staging: rtl8192u: fix coding style
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / staging / zsmalloc / zsmalloc-main.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 *
6 * This code is released using a dual license strategy: BSD/GPL
7 * You can choose the license that better fits your requirements.
8 *
9 * Released under the terms of 3-clause BSD License
10 * Released under the terms of GNU General Public License Version 2.0
11 */
12
2db51dae
NG
13
14/*
15 * This allocator is designed for use with zcache and zram. Thus, the
16 * allocator is supposed to work well under low memory conditions. In
17 * particular, it never attempts higher order page allocation which is
18 * very likely to fail under memory pressure. On the other hand, if we
19 * just use single (0-order) pages, it would suffer from very high
20 * fragmentation -- any object of size PAGE_SIZE/2 or larger would occupy
21 * an entire page. This was one of the major issues with its predecessor
22 * (xvmalloc).
23 *
24 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
25 * and links them together using various 'struct page' fields. These linked
26 * pages act as a single higher-order page i.e. an object can span 0-order
27 * page boundaries. The code refers to these linked pages as a single entity
28 * called zspage.
29 *
30 * Following is how we use various fields and flags of underlying
31 * struct page(s) to form a zspage.
32 *
33 * Usage of struct page fields:
34 * page->first_page: points to the first component (0-order) page
35 * page->index (union with page->freelist): offset of the first object
36 * starting in this page. For the first page, this is
37 * always 0, so we use this field (aka freelist) to point
38 * to the first free object in zspage.
39 * page->lru: links together all component pages (except the first page)
40 * of a zspage
41 *
42 * For _first_ page only:
43 *
44 * page->private (union with page->first_page): refers to the
45 * component page after the first page
46 * page->freelist: points to the first free object in zspage.
47 * Free objects are linked together using in-place
48 * metadata.
49 * page->objects: maximum number of objects we can store in this
50 * zspage (class->zspage_order * PAGE_SIZE / class->size)
51 * page->lru: links together first pages of various zspages.
52 * Basically forming list of zspages in a fullness group.
53 * page->mapping: class index and fullness group of the zspage
54 *
55 * Usage of struct page flags:
56 * PG_private: identifies the first component page
57 * PG_private2: identifies the last component page
58 *
59 */
60
61989a80
NG
61#ifdef CONFIG_ZSMALLOC_DEBUG
62#define DEBUG
63#endif
64
65#include <linux/module.h>
66#include <linux/kernel.h>
67#include <linux/bitops.h>
68#include <linux/errno.h>
69#include <linux/highmem.h>
70#include <linux/init.h>
71#include <linux/string.h>
72#include <linux/slab.h>
73#include <asm/tlbflush.h>
74#include <asm/pgtable.h>
75#include <linux/cpumask.h>
76#include <linux/cpu.h>
0cbb613f 77#include <linux/vmalloc.h>
c60369f0 78#include <linux/hardirq.h>
0959c63f
SJ
79#include <linux/spinlock.h>
80#include <linux/types.h>
61989a80
NG
81
82#include "zsmalloc.h"
0959c63f
SJ
83
84/*
85 * This must be power of 2 and greater than of equal to sizeof(link_free).
86 * These two conditions ensure that any 'struct link_free' itself doesn't
87 * span more than 1 page which avoids complex case of mapping 2 pages simply
88 * to restore link_free pointer values.
89 */
90#define ZS_ALIGN 8
91
92/*
93 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
94 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
95 */
96#define ZS_MAX_ZSPAGE_ORDER 2
97#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
98
99/*
100 * Object location (<PFN>, <obj_idx>) is encoded as
101 * as single (void *) handle value.
102 *
103 * Note that object index <obj_idx> is relative to system
104 * page <PFN> it is stored in, so for each sub-page belonging
105 * to a zspage, obj_idx starts with 0.
106 *
107 * This is made more complicated by various memory models and PAE.
108 */
109
110#ifndef MAX_PHYSMEM_BITS
111#ifdef CONFIG_HIGHMEM64G
112#define MAX_PHYSMEM_BITS 36
113#else /* !CONFIG_HIGHMEM64G */
114/*
115 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
116 * be PAGE_SHIFT
117 */
118#define MAX_PHYSMEM_BITS BITS_PER_LONG
119#endif
120#endif
121#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
122#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
123#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
124
125#define MAX(a, b) ((a) >= (b) ? (a) : (b))
126/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127#define ZS_MIN_ALLOC_SIZE \
128 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
129#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
130
131/*
132 * On systems with 4K page size, this gives 254 size classes! There is a
133 * trader-off here:
134 * - Large number of size classes is potentially wasteful as free page are
135 * spread across these classes
136 * - Small number of size classes causes large internal fragmentation
137 * - Probably its better to use specific size classes (empirically
138 * determined). NOTE: all those class sizes must be set as multiple of
139 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
140 *
141 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
142 * (reason above)
143 */
d662b8eb 144#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
0959c63f
SJ
145#define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
146 ZS_SIZE_CLASS_DELTA + 1)
147
148/*
149 * We do not maintain any list for completely empty or full pages
150 */
151enum fullness_group {
152 ZS_ALMOST_FULL,
153 ZS_ALMOST_EMPTY,
154 _ZS_NR_FULLNESS_GROUPS,
155
156 ZS_EMPTY,
157 ZS_FULL
158};
159
160/*
161 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
162 * n <= N / f, where
163 * n = number of allocated objects
164 * N = total number of objects zspage can store
165 * f = 1/fullness_threshold_frac
166 *
167 * Similarly, we assign zspage to:
168 * ZS_ALMOST_FULL when n > N / f
169 * ZS_EMPTY when n == 0
170 * ZS_FULL when n == N
171 *
172 * (see: fix_fullness_group())
173 */
174static const int fullness_threshold_frac = 4;
175
176struct size_class {
177 /*
178 * Size of objects stored in this class. Must be multiple
179 * of ZS_ALIGN.
180 */
181 int size;
182 unsigned int index;
183
184 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
185 int pages_per_zspage;
186
187 spinlock_t lock;
188
189 /* stats */
190 u64 pages_allocated;
191
192 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
193};
194
195/*
196 * Placed within free objects to form a singly linked list.
197 * For every zspage, first_page->freelist gives head of this list.
198 *
199 * This must be power of 2 and less than or equal to ZS_ALIGN
200 */
201struct link_free {
202 /* Handle of next free chunk (encodes <PFN, obj_idx>) */
203 void *next;
204};
205
206struct zs_pool {
207 struct size_class size_class[ZS_SIZE_CLASSES];
208
209 gfp_t flags; /* allocation flags used when growing pool */
0959c63f 210};
61989a80
NG
211
212/*
213 * A zspage's class index and fullness group
214 * are encoded in its (first)page->mapping
215 */
216#define CLASS_IDX_BITS 28
217#define FULLNESS_BITS 4
218#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
219#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
220
f553646a
SJ
221/*
222 * By default, zsmalloc uses a copy-based object mapping method to access
223 * allocations that span two pages. However, if a particular architecture
99155188
MK
224 * performs VM mapping faster than copying, then it should be added here
225 * so that USE_PGTABLE_MAPPING is defined. This causes zsmalloc to use
226 * page table mapping rather than copying for object mapping.
f553646a
SJ
227*/
228#if defined(CONFIG_ARM)
229#define USE_PGTABLE_MAPPING
230#endif
231
232struct mapping_area {
233#ifdef USE_PGTABLE_MAPPING
234 struct vm_struct *vm; /* vm area for mapping object that span pages */
235#else
236 char *vm_buf; /* copy buffer for objects that span pages */
237#endif
238 char *vm_addr; /* address of kmap_atomic()'ed pages */
239 enum zs_mapmode vm_mm; /* mapping mode */
240};
241
242
61989a80
NG
243/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
244static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
245
246static int is_first_page(struct page *page)
247{
a27545bf 248 return PagePrivate(page);
61989a80
NG
249}
250
251static int is_last_page(struct page *page)
252{
a27545bf 253 return PagePrivate2(page);
61989a80
NG
254}
255
256static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
257 enum fullness_group *fullness)
258{
259 unsigned long m;
260 BUG_ON(!is_first_page(page));
261
262 m = (unsigned long)page->mapping;
263 *fullness = m & FULLNESS_MASK;
264 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
265}
266
267static void set_zspage_mapping(struct page *page, unsigned int class_idx,
268 enum fullness_group fullness)
269{
270 unsigned long m;
271 BUG_ON(!is_first_page(page));
272
273 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
274 (fullness & FULLNESS_MASK);
275 page->mapping = (struct address_space *)m;
276}
277
278static int get_size_class_index(int size)
279{
280 int idx = 0;
281
282 if (likely(size > ZS_MIN_ALLOC_SIZE))
283 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
284 ZS_SIZE_CLASS_DELTA);
285
286 return idx;
287}
288
289static enum fullness_group get_fullness_group(struct page *page)
290{
291 int inuse, max_objects;
292 enum fullness_group fg;
293 BUG_ON(!is_first_page(page));
294
295 inuse = page->inuse;
296 max_objects = page->objects;
297
298 if (inuse == 0)
299 fg = ZS_EMPTY;
300 else if (inuse == max_objects)
301 fg = ZS_FULL;
302 else if (inuse <= max_objects / fullness_threshold_frac)
303 fg = ZS_ALMOST_EMPTY;
304 else
305 fg = ZS_ALMOST_FULL;
306
307 return fg;
308}
309
310static void insert_zspage(struct page *page, struct size_class *class,
311 enum fullness_group fullness)
312{
313 struct page **head;
314
315 BUG_ON(!is_first_page(page));
316
317 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
318 return;
319
320 head = &class->fullness_list[fullness];
321 if (*head)
322 list_add_tail(&page->lru, &(*head)->lru);
323
324 *head = page;
325}
326
327static void remove_zspage(struct page *page, struct size_class *class,
328 enum fullness_group fullness)
329{
330 struct page **head;
331
332 BUG_ON(!is_first_page(page));
333
334 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
335 return;
336
337 head = &class->fullness_list[fullness];
338 BUG_ON(!*head);
339 if (list_empty(&(*head)->lru))
340 *head = NULL;
341 else if (*head == page)
342 *head = (struct page *)list_entry((*head)->lru.next,
343 struct page, lru);
344
345 list_del_init(&page->lru);
346}
347
348static enum fullness_group fix_fullness_group(struct zs_pool *pool,
349 struct page *page)
350{
351 int class_idx;
352 struct size_class *class;
353 enum fullness_group currfg, newfg;
354
355 BUG_ON(!is_first_page(page));
356
357 get_zspage_mapping(page, &class_idx, &currfg);
358 newfg = get_fullness_group(page);
359 if (newfg == currfg)
360 goto out;
361
362 class = &pool->size_class[class_idx];
363 remove_zspage(page, class, currfg);
364 insert_zspage(page, class, newfg);
365 set_zspage_mapping(page, class_idx, newfg);
366
367out:
368 return newfg;
369}
370
371/*
372 * We have to decide on how many pages to link together
373 * to form a zspage for each size class. This is important
374 * to reduce wastage due to unusable space left at end of
375 * each zspage which is given as:
376 * wastage = Zp - Zp % size_class
377 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
378 *
379 * For example, for size class of 3/8 * PAGE_SIZE, we should
380 * link together 3 PAGE_SIZE sized pages to form a zspage
381 * since then we can perfectly fit in 8 such objects.
382 */
2e3b6154 383static int get_pages_per_zspage(int class_size)
61989a80
NG
384{
385 int i, max_usedpc = 0;
386 /* zspage order which gives maximum used size per KB */
387 int max_usedpc_order = 1;
388
84d4faab 389 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
390 int zspage_size;
391 int waste, usedpc;
392
393 zspage_size = i * PAGE_SIZE;
394 waste = zspage_size % class_size;
395 usedpc = (zspage_size - waste) * 100 / zspage_size;
396
397 if (usedpc > max_usedpc) {
398 max_usedpc = usedpc;
399 max_usedpc_order = i;
400 }
401 }
402
403 return max_usedpc_order;
404}
405
406/*
407 * A single 'zspage' is composed of many system pages which are
408 * linked together using fields in struct page. This function finds
409 * the first/head page, given any component page of a zspage.
410 */
411static struct page *get_first_page(struct page *page)
412{
413 if (is_first_page(page))
414 return page;
415 else
416 return page->first_page;
417}
418
419static struct page *get_next_page(struct page *page)
420{
421 struct page *next;
422
423 if (is_last_page(page))
424 next = NULL;
425 else if (is_first_page(page))
426 next = (struct page *)page->private;
427 else
428 next = list_entry(page->lru.next, struct page, lru);
429
430 return next;
431}
432
433/* Encode <page, obj_idx> as a single handle value */
434static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
435{
436 unsigned long handle;
437
438 if (!page) {
439 BUG_ON(obj_idx);
440 return NULL;
441 }
442
443 handle = page_to_pfn(page) << OBJ_INDEX_BITS;
444 handle |= (obj_idx & OBJ_INDEX_MASK);
445
446 return (void *)handle;
447}
448
449/* Decode <page, obj_idx> pair from the given object handle */
c2344348 450static void obj_handle_to_location(unsigned long handle, struct page **page,
61989a80
NG
451 unsigned long *obj_idx)
452{
c2344348
MK
453 *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
454 *obj_idx = handle & OBJ_INDEX_MASK;
61989a80
NG
455}
456
457static unsigned long obj_idx_to_offset(struct page *page,
458 unsigned long obj_idx, int class_size)
459{
460 unsigned long off = 0;
461
462 if (!is_first_page(page))
463 off = page->index;
464
465 return off + obj_idx * class_size;
466}
467
f4477e90
NG
468static void reset_page(struct page *page)
469{
470 clear_bit(PG_private, &page->flags);
471 clear_bit(PG_private_2, &page->flags);
472 set_page_private(page, 0);
473 page->mapping = NULL;
474 page->freelist = NULL;
22b751c3 475 page_mapcount_reset(page);
f4477e90
NG
476}
477
61989a80
NG
478static void free_zspage(struct page *first_page)
479{
f4477e90 480 struct page *nextp, *tmp, *head_extra;
61989a80
NG
481
482 BUG_ON(!is_first_page(first_page));
483 BUG_ON(first_page->inuse);
484
f4477e90 485 head_extra = (struct page *)page_private(first_page);
61989a80 486
f4477e90 487 reset_page(first_page);
61989a80
NG
488 __free_page(first_page);
489
490 /* zspage with only 1 system page */
f4477e90 491 if (!head_extra)
61989a80
NG
492 return;
493
f4477e90 494 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
61989a80 495 list_del(&nextp->lru);
f4477e90 496 reset_page(nextp);
61989a80
NG
497 __free_page(nextp);
498 }
f4477e90
NG
499 reset_page(head_extra);
500 __free_page(head_extra);
61989a80
NG
501}
502
503/* Initialize a newly allocated zspage */
504static void init_zspage(struct page *first_page, struct size_class *class)
505{
506 unsigned long off = 0;
507 struct page *page = first_page;
508
509 BUG_ON(!is_first_page(first_page));
510 while (page) {
511 struct page *next_page;
512 struct link_free *link;
513 unsigned int i, objs_on_page;
514
515 /*
516 * page->index stores offset of first object starting
517 * in the page. For the first page, this is always 0,
518 * so we use first_page->index (aka ->freelist) to store
519 * head of corresponding zspage's freelist.
520 */
521 if (page != first_page)
522 page->index = off;
523
524 link = (struct link_free *)kmap_atomic(page) +
525 off / sizeof(*link);
526 objs_on_page = (PAGE_SIZE - off) / class->size;
527
528 for (i = 1; i <= objs_on_page; i++) {
529 off += class->size;
530 if (off < PAGE_SIZE) {
531 link->next = obj_location_to_handle(page, i);
532 link += class->size / sizeof(*link);
533 }
534 }
535
536 /*
537 * We now come to the last (full or partial) object on this
538 * page, which must point to the first object on the next
539 * page (if present)
540 */
541 next_page = get_next_page(page);
542 link->next = obj_location_to_handle(next_page, 0);
543 kunmap_atomic(link);
544 page = next_page;
545 off = (off + class->size) % PAGE_SIZE;
546 }
547}
548
549/*
550 * Allocate a zspage for the given size class
551 */
552static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
553{
554 int i, error;
b4b700c5 555 struct page *first_page = NULL, *uninitialized_var(prev_page);
61989a80
NG
556
557 /*
558 * Allocate individual pages and link them together as:
559 * 1. first page->private = first sub-page
560 * 2. all sub-pages are linked together using page->lru
561 * 3. each sub-page is linked to the first page using page->first_page
562 *
563 * For each size class, First/Head pages are linked together using
564 * page->lru. Also, we set PG_private to identify the first page
565 * (i.e. no other sub-page has this flag set) and PG_private_2 to
566 * identify the last page.
567 */
568 error = -ENOMEM;
2e3b6154 569 for (i = 0; i < class->pages_per_zspage; i++) {
b4b700c5 570 struct page *page;
61989a80
NG
571
572 page = alloc_page(flags);
573 if (!page)
574 goto cleanup;
575
576 INIT_LIST_HEAD(&page->lru);
577 if (i == 0) { /* first page */
a27545bf 578 SetPagePrivate(page);
61989a80
NG
579 set_page_private(page, 0);
580 first_page = page;
581 first_page->inuse = 0;
582 }
583 if (i == 1)
584 first_page->private = (unsigned long)page;
585 if (i >= 1)
586 page->first_page = first_page;
587 if (i >= 2)
588 list_add(&page->lru, &prev_page->lru);
2e3b6154 589 if (i == class->pages_per_zspage - 1) /* last page */
a27545bf 590 SetPagePrivate2(page);
61989a80
NG
591 prev_page = page;
592 }
593
594 init_zspage(first_page, class);
595
596 first_page->freelist = obj_location_to_handle(first_page, 0);
597 /* Maximum number of objects we can store in this zspage */
2e3b6154 598 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
61989a80
NG
599
600 error = 0; /* Success */
601
602cleanup:
603 if (unlikely(error) && first_page) {
604 free_zspage(first_page);
605 first_page = NULL;
606 }
607
608 return first_page;
609}
610
611static struct page *find_get_zspage(struct size_class *class)
612{
613 int i;
614 struct page *page;
615
616 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
617 page = class->fullness_list[i];
618 if (page)
619 break;
620 }
621
622 return page;
623}
624
f553646a
SJ
625#ifdef USE_PGTABLE_MAPPING
626static inline int __zs_cpu_up(struct mapping_area *area)
627{
628 /*
629 * Make sure we don't leak memory if a cpu UP notification
630 * and zs_init() race and both call zs_cpu_up() on the same cpu
631 */
632 if (area->vm)
633 return 0;
634 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
635 if (!area->vm)
636 return -ENOMEM;
637 return 0;
638}
639
640static inline void __zs_cpu_down(struct mapping_area *area)
641{
642 if (area->vm)
643 free_vm_area(area->vm);
644 area->vm = NULL;
645}
646
647static inline void *__zs_map_object(struct mapping_area *area,
648 struct page *pages[2], int off, int size)
649{
650 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, &pages));
651 area->vm_addr = area->vm->addr;
652 return area->vm_addr + off;
653}
654
655static inline void __zs_unmap_object(struct mapping_area *area,
656 struct page *pages[2], int off, int size)
657{
658 unsigned long addr = (unsigned long)area->vm_addr;
659 unsigned long end = addr + (PAGE_SIZE * 2);
660
661 flush_cache_vunmap(addr, end);
662 unmap_kernel_range_noflush(addr, PAGE_SIZE * 2);
99155188 663 flush_tlb_kernel_range(addr, end);
f553646a
SJ
664}
665
666#else /* USE_PGTABLE_MAPPING */
667
668static inline int __zs_cpu_up(struct mapping_area *area)
669{
670 /*
671 * Make sure we don't leak memory if a cpu UP notification
672 * and zs_init() race and both call zs_cpu_up() on the same cpu
673 */
674 if (area->vm_buf)
675 return 0;
676 area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
677 if (!area->vm_buf)
678 return -ENOMEM;
679 return 0;
680}
681
682static inline void __zs_cpu_down(struct mapping_area *area)
683{
684 if (area->vm_buf)
685 free_page((unsigned long)area->vm_buf);
686 area->vm_buf = NULL;
687}
688
689static void *__zs_map_object(struct mapping_area *area,
690 struct page *pages[2], int off, int size)
5f601902 691{
5f601902
SJ
692 int sizes[2];
693 void *addr;
f553646a 694 char *buf = area->vm_buf;
5f601902 695
f553646a
SJ
696 /* disable page faults to match kmap_atomic() return conditions */
697 pagefault_disable();
698
699 /* no read fastpath */
700 if (area->vm_mm == ZS_MM_WO)
701 goto out;
5f601902
SJ
702
703 sizes[0] = PAGE_SIZE - off;
704 sizes[1] = size - sizes[0];
705
5f601902
SJ
706 /* copy object to per-cpu buffer */
707 addr = kmap_atomic(pages[0]);
708 memcpy(buf, addr + off, sizes[0]);
709 kunmap_atomic(addr);
710 addr = kmap_atomic(pages[1]);
711 memcpy(buf + sizes[0], addr, sizes[1]);
712 kunmap_atomic(addr);
f553646a
SJ
713out:
714 return area->vm_buf;
5f601902
SJ
715}
716
f553646a
SJ
717static void __zs_unmap_object(struct mapping_area *area,
718 struct page *pages[2], int off, int size)
5f601902 719{
5f601902
SJ
720 int sizes[2];
721 void *addr;
f553646a 722 char *buf = area->vm_buf;
5f601902 723
f553646a
SJ
724 /* no write fastpath */
725 if (area->vm_mm == ZS_MM_RO)
726 goto out;
5f601902
SJ
727
728 sizes[0] = PAGE_SIZE - off;
729 sizes[1] = size - sizes[0];
730
731 /* copy per-cpu buffer to object */
732 addr = kmap_atomic(pages[0]);
733 memcpy(addr + off, buf, sizes[0]);
734 kunmap_atomic(addr);
735 addr = kmap_atomic(pages[1]);
736 memcpy(addr, buf + sizes[0], sizes[1]);
737 kunmap_atomic(addr);
f553646a
SJ
738
739out:
740 /* enable page faults to match kunmap_atomic() return conditions */
741 pagefault_enable();
5f601902 742}
61989a80 743
f553646a
SJ
744#endif /* USE_PGTABLE_MAPPING */
745
61989a80
NG
746static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
747 void *pcpu)
748{
f553646a 749 int ret, cpu = (long)pcpu;
61989a80
NG
750 struct mapping_area *area;
751
752 switch (action) {
753 case CPU_UP_PREPARE:
754 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
755 ret = __zs_cpu_up(area);
756 if (ret)
757 return notifier_from_errno(ret);
61989a80
NG
758 break;
759 case CPU_DEAD:
760 case CPU_UP_CANCELED:
761 area = &per_cpu(zs_map_area, cpu);
f553646a 762 __zs_cpu_down(area);
61989a80
NG
763 break;
764 }
765
766 return NOTIFY_OK;
767}
768
769static struct notifier_block zs_cpu_nb = {
770 .notifier_call = zs_cpu_notifier
771};
772
773static void zs_exit(void)
774{
775 int cpu;
776
777 for_each_online_cpu(cpu)
778 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
779 unregister_cpu_notifier(&zs_cpu_nb);
780}
781
782static int zs_init(void)
783{
784 int cpu, ret;
785
786 register_cpu_notifier(&zs_cpu_nb);
787 for_each_online_cpu(cpu) {
788 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
789 if (notifier_to_errno(ret))
790 goto fail;
791 }
792 return 0;
793fail:
794 zs_exit();
795 return notifier_to_errno(ret);
796}
797
4bbc0bc0
DB
798/**
799 * zs_create_pool - Creates an allocation pool to work from.
0d145a50 800 * @flags: allocation flags used to allocate pool metadata
4bbc0bc0
DB
801 *
802 * This function must be called before anything when using
803 * the zsmalloc allocator.
804 *
805 * On success, a pointer to the newly created pool is returned,
806 * otherwise NULL.
807 */
0d145a50 808struct zs_pool *zs_create_pool(gfp_t flags)
61989a80 809{
069f101f 810 int i, ovhd_size;
61989a80
NG
811 struct zs_pool *pool;
812
61989a80
NG
813 ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
814 pool = kzalloc(ovhd_size, GFP_KERNEL);
815 if (!pool)
816 return NULL;
817
818 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
819 int size;
820 struct size_class *class;
821
822 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
823 if (size > ZS_MAX_ALLOC_SIZE)
824 size = ZS_MAX_ALLOC_SIZE;
825
826 class = &pool->size_class[i];
827 class->size = size;
828 class->index = i;
829 spin_lock_init(&class->lock);
2e3b6154 830 class->pages_per_zspage = get_pages_per_zspage(size);
61989a80
NG
831
832 }
833
61989a80 834 pool->flags = flags;
61989a80 835
61989a80
NG
836 return pool;
837}
838EXPORT_SYMBOL_GPL(zs_create_pool);
839
840void zs_destroy_pool(struct zs_pool *pool)
841{
842 int i;
843
844 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
845 int fg;
846 struct size_class *class = &pool->size_class[i];
847
848 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
849 if (class->fullness_list[fg]) {
850 pr_info("Freeing non-empty class with size "
851 "%db, fullness group %d\n",
852 class->size, fg);
853 }
854 }
855 }
856 kfree(pool);
857}
858EXPORT_SYMBOL_GPL(zs_destroy_pool);
859
860/**
861 * zs_malloc - Allocate block of given size from pool.
862 * @pool: pool to allocate from
863 * @size: size of block to allocate
61989a80 864 *
00a61d86 865 * On success, handle to the allocated object is returned,
c2344348 866 * otherwise 0.
61989a80
NG
867 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
868 */
c2344348 869unsigned long zs_malloc(struct zs_pool *pool, size_t size)
61989a80 870{
c2344348 871 unsigned long obj;
61989a80
NG
872 struct link_free *link;
873 int class_idx;
874 struct size_class *class;
875
876 struct page *first_page, *m_page;
877 unsigned long m_objidx, m_offset;
878
879 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
c2344348 880 return 0;
61989a80
NG
881
882 class_idx = get_size_class_index(size);
883 class = &pool->size_class[class_idx];
884 BUG_ON(class_idx != class->index);
885
886 spin_lock(&class->lock);
887 first_page = find_get_zspage(class);
888
889 if (!first_page) {
890 spin_unlock(&class->lock);
891 first_page = alloc_zspage(class, pool->flags);
892 if (unlikely(!first_page))
c2344348 893 return 0;
61989a80
NG
894
895 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
896 spin_lock(&class->lock);
2e3b6154 897 class->pages_allocated += class->pages_per_zspage;
61989a80
NG
898 }
899
c2344348 900 obj = (unsigned long)first_page->freelist;
61989a80
NG
901 obj_handle_to_location(obj, &m_page, &m_objidx);
902 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
903
904 link = (struct link_free *)kmap_atomic(m_page) +
905 m_offset / sizeof(*link);
906 first_page->freelist = link->next;
907 memset(link, POISON_INUSE, sizeof(*link));
908 kunmap_atomic(link);
909
910 first_page->inuse++;
911 /* Now move the zspage to another fullness group, if required */
912 fix_fullness_group(pool, first_page);
913 spin_unlock(&class->lock);
914
915 return obj;
916}
917EXPORT_SYMBOL_GPL(zs_malloc);
918
c2344348 919void zs_free(struct zs_pool *pool, unsigned long obj)
61989a80
NG
920{
921 struct link_free *link;
922 struct page *first_page, *f_page;
923 unsigned long f_objidx, f_offset;
924
925 int class_idx;
926 struct size_class *class;
927 enum fullness_group fullness;
928
929 if (unlikely(!obj))
930 return;
931
932 obj_handle_to_location(obj, &f_page, &f_objidx);
933 first_page = get_first_page(f_page);
934
935 get_zspage_mapping(first_page, &class_idx, &fullness);
936 class = &pool->size_class[class_idx];
937 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
938
939 spin_lock(&class->lock);
940
941 /* Insert this object in containing zspage's freelist */
942 link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
943 + f_offset);
944 link->next = first_page->freelist;
945 kunmap_atomic(link);
c2344348 946 first_page->freelist = (void *)obj;
61989a80
NG
947
948 first_page->inuse--;
949 fullness = fix_fullness_group(pool, first_page);
950
951 if (fullness == ZS_EMPTY)
2e3b6154 952 class->pages_allocated -= class->pages_per_zspage;
61989a80
NG
953
954 spin_unlock(&class->lock);
955
956 if (fullness == ZS_EMPTY)
957 free_zspage(first_page);
958}
959EXPORT_SYMBOL_GPL(zs_free);
960
00a61d86
MK
961/**
962 * zs_map_object - get address of allocated object from handle.
963 * @pool: pool from which the object was allocated
964 * @handle: handle returned from zs_malloc
965 *
966 * Before using an object allocated from zs_malloc, it must be mapped using
967 * this function. When done with the object, it must be unmapped using
166cfda7
SJ
968 * zs_unmap_object.
969 *
970 * Only one object can be mapped per cpu at a time. There is no protection
971 * against nested mappings.
972 *
973 * This function returns with preemption and page faults disabled.
00a61d86 974*/
b7418510
SJ
975void *zs_map_object(struct zs_pool *pool, unsigned long handle,
976 enum zs_mapmode mm)
61989a80
NG
977{
978 struct page *page;
979 unsigned long obj_idx, off;
980
981 unsigned int class_idx;
982 enum fullness_group fg;
983 struct size_class *class;
984 struct mapping_area *area;
f553646a 985 struct page *pages[2];
61989a80
NG
986
987 BUG_ON(!handle);
988
c60369f0
SJ
989 /*
990 * Because we use per-cpu mapping areas shared among the
991 * pools/users, we can't allow mapping in interrupt context
992 * because it can corrupt another users mappings.
993 */
994 BUG_ON(in_interrupt());
995
61989a80
NG
996 obj_handle_to_location(handle, &page, &obj_idx);
997 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
998 class = &pool->size_class[class_idx];
999 off = obj_idx_to_offset(page, obj_idx, class->size);
1000
1001 area = &get_cpu_var(zs_map_area);
f553646a 1002 area->vm_mm = mm;
61989a80
NG
1003 if (off + class->size <= PAGE_SIZE) {
1004 /* this object is contained entirely within a page */
1005 area->vm_addr = kmap_atomic(page);
5f601902 1006 return area->vm_addr + off;
61989a80
NG
1007 }
1008
f553646a
SJ
1009 /* this object spans two pages */
1010 pages[0] = page;
1011 pages[1] = get_next_page(page);
1012 BUG_ON(!pages[1]);
b7418510 1013
f553646a 1014 return __zs_map_object(area, pages, off, class->size);
61989a80
NG
1015}
1016EXPORT_SYMBOL_GPL(zs_map_object);
1017
c2344348 1018void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80
NG
1019{
1020 struct page *page;
1021 unsigned long obj_idx, off;
1022
1023 unsigned int class_idx;
1024 enum fullness_group fg;
1025 struct size_class *class;
1026 struct mapping_area *area;
1027
1028 BUG_ON(!handle);
1029
1030 obj_handle_to_location(handle, &page, &obj_idx);
1031 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1032 class = &pool->size_class[class_idx];
1033 off = obj_idx_to_offset(page, obj_idx, class->size);
1034
f553646a
SJ
1035 area = &__get_cpu_var(zs_map_area);
1036 if (off + class->size <= PAGE_SIZE)
1037 kunmap_atomic(area->vm_addr);
1038 else {
1039 struct page *pages[2];
1040
1041 pages[0] = page;
1042 pages[1] = get_next_page(page);
1043 BUG_ON(!pages[1]);
b7418510 1044
f553646a
SJ
1045 __zs_unmap_object(area, pages, off, class->size);
1046 }
61989a80
NG
1047 put_cpu_var(zs_map_area);
1048}
1049EXPORT_SYMBOL_GPL(zs_unmap_object);
1050
1051u64 zs_get_total_size_bytes(struct zs_pool *pool)
1052{
1053 int i;
1054 u64 npages = 0;
1055
1056 for (i = 0; i < ZS_SIZE_CLASSES; i++)
1057 npages += pool->size_class[i].pages_allocated;
1058
1059 return npages << PAGE_SHIFT;
1060}
1061EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
069f101f
BH
1062
1063module_init(zs_init);
1064module_exit(zs_exit);
1065
1066MODULE_LICENSE("Dual BSD/GPL");
1067MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");