fs: push i_mutex and filemap_write_and_wait down into ->fsync() handlers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / file.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
39279cc3
CM
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
2fe17c10 27#include <linux/falloc.h>
39279cc3
CM
28#include <linux/swap.h>
29#include <linux/writeback.h>
30#include <linux/statfs.h>
31#include <linux/compat.h>
5a0e3ad6 32#include <linux/slab.h>
39279cc3
CM
33#include "ctree.h"
34#include "disk-io.h"
35#include "transaction.h"
36#include "btrfs_inode.h"
37#include "ioctl.h"
38#include "print-tree.h"
e02119d5
CM
39#include "tree-log.h"
40#include "locking.h"
12fa8ec6 41#include "compat.h"
39279cc3 42
4cb5300b
CM
43/*
44 * when auto defrag is enabled we
45 * queue up these defrag structs to remember which
46 * inodes need defragging passes
47 */
48struct inode_defrag {
49 struct rb_node rb_node;
50 /* objectid */
51 u64 ino;
52 /*
53 * transid where the defrag was added, we search for
54 * extents newer than this
55 */
56 u64 transid;
57
58 /* root objectid */
59 u64 root;
60
61 /* last offset we were able to defrag */
62 u64 last_offset;
63
64 /* if we've wrapped around back to zero once already */
65 int cycled;
66};
67
68/* pop a record for an inode into the defrag tree. The lock
69 * must be held already
70 *
71 * If you're inserting a record for an older transid than an
72 * existing record, the transid already in the tree is lowered
73 *
74 * If an existing record is found the defrag item you
75 * pass in is freed
76 */
77static int __btrfs_add_inode_defrag(struct inode *inode,
78 struct inode_defrag *defrag)
79{
80 struct btrfs_root *root = BTRFS_I(inode)->root;
81 struct inode_defrag *entry;
82 struct rb_node **p;
83 struct rb_node *parent = NULL;
84
85 p = &root->fs_info->defrag_inodes.rb_node;
86 while (*p) {
87 parent = *p;
88 entry = rb_entry(parent, struct inode_defrag, rb_node);
89
90 if (defrag->ino < entry->ino)
91 p = &parent->rb_left;
92 else if (defrag->ino > entry->ino)
93 p = &parent->rb_right;
94 else {
95 /* if we're reinserting an entry for
96 * an old defrag run, make sure to
97 * lower the transid of our existing record
98 */
99 if (defrag->transid < entry->transid)
100 entry->transid = defrag->transid;
101 if (defrag->last_offset > entry->last_offset)
102 entry->last_offset = defrag->last_offset;
103 goto exists;
104 }
105 }
106 BTRFS_I(inode)->in_defrag = 1;
107 rb_link_node(&defrag->rb_node, parent, p);
108 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
109 return 0;
110
111exists:
112 kfree(defrag);
113 return 0;
114
115}
116
117/*
118 * insert a defrag record for this inode if auto defrag is
119 * enabled
120 */
121int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
122 struct inode *inode)
123{
124 struct btrfs_root *root = BTRFS_I(inode)->root;
125 struct inode_defrag *defrag;
126 int ret = 0;
127 u64 transid;
128
129 if (!btrfs_test_opt(root, AUTO_DEFRAG))
130 return 0;
131
7841cb28 132 if (btrfs_fs_closing(root->fs_info))
4cb5300b
CM
133 return 0;
134
135 if (BTRFS_I(inode)->in_defrag)
136 return 0;
137
138 if (trans)
139 transid = trans->transid;
140 else
141 transid = BTRFS_I(inode)->root->last_trans;
142
143 defrag = kzalloc(sizeof(*defrag), GFP_NOFS);
144 if (!defrag)
145 return -ENOMEM;
146
a4689d2b 147 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
148 defrag->transid = transid;
149 defrag->root = root->root_key.objectid;
150
151 spin_lock(&root->fs_info->defrag_inodes_lock);
152 if (!BTRFS_I(inode)->in_defrag)
153 ret = __btrfs_add_inode_defrag(inode, defrag);
154 spin_unlock(&root->fs_info->defrag_inodes_lock);
155 return ret;
156}
157
158/*
159 * must be called with the defrag_inodes lock held
160 */
161struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info, u64 ino,
162 struct rb_node **next)
163{
164 struct inode_defrag *entry = NULL;
165 struct rb_node *p;
166 struct rb_node *parent = NULL;
167
168 p = info->defrag_inodes.rb_node;
169 while (p) {
170 parent = p;
171 entry = rb_entry(parent, struct inode_defrag, rb_node);
172
173 if (ino < entry->ino)
174 p = parent->rb_left;
175 else if (ino > entry->ino)
176 p = parent->rb_right;
177 else
178 return entry;
179 }
180
181 if (next) {
182 while (parent && ino > entry->ino) {
183 parent = rb_next(parent);
184 entry = rb_entry(parent, struct inode_defrag, rb_node);
185 }
186 *next = parent;
187 }
188 return NULL;
189}
190
191/*
192 * run through the list of inodes in the FS that need
193 * defragging
194 */
195int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
196{
197 struct inode_defrag *defrag;
198 struct btrfs_root *inode_root;
199 struct inode *inode;
200 struct rb_node *n;
201 struct btrfs_key key;
202 struct btrfs_ioctl_defrag_range_args range;
203 u64 first_ino = 0;
204 int num_defrag;
205 int defrag_batch = 1024;
206
207 memset(&range, 0, sizeof(range));
208 range.len = (u64)-1;
209
210 atomic_inc(&fs_info->defrag_running);
211 spin_lock(&fs_info->defrag_inodes_lock);
212 while(1) {
213 n = NULL;
214
215 /* find an inode to defrag */
216 defrag = btrfs_find_defrag_inode(fs_info, first_ino, &n);
217 if (!defrag) {
218 if (n)
219 defrag = rb_entry(n, struct inode_defrag, rb_node);
220 else if (first_ino) {
221 first_ino = 0;
222 continue;
223 } else {
224 break;
225 }
226 }
227
228 /* remove it from the rbtree */
229 first_ino = defrag->ino + 1;
230 rb_erase(&defrag->rb_node, &fs_info->defrag_inodes);
231
7841cb28 232 if (btrfs_fs_closing(fs_info))
4cb5300b
CM
233 goto next_free;
234
235 spin_unlock(&fs_info->defrag_inodes_lock);
236
237 /* get the inode */
238 key.objectid = defrag->root;
239 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
240 key.offset = (u64)-1;
241 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
242 if (IS_ERR(inode_root))
243 goto next;
244
245 key.objectid = defrag->ino;
246 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
247 key.offset = 0;
248
249 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
250 if (IS_ERR(inode))
251 goto next;
252
253 /* do a chunk of defrag */
254 BTRFS_I(inode)->in_defrag = 0;
255 range.start = defrag->last_offset;
256 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
257 defrag_batch);
258 /*
259 * if we filled the whole defrag batch, there
260 * must be more work to do. Queue this defrag
261 * again
262 */
263 if (num_defrag == defrag_batch) {
264 defrag->last_offset = range.start;
265 __btrfs_add_inode_defrag(inode, defrag);
266 /*
267 * we don't want to kfree defrag, we added it back to
268 * the rbtree
269 */
270 defrag = NULL;
271 } else if (defrag->last_offset && !defrag->cycled) {
272 /*
273 * we didn't fill our defrag batch, but
274 * we didn't start at zero. Make sure we loop
275 * around to the start of the file.
276 */
277 defrag->last_offset = 0;
278 defrag->cycled = 1;
279 __btrfs_add_inode_defrag(inode, defrag);
280 defrag = NULL;
281 }
282
283 iput(inode);
284next:
285 spin_lock(&fs_info->defrag_inodes_lock);
286next_free:
287 kfree(defrag);
288 }
289 spin_unlock(&fs_info->defrag_inodes_lock);
290
291 atomic_dec(&fs_info->defrag_running);
292
293 /*
294 * during unmount, we use the transaction_wait queue to
295 * wait for the defragger to stop
296 */
297 wake_up(&fs_info->transaction_wait);
298 return 0;
299}
39279cc3 300
d352ac68
CM
301/* simple helper to fault in pages and copy. This should go away
302 * and be replaced with calls into generic code.
303 */
d397712b 304static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
d0215f3e 305 size_t write_bytes,
a1b32a59 306 struct page **prepared_pages,
11c65dcc 307 struct iov_iter *i)
39279cc3 308{
914ee295 309 size_t copied = 0;
d0215f3e 310 size_t total_copied = 0;
11c65dcc 311 int pg = 0;
39279cc3
CM
312 int offset = pos & (PAGE_CACHE_SIZE - 1);
313
11c65dcc 314 while (write_bytes > 0) {
39279cc3
CM
315 size_t count = min_t(size_t,
316 PAGE_CACHE_SIZE - offset, write_bytes);
11c65dcc 317 struct page *page = prepared_pages[pg];
914ee295
XZ
318 /*
319 * Copy data from userspace to the current page
320 *
321 * Disable pagefault to avoid recursive lock since
322 * the pages are already locked
323 */
324 pagefault_disable();
325 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
326 pagefault_enable();
11c65dcc 327
39279cc3
CM
328 /* Flush processor's dcache for this page */
329 flush_dcache_page(page);
31339acd
CM
330
331 /*
332 * if we get a partial write, we can end up with
333 * partially up to date pages. These add
334 * a lot of complexity, so make sure they don't
335 * happen by forcing this copy to be retried.
336 *
337 * The rest of the btrfs_file_write code will fall
338 * back to page at a time copies after we return 0.
339 */
340 if (!PageUptodate(page) && copied < count)
341 copied = 0;
342
11c65dcc
JB
343 iov_iter_advance(i, copied);
344 write_bytes -= copied;
914ee295 345 total_copied += copied;
39279cc3 346
914ee295 347 /* Return to btrfs_file_aio_write to fault page */
9f570b8d 348 if (unlikely(copied == 0))
914ee295 349 break;
11c65dcc
JB
350
351 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
352 offset += copied;
353 } else {
354 pg++;
355 offset = 0;
356 }
39279cc3 357 }
914ee295 358 return total_copied;
39279cc3
CM
359}
360
d352ac68
CM
361/*
362 * unlocks pages after btrfs_file_write is done with them
363 */
be1a12a0 364void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
365{
366 size_t i;
367 for (i = 0; i < num_pages; i++) {
d352ac68
CM
368 /* page checked is some magic around finding pages that
369 * have been modified without going through btrfs_set_page_dirty
370 * clear it here
371 */
4a096752 372 ClearPageChecked(pages[i]);
39279cc3
CM
373 unlock_page(pages[i]);
374 mark_page_accessed(pages[i]);
375 page_cache_release(pages[i]);
376 }
377}
378
d352ac68
CM
379/*
380 * after copy_from_user, pages need to be dirtied and we need to make
381 * sure holes are created between the current EOF and the start of
382 * any next extents (if required).
383 *
384 * this also makes the decision about creating an inline extent vs
385 * doing real data extents, marking pages dirty and delalloc as required.
386 */
be1a12a0
JB
387int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
388 struct page **pages, size_t num_pages,
389 loff_t pos, size_t write_bytes,
390 struct extent_state **cached)
39279cc3 391{
39279cc3 392 int err = 0;
a52d9a80 393 int i;
db94535d 394 u64 num_bytes;
a52d9a80
CM
395 u64 start_pos;
396 u64 end_of_last_block;
397 u64 end_pos = pos + write_bytes;
398 loff_t isize = i_size_read(inode);
39279cc3 399
5f39d397 400 start_pos = pos & ~((u64)root->sectorsize - 1);
db94535d
CM
401 num_bytes = (write_bytes + pos - start_pos +
402 root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
39279cc3 403
db94535d 404 end_of_last_block = start_pos + num_bytes - 1;
2ac55d41 405 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
be1a12a0 406 cached);
d0215f3e
JB
407 if (err)
408 return err;
9ed74f2d 409
c8b97818
CM
410 for (i = 0; i < num_pages; i++) {
411 struct page *p = pages[i];
412 SetPageUptodate(p);
413 ClearPageChecked(p);
414 set_page_dirty(p);
a52d9a80 415 }
9f570b8d
JB
416
417 /*
418 * we've only changed i_size in ram, and we haven't updated
419 * the disk i_size. There is no need to log the inode
420 * at this time.
421 */
422 if (end_pos > isize)
a52d9a80 423 i_size_write(inode, end_pos);
a22285a6 424 return 0;
39279cc3
CM
425}
426
d352ac68
CM
427/*
428 * this drops all the extents in the cache that intersect the range
429 * [start, end]. Existing extents are split as required.
430 */
5b21f2ed
ZY
431int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
432 int skip_pinned)
a52d9a80
CM
433{
434 struct extent_map *em;
3b951516
CM
435 struct extent_map *split = NULL;
436 struct extent_map *split2 = NULL;
a52d9a80 437 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
39b5637f 438 u64 len = end - start + 1;
3b951516
CM
439 int ret;
440 int testend = 1;
5b21f2ed 441 unsigned long flags;
c8b97818 442 int compressed = 0;
a52d9a80 443
e6dcd2dc 444 WARN_ON(end < start);
3b951516 445 if (end == (u64)-1) {
39b5637f 446 len = (u64)-1;
3b951516
CM
447 testend = 0;
448 }
d397712b 449 while (1) {
3b951516 450 if (!split)
172ddd60 451 split = alloc_extent_map();
3b951516 452 if (!split2)
172ddd60 453 split2 = alloc_extent_map();
c26a9203 454 BUG_ON(!split || !split2);
3b951516 455
890871be 456 write_lock(&em_tree->lock);
39b5637f 457 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 458 if (!em) {
890871be 459 write_unlock(&em_tree->lock);
a52d9a80 460 break;
d1310b2e 461 }
5b21f2ed
ZY
462 flags = em->flags;
463 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 464 if (testend && em->start + em->len >= start + len) {
5b21f2ed 465 free_extent_map(em);
a1ed835e 466 write_unlock(&em_tree->lock);
5b21f2ed
ZY
467 break;
468 }
55ef6899
YZ
469 start = em->start + em->len;
470 if (testend)
5b21f2ed 471 len = start + len - (em->start + em->len);
5b21f2ed 472 free_extent_map(em);
a1ed835e 473 write_unlock(&em_tree->lock);
5b21f2ed
ZY
474 continue;
475 }
c8b97818 476 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 477 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
a52d9a80 478 remove_extent_mapping(em_tree, em);
3b951516
CM
479
480 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
481 em->start < start) {
482 split->start = em->start;
483 split->len = start - em->start;
ff5b7ee3 484 split->orig_start = em->orig_start;
3b951516 485 split->block_start = em->block_start;
c8b97818
CM
486
487 if (compressed)
488 split->block_len = em->block_len;
489 else
490 split->block_len = split->len;
491
3b951516 492 split->bdev = em->bdev;
5b21f2ed 493 split->flags = flags;
261507a0 494 split->compress_type = em->compress_type;
3b951516
CM
495 ret = add_extent_mapping(em_tree, split);
496 BUG_ON(ret);
497 free_extent_map(split);
498 split = split2;
499 split2 = NULL;
500 }
501 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
502 testend && em->start + em->len > start + len) {
503 u64 diff = start + len - em->start;
504
505 split->start = start + len;
506 split->len = em->start + em->len - (start + len);
507 split->bdev = em->bdev;
5b21f2ed 508 split->flags = flags;
261507a0 509 split->compress_type = em->compress_type;
3b951516 510
c8b97818
CM
511 if (compressed) {
512 split->block_len = em->block_len;
513 split->block_start = em->block_start;
445a6944 514 split->orig_start = em->orig_start;
c8b97818
CM
515 } else {
516 split->block_len = split->len;
517 split->block_start = em->block_start + diff;
445a6944 518 split->orig_start = split->start;
c8b97818 519 }
3b951516
CM
520
521 ret = add_extent_mapping(em_tree, split);
522 BUG_ON(ret);
523 free_extent_map(split);
524 split = NULL;
525 }
890871be 526 write_unlock(&em_tree->lock);
d1310b2e 527
a52d9a80
CM
528 /* once for us */
529 free_extent_map(em);
530 /* once for the tree*/
531 free_extent_map(em);
532 }
3b951516
CM
533 if (split)
534 free_extent_map(split);
535 if (split2)
536 free_extent_map(split2);
a52d9a80
CM
537 return 0;
538}
539
39279cc3
CM
540/*
541 * this is very complex, but the basic idea is to drop all extents
542 * in the range start - end. hint_block is filled in with a block number
543 * that would be a good hint to the block allocator for this file.
544 *
545 * If an extent intersects the range but is not entirely inside the range
546 * it is either truncated or split. Anything entirely inside the range
547 * is deleted from the tree.
548 */
920bbbfb
YZ
549int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
550 u64 start, u64 end, u64 *hint_byte, int drop_cache)
39279cc3 551{
920bbbfb 552 struct btrfs_root *root = BTRFS_I(inode)->root;
5f39d397 553 struct extent_buffer *leaf;
920bbbfb 554 struct btrfs_file_extent_item *fi;
39279cc3 555 struct btrfs_path *path;
00f5c795 556 struct btrfs_key key;
920bbbfb 557 struct btrfs_key new_key;
33345d01 558 u64 ino = btrfs_ino(inode);
920bbbfb
YZ
559 u64 search_start = start;
560 u64 disk_bytenr = 0;
561 u64 num_bytes = 0;
562 u64 extent_offset = 0;
563 u64 extent_end = 0;
564 int del_nr = 0;
565 int del_slot = 0;
566 int extent_type;
ccd467d6 567 int recow;
00f5c795 568 int ret;
39279cc3 569
a1ed835e
CM
570 if (drop_cache)
571 btrfs_drop_extent_cache(inode, start, end - 1, 0);
a52d9a80 572
39279cc3
CM
573 path = btrfs_alloc_path();
574 if (!path)
575 return -ENOMEM;
920bbbfb 576
d397712b 577 while (1) {
ccd467d6 578 recow = 0;
33345d01 579 ret = btrfs_lookup_file_extent(trans, root, path, ino,
39279cc3
CM
580 search_start, -1);
581 if (ret < 0)
920bbbfb
YZ
582 break;
583 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
584 leaf = path->nodes[0];
585 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 586 if (key.objectid == ino &&
920bbbfb
YZ
587 key.type == BTRFS_EXTENT_DATA_KEY)
588 path->slots[0]--;
39279cc3 589 }
920bbbfb 590 ret = 0;
8c2383c3 591next_slot:
5f39d397 592 leaf = path->nodes[0];
920bbbfb
YZ
593 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
594 BUG_ON(del_nr > 0);
595 ret = btrfs_next_leaf(root, path);
596 if (ret < 0)
597 break;
598 if (ret > 0) {
599 ret = 0;
600 break;
8c2383c3 601 }
920bbbfb
YZ
602 leaf = path->nodes[0];
603 recow = 1;
604 }
605
606 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 607 if (key.objectid > ino ||
920bbbfb
YZ
608 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
609 break;
610
611 fi = btrfs_item_ptr(leaf, path->slots[0],
612 struct btrfs_file_extent_item);
613 extent_type = btrfs_file_extent_type(leaf, fi);
614
615 if (extent_type == BTRFS_FILE_EXTENT_REG ||
616 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
617 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
618 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
619 extent_offset = btrfs_file_extent_offset(leaf, fi);
620 extent_end = key.offset +
621 btrfs_file_extent_num_bytes(leaf, fi);
622 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
623 extent_end = key.offset +
624 btrfs_file_extent_inline_len(leaf, fi);
8c2383c3 625 } else {
920bbbfb 626 WARN_ON(1);
8c2383c3 627 extent_end = search_start;
39279cc3
CM
628 }
629
920bbbfb
YZ
630 if (extent_end <= search_start) {
631 path->slots[0]++;
8c2383c3 632 goto next_slot;
39279cc3
CM
633 }
634
920bbbfb
YZ
635 search_start = max(key.offset, start);
636 if (recow) {
b3b4aa74 637 btrfs_release_path(path);
920bbbfb 638 continue;
39279cc3 639 }
6643558d 640
920bbbfb
YZ
641 /*
642 * | - range to drop - |
643 * | -------- extent -------- |
644 */
645 if (start > key.offset && end < extent_end) {
646 BUG_ON(del_nr > 0);
647 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
648
649 memcpy(&new_key, &key, sizeof(new_key));
650 new_key.offset = start;
651 ret = btrfs_duplicate_item(trans, root, path,
652 &new_key);
653 if (ret == -EAGAIN) {
b3b4aa74 654 btrfs_release_path(path);
920bbbfb 655 continue;
6643558d 656 }
920bbbfb
YZ
657 if (ret < 0)
658 break;
659
660 leaf = path->nodes[0];
661 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
662 struct btrfs_file_extent_item);
663 btrfs_set_file_extent_num_bytes(leaf, fi,
664 start - key.offset);
665
666 fi = btrfs_item_ptr(leaf, path->slots[0],
667 struct btrfs_file_extent_item);
668
669 extent_offset += start - key.offset;
670 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
671 btrfs_set_file_extent_num_bytes(leaf, fi,
672 extent_end - start);
673 btrfs_mark_buffer_dirty(leaf);
674
675 if (disk_bytenr > 0) {
771ed689 676 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
677 disk_bytenr, num_bytes, 0,
678 root->root_key.objectid,
679 new_key.objectid,
680 start - extent_offset);
771ed689 681 BUG_ON(ret);
920bbbfb 682 *hint_byte = disk_bytenr;
771ed689 683 }
920bbbfb 684 key.offset = start;
6643558d 685 }
920bbbfb
YZ
686 /*
687 * | ---- range to drop ----- |
688 * | -------- extent -------- |
689 */
690 if (start <= key.offset && end < extent_end) {
691 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
6643558d 692
920bbbfb
YZ
693 memcpy(&new_key, &key, sizeof(new_key));
694 new_key.offset = end;
695 btrfs_set_item_key_safe(trans, root, path, &new_key);
6643558d 696
920bbbfb
YZ
697 extent_offset += end - key.offset;
698 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
699 btrfs_set_file_extent_num_bytes(leaf, fi,
700 extent_end - end);
701 btrfs_mark_buffer_dirty(leaf);
702 if (disk_bytenr > 0) {
703 inode_sub_bytes(inode, end - key.offset);
704 *hint_byte = disk_bytenr;
39279cc3 705 }
920bbbfb 706 break;
39279cc3 707 }
771ed689 708
920bbbfb
YZ
709 search_start = extent_end;
710 /*
711 * | ---- range to drop ----- |
712 * | -------- extent -------- |
713 */
714 if (start > key.offset && end >= extent_end) {
715 BUG_ON(del_nr > 0);
716 BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
8c2383c3 717
920bbbfb
YZ
718 btrfs_set_file_extent_num_bytes(leaf, fi,
719 start - key.offset);
720 btrfs_mark_buffer_dirty(leaf);
721 if (disk_bytenr > 0) {
722 inode_sub_bytes(inode, extent_end - start);
723 *hint_byte = disk_bytenr;
724 }
725 if (end == extent_end)
726 break;
c8b97818 727
920bbbfb
YZ
728 path->slots[0]++;
729 goto next_slot;
31840ae1
ZY
730 }
731
920bbbfb
YZ
732 /*
733 * | ---- range to drop ----- |
734 * | ------ extent ------ |
735 */
736 if (start <= key.offset && end >= extent_end) {
737 if (del_nr == 0) {
738 del_slot = path->slots[0];
739 del_nr = 1;
740 } else {
741 BUG_ON(del_slot + del_nr != path->slots[0]);
742 del_nr++;
743 }
31840ae1 744
920bbbfb 745 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 746 inode_sub_bytes(inode,
920bbbfb
YZ
747 extent_end - key.offset);
748 extent_end = ALIGN(extent_end,
749 root->sectorsize);
750 } else if (disk_bytenr > 0) {
31840ae1 751 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
752 disk_bytenr, num_bytes, 0,
753 root->root_key.objectid,
5d4f98a2 754 key.objectid, key.offset -
920bbbfb 755 extent_offset);
31840ae1 756 BUG_ON(ret);
920bbbfb
YZ
757 inode_sub_bytes(inode,
758 extent_end - key.offset);
759 *hint_byte = disk_bytenr;
31840ae1 760 }
31840ae1 761
920bbbfb
YZ
762 if (end == extent_end)
763 break;
764
765 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
766 path->slots[0]++;
767 goto next_slot;
768 }
769
770 ret = btrfs_del_items(trans, root, path, del_slot,
771 del_nr);
772 BUG_ON(ret);
773
774 del_nr = 0;
775 del_slot = 0;
776
b3b4aa74 777 btrfs_release_path(path);
920bbbfb 778 continue;
39279cc3 779 }
920bbbfb
YZ
780
781 BUG_ON(1);
39279cc3 782 }
920bbbfb
YZ
783
784 if (del_nr > 0) {
785 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
786 BUG_ON(ret);
6643558d 787 }
920bbbfb
YZ
788
789 btrfs_free_path(path);
39279cc3
CM
790 return ret;
791}
792
d899e052 793static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
794 u64 objectid, u64 bytenr, u64 orig_offset,
795 u64 *start, u64 *end)
d899e052
YZ
796{
797 struct btrfs_file_extent_item *fi;
798 struct btrfs_key key;
799 u64 extent_end;
800
801 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
802 return 0;
803
804 btrfs_item_key_to_cpu(leaf, &key, slot);
805 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
806 return 0;
807
808 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
809 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
810 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 811 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
812 btrfs_file_extent_compression(leaf, fi) ||
813 btrfs_file_extent_encryption(leaf, fi) ||
814 btrfs_file_extent_other_encoding(leaf, fi))
815 return 0;
816
817 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
818 if ((*start && *start != key.offset) || (*end && *end != extent_end))
819 return 0;
820
821 *start = key.offset;
822 *end = extent_end;
823 return 1;
824}
825
826/*
827 * Mark extent in the range start - end as written.
828 *
829 * This changes extent type from 'pre-allocated' to 'regular'. If only
830 * part of extent is marked as written, the extent will be split into
831 * two or three.
832 */
833int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
d899e052
YZ
834 struct inode *inode, u64 start, u64 end)
835{
920bbbfb 836 struct btrfs_root *root = BTRFS_I(inode)->root;
d899e052
YZ
837 struct extent_buffer *leaf;
838 struct btrfs_path *path;
839 struct btrfs_file_extent_item *fi;
840 struct btrfs_key key;
920bbbfb 841 struct btrfs_key new_key;
d899e052
YZ
842 u64 bytenr;
843 u64 num_bytes;
844 u64 extent_end;
5d4f98a2 845 u64 orig_offset;
d899e052
YZ
846 u64 other_start;
847 u64 other_end;
920bbbfb
YZ
848 u64 split;
849 int del_nr = 0;
850 int del_slot = 0;
6c7d54ac 851 int recow;
d899e052 852 int ret;
33345d01 853 u64 ino = btrfs_ino(inode);
d899e052
YZ
854
855 btrfs_drop_extent_cache(inode, start, end - 1, 0);
856
857 path = btrfs_alloc_path();
858 BUG_ON(!path);
859again:
6c7d54ac 860 recow = 0;
920bbbfb 861 split = start;
33345d01 862 key.objectid = ino;
d899e052 863 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 864 key.offset = split;
d899e052
YZ
865
866 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
867 if (ret < 0)
868 goto out;
d899e052
YZ
869 if (ret > 0 && path->slots[0] > 0)
870 path->slots[0]--;
871
872 leaf = path->nodes[0];
873 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 874 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
d899e052
YZ
875 fi = btrfs_item_ptr(leaf, path->slots[0],
876 struct btrfs_file_extent_item);
920bbbfb
YZ
877 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
878 BTRFS_FILE_EXTENT_PREALLOC);
d899e052
YZ
879 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
880 BUG_ON(key.offset > start || extent_end < end);
881
882 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
883 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 884 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
885 memcpy(&new_key, &key, sizeof(new_key));
886
887 if (start == key.offset && end < extent_end) {
888 other_start = 0;
889 other_end = start;
890 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 891 ino, bytenr, orig_offset,
6c7d54ac
YZ
892 &other_start, &other_end)) {
893 new_key.offset = end;
894 btrfs_set_item_key_safe(trans, root, path, &new_key);
895 fi = btrfs_item_ptr(leaf, path->slots[0],
896 struct btrfs_file_extent_item);
897 btrfs_set_file_extent_num_bytes(leaf, fi,
898 extent_end - end);
899 btrfs_set_file_extent_offset(leaf, fi,
900 end - orig_offset);
901 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
902 struct btrfs_file_extent_item);
903 btrfs_set_file_extent_num_bytes(leaf, fi,
904 end - other_start);
905 btrfs_mark_buffer_dirty(leaf);
906 goto out;
907 }
908 }
909
910 if (start > key.offset && end == extent_end) {
911 other_start = end;
912 other_end = 0;
913 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 914 ino, bytenr, orig_offset,
6c7d54ac
YZ
915 &other_start, &other_end)) {
916 fi = btrfs_item_ptr(leaf, path->slots[0],
917 struct btrfs_file_extent_item);
918 btrfs_set_file_extent_num_bytes(leaf, fi,
919 start - key.offset);
920 path->slots[0]++;
921 new_key.offset = start;
922 btrfs_set_item_key_safe(trans, root, path, &new_key);
923
924 fi = btrfs_item_ptr(leaf, path->slots[0],
925 struct btrfs_file_extent_item);
926 btrfs_set_file_extent_num_bytes(leaf, fi,
927 other_end - start);
928 btrfs_set_file_extent_offset(leaf, fi,
929 start - orig_offset);
930 btrfs_mark_buffer_dirty(leaf);
931 goto out;
932 }
933 }
d899e052 934
920bbbfb
YZ
935 while (start > key.offset || end < extent_end) {
936 if (key.offset == start)
937 split = end;
938
920bbbfb
YZ
939 new_key.offset = split;
940 ret = btrfs_duplicate_item(trans, root, path, &new_key);
941 if (ret == -EAGAIN) {
b3b4aa74 942 btrfs_release_path(path);
920bbbfb 943 goto again;
d899e052 944 }
920bbbfb 945 BUG_ON(ret < 0);
d899e052 946
920bbbfb
YZ
947 leaf = path->nodes[0];
948 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 949 struct btrfs_file_extent_item);
d899e052 950 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
951 split - key.offset);
952
953 fi = btrfs_item_ptr(leaf, path->slots[0],
954 struct btrfs_file_extent_item);
955
956 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
957 btrfs_set_file_extent_num_bytes(leaf, fi,
958 extent_end - split);
d899e052
YZ
959 btrfs_mark_buffer_dirty(leaf);
960
920bbbfb
YZ
961 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
962 root->root_key.objectid,
33345d01 963 ino, orig_offset);
d899e052 964 BUG_ON(ret);
d899e052 965
920bbbfb
YZ
966 if (split == start) {
967 key.offset = start;
968 } else {
969 BUG_ON(start != key.offset);
d899e052 970 path->slots[0]--;
920bbbfb 971 extent_end = end;
d899e052 972 }
6c7d54ac 973 recow = 1;
d899e052
YZ
974 }
975
920bbbfb
YZ
976 other_start = end;
977 other_end = 0;
6c7d54ac 978 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 979 ino, bytenr, orig_offset,
6c7d54ac
YZ
980 &other_start, &other_end)) {
981 if (recow) {
b3b4aa74 982 btrfs_release_path(path);
6c7d54ac
YZ
983 goto again;
984 }
920bbbfb
YZ
985 extent_end = other_end;
986 del_slot = path->slots[0] + 1;
987 del_nr++;
988 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
989 0, root->root_key.objectid,
33345d01 990 ino, orig_offset);
920bbbfb 991 BUG_ON(ret);
d899e052 992 }
920bbbfb
YZ
993 other_start = 0;
994 other_end = start;
6c7d54ac 995 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 996 ino, bytenr, orig_offset,
6c7d54ac
YZ
997 &other_start, &other_end)) {
998 if (recow) {
b3b4aa74 999 btrfs_release_path(path);
6c7d54ac
YZ
1000 goto again;
1001 }
920bbbfb
YZ
1002 key.offset = other_start;
1003 del_slot = path->slots[0];
1004 del_nr++;
1005 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1006 0, root->root_key.objectid,
33345d01 1007 ino, orig_offset);
920bbbfb
YZ
1008 BUG_ON(ret);
1009 }
1010 if (del_nr == 0) {
3f6fae95
SL
1011 fi = btrfs_item_ptr(leaf, path->slots[0],
1012 struct btrfs_file_extent_item);
920bbbfb
YZ
1013 btrfs_set_file_extent_type(leaf, fi,
1014 BTRFS_FILE_EXTENT_REG);
1015 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1016 } else {
3f6fae95
SL
1017 fi = btrfs_item_ptr(leaf, del_slot - 1,
1018 struct btrfs_file_extent_item);
6c7d54ac
YZ
1019 btrfs_set_file_extent_type(leaf, fi,
1020 BTRFS_FILE_EXTENT_REG);
1021 btrfs_set_file_extent_num_bytes(leaf, fi,
1022 extent_end - key.offset);
1023 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1024
6c7d54ac
YZ
1025 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1026 BUG_ON(ret);
1027 }
920bbbfb 1028out:
d899e052
YZ
1029 btrfs_free_path(path);
1030 return 0;
1031}
1032
b1bf862e
CM
1033/*
1034 * on error we return an unlocked page and the error value
1035 * on success we return a locked page and 0
1036 */
1037static int prepare_uptodate_page(struct page *page, u64 pos)
1038{
1039 int ret = 0;
1040
1041 if ((pos & (PAGE_CACHE_SIZE - 1)) && !PageUptodate(page)) {
1042 ret = btrfs_readpage(NULL, page);
1043 if (ret)
1044 return ret;
1045 lock_page(page);
1046 if (!PageUptodate(page)) {
1047 unlock_page(page);
1048 return -EIO;
1049 }
1050 }
1051 return 0;
1052}
1053
39279cc3 1054/*
d352ac68
CM
1055 * this gets pages into the page cache and locks them down, it also properly
1056 * waits for data=ordered extents to finish before allowing the pages to be
1057 * modified.
39279cc3 1058 */
d397712b 1059static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
98ed5174
CM
1060 struct page **pages, size_t num_pages,
1061 loff_t pos, unsigned long first_index,
1062 unsigned long last_index, size_t write_bytes)
39279cc3 1063{
2ac55d41 1064 struct extent_state *cached_state = NULL;
39279cc3
CM
1065 int i;
1066 unsigned long index = pos >> PAGE_CACHE_SHIFT;
6da6abae 1067 struct inode *inode = fdentry(file)->d_inode;
39279cc3 1068 int err = 0;
b1bf862e 1069 int faili = 0;
8c2383c3 1070 u64 start_pos;
e6dcd2dc 1071 u64 last_pos;
8c2383c3 1072
5f39d397 1073 start_pos = pos & ~((u64)root->sectorsize - 1);
e6dcd2dc 1074 last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
39279cc3 1075
9036c102 1076 if (start_pos > inode->i_size) {
a41ad394 1077 err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
9036c102
YZ
1078 if (err)
1079 return err;
1080 }
1081
e6dcd2dc 1082again:
39279cc3
CM
1083 for (i = 0; i < num_pages; i++) {
1084 pages[i] = grab_cache_page(inode->i_mapping, index + i);
1085 if (!pages[i]) {
b1bf862e
CM
1086 faili = i - 1;
1087 err = -ENOMEM;
1088 goto fail;
1089 }
1090
1091 if (i == 0)
1092 err = prepare_uptodate_page(pages[i], pos);
1093 if (i == num_pages - 1)
1094 err = prepare_uptodate_page(pages[i],
1095 pos + write_bytes);
1096 if (err) {
1097 page_cache_release(pages[i]);
1098 faili = i - 1;
1099 goto fail;
39279cc3 1100 }
ccd467d6 1101 wait_on_page_writeback(pages[i]);
39279cc3 1102 }
b1bf862e 1103 err = 0;
0762704b 1104 if (start_pos < inode->i_size) {
e6dcd2dc 1105 struct btrfs_ordered_extent *ordered;
2ac55d41
JB
1106 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1107 start_pos, last_pos - 1, 0, &cached_state,
1108 GFP_NOFS);
d397712b
CM
1109 ordered = btrfs_lookup_first_ordered_extent(inode,
1110 last_pos - 1);
e6dcd2dc
CM
1111 if (ordered &&
1112 ordered->file_offset + ordered->len > start_pos &&
1113 ordered->file_offset < last_pos) {
1114 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
1115 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1116 start_pos, last_pos - 1,
1117 &cached_state, GFP_NOFS);
e6dcd2dc
CM
1118 for (i = 0; i < num_pages; i++) {
1119 unlock_page(pages[i]);
1120 page_cache_release(pages[i]);
1121 }
1122 btrfs_wait_ordered_range(inode, start_pos,
1123 last_pos - start_pos);
1124 goto again;
1125 }
1126 if (ordered)
1127 btrfs_put_ordered_extent(ordered);
1128
2ac55d41 1129 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
32c00aff 1130 last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 1131 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
0762704b 1132 GFP_NOFS);
2ac55d41
JB
1133 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1134 start_pos, last_pos - 1, &cached_state,
1135 GFP_NOFS);
0762704b 1136 }
e6dcd2dc 1137 for (i = 0; i < num_pages; i++) {
f87f057b 1138 clear_page_dirty_for_io(pages[i]);
e6dcd2dc
CM
1139 set_page_extent_mapped(pages[i]);
1140 WARN_ON(!PageLocked(pages[i]));
1141 }
39279cc3 1142 return 0;
b1bf862e
CM
1143fail:
1144 while (faili >= 0) {
1145 unlock_page(pages[faili]);
1146 page_cache_release(pages[faili]);
1147 faili--;
1148 }
1149 return err;
1150
39279cc3
CM
1151}
1152
d0215f3e
JB
1153static noinline ssize_t __btrfs_buffered_write(struct file *file,
1154 struct iov_iter *i,
1155 loff_t pos)
4b46fce2 1156{
11c65dcc
JB
1157 struct inode *inode = fdentry(file)->d_inode;
1158 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1159 struct page **pages = NULL;
39279cc3
CM
1160 unsigned long first_index;
1161 unsigned long last_index;
d0215f3e
JB
1162 size_t num_written = 0;
1163 int nrptrs;
c9149235 1164 int ret = 0;
4b46fce2 1165
d0215f3e 1166 nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
11c65dcc
JB
1167 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1168 (sizeof(struct page *)));
8c2383c3 1169 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1170 if (!pages)
1171 return -ENOMEM;
ab93dbec 1172
39279cc3 1173 first_index = pos >> PAGE_CACHE_SHIFT;
d0215f3e 1174 last_index = (pos + iov_iter_count(i)) >> PAGE_CACHE_SHIFT;
39279cc3 1175
d0215f3e 1176 while (iov_iter_count(i) > 0) {
39279cc3 1177 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
d0215f3e 1178 size_t write_bytes = min(iov_iter_count(i),
11c65dcc 1179 nrptrs * (size_t)PAGE_CACHE_SIZE -
8c2383c3 1180 offset);
3a90983d
YZ
1181 size_t num_pages = (write_bytes + offset +
1182 PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
d0215f3e
JB
1183 size_t dirty_pages;
1184 size_t copied;
39279cc3 1185
8c2383c3 1186 WARN_ON(num_pages > nrptrs);
1832a6d5 1187
914ee295
XZ
1188 /*
1189 * Fault pages before locking them in prepare_pages
1190 * to avoid recursive lock
1191 */
d0215f3e 1192 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1193 ret = -EFAULT;
d0215f3e 1194 break;
914ee295
XZ
1195 }
1196
1197 ret = btrfs_delalloc_reserve_space(inode,
1198 num_pages << PAGE_CACHE_SHIFT);
1832a6d5 1199 if (ret)
d0215f3e 1200 break;
1832a6d5 1201
4a64001f
JB
1202 /*
1203 * This is going to setup the pages array with the number of
1204 * pages we want, so we don't really need to worry about the
1205 * contents of pages from loop to loop
1206 */
39279cc3
CM
1207 ret = prepare_pages(root, file, pages, num_pages,
1208 pos, first_index, last_index,
8c2383c3 1209 write_bytes);
6a63209f 1210 if (ret) {
914ee295
XZ
1211 btrfs_delalloc_release_space(inode,
1212 num_pages << PAGE_CACHE_SHIFT);
d0215f3e 1213 break;
6a63209f 1214 }
39279cc3 1215
914ee295 1216 copied = btrfs_copy_from_user(pos, num_pages,
d0215f3e 1217 write_bytes, pages, i);
b1bf862e
CM
1218
1219 /*
1220 * if we have trouble faulting in the pages, fall
1221 * back to one page at a time
1222 */
1223 if (copied < write_bytes)
1224 nrptrs = 1;
1225
1226 if (copied == 0)
1227 dirty_pages = 0;
1228 else
1229 dirty_pages = (copied + offset +
1230 PAGE_CACHE_SIZE - 1) >>
1231 PAGE_CACHE_SHIFT;
914ee295 1232
d0215f3e
JB
1233 /*
1234 * If we had a short copy we need to release the excess delaloc
1235 * bytes we reserved. We need to increment outstanding_extents
1236 * because btrfs_delalloc_release_space will decrement it, but
1237 * we still have an outstanding extent for the chunk we actually
1238 * managed to copy.
1239 */
914ee295
XZ
1240 if (num_pages > dirty_pages) {
1241 if (copied > 0)
1242 atomic_inc(
1243 &BTRFS_I(inode)->outstanding_extents);
1244 btrfs_delalloc_release_space(inode,
1245 (num_pages - dirty_pages) <<
1246 PAGE_CACHE_SHIFT);
1247 }
1248
1249 if (copied > 0) {
be1a12a0
JB
1250 ret = btrfs_dirty_pages(root, inode, pages,
1251 dirty_pages, pos, copied,
1252 NULL);
d0215f3e
JB
1253 if (ret) {
1254 btrfs_delalloc_release_space(inode,
1255 dirty_pages << PAGE_CACHE_SHIFT);
1256 btrfs_drop_pages(pages, num_pages);
1257 break;
1258 }
54aa1f4d 1259 }
39279cc3 1260
39279cc3
CM
1261 btrfs_drop_pages(pages, num_pages);
1262
d0215f3e
JB
1263 cond_resched();
1264
1265 balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1266 dirty_pages);
1267 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1268 btrfs_btree_balance_dirty(root, 1);
1269 btrfs_throttle(root);
cb843a6f 1270
914ee295
XZ
1271 pos += copied;
1272 num_written += copied;
d0215f3e 1273 }
39279cc3 1274
d0215f3e
JB
1275 kfree(pages);
1276
1277 return num_written ? num_written : ret;
1278}
1279
1280static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1281 const struct iovec *iov,
1282 unsigned long nr_segs, loff_t pos,
1283 loff_t *ppos, size_t count, size_t ocount)
1284{
1285 struct file *file = iocb->ki_filp;
1286 struct inode *inode = fdentry(file)->d_inode;
1287 struct iov_iter i;
1288 ssize_t written;
1289 ssize_t written_buffered;
1290 loff_t endbyte;
1291 int err;
1292
1293 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1294 count, ocount);
1295
1296 /*
1297 * the generic O_DIRECT will update in-memory i_size after the
1298 * DIOs are done. But our endio handlers that update the on
1299 * disk i_size never update past the in memory i_size. So we
1300 * need one more update here to catch any additions to the
1301 * file
1302 */
1303 if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
1304 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
1305 mark_inode_dirty(inode);
1306 }
1307
1308 if (written < 0 || written == count)
1309 return written;
1310
1311 pos += written;
1312 count -= written;
1313 iov_iter_init(&i, iov, nr_segs, count, written);
1314 written_buffered = __btrfs_buffered_write(file, &i, pos);
1315 if (written_buffered < 0) {
1316 err = written_buffered;
1317 goto out;
39279cc3 1318 }
d0215f3e
JB
1319 endbyte = pos + written_buffered - 1;
1320 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1321 if (err)
1322 goto out;
1323 written += written_buffered;
1324 *ppos = pos + written_buffered;
1325 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1326 endbyte >> PAGE_CACHE_SHIFT);
39279cc3 1327out:
d0215f3e
JB
1328 return written ? written : err;
1329}
5b92ee72 1330
d0215f3e
JB
1331static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1332 const struct iovec *iov,
1333 unsigned long nr_segs, loff_t pos)
1334{
1335 struct file *file = iocb->ki_filp;
1336 struct inode *inode = fdentry(file)->d_inode;
1337 struct btrfs_root *root = BTRFS_I(inode)->root;
1338 loff_t *ppos = &iocb->ki_pos;
1339 ssize_t num_written = 0;
1340 ssize_t err = 0;
1341 size_t count, ocount;
1342
1343 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1344
1345 mutex_lock(&inode->i_mutex);
1346
1347 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1348 if (err) {
1349 mutex_unlock(&inode->i_mutex);
1350 goto out;
1351 }
1352 count = ocount;
1353
1354 current->backing_dev_info = inode->i_mapping->backing_dev_info;
1355 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1356 if (err) {
1357 mutex_unlock(&inode->i_mutex);
1358 goto out;
1359 }
1360
1361 if (count == 0) {
1362 mutex_unlock(&inode->i_mutex);
1363 goto out;
1364 }
1365
1366 err = file_remove_suid(file);
1367 if (err) {
1368 mutex_unlock(&inode->i_mutex);
1369 goto out;
1370 }
1371
1372 /*
1373 * If BTRFS flips readonly due to some impossible error
1374 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1375 * although we have opened a file as writable, we have
1376 * to stop this write operation to ensure FS consistency.
1377 */
1378 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1379 mutex_unlock(&inode->i_mutex);
1380 err = -EROFS;
1381 goto out;
1382 }
1383
1384 file_update_time(file);
1385 BTRFS_I(inode)->sequence++;
1386
1387 if (unlikely(file->f_flags & O_DIRECT)) {
1388 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1389 pos, ppos, count, ocount);
1390 } else {
1391 struct iov_iter i;
1392
1393 iov_iter_init(&i, iov, nr_segs, count, num_written);
1394
1395 num_written = __btrfs_buffered_write(file, &i, pos);
1396 if (num_written > 0)
1397 *ppos = pos + num_written;
1398 }
1399
1400 mutex_unlock(&inode->i_mutex);
2ff3e9b6 1401
5a3f23d5
CM
1402 /*
1403 * we want to make sure fsync finds this change
1404 * but we haven't joined a transaction running right now.
1405 *
1406 * Later on, someone is sure to update the inode and get the
1407 * real transid recorded.
1408 *
1409 * We set last_trans now to the fs_info generation + 1,
1410 * this will either be one more than the running transaction
1411 * or the generation used for the next transaction if there isn't
1412 * one running right now.
1413 */
1414 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
d0215f3e
JB
1415 if (num_written > 0 || num_written == -EIOCBQUEUED) {
1416 err = generic_write_sync(file, pos, num_written);
1417 if (err < 0 && num_written > 0)
2ff3e9b6
CM
1418 num_written = err;
1419 }
d0215f3e 1420out:
39279cc3 1421 current->backing_dev_info = NULL;
39279cc3
CM
1422 return num_written ? num_written : err;
1423}
1424
d397712b 1425int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1426{
5a3f23d5
CM
1427 /*
1428 * ordered_data_close is set by settattr when we are about to truncate
1429 * a file from a non-zero size to a zero size. This tries to
1430 * flush down new bytes that may have been written if the
1431 * application were using truncate to replace a file in place.
1432 */
1433 if (BTRFS_I(inode)->ordered_data_close) {
1434 BTRFS_I(inode)->ordered_data_close = 0;
1435 btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1436 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1437 filemap_flush(inode->i_mapping);
1438 }
6bf13c0c
SW
1439 if (filp->private_data)
1440 btrfs_ioctl_trans_end(filp);
e1b81e67
M
1441 return 0;
1442}
1443
d352ac68
CM
1444/*
1445 * fsync call for both files and directories. This logs the inode into
1446 * the tree log instead of forcing full commits whenever possible.
1447 *
1448 * It needs to call filemap_fdatawait so that all ordered extent updates are
1449 * in the metadata btree are up to date for copying to the log.
1450 *
1451 * It drops the inode mutex before doing the tree log commit. This is an
1452 * important optimization for directories because holding the mutex prevents
1453 * new operations on the dir while we write to disk.
1454 */
02c24a82 1455int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1456{
7ea80859 1457 struct dentry *dentry = file->f_path.dentry;
39279cc3
CM
1458 struct inode *inode = dentry->d_inode;
1459 struct btrfs_root *root = BTRFS_I(inode)->root;
15ee9bc7 1460 int ret = 0;
39279cc3
CM
1461 struct btrfs_trans_handle *trans;
1462
1abe9b8a 1463 trace_btrfs_sync_file(file, datasync);
257c62e1 1464
02c24a82
JB
1465 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1466 if (ret)
1467 return ret;
1468 mutex_lock(&inode->i_mutex);
1469
257c62e1
CM
1470 /* we wait first, since the writeback may change the inode */
1471 root->log_batch++;
257c62e1
CM
1472 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1473 root->log_batch++;
1474
39279cc3 1475 /*
15ee9bc7
JB
1476 * check the transaction that last modified this inode
1477 * and see if its already been committed
39279cc3 1478 */
02c24a82
JB
1479 if (!BTRFS_I(inode)->last_trans) {
1480 mutex_unlock(&inode->i_mutex);
15ee9bc7 1481 goto out;
02c24a82 1482 }
a2135011 1483
257c62e1
CM
1484 /*
1485 * if the last transaction that changed this file was before
1486 * the current transaction, we can bail out now without any
1487 * syncing
1488 */
a4abeea4 1489 smp_mb();
15ee9bc7
JB
1490 if (BTRFS_I(inode)->last_trans <=
1491 root->fs_info->last_trans_committed) {
1492 BTRFS_I(inode)->last_trans = 0;
02c24a82 1493 mutex_unlock(&inode->i_mutex);
15ee9bc7
JB
1494 goto out;
1495 }
15ee9bc7
JB
1496
1497 /*
a52d9a80
CM
1498 * ok we haven't committed the transaction yet, lets do a commit
1499 */
6f902af4 1500 if (file->private_data)
6bf13c0c
SW
1501 btrfs_ioctl_trans_end(file);
1502
a22285a6
YZ
1503 trans = btrfs_start_transaction(root, 0);
1504 if (IS_ERR(trans)) {
1505 ret = PTR_ERR(trans);
02c24a82 1506 mutex_unlock(&inode->i_mutex);
39279cc3
CM
1507 goto out;
1508 }
e02119d5 1509
2cfbd50b 1510 ret = btrfs_log_dentry_safe(trans, root, dentry);
02c24a82
JB
1511 if (ret < 0) {
1512 mutex_unlock(&inode->i_mutex);
e02119d5 1513 goto out;
02c24a82 1514 }
49eb7e46
CM
1515
1516 /* we've logged all the items and now have a consistent
1517 * version of the file in the log. It is possible that
1518 * someone will come in and modify the file, but that's
1519 * fine because the log is consistent on disk, and we
1520 * have references to all of the file's extents
1521 *
1522 * It is possible that someone will come in and log the
1523 * file again, but that will end up using the synchronization
1524 * inside btrfs_sync_log to keep things safe.
1525 */
02c24a82 1526 mutex_unlock(&inode->i_mutex);
49eb7e46 1527
257c62e1
CM
1528 if (ret != BTRFS_NO_LOG_SYNC) {
1529 if (ret > 0) {
12fcfd22 1530 ret = btrfs_commit_transaction(trans, root);
257c62e1
CM
1531 } else {
1532 ret = btrfs_sync_log(trans, root);
1533 if (ret == 0)
1534 ret = btrfs_end_transaction(trans, root);
1535 else
1536 ret = btrfs_commit_transaction(trans, root);
1537 }
1538 } else {
1539 ret = btrfs_end_transaction(trans, root);
e02119d5 1540 }
39279cc3 1541out:
014e4ac4 1542 return ret > 0 ? -EIO : ret;
39279cc3
CM
1543}
1544
f0f37e2f 1545static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 1546 .fault = filemap_fault,
9ebefb18
CM
1547 .page_mkwrite = btrfs_page_mkwrite,
1548};
1549
1550static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1551{
058a457e
MX
1552 struct address_space *mapping = filp->f_mapping;
1553
1554 if (!mapping->a_ops->readpage)
1555 return -ENOEXEC;
1556
9ebefb18 1557 file_accessed(filp);
058a457e
MX
1558 vma->vm_ops = &btrfs_file_vm_ops;
1559 vma->vm_flags |= VM_CAN_NONLINEAR;
1560
9ebefb18
CM
1561 return 0;
1562}
1563
2fe17c10
CH
1564static long btrfs_fallocate(struct file *file, int mode,
1565 loff_t offset, loff_t len)
1566{
1567 struct inode *inode = file->f_path.dentry->d_inode;
1568 struct extent_state *cached_state = NULL;
1569 u64 cur_offset;
1570 u64 last_byte;
1571 u64 alloc_start;
1572 u64 alloc_end;
1573 u64 alloc_hint = 0;
1574 u64 locked_end;
1575 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1576 struct extent_map *em;
1577 int ret;
1578
1579 alloc_start = offset & ~mask;
1580 alloc_end = (offset + len + mask) & ~mask;
1581
1582 /* We only support the FALLOC_FL_KEEP_SIZE mode */
1583 if (mode & ~FALLOC_FL_KEEP_SIZE)
1584 return -EOPNOTSUPP;
1585
1586 /*
1587 * wait for ordered IO before we have any locks. We'll loop again
1588 * below with the locks held.
1589 */
1590 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
1591
1592 mutex_lock(&inode->i_mutex);
1593 ret = inode_newsize_ok(inode, alloc_end);
1594 if (ret)
1595 goto out;
1596
1597 if (alloc_start > inode->i_size) {
a41ad394
JB
1598 ret = btrfs_cont_expand(inode, i_size_read(inode),
1599 alloc_start);
2fe17c10
CH
1600 if (ret)
1601 goto out;
1602 }
1603
1604 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
1605 if (ret)
1606 goto out;
1607
1608 locked_end = alloc_end - 1;
1609 while (1) {
1610 struct btrfs_ordered_extent *ordered;
1611
1612 /* the extent lock is ordered inside the running
1613 * transaction
1614 */
1615 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
1616 locked_end, 0, &cached_state, GFP_NOFS);
1617 ordered = btrfs_lookup_first_ordered_extent(inode,
1618 alloc_end - 1);
1619 if (ordered &&
1620 ordered->file_offset + ordered->len > alloc_start &&
1621 ordered->file_offset < alloc_end) {
1622 btrfs_put_ordered_extent(ordered);
1623 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1624 alloc_start, locked_end,
1625 &cached_state, GFP_NOFS);
1626 /*
1627 * we can't wait on the range with the transaction
1628 * running or with the extent lock held
1629 */
1630 btrfs_wait_ordered_range(inode, alloc_start,
1631 alloc_end - alloc_start);
1632 } else {
1633 if (ordered)
1634 btrfs_put_ordered_extent(ordered);
1635 break;
1636 }
1637 }
1638
1639 cur_offset = alloc_start;
1640 while (1) {
1641 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
1642 alloc_end - cur_offset, 0);
c704005d 1643 BUG_ON(IS_ERR_OR_NULL(em));
2fe17c10
CH
1644 last_byte = min(extent_map_end(em), alloc_end);
1645 last_byte = (last_byte + mask) & ~mask;
1646 if (em->block_start == EXTENT_MAP_HOLE ||
1647 (cur_offset >= inode->i_size &&
1648 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
1649 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
1650 last_byte - cur_offset,
1651 1 << inode->i_blkbits,
1652 offset + len,
1653 &alloc_hint);
1654 if (ret < 0) {
1655 free_extent_map(em);
1656 break;
1657 }
1658 }
1659 free_extent_map(em);
1660
1661 cur_offset = last_byte;
1662 if (cur_offset >= alloc_end) {
1663 ret = 0;
1664 break;
1665 }
1666 }
1667 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
1668 &cached_state, GFP_NOFS);
1669
1670 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
1671out:
1672 mutex_unlock(&inode->i_mutex);
1673 return ret;
1674}
1675
b2675157
JB
1676static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
1677{
1678 struct btrfs_root *root = BTRFS_I(inode)->root;
1679 struct extent_map *em;
1680 struct extent_state *cached_state = NULL;
1681 u64 lockstart = *offset;
1682 u64 lockend = i_size_read(inode);
1683 u64 start = *offset;
1684 u64 orig_start = *offset;
1685 u64 len = i_size_read(inode);
1686 u64 last_end = 0;
1687 int ret = 0;
1688
1689 lockend = max_t(u64, root->sectorsize, lockend);
1690 if (lockend <= lockstart)
1691 lockend = lockstart + root->sectorsize;
1692
1693 len = lockend - lockstart + 1;
1694
1695 len = max_t(u64, len, root->sectorsize);
1696 if (inode->i_size == 0)
1697 return -ENXIO;
1698
1699 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
1700 &cached_state, GFP_NOFS);
1701
1702 /*
1703 * Delalloc is such a pain. If we have a hole and we have pending
1704 * delalloc for a portion of the hole we will get back a hole that
1705 * exists for the entire range since it hasn't been actually written
1706 * yet. So to take care of this case we need to look for an extent just
1707 * before the position we want in case there is outstanding delalloc
1708 * going on here.
1709 */
1710 if (origin == SEEK_HOLE && start != 0) {
1711 if (start <= root->sectorsize)
1712 em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
1713 root->sectorsize, 0);
1714 else
1715 em = btrfs_get_extent_fiemap(inode, NULL, 0,
1716 start - root->sectorsize,
1717 root->sectorsize, 0);
1718 if (IS_ERR(em)) {
1719 ret = -ENXIO;
1720 goto out;
1721 }
1722 last_end = em->start + em->len;
1723 if (em->block_start == EXTENT_MAP_DELALLOC)
1724 last_end = min_t(u64, last_end, inode->i_size);
1725 free_extent_map(em);
1726 }
1727
1728 while (1) {
1729 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
1730 if (IS_ERR(em)) {
1731 ret = -ENXIO;
1732 break;
1733 }
1734
1735 if (em->block_start == EXTENT_MAP_HOLE) {
1736 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1737 if (last_end <= orig_start) {
1738 free_extent_map(em);
1739 ret = -ENXIO;
1740 break;
1741 }
1742 }
1743
1744 if (origin == SEEK_HOLE) {
1745 *offset = start;
1746 free_extent_map(em);
1747 break;
1748 }
1749 } else {
1750 if (origin == SEEK_DATA) {
1751 if (em->block_start == EXTENT_MAP_DELALLOC) {
1752 if (start >= inode->i_size) {
1753 free_extent_map(em);
1754 ret = -ENXIO;
1755 break;
1756 }
1757 }
1758
1759 *offset = start;
1760 free_extent_map(em);
1761 break;
1762 }
1763 }
1764
1765 start = em->start + em->len;
1766 last_end = em->start + em->len;
1767
1768 if (em->block_start == EXTENT_MAP_DELALLOC)
1769 last_end = min_t(u64, last_end, inode->i_size);
1770
1771 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
1772 free_extent_map(em);
1773 ret = -ENXIO;
1774 break;
1775 }
1776 free_extent_map(em);
1777 cond_resched();
1778 }
1779 if (!ret)
1780 *offset = min(*offset, inode->i_size);
1781out:
1782 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
1783 &cached_state, GFP_NOFS);
1784 return ret;
1785}
1786
1787static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
1788{
1789 struct inode *inode = file->f_mapping->host;
1790 int ret;
1791
1792 mutex_lock(&inode->i_mutex);
1793 switch (origin) {
1794 case SEEK_END:
1795 case SEEK_CUR:
1796 offset = generic_file_llseek_unlocked(file, offset, origin);
1797 goto out;
1798 case SEEK_DATA:
1799 case SEEK_HOLE:
1800 ret = find_desired_extent(inode, &offset, origin);
1801 if (ret) {
1802 mutex_unlock(&inode->i_mutex);
1803 return ret;
1804 }
1805 }
1806
1807 if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET))
1808 return -EINVAL;
1809 if (offset > inode->i_sb->s_maxbytes)
1810 return -EINVAL;
1811
1812 /* Special lock needed here? */
1813 if (offset != file->f_pos) {
1814 file->f_pos = offset;
1815 file->f_version = 0;
1816 }
1817out:
1818 mutex_unlock(&inode->i_mutex);
1819 return offset;
1820}
1821
828c0950 1822const struct file_operations btrfs_file_operations = {
b2675157 1823 .llseek = btrfs_file_llseek,
39279cc3 1824 .read = do_sync_read,
4a001071 1825 .write = do_sync_write,
9ebefb18 1826 .aio_read = generic_file_aio_read,
e9906a98 1827 .splice_read = generic_file_splice_read,
11c65dcc 1828 .aio_write = btrfs_file_aio_write,
9ebefb18 1829 .mmap = btrfs_file_mmap,
39279cc3 1830 .open = generic_file_open,
e1b81e67 1831 .release = btrfs_release_file,
39279cc3 1832 .fsync = btrfs_sync_file,
2fe17c10 1833 .fallocate = btrfs_fallocate,
34287aa3 1834 .unlocked_ioctl = btrfs_ioctl,
39279cc3 1835#ifdef CONFIG_COMPAT
34287aa3 1836 .compat_ioctl = btrfs_ioctl,
39279cc3
CM
1837#endif
1838};