955 if (objectid < entry->vfs_inode.i_ino)
3956 node = node->rb_left;
3957 else if (objectid > entry->vfs_inode.i_ino)
3958 node = node->rb_right;
3959 else
3960 break;
3961 }
3962 if (!node) {
3963 while (prev) {
3964 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3965 if (objectid <= entry->vfs_inode.i_ino) {
3966 node = prev;
3967 break;
3968 }
3969 prev = rb_next(prev);
3970 }
3971 }
3972 while (node) {
3973 entry = rb_entry(node, struct btrfs_inode, rb_node);
3974 objectid = entry->vfs_inode.i_ino + 1;
3975 inode = igrab(&entry->vfs_inode);
3976 if (inode) {
3977 spin_unlock(&root->inode_lock);
3978 if (atomic_read(&inode->i_count) > 1)
3979 d_prune_aliases(inode);
3980 /*
45321ac5 3981 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3982 * the inode cache when its usage count
3983 * hits zero.
3984 */
3985 iput(inode);
3986 cond_resched();
3987 spin_lock(&root->inode_lock);
3988 goto again;
3989 }
3990
3991 if (cond_resched_lock(&root->inode_lock))
3992 goto again;
3993
3994 node = rb_next(node);
3995 }
3996 spin_unlock(&root->inode_lock);
3997 return 0;
5d4f98a2
YZ
3998}
3999
e02119d5
CM
4000static int btrfs_init_locked_inode(struct inode *inode, void *p)
4001{
4002 struct btrfs_iget_args *args = p;
4003 inode->i_ino = args->ino;
e02119d5 4004 BTRFS_I(inode)->root = args->root;
6a63209f 4005 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4006 return 0;
4007}
4008
4009static int btrfs_find_actor(struct inode *inode, void *opaque)
4010{
4011 struct btrfs_iget_args *args = opaque;
d397712b
CM
4012 return args->ino == inode->i_ino &&
4013 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4014}
4015
5d4f98a2
YZ
4016static struct inode *btrfs_iget_locked(struct super_block *s,
4017 u64 objectid,
4018 struct btrfs_root *root)
39279cc3
CM
4019{
4020 struct inode *inode;
4021 struct btrfs_iget_args args;
4022 args.ino = objectid;
4023 args.root = root;
4024
4025 inode = iget5_locked(s, objectid, btrfs_find_actor,
4026 btrfs_init_locked_inode,
4027 (void *)&args);
4028 return inode;
4029}
4030
1a54ef8c
BR
4031/* Get an inode object given its location and corresponding root.
4032 * Returns in *is_new if the inode was read from disk
4033 */
4034struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4035 struct btrfs_root *root, int *new)
1a54ef8c
BR
4036{
4037 struct inode *inode;
4038
4039 inode = btrfs_iget_locked(s, location->objectid, root);
4040 if (!inode)
5d4f98a2 4041 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4042
4043 if (inode->i_state & I_NEW) {
4044 BTRFS_I(inode)->root = root;
4045 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4046 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
4047
4048 inode_tree_add(inode);
1a54ef8c 4049 unlock_new_inode(inode);
73f73415
JB
4050 if (new)
4051 *new = 1;
1a54ef8c
BR
4052 }
4053
4054 return inode;
4055}
4056
4df27c4d
YZ
4057static struct inode *new_simple_dir(struct super_block *s,
4058 struct btrfs_key *key,
4059 struct btrfs_root *root)
4060{
4061 struct inode *inode = new_inode(s);
4062
4063 if (!inode)
4064 return ERR_PTR(-ENOMEM);
4065
4df27c4d
YZ
4066 BTRFS_I(inode)->root = root;
4067 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4068 BTRFS_I(inode)->dummy_inode = 1;
4069
4070 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4071 inode->i_op = &simple_dir_inode_operations;
4072 inode->i_fop = &simple_dir_operations;
4073 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4074 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4075
4076 return inode;
4077}
4078
3de4586c 4079struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4080{
d397712b 4081 struct inode *inode;
4df27c4d 4082 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4083 struct btrfs_root *sub_root = root;
4084 struct btrfs_key location;
76dda93c 4085 int index;
5d4f98a2 4086 int ret;
39279cc3 4087
fb045adb 4088 d_set_d_op(dentry, &btrfs_dentry_operations);
76dda93c 4089
39279cc3
CM
4090 if (dentry->d_name.len > BTRFS_NAME_LEN)
4091 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4092
39279cc3 4093 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4094
39279cc3
CM
4095 if (ret < 0)
4096 return ERR_PTR(ret);
5f39d397 4097
4df27c4d
YZ
4098 if (location.objectid == 0)
4099 return NULL;
4100
4101 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4102 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4103 return inode;
4104 }
4105
4106 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4107
76dda93c 4108 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4109 ret = fixup_tree_root_location(root, dir, dentry,
4110 &location, &sub_root);
4111 if (ret < 0) {
4112 if (ret != -ENOENT)
4113 inode = ERR_PTR(ret);
4114 else
4115 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4116 } else {
73f73415 4117 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4118 }
76dda93c
YZ
4119 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4120
c71bf099
YZ
4121 if (root != sub_root) {
4122 down_read(&root->fs_info->cleanup_work_sem);
4123 if (!(inode->i_sb->s_flags & MS_RDONLY))
4124 btrfs_orphan_cleanup(sub_root);
4125 up_read(&root->fs_info->cleanup_work_sem);
4126 }
4127
3de4586c
CM
4128 return inode;
4129}
4130
fe15ce44 4131static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4132{
4133 struct btrfs_root *root;
4134
efefb143
YZ
4135 if (!dentry->d_inode && !IS_ROOT(dentry))
4136 dentry = dentry->d_parent;
76dda93c 4137
efefb143
YZ
4138 if (dentry->d_inode) {
4139 root = BTRFS_I(dentry->d_inode)->root;
4140 if (btrfs_root_refs(&root->root_item) == 0)
4141 return 1;
4142 }
76dda93c
YZ
4143 return 0;
4144}
4145
3de4586c
CM
4146static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4147 struct nameidata *nd)
4148{
4149 struct inode *inode;
4150
3de4586c
CM
4151 inode = btrfs_lookup_dentry(dir, dentry);
4152 if (IS_ERR(inode))
4153 return ERR_CAST(inode);
7b128766 4154
39279cc3
CM
4155 return d_splice_alias(inode, dentry);
4156}
4157
39279cc3
CM
4158static unsigned char btrfs_filetype_table[] = {
4159 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4160};
4161
cbdf5a24
DW
4162static int btrfs_real_readdir(struct file *filp, void *dirent,
4163 filldir_t filldir)
39279cc3 4164{
6da6abae 4165 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4166 struct btrfs_root *root = BTRFS_I(inode)->root;
4167 struct btrfs_item *item;
4168 struct btrfs_dir_item *di;
4169 struct btrfs_key key;
5f39d397 4170 struct btrfs_key found_key;
39279cc3
CM
4171 struct btrfs_path *path;
4172 int ret;
4173 u32 nritems;
5f39d397 4174 struct extent_buffer *leaf;
39279cc3
CM
4175 int slot;
4176 int advance;
4177 unsigned char d_type;
4178 int over = 0;
4179 u32 di_cur;
4180 u32 di_total;
4181 u32 di_len;
4182 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4183 char tmp_name[32];
4184 char *name_ptr;
4185 int name_len;
39279cc3
CM
4186
4187 /* FIXME, use a real flag for deciding about the key type */
4188 if (root->fs_info->tree_root == root)
4189 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4190
3954401f
CM
4191 /* special case for "." */
4192 if (filp->f_pos == 0) {
4193 over = filldir(dirent, ".", 1,
4194 1, inode->i_ino,
4195 DT_DIR);
4196 if (over)
4197 return 0;
4198 filp->f_pos = 1;
4199 }
3954401f
CM
4200 /* special case for .., just use the back ref */
4201 if (filp->f_pos == 1) {
5ecc7e5d 4202 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4203 over = filldir(dirent, "..", 2,
5ecc7e5d 4204 2, pino, DT_DIR);
3954401f 4205 if (over)
49593bfa 4206 return 0;
3954401f
CM
4207 filp->f_pos = 2;
4208 }
49593bfa
DW
4209 path = btrfs_alloc_path();
4210 path->reada = 2;
4211
39279cc3
CM
4212 btrfs_set_key_type(&key, key_type);
4213 key.offset = filp->f_pos;
49593bfa 4214 key.objectid = inode->i_ino;
5f39d397 4215
39279cc3
CM
4216 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4217 if (ret < 0)
4218 goto err;
4219 advance = 0;
49593bfa
DW
4220
4221 while (1) {
5f39d397
CM
4222 leaf = path->nodes[0];
4223 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4224 slot = path->slots[0];
4225 if (advance || slot >= nritems) {
49593bfa 4226 if (slot >= nritems - 1) {
39279cc3
CM
4227 ret = btrfs_next_leaf(root, path);
4228 if (ret)
4229 break;
5f39d397
CM
4230 leaf = path->nodes[0];
4231 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4232 slot = path->slots[0];
4233 } else {
4234 slot++;
4235 path->slots[0]++;
4236 }
4237 }
3de4586c 4238
39279cc3 4239 advance = 1;
5f39d397
CM
4240 item = btrfs_item_nr(leaf, slot);
4241 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4242
4243 if (found_key.objectid != key.objectid)
39279cc3 4244 break;
5f39d397 4245 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4246 break;
5f39d397 4247 if (found_key.offset < filp->f_pos)
39279cc3 4248 continue;
5f39d397
CM
4249
4250 filp->f_pos = found_key.offset;
49593bfa 4251
39279cc3
CM
4252 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4253 di_cur = 0;
5f39d397 4254 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4255
4256 while (di_cur < di_total) {
5f39d397
CM
4257 struct btrfs_key location;
4258
4259 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4260 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4261 name_ptr = tmp_name;
4262 } else {
4263 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4264 if (!name_ptr) {
4265 ret = -ENOMEM;
4266 goto err;
4267 }
5f39d397
CM
4268 }
4269 read_extent_buffer(leaf, name_ptr,
4270 (unsigned long)(di + 1), name_len);
4271
4272 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4273 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4274
4275 /* is this a reference to our own snapshot? If so
4276 * skip it
4277 */
4278 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4279 location.objectid == root->root_key.objectid) {
4280 over = 0;
4281 goto skip;
4282 }
5f39d397 4283 over = filldir(dirent, name_ptr, name_len,
49593bfa 4284 found_key.offset, location.objectid,
39279cc3 4285 d_type);
5f39d397 4286
3de4586c 4287skip:
5f39d397
CM
4288 if (name_ptr != tmp_name)
4289 kfree(name_ptr);
4290
39279cc3
CM
4291 if (over)
4292 goto nopos;
5103e947 4293 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4294 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4295 di_cur += di_len;
4296 di = (struct btrfs_dir_item *)((char *)di + di_len);
4297 }
4298 }
49593bfa
DW
4299
4300 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4301 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4302 /*
4303 * 32-bit glibc will use getdents64, but then strtol -
4304 * so the last number we can serve is this.
4305 */
4306 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4307 else
4308 filp->f_pos++;
39279cc3
CM
4309nopos:
4310 ret = 0;
4311err:
39279cc3 4312 btrfs_free_path(path);
39279cc3
CM
4313 return ret;
4314}
4315
a9185b41 4316int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4317{
4318 struct btrfs_root *root = BTRFS_I(inode)->root;
4319 struct btrfs_trans_handle *trans;
4320 int ret = 0;
0af3d00b 4321 bool nolock = false;
39279cc3 4322
8929ecfa 4323 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4324 return 0;
4325
0af3d00b
JB
4326 smp_mb();
4327 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4328
a9185b41 4329 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b
JB
4330 if (nolock)
4331 trans = btrfs_join_transaction_nolock(root, 1);
4332 else
4333 trans = btrfs_join_transaction(root, 1);
39279cc3 4334 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4335 if (nolock)
4336 ret = btrfs_end_transaction_nolock(trans, root);
4337 else
4338 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4339 }
4340 return ret;
4341}
4342
4343/*
54aa1f4d 4344 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4345 * inode changes. But, it is most likely to find the inode in cache.
4346 * FIXME, needs more benchmarking...there are no reasons other than performance
4347 * to keep or drop this code.
4348 */
4349void btrfs_dirty_inode(struct inode *inode)
4350{
4351 struct btrfs_root *root = BTRFS_I(inode)->root;
4352 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4353 int ret;
4354
4355 if (BTRFS_I(inode)->dummy_inode)
4356 return;
39279cc3 4357
f9295749 4358 trans = btrfs_join_transaction(root, 1);
39279cc3 4359 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4360
4361 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4362 if (ret && ret == -ENOSPC) {
4363 /* whoops, lets try again with the full transaction */
4364 btrfs_end_transaction(trans, root);
4365 trans = btrfs_start_transaction(root, 1);
9aeead73
CM
4366 if (IS_ERR(trans)) {
4367 if (printk_ratelimit()) {
4368 printk(KERN_ERR "btrfs: fail to "
4369 "dirty inode %lu error %ld\n",
4370 inode->i_ino, PTR_ERR(trans));
4371 }
4372 return;
4373 }
94b60442 4374 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4375
94b60442
CM
4376 ret = btrfs_update_inode(trans, root, inode);
4377 if (ret) {
9aeead73
CM
4378 if (printk_ratelimit()) {
4379 printk(KERN_ERR "btrfs: fail to "
4380 "dirty inode %lu error %d\n",
4381 inode->i_ino, ret);
4382 }
94b60442
CM
4383 }
4384 }
39279cc3 4385 btrfs_end_transaction(trans, root);
39279cc3
CM
4386}
4387
d352ac68
CM
4388/*
4389 * find the highest existing sequence number in a directory
4390 * and then set the in-memory index_cnt variable to reflect
4391 * free sequence numbers
4392 */
aec7477b
JB
4393static int btrfs_set_inode_index_count(struct inode *inode)
4394{
4395 struct btrfs_root *root = BTRFS_I(inode)->root;
4396 struct btrfs_key key, found_key;
4397 struct btrfs_path *path;
4398 struct extent_buffer *leaf;
4399 int ret;
4400
4401 key.objectid = inode->i_ino;
4402 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4403 key.offset = (u64)-1;
4404
4405 path = btrfs_alloc_path();
4406 if (!path)
4407 return -ENOMEM;
4408
4409 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4410 if (ret < 0)
4411 goto out;
4412 /* FIXME: we should be able to handle this */
4413 if (ret == 0)
4414 goto out;
4415 ret = 0;
4416
4417 /*
4418 * MAGIC NUMBER EXPLANATION:
4419 * since we search a directory based on f_pos we have to start at 2
4420 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4421 * else has to start at 2
4422 */
4423 if (path->slots[0] == 0) {
4424 BTRFS_I(inode)->index_cnt = 2;
4425 goto out;
4426 }
4427
4428 path->slots[0]--;
4429
4430 leaf = path->nodes[0];
4431 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4432
4433 if (found_key.objectid != inode->i_ino ||
4434 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4435 BTRFS_I(inode)->index_cnt = 2;
4436 goto out;
4437 }
4438
4439 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4440out:
4441 btrfs_free_path(path);
4442 return ret;
4443}
4444
d352ac68
CM
4445/*
4446 * helper to find a free sequence number in a given directory. This current
4447 * code is very simple, later versions will do smarter things in the btree
4448 */
3de4586c 4449int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4450{
4451 int ret = 0;
4452
4453 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4454 ret = btrfs_set_inode_index_count(dir);
d397712b 4455 if (ret)
aec7477b
JB
4456 return ret;
4457 }
4458
00e4e6b3 4459 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4460 BTRFS_I(dir)->index_cnt++;
4461
4462 return ret;
4463}
4464
39279cc3
CM
4465static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4466 struct btrfs_root *root,
aec7477b 4467 struct inode *dir,
9c58309d 4468 const char *name, int name_len,
d2fb3437
YZ
4469 u64 ref_objectid, u64 objectid,
4470 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4471{
4472 struct inode *inode;
5f39d397 4473 struct btrfs_inode_item *inode_item;
39279cc3 4474 struct btrfs_key *location;
5f39d397 4475 struct btrfs_path *path;
9c58309d
CM
4476 struct btrfs_inode_ref *ref;
4477 struct btrfs_key key[2];
4478 u32 sizes[2];
4479 unsigned long ptr;
39279cc3
CM
4480 int ret;
4481 int owner;
4482
5f39d397
CM
4483 path = btrfs_alloc_path();
4484 BUG_ON(!path);
4485
39279cc3
CM
4486 inode = new_inode(root->fs_info->sb);
4487 if (!inode)
4488 return ERR_PTR(-ENOMEM);
4489
aec7477b 4490 if (dir) {
3de4586c 4491 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4492 if (ret) {
4493 iput(inode);
aec7477b 4494 return ERR_PTR(ret);
09771430 4495 }
aec7477b
JB
4496 }
4497 /*
4498 * index_cnt is ignored for everything but a dir,
4499 * btrfs_get_inode_index_count has an explanation for the magic
4500 * number
4501 */
4502 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4503 BTRFS_I(inode)->root = root;
e02119d5 4504 BTRFS_I(inode)->generation = trans->transid;
76195853 4505 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4506 btrfs_set_inode_space_info(root, inode);
b888db2b 4507
39279cc3
CM
4508 if (mode & S_IFDIR)
4509 owner = 0;
4510 else
4511 owner = 1;
d2fb3437
YZ
4512 BTRFS_I(inode)->block_group =
4513 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4514
4515 key[0].objectid = objectid;
4516 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4517 key[0].offset = 0;
4518
4519 key[1].objectid = objectid;
4520 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4521 key[1].offset = ref_objectid;
4522
4523 sizes[0] = sizeof(struct btrfs_inode_item);
4524 sizes[1] = name_len + sizeof(*ref);
4525
b9473439 4526 path->leave_spinning = 1;
9c58309d
CM
4527 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4528 if (ret != 0)
5f39d397
CM
4529 goto fail;
4530
ecc11fab 4531 inode_init_owner(inode, dir, mode);
39279cc3 4532 inode->i_ino = objectid;
a76a3cd4 4533 inode_set_bytes(inode, 0);
39279cc3 4534 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4535 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4536 struct btrfs_inode_item);
e02119d5 4537 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4538
4539 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4540 struct btrfs_inode_ref);
4541 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4542 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4543 ptr = (unsigned long)(ref + 1);
4544 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4545
5f39d397
CM
4546 btrfs_mark_buffer_dirty(path->nodes[0]);
4547 btrfs_free_path(path);
4548
39279cc3
CM
4549 location = &BTRFS_I(inode)->location;
4550 location->objectid = objectid;
39279cc3
CM
4551 location->offset = 0;
4552 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4553
6cbff00f
CH
4554 btrfs_inherit_iflags(inode, dir);
4555
94272164
CM
4556 if ((mode & S_IFREG)) {
4557 if (btrfs_test_opt(root, NODATASUM))
4558 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4559 if (btrfs_test_opt(root, NODATACOW))
4560 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4561 }
4562
39279cc3 4563 insert_inode_hash(inode);
5d4f98a2 4564 inode_tree_add(inode);
39279cc3 4565 return inode;
5f39d397 4566fail:
aec7477b
JB
4567 if (dir)
4568 BTRFS_I(dir)->index_cnt--;
5f39d397 4569 btrfs_free_path(path);
09771430 4570 iput(inode);
5f39d397 4571 return ERR_PTR(ret);
39279cc3
CM
4572}
4573
4574static inline u8 btrfs_inode_type(struct inode *inode)
4575{
4576 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4577}
4578
d352ac68
CM
4579/*
4580 * utility function to add 'inode' into 'parent_inode' with
4581 * a give name and a given sequence number.
4582 * if 'add_backref' is true, also insert a backref from the
4583 * inode to the parent directory.
4584 */
e02119d5
CM
4585int btrfs_add_link(struct btrfs_trans_handle *trans,
4586 struct inode *parent_inode, struct inode *inode,
4587 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4588{
4df27c4d 4589 int ret = 0;
39279cc3 4590 struct btrfs_key key;
e02119d5 4591 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4592
4df27c4d
YZ
4593 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4594 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4595 } else {
4596 key.objectid = inode->i_ino;
4597 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4598 key.offset = 0;
4599 }
4600
4601 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4602 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4603 key.objectid, root->root_key.objectid,
4604 parent_inode->i_ino,
4605 index, name, name_len);
4606 } else if (add_backref) {
4607 ret = btrfs_insert_inode_ref(trans, root,
4608 name, name_len, inode->i_ino,
4609 parent_inode->i_ino, index);
4610 }
39279cc3 4611
39279cc3 4612 if (ret == 0) {
4df27c4d
YZ
4613 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4614 parent_inode->i_ino, &key,
4615 btrfs_inode_type(inode), index);
4616 BUG_ON(ret);
4617
dbe674a9 4618 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4619 name_len * 2);
79c44584 4620 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4621 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4622 }
4623 return ret;
4624}
4625
4626static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4627 struct inode *dir, struct dentry *dentry,
4628 struct inode *inode, int backref, u64 index)
39279cc3 4629{
a1b075d2
JB
4630 int err = btrfs_add_link(trans, dir, inode,
4631 dentry->d_name.name, dentry->d_name.len,
4632 backref, index);
39279cc3
CM
4633 if (!err) {
4634 d_instantiate(dentry, inode);
4635 return 0;
4636 }
4637 if (err > 0)
4638 err = -EEXIST;
4639 return err;
4640}
4641
618e21d5
JB
4642static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4643 int mode, dev_t rdev)
4644{
4645 struct btrfs_trans_handle *trans;
4646 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4647 struct inode *inode = NULL;
618e21d5
JB
4648 int err;
4649 int drop_inode = 0;
4650 u64 objectid;
1832a6d5 4651 unsigned long nr = 0;
00e4e6b3 4652 u64 index = 0;
618e21d5
JB
4653
4654 if (!new_valid_dev(rdev))
4655 return -EINVAL;
4656
a22285a6
YZ
4657 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4658 if (err)
4659 return err;
4660
9ed74f2d
JB
4661 /*
4662 * 2 for inode item and ref
4663 * 2 for dir items
4664 * 1 for xattr if selinux is on
4665 */
a22285a6
YZ
4666 trans = btrfs_start_transaction(root, 5);
4667 if (IS_ERR(trans))
4668 return PTR_ERR(trans);
1832a6d5 4669
618e21d5
JB
4670 btrfs_set_trans_block_group(trans, dir);
4671
aec7477b 4672 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4673 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3 4674 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4675 err = PTR_ERR(inode);
4676 if (IS_ERR(inode))
4677 goto out_unlock;
4678
2a7dba39 4679 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4680 if (err) {
4681 drop_inode = 1;
4682 goto out_unlock;
4683 }
4684
618e21d5 4685 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4686 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4687 if (err)
4688 drop_inode = 1;
4689 else {
4690 inode->i_op = &btrfs_special_inode_operations;
4691 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4692 btrfs_update_inode(trans, root, inode);
618e21d5 4693 }
618e21d5
JB
4694 btrfs_update_inode_block_group(trans, inode);
4695 btrfs_update_inode_block_group(trans, dir);
4696out_unlock:
d3c2fdcf 4697 nr = trans->blocks_used;
89ce8a63 4698 btrfs_end_transaction_throttle(trans, root);
a22285a6 4699 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4700 if (drop_inode) {
4701 inode_dec_link_count(inode);
4702 iput(inode);
4703 }
618e21d5
JB
4704 return err;
4705}
4706
39279cc3
CM
4707static int btrfs_create(struct inode *dir, struct dentry *dentry,
4708 int mode, struct nameidata *nd)
4709{
4710 struct btrfs_trans_handle *trans;
4711 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4712 struct inode *inode = NULL;
39279cc3 4713 int drop_inode = 0;
a22285a6 4714 int err;
1832a6d5 4715 unsigned long nr = 0;
39279cc3 4716 u64 objectid;
00e4e6b3 4717 u64 index = 0;
39279cc3 4718
a22285a6
YZ
4719 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4720 if (err)
4721 return err;
9ed74f2d
JB
4722 /*
4723 * 2 for inode item and ref
4724 * 2 for dir items
4725 * 1 for xattr if selinux is on
4726 */
a22285a6
YZ
4727 trans = btrfs_start_transaction(root, 5);
4728 if (IS_ERR(trans))
4729 return PTR_ERR(trans);
9ed74f2d 4730
39279cc3
CM
4731 btrfs_set_trans_block_group(trans, dir);
4732
aec7477b 4733 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2
JB
4734 dentry->d_name.len, dir->i_ino, objectid,
4735 BTRFS_I(dir)->block_group, mode, &index);
39279cc3
CM
4736 err = PTR_ERR(inode);
4737 if (IS_ERR(inode))
4738 goto out_unlock;
4739
2a7dba39 4740 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4741 if (err) {
4742 drop_inode = 1;
4743 goto out_unlock;
4744 }
4745
39279cc3 4746 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4747 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4748 if (err)
4749 drop_inode = 1;
4750 else {
4751 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4752 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4753 inode->i_fop = &btrfs_file_operations;
4754 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4755 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4756 }
39279cc3
CM
4757 btrfs_update_inode_block_group(trans, inode);
4758 btrfs_update_inode_block_group(trans, dir);
4759out_unlock:
d3c2fdcf 4760 nr = trans->blocks_used;
ab78c84d 4761 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4762 if (drop_inode) {
4763 inode_dec_link_count(inode);
4764 iput(inode);
4765 }
d3c2fdcf 4766 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4767 return err;
4768}
4769
4770static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4771 struct dentry *dentry)
4772{
4773 struct btrfs_trans_handle *trans;
4774 struct btrfs_root *root = BTRFS_I(dir)->root;
4775 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4776 u64 index;
1832a6d5 4777 unsigned long nr = 0;
39279cc3
CM
4778 int err;
4779 int drop_inode = 0;
4780
4781 if (inode->i_nlink == 0)
4782 return -ENOENT;
4783
4a8be425
TH
4784 /* do not allow sys_link's with other subvols of the same device */
4785 if (root->objectid != BTRFS_I(inode)->root->objectid)
4786 return -EPERM;
4787
9ed74f2d 4788 btrfs_inc_nlink(inode);
bc1cbf1f 4789 inode->i_ctime = CURRENT_TIME;
9ed74f2d 4790
3de4586c 4791 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4792 if (err)
4793 goto fail;
4794
a22285a6
YZ
4795 /*
4796 * 1 item for inode ref
4797 * 2 items for dir items
4798 */
4799 trans = btrfs_start_transaction(root, 3);
4800 if (IS_ERR(trans)) {
4801 err = PTR_ERR(trans);
4802 goto fail;
4803 }
5f39d397 4804
39279cc3 4805 btrfs_set_trans_block_group(trans, dir);
7de9c6ee 4806 ihold(inode);
aec7477b 4807
a1b075d2 4808 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4809
a5719521 4810 if (err) {
54aa1f4d 4811 drop_inode = 1;
a5719521 4812 } else {
6a912213 4813 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4814 btrfs_update_inode_block_group(trans, dir);
4815 err = btrfs_update_inode(trans, root, inode);
4816 BUG_ON(err);
6a912213
JB
4817 btrfs_log_new_name(trans, inode, NULL, parent);
4818 dput(parent);
a5719521 4819 }
39279cc3 4820
d3c2fdcf 4821 nr = trans->blocks_used;
ab78c84d 4822 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4823fail:
39279cc3
CM
4824 if (drop_inode) {
4825 inode_dec_link_count(inode);
4826 iput(inode);
4827 }
d3c2fdcf 4828 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4829 return err;
4830}
4831
39279cc3
CM
4832static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4833{
b9d86667 4834 struct inode *inode = NULL;
39279cc3
CM
4835 struct btrfs_trans_handle *trans;
4836 struct btrfs_root *root = BTRFS_I(dir)->root;
4837 int err = 0;
4838 int drop_on_err = 0;
b9d86667 4839 u64 objectid = 0;
00e4e6b3 4840 u64 index = 0;
d3c2fdcf 4841 unsigned long nr = 1;
39279cc3 4842
a22285a6
YZ
4843 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4844 if (err)
4845 return err;
4846
9ed74f2d
JB
4847 /*
4848 * 2 items for inode and ref
4849 * 2 items for dir items
4850 * 1 for xattr if selinux is on
4851 */
a22285a6
YZ
4852 trans = btrfs_start_transaction(root, 5);
4853 if (IS_ERR(trans))
4854 return PTR_ERR(trans);
9ed74f2d 4855 btrfs_set_trans_block_group(trans, dir);
39279cc3 4856
aec7477b 4857 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4858 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
4859 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4860 &index);
39279cc3
CM
4861 if (IS_ERR(inode)) {
4862 err = PTR_ERR(inode);
4863 goto out_fail;
4864 }
5f39d397 4865
39279cc3 4866 drop_on_err = 1;
33268eaf 4867
2a7dba39 4868 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4869 if (err)
4870 goto out_fail;
4871
39279cc3
CM
4872 inode->i_op = &btrfs_dir_inode_operations;
4873 inode->i_fop = &btrfs_dir_file_operations;
4874 btrfs_set_trans_block_group(trans, inode);
4875
dbe674a9 4876 btrfs_i_size_write(inode, 0);
39279cc3
CM
4877 err = btrfs_update_inode(trans, root, inode);
4878 if (err)
4879 goto out_fail;
5f39d397 4880
a1b075d2
JB
4881 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4882 dentry->d_name.len, 0, index);
39279cc3
CM
4883 if (err)
4884 goto out_fail;
5f39d397 4885
39279cc3
CM
4886 d_instantiate(dentry, inode);
4887 drop_on_err = 0;
39279cc3
CM
4888 btrfs_update_inode_block_group(trans, inode);
4889 btrfs_update_inode_block_group(trans, dir);
4890
4891out_fail:
d3c2fdcf 4892 nr = trans->blocks_used;
ab78c84d 4893 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4894 if (drop_on_err)
4895 iput(inode);
d3c2fdcf 4896 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4897 return err;
4898}
4899
d352ac68
CM
4900/* helper for btfs_get_extent. Given an existing extent in the tree,
4901 * and an extent that you want to insert, deal with overlap and insert
4902 * the new extent into the tree.
4903 */
3b951516
CM
4904static int merge_extent_mapping(struct extent_map_tree *em_tree,
4905 struct extent_map *existing,
e6dcd2dc
CM
4906 struct extent_map *em,
4907 u64 map_start, u64 map_len)
3b951516
CM
4908{
4909 u64 start_diff;
3b951516 4910
e6dcd2dc
CM
4911 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4912 start_diff = map_start - em->start;
4913 em->start = map_start;
4914 em->len = map_len;
c8b97818
CM
4915 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4916 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4917 em->block_start += start_diff;
c8b97818
CM
4918 em->block_len -= start_diff;
4919 }
e6dcd2dc 4920 return add_extent_mapping(em_tree, em);
3b951516
CM
4921}
4922
c8b97818
CM
4923static noinline int uncompress_inline(struct btrfs_path *path,
4924 struct inode *inode, struct page *page,
4925 size_t pg_offset, u64 extent_offset,
4926 struct btrfs_file_extent_item *item)
4927{
4928 int ret;
4929 struct extent_buffer *leaf = path->nodes[0];
4930 char *tmp;
4931 size_t max_size;
4932 unsigned long inline_size;
4933 unsigned long ptr;
4934
4935 WARN_ON(pg_offset != 0);
4936 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4937 inline_size = btrfs_file_extent_inline_item_len(leaf,
4938 btrfs_item_nr(leaf, path->slots[0]));
4939 tmp = kmalloc(inline_size, GFP_NOFS);
4940 ptr = btrfs_file_extent_inline_start(item);
4941
4942 read_extent_buffer(leaf, tmp, ptr, inline_size);
4943
5b050f04 4944 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4945 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4946 inline_size, max_size);
4947 if (ret) {
4948 char *kaddr = kmap_atomic(page, KM_USER0);
4949 unsigned long copy_size = min_t(u64,
4950 PAGE_CACHE_SIZE - pg_offset,
4951 max_size - extent_offset);
4952 memset(kaddr + pg_offset, 0, copy_size);
4953 kunmap_atomic(kaddr, KM_USER0);
4954 }
4955 kfree(tmp);
4956 return 0;
4957}
4958
d352ac68
CM
4959/*
4960 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4961 * the ugly parts come from merging extents from the disk with the in-ram
4962 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4963 * where the in-ram extents might be locked pending data=ordered completion.
4964 *
4965 * This also copies inline extents directly into the page.
4966 */
d397712b 4967
a52d9a80 4968struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4969 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4970 int create)
4971{
4972 int ret;
4973 int err = 0;
db94535d 4974 u64 bytenr;
a52d9a80
CM
4975 u64 extent_start = 0;
4976 u64 extent_end = 0;
4977 u64 objectid = inode->i_ino;
4978 u32 found_type;
f421950f 4979 struct btrfs_path *path = NULL;
a52d9a80
CM
4980 struct btrfs_root *root = BTRFS_I(inode)->root;
4981 struct btrfs_file_extent_item *item;
5f39d397
CM
4982 struct extent_buffer *leaf;
4983 struct btrfs_key found_key;
a52d9a80
CM
4984 struct extent_map *em = NULL;
4985 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4986 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4987 struct btrfs_trans_handle *trans = NULL;
c8b97818 4988 int compressed;
a52d9a80 4989
a52d9a80 4990again:
890871be 4991 read_lock(&em_tree->lock);
d1310b2e 4992 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4993 if (em)
4994 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4995 read_unlock(&em_tree->lock);
d1310b2e 4996
a52d9a80 4997 if (em) {
e1c4b745
CM
4998 if (em->start > start || em->start + em->len <= start)
4999 free_extent_map(em);
5000 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5001 free_extent_map(em);
5002 else
5003 goto out;
a52d9a80 5004 }
d1310b2e 5005 em = alloc_extent_map(GFP_NOFS);
a52d9a80 5006 if (!em) {
d1310b2e
CM
5007 err = -ENOMEM;
5008 goto out;
a52d9a80 5009 }
e6dcd2dc 5010 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5011 em->start = EXTENT_MAP_HOLE;
445a6944 5012 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5013 em->len = (u64)-1;
c8b97818 5014 em->block_len = (u64)-1;
f421950f
CM
5015
5016 if (!path) {
5017 path = btrfs_alloc_path();
5018 BUG_ON(!path);
5019 }
5020
179e29e4
CM
5021 ret = btrfs_lookup_file_extent(trans, root, path,
5022 objectid, start, trans != NULL);
a52d9a80
CM
5023 if (ret < 0) {
5024 err = ret;
5025 goto out;
5026 }
5027
5028 if (ret != 0) {
5029 if (path->slots[0] == 0)
5030 goto not_found;
5031 path->slots[0]--;
5032 }
5033
5f39d397
CM
5034 leaf = path->nodes[0];
5035 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5036 struct btrfs_file_extent_item);
a52d9a80 5037 /* are we inside the extent that was found? */
5f39d397
CM
5038 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5039 found_type = btrfs_key_type(&found_key);
5040 if (found_key.objectid != objectid ||
a52d9a80
CM
5041 found_type != BTRFS_EXTENT_DATA_KEY) {
5042 goto not_found;
5043 }
5044
5f39d397
CM
5045 found_type = btrfs_file_extent_type(leaf, item);
5046 extent_start = found_key.offset;
c8b97818 5047 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5048 if (found_type == BTRFS_FILE_EXTENT_REG ||
5049 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5050 extent_end = extent_start +
db94535d 5051 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5052 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5053 size_t size;
5054 size = btrfs_file_extent_inline_len(leaf, item);
5055 extent_end = (extent_start + size + root->sectorsize - 1) &
5056 ~((u64)root->sectorsize - 1);
5057 }
5058
5059 if (start >= extent_end) {
5060 path->slots[0]++;
5061 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5062 ret = btrfs_next_leaf(root, path);
5063 if (ret < 0) {
5064 err = ret;
5065 goto out;
a52d9a80 5066 }
9036c102
YZ
5067 if (ret > 0)
5068 goto not_found;
5069 leaf = path->nodes[0];
a52d9a80 5070 }
9036c102
YZ
5071 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5072 if (found_key.objectid != objectid ||
5073 found_key.type != BTRFS_EXTENT_DATA_KEY)
5074 goto not_found;
5075 if (start + len <= found_key.offset)
5076 goto not_found;
5077 em->start = start;
5078 em->len = found_key.offset - start;
5079 goto not_found_em;
5080 }
5081
d899e052
YZ
5082 if (found_type == BTRFS_FILE_EXTENT_REG ||
5083 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5084 em->start = extent_start;
5085 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5086 em->orig_start = extent_start -
5087 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5088 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5089 if (bytenr == 0) {
5f39d397 5090 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5091 goto insert;
5092 }
c8b97818
CM
5093 if (compressed) {
5094 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5095 em->block_start = bytenr;
5096 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5097 item);
5098 } else {
5099 bytenr += btrfs_file_extent_offset(leaf, item);
5100 em->block_start = bytenr;
5101 em->block_len = em->len;
d899e052
YZ
5102 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5103 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5104 }
a52d9a80
CM
5105 goto insert;
5106 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5107 unsigned long ptr;
a52d9a80 5108 char *map;
3326d1b0
CM
5109 size_t size;
5110 size_t extent_offset;
5111 size_t copy_size;
a52d9a80 5112
689f9346 5113 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5114 if (!page || create) {
689f9346 5115 em->start = extent_start;
9036c102 5116 em->len = extent_end - extent_start;
689f9346
Y
5117 goto out;
5118 }
5f39d397 5119
9036c102
YZ
5120 size = btrfs_file_extent_inline_len(leaf, item);
5121 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5122 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5123 size - extent_offset);
3326d1b0 5124 em->start = extent_start + extent_offset;
70dec807
CM
5125 em->len = (copy_size + root->sectorsize - 1) &
5126 ~((u64)root->sectorsize - 1);
ff5b7ee3 5127 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
5128 if (compressed)
5129 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 5130 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5131 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
5132 if (btrfs_file_extent_compression(leaf, item) ==
5133 BTRFS_COMPRESS_ZLIB) {
5134 ret = uncompress_inline(path, inode, page,
5135 pg_offset,
5136 extent_offset, item);
5137 BUG_ON(ret);
5138 } else {
5139 map = kmap(page);
5140 read_extent_buffer(leaf, map + pg_offset, ptr,
5141 copy_size);
93c82d57
CM
5142 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5143 memset(map + pg_offset + copy_size, 0,
5144 PAGE_CACHE_SIZE - pg_offset -
5145 copy_size);
5146 }
c8b97818
CM
5147 kunmap(page);
5148 }
179e29e4
CM
5149 flush_dcache_page(page);
5150 } else if (create && PageUptodate(page)) {
0ca1f7ce 5151 WARN_ON(1);
179e29e4
CM
5152 if (!trans) {
5153 kunmap(page);
5154 free_extent_map(em);
5155 em = NULL;
5156 btrfs_release_path(root, path);
f9295749 5157 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
5158 goto again;
5159 }
c8b97818 5160 map = kmap(page);
70dec807 5161 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5162 copy_size);
c8b97818 5163 kunmap(page);
179e29e4 5164 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5165 }
d1310b2e
CM
5166 set_extent_uptodate(io_tree, em->start,
5167 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
5168 goto insert;
5169 } else {
d397712b 5170 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5171 WARN_ON(1);
5172 }
5173not_found:
5174 em->start = start;
d1310b2e 5175 em->len = len;
a52d9a80 5176not_found_em:
5f39d397 5177 em->block_start = EXTENT_MAP_HOLE;
9036c102 5178 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
5179insert:
5180 btrfs_release_path(root, path);
d1310b2e 5181 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5182 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5183 "[%llu %llu]\n", (unsigned long long)em->start,
5184 (unsigned long long)em->len,
5185 (unsigned long long)start,
5186 (unsigned long long)len);
a52d9a80
CM
5187 err = -EIO;
5188 goto out;
5189 }
d1310b2e
CM
5190
5191 err = 0;
890871be 5192 write_lock(&em_tree->lock);
a52d9a80 5193 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5194 /* it is possible that someone inserted the extent into the tree
5195 * while we had the lock dropped. It is also possible that
5196 * an overlapping map exists in the tree
5197 */
a52d9a80 5198 if (ret == -EEXIST) {
3b951516 5199 struct extent_map *existing;
e6dcd2dc
CM
5200
5201 ret = 0;
5202
3b951516 5203 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5204 if (existing && (existing->start > start ||
5205 existing->start + existing->len <= start)) {
5206 free_extent_map(existing);
5207 existing = NULL;
5208 }
3b951516
CM
5209 if (!existing) {
5210 existing = lookup_extent_mapping(em_tree, em->start,
5211 em->len);
5212 if (existing) {
5213 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5214 em, start,
5215 root->sectorsize);
3b951516
CM
5216 free_extent_map(existing);
5217 if (err) {
5218 free_extent_map(em);
5219 em = NULL;
5220 }
5221 } else {
5222 err = -EIO;
3b951516
CM
5223 free_extent_map(em);
5224 em = NULL;
5225 }
5226 } else {
5227 free_extent_map(em);
5228 em = existing;
e6dcd2dc 5229 err = 0;
a52d9a80 5230 }
a52d9a80 5231 }
890871be 5232 write_unlock(&em_tree->lock);
a52d9a80 5233out:
f421950f
CM
5234 if (path)
5235 btrfs_free_path(path);
a52d9a80
CM
5236 if (trans) {
5237 ret = btrfs_end_transaction(trans, root);
d397712b 5238 if (!err)
a52d9a80
CM
5239 err = ret;
5240 }
a52d9a80
CM
5241 if (err) {
5242 free_extent_map(em);
a52d9a80
CM
5243 return ERR_PTR(err);
5244 }
5245 return em;
5246}
5247
4b46fce2
JB
5248static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5249 u64 start, u64 len)
5250{
5251 struct btrfs_root *root = BTRFS_I(inode)->root;
5252 struct btrfs_trans_handle *trans;
5253 struct extent_map *em;
5254 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5255 struct btrfs_key ins;
5256 u64 alloc_hint;
5257 int ret;
5258
5259 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5260
5261 trans = btrfs_join_transaction(root, 0);
5262 if (!trans)
5263 return ERR_PTR(-ENOMEM);
5264
5265 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5266
5267 alloc_hint = get_extent_allocation_hint(inode, start, len);
5268 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5269 alloc_hint, (u64)-1, &ins, 1);
5270 if (ret) {
5271 em = ERR_PTR(ret);
5272 goto out;
5273 }
5274
5275 em = alloc_extent_map(GFP_NOFS);
5276 if (!em) {
5277 em = ERR_PTR(-ENOMEM);
5278 goto out;
5279 }
5280
5281 em->start = start;
5282 em->orig_start = em->start;
5283 em->len = ins.offset;
5284
5285 em->block_start = ins.objectid;
5286 em->block_len = ins.offset;
5287 em->bdev = root->fs_info->fs_devices->latest_bdev;
5288 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5289
5290 while (1) {
5291 write_lock(&em_tree->lock);
5292 ret = add_extent_mapping(em_tree, em);
5293 write_unlock(&em_tree->lock);
5294 if (ret != -EEXIST)
5295 break;
5296 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5297 }
5298
5299 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5300 ins.offset, ins.offset, 0);
5301 if (ret) {
5302 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5303 em = ERR_PTR(ret);
5304 }
5305out:
5306 btrfs_end_transaction(trans, root);
5307 return em;
5308}
5309
46bfbb5c
CM
5310/*
5311 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5312 * block must be cow'd
5313 */
5314static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5315 struct inode *inode, u64 offset, u64 len)
5316{
5317 struct btrfs_path *path;
5318 int ret;
5319 struct extent_buffer *leaf;
5320 struct btrfs_root *root = BTRFS_I(inode)->root;
5321 struct btrfs_file_extent_item *fi;
5322 struct btrfs_key key;
5323 u64 disk_bytenr;
5324 u64 backref_offset;
5325 u64 extent_end;
5326 u64 num_bytes;
5327 int slot;
5328 int found_type;
5329
5330 path = btrfs_alloc_path();
5331 if (!path)
5332 return -ENOMEM;
5333
5334 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5335 offset, 0);
5336 if (ret < 0)
5337 goto out;
5338
5339 slot = path->slots[0];
5340 if (ret == 1) {
5341 if (slot == 0) {
5342 /* can't find the item, must cow */
5343 ret = 0;
5344 goto out;
5345 }
5346 slot--;
5347 }
5348 ret = 0;
5349 leaf = path->nodes[0];
5350 btrfs_item_key_to_cpu(leaf, &key, slot);
5351 if (key.objectid != inode->i_ino ||
5352 key.type != BTRFS_EXTENT_DATA_KEY) {
5353 /* not our file or wrong item type, must cow */
5354 goto out;
5355 }
5356
5357 if (key.offset > offset) {
5358 /* Wrong offset, must cow */
5359 goto out;
5360 }
5361
5362 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5363 found_type = btrfs_file_extent_type(leaf, fi);
5364 if (found_type != BTRFS_FILE_EXTENT_REG &&
5365 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5366 /* not a regular extent, must cow */
5367 goto out;
5368 }
5369 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5370 backref_offset = btrfs_file_extent_offset(leaf, fi);
5371
5372 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5373 if (extent_end < offset + len) {
5374 /* extent doesn't include our full range, must cow */
5375 goto out;
5376 }
5377
5378 if (btrfs_extent_readonly(root, disk_bytenr))
5379 goto out;
5380
5381 /*
5382 * look for other files referencing this extent, if we
5383 * find any we must cow
5384 */
5385 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5386 key.offset - backref_offset, disk_bytenr))
5387 goto out;
5388
5389 /*
5390 * adjust disk_bytenr and num_bytes to cover just the bytes
5391 * in this extent we are about to write. If there
5392 * are any csums in that range we have to cow in order
5393 * to keep the csums correct
5394 */
5395 disk_bytenr += backref_offset;
5396 disk_bytenr += offset - key.offset;
5397 num_bytes = min(offset + len, extent_end) - offset;
5398 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5399 goto out;
5400 /*
5401 * all of the above have passed, it is safe to overwrite this extent
5402 * without cow
5403 */
5404 ret = 1;
5405out:
5406 btrfs_free_path(path);
5407 return ret;
5408}
5409
4b46fce2
JB
5410static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5411 struct buffer_head *bh_result, int create)
5412{
5413 struct extent_map *em;
5414 struct btrfs_root *root = BTRFS_I(inode)->root;
5415 u64 start = iblock << inode->i_blkbits;
5416 u64 len = bh_result->b_size;
46bfbb5c 5417 struct btrfs_trans_handle *trans;
4b46fce2
JB
5418
5419 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5420 if (IS_ERR(em))
5421 return PTR_ERR(em);
5422
5423 /*
5424 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5425 * io. INLINE is special, and we could probably kludge it in here, but
5426 * it's still buffered so for safety lets just fall back to the generic
5427 * buffered path.
5428 *
5429 * For COMPRESSED we _have_ to read the entire extent in so we can
5430 * decompress it, so there will be buffering required no matter what we
5431 * do, so go ahead and fallback to buffered.
5432 *
5433 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5434 * to buffered IO. Don't blame me, this is the price we pay for using
5435 * the generic code.
5436 */
5437 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5438 em->block_start == EXTENT_MAP_INLINE) {
5439 free_extent_map(em);
5440 return -ENOTBLK;
5441 }
5442
5443 /* Just a good old fashioned hole, return */
5444 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5445 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5446 free_extent_map(em);
5447 /* DIO will do one hole at a time, so just unlock a sector */
5448 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5449 start + root->sectorsize - 1, GFP_NOFS);
5450 return 0;
5451 }
5452
5453 /*
5454 * We don't allocate a new extent in the following cases
5455 *
5456 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5457 * existing extent.
5458 * 2) The extent is marked as PREALLOC. We're good to go here and can
5459 * just use the extent.
5460 *
5461 */
46bfbb5c
CM
5462 if (!create) {
5463 len = em->len - (start - em->start);
4b46fce2 5464 goto map;
46bfbb5c 5465 }
4b46fce2
JB
5466
5467 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5468 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5469 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5470 int type;
5471 int ret;
46bfbb5c 5472 u64 block_start;
4b46fce2
JB
5473
5474 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5475 type = BTRFS_ORDERED_PREALLOC;
5476 else
5477 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5478 len = min(len, em->len - (start - em->start));
4b46fce2 5479 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5480
5481 /*
5482 * we're not going to log anything, but we do need
5483 * to make sure the current transaction stays open
5484 * while we look for nocow cross refs
5485 */
5486 trans = btrfs_join_transaction(root, 0);
5487 if (!trans)
5488 goto must_cow;
5489
5490 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5491 ret = btrfs_add_ordered_extent_dio(inode, start,
5492 block_start, len, len, type);
5493 btrfs_end_transaction(trans, root);
5494 if (ret) {
5495 free_extent_map(em);
5496 return ret;
5497 }
5498 goto unlock;
4b46fce2 5499 }
46bfbb5c 5500 btrfs_end_transaction(trans, root);
4b46fce2 5501 }
46bfbb5c
CM
5502must_cow:
5503 /*
5504 * this will cow the extent, reset the len in case we changed
5505 * it above
5506 */
5507 len = bh_result->b_size;
5508 free_extent_map(em);
5509 em = btrfs_new_extent_direct(inode, start, len);
5510 if (IS_ERR(em))
5511 return PTR_ERR(em);
5512 len = min(len, em->len - (start - em->start));
5513unlock:
4845e44f
CM
5514 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5515 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5516 0, NULL, GFP_NOFS);
4b46fce2
JB
5517map:
5518 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5519 inode->i_blkbits;
46bfbb5c 5520 bh_result->b_size = len;
4b46fce2
JB
5521 bh_result->b_bdev = em->bdev;
5522 set_buffer_mapped(bh_result);
5523 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5524 set_buffer_new(bh_result);
5525
5526 free_extent_map(em);
5527
5528 return 0;
5529}
5530
5531struct btrfs_dio_private {
5532 struct inode *inode;
5533 u64 logical_offset;
5534 u64 disk_bytenr;
5535 u64 bytes;
5536 u32 *csums;
5537 void *private;
e65e1535
MX
5538
5539 /* number of bios pending for this dio */
5540 atomic_t pending_bios;
5541
5542 /* IO errors */
5543 int errors;
5544
5545 struct bio *orig_bio;
4b46fce2
JB
5546};
5547
5548static void btrfs_endio_direct_read(struct bio *bio, int err)
5549{
e65e1535 5550 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5551 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5552 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5553 struct inode *inode = dip->inode;
5554 struct btrfs_root *root = BTRFS_I(inode)->root;
5555 u64 start;
5556 u32 *private = dip->csums;
5557
5558 start = dip->logical_offset;
5559 do {
5560 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5561 struct page *page = bvec->bv_page;
5562 char *kaddr;
5563 u32 csum = ~(u32)0;
5564 unsigned long flags;
5565
5566 local_irq_save(flags);
5567 kaddr = kmap_atomic(page, KM_IRQ0);
5568 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5569 csum, bvec->bv_len);
5570 btrfs_csum_final(csum, (char *)&csum);
5571 kunmap_atomic(kaddr, KM_IRQ0);
5572 local_irq_restore(flags);
5573
5574 flush_dcache_page(bvec->bv_page);
5575 if (csum != *private) {
5576 printk(KERN_ERR "btrfs csum failed ino %lu off"
5577 " %llu csum %u private %u\n",
5578 inode->i_ino, (unsigned long long)start,
5579 csum, *private);
5580 err = -EIO;
5581 }
5582 }
5583
5584 start += bvec->bv_len;
5585 private++;
5586 bvec++;
5587 } while (bvec <= bvec_end);
5588
5589 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5590 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5591 bio->bi_private = dip->private;
5592
5593 kfree(dip->csums);
5594 kfree(dip);
5595 dio_end_io(bio, err);
5596}
5597
5598static void btrfs_endio_direct_write(struct bio *bio, int err)
5599{
5600 struct btrfs_dio_private *dip = bio->bi_private;
5601 struct inode *inode = dip->inode;
5602 struct btrfs_root *root = BTRFS_I(inode)->root;
5603 struct btrfs_trans_handle *trans;
5604 struct btrfs_ordered_extent *ordered = NULL;
5605 struct extent_state *cached_state = NULL;
163cf09c
CM
5606 u64 ordered_offset = dip->logical_offset;
5607 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5608 int ret;
5609
5610 if (err)
5611 goto out_done;
163cf09c
CM
5612again:
5613 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5614 &ordered_offset,
5615 ordered_bytes);
4b46fce2 5616 if (!ret)
163cf09c 5617 goto out_test;
4b46fce2
JB
5618
5619 BUG_ON(!ordered);
5620
5621 trans = btrfs_join_transaction(root, 1);
5622 if (!trans) {
5623 err = -ENOMEM;
5624 goto out;
5625 }
5626 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5627
5628 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5629 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5630 if (!ret)
5631 ret = btrfs_update_inode(trans, root, inode);
5632 err = ret;
5633 goto out;
5634 }
5635
5636 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5637 ordered->file_offset + ordered->len - 1, 0,
5638 &cached_state, GFP_NOFS);
5639
5640 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5641 ret = btrfs_mark_extent_written(trans, inode,
5642 ordered->file_offset,
5643 ordered->file_offset +
5644 ordered->len);
5645 if (ret) {
5646 err = ret;
5647 goto out_unlock;
5648 }
5649 } else {
5650 ret = insert_reserved_file_extent(trans, inode,
5651 ordered->file_offset,
5652 ordered->start,
5653 ordered->disk_len,
5654 ordered->len,
5655 ordered->len,
5656 0, 0, 0,
5657 BTRFS_FILE_EXTENT_REG);
5658 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5659 ordered->file_offset, ordered->len);
5660 if (ret) {
5661 err = ret;
5662 WARN_ON(1);
5663 goto out_unlock;
5664 }
5665 }
5666
5667 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5668 btrfs_ordered_update_i_size(inode, 0, ordered);
5669 btrfs_update_inode(trans, root, inode);
5670out_unlock:
5671 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5672 ordered->file_offset + ordered->len - 1,
5673 &cached_state, GFP_NOFS);
5674out:
5675 btrfs_delalloc_release_metadata(inode, ordered->len);
5676 btrfs_end_transaction(trans, root);
163cf09c 5677 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5678 btrfs_put_ordered_extent(ordered);
5679 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5680
5681out_test:
5682 /*
5683 * our bio might span multiple ordered extents. If we haven't
5684 * completed the accounting for the whole dio, go back and try again
5685 */
5686 if (ordered_offset < dip->logical_offset + dip->bytes) {
5687 ordered_bytes = dip->logical_offset + dip->bytes -
5688 ordered_offset;
5689 goto again;
5690 }
4b46fce2
JB
5691out_done:
5692 bio->bi_private = dip->private;
5693
5694 kfree(dip->csums);
5695 kfree(dip);
5696 dio_end_io(bio, err);
5697}
5698
eaf25d93
CM
5699static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5700 struct bio *bio, int mirror_num,
5701 unsigned long bio_flags, u64 offset)
5702{
5703 int ret;
5704 struct btrfs_root *root = BTRFS_I(inode)->root;
5705 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5706 BUG_ON(ret);
5707 return 0;
5708}
5709
e65e1535
MX
5710static void btrfs_end_dio_bio(struct bio *bio, int err)
5711{
5712 struct btrfs_dio_private *dip = bio->bi_private;
5713
5714 if (err) {
5715 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
3dd1462e
JB
5716 "sector %#Lx len %u err no %d\n",
5717 dip->inode->i_ino, bio->bi_rw,
5718 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5719 dip->errors = 1;
5720
5721 /*
5722 * before atomic variable goto zero, we must make sure
5723 * dip->errors is perceived to be set.
5724 */
5725 smp_mb__before_atomic_dec();
5726 }
5727
5728 /* if there are more bios still pending for this dio, just exit */
5729 if (!atomic_dec_and_test(&dip->pending_bios))
5730 goto out;
5731
5732 if (dip->errors)
5733 bio_io_error(dip->orig_bio);
5734 else {
5735 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5736 bio_endio(dip->orig_bio, 0);
5737 }
5738out:
5739 bio_put(bio);
5740}
5741
5742static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5743 u64 first_sector, gfp_t gfp_flags)
5744{
5745 int nr_vecs = bio_get_nr_vecs(bdev);
5746 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5747}
5748
5749static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5750 int rw, u64 file_offset, int skip_sum,
5751 u32 *csums)
5752{
5753 int write = rw & REQ_WRITE;
5754 struct btrfs_root *root = BTRFS_I(inode)->root;
5755 int ret;
5756
5757 bio_get(bio);
5758 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5759 if (ret)
5760 goto err;
5761
5762 if (write && !skip_sum) {
5763 ret = btrfs_wq_submit_bio(root->fs_info,
5764 inode, rw, bio, 0, 0,
5765 file_offset,
5766 __btrfs_submit_bio_start_direct_io,
5767 __btrfs_submit_bio_done);
5768 goto err;
5769 } else if (!skip_sum)
5770 btrfs_lookup_bio_sums_dio(root, inode, bio,
5771 file_offset, csums);
5772
5773 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5774err:
5775 bio_put(bio);
5776 return ret;
5777}
5778
5779static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5780 int skip_sum)
5781{
5782 struct inode *inode = dip->inode;
5783 struct btrfs_root *root = BTRFS_I(inode)->root;
5784 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5785 struct bio *bio;
5786 struct bio *orig_bio = dip->orig_bio;
5787 struct bio_vec *bvec = orig_bio->bi_io_vec;
5788 u64 start_sector = orig_bio->bi_sector;
5789 u64 file_offset = dip->logical_offset;
5790 u64 submit_len = 0;
5791 u64 map_length;
5792 int nr_pages = 0;
5793 u32 *csums = dip->csums;
5794 int ret = 0;
5795
5796 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5797 if (!bio)
5798 return -ENOMEM;
5799 bio->bi_private = dip;
5800 bio->bi_end_io = btrfs_end_dio_bio;
5801 atomic_inc(&dip->pending_bios);
5802
5803 map_length = orig_bio->bi_size;
5804 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5805 &map_length, NULL, 0);
5806 if (ret) {
5807 bio_put(bio);
5808 return -EIO;
5809 }
5810
5811 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5812 if (unlikely(map_length < submit_len + bvec->bv_len ||
5813 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5814 bvec->bv_offset) < bvec->bv_len)) {
5815 /*
5816 * inc the count before we submit the bio so
5817 * we know the end IO handler won't happen before
5818 * we inc the count. Otherwise, the dip might get freed
5819 * before we're done setting it up
5820 */
5821 atomic_inc(&dip->pending_bios);
5822 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5823 file_offset, skip_sum,
5824 csums);
5825 if (ret) {
5826 bio_put(bio);
5827 atomic_dec(&dip->pending_bios);
5828 goto out_err;
5829 }
5830
5831 if (!skip_sum)
5832 csums = csums + nr_pages;
5833 start_sector += submit_len >> 9;
5834 file_offset += submit_len;
5835
5836 submit_len = 0;
5837 nr_pages = 0;
5838
5839 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5840 start_sector, GFP_NOFS);
5841 if (!bio)
5842 goto out_err;
5843 bio->bi_private = dip;
5844 bio->bi_end_io = btrfs_end_dio_bio;
5845
5846 map_length = orig_bio->bi_size;
5847 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5848 &map_length, NULL, 0);
5849 if (ret) {
5850 bio_put(bio);
5851 goto out_err;
5852 }
5853 } else {
5854 submit_len += bvec->bv_len;
5855 nr_pages ++;
5856 bvec++;
5857 }
5858 }
5859
5860 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5861 csums);
5862 if (!ret)
5863 return 0;
5864
5865 bio_put(bio);
5866out_err:
5867 dip->errors = 1;
5868 /*
5869 * before atomic variable goto zero, we must
5870 * make sure dip->errors is perceived to be set.
5871 */
5872 smp_mb__before_atomic_dec();
5873 if (atomic_dec_and_test(&dip->pending_bios))
5874 bio_io_error(dip->orig_bio);
5875
5876 /* bio_end_io() will handle error, so we needn't return it */
5877 return 0;
5878}
5879
4b46fce2
JB
5880static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5881 loff_t file_offset)
5882{
5883 struct btrfs_root *root = BTRFS_I(inode)->root;
5884 struct btrfs_dio_private *dip;
5885 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 5886 int skip_sum;
7b6d91da 5887 int write = rw & REQ_WRITE;
4b46fce2
JB
5888 int ret = 0;
5889
5890 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5891
5892 dip = kmalloc(sizeof(*dip), GFP_NOFS);
5893 if (!dip) {
5894 ret = -ENOMEM;
5895 goto free_ordered;
5896 }
5897 dip->csums = NULL;
5898
5899 if (!skip_sum) {
5900 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5901 if (!dip->csums) {
5902 ret = -ENOMEM;
5903 goto free_ordered;
5904 }
5905 }
5906
5907 dip->private = bio->bi_private;
5908 dip->inode = inode;
5909 dip->logical_offset = file_offset;
5910
4b46fce2
JB
5911 dip->bytes = 0;
5912 do {
5913 dip->bytes += bvec->bv_len;
5914 bvec++;
5915 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5916
46bfbb5c 5917 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 5918 bio->bi_private = dip;
e65e1535
MX
5919 dip->errors = 0;
5920 dip->orig_bio = bio;
5921 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
5922
5923 if (write)
5924 bio->bi_end_io = btrfs_endio_direct_write;
5925 else
5926 bio->bi_end_io = btrfs_endio_direct_read;
5927
e65e1535
MX
5928 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
5929 if (!ret)
eaf25d93 5930 return;
4b46fce2
JB
5931free_ordered:
5932 /*
5933 * If this is a write, we need to clean up the reserved space and kill
5934 * the ordered extent.
5935 */
5936 if (write) {
5937 struct btrfs_ordered_extent *ordered;
955256f2 5938 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
5939 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5940 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5941 btrfs_free_reserved_extent(root, ordered->start,
5942 ordered->disk_len);
5943 btrfs_put_ordered_extent(ordered);
5944 btrfs_put_ordered_extent(ordered);
5945 }
5946 bio_endio(bio, ret);
5947}
5948
5a5f79b5
CM
5949static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5950 const struct iovec *iov, loff_t offset,
5951 unsigned long nr_segs)
5952{
5953 int seg;
5954 size_t size;
5955 unsigned long addr;
5956 unsigned blocksize_mask = root->sectorsize - 1;
5957 ssize_t retval = -EINVAL;
5958 loff_t end = offset;
5959
5960 if (offset & blocksize_mask)
5961 goto out;
5962
5963 /* Check the memory alignment. Blocks cannot straddle pages */
5964 for (seg = 0; seg < nr_segs; seg++) {
5965 addr = (unsigned long)iov[seg].iov_base;
5966 size = iov[seg].iov_len;
5967 end += size;
5968 if ((addr & blocksize_mask) || (size & blocksize_mask))
5969 goto out;
5970 }
5971 retval = 0;
5972out:
5973 return retval;
5974}
16432985
CM
5975static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
5976 const struct iovec *iov, loff_t offset,
5977 unsigned long nr_segs)
5978{
4b46fce2
JB
5979 struct file *file = iocb->ki_filp;
5980 struct inode *inode = file->f_mapping->host;
5981 struct btrfs_ordered_extent *ordered;
4845e44f 5982 struct extent_state *cached_state = NULL;
4b46fce2
JB
5983 u64 lockstart, lockend;
5984 ssize_t ret;
4845e44f
CM
5985 int writing = rw & WRITE;
5986 int write_bits = 0;
3f7c579c 5987 size_t count = iov_length(iov, nr_segs);
4b46fce2 5988
5a5f79b5
CM
5989 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
5990 offset, nr_segs)) {
5991 return 0;
5992 }
5993
4b46fce2 5994 lockstart = offset;
3f7c579c
CM
5995 lockend = offset + count - 1;
5996
5997 if (writing) {
5998 ret = btrfs_delalloc_reserve_space(inode, count);
5999 if (ret)
6000 goto out;
6001 }
4845e44f 6002
4b46fce2 6003 while (1) {
4845e44f
CM
6004 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6005 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6006 /*
6007 * We're concerned with the entire range that we're going to be
6008 * doing DIO to, so we need to make sure theres no ordered
6009 * extents in this range.
6010 */
6011 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6012 lockend - lockstart + 1);
6013 if (!ordered)
6014 break;
4845e44f
CM
6015 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6016 &cached_state, GFP_NOFS);
4b46fce2
JB
6017 btrfs_start_ordered_extent(inode, ordered, 1);
6018 btrfs_put_ordered_extent(ordered);
6019 cond_resched();
6020 }
6021
4845e44f
CM
6022 /*
6023 * we don't use btrfs_set_extent_delalloc because we don't want
6024 * the dirty or uptodate bits
6025 */
6026 if (writing) {
6027 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6028 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6029 EXTENT_DELALLOC, 0, NULL, &cached_state,
6030 GFP_NOFS);
6031 if (ret) {
6032 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6033 lockend, EXTENT_LOCKED | write_bits,
6034 1, 0, &cached_state, GFP_NOFS);
6035 goto out;
6036 }
6037 }
6038
6039 free_extent_state(cached_state);
6040 cached_state = NULL;
6041
5a5f79b5
CM
6042 ret = __blockdev_direct_IO(rw, iocb, inode,
6043 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6044 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6045 btrfs_submit_direct, 0);
4b46fce2
JB
6046
6047 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6048 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6049 offset + iov_length(iov, nr_segs) - 1,
6050 EXTENT_LOCKED | write_bits, 1, 0,
6051 &cached_state, GFP_NOFS);
4b46fce2
JB
6052 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6053 /*
6054 * We're falling back to buffered, unlock the section we didn't
6055 * do IO on.
6056 */
4845e44f
CM
6057 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6058 offset + iov_length(iov, nr_segs) - 1,
6059 EXTENT_LOCKED | write_bits, 1, 0,
6060 &cached_state, GFP_NOFS);
4b46fce2 6061 }
4845e44f
CM
6062out:
6063 free_extent_state(cached_state);
4b46fce2 6064 return ret;
16432985
CM
6065}
6066
1506fcc8
YS
6067static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6068 __u64 start, __u64 len)
6069{
6070 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
6071}
6072
a52d9a80 6073int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6074{
d1310b2e
CM
6075 struct extent_io_tree *tree;
6076 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6077 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6078}
1832a6d5 6079
a52d9a80 6080static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6081{
d1310b2e 6082 struct extent_io_tree *tree;
b888db2b
CM
6083
6084
6085 if (current->flags & PF_MEMALLOC) {
6086 redirty_page_for_writepage(wbc, page);
6087 unlock_page(page);
6088 return 0;
6089 }
d1310b2e 6090 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6091 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6092}
6093
f421950f
CM
6094int btrfs_writepages(struct address_space *mapping,
6095 struct writeback_control *wbc)
b293f02e 6096{
d1310b2e 6097 struct extent_io_tree *tree;
771ed689 6098
d1310b2e 6099 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6100 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6101}
6102
3ab2fb5a
CM
6103static int
6104btrfs_readpages(struct file *file, struct address_space *mapping,
6105 struct list_head *pages, unsigned nr_pages)
6106{
d1310b2e
CM
6107 struct extent_io_tree *tree;
6108 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6109 return extent_readpages(tree, mapping, pages, nr_pages,
6110 btrfs_get_extent);
6111}
e6dcd2dc 6112static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6113{
d1310b2e
CM
6114 struct extent_io_tree *tree;
6115 struct extent_map_tree *map;
a52d9a80 6116 int ret;
8c2383c3 6117
d1310b2e
CM
6118 tree = &BTRFS_I(page->mapping->host)->io_tree;
6119 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6120 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6121 if (ret == 1) {
6122 ClearPagePrivate(page);
6123 set_page_private(page, 0);
6124 page_cache_release(page);
39279cc3 6125 }
a52d9a80 6126 return ret;
39279cc3
CM
6127}
6128
e6dcd2dc
CM
6129static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6130{
98509cfc
CM
6131 if (PageWriteback(page) || PageDirty(page))
6132 return 0;
b335b003 6133 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6134}
6135
a52d9a80 6136static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6137{
d1310b2e 6138 struct extent_io_tree *tree;
e6dcd2dc 6139 struct btrfs_ordered_extent *ordered;
2ac55d41 6140 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6141 u64 page_start = page_offset(page);
6142 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6143
8b62b72b
CM
6144
6145 /*
6146 * we have the page locked, so new writeback can't start,
6147 * and the dirty bit won't be cleared while we are here.
6148 *
6149 * Wait for IO on this page so that we can safely clear
6150 * the PagePrivate2 bit and do ordered accounting
6151 */
e6dcd2dc 6152 wait_on_page_writeback(page);
8b62b72b 6153
d1310b2e 6154 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6155 if (offset) {
6156 btrfs_releasepage(page, GFP_NOFS);
6157 return;
6158 }
2ac55d41
JB
6159 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6160 GFP_NOFS);
e6dcd2dc
CM
6161 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6162 page_offset(page));
6163 if (ordered) {
eb84ae03
CM
6164 /*
6165 * IO on this page will never be started, so we need
6166 * to account for any ordered extents now
6167 */
e6dcd2dc
CM
6168 clear_extent_bit(tree, page_start, page_end,
6169 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6170 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6171 &cached_state, GFP_NOFS);
8b62b72b
CM
6172 /*
6173 * whoever cleared the private bit is responsible
6174 * for the finish_ordered_io
6175 */
6176 if (TestClearPagePrivate2(page)) {
6177 btrfs_finish_ordered_io(page->mapping->host,
6178 page_start, page_end);
6179 }
e6dcd2dc 6180 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6181 cached_state = NULL;
6182 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6183 GFP_NOFS);
e6dcd2dc
CM
6184 }
6185 clear_extent_bit(tree, page_start, page_end,
32c00aff 6186 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6187 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6188 __btrfs_releasepage(page, GFP_NOFS);
6189
4a096752 6190 ClearPageChecked(page);
9ad6b7bc 6191 if (PagePrivate(page)) {
9ad6b7bc
CM
6192 ClearPagePrivate(page);
6193 set_page_private(page, 0);
6194 page_cache_release(page);
6195 }
39279cc3
CM
6196}
6197
9ebefb18
CM
6198/*
6199 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6200 * called from a page fault handler when a page is first dirtied. Hence we must
6201 * be careful to check for EOF conditions here. We set the page up correctly
6202 * for a written page which means we get ENOSPC checking when writing into
6203 * holes and correct delalloc and unwritten extent mapping on filesystems that
6204 * support these features.
6205 *
6206 * We are not allowed to take the i_mutex here so we have to play games to
6207 * protect against truncate races as the page could now be beyond EOF. Because
6208 * vmtruncate() writes the inode size before removing pages, once we have the
6209 * page lock we can determine safely if the page is beyond EOF. If it is not
6210 * beyond EOF, then the page is guaranteed safe against truncation until we
6211 * unlock the page.
6212 */
c2ec175c 6213int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6214{
c2ec175c 6215 struct page *page = vmf->page;
6da6abae 6216 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6217 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6218 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6219 struct btrfs_ordered_extent *ordered;
2ac55d41 6220 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6221 char *kaddr;
6222 unsigned long zero_start;
9ebefb18 6223 loff_t size;
1832a6d5 6224 int ret;
a52d9a80 6225 u64 page_start;
e6dcd2dc 6226 u64 page_end;
9ebefb18 6227
0ca1f7ce 6228 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6229 if (ret) {
6230 if (ret == -ENOMEM)
6231 ret = VM_FAULT_OOM;
6232 else /* -ENOSPC, -EIO, etc */
6233 ret = VM_FAULT_SIGBUS;
1832a6d5 6234 goto out;
56a76f82 6235 }
1832a6d5 6236
56a76f82 6237 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6238again:
9ebefb18 6239 lock_page(page);
9ebefb18 6240 size = i_size_read(inode);
e6dcd2dc
CM
6241 page_start = page_offset(page);
6242 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6243
9ebefb18 6244 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6245 (page_start >= size)) {
9ebefb18
CM
6246 /* page got truncated out from underneath us */
6247 goto out_unlock;
6248 }
e6dcd2dc
CM
6249 wait_on_page_writeback(page);
6250
2ac55d41
JB
6251 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6252 GFP_NOFS);
e6dcd2dc
CM
6253 set_page_extent_mapped(page);
6254
eb84ae03
CM
6255 /*
6256 * we can't set the delalloc bits if there are pending ordered
6257 * extents. Drop our locks and wait for them to finish
6258 */
e6dcd2dc
CM
6259 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6260 if (ordered) {
2ac55d41
JB
6261 unlock_extent_cached(io_tree, page_start, page_end,
6262 &cached_state, GFP_NOFS);
e6dcd2dc 6263 unlock_page(page);
eb84ae03 6264 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6265 btrfs_put_ordered_extent(ordered);
6266 goto again;
6267 }
6268
fbf19087
JB
6269 /*
6270 * XXX - page_mkwrite gets called every time the page is dirtied, even
6271 * if it was already dirty, so for space accounting reasons we need to
6272 * clear any delalloc bits for the range we are fixing to save. There
6273 * is probably a better way to do this, but for now keep consistent with
6274 * prepare_pages in the normal write path.
6275 */
2ac55d41 6276 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6277 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6278 0, 0, &cached_state, GFP_NOFS);
fbf19087 6279
2ac55d41
JB
6280 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6281 &cached_state);
9ed74f2d 6282 if (ret) {
2ac55d41
JB
6283 unlock_extent_cached(io_tree, page_start, page_end,
6284 &cached_state, GFP_NOFS);
9ed74f2d
JB
6285 ret = VM_FAULT_SIGBUS;
6286 goto out_unlock;
6287 }
e6dcd2dc 6288 ret = 0;
9ebefb18
CM
6289
6290 /* page is wholly or partially inside EOF */
a52d9a80 6291 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6292 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6293 else
e6dcd2dc 6294 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6295
e6dcd2dc
CM
6296 if (zero_start != PAGE_CACHE_SIZE) {
6297 kaddr = kmap(page);
6298 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6299 flush_dcache_page(page);
6300 kunmap(page);
6301 }
247e743c 6302 ClearPageChecked(page);
e6dcd2dc 6303 set_page_dirty(page);
50a9b214 6304 SetPageUptodate(page);
5a3f23d5 6305
257c62e1
CM
6306 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6307 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6308
2ac55d41 6309 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6310
6311out_unlock:
50a9b214
CM
6312 if (!ret)
6313 return VM_FAULT_LOCKED;
9ebefb18 6314 unlock_page(page);
0ca1f7ce 6315 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6316out:
9ebefb18
CM
6317 return ret;
6318}
6319
39279cc3
CM
6320static void btrfs_truncate(struct inode *inode)
6321{
6322 struct btrfs_root *root = BTRFS_I(inode)->root;
6323 int ret;
6324 struct btrfs_trans_handle *trans;
d3c2fdcf 6325 unsigned long nr;
dbe674a9 6326 u64 mask = root->sectorsize - 1;
39279cc3 6327
8082510e
YZ
6328 if (!S_ISREG(inode->i_mode)) {
6329 WARN_ON(1);
39279cc3 6330 return;
8082510e 6331 }
39279cc3 6332
5d5e103a
JB
6333 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6334 if (ret)
6335 return;
8082510e 6336
4a096752 6337 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6338 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6339
d68fc57b
YZ
6340 trans = btrfs_start_transaction(root, 0);
6341 BUG_ON(IS_ERR(trans));
8082510e 6342 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6343 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6344
6345 /*
6346 * setattr is responsible for setting the ordered_data_close flag,
6347 * but that is only tested during the last file release. That
6348 * could happen well after the next commit, leaving a great big
6349 * window where new writes may get lost if someone chooses to write
6350 * to this file after truncating to zero
6351 *
6352 * The inode doesn't have any dirty data here, and so if we commit
6353 * this is a noop. If someone immediately starts writing to the inode
6354 * it is very likely we'll catch some of their writes in this
6355 * transaction, and the commit will find this file on the ordered
6356 * data list with good things to send down.
6357 *
6358 * This is a best effort solution, there is still a window where
6359 * using truncate to replace the contents of the file will
6360 * end up with a zero length file after a crash.
6361 */
6362 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6363 btrfs_add_ordered_operation(trans, root, inode);
6364
8082510e 6365 while (1) {
d68fc57b
YZ
6366 if (!trans) {
6367 trans = btrfs_start_transaction(root, 0);
6368 BUG_ON(IS_ERR(trans));
6369 btrfs_set_trans_block_group(trans, inode);
6370 trans->block_rsv = root->orphan_block_rsv;
6371 }
6372
6373 ret = btrfs_block_rsv_check(trans, root,
6374 root->orphan_block_rsv, 0, 5);
6375 if (ret) {
6376 BUG_ON(ret != -EAGAIN);
6377 ret = btrfs_commit_transaction(trans, root);
6378 BUG_ON(ret);
6379 trans = NULL;
6380 continue;
6381 }
6382
8082510e
YZ
6383 ret = btrfs_truncate_inode_items(trans, root, inode,
6384 inode->i_size,
6385 BTRFS_EXTENT_DATA_KEY);
6386 if (ret != -EAGAIN)
6387 break;
39279cc3 6388
8082510e
YZ
6389 ret = btrfs_update_inode(trans, root, inode);
6390 BUG_ON(ret);
5f39d397 6391
8082510e
YZ
6392 nr = trans->blocks_used;
6393 btrfs_end_transaction(trans, root);
d68fc57b 6394 trans = NULL;
8082510e 6395 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6396 }
6397
6398 if (ret == 0 && inode->i_nlink > 0) {
6399 ret = btrfs_orphan_del(trans, inode);
6400 BUG_ON(ret);
6401 }
6402
6403 ret = btrfs_update_inode(trans, root, inode);
7b128766
JB
6404 BUG_ON(ret);
6405
7b128766 6406 nr = trans->blocks_used;
89ce8a63 6407 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 6408 BUG_ON(ret);
d3c2fdcf 6409 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
6410}
6411
d352ac68
CM
6412/*
6413 * create a new subvolume directory/inode (helper for the ioctl).
6414 */
d2fb3437 6415int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6416 struct btrfs_root *new_root,
d2fb3437 6417 u64 new_dirid, u64 alloc_hint)
39279cc3 6418{
39279cc3 6419 struct inode *inode;
76dda93c 6420 int err;
00e4e6b3 6421 u64 index = 0;
39279cc3 6422
aec7477b 6423 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6424 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6425 if (IS_ERR(inode))
f46b5a66 6426 return PTR_ERR(inode);
39279cc3
CM
6427 inode->i_op = &btrfs_dir_inode_operations;
6428 inode->i_fop = &btrfs_dir_file_operations;
6429
39279cc3 6430 inode->i_nlink = 1;
dbe674a9 6431 btrfs_i_size_write(inode, 0);
3b96362c 6432
76dda93c
YZ
6433 err = btrfs_update_inode(trans, new_root, inode);
6434 BUG_ON(err);
cb8e7090 6435
76dda93c 6436 iput(inode);
cb8e7090 6437 return 0;
39279cc3
CM
6438}
6439
d352ac68
CM
6440/* helper function for file defrag and space balancing. This
6441 * forces readahead on a given range of bytes in an inode
6442 */
edbd8d4e 6443unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6444 struct file_ra_state *ra, struct file *file,
6445 pgoff_t offset, pgoff_t last_index)
6446{
8e7bf94f 6447 pgoff_t req_size = last_index - offset + 1;
86479a04 6448
86479a04
CM
6449 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6450 return offset + req_size;
86479a04
CM
6451}
6452
39279cc3
CM
6453struct inode *btrfs_alloc_inode(struct super_block *sb)
6454{
6455 struct btrfs_inode *ei;
2ead6ae7 6456 struct inode *inode;
39279cc3
CM
6457
6458 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6459 if (!ei)
6460 return NULL;
2ead6ae7
YZ
6461
6462 ei->root = NULL;
6463 ei->space_info = NULL;
6464 ei->generation = 0;
6465 ei->sequence = 0;
15ee9bc7 6466 ei->last_trans = 0;
257c62e1 6467 ei->last_sub_trans = 0;
e02119d5 6468 ei->logged_trans = 0;
2ead6ae7
YZ
6469 ei->delalloc_bytes = 0;
6470 ei->reserved_bytes = 0;
6471 ei->disk_i_size = 0;
6472 ei->flags = 0;
6473 ei->index_cnt = (u64)-1;
6474 ei->last_unlink_trans = 0;
6475
32c00aff 6476 spin_lock_init(&ei->accounting_lock);
0ca1f7ce 6477 atomic_set(&ei->outstanding_extents, 0);
32c00aff 6478 ei->reserved_extents = 0;
2ead6ae7
YZ
6479
6480 ei->ordered_data_close = 0;
d68fc57b 6481 ei->orphan_meta_reserved = 0;
2ead6ae7
YZ
6482 ei->dummy_inode = 0;
6483 ei->force_compress = 0;
6484
6485 inode = &ei->vfs_inode;
6486 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6487 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6488 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6489 mutex_init(&ei->log_mutex);
e6dcd2dc 6490 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6491 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6492 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6493 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6494 RB_CLEAR_NODE(&ei->rb_node);
6495
6496 return inode;
39279cc3
CM
6497}
6498
fa0d7e3d
NP
6499static void btrfs_i_callback(struct rcu_head *head)
6500{
6501 struct inode *inode = container_of(head, struct inode, i_rcu);
6502 INIT_LIST_HEAD(&inode->i_dentry);
6503 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6504}
6505
39279cc3
CM
6506void btrfs_destroy_inode(struct inode *inode)
6507{
e6dcd2dc 6508 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6509 struct btrfs_root *root = BTRFS_I(inode)->root;
6510
39279cc3
CM
6511 WARN_ON(!list_empty(&inode->i_dentry));
6512 WARN_ON(inode->i_data.nrpages);
0ca1f7ce
YZ
6513 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6514 WARN_ON(BTRFS_I(inode)->reserved_extents);
39279cc3 6515
a6dbd429
JB
6516 /*
6517 * This can happen where we create an inode, but somebody else also
6518 * created the same inode and we need to destroy the one we already
6519 * created.
6520 */
6521 if (!root)
6522 goto free;
6523
5a3f23d5
CM
6524 /*
6525 * Make sure we're properly removed from the ordered operation
6526 * lists.
6527 */
6528 smp_mb();
6529 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6530 spin_lock(&root->fs_info->ordered_extent_lock);
6531 list_del_init(&BTRFS_I(inode)->ordered_operations);
6532 spin_unlock(&root->fs_info->ordered_extent_lock);
6533 }
6534
0af3d00b
JB
6535 if (root == root->fs_info->tree_root) {
6536 struct btrfs_block_group_cache *block_group;
6537
6538 block_group = btrfs_lookup_block_group(root->fs_info,
6539 BTRFS_I(inode)->block_group);
6540 if (block_group && block_group->inode == inode) {
6541 spin_lock(&block_group->lock);
6542 block_group->inode = NULL;
6543 spin_unlock(&block_group->lock);
6544 btrfs_put_block_group(block_group);
6545 } else if (block_group) {
6546 btrfs_put_block_group(block_group);
6547 }
6548 }
6549
d68fc57b 6550 spin_lock(&root->orphan_lock);
7b128766 6551 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
6552 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6553 inode->i_ino);
6554 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6555 }
d68fc57b 6556 spin_unlock(&root->orphan_lock);
7b128766 6557
d397712b 6558 while (1) {
e6dcd2dc
CM
6559 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6560 if (!ordered)
6561 break;
6562 else {
d397712b
CM
6563 printk(KERN_ERR "btrfs found ordered "
6564 "extent %llu %llu on inode cleanup\n",
6565 (unsigned long long)ordered->file_offset,
6566 (unsigned long long)ordered->len);
e6dcd2dc
CM
6567 btrfs_remove_ordered_extent(inode, ordered);
6568 btrfs_put_ordered_extent(ordered);
6569 btrfs_put_ordered_extent(ordered);
6570 }
6571 }
5d4f98a2 6572 inode_tree_del(inode);
5b21f2ed 6573 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6574free:
fa0d7e3d 6575 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6576}
6577
45321ac5 6578int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6579{
6580 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6581
0af3d00b
JB
6582 if (btrfs_root_refs(&root->root_item) == 0 &&
6583 root != root->fs_info->tree_root)
45321ac5 6584 return 1;
76dda93c 6585 else
45321ac5 6586 return generic_drop_inode(inode);
76dda93c
YZ
6587}
6588
0ee0fda0 6589static void init_once(void *foo)
39279cc3
CM
6590{
6591 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6592
6593 inode_init_once(&ei->vfs_inode);
6594}
6595
6596void btrfs_destroy_cachep(void)
6597{
6598 if (btrfs_inode_cachep)
6599 kmem_cache_destroy(btrfs_inode_cachep);
6600 if (btrfs_trans_handle_cachep)
6601 kmem_cache_destroy(btrfs_trans_handle_cachep);
6602 if (btrfs_transaction_cachep)
6603 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6604 if (btrfs_path_cachep)
6605 kmem_cache_destroy(btrfs_path_cachep);
6606}
6607
6608int btrfs_init_cachep(void)
6609{
9601e3f6
CH
6610 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6611 sizeof(struct btrfs_inode), 0,
6612 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6613 if (!btrfs_inode_cachep)
6614 goto fail;
9601e3f6
CH
6615
6616 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6617 sizeof(struct btrfs_trans_handle), 0,
6618 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6619 if (!btrfs_trans_handle_cachep)
6620 goto fail;
9601e3f6
CH
6621
6622 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6623 sizeof(struct btrfs_transaction), 0,
6624 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6625 if (!btrfs_transaction_cachep)
6626 goto fail;
9601e3f6
CH
6627
6628 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6629 sizeof(struct btrfs_path), 0,
6630 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6631 if (!btrfs_path_cachep)
6632 goto fail;
9601e3f6 6633
39279cc3
CM
6634 return 0;
6635fail:
6636 btrfs_destroy_cachep();
6637 return -ENOMEM;
6638}
6639
6640static int btrfs_getattr(struct vfsmount *mnt,
6641 struct dentry *dentry, struct kstat *stat)
6642{
6643 struct inode *inode = dentry->d_inode;
6644 generic_fillattr(inode, stat);
3394e160 6645 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6646 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6647 stat->blocks = (inode_get_bytes(inode) +
6648 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6649 return 0;
6650}
6651
d397712b
CM
6652static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6653 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6654{
6655 struct btrfs_trans_handle *trans;
6656 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6657 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6658 struct inode *new_inode = new_dentry->d_inode;
6659 struct inode *old_inode = old_dentry->d_inode;
6660 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6661 u64 index = 0;
4df27c4d 6662 u64 root_objectid;
39279cc3
CM
6663 int ret;
6664
f679a840
YZ
6665 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6666 return -EPERM;
6667
4df27c4d
YZ
6668 /* we only allow rename subvolume link between subvolumes */
6669 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6670 return -EXDEV;
6671
4df27c4d
YZ
6672 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6673 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6674 return -ENOTEMPTY;
5f39d397 6675
4df27c4d
YZ
6676 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6677 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6678 return -ENOTEMPTY;
5a3f23d5
CM
6679 /*
6680 * we're using rename to replace one file with another.
6681 * and the replacement file is large. Start IO on it now so
6682 * we don't add too much work to the end of the transaction
6683 */
4baf8c92 6684 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6685 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6686 filemap_flush(old_inode->i_mapping);
6687
76dda93c
YZ
6688 /* close the racy window with snapshot create/destroy ioctl */
6689 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6690 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6691 /*
6692 * We want to reserve the absolute worst case amount of items. So if
6693 * both inodes are subvols and we need to unlink them then that would
6694 * require 4 item modifications, but if they are both normal inodes it
6695 * would require 5 item modifications, so we'll assume their normal
6696 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6697 * should cover the worst case number of items we'll modify.
6698 */
6699 trans = btrfs_start_transaction(root, 20);
6700 if (IS_ERR(trans))
6701 return PTR_ERR(trans);
76dda93c 6702
a5719521 6703 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 6704
4df27c4d
YZ
6705 if (dest != root)
6706 btrfs_record_root_in_trans(trans, dest);
5f39d397 6707
a5719521
YZ
6708 ret = btrfs_set_inode_index(new_dir, &index);
6709 if (ret)
6710 goto out_fail;
5a3f23d5 6711
a5719521 6712 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6713 /* force full log commit if subvolume involved. */
6714 root->fs_info->last_trans_log_full_commit = trans->transid;
6715 } else {
a5719521
YZ
6716 ret = btrfs_insert_inode_ref(trans, dest,
6717 new_dentry->d_name.name,
6718 new_dentry->d_name.len,
6719 old_inode->i_ino,
6720 new_dir->i_ino, index);
6721 if (ret)
6722 goto out_fail;
4df27c4d
YZ
6723 /*
6724 * this is an ugly little race, but the rename is required
6725 * to make sure that if we crash, the inode is either at the
6726 * old name or the new one. pinning the log transaction lets
6727 * us make sure we don't allow a log commit to come in after
6728 * we unlink the name but before we add the new name back in.
6729 */
6730 btrfs_pin_log_trans(root);
6731 }
5a3f23d5
CM
6732 /*
6733 * make sure the inode gets flushed if it is replacing
6734 * something.
6735 */
6736 if (new_inode && new_inode->i_size &&
6737 old_inode && S_ISREG(old_inode->i_mode)) {
6738 btrfs_add_ordered_operation(trans, root, old_inode);
6739 }
6740
39279cc3
CM
6741 old_dir->i_ctime = old_dir->i_mtime = ctime;
6742 new_dir->i_ctime = new_dir->i_mtime = ctime;
6743 old_inode->i_ctime = ctime;
5f39d397 6744
12fcfd22
CM
6745 if (old_dentry->d_parent != new_dentry->d_parent)
6746 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6747
4df27c4d
YZ
6748 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6749 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6750 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6751 old_dentry->d_name.name,
6752 old_dentry->d_name.len);
6753 } else {
6754 btrfs_inc_nlink(old_dentry->d_inode);
6755 ret = btrfs_unlink_inode(trans, root, old_dir,
6756 old_dentry->d_inode,
6757 old_dentry->d_name.name,
6758 old_dentry->d_name.len);
6759 }
6760 BUG_ON(ret);
39279cc3
CM
6761
6762 if (new_inode) {
6763 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
6764 if (unlikely(new_inode->i_ino ==
6765 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6766 root_objectid = BTRFS_I(new_inode)->location.objectid;
6767 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6768 root_objectid,
6769 new_dentry->d_name.name,
6770 new_dentry->d_name.len);
6771 BUG_ON(new_inode->i_nlink == 0);
6772 } else {
6773 ret = btrfs_unlink_inode(trans, dest, new_dir,
6774 new_dentry->d_inode,
6775 new_dentry->d_name.name,
6776 new_dentry->d_name.len);
6777 }
6778 BUG_ON(ret);
7b128766 6779 if (new_inode->i_nlink == 0) {
e02119d5 6780 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 6781 BUG_ON(ret);
7b128766 6782 }
39279cc3 6783 }
aec7477b 6784
4df27c4d
YZ
6785 ret = btrfs_add_link(trans, new_dir, old_inode,
6786 new_dentry->d_name.name,
a5719521 6787 new_dentry->d_name.len, 0, index);
4df27c4d 6788 BUG_ON(ret);
39279cc3 6789
4df27c4d 6790 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
6791 struct dentry *parent = dget_parent(new_dentry);
6792 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6793 dput(parent);
4df27c4d
YZ
6794 btrfs_end_log_trans(root);
6795 }
39279cc3 6796out_fail:
ab78c84d 6797 btrfs_end_transaction_throttle(trans, root);
4df27c4d 6798
76dda93c
YZ
6799 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6800 up_read(&root->fs_info->subvol_sem);
9ed74f2d 6801
39279cc3
CM
6802 return ret;
6803}
6804
d352ac68
CM
6805/*
6806 * some fairly slow code that needs optimization. This walks the list
6807 * of all the inodes with pending delalloc and forces them to disk.
6808 */
24bbcf04 6809int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
6810{
6811 struct list_head *head = &root->fs_info->delalloc_inodes;
6812 struct btrfs_inode *binode;
5b21f2ed 6813 struct inode *inode;
ea8c2819 6814
c146afad
YZ
6815 if (root->fs_info->sb->s_flags & MS_RDONLY)
6816 return -EROFS;
6817
75eff68e 6818 spin_lock(&root->fs_info->delalloc_lock);
d397712b 6819 while (!list_empty(head)) {
ea8c2819
CM
6820 binode = list_entry(head->next, struct btrfs_inode,
6821 delalloc_inodes);
5b21f2ed
ZY
6822 inode = igrab(&binode->vfs_inode);
6823 if (!inode)
6824 list_del_init(&binode->delalloc_inodes);
75eff68e 6825 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 6826 if (inode) {
8c8bee1d 6827 filemap_flush(inode->i_mapping);
24bbcf04
YZ
6828 if (delay_iput)
6829 btrfs_add_delayed_iput(inode);
6830 else
6831 iput(inode);
5b21f2ed
ZY
6832 }
6833 cond_resched();
75eff68e 6834 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 6835 }
75eff68e 6836 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
6837
6838 /* the filemap_flush will queue IO into the worker threads, but
6839 * we have to make sure the IO is actually started and that
6840 * ordered extents get created before we return
6841 */
6842 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 6843 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 6844 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 6845 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
6846 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6847 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
6848 }
6849 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
6850 return 0;
6851}
6852
0019f10d
JB
6853int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
6854 int sync)
5da9d01b
YZ
6855{
6856 struct btrfs_inode *binode;
6857 struct inode *inode = NULL;
6858
6859 spin_lock(&root->fs_info->delalloc_lock);
6860 while (!list_empty(&root->fs_info->delalloc_inodes)) {
6861 binode = list_entry(root->fs_info->delalloc_inodes.next,
6862 struct btrfs_inode, delalloc_inodes);
6863 inode = igrab(&binode->vfs_inode);
6864 if (inode) {
6865 list_move_tail(&binode->delalloc_inodes,
6866 &root->fs_info->delalloc_inodes);
6867 break;
6868 }
6869
6870 list_del_init(&binode->delalloc_inodes);
6871 cond_resched_lock(&root->fs_info->delalloc_lock);
6872 }
6873 spin_unlock(&root->fs_info->delalloc_lock);
6874
6875 if (inode) {
0019f10d
JB
6876 if (sync) {
6877 filemap_write_and_wait(inode->i_mapping);
6878 /*
6879 * We have to do this because compression doesn't
6880 * actually set PG_writeback until it submits the pages
6881 * for IO, which happens in an async thread, so we could
6882 * race and not actually wait for any writeback pages
6883 * because they've not been submitted yet. Technically
6884 * this could still be the case for the ordered stuff
6885 * since the async thread may not have started to do its
6886 * work yet. If this becomes the case then we need to
6887 * figure out a way to make sure that in writepage we
6888 * wait for any async pages to be submitted before
6889 * returning so that fdatawait does what its supposed to
6890 * do.
6891 */
6892 btrfs_wait_ordered_range(inode, 0, (u64)-1);
6893 } else {
6894 filemap_flush(inode->i_mapping);
6895 }
5da9d01b
YZ
6896 if (delay_iput)
6897 btrfs_add_delayed_iput(inode);
6898 else
6899 iput(inode);
6900 return 1;
6901 }
6902 return 0;
6903}
6904
39279cc3
CM
6905static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6906 const char *symname)
6907{
6908 struct btrfs_trans_handle *trans;
6909 struct btrfs_root *root = BTRFS_I(dir)->root;
6910 struct btrfs_path *path;
6911 struct btrfs_key key;
1832a6d5 6912 struct inode *inode = NULL;
39279cc3
CM
6913 int err;
6914 int drop_inode = 0;
6915 u64 objectid;
00e4e6b3 6916 u64 index = 0 ;
39279cc3
CM
6917 int name_len;
6918 int datasize;
5f39d397 6919 unsigned long ptr;
39279cc3 6920 struct btrfs_file_extent_item *ei;
5f39d397 6921 struct extent_buffer *leaf;
1832a6d5 6922 unsigned long nr = 0;
39279cc3
CM
6923
6924 name_len = strlen(symname) + 1;
6925 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6926 return -ENAMETOOLONG;
1832a6d5 6927
a22285a6
YZ
6928 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6929 if (err)
6930 return err;
9ed74f2d
JB
6931 /*
6932 * 2 items for inode item and ref
6933 * 2 items for dir items
6934 * 1 item for xattr if selinux is on
6935 */
a22285a6
YZ
6936 trans = btrfs_start_transaction(root, 5);
6937 if (IS_ERR(trans))
6938 return PTR_ERR(trans);
1832a6d5 6939
39279cc3
CM
6940 btrfs_set_trans_block_group(trans, dir);
6941
aec7477b 6942 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 6943 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
6944 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6945 &index);
39279cc3
CM
6946 err = PTR_ERR(inode);
6947 if (IS_ERR(inode))
6948 goto out_unlock;
6949
2a7dba39 6950 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
6951 if (err) {
6952 drop_inode = 1;
6953 goto out_unlock;
6954 }
6955
39279cc3 6956 btrfs_set_trans_block_group(trans, inode);
a1b075d2 6957 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
6958 if (err)
6959 drop_inode = 1;
6960 else {
6961 inode->i_mapping->a_ops = &btrfs_aops;
04160088 6962 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
6963 inode->i_fop = &btrfs_file_operations;
6964 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 6965 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 6966 }
39279cc3
CM
6967 btrfs_update_inode_block_group(trans, inode);
6968 btrfs_update_inode_block_group(trans, dir);
6969 if (drop_inode)
6970 goto out_unlock;
6971
6972 path = btrfs_alloc_path();
6973 BUG_ON(!path);
6974 key.objectid = inode->i_ino;
6975 key.offset = 0;
39279cc3
CM
6976 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
6977 datasize = btrfs_file_extent_calc_inline_size(name_len);
6978 err = btrfs_insert_empty_item(trans, root, path, &key,
6979 datasize);
54aa1f4d
CM
6980 if (err) {
6981 drop_inode = 1;
6982 goto out_unlock;
6983 }
5f39d397
CM
6984 leaf = path->nodes[0];
6985 ei = btrfs_item_ptr(leaf, path->slots[0],
6986 struct btrfs_file_extent_item);
6987 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
6988 btrfs_set_file_extent_type(leaf, ei,
39279cc3 6989 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
6990 btrfs_set_file_extent_encryption(leaf, ei, 0);
6991 btrfs_set_file_extent_compression(leaf, ei, 0);
6992 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
6993 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
6994
39279cc3 6995 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
6996 write_extent_buffer(leaf, symname, ptr, name_len);
6997 btrfs_mark_buffer_dirty(leaf);
39279cc3 6998 btrfs_free_path(path);
5f39d397 6999
39279cc3
CM
7000 inode->i_op = &btrfs_symlink_inode_operations;
7001 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7002 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7003 inode_set_bytes(inode, name_len);
dbe674a9 7004 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7005 err = btrfs_update_inode(trans, root, inode);
7006 if (err)
7007 drop_inode = 1;
39279cc3
CM
7008
7009out_unlock:
d3c2fdcf 7010 nr = trans->blocks_used;
ab78c84d 7011 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7012 if (drop_inode) {
7013 inode_dec_link_count(inode);
7014 iput(inode);
7015 }
d3c2fdcf 7016 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7017 return err;
7018}
16432985 7019
0af3d00b
JB
7020static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7021 u64 start, u64 num_bytes, u64 min_size,
7022 loff_t actual_len, u64 *alloc_hint,
7023 struct btrfs_trans_handle *trans)
d899e052 7024{
d899e052
YZ
7025 struct btrfs_root *root = BTRFS_I(inode)->root;
7026 struct btrfs_key ins;
d899e052 7027 u64 cur_offset = start;
55a61d1d 7028 u64 i_size;
d899e052 7029 int ret = 0;
0af3d00b 7030 bool own_trans = true;
d899e052 7031
0af3d00b
JB
7032 if (trans)
7033 own_trans = false;
d899e052 7034 while (num_bytes > 0) {
0af3d00b
JB
7035 if (own_trans) {
7036 trans = btrfs_start_transaction(root, 3);
7037 if (IS_ERR(trans)) {
7038 ret = PTR_ERR(trans);
7039 break;
7040 }
5a303d5d
YZ
7041 }
7042
efa56464
YZ
7043 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7044 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7045 if (ret) {
0af3d00b
JB
7046 if (own_trans)
7047 btrfs_end_transaction(trans, root);
a22285a6 7048 break;
d899e052 7049 }
5a303d5d 7050
d899e052
YZ
7051 ret = insert_reserved_file_extent(trans, inode,
7052 cur_offset, ins.objectid,
7053 ins.offset, ins.offset,
920bbbfb 7054 ins.offset, 0, 0, 0,
d899e052
YZ
7055 BTRFS_FILE_EXTENT_PREALLOC);
7056 BUG_ON(ret);
a1ed835e
CM
7057 btrfs_drop_extent_cache(inode, cur_offset,
7058 cur_offset + ins.offset -1, 0);
5a303d5d 7059
d899e052
YZ
7060 num_bytes -= ins.offset;
7061 cur_offset += ins.offset;
efa56464 7062 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7063
d899e052 7064 inode->i_ctime = CURRENT_TIME;
6cbff00f 7065 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7066 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7067 (actual_len > inode->i_size) &&
7068 (cur_offset > inode->i_size)) {
d1ea6a61 7069 if (cur_offset > actual_len)
55a61d1d 7070 i_size = actual_len;
d1ea6a61 7071 else
55a61d1d
JB
7072 i_size = cur_offset;
7073 i_size_write(inode, i_size);
7074 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7075 }
7076
d899e052
YZ
7077 ret = btrfs_update_inode(trans, root, inode);
7078 BUG_ON(ret);
d899e052 7079
0af3d00b
JB
7080 if (own_trans)
7081 btrfs_end_transaction(trans, root);
5a303d5d 7082 }
d899e052
YZ
7083 return ret;
7084}
7085
0af3d00b
JB
7086int btrfs_prealloc_file_range(struct inode *inode, int mode,
7087 u64 start, u64 num_bytes, u64 min_size,
7088 loff_t actual_len, u64 *alloc_hint)
7089{
7090 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7091 min_size, actual_len, alloc_hint,
7092 NULL);
7093}
7094
7095int btrfs_prealloc_file_range_trans(struct inode *inode,
7096 struct btrfs_trans_handle *trans, int mode,
7097 u64 start, u64 num_bytes, u64 min_size,
7098 loff_t actual_len, u64 *alloc_hint)
7099{
7100 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7101 min_size, actual_len, alloc_hint, trans);
7102}
7103
d899e052
YZ
7104static long btrfs_fallocate(struct inode *inode, int mode,
7105 loff_t offset, loff_t len)
7106{
2ac55d41 7107 struct extent_state *cached_state = NULL;
d899e052
YZ
7108 u64 cur_offset;
7109 u64 last_byte;
7110 u64 alloc_start;
7111 u64 alloc_end;
7112 u64 alloc_hint = 0;
e980b50c 7113 u64 locked_end;
d899e052
YZ
7114 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
7115 struct extent_map *em;
7116 int ret;
7117
7118 alloc_start = offset & ~mask;
7119 alloc_end = (offset + len + mask) & ~mask;
7120
546888da
CM
7121 /*
7122 * wait for ordered IO before we have any locks. We'll loop again
7123 * below with the locks held.
7124 */
7125 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
7126
d899e052 7127 mutex_lock(&inode->i_mutex);
0ed42a63
JB
7128 ret = inode_newsize_ok(inode, alloc_end);
7129 if (ret)
7130 goto out;
7131
d899e052
YZ
7132 if (alloc_start > inode->i_size) {
7133 ret = btrfs_cont_expand(inode, alloc_start);
7134 if (ret)
7135 goto out;
7136 }
7137
0ca1f7ce 7138 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
a970b0a1
JB
7139 if (ret)
7140 goto out;
7141
e980b50c 7142 locked_end = alloc_end - 1;
d899e052
YZ
7143 while (1) {
7144 struct btrfs_ordered_extent *ordered;
546888da 7145
546888da
CM
7146 /* the extent lock is ordered inside the running
7147 * transaction
7148 */
2ac55d41
JB
7149 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
7150 locked_end, 0, &cached_state, GFP_NOFS);
d899e052
YZ
7151 ordered = btrfs_lookup_first_ordered_extent(inode,
7152 alloc_end - 1);
7153 if (ordered &&
7154 ordered->file_offset + ordered->len > alloc_start &&
7155 ordered->file_offset < alloc_end) {
7156 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
7157 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7158 alloc_start, locked_end,
7159 &cached_state, GFP_NOFS);
546888da
CM
7160 /*
7161 * we can't wait on the range with the transaction
7162 * running or with the extent lock held
7163 */
d899e052
YZ
7164 btrfs_wait_ordered_range(inode, alloc_start,
7165 alloc_end - alloc_start);
7166 } else {
7167 if (ordered)
7168 btrfs_put_ordered_extent(ordered);
7169 break;
7170 }
7171 }
7172
7173 cur_offset = alloc_start;
7174 while (1) {
7175 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
7176 alloc_end - cur_offset, 0);
7177 BUG_ON(IS_ERR(em) || !em);
7178 last_byte = min(extent_map_end(em), alloc_end);
7179 last_byte = (last_byte + mask) & ~mask;
5a303d5d
YZ
7180 if (em->block_start == EXTENT_MAP_HOLE ||
7181 (cur_offset >= inode->i_size &&
7182 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
83609779 7183 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
efa56464
YZ
7184 last_byte - cur_offset,
7185 1 << inode->i_blkbits,
7186 offset + len,
7187 &alloc_hint);
d899e052
YZ
7188 if (ret < 0) {
7189 free_extent_map(em);
7190 break;
7191 }
7192 }
d899e052
YZ
7193 free_extent_map(em);
7194
7195 cur_offset = last_byte;
7196 if (cur_offset >= alloc_end) {
7197 ret = 0;
7198 break;
7199 }
7200 }
2ac55d41
JB
7201 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
7202 &cached_state, GFP_NOFS);
546888da 7203
0ca1f7ce 7204 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
d899e052
YZ
7205out:
7206 mutex_unlock(&inode->i_mutex);
7207 return ret;
7208}
7209
e6dcd2dc
CM
7210static int btrfs_set_page_dirty(struct page *page)
7211{
e6dcd2dc
CM
7212 return __set_page_dirty_nobuffers(page);
7213}
7214
b74c79e9 7215static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7216{
6cbff00f 7217 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7218 return -EACCES;
b74c79e9 7219 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7220}
39279cc3 7221
6e1d5dcc 7222static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7223 .getattr = btrfs_getattr,
39279cc3
CM
7224 .lookup = btrfs_lookup,
7225 .create = btrfs_create,
7226 .unlink = btrfs_unlink,
7227 .link = btrfs_link,
7228 .mkdir = btrfs_mkdir,
7229 .rmdir = btrfs_rmdir,
7230 .rename = btrfs_rename,
7231 .symlink = btrfs_symlink,
7232 .setattr = btrfs_setattr,
618e21d5 7233 .mknod = btrfs_mknod,
95819c05
CH
7234 .setxattr = btrfs_setxattr,
7235 .getxattr = btrfs_getxattr,
5103e947 7236 .listxattr = btrfs_listxattr,
95819c05 7237 .removexattr = btrfs_removexattr,
fdebe2bd 7238 .permission = btrfs_permission,
39279cc3 7239};
6e1d5dcc 7240static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7241 .lookup = btrfs_lookup,
fdebe2bd 7242 .permission = btrfs_permission,
39279cc3 7243};
76dda93c 7244
828c0950 7245static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7246 .llseek = generic_file_llseek,
7247 .read = generic_read_dir,
cbdf5a24 7248 .readdir = btrfs_real_readdir,
34287aa3 7249 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7250#ifdef CONFIG_COMPAT
34287aa3 7251 .compat_ioctl = btrfs_ioctl,
39279cc3 7252#endif
6bf13c0c 7253 .release = btrfs_release_file,
e02119d5 7254 .fsync = btrfs_sync_file,
39279cc3
CM
7255};
7256
d1310b2e 7257static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7258 .fill_delalloc = run_delalloc_range,
065631f6 7259 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7260 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7261 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7262 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7263 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7264 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7265 .set_bit_hook = btrfs_set_bit_hook,
7266 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7267 .merge_extent_hook = btrfs_merge_extent_hook,
7268 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7269};
7270
35054394
CM
7271/*
7272 * btrfs doesn't support the bmap operation because swapfiles
7273 * use bmap to make a mapping of extents in the file. They assume
7274 * these extents won't change over the life of the file and they
7275 * use the bmap result to do IO directly to the drive.
7276 *
7277 * the btrfs bmap call would return logical addresses that aren't
7278 * suitable for IO and they also will change frequently as COW
7279 * operations happen. So, swapfile + btrfs == corruption.
7280 *
7281 * For now we're avoiding this by dropping bmap.
7282 */
7f09410b 7283static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7284 .readpage = btrfs_readpage,
7285 .writepage = btrfs_writepage,
b293f02e 7286 .writepages = btrfs_writepages,
3ab2fb5a 7287 .readpages = btrfs_readpages,
39279cc3 7288 .sync_page = block_sync_page,
16432985 7289 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7290 .invalidatepage = btrfs_invalidatepage,
7291 .releasepage = btrfs_releasepage,
e6dcd2dc 7292 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7293 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7294};
7295
7f09410b 7296static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7297 .readpage = btrfs_readpage,
7298 .writepage = btrfs_writepage,
2bf5a725
CM
7299 .invalidatepage = btrfs_invalidatepage,
7300 .releasepage = btrfs_releasepage,
39279cc3
CM
7301};
7302
6e1d5dcc 7303static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7304 .truncate = btrfs_truncate,
7305 .getattr = btrfs_getattr,
7306 .setattr = btrfs_setattr,
95819c05
CH
7307 .setxattr = btrfs_setxattr,
7308 .getxattr = btrfs_getxattr,
5103e947 7309 .listxattr = btrfs_listxattr,
95819c05 7310 .removexattr = btrfs_removexattr,
fdebe2bd 7311 .permission = btrfs_permission,
d899e052 7312 .fallocate = btrfs_fallocate,
1506fcc8 7313 .fiemap = btrfs_fiemap,
39279cc3 7314};
6e1d5dcc 7315static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7316 .getattr = btrfs_getattr,
7317 .setattr = btrfs_setattr,
fdebe2bd 7318 .permission = btrfs_permission,
95819c05
CH
7319 .setxattr = btrfs_setxattr,
7320 .getxattr = btrfs_getxattr,
33268eaf 7321 .listxattr = btrfs_listxattr,
95819c05 7322 .removexattr = btrfs_removexattr,
618e21d5 7323};
6e1d5dcc 7324static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7325 .readlink = generic_readlink,
7326 .follow_link = page_follow_link_light,
7327 .put_link = page_put_link,
f209561a 7328 .getattr = btrfs_getattr,
fdebe2bd 7329 .permission = btrfs_permission,
0279b4cd
JO
7330 .setxattr = btrfs_setxattr,
7331 .getxattr = btrfs_getxattr,
7332 .listxattr = btrfs_listxattr,
7333 .removexattr = btrfs_removexattr,
39279cc3 7334};
76dda93c 7335
82d339d9 7336const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7337 .d_delete = btrfs_dentry_delete,
7338};