Fix common misspellings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / staging / lirc / lirc_serial.c
CommitLineData
1beef3c1
JW
1/*
2 * lirc_serial.c
3 *
4 * lirc_serial - Device driver that records pulse- and pause-lengths
5 * (space-lengths) between DDCD event on a serial port.
6 *
7 * Copyright (C) 1996,97 Ralph Metzler <rjkm@thp.uni-koeln.de>
8 * Copyright (C) 1998 Trent Piepho <xyzzy@u.washington.edu>
9 * Copyright (C) 1998 Ben Pfaff <blp@gnu.org>
10 * Copyright (C) 1999 Christoph Bartelmus <lirc@bartelmus.de>
11 * Copyright (C) 2007 Andrei Tanas <andrei@tanas.ca> (suspend/resume support)
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 */
27
28/*
29 * Steve's changes to improve transmission fidelity:
30 * - for systems with the rdtsc instruction and the clock counter, a
31 * send_pule that times the pulses directly using the counter.
32 * This means that the LIRC_SERIAL_TRANSMITTER_LATENCY fudge is
33 * not needed. Measurement shows very stable waveform, even where
34 * PCI activity slows the access to the UART, which trips up other
35 * versions.
36 * - For other system, non-integer-microsecond pulse/space lengths,
37 * done using fixed point binary. So, much more accurate carrier
38 * frequency.
39 * - fine tuned transmitter latency, taking advantage of fractional
40 * microseconds in previous change
41 * - Fixed bug in the way transmitter latency was accounted for by
42 * tuning the pulse lengths down - the send_pulse routine ignored
43 * this overhead as it timed the overall pulse length - so the
44 * pulse frequency was right but overall pulse length was too
45 * long. Fixed by accounting for latency on each pulse/space
46 * iteration.
47 *
48 * Steve Davies <steve@daviesfam.org> July 2001
49 */
50
51#include <linux/module.h>
52#include <linux/errno.h>
53#include <linux/signal.h>
54#include <linux/sched.h>
55#include <linux/fs.h>
56#include <linux/interrupt.h>
57#include <linux/ioport.h>
58#include <linux/kernel.h>
59#include <linux/serial_reg.h>
60#include <linux/time.h>
61#include <linux/string.h>
62#include <linux/types.h>
63#include <linux/wait.h>
64#include <linux/mm.h>
65#include <linux/delay.h>
66#include <linux/poll.h>
67#include <linux/platform_device.h>
68
69#include <asm/system.h>
70#include <linux/io.h>
71#include <linux/irq.h>
72#include <linux/fcntl.h>
73#include <linux/spinlock.h>
74
75#ifdef CONFIG_LIRC_SERIAL_NSLU2
76#include <asm/hardware.h>
77#endif
78/* From Intel IXP42X Developer's Manual (#252480-005): */
79/* ftp://download.intel.com/design/network/manuals/25248005.pdf */
80#define UART_IE_IXP42X_UUE 0x40 /* IXP42X UART Unit enable */
81#define UART_IE_IXP42X_RTOIE 0x10 /* IXP42X Receiver Data Timeout int.enable */
82
83#include <media/lirc.h>
84#include <media/lirc_dev.h>
85
86#define LIRC_DRIVER_NAME "lirc_serial"
87
88struct lirc_serial {
89 int signal_pin;
90 int signal_pin_change;
91 u8 on;
92 u8 off;
93 long (*send_pulse)(unsigned long length);
94 void (*send_space)(long length);
95 int features;
96 spinlock_t lock;
97};
98
99#define LIRC_HOMEBREW 0
100#define LIRC_IRDEO 1
101#define LIRC_IRDEO_REMOTE 2
102#define LIRC_ANIMAX 3
103#define LIRC_IGOR 4
104#define LIRC_NSLU2 5
105
106/*** module parameters ***/
107static int type;
108static int io;
109static int irq;
110static int iommap;
111static int ioshift;
112static int softcarrier = 1;
113static int share_irq;
114static int debug;
115static int sense = -1; /* -1 = auto, 0 = active high, 1 = active low */
116static int txsense; /* 0 = active high, 1 = active low */
117
118#define dprintk(fmt, args...) \
119 do { \
120 if (debug) \
121 printk(KERN_DEBUG LIRC_DRIVER_NAME ": " \
122 fmt, ## args); \
123 } while (0)
124
125/* forward declarations */
126static long send_pulse_irdeo(unsigned long length);
127static long send_pulse_homebrew(unsigned long length);
128static void send_space_irdeo(long length);
129static void send_space_homebrew(long length);
130
131static struct lirc_serial hardware[] = {
132 [LIRC_HOMEBREW] = {
133 .signal_pin = UART_MSR_DCD,
134 .signal_pin_change = UART_MSR_DDCD,
135 .on = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
136 .off = (UART_MCR_RTS | UART_MCR_OUT2),
137 .send_pulse = send_pulse_homebrew,
138 .send_space = send_space_homebrew,
139#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
140 .features = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
141 LIRC_CAN_SET_SEND_CARRIER |
142 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
143#else
144 .features = LIRC_CAN_REC_MODE2
145#endif
146 },
147
148 [LIRC_IRDEO] = {
149 .signal_pin = UART_MSR_DSR,
150 .signal_pin_change = UART_MSR_DDSR,
151 .on = UART_MCR_OUT2,
152 .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
153 .send_pulse = send_pulse_irdeo,
154 .send_space = send_space_irdeo,
155 .features = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
156 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
157 },
158
159 [LIRC_IRDEO_REMOTE] = {
160 .signal_pin = UART_MSR_DSR,
161 .signal_pin_change = UART_MSR_DDSR,
162 .on = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
163 .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
164 .send_pulse = send_pulse_irdeo,
165 .send_space = send_space_irdeo,
166 .features = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
167 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
168 },
169
170 [LIRC_ANIMAX] = {
171 .signal_pin = UART_MSR_DCD,
172 .signal_pin_change = UART_MSR_DDCD,
173 .on = 0,
174 .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
175 .send_pulse = NULL,
176 .send_space = NULL,
177 .features = LIRC_CAN_REC_MODE2
178 },
179
180 [LIRC_IGOR] = {
181 .signal_pin = UART_MSR_DSR,
182 .signal_pin_change = UART_MSR_DDSR,
183 .on = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
184 .off = (UART_MCR_RTS | UART_MCR_OUT2),
185 .send_pulse = send_pulse_homebrew,
186 .send_space = send_space_homebrew,
187#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
188 .features = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
189 LIRC_CAN_SET_SEND_CARRIER |
190 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
191#else
192 .features = LIRC_CAN_REC_MODE2
193#endif
194 },
195
196#ifdef CONFIG_LIRC_SERIAL_NSLU2
197 /*
198 * Modified Linksys Network Storage Link USB 2.0 (NSLU2):
199 * We receive on CTS of the 2nd serial port (R142,LHS), we
200 * transmit with a IR diode between GPIO[1] (green status LED),
201 * and ground (Matthias Goebl <matthias.goebl@goebl.net>).
202 * See also http://www.nslu2-linux.org for this device
203 */
204 [LIRC_NSLU2] = {
205 .signal_pin = UART_MSR_CTS,
206 .signal_pin_change = UART_MSR_DCTS,
207 .on = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
208 .off = (UART_MCR_RTS | UART_MCR_OUT2),
209 .send_pulse = send_pulse_homebrew,
210 .send_space = send_space_homebrew,
211#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
212 .features = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
213 LIRC_CAN_SET_SEND_CARRIER |
214 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
215#else
216 .features = LIRC_CAN_REC_MODE2
217#endif
218 },
219#endif
220
221};
222
223#define RS_ISR_PASS_LIMIT 256
224
225/*
226 * A long pulse code from a remote might take up to 300 bytes. The
227 * daemon should read the bytes as soon as they are generated, so take
228 * the number of keys you think you can push before the daemon runs
229 * and multiply by 300. The driver will warn you if you overrun this
230 * buffer. If you have a slow computer or non-busmastering IDE disks,
231 * maybe you will need to increase this.
232 */
233
234/* This MUST be a power of two! It has to be larger than 1 as well. */
235
236#define RBUF_LEN 256
237
238static struct timeval lasttv = {0, 0};
239
240static struct lirc_buffer rbuf;
241
242static unsigned int freq = 38000;
243static unsigned int duty_cycle = 50;
244
245/* Initialized in init_timing_params() */
246static unsigned long period;
247static unsigned long pulse_width;
248static unsigned long space_width;
249
250#if defined(__i386__)
251/*
252 * From:
253 * Linux I/O port programming mini-HOWTO
254 * Author: Riku Saikkonen <Riku.Saikkonen@hut.fi>
255 * v, 28 December 1997
256 *
257 * [...]
258 * Actually, a port I/O instruction on most ports in the 0-0x3ff range
259 * takes almost exactly 1 microsecond, so if you're, for example, using
260 * the parallel port directly, just do additional inb()s from that port
261 * to delay.
262 * [...]
263 */
264/* transmitter latency 1.5625us 0x1.90 - this figure arrived at from
265 * comment above plus trimming to match actual measured frequency.
266 * This will be sensitive to cpu speed, though hopefully most of the 1.5us
267 * is spent in the uart access. Still - for reference test machine was a
268 * 1.13GHz Athlon system - Steve
269 */
270
271/*
272 * changed from 400 to 450 as this works better on slower machines;
273 * faster machines will use the rdtsc code anyway
274 */
275#define LIRC_SERIAL_TRANSMITTER_LATENCY 450
276
277#else
278
279/* does anybody have information on other platforms ? */
280/* 256 = 1<<8 */
281#define LIRC_SERIAL_TRANSMITTER_LATENCY 256
282
283#endif /* __i386__ */
284/*
285 * FIXME: should we be using hrtimers instead of this
286 * LIRC_SERIAL_TRANSMITTER_LATENCY nonsense?
287 */
288
289/* fetch serial input packet (1 byte) from register offset */
290static u8 sinp(int offset)
291{
292 if (iommap != 0)
293 /* the register is memory-mapped */
294 offset <<= ioshift;
295
296 return inb(io + offset);
297}
298
299/* write serial output packet (1 byte) of value to register offset */
300static void soutp(int offset, u8 value)
301{
302 if (iommap != 0)
303 /* the register is memory-mapped */
304 offset <<= ioshift;
305
306 outb(value, io + offset);
307}
308
309static void on(void)
310{
311#ifdef CONFIG_LIRC_SERIAL_NSLU2
312 /*
313 * On NSLU2, we put the transmit diode between the output of the green
314 * status LED and ground
315 */
316 if (type == LIRC_NSLU2) {
317 gpio_line_set(NSLU2_LED_GRN, IXP4XX_GPIO_LOW);
318 return;
319 }
320#endif
321 if (txsense)
322 soutp(UART_MCR, hardware[type].off);
323 else
324 soutp(UART_MCR, hardware[type].on);
325}
326
327static void off(void)
328{
329#ifdef CONFIG_LIRC_SERIAL_NSLU2
330 if (type == LIRC_NSLU2) {
331 gpio_line_set(NSLU2_LED_GRN, IXP4XX_GPIO_HIGH);
332 return;
333 }
334#endif
335 if (txsense)
336 soutp(UART_MCR, hardware[type].on);
337 else
338 soutp(UART_MCR, hardware[type].off);
339}
340
341#ifndef MAX_UDELAY_MS
342#define MAX_UDELAY_US 5000
343#else
344#define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
345#endif
346
347static void safe_udelay(unsigned long usecs)
348{
349 while (usecs > MAX_UDELAY_US) {
350 udelay(MAX_UDELAY_US);
351 usecs -= MAX_UDELAY_US;
352 }
353 udelay(usecs);
354}
355
356#ifdef USE_RDTSC
357/*
358 * This is an overflow/precision juggle, complicated in that we can't
359 * do long long divide in the kernel
360 */
361
362/*
363 * When we use the rdtsc instruction to measure clocks, we keep the
364 * pulse and space widths as clock cycles. As this is CPU speed
365 * dependent, the widths must be calculated in init_port and ioctl
366 * time
367 */
368
369/* So send_pulse can quickly convert microseconds to clocks */
370static unsigned long conv_us_to_clocks;
371
372static int init_timing_params(unsigned int new_duty_cycle,
373 unsigned int new_freq)
374{
a1266818 375 __u64 loops_per_sec, work;
1beef3c1
JW
376
377 duty_cycle = new_duty_cycle;
378 freq = new_freq;
379
7b543a53 380 loops_per_sec = __this_cpu_read(cpu.info.loops_per_jiffy);
1beef3c1
JW
381 loops_per_sec *= HZ;
382
383 /* How many clocks in a microsecond?, avoiding long long divide */
384 work = loops_per_sec;
385 work *= 4295; /* 4295 = 2^32 / 1e6 */
386 conv_us_to_clocks = (work >> 32);
387
388 /*
389 * Carrier period in clocks, approach good up to 32GHz clock,
390 * gets carrier frequency within 8Hz
391 */
392 period = loops_per_sec >> 3;
393 period /= (freq >> 3);
394
395 /* Derive pulse and space from the period */
396 pulse_width = period * duty_cycle / 100;
397 space_width = period - pulse_width;
398 dprintk("in init_timing_params, freq=%d, duty_cycle=%d, "
399 "clk/jiffy=%ld, pulse=%ld, space=%ld, "
400 "conv_us_to_clocks=%ld\n",
7b543a53 401 freq, duty_cycle, __this_cpu_read(cpu_info.loops_per_jiffy),
1beef3c1
JW
402 pulse_width, space_width, conv_us_to_clocks);
403 return 0;
404}
405#else /* ! USE_RDTSC */
406static int init_timing_params(unsigned int new_duty_cycle,
407 unsigned int new_freq)
408{
409/*
410 * period, pulse/space width are kept with 8 binary places -
411 * IE multiplied by 256.
412 */
413 if (256 * 1000000L / new_freq * new_duty_cycle / 100 <=
414 LIRC_SERIAL_TRANSMITTER_LATENCY)
415 return -EINVAL;
416 if (256 * 1000000L / new_freq * (100 - new_duty_cycle) / 100 <=
417 LIRC_SERIAL_TRANSMITTER_LATENCY)
418 return -EINVAL;
419 duty_cycle = new_duty_cycle;
420 freq = new_freq;
421 period = 256 * 1000000L / freq;
422 pulse_width = period * duty_cycle / 100;
423 space_width = period - pulse_width;
424 dprintk("in init_timing_params, freq=%d pulse=%ld, "
425 "space=%ld\n", freq, pulse_width, space_width);
426 return 0;
427}
428#endif /* USE_RDTSC */
429
430
431/* return value: space length delta */
432
433static long send_pulse_irdeo(unsigned long length)
434{
435 long rawbits, ret;
436 int i;
437 unsigned char output;
438 unsigned char chunk, shifted;
439
440 /* how many bits have to be sent ? */
441 rawbits = length * 1152 / 10000;
442 if (duty_cycle > 50)
443 chunk = 3;
444 else
445 chunk = 1;
446 for (i = 0, output = 0x7f; rawbits > 0; rawbits -= 3) {
447 shifted = chunk << (i * 3);
448 shifted >>= 1;
449 output &= (~shifted);
450 i++;
451 if (i == 3) {
452 soutp(UART_TX, output);
453 while (!(sinp(UART_LSR) & UART_LSR_THRE))
454 ;
455 output = 0x7f;
456 i = 0;
457 }
458 }
459 if (i != 0) {
460 soutp(UART_TX, output);
461 while (!(sinp(UART_LSR) & UART_LSR_TEMT))
462 ;
463 }
464
465 if (i == 0)
466 ret = (-rawbits) * 10000 / 1152;
467 else
468 ret = (3 - i) * 3 * 10000 / 1152 + (-rawbits) * 10000 / 1152;
469
470 return ret;
471}
472
473#ifdef USE_RDTSC
474/* Version that uses Pentium rdtsc instruction to measure clocks */
475
476/*
477 * This version does sub-microsecond timing using rdtsc instruction,
478 * and does away with the fudged LIRC_SERIAL_TRANSMITTER_LATENCY
479 * Implicitly i586 architecture... - Steve
480 */
481
482static long send_pulse_homebrew_softcarrier(unsigned long length)
483{
484 int flag;
485 unsigned long target, start, now;
486
487 /* Get going quick as we can */
488 rdtscl(start);
489 on();
490 /* Convert length from microseconds to clocks */
491 length *= conv_us_to_clocks;
492 /* And loop till time is up - flipping at right intervals */
493 now = start;
494 target = pulse_width;
495 flag = 1;
496 /*
497 * FIXME: This looks like a hard busy wait, without even an occasional,
498 * polite, cpu_relax() call. There's got to be a better way?
499 *
500 * The i2c code has the result of a lot of bit-banging work, I wonder if
501 * there's something there which could be helpful here.
502 */
503 while ((now - start) < length) {
504 /* Delay till flip time */
505 do {
506 rdtscl(now);
507 } while ((now - start) < target);
508
509 /* flip */
510 if (flag) {
511 rdtscl(now);
512 off();
513 target += space_width;
514 } else {
515 rdtscl(now); on();
516 target += pulse_width;
517 }
518 flag = !flag;
519 }
520 rdtscl(now);
521 return ((now - start) - length) / conv_us_to_clocks;
522}
523#else /* ! USE_RDTSC */
524/* Version using udelay() */
525
526/*
527 * here we use fixed point arithmetic, with 8
528 * fractional bits. that gets us within 0.1% or so of the right average
529 * frequency, albeit with some jitter in pulse length - Steve
530 */
531
532/* To match 8 fractional bits used for pulse/space length */
533
534static long send_pulse_homebrew_softcarrier(unsigned long length)
535{
536 int flag;
537 unsigned long actual, target, d;
538 length <<= 8;
539
540 actual = 0; target = 0; flag = 0;
541 while (actual < length) {
542 if (flag) {
543 off();
544 target += space_width;
545 } else {
546 on();
547 target += pulse_width;
548 }
549 d = (target - actual -
550 LIRC_SERIAL_TRANSMITTER_LATENCY + 128) >> 8;
551 /*
552 * Note - we've checked in ioctl that the pulse/space
553 * widths are big enough so that d is > 0
554 */
555 udelay(d);
556 actual += (d << 8) + LIRC_SERIAL_TRANSMITTER_LATENCY;
557 flag = !flag;
558 }
559 return (actual-length) >> 8;
560}
561#endif /* USE_RDTSC */
562
563static long send_pulse_homebrew(unsigned long length)
564{
565 if (length <= 0)
566 return 0;
567
568 if (softcarrier)
569 return send_pulse_homebrew_softcarrier(length);
570 else {
571 on();
572 safe_udelay(length);
573 return 0;
574 }
575}
576
577static void send_space_irdeo(long length)
578{
579 if (length <= 0)
580 return;
581
582 safe_udelay(length);
583}
584
585static void send_space_homebrew(long length)
586{
587 off();
588 if (length <= 0)
589 return;
590 safe_udelay(length);
591}
592
593static void rbwrite(int l)
594{
595 if (lirc_buffer_full(&rbuf)) {
596 /* no new signals will be accepted */
597 dprintk("Buffer overrun\n");
598 return;
599 }
600 lirc_buffer_write(&rbuf, (void *)&l);
601}
602
603static void frbwrite(int l)
604{
605 /* simple noise filter */
606 static int pulse, space;
607 static unsigned int ptr;
608
609 if (ptr > 0 && (l & PULSE_BIT)) {
610 pulse += l & PULSE_MASK;
611 if (pulse > 250) {
612 rbwrite(space);
613 rbwrite(pulse | PULSE_BIT);
614 ptr = 0;
615 pulse = 0;
616 }
617 return;
618 }
619 if (!(l & PULSE_BIT)) {
620 if (ptr == 0) {
621 if (l > 20000) {
622 space = l;
623 ptr++;
624 return;
625 }
626 } else {
627 if (l > 20000) {
628 space += pulse;
629 if (space > PULSE_MASK)
630 space = PULSE_MASK;
631 space += l;
632 if (space > PULSE_MASK)
633 space = PULSE_MASK;
634 pulse = 0;
635 return;
636 }
637 rbwrite(space);
638 rbwrite(pulse | PULSE_BIT);
639 ptr = 0;
640 pulse = 0;
641 }
642 }
643 rbwrite(l);
644}
645
646static irqreturn_t irq_handler(int i, void *blah)
647{
648 struct timeval tv;
649 int counter, dcd;
650 u8 status;
651 long deltv;
652 int data;
653 static int last_dcd = -1;
654
655 if ((sinp(UART_IIR) & UART_IIR_NO_INT)) {
656 /* not our interrupt */
657 return IRQ_NONE;
658 }
659
660 counter = 0;
661 do {
662 counter++;
663 status = sinp(UART_MSR);
664 if (counter > RS_ISR_PASS_LIMIT) {
665 printk(KERN_WARNING LIRC_DRIVER_NAME ": AIEEEE: "
666 "We're caught!\n");
667 break;
668 }
669 if ((status & hardware[type].signal_pin_change)
670 && sense != -1) {
671 /* get current time */
672 do_gettimeofday(&tv);
673
674 /* New mode, written by Trent Piepho
675 <xyzzy@u.washington.edu>. */
676
677 /*
678 * The old format was not very portable.
679 * We now use an int to pass pulses
680 * and spaces to user space.
681 *
682 * If PULSE_BIT is set a pulse has been
683 * received, otherwise a space has been
684 * received. The driver needs to know if your
685 * receiver is active high or active low, or
686 * the space/pulse sense could be
687 * inverted. The bits denoted by PULSE_MASK are
688 * the length in microseconds. Lengths greater
689 * than or equal to 16 seconds are clamped to
690 * PULSE_MASK. All other bits are unused.
691 * This is a much simpler interface for user
692 * programs, as well as eliminating "out of
693 * phase" errors with space/pulse
694 * autodetection.
695 */
696
697 /* calc time since last interrupt in microseconds */
698 dcd = (status & hardware[type].signal_pin) ? 1 : 0;
699
700 if (dcd == last_dcd) {
701 printk(KERN_WARNING LIRC_DRIVER_NAME
702 ": ignoring spike: %d %d %lx %lx %lx %lx\n",
703 dcd, sense,
704 tv.tv_sec, lasttv.tv_sec,
705 tv.tv_usec, lasttv.tv_usec);
706 continue;
707 }
708
709 deltv = tv.tv_sec-lasttv.tv_sec;
710 if (tv.tv_sec < lasttv.tv_sec ||
711 (tv.tv_sec == lasttv.tv_sec &&
712 tv.tv_usec < lasttv.tv_usec)) {
713 printk(KERN_WARNING LIRC_DRIVER_NAME
714 ": AIEEEE: your clock just jumped "
715 "backwards\n");
716 printk(KERN_WARNING LIRC_DRIVER_NAME
717 ": %d %d %lx %lx %lx %lx\n",
718 dcd, sense,
719 tv.tv_sec, lasttv.tv_sec,
720 tv.tv_usec, lasttv.tv_usec);
721 data = PULSE_MASK;
722 } else if (deltv > 15) {
723 data = PULSE_MASK; /* really long time */
724 if (!(dcd^sense)) {
725 /* sanity check */
726 printk(KERN_WARNING LIRC_DRIVER_NAME
727 ": AIEEEE: "
728 "%d %d %lx %lx %lx %lx\n",
729 dcd, sense,
730 tv.tv_sec, lasttv.tv_sec,
731 tv.tv_usec, lasttv.tv_usec);
732 /*
733 * detecting pulse while this
734 * MUST be a space!
735 */
736 sense = sense ? 0 : 1;
737 }
738 } else
739 data = (int) (deltv*1000000 +
740 tv.tv_usec -
741 lasttv.tv_usec);
742 frbwrite(dcd^sense ? data : (data|PULSE_BIT));
743 lasttv = tv;
744 last_dcd = dcd;
745 wake_up_interruptible(&rbuf.wait_poll);
746 }
747 } while (!(sinp(UART_IIR) & UART_IIR_NO_INT)); /* still pending ? */
748 return IRQ_HANDLED;
749}
750
751
752static int hardware_init_port(void)
753{
754 u8 scratch, scratch2, scratch3;
755
756 /*
757 * This is a simple port existence test, borrowed from the autoconfig
758 * function in drivers/serial/8250.c
759 */
760 scratch = sinp(UART_IER);
761 soutp(UART_IER, 0);
762#ifdef __i386__
763 outb(0xff, 0x080);
764#endif
765 scratch2 = sinp(UART_IER) & 0x0f;
766 soutp(UART_IER, 0x0f);
767#ifdef __i386__
768 outb(0x00, 0x080);
769#endif
770 scratch3 = sinp(UART_IER) & 0x0f;
771 soutp(UART_IER, scratch);
772 if (scratch2 != 0 || scratch3 != 0x0f) {
773 /* we fail, there's nothing here */
774 printk(KERN_ERR LIRC_DRIVER_NAME ": port existence test "
775 "failed, cannot continue\n");
776 return -EINVAL;
777 }
778
779
780
781 /* Set DLAB 0. */
782 soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
783
784 /* First of all, disable all interrupts */
785 soutp(UART_IER, sinp(UART_IER) &
786 (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
787
788 /* Clear registers. */
789 sinp(UART_LSR);
790 sinp(UART_RX);
791 sinp(UART_IIR);
792 sinp(UART_MSR);
793
794#ifdef CONFIG_LIRC_SERIAL_NSLU2
795 if (type == LIRC_NSLU2) {
796 /* Setup NSLU2 UART */
797
798 /* Enable UART */
799 soutp(UART_IER, sinp(UART_IER) | UART_IE_IXP42X_UUE);
800 /* Disable Receiver data Time out interrupt */
801 soutp(UART_IER, sinp(UART_IER) & ~UART_IE_IXP42X_RTOIE);
802 /* set out2 = interrupt unmask; off() doesn't set MCR
803 on NSLU2 */
804 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
805 }
806#endif
807
808 /* Set line for power source */
809 off();
810
811 /* Clear registers again to be sure. */
812 sinp(UART_LSR);
813 sinp(UART_RX);
814 sinp(UART_IIR);
815 sinp(UART_MSR);
816
817 switch (type) {
818 case LIRC_IRDEO:
819 case LIRC_IRDEO_REMOTE:
820 /* setup port to 7N1 @ 115200 Baud */
821 /* 7N1+start = 9 bits at 115200 ~ 3 bits at 38kHz */
822
823 /* Set DLAB 1. */
824 soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
825 /* Set divisor to 1 => 115200 Baud */
826 soutp(UART_DLM, 0);
827 soutp(UART_DLL, 1);
828 /* Set DLAB 0 + 7N1 */
829 soutp(UART_LCR, UART_LCR_WLEN7);
830 /* THR interrupt already disabled at this point */
831 break;
832 default:
833 break;
834 }
835
836 return 0;
837}
838
839static int init_port(void)
840{
841 int i, nlow, nhigh;
842
843 /* Reserve io region. */
844 /*
845 * Future MMAP-Developers: Attention!
846 * For memory mapped I/O you *might* need to use ioremap() first,
847 * for the NSLU2 it's done in boot code.
848 */
849 if (((iommap != 0)
850 && (request_mem_region(iommap, 8 << ioshift,
851 LIRC_DRIVER_NAME) == NULL))
852 || ((iommap == 0)
853 && (request_region(io, 8, LIRC_DRIVER_NAME) == NULL))) {
854 printk(KERN_ERR LIRC_DRIVER_NAME
855 ": port %04x already in use\n", io);
856 printk(KERN_WARNING LIRC_DRIVER_NAME
857 ": use 'setserial /dev/ttySX uart none'\n");
858 printk(KERN_WARNING LIRC_DRIVER_NAME
859 ": or compile the serial port driver as module and\n");
860 printk(KERN_WARNING LIRC_DRIVER_NAME
861 ": make sure this module is loaded first\n");
862 return -EBUSY;
863 }
864
865 if (hardware_init_port() < 0)
866 return -EINVAL;
867
868 /* Initialize pulse/space widths */
869 init_timing_params(duty_cycle, freq);
870
871 /* If pin is high, then this must be an active low receiver. */
872 if (sense == -1) {
873 /* wait 1/2 sec for the power supply */
874 msleep(500);
875
876 /*
877 * probe 9 times every 0.04s, collect "votes" for
878 * active high/low
879 */
880 nlow = 0;
881 nhigh = 0;
882 for (i = 0; i < 9; i++) {
883 if (sinp(UART_MSR) & hardware[type].signal_pin)
884 nlow++;
885 else
886 nhigh++;
887 msleep(40);
888 }
889 sense = (nlow >= nhigh ? 1 : 0);
890 printk(KERN_INFO LIRC_DRIVER_NAME ": auto-detected active "
891 "%s receiver\n", sense ? "low" : "high");
892 } else
893 printk(KERN_INFO LIRC_DRIVER_NAME ": Manually using active "
894 "%s receiver\n", sense ? "low" : "high");
895
896 return 0;
897}
898
899static int set_use_inc(void *data)
900{
901 int result;
902 unsigned long flags;
903
904 /* initialize timestamp */
905 do_gettimeofday(&lasttv);
906
907 result = request_irq(irq, irq_handler,
908 IRQF_DISABLED | (share_irq ? IRQF_SHARED : 0),
909 LIRC_DRIVER_NAME, (void *)&hardware);
910
911 switch (result) {
912 case -EBUSY:
913 printk(KERN_ERR LIRC_DRIVER_NAME ": IRQ %d busy\n", irq);
914 return -EBUSY;
915 case -EINVAL:
916 printk(KERN_ERR LIRC_DRIVER_NAME
917 ": Bad irq number or handler\n");
918 return -EINVAL;
919 default:
920 dprintk("Interrupt %d, port %04x obtained\n", irq, io);
921 break;
922 };
923
924 spin_lock_irqsave(&hardware[type].lock, flags);
925
926 /* Set DLAB 0. */
927 soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
928
929 soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
930
931 spin_unlock_irqrestore(&hardware[type].lock, flags);
932
933 return 0;
934}
935
936static void set_use_dec(void *data)
937{ unsigned long flags;
938
939 spin_lock_irqsave(&hardware[type].lock, flags);
940
941 /* Set DLAB 0. */
942 soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
943
944 /* First of all, disable all interrupts */
945 soutp(UART_IER, sinp(UART_IER) &
946 (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
947 spin_unlock_irqrestore(&hardware[type].lock, flags);
948
949 free_irq(irq, (void *)&hardware);
950
951 dprintk("freed IRQ %d\n", irq);
952}
953
954static ssize_t lirc_write(struct file *file, const char *buf,
955 size_t n, loff_t *ppos)
956{
957 int i, count;
958 unsigned long flags;
959 long delta = 0;
960 int *wbuf;
961
962 if (!(hardware[type].features & LIRC_CAN_SEND_PULSE))
963 return -EBADF;
964
965 count = n / sizeof(int);
966 if (n % sizeof(int) || count % 2 == 0)
967 return -EINVAL;
968 wbuf = memdup_user(buf, n);
88914bdf 969 if (IS_ERR(wbuf))
1beef3c1
JW
970 return PTR_ERR(wbuf);
971 spin_lock_irqsave(&hardware[type].lock, flags);
972 if (type == LIRC_IRDEO) {
973 /* DTR, RTS down */
974 on();
975 }
976 for (i = 0; i < count; i++) {
977 if (i%2)
978 hardware[type].send_space(wbuf[i] - delta);
979 else
980 delta = hardware[type].send_pulse(wbuf[i]);
981 }
982 off();
983 spin_unlock_irqrestore(&hardware[type].lock, flags);
88914bdf 984 kfree(wbuf);
1beef3c1
JW
985 return n;
986}
987
988static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
989{
990 int result;
a1266818 991 __u32 value;
1beef3c1
JW
992
993 switch (cmd) {
994 case LIRC_GET_SEND_MODE:
995 if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
996 return -ENOIOCTLCMD;
997
998 result = put_user(LIRC_SEND2MODE
999 (hardware[type].features&LIRC_CAN_SEND_MASK),
a1266818 1000 (__u32 *) arg);
1beef3c1
JW
1001 if (result)
1002 return result;
1003 break;
1004
1005 case LIRC_SET_SEND_MODE:
1006 if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
1007 return -ENOIOCTLCMD;
1008
a1266818 1009 result = get_user(value, (__u32 *) arg);
1beef3c1
JW
1010 if (result)
1011 return result;
1012 /* only LIRC_MODE_PULSE supported */
1013 if (value != LIRC_MODE_PULSE)
1014 return -ENOSYS;
1015 break;
1016
1017 case LIRC_GET_LENGTH:
1018 return -ENOSYS;
1019 break;
1020
1021 case LIRC_SET_SEND_DUTY_CYCLE:
1022 dprintk("SET_SEND_DUTY_CYCLE\n");
1023 if (!(hardware[type].features&LIRC_CAN_SET_SEND_DUTY_CYCLE))
1024 return -ENOIOCTLCMD;
1025
a1266818 1026 result = get_user(value, (__u32 *) arg);
1beef3c1
JW
1027 if (result)
1028 return result;
a1266818 1029 if (value <= 0 || value > 100)
1beef3c1 1030 return -EINVAL;
a1266818 1031 return init_timing_params(value, freq);
1beef3c1
JW
1032 break;
1033
1034 case LIRC_SET_SEND_CARRIER:
1035 dprintk("SET_SEND_CARRIER\n");
1036 if (!(hardware[type].features&LIRC_CAN_SET_SEND_CARRIER))
1037 return -ENOIOCTLCMD;
1038
a1266818 1039 result = get_user(value, (__u32 *) arg);
1beef3c1
JW
1040 if (result)
1041 return result;
a1266818 1042 if (value > 500000 || value < 20000)
1beef3c1 1043 return -EINVAL;
a1266818 1044 return init_timing_params(duty_cycle, value);
1beef3c1
JW
1045 break;
1046
1047 default:
1048 return lirc_dev_fop_ioctl(filep, cmd, arg);
1049 }
1050 return 0;
1051}
1052
0f9313ad 1053static const struct file_operations lirc_fops = {
1beef3c1
JW
1054 .owner = THIS_MODULE,
1055 .write = lirc_write,
1056 .unlocked_ioctl = lirc_ioctl,
8be292cc
JW
1057#ifdef CONFIG_COMPAT
1058 .compat_ioctl = lirc_ioctl,
1059#endif
1beef3c1
JW
1060 .read = lirc_dev_fop_read,
1061 .poll = lirc_dev_fop_poll,
1062 .open = lirc_dev_fop_open,
1063 .release = lirc_dev_fop_close,
d9d2e9d5 1064 .llseek = no_llseek,
1beef3c1
JW
1065};
1066
1067static struct lirc_driver driver = {
1068 .name = LIRC_DRIVER_NAME,
1069 .minor = -1,
1070 .code_length = 1,
1071 .sample_rate = 0,
1072 .data = NULL,
1073 .add_to_buf = NULL,
1074 .rbuf = &rbuf,
1075 .set_use_inc = set_use_inc,
1076 .set_use_dec = set_use_dec,
1077 .fops = &lirc_fops,
1078 .dev = NULL,
1079 .owner = THIS_MODULE,
1080};
1081
1082static struct platform_device *lirc_serial_dev;
1083
1084static int __devinit lirc_serial_probe(struct platform_device *dev)
1085{
1086 return 0;
1087}
1088
1089static int __devexit lirc_serial_remove(struct platform_device *dev)
1090{
1091 return 0;
1092}
1093
1094static int lirc_serial_suspend(struct platform_device *dev,
1095 pm_message_t state)
1096{
1097 /* Set DLAB 0. */
1098 soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
1099
1100 /* Disable all interrupts */
1101 soutp(UART_IER, sinp(UART_IER) &
1102 (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
1103
1104 /* Clear registers. */
1105 sinp(UART_LSR);
1106 sinp(UART_RX);
1107 sinp(UART_IIR);
1108 sinp(UART_MSR);
1109
1110 return 0;
1111}
1112
1113/* twisty maze... need a forward-declaration here... */
1114static void lirc_serial_exit(void);
1115
1116static int lirc_serial_resume(struct platform_device *dev)
1117{
1118 unsigned long flags;
1119
1120 if (hardware_init_port() < 0) {
1121 lirc_serial_exit();
1122 return -EINVAL;
1123 }
1124
1125 spin_lock_irqsave(&hardware[type].lock, flags);
1126 /* Enable Interrupt */
1127 do_gettimeofday(&lasttv);
1128 soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
1129 off();
1130
1131 lirc_buffer_clear(&rbuf);
1132
1133 spin_unlock_irqrestore(&hardware[type].lock, flags);
1134
1135 return 0;
1136}
1137
1138static struct platform_driver lirc_serial_driver = {
1139 .probe = lirc_serial_probe,
1140 .remove = __devexit_p(lirc_serial_remove),
1141 .suspend = lirc_serial_suspend,
1142 .resume = lirc_serial_resume,
1143 .driver = {
1144 .name = "lirc_serial",
1145 .owner = THIS_MODULE,
1146 },
1147};
1148
1149static int __init lirc_serial_init(void)
1150{
1151 int result;
1152
1153 /* Init read buffer. */
1154 result = lirc_buffer_init(&rbuf, sizeof(int), RBUF_LEN);
1155 if (result < 0)
1156 return -ENOMEM;
1157
1158 result = platform_driver_register(&lirc_serial_driver);
1159 if (result) {
1160 printk("lirc register returned %d\n", result);
1161 goto exit_buffer_free;
1162 }
1163
1164 lirc_serial_dev = platform_device_alloc("lirc_serial", 0);
1165 if (!lirc_serial_dev) {
1166 result = -ENOMEM;
1167 goto exit_driver_unregister;
1168 }
1169
1170 result = platform_device_add(lirc_serial_dev);
1171 if (result)
1172 goto exit_device_put;
1173
1174 return 0;
1175
1176exit_device_put:
1177 platform_device_put(lirc_serial_dev);
1178exit_driver_unregister:
1179 platform_driver_unregister(&lirc_serial_driver);
1180exit_buffer_free:
1181 lirc_buffer_free(&rbuf);
1182 return result;
1183}
1184
1185static void lirc_serial_exit(void)
1186{
1187 platform_device_unregister(lirc_serial_dev);
1188 platform_driver_unregister(&lirc_serial_driver);
1189 lirc_buffer_free(&rbuf);
1190}
1191
1192static int __init lirc_serial_init_module(void)
1193{
1194 int result;
1195
1196 result = lirc_serial_init();
1197 if (result)
1198 return result;
1199
1200 switch (type) {
1201 case LIRC_HOMEBREW:
1202 case LIRC_IRDEO:
1203 case LIRC_IRDEO_REMOTE:
1204 case LIRC_ANIMAX:
1205 case LIRC_IGOR:
1206 /* if nothing specified, use ttyS0/com1 and irq 4 */
1207 io = io ? io : 0x3f8;
1208 irq = irq ? irq : 4;
1209 break;
1210#ifdef CONFIG_LIRC_SERIAL_NSLU2
1211 case LIRC_NSLU2:
1212 io = io ? io : IRQ_IXP4XX_UART2;
1213 irq = irq ? irq : (IXP4XX_UART2_BASE_VIRT + REG_OFFSET);
1214 iommap = iommap ? iommap : IXP4XX_UART2_BASE_PHYS;
1215 ioshift = ioshift ? ioshift : 2;
1216 break;
1217#endif
1218 default:
1219 result = -EINVAL;
1220 goto exit_serial_exit;
1221 }
1222 if (!softcarrier) {
1223 switch (type) {
1224 case LIRC_HOMEBREW:
1225 case LIRC_IGOR:
1226#ifdef CONFIG_LIRC_SERIAL_NSLU2
1227 case LIRC_NSLU2:
1228#endif
1229 hardware[type].features &=
1230 ~(LIRC_CAN_SET_SEND_DUTY_CYCLE|
1231 LIRC_CAN_SET_SEND_CARRIER);
1232 break;
1233 }
1234 }
1235
1236 result = init_port();
1237 if (result < 0)
1238 goto exit_serial_exit;
1239 driver.features = hardware[type].features;
1240 driver.dev = &lirc_serial_dev->dev;
1241 driver.minor = lirc_register_driver(&driver);
1242 if (driver.minor < 0) {
1243 printk(KERN_ERR LIRC_DRIVER_NAME
1244 ": register_chrdev failed!\n");
1245 result = -EIO;
1246 goto exit_release;
1247 }
1248 return 0;
1249exit_release:
1250 release_region(io, 8);
1251exit_serial_exit:
1252 lirc_serial_exit();
1253 return result;
1254}
1255
1256static void __exit lirc_serial_exit_module(void)
1257{
1258 lirc_serial_exit();
1259 if (iommap != 0)
1260 release_mem_region(iommap, 8 << ioshift);
1261 else
1262 release_region(io, 8);
1263 lirc_unregister_driver(driver.minor);
1264 dprintk("cleaned up module\n");
1265}
1266
1267
1268module_init(lirc_serial_init_module);
1269module_exit(lirc_serial_exit_module);
1270
1271MODULE_DESCRIPTION("Infra-red receiver driver for serial ports.");
1272MODULE_AUTHOR("Ralph Metzler, Trent Piepho, Ben Pfaff, "
1273 "Christoph Bartelmus, Andrei Tanas");
1274MODULE_LICENSE("GPL");
1275
1276module_param(type, int, S_IRUGO);
1277MODULE_PARM_DESC(type, "Hardware type (0 = home-brew, 1 = IRdeo,"
1278 " 2 = IRdeo Remote, 3 = AnimaX, 4 = IgorPlug,"
1279 " 5 = NSLU2 RX:CTS2/TX:GreenLED)");
1280
1281module_param(io, int, S_IRUGO);
1282MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
1283
1284/* some architectures (e.g. intel xscale) have memory mapped registers */
1285module_param(iommap, bool, S_IRUGO);
1286MODULE_PARM_DESC(iommap, "physical base for memory mapped I/O"
1287 " (0 = no memory mapped io)");
1288
1289/*
1290 * some architectures (e.g. intel xscale) align the 8bit serial registers
1291 * on 32bit word boundaries.
1292 * See linux-kernel/serial/8250.c serial_in()/out()
1293 */
1294module_param(ioshift, int, S_IRUGO);
1295MODULE_PARM_DESC(ioshift, "shift I/O register offset (0 = no shift)");
1296
1297module_param(irq, int, S_IRUGO);
1298MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
1299
1300module_param(share_irq, bool, S_IRUGO);
1301MODULE_PARM_DESC(share_irq, "Share interrupts (0 = off, 1 = on)");
1302
1303module_param(sense, bool, S_IRUGO);
1304MODULE_PARM_DESC(sense, "Override autodetection of IR receiver circuit"
1305 " (0 = active high, 1 = active low )");
1306
1307#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
1308module_param(txsense, bool, S_IRUGO);
1309MODULE_PARM_DESC(txsense, "Sense of transmitter circuit"
1310 " (0 = active high, 1 = active low )");
1311#endif
1312
1313module_param(softcarrier, bool, S_IRUGO);
1314MODULE_PARM_DESC(softcarrier, "Software carrier (0 = off, 1 = on, default on)");
1315
1316module_param(debug, bool, S_IRUGO | S_IWUSR);
1317MODULE_PARM_DESC(debug, "Enable debugging messages");