spi/bfin_spi: drop bits_per_word from client data
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / spi / spi-ep93xx.c
CommitLineData
011f23a3
MW
1/*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
626a96db 4 * Copyright (C) 2010-2011 Mika Westerberg
011f23a3
MW
5 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19#include <linux/io.h>
20#include <linux/clk.h>
21#include <linux/err.h>
22#include <linux/delay.h>
23#include <linux/device.h>
626a96db 24#include <linux/dmaengine.h>
011f23a3
MW
25#include <linux/bitops.h>
26#include <linux/interrupt.h>
5bdb7613 27#include <linux/module.h>
011f23a3
MW
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/sched.h>
626a96db 31#include <linux/scatterlist.h>
011f23a3
MW
32#include <linux/spi/spi.h>
33
626a96db 34#include <mach/dma.h>
011f23a3
MW
35#include <mach/ep93xx_spi.h>
36
37#define SSPCR0 0x0000
38#define SSPCR0_MODE_SHIFT 6
39#define SSPCR0_SCR_SHIFT 8
40
41#define SSPCR1 0x0004
42#define SSPCR1_RIE BIT(0)
43#define SSPCR1_TIE BIT(1)
44#define SSPCR1_RORIE BIT(2)
45#define SSPCR1_LBM BIT(3)
46#define SSPCR1_SSE BIT(4)
47#define SSPCR1_MS BIT(5)
48#define SSPCR1_SOD BIT(6)
49
50#define SSPDR 0x0008
51
52#define SSPSR 0x000c
53#define SSPSR_TFE BIT(0)
54#define SSPSR_TNF BIT(1)
55#define SSPSR_RNE BIT(2)
56#define SSPSR_RFF BIT(3)
57#define SSPSR_BSY BIT(4)
58#define SSPCPSR 0x0010
59
60#define SSPIIR 0x0014
61#define SSPIIR_RIS BIT(0)
62#define SSPIIR_TIS BIT(1)
63#define SSPIIR_RORIS BIT(2)
64#define SSPICR SSPIIR
65
66/* timeout in milliseconds */
67#define SPI_TIMEOUT 5
68/* maximum depth of RX/TX FIFO */
69#define SPI_FIFO_SIZE 8
70
71/**
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @lock: spinlock that protects concurrent accesses to fields @running,
74 * @current_msg and @msg_queue
75 * @pdev: pointer to platform device
76 * @clk: clock for the controller
77 * @regs_base: pointer to ioremap()'d registers
626a96db 78 * @sspdr_phys: physical address of the SSPDR register
011f23a3
MW
79 * @irq: IRQ number used by the driver
80 * @min_rate: minimum clock rate (in Hz) supported by the controller
81 * @max_rate: maximum clock rate (in Hz) supported by the controller
82 * @running: is the queue running
83 * @wq: workqueue used by the driver
84 * @msg_work: work that is queued for the driver
85 * @wait: wait here until given transfer is completed
86 * @msg_queue: queue for the messages
87 * @current_msg: message that is currently processed (or %NULL if none)
88 * @tx: current byte in transfer to transmit
89 * @rx: current byte in transfer to receive
90 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
91 * frame decreases this level and sending one frame increases it.
626a96db
MW
92 * @dma_rx: RX DMA channel
93 * @dma_tx: TX DMA channel
94 * @dma_rx_data: RX parameters passed to the DMA engine
95 * @dma_tx_data: TX parameters passed to the DMA engine
96 * @rx_sgt: sg table for RX transfers
97 * @tx_sgt: sg table for TX transfers
98 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
99 * the client
011f23a3
MW
100 *
101 * This structure holds EP93xx SPI controller specific information. When
102 * @running is %true, driver accepts transfer requests from protocol drivers.
103 * @current_msg is used to hold pointer to the message that is currently
104 * processed. If @current_msg is %NULL, it means that no processing is going
105 * on.
106 *
107 * Most of the fields are only written once and they can be accessed without
108 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
109 * @running, and @msg_queue.
110 */
111struct ep93xx_spi {
112 spinlock_t lock;
113 const struct platform_device *pdev;
114 struct clk *clk;
115 void __iomem *regs_base;
626a96db 116 unsigned long sspdr_phys;
011f23a3
MW
117 int irq;
118 unsigned long min_rate;
119 unsigned long max_rate;
120 bool running;
121 struct workqueue_struct *wq;
122 struct work_struct msg_work;
123 struct completion wait;
124 struct list_head msg_queue;
125 struct spi_message *current_msg;
126 size_t tx;
127 size_t rx;
128 size_t fifo_level;
626a96db
MW
129 struct dma_chan *dma_rx;
130 struct dma_chan *dma_tx;
131 struct ep93xx_dma_data dma_rx_data;
132 struct ep93xx_dma_data dma_tx_data;
133 struct sg_table rx_sgt;
134 struct sg_table tx_sgt;
135 void *zeropage;
011f23a3
MW
136};
137
138/**
139 * struct ep93xx_spi_chip - SPI device hardware settings
140 * @spi: back pointer to the SPI device
141 * @rate: max rate in hz this chip supports
142 * @div_cpsr: cpsr (pre-scaler) divider
143 * @div_scr: scr divider
144 * @dss: bits per word (4 - 16 bits)
145 * @ops: private chip operations
146 *
147 * This structure is used to store hardware register specific settings for each
148 * SPI device. Settings are written to hardware by function
149 * ep93xx_spi_chip_setup().
150 */
151struct ep93xx_spi_chip {
152 const struct spi_device *spi;
153 unsigned long rate;
154 u8 div_cpsr;
155 u8 div_scr;
156 u8 dss;
157 struct ep93xx_spi_chip_ops *ops;
158};
159
160/* converts bits per word to CR0.DSS value */
161#define bits_per_word_to_dss(bpw) ((bpw) - 1)
162
163static inline void
164ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
165{
166 __raw_writeb(value, espi->regs_base + reg);
167}
168
169static inline u8
170ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
171{
172 return __raw_readb(spi->regs_base + reg);
173}
174
175static inline void
176ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
177{
178 __raw_writew(value, espi->regs_base + reg);
179}
180
181static inline u16
182ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
183{
184 return __raw_readw(spi->regs_base + reg);
185}
186
187static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
188{
189 u8 regval;
190 int err;
191
192 err = clk_enable(espi->clk);
193 if (err)
194 return err;
195
196 regval = ep93xx_spi_read_u8(espi, SSPCR1);
197 regval |= SSPCR1_SSE;
198 ep93xx_spi_write_u8(espi, SSPCR1, regval);
199
200 return 0;
201}
202
203static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
204{
205 u8 regval;
206
207 regval = ep93xx_spi_read_u8(espi, SSPCR1);
208 regval &= ~SSPCR1_SSE;
209 ep93xx_spi_write_u8(espi, SSPCR1, regval);
210
211 clk_disable(espi->clk);
212}
213
214static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
215{
216 u8 regval;
217
218 regval = ep93xx_spi_read_u8(espi, SSPCR1);
219 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
220 ep93xx_spi_write_u8(espi, SSPCR1, regval);
221}
222
223static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
224{
225 u8 regval;
226
227 regval = ep93xx_spi_read_u8(espi, SSPCR1);
228 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
229 ep93xx_spi_write_u8(espi, SSPCR1, regval);
230}
231
232/**
233 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
234 * @espi: ep93xx SPI controller struct
235 * @chip: divisors are calculated for this chip
236 * @rate: desired SPI output clock rate
237 *
238 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
239 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
240 * for some reason, divisors cannot be calculated nothing is stored and
241 * %-EINVAL is returned.
242 */
243static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
244 struct ep93xx_spi_chip *chip,
245 unsigned long rate)
246{
247 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
248 int cpsr, scr;
249
250 /*
251 * Make sure that max value is between values supported by the
252 * controller. Note that minimum value is already checked in
253 * ep93xx_spi_transfer().
254 */
255 rate = clamp(rate, espi->min_rate, espi->max_rate);
256
257 /*
258 * Calculate divisors so that we can get speed according the
259 * following formula:
260 * rate = spi_clock_rate / (cpsr * (1 + scr))
261 *
262 * cpsr must be even number and starts from 2, scr can be any number
263 * between 0 and 255.
264 */
265 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
266 for (scr = 0; scr <= 255; scr++) {
267 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
268 chip->div_scr = (u8)scr;
269 chip->div_cpsr = (u8)cpsr;
270 return 0;
271 }
272 }
273 }
274
275 return -EINVAL;
276}
277
278static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
279{
280 struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
281 int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
282
283 if (chip->ops && chip->ops->cs_control)
284 chip->ops->cs_control(spi, value);
285}
286
287/**
288 * ep93xx_spi_setup() - setup an SPI device
289 * @spi: SPI device to setup
290 *
291 * This function sets up SPI device mode, speed etc. Can be called multiple
292 * times for a single device. Returns %0 in case of success, negative error in
293 * case of failure. When this function returns success, the device is
294 * deselected.
295 */
296static int ep93xx_spi_setup(struct spi_device *spi)
297{
298 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
299 struct ep93xx_spi_chip *chip;
300
301 if (spi->bits_per_word < 4 || spi->bits_per_word > 16) {
302 dev_err(&espi->pdev->dev, "invalid bits per word %d\n",
303 spi->bits_per_word);
304 return -EINVAL;
305 }
306
307 chip = spi_get_ctldata(spi);
308 if (!chip) {
309 dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
310 spi->modalias);
311
312 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
313 if (!chip)
314 return -ENOMEM;
315
316 chip->spi = spi;
317 chip->ops = spi->controller_data;
318
319 if (chip->ops && chip->ops->setup) {
320 int ret = chip->ops->setup(spi);
321 if (ret) {
322 kfree(chip);
323 return ret;
324 }
325 }
326
327 spi_set_ctldata(spi, chip);
328 }
329
330 if (spi->max_speed_hz != chip->rate) {
331 int err;
332
333 err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
334 if (err != 0) {
335 spi_set_ctldata(spi, NULL);
336 kfree(chip);
337 return err;
338 }
339 chip->rate = spi->max_speed_hz;
340 }
341
342 chip->dss = bits_per_word_to_dss(spi->bits_per_word);
343
344 ep93xx_spi_cs_control(spi, false);
345 return 0;
346}
347
348/**
349 * ep93xx_spi_transfer() - queue message to be transferred
350 * @spi: target SPI device
351 * @msg: message to be transferred
352 *
353 * This function is called by SPI device drivers when they are going to transfer
354 * a new message. It simply puts the message in the queue and schedules
355 * workqueue to perform the actual transfer later on.
356 *
357 * Returns %0 on success and negative error in case of failure.
358 */
359static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
360{
361 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
362 struct spi_transfer *t;
363 unsigned long flags;
364
365 if (!msg || !msg->complete)
366 return -EINVAL;
367
368 /* first validate each transfer */
369 list_for_each_entry(t, &msg->transfers, transfer_list) {
370 if (t->bits_per_word) {
371 if (t->bits_per_word < 4 || t->bits_per_word > 16)
372 return -EINVAL;
373 }
374 if (t->speed_hz && t->speed_hz < espi->min_rate)
375 return -EINVAL;
376 }
377
378 /*
379 * Now that we own the message, let's initialize it so that it is
380 * suitable for us. We use @msg->status to signal whether there was
381 * error in transfer and @msg->state is used to hold pointer to the
382 * current transfer (or %NULL if no active current transfer).
383 */
384 msg->state = NULL;
385 msg->status = 0;
386 msg->actual_length = 0;
387
388 spin_lock_irqsave(&espi->lock, flags);
389 if (!espi->running) {
390 spin_unlock_irqrestore(&espi->lock, flags);
391 return -ESHUTDOWN;
392 }
393 list_add_tail(&msg->queue, &espi->msg_queue);
394 queue_work(espi->wq, &espi->msg_work);
395 spin_unlock_irqrestore(&espi->lock, flags);
396
397 return 0;
398}
399
400/**
401 * ep93xx_spi_cleanup() - cleans up master controller specific state
402 * @spi: SPI device to cleanup
403 *
404 * This function releases master controller specific state for given @spi
405 * device.
406 */
407static void ep93xx_spi_cleanup(struct spi_device *spi)
408{
409 struct ep93xx_spi_chip *chip;
410
411 chip = spi_get_ctldata(spi);
412 if (chip) {
413 if (chip->ops && chip->ops->cleanup)
414 chip->ops->cleanup(spi);
415 spi_set_ctldata(spi, NULL);
416 kfree(chip);
417 }
418}
419
420/**
421 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
422 * @espi: ep93xx SPI controller struct
423 * @chip: chip specific settings
424 *
425 * This function sets up the actual hardware registers with settings given in
426 * @chip. Note that no validation is done so make sure that callers validate
427 * settings before calling this.
428 */
429static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
430 const struct ep93xx_spi_chip *chip)
431{
432 u16 cr0;
433
434 cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
435 cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
436 cr0 |= chip->dss;
437
438 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
439 chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
440 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
441
442 ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
443 ep93xx_spi_write_u16(espi, SSPCR0, cr0);
444}
445
446static inline int bits_per_word(const struct ep93xx_spi *espi)
447{
448 struct spi_message *msg = espi->current_msg;
449 struct spi_transfer *t = msg->state;
450
451 return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word;
452}
453
454static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
455{
456 if (bits_per_word(espi) > 8) {
457 u16 tx_val = 0;
458
459 if (t->tx_buf)
460 tx_val = ((u16 *)t->tx_buf)[espi->tx];
461 ep93xx_spi_write_u16(espi, SSPDR, tx_val);
462 espi->tx += sizeof(tx_val);
463 } else {
464 u8 tx_val = 0;
465
466 if (t->tx_buf)
467 tx_val = ((u8 *)t->tx_buf)[espi->tx];
468 ep93xx_spi_write_u8(espi, SSPDR, tx_val);
469 espi->tx += sizeof(tx_val);
470 }
471}
472
473static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
474{
475 if (bits_per_word(espi) > 8) {
476 u16 rx_val;
477
478 rx_val = ep93xx_spi_read_u16(espi, SSPDR);
479 if (t->rx_buf)
480 ((u16 *)t->rx_buf)[espi->rx] = rx_val;
481 espi->rx += sizeof(rx_val);
482 } else {
483 u8 rx_val;
484
485 rx_val = ep93xx_spi_read_u8(espi, SSPDR);
486 if (t->rx_buf)
487 ((u8 *)t->rx_buf)[espi->rx] = rx_val;
488 espi->rx += sizeof(rx_val);
489 }
490}
491
492/**
493 * ep93xx_spi_read_write() - perform next RX/TX transfer
494 * @espi: ep93xx SPI controller struct
495 *
496 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
497 * called several times, the whole transfer will be completed. Returns
498 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
499 *
500 * When this function is finished, RX FIFO should be empty and TX FIFO should be
501 * full.
502 */
503static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
504{
505 struct spi_message *msg = espi->current_msg;
506 struct spi_transfer *t = msg->state;
507
508 /* read as long as RX FIFO has frames in it */
509 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
510 ep93xx_do_read(espi, t);
511 espi->fifo_level--;
512 }
513
514 /* write as long as TX FIFO has room */
515 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
516 ep93xx_do_write(espi, t);
517 espi->fifo_level++;
518 }
519
626a96db 520 if (espi->rx == t->len)
011f23a3 521 return 0;
011f23a3
MW
522
523 return -EINPROGRESS;
524}
525
626a96db
MW
526static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
527{
528 /*
529 * Now everything is set up for the current transfer. We prime the TX
530 * FIFO, enable interrupts, and wait for the transfer to complete.
531 */
532 if (ep93xx_spi_read_write(espi)) {
533 ep93xx_spi_enable_interrupts(espi);
534 wait_for_completion(&espi->wait);
535 }
536}
537
538/**
539 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
540 * @espi: ep93xx SPI controller struct
541 * @dir: DMA transfer direction
542 *
543 * Function configures the DMA, maps the buffer and prepares the DMA
544 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
545 * in case of failure.
546 */
547static struct dma_async_tx_descriptor *
d4b9b578 548ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
626a96db
MW
549{
550 struct spi_transfer *t = espi->current_msg->state;
551 struct dma_async_tx_descriptor *txd;
552 enum dma_slave_buswidth buswidth;
553 struct dma_slave_config conf;
554 struct scatterlist *sg;
555 struct sg_table *sgt;
556 struct dma_chan *chan;
557 const void *buf, *pbuf;
558 size_t len = t->len;
559 int i, ret, nents;
560
561 if (bits_per_word(espi) > 8)
562 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
563 else
564 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
565
566 memset(&conf, 0, sizeof(conf));
567 conf.direction = dir;
568
d4b9b578 569 if (dir == DMA_DEV_TO_MEM) {
626a96db
MW
570 chan = espi->dma_rx;
571 buf = t->rx_buf;
572 sgt = &espi->rx_sgt;
573
574 conf.src_addr = espi->sspdr_phys;
575 conf.src_addr_width = buswidth;
576 } else {
577 chan = espi->dma_tx;
578 buf = t->tx_buf;
579 sgt = &espi->tx_sgt;
580
581 conf.dst_addr = espi->sspdr_phys;
582 conf.dst_addr_width = buswidth;
583 }
584
585 ret = dmaengine_slave_config(chan, &conf);
586 if (ret)
587 return ERR_PTR(ret);
588
589 /*
590 * We need to split the transfer into PAGE_SIZE'd chunks. This is
591 * because we are using @espi->zeropage to provide a zero RX buffer
592 * for the TX transfers and we have only allocated one page for that.
593 *
594 * For performance reasons we allocate a new sg_table only when
595 * needed. Otherwise we will re-use the current one. Eventually the
596 * last sg_table is released in ep93xx_spi_release_dma().
597 */
598
599 nents = DIV_ROUND_UP(len, PAGE_SIZE);
600 if (nents != sgt->nents) {
601 sg_free_table(sgt);
602
603 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
604 if (ret)
605 return ERR_PTR(ret);
606 }
607
608 pbuf = buf;
609 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
610 size_t bytes = min_t(size_t, len, PAGE_SIZE);
611
612 if (buf) {
613 sg_set_page(sg, virt_to_page(pbuf), bytes,
614 offset_in_page(pbuf));
615 } else {
616 sg_set_page(sg, virt_to_page(espi->zeropage),
617 bytes, 0);
618 }
619
620 pbuf += bytes;
621 len -= bytes;
622 }
623
624 if (WARN_ON(len)) {
625 dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
626 return ERR_PTR(-EINVAL);
627 }
628
629 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
630 if (!nents)
631 return ERR_PTR(-ENOMEM);
632
d4b9b578 633 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
626a96db
MW
634 if (!txd) {
635 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
636 return ERR_PTR(-ENOMEM);
637 }
638 return txd;
639}
640
641/**
642 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
643 * @espi: ep93xx SPI controller struct
644 * @dir: DMA transfer direction
645 *
646 * Function finishes with the DMA transfer. After this, the DMA buffer is
647 * unmapped.
648 */
649static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
d4b9b578 650 enum dma_transfer_direction dir)
626a96db
MW
651{
652 struct dma_chan *chan;
653 struct sg_table *sgt;
654
d4b9b578 655 if (dir == DMA_DEV_TO_MEM) {
626a96db
MW
656 chan = espi->dma_rx;
657 sgt = &espi->rx_sgt;
658 } else {
659 chan = espi->dma_tx;
660 sgt = &espi->tx_sgt;
661 }
662
663 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
664}
665
666static void ep93xx_spi_dma_callback(void *callback_param)
667{
668 complete(callback_param);
669}
670
671static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
672{
673 struct spi_message *msg = espi->current_msg;
674 struct dma_async_tx_descriptor *rxd, *txd;
675
d4b9b578 676 rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
626a96db
MW
677 if (IS_ERR(rxd)) {
678 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
679 msg->status = PTR_ERR(rxd);
680 return;
681 }
682
d4b9b578 683 txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
626a96db 684 if (IS_ERR(txd)) {
d4b9b578 685 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
626a96db
MW
686 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
687 msg->status = PTR_ERR(txd);
688 return;
689 }
690
691 /* We are ready when RX is done */
692 rxd->callback = ep93xx_spi_dma_callback;
693 rxd->callback_param = &espi->wait;
694
695 /* Now submit both descriptors and wait while they finish */
696 dmaengine_submit(rxd);
697 dmaengine_submit(txd);
698
699 dma_async_issue_pending(espi->dma_rx);
700 dma_async_issue_pending(espi->dma_tx);
701
702 wait_for_completion(&espi->wait);
703
d4b9b578
HS
704 ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
705 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
626a96db
MW
706}
707
011f23a3
MW
708/**
709 * ep93xx_spi_process_transfer() - processes one SPI transfer
710 * @espi: ep93xx SPI controller struct
711 * @msg: current message
712 * @t: transfer to process
713 *
714 * This function processes one SPI transfer given in @t. Function waits until
715 * transfer is complete (may sleep) and updates @msg->status based on whether
25985edc 716 * transfer was successfully processed or not.
011f23a3
MW
717 */
718static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
719 struct spi_message *msg,
720 struct spi_transfer *t)
721{
722 struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
723
724 msg->state = t;
725
726 /*
727 * Handle any transfer specific settings if needed. We use
728 * temporary chip settings here and restore original later when
729 * the transfer is finished.
730 */
731 if (t->speed_hz || t->bits_per_word) {
732 struct ep93xx_spi_chip tmp_chip = *chip;
733
734 if (t->speed_hz) {
735 int err;
736
737 err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
738 t->speed_hz);
739 if (err) {
740 dev_err(&espi->pdev->dev,
741 "failed to adjust speed\n");
742 msg->status = err;
743 return;
744 }
745 }
746
747 if (t->bits_per_word)
748 tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);
749
750 /*
751 * Set up temporary new hw settings for this transfer.
752 */
753 ep93xx_spi_chip_setup(espi, &tmp_chip);
754 }
755
756 espi->rx = 0;
757 espi->tx = 0;
758
759 /*
626a96db
MW
760 * There is no point of setting up DMA for the transfers which will
761 * fit into the FIFO and can be transferred with a single interrupt.
762 * So in these cases we will be using PIO and don't bother for DMA.
011f23a3 763 */
626a96db
MW
764 if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
765 ep93xx_spi_dma_transfer(espi);
766 else
767 ep93xx_spi_pio_transfer(espi);
011f23a3
MW
768
769 /*
770 * In case of error during transmit, we bail out from processing
771 * the message.
772 */
773 if (msg->status)
774 return;
775
626a96db
MW
776 msg->actual_length += t->len;
777
011f23a3
MW
778 /*
779 * After this transfer is finished, perform any possible
780 * post-transfer actions requested by the protocol driver.
781 */
782 if (t->delay_usecs) {
783 set_current_state(TASK_UNINTERRUPTIBLE);
784 schedule_timeout(usecs_to_jiffies(t->delay_usecs));
785 }
786 if (t->cs_change) {
787 if (!list_is_last(&t->transfer_list, &msg->transfers)) {
788 /*
789 * In case protocol driver is asking us to drop the
790 * chipselect briefly, we let the scheduler to handle
791 * any "delay" here.
792 */
793 ep93xx_spi_cs_control(msg->spi, false);
794 cond_resched();
795 ep93xx_spi_cs_control(msg->spi, true);
796 }
797 }
798
799 if (t->speed_hz || t->bits_per_word)
800 ep93xx_spi_chip_setup(espi, chip);
801}
802
803/*
804 * ep93xx_spi_process_message() - process one SPI message
805 * @espi: ep93xx SPI controller struct
806 * @msg: message to process
807 *
808 * This function processes a single SPI message. We go through all transfers in
809 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
810 * asserted during the whole message (unless per transfer cs_change is set).
811 *
812 * @msg->status contains %0 in case of success or negative error code in case of
813 * failure.
814 */
815static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
816 struct spi_message *msg)
817{
818 unsigned long timeout;
819 struct spi_transfer *t;
820 int err;
821
822 /*
823 * Enable the SPI controller and its clock.
824 */
825 err = ep93xx_spi_enable(espi);
826 if (err) {
827 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
828 msg->status = err;
829 return;
830 }
831
832 /*
833 * Just to be sure: flush any data from RX FIFO.
834 */
835 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
836 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
837 if (time_after(jiffies, timeout)) {
838 dev_warn(&espi->pdev->dev,
839 "timeout while flushing RX FIFO\n");
840 msg->status = -ETIMEDOUT;
841 return;
842 }
843 ep93xx_spi_read_u16(espi, SSPDR);
844 }
845
846 /*
847 * We explicitly handle FIFO level. This way we don't have to check TX
848 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
849 */
850 espi->fifo_level = 0;
851
852 /*
853 * Update SPI controller registers according to spi device and assert
854 * the chipselect.
855 */
856 ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
857 ep93xx_spi_cs_control(msg->spi, true);
858
859 list_for_each_entry(t, &msg->transfers, transfer_list) {
860 ep93xx_spi_process_transfer(espi, msg, t);
861 if (msg->status)
862 break;
863 }
864
865 /*
866 * Now the whole message is transferred (or failed for some reason). We
867 * deselect the device and disable the SPI controller.
868 */
869 ep93xx_spi_cs_control(msg->spi, false);
870 ep93xx_spi_disable(espi);
871}
872
873#define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
874
875/**
876 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
877 * @work: work struct
878 *
879 * Workqueue worker function. This function is called when there are new
880 * SPI messages to be processed. Message is taken out from the queue and then
881 * passed to ep93xx_spi_process_message().
882 *
883 * After message is transferred, protocol driver is notified by calling
884 * @msg->complete(). In case of error, @msg->status is set to negative error
885 * number, otherwise it contains zero (and @msg->actual_length is updated).
886 */
887static void ep93xx_spi_work(struct work_struct *work)
888{
889 struct ep93xx_spi *espi = work_to_espi(work);
890 struct spi_message *msg;
891
892 spin_lock_irq(&espi->lock);
893 if (!espi->running || espi->current_msg ||
894 list_empty(&espi->msg_queue)) {
895 spin_unlock_irq(&espi->lock);
896 return;
897 }
898 msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
899 list_del_init(&msg->queue);
900 espi->current_msg = msg;
901 spin_unlock_irq(&espi->lock);
902
903 ep93xx_spi_process_message(espi, msg);
904
905 /*
906 * Update the current message and re-schedule ourselves if there are
907 * more messages in the queue.
908 */
909 spin_lock_irq(&espi->lock);
910 espi->current_msg = NULL;
911 if (espi->running && !list_empty(&espi->msg_queue))
912 queue_work(espi->wq, &espi->msg_work);
913 spin_unlock_irq(&espi->lock);
914
915 /* notify the protocol driver that we are done with this message */
916 msg->complete(msg->context);
917}
918
919static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
920{
921 struct ep93xx_spi *espi = dev_id;
922 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
923
924 /*
925 * If we got ROR (receive overrun) interrupt we know that something is
926 * wrong. Just abort the message.
927 */
928 if (unlikely(irq_status & SSPIIR_RORIS)) {
929 /* clear the overrun interrupt */
930 ep93xx_spi_write_u8(espi, SSPICR, 0);
931 dev_warn(&espi->pdev->dev,
932 "receive overrun, aborting the message\n");
933 espi->current_msg->status = -EIO;
934 } else {
935 /*
936 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
937 * simply execute next data transfer.
938 */
939 if (ep93xx_spi_read_write(espi)) {
940 /*
941 * In normal case, there still is some processing left
942 * for current transfer. Let's wait for the next
943 * interrupt then.
944 */
945 return IRQ_HANDLED;
946 }
947 }
948
949 /*
950 * Current transfer is finished, either with error or with success. In
951 * any case we disable interrupts and notify the worker to handle
952 * any post-processing of the message.
953 */
954 ep93xx_spi_disable_interrupts(espi);
955 complete(&espi->wait);
956 return IRQ_HANDLED;
957}
958
626a96db
MW
959static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
960{
961 if (ep93xx_dma_chan_is_m2p(chan))
962 return false;
963
964 chan->private = filter_param;
965 return true;
966}
967
968static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
969{
970 dma_cap_mask_t mask;
971 int ret;
972
973 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
974 if (!espi->zeropage)
975 return -ENOMEM;
976
977 dma_cap_zero(mask);
978 dma_cap_set(DMA_SLAVE, mask);
979
980 espi->dma_rx_data.port = EP93XX_DMA_SSP;
a485df4b 981 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
626a96db
MW
982 espi->dma_rx_data.name = "ep93xx-spi-rx";
983
984 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
985 &espi->dma_rx_data);
986 if (!espi->dma_rx) {
987 ret = -ENODEV;
988 goto fail_free_page;
989 }
990
991 espi->dma_tx_data.port = EP93XX_DMA_SSP;
a485df4b 992 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
626a96db
MW
993 espi->dma_tx_data.name = "ep93xx-spi-tx";
994
995 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
996 &espi->dma_tx_data);
997 if (!espi->dma_tx) {
998 ret = -ENODEV;
999 goto fail_release_rx;
1000 }
1001
1002 return 0;
1003
1004fail_release_rx:
1005 dma_release_channel(espi->dma_rx);
1006 espi->dma_rx = NULL;
1007fail_free_page:
1008 free_page((unsigned long)espi->zeropage);
1009
1010 return ret;
1011}
1012
1013static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
1014{
1015 if (espi->dma_rx) {
1016 dma_release_channel(espi->dma_rx);
1017 sg_free_table(&espi->rx_sgt);
1018 }
1019 if (espi->dma_tx) {
1020 dma_release_channel(espi->dma_tx);
1021 sg_free_table(&espi->tx_sgt);
1022 }
1023
1024 if (espi->zeropage)
1025 free_page((unsigned long)espi->zeropage);
1026}
1027
940ab889 1028static int __devinit ep93xx_spi_probe(struct platform_device *pdev)
011f23a3
MW
1029{
1030 struct spi_master *master;
1031 struct ep93xx_spi_info *info;
1032 struct ep93xx_spi *espi;
1033 struct resource *res;
1034 int error;
1035
1036 info = pdev->dev.platform_data;
1037
1038 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1039 if (!master) {
1040 dev_err(&pdev->dev, "failed to allocate spi master\n");
1041 return -ENOMEM;
1042 }
1043
1044 master->setup = ep93xx_spi_setup;
1045 master->transfer = ep93xx_spi_transfer;
1046 master->cleanup = ep93xx_spi_cleanup;
1047 master->bus_num = pdev->id;
1048 master->num_chipselect = info->num_chipselect;
1049 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1050
1051 platform_set_drvdata(pdev, master);
1052
1053 espi = spi_master_get_devdata(master);
1054
1055 espi->clk = clk_get(&pdev->dev, NULL);
1056 if (IS_ERR(espi->clk)) {
1057 dev_err(&pdev->dev, "unable to get spi clock\n");
1058 error = PTR_ERR(espi->clk);
1059 goto fail_release_master;
1060 }
1061
1062 spin_lock_init(&espi->lock);
1063 init_completion(&espi->wait);
1064
1065 /*
1066 * Calculate maximum and minimum supported clock rates
1067 * for the controller.
1068 */
1069 espi->max_rate = clk_get_rate(espi->clk) / 2;
1070 espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1071 espi->pdev = pdev;
1072
1073 espi->irq = platform_get_irq(pdev, 0);
1074 if (espi->irq < 0) {
1075 error = -EBUSY;
1076 dev_err(&pdev->dev, "failed to get irq resources\n");
1077 goto fail_put_clock;
1078 }
1079
1080 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1081 if (!res) {
1082 dev_err(&pdev->dev, "unable to get iomem resource\n");
1083 error = -ENODEV;
1084 goto fail_put_clock;
1085 }
1086
1087 res = request_mem_region(res->start, resource_size(res), pdev->name);
1088 if (!res) {
1089 dev_err(&pdev->dev, "unable to request iomem resources\n");
1090 error = -EBUSY;
1091 goto fail_put_clock;
1092 }
1093
626a96db 1094 espi->sspdr_phys = res->start + SSPDR;
011f23a3
MW
1095 espi->regs_base = ioremap(res->start, resource_size(res));
1096 if (!espi->regs_base) {
1097 dev_err(&pdev->dev, "failed to map resources\n");
1098 error = -ENODEV;
1099 goto fail_free_mem;
1100 }
1101
1102 error = request_irq(espi->irq, ep93xx_spi_interrupt, 0,
1103 "ep93xx-spi", espi);
1104 if (error) {
1105 dev_err(&pdev->dev, "failed to request irq\n");
1106 goto fail_unmap_regs;
1107 }
1108
626a96db
MW
1109 if (info->use_dma && ep93xx_spi_setup_dma(espi))
1110 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1111
011f23a3
MW
1112 espi->wq = create_singlethread_workqueue("ep93xx_spid");
1113 if (!espi->wq) {
1114 dev_err(&pdev->dev, "unable to create workqueue\n");
626a96db 1115 goto fail_free_dma;
011f23a3
MW
1116 }
1117 INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1118 INIT_LIST_HEAD(&espi->msg_queue);
1119 espi->running = true;
1120
1121 /* make sure that the hardware is disabled */
1122 ep93xx_spi_write_u8(espi, SSPCR1, 0);
1123
1124 error = spi_register_master(master);
1125 if (error) {
1126 dev_err(&pdev->dev, "failed to register SPI master\n");
1127 goto fail_free_queue;
1128 }
1129
1130 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1131 (unsigned long)res->start, espi->irq);
1132
1133 return 0;
1134
1135fail_free_queue:
1136 destroy_workqueue(espi->wq);
626a96db
MW
1137fail_free_dma:
1138 ep93xx_spi_release_dma(espi);
011f23a3
MW
1139 free_irq(espi->irq, espi);
1140fail_unmap_regs:
1141 iounmap(espi->regs_base);
1142fail_free_mem:
1143 release_mem_region(res->start, resource_size(res));
1144fail_put_clock:
1145 clk_put(espi->clk);
1146fail_release_master:
1147 spi_master_put(master);
1148 platform_set_drvdata(pdev, NULL);
1149
1150 return error;
1151}
1152
940ab889 1153static int __devexit ep93xx_spi_remove(struct platform_device *pdev)
011f23a3
MW
1154{
1155 struct spi_master *master = platform_get_drvdata(pdev);
1156 struct ep93xx_spi *espi = spi_master_get_devdata(master);
1157 struct resource *res;
1158
1159 spin_lock_irq(&espi->lock);
1160 espi->running = false;
1161 spin_unlock_irq(&espi->lock);
1162
1163 destroy_workqueue(espi->wq);
1164
1165 /*
1166 * Complete remaining messages with %-ESHUTDOWN status.
1167 */
1168 spin_lock_irq(&espi->lock);
1169 while (!list_empty(&espi->msg_queue)) {
1170 struct spi_message *msg;
1171
1172 msg = list_first_entry(&espi->msg_queue,
1173 struct spi_message, queue);
1174 list_del_init(&msg->queue);
1175 msg->status = -ESHUTDOWN;
1176 spin_unlock_irq(&espi->lock);
1177 msg->complete(msg->context);
1178 spin_lock_irq(&espi->lock);
1179 }
1180 spin_unlock_irq(&espi->lock);
1181
626a96db 1182 ep93xx_spi_release_dma(espi);
011f23a3
MW
1183 free_irq(espi->irq, espi);
1184 iounmap(espi->regs_base);
1185 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1186 release_mem_region(res->start, resource_size(res));
1187 clk_put(espi->clk);
1188 platform_set_drvdata(pdev, NULL);
1189
1190 spi_unregister_master(master);
1191 return 0;
1192}
1193
1194static struct platform_driver ep93xx_spi_driver = {
1195 .driver = {
1196 .name = "ep93xx-spi",
1197 .owner = THIS_MODULE,
1198 },
940ab889
GL
1199 .probe = ep93xx_spi_probe,
1200 .remove = __devexit_p(ep93xx_spi_remove),
011f23a3 1201};
940ab889 1202module_platform_driver(ep93xx_spi_driver);
011f23a3
MW
1203
1204MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1205MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1206MODULE_LICENSE("GPL");
1207MODULE_ALIAS("platform:ep93xx-spi");