Merge branch 'master'
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
59a10b17 64static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
8bf62ece 65static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
66static void ata_set_mode(struct ata_port *ap);
67static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
057ace5e 68static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
1da177e4 69static int fgb(u32 bitmap);
057ace5e 70static int ata_choose_xfer_mode(const struct ata_port *ap,
1da177e4
LT
71 u8 *xfer_mode_out,
72 unsigned int *xfer_shift_out);
1da177e4
LT
73
74static unsigned int ata_unique_id = 1;
75static struct workqueue_struct *ata_wq;
76
1623c81e
JG
77int atapi_enabled = 0;
78module_param(atapi_enabled, int, 0444);
79MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
1da177e4
LT
81MODULE_AUTHOR("Jeff Garzik");
82MODULE_DESCRIPTION("Library module for ATA devices");
83MODULE_LICENSE("GPL");
84MODULE_VERSION(DRV_VERSION);
85
0baab86b 86
1da177e4
LT
87/**
88 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
89 * @tf: Taskfile to convert
90 * @fis: Buffer into which data will output
91 * @pmp: Port multiplier port
92 *
93 * Converts a standard ATA taskfile to a Serial ATA
94 * FIS structure (Register - Host to Device).
95 *
96 * LOCKING:
97 * Inherited from caller.
98 */
99
057ace5e 100void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
101{
102 fis[0] = 0x27; /* Register - Host to Device FIS */
103 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
104 bit 7 indicates Command FIS */
105 fis[2] = tf->command;
106 fis[3] = tf->feature;
107
108 fis[4] = tf->lbal;
109 fis[5] = tf->lbam;
110 fis[6] = tf->lbah;
111 fis[7] = tf->device;
112
113 fis[8] = tf->hob_lbal;
114 fis[9] = tf->hob_lbam;
115 fis[10] = tf->hob_lbah;
116 fis[11] = tf->hob_feature;
117
118 fis[12] = tf->nsect;
119 fis[13] = tf->hob_nsect;
120 fis[14] = 0;
121 fis[15] = tf->ctl;
122
123 fis[16] = 0;
124 fis[17] = 0;
125 fis[18] = 0;
126 fis[19] = 0;
127}
128
129/**
130 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
131 * @fis: Buffer from which data will be input
132 * @tf: Taskfile to output
133 *
e12a1be6 134 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
135 *
136 * LOCKING:
137 * Inherited from caller.
138 */
139
057ace5e 140void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
141{
142 tf->command = fis[2]; /* status */
143 tf->feature = fis[3]; /* error */
144
145 tf->lbal = fis[4];
146 tf->lbam = fis[5];
147 tf->lbah = fis[6];
148 tf->device = fis[7];
149
150 tf->hob_lbal = fis[8];
151 tf->hob_lbam = fis[9];
152 tf->hob_lbah = fis[10];
153
154 tf->nsect = fis[12];
155 tf->hob_nsect = fis[13];
156}
157
8cbd6df1
AL
158static const u8 ata_rw_cmds[] = {
159 /* pio multi */
160 ATA_CMD_READ_MULTI,
161 ATA_CMD_WRITE_MULTI,
162 ATA_CMD_READ_MULTI_EXT,
163 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
164 0,
165 0,
166 0,
167 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
168 /* pio */
169 ATA_CMD_PIO_READ,
170 ATA_CMD_PIO_WRITE,
171 ATA_CMD_PIO_READ_EXT,
172 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
173 0,
174 0,
175 0,
176 0,
8cbd6df1
AL
177 /* dma */
178 ATA_CMD_READ,
179 ATA_CMD_WRITE,
180 ATA_CMD_READ_EXT,
9a3dccc4
TH
181 ATA_CMD_WRITE_EXT,
182 0,
183 0,
184 0,
185 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 186};
1da177e4
LT
187
188/**
8cbd6df1
AL
189 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
190 * @qc: command to examine and configure
1da177e4 191 *
8cbd6df1
AL
192 * Examine the device configuration and tf->flags to calculate
193 * the proper read/write commands and protocol to use.
1da177e4
LT
194 *
195 * LOCKING:
196 * caller.
197 */
9a3dccc4 198int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 199{
8cbd6df1
AL
200 struct ata_taskfile *tf = &qc->tf;
201 struct ata_device *dev = qc->dev;
9a3dccc4 202 u8 cmd;
1da177e4 203
9a3dccc4 204 int index, fua, lba48, write;
8cbd6df1 205
9a3dccc4 206 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
207 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
208 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 209
8cbd6df1
AL
210 if (dev->flags & ATA_DFLAG_PIO) {
211 tf->protocol = ATA_PROT_PIO;
9a3dccc4 212 index = dev->multi_count ? 0 : 8;
8d238e01
AC
213 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
214 /* Unable to use DMA due to host limitation */
215 tf->protocol = ATA_PROT_PIO;
216 index = dev->multi_count ? 0 : 4;
8cbd6df1
AL
217 } else {
218 tf->protocol = ATA_PROT_DMA;
9a3dccc4 219 index = 16;
8cbd6df1 220 }
1da177e4 221
9a3dccc4
TH
222 cmd = ata_rw_cmds[index + fua + lba48 + write];
223 if (cmd) {
224 tf->command = cmd;
225 return 0;
226 }
227 return -1;
1da177e4
LT
228}
229
98ac62de 230static const char * const xfer_mode_str[] = {
1da177e4
LT
231 "UDMA/16",
232 "UDMA/25",
233 "UDMA/33",
234 "UDMA/44",
235 "UDMA/66",
236 "UDMA/100",
237 "UDMA/133",
238 "UDMA7",
239 "MWDMA0",
240 "MWDMA1",
241 "MWDMA2",
242 "PIO0",
243 "PIO1",
244 "PIO2",
245 "PIO3",
246 "PIO4",
247};
248
249/**
250 * ata_udma_string - convert UDMA bit offset to string
251 * @mask: mask of bits supported; only highest bit counts.
252 *
253 * Determine string which represents the highest speed
254 * (highest bit in @udma_mask).
255 *
256 * LOCKING:
257 * None.
258 *
259 * RETURNS:
260 * Constant C string representing highest speed listed in
261 * @udma_mask, or the constant C string "<n/a>".
262 */
263
264static const char *ata_mode_string(unsigned int mask)
265{
266 int i;
267
268 for (i = 7; i >= 0; i--)
269 if (mask & (1 << i))
270 goto out;
271 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
272 if (mask & (1 << i))
273 goto out;
274 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
275 if (mask & (1 << i))
276 goto out;
277
278 return "<n/a>";
279
280out:
281 return xfer_mode_str[i];
282}
283
284/**
285 * ata_pio_devchk - PATA device presence detection
286 * @ap: ATA channel to examine
287 * @device: Device to examine (starting at zero)
288 *
289 * This technique was originally described in
290 * Hale Landis's ATADRVR (www.ata-atapi.com), and
291 * later found its way into the ATA/ATAPI spec.
292 *
293 * Write a pattern to the ATA shadow registers,
294 * and if a device is present, it will respond by
295 * correctly storing and echoing back the
296 * ATA shadow register contents.
297 *
298 * LOCKING:
299 * caller.
300 */
301
302static unsigned int ata_pio_devchk(struct ata_port *ap,
303 unsigned int device)
304{
305 struct ata_ioports *ioaddr = &ap->ioaddr;
306 u8 nsect, lbal;
307
308 ap->ops->dev_select(ap, device);
309
310 outb(0x55, ioaddr->nsect_addr);
311 outb(0xaa, ioaddr->lbal_addr);
312
313 outb(0xaa, ioaddr->nsect_addr);
314 outb(0x55, ioaddr->lbal_addr);
315
316 outb(0x55, ioaddr->nsect_addr);
317 outb(0xaa, ioaddr->lbal_addr);
318
319 nsect = inb(ioaddr->nsect_addr);
320 lbal = inb(ioaddr->lbal_addr);
321
322 if ((nsect == 0x55) && (lbal == 0xaa))
323 return 1; /* we found a device */
324
325 return 0; /* nothing found */
326}
327
328/**
329 * ata_mmio_devchk - PATA device presence detection
330 * @ap: ATA channel to examine
331 * @device: Device to examine (starting at zero)
332 *
333 * This technique was originally described in
334 * Hale Landis's ATADRVR (www.ata-atapi.com), and
335 * later found its way into the ATA/ATAPI spec.
336 *
337 * Write a pattern to the ATA shadow registers,
338 * and if a device is present, it will respond by
339 * correctly storing and echoing back the
340 * ATA shadow register contents.
341 *
342 * LOCKING:
343 * caller.
344 */
345
346static unsigned int ata_mmio_devchk(struct ata_port *ap,
347 unsigned int device)
348{
349 struct ata_ioports *ioaddr = &ap->ioaddr;
350 u8 nsect, lbal;
351
352 ap->ops->dev_select(ap, device);
353
354 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
355 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
356
357 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
358 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
359
360 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
361 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
362
363 nsect = readb((void __iomem *) ioaddr->nsect_addr);
364 lbal = readb((void __iomem *) ioaddr->lbal_addr);
365
366 if ((nsect == 0x55) && (lbal == 0xaa))
367 return 1; /* we found a device */
368
369 return 0; /* nothing found */
370}
371
372/**
373 * ata_devchk - PATA device presence detection
374 * @ap: ATA channel to examine
375 * @device: Device to examine (starting at zero)
376 *
377 * Dispatch ATA device presence detection, depending
378 * on whether we are using PIO or MMIO to talk to the
379 * ATA shadow registers.
380 *
381 * LOCKING:
382 * caller.
383 */
384
385static unsigned int ata_devchk(struct ata_port *ap,
386 unsigned int device)
387{
388 if (ap->flags & ATA_FLAG_MMIO)
389 return ata_mmio_devchk(ap, device);
390 return ata_pio_devchk(ap, device);
391}
392
393/**
394 * ata_dev_classify - determine device type based on ATA-spec signature
395 * @tf: ATA taskfile register set for device to be identified
396 *
397 * Determine from taskfile register contents whether a device is
398 * ATA or ATAPI, as per "Signature and persistence" section
399 * of ATA/PI spec (volume 1, sect 5.14).
400 *
401 * LOCKING:
402 * None.
403 *
404 * RETURNS:
405 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
406 * the event of failure.
407 */
408
057ace5e 409unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
410{
411 /* Apple's open source Darwin code hints that some devices only
412 * put a proper signature into the LBA mid/high registers,
413 * So, we only check those. It's sufficient for uniqueness.
414 */
415
416 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
417 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
418 DPRINTK("found ATA device by sig\n");
419 return ATA_DEV_ATA;
420 }
421
422 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
423 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
424 DPRINTK("found ATAPI device by sig\n");
425 return ATA_DEV_ATAPI;
426 }
427
428 DPRINTK("unknown device\n");
429 return ATA_DEV_UNKNOWN;
430}
431
432/**
433 * ata_dev_try_classify - Parse returned ATA device signature
434 * @ap: ATA channel to examine
435 * @device: Device to examine (starting at zero)
b4dc7623 436 * @r_err: Value of error register on completion
1da177e4
LT
437 *
438 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
439 * an ATA/ATAPI-defined set of values is placed in the ATA
440 * shadow registers, indicating the results of device detection
441 * and diagnostics.
442 *
443 * Select the ATA device, and read the values from the ATA shadow
444 * registers. Then parse according to the Error register value,
445 * and the spec-defined values examined by ata_dev_classify().
446 *
447 * LOCKING:
448 * caller.
b4dc7623
TH
449 *
450 * RETURNS:
451 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
452 */
453
b4dc7623
TH
454static unsigned int
455ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 456{
1da177e4
LT
457 struct ata_taskfile tf;
458 unsigned int class;
459 u8 err;
460
461 ap->ops->dev_select(ap, device);
462
463 memset(&tf, 0, sizeof(tf));
464
1da177e4 465 ap->ops->tf_read(ap, &tf);
0169e284 466 err = tf.feature;
b4dc7623
TH
467 if (r_err)
468 *r_err = err;
1da177e4
LT
469
470 /* see if device passed diags */
471 if (err == 1)
472 /* do nothing */ ;
473 else if ((device == 0) && (err == 0x81))
474 /* do nothing */ ;
475 else
b4dc7623 476 return ATA_DEV_NONE;
1da177e4 477
b4dc7623 478 /* determine if device is ATA or ATAPI */
1da177e4 479 class = ata_dev_classify(&tf);
b4dc7623 480
1da177e4 481 if (class == ATA_DEV_UNKNOWN)
b4dc7623 482 return ATA_DEV_NONE;
1da177e4 483 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
484 return ATA_DEV_NONE;
485 return class;
1da177e4
LT
486}
487
488/**
489 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
490 * @id: IDENTIFY DEVICE results we will examine
491 * @s: string into which data is output
492 * @ofs: offset into identify device page
493 * @len: length of string to return. must be an even number.
494 *
495 * The strings in the IDENTIFY DEVICE page are broken up into
496 * 16-bit chunks. Run through the string, and output each
497 * 8-bit chunk linearly, regardless of platform.
498 *
499 * LOCKING:
500 * caller.
501 */
502
057ace5e 503void ata_dev_id_string(const u16 *id, unsigned char *s,
1da177e4
LT
504 unsigned int ofs, unsigned int len)
505{
506 unsigned int c;
507
508 while (len > 0) {
509 c = id[ofs] >> 8;
510 *s = c;
511 s++;
512
513 c = id[ofs] & 0xff;
514 *s = c;
515 s++;
516
517 ofs++;
518 len -= 2;
519 }
520}
521
0baab86b
EF
522
523/**
524 * ata_noop_dev_select - Select device 0/1 on ATA bus
525 * @ap: ATA channel to manipulate
526 * @device: ATA device (numbered from zero) to select
527 *
528 * This function performs no actual function.
529 *
530 * May be used as the dev_select() entry in ata_port_operations.
531 *
532 * LOCKING:
533 * caller.
534 */
1da177e4
LT
535void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
536{
537}
538
0baab86b 539
1da177e4
LT
540/**
541 * ata_std_dev_select - Select device 0/1 on ATA bus
542 * @ap: ATA channel to manipulate
543 * @device: ATA device (numbered from zero) to select
544 *
545 * Use the method defined in the ATA specification to
546 * make either device 0, or device 1, active on the
0baab86b
EF
547 * ATA channel. Works with both PIO and MMIO.
548 *
549 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
550 *
551 * LOCKING:
552 * caller.
553 */
554
555void ata_std_dev_select (struct ata_port *ap, unsigned int device)
556{
557 u8 tmp;
558
559 if (device == 0)
560 tmp = ATA_DEVICE_OBS;
561 else
562 tmp = ATA_DEVICE_OBS | ATA_DEV1;
563
564 if (ap->flags & ATA_FLAG_MMIO) {
565 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
566 } else {
567 outb(tmp, ap->ioaddr.device_addr);
568 }
569 ata_pause(ap); /* needed; also flushes, for mmio */
570}
571
572/**
573 * ata_dev_select - Select device 0/1 on ATA bus
574 * @ap: ATA channel to manipulate
575 * @device: ATA device (numbered from zero) to select
576 * @wait: non-zero to wait for Status register BSY bit to clear
577 * @can_sleep: non-zero if context allows sleeping
578 *
579 * Use the method defined in the ATA specification to
580 * make either device 0, or device 1, active on the
581 * ATA channel.
582 *
583 * This is a high-level version of ata_std_dev_select(),
584 * which additionally provides the services of inserting
585 * the proper pauses and status polling, where needed.
586 *
587 * LOCKING:
588 * caller.
589 */
590
591void ata_dev_select(struct ata_port *ap, unsigned int device,
592 unsigned int wait, unsigned int can_sleep)
593{
594 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
595 ap->id, device, wait);
596
597 if (wait)
598 ata_wait_idle(ap);
599
600 ap->ops->dev_select(ap, device);
601
602 if (wait) {
603 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
604 msleep(150);
605 ata_wait_idle(ap);
606 }
607}
608
609/**
610 * ata_dump_id - IDENTIFY DEVICE info debugging output
611 * @dev: Device whose IDENTIFY DEVICE page we will dump
612 *
613 * Dump selected 16-bit words from a detected device's
614 * IDENTIFY PAGE page.
615 *
616 * LOCKING:
617 * caller.
618 */
619
057ace5e 620static inline void ata_dump_id(const struct ata_device *dev)
1da177e4
LT
621{
622 DPRINTK("49==0x%04x "
623 "53==0x%04x "
624 "63==0x%04x "
625 "64==0x%04x "
626 "75==0x%04x \n",
627 dev->id[49],
628 dev->id[53],
629 dev->id[63],
630 dev->id[64],
631 dev->id[75]);
632 DPRINTK("80==0x%04x "
633 "81==0x%04x "
634 "82==0x%04x "
635 "83==0x%04x "
636 "84==0x%04x \n",
637 dev->id[80],
638 dev->id[81],
639 dev->id[82],
640 dev->id[83],
641 dev->id[84]);
642 DPRINTK("88==0x%04x "
643 "93==0x%04x\n",
644 dev->id[88],
645 dev->id[93]);
646}
647
11e29e21
AC
648/*
649 * Compute the PIO modes available for this device. This is not as
650 * trivial as it seems if we must consider early devices correctly.
651 *
652 * FIXME: pre IDE drive timing (do we care ?).
653 */
654
057ace5e 655static unsigned int ata_pio_modes(const struct ata_device *adev)
11e29e21
AC
656{
657 u16 modes;
658
ffa29456
AC
659 /* Usual case. Word 53 indicates word 64 is valid */
660 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
11e29e21
AC
661 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
662 modes <<= 3;
663 modes |= 0x7;
664 return modes;
665 }
666
ffa29456
AC
667 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
668 number for the maximum. Turn it into a mask and return it */
669 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
11e29e21 670 return modes;
ffa29456
AC
671 /* But wait.. there's more. Design your standards by committee and
672 you too can get a free iordy field to process. However its the
673 speeds not the modes that are supported... Note drivers using the
674 timing API will get this right anyway */
11e29e21
AC
675}
676
95064379
TH
677static inline void
678ata_queue_packet_task(struct ata_port *ap)
679{
c18d06f8
TH
680 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
681 queue_work(ata_wq, &ap->packet_task);
95064379
TH
682}
683
684static inline void
685ata_queue_pio_task(struct ata_port *ap)
686{
c18d06f8
TH
687 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
688 queue_work(ata_wq, &ap->pio_task);
95064379
TH
689}
690
691static inline void
692ata_queue_delayed_pio_task(struct ata_port *ap, unsigned long delay)
693{
c18d06f8
TH
694 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
695 queue_delayed_work(ata_wq, &ap->pio_task, delay);
696}
697
698/**
699 * ata_flush_pio_tasks - Flush pio_task and packet_task
700 * @ap: the target ata_port
701 *
702 * After this function completes, pio_task and packet_task are
703 * guranteed not to be running or scheduled.
704 *
705 * LOCKING:
706 * Kernel thread context (may sleep)
707 */
708
709static void ata_flush_pio_tasks(struct ata_port *ap)
710{
711 int tmp = 0;
712 unsigned long flags;
713
714 DPRINTK("ENTER\n");
715
716 spin_lock_irqsave(&ap->host_set->lock, flags);
717 ap->flags |= ATA_FLAG_FLUSH_PIO_TASK;
718 spin_unlock_irqrestore(&ap->host_set->lock, flags);
719
720 DPRINTK("flush #1\n");
721 flush_workqueue(ata_wq);
722
723 /*
724 * At this point, if a task is running, it's guaranteed to see
725 * the FLUSH flag; thus, it will never queue pio tasks again.
726 * Cancel and flush.
727 */
728 tmp |= cancel_delayed_work(&ap->pio_task);
729 tmp |= cancel_delayed_work(&ap->packet_task);
730 if (!tmp) {
731 DPRINTK("flush #2\n");
732 flush_workqueue(ata_wq);
733 }
734
735 spin_lock_irqsave(&ap->host_set->lock, flags);
736 ap->flags &= ~ATA_FLAG_FLUSH_PIO_TASK;
737 spin_unlock_irqrestore(&ap->host_set->lock, flags);
738
739 DPRINTK("EXIT\n");
95064379
TH
740}
741
77853bf2 742void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 743{
77853bf2 744 struct completion *waiting = qc->private_data;
a2a7a662 745
77853bf2 746 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 747 complete(waiting);
a2a7a662
TH
748}
749
750/**
751 * ata_exec_internal - execute libata internal command
752 * @ap: Port to which the command is sent
753 * @dev: Device to which the command is sent
754 * @tf: Taskfile registers for the command and the result
755 * @dma_dir: Data tranfer direction of the command
756 * @buf: Data buffer of the command
757 * @buflen: Length of data buffer
758 *
759 * Executes libata internal command with timeout. @tf contains
760 * command on entry and result on return. Timeout and error
761 * conditions are reported via return value. No recovery action
762 * is taken after a command times out. It's caller's duty to
763 * clean up after timeout.
764 *
765 * LOCKING:
766 * None. Should be called with kernel context, might sleep.
767 */
768
769static unsigned
770ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
771 struct ata_taskfile *tf,
772 int dma_dir, void *buf, unsigned int buflen)
773{
774 u8 command = tf->command;
775 struct ata_queued_cmd *qc;
776 DECLARE_COMPLETION(wait);
777 unsigned long flags;
77853bf2 778 unsigned int err_mask;
a2a7a662
TH
779
780 spin_lock_irqsave(&ap->host_set->lock, flags);
781
782 qc = ata_qc_new_init(ap, dev);
783 BUG_ON(qc == NULL);
784
785 qc->tf = *tf;
786 qc->dma_dir = dma_dir;
787 if (dma_dir != DMA_NONE) {
788 ata_sg_init_one(qc, buf, buflen);
789 qc->nsect = buflen / ATA_SECT_SIZE;
790 }
791
77853bf2 792 qc->private_data = &wait;
a2a7a662
TH
793 qc->complete_fn = ata_qc_complete_internal;
794
9a3d9eb0
TH
795 qc->err_mask = ata_qc_issue(qc);
796 if (qc->err_mask)
8e436af9 797 ata_qc_complete(qc);
a2a7a662
TH
798
799 spin_unlock_irqrestore(&ap->host_set->lock, flags);
800
801 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
802 spin_lock_irqsave(&ap->host_set->lock, flags);
803
804 /* We're racing with irq here. If we lose, the
805 * following test prevents us from completing the qc
806 * again. If completion irq occurs after here but
807 * before the caller cleans up, it will result in a
808 * spurious interrupt. We can live with that.
809 */
77853bf2 810 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 811 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
812 ata_qc_complete(qc);
813 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
814 ap->id, command);
815 }
816
817 spin_unlock_irqrestore(&ap->host_set->lock, flags);
818 }
819
77853bf2
TH
820 *tf = qc->tf;
821 err_mask = qc->err_mask;
822
823 ata_qc_free(qc);
824
825 return err_mask;
a2a7a662
TH
826}
827
1bc4ccff
AC
828/**
829 * ata_pio_need_iordy - check if iordy needed
830 * @adev: ATA device
831 *
832 * Check if the current speed of the device requires IORDY. Used
833 * by various controllers for chip configuration.
834 */
835
836unsigned int ata_pio_need_iordy(const struct ata_device *adev)
837{
838 int pio;
839 int speed = adev->pio_mode - XFER_PIO_0;
840
841 if (speed < 2)
842 return 0;
843 if (speed > 2)
844 return 1;
845
846 /* If we have no drive specific rule, then PIO 2 is non IORDY */
847
848 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
849 pio = adev->id[ATA_ID_EIDE_PIO];
850 /* Is the speed faster than the drive allows non IORDY ? */
851 if (pio) {
852 /* This is cycle times not frequency - watch the logic! */
853 if (pio > 240) /* PIO2 is 240nS per cycle */
854 return 1;
855 return 0;
856 }
857 }
858 return 0;
859}
860
1da177e4
LT
861/**
862 * ata_dev_identify - obtain IDENTIFY x DEVICE page
863 * @ap: port on which device we wish to probe resides
864 * @device: device bus address, starting at zero
865 *
866 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
867 * command, and read back the 512-byte device information page.
868 * The device information page is fed to us via the standard
869 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
870 * using standard PIO-IN paths)
871 *
872 * After reading the device information page, we use several
873 * bits of information from it to initialize data structures
874 * that will be used during the lifetime of the ata_device.
875 * Other data from the info page is used to disqualify certain
876 * older ATA devices we do not wish to support.
877 *
878 * LOCKING:
879 * Inherited from caller. Some functions called by this function
880 * obtain the host_set lock.
881 */
882
883static void ata_dev_identify(struct ata_port *ap, unsigned int device)
884{
885 struct ata_device *dev = &ap->device[device];
8bf62ece 886 unsigned int major_version;
1da177e4
LT
887 u16 tmp;
888 unsigned long xfer_modes;
1da177e4 889 unsigned int using_edd;
a0123703
TH
890 struct ata_taskfile tf;
891 unsigned int err_mask;
1da177e4
LT
892 int rc;
893
894 if (!ata_dev_present(dev)) {
895 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
896 ap->id, device);
897 return;
898 }
899
900 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
901 using_edd = 0;
902 else
903 using_edd = 1;
904
905 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
906
907 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
908 dev->class == ATA_DEV_NONE);
909
910 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
911
1da177e4 912retry:
a0123703
TH
913 ata_tf_init(ap, &tf, device);
914
1da177e4 915 if (dev->class == ATA_DEV_ATA) {
a0123703 916 tf.command = ATA_CMD_ID_ATA;
1da177e4
LT
917 DPRINTK("do ATA identify\n");
918 } else {
a0123703 919 tf.command = ATA_CMD_ID_ATAPI;
1da177e4
LT
920 DPRINTK("do ATAPI identify\n");
921 }
922
a0123703 923 tf.protocol = ATA_PROT_PIO;
1da177e4 924
a0123703
TH
925 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
926 dev->id, sizeof(dev->id));
1da177e4 927
a0123703
TH
928 if (err_mask) {
929 if (err_mask & ~AC_ERR_DEV)
930 goto err_out;
0169e284 931
1da177e4
LT
932 /*
933 * arg! EDD works for all test cases, but seems to return
934 * the ATA signature for some ATAPI devices. Until the
935 * reason for this is found and fixed, we fix up the mess
936 * here. If IDENTIFY DEVICE returns command aborted
937 * (as ATAPI devices do), then we issue an
938 * IDENTIFY PACKET DEVICE.
939 *
940 * ATA software reset (SRST, the default) does not appear
941 * to have this problem.
942 */
7c398335 943 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
a0123703 944 u8 err = tf.feature;
1da177e4
LT
945 if (err & ATA_ABORTED) {
946 dev->class = ATA_DEV_ATAPI;
1da177e4
LT
947 goto retry;
948 }
949 }
950 goto err_out;
951 }
952
953 swap_buf_le16(dev->id, ATA_ID_WORDS);
954
955 /* print device capabilities */
956 printk(KERN_DEBUG "ata%u: dev %u cfg "
957 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
958 ap->id, device, dev->id[49],
959 dev->id[82], dev->id[83], dev->id[84],
960 dev->id[85], dev->id[86], dev->id[87],
961 dev->id[88]);
962
963 /*
964 * common ATA, ATAPI feature tests
965 */
966
8bf62ece
AL
967 /* we require DMA support (bits 8 of word 49) */
968 if (!ata_id_has_dma(dev->id)) {
969 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1da177e4
LT
970 goto err_out_nosup;
971 }
972
973 /* quick-n-dirty find max transfer mode; for printk only */
974 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
975 if (!xfer_modes)
976 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
11e29e21
AC
977 if (!xfer_modes)
978 xfer_modes = ata_pio_modes(dev);
1da177e4
LT
979
980 ata_dump_id(dev);
981
982 /* ATA-specific feature tests */
983 if (dev->class == ATA_DEV_ATA) {
984 if (!ata_id_is_ata(dev->id)) /* sanity check */
985 goto err_out_nosup;
986
8bf62ece 987 /* get major version */
1da177e4 988 tmp = dev->id[ATA_ID_MAJOR_VER];
8bf62ece
AL
989 for (major_version = 14; major_version >= 1; major_version--)
990 if (tmp & (1 << major_version))
1da177e4
LT
991 break;
992
8bf62ece
AL
993 /*
994 * The exact sequence expected by certain pre-ATA4 drives is:
995 * SRST RESET
996 * IDENTIFY
997 * INITIALIZE DEVICE PARAMETERS
998 * anything else..
999 * Some drives were very specific about that exact sequence.
1000 */
59a10b17 1001 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
8bf62ece
AL
1002 ata_dev_init_params(ap, dev);
1003
59a10b17
AL
1004 /* current CHS translation info (id[53-58]) might be
1005 * changed. reread the identify device info.
1006 */
1007 ata_dev_reread_id(ap, dev);
1008 }
1009
8bf62ece
AL
1010 if (ata_id_has_lba(dev->id)) {
1011 dev->flags |= ATA_DFLAG_LBA;
1012
1013 if (ata_id_has_lba48(dev->id)) {
1014 dev->flags |= ATA_DFLAG_LBA48;
1015 dev->n_sectors = ata_id_u64(dev->id, 100);
1016 } else {
1017 dev->n_sectors = ata_id_u32(dev->id, 60);
1018 }
1019
1020 /* print device info to dmesg */
1021 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1022 ap->id, device,
1023 major_version,
1024 ata_mode_string(xfer_modes),
1025 (unsigned long long)dev->n_sectors,
1026 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1027 } else {
1028 /* CHS */
1029
1030 /* Default translation */
1031 dev->cylinders = dev->id[1];
1032 dev->heads = dev->id[3];
1033 dev->sectors = dev->id[6];
1034 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1035
1036 if (ata_id_current_chs_valid(dev->id)) {
1037 /* Current CHS translation is valid. */
1038 dev->cylinders = dev->id[54];
1039 dev->heads = dev->id[55];
1040 dev->sectors = dev->id[56];
1041
1042 dev->n_sectors = ata_id_u32(dev->id, 57);
1043 }
1044
1045 /* print device info to dmesg */
1046 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1047 ap->id, device,
1048 major_version,
1049 ata_mode_string(xfer_modes),
1050 (unsigned long long)dev->n_sectors,
1051 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1da177e4 1052
1da177e4
LT
1053 }
1054
1055 ap->host->max_cmd_len = 16;
1da177e4
LT
1056 }
1057
1058 /* ATAPI-specific feature tests */
2c13b7ce 1059 else if (dev->class == ATA_DEV_ATAPI) {
1da177e4
LT
1060 if (ata_id_is_ata(dev->id)) /* sanity check */
1061 goto err_out_nosup;
1062
1063 rc = atapi_cdb_len(dev->id);
1064 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1065 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1066 goto err_out_nosup;
1067 }
1068 ap->cdb_len = (unsigned int) rc;
1069 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1070
1071 /* print device info to dmesg */
1072 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1073 ap->id, device,
1074 ata_mode_string(xfer_modes));
1075 }
1076
1077 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1078 return;
1079
1080err_out_nosup:
1081 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1082 ap->id, device);
1083err_out:
1084 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1085 DPRINTK("EXIT, err\n");
1086}
1087
6f2f3812 1088
057ace5e 1089static inline u8 ata_dev_knobble(const struct ata_port *ap)
6f2f3812
BC
1090{
1091 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1092}
1093
1094/**
c893a3ae
RD
1095 * ata_dev_config - Run device specific handlers & check for SATA->PATA bridges
1096 * @ap: Bus
1097 * @i: Device
6f2f3812 1098 *
c893a3ae 1099 * LOCKING:
6f2f3812 1100 */
8a60a071 1101
6f2f3812
BC
1102void ata_dev_config(struct ata_port *ap, unsigned int i)
1103{
1104 /* limit bridge transfers to udma5, 200 sectors */
1105 if (ata_dev_knobble(ap)) {
1106 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1107 ap->id, ap->device->devno);
1108 ap->udma_mask &= ATA_UDMA5;
1109 ap->host->max_sectors = ATA_MAX_SECTORS;
1110 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
9d824d07 1111 ap->device[i].flags |= ATA_DFLAG_LOCK_SECTORS;
6f2f3812
BC
1112 }
1113
1114 if (ap->ops->dev_config)
1115 ap->ops->dev_config(ap, &ap->device[i]);
1116}
1117
1da177e4
LT
1118/**
1119 * ata_bus_probe - Reset and probe ATA bus
1120 * @ap: Bus to probe
1121 *
0cba632b
JG
1122 * Master ATA bus probing function. Initiates a hardware-dependent
1123 * bus reset, then attempts to identify any devices found on
1124 * the bus.
1125 *
1da177e4 1126 * LOCKING:
0cba632b 1127 * PCI/etc. bus probe sem.
1da177e4
LT
1128 *
1129 * RETURNS:
1130 * Zero on success, non-zero on error.
1131 */
1132
1133static int ata_bus_probe(struct ata_port *ap)
1134{
1135 unsigned int i, found = 0;
1136
c19ba8af
TH
1137 if (ap->ops->probe_reset) {
1138 unsigned int classes[ATA_MAX_DEVICES];
1139 int rc;
1140
1141 ata_port_probe(ap);
1142
1143 rc = ap->ops->probe_reset(ap, classes);
1144 if (rc == 0) {
1145 for (i = 0; i < ATA_MAX_DEVICES; i++)
1146 ap->device[i].class = classes[i];
1147 } else {
1148 printk(KERN_ERR "ata%u: probe reset failed, "
1149 "disabling port\n", ap->id);
1150 ata_port_disable(ap);
1151 }
1152 } else
1153 ap->ops->phy_reset(ap);
1154
1da177e4
LT
1155 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1156 goto err_out;
1157
1158 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1159 ata_dev_identify(ap, i);
1160 if (ata_dev_present(&ap->device[i])) {
1161 found = 1;
6f2f3812 1162 ata_dev_config(ap,i);
1da177e4
LT
1163 }
1164 }
1165
1166 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1167 goto err_out_disable;
1168
1169 ata_set_mode(ap);
1170 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1171 goto err_out_disable;
1172
1173 return 0;
1174
1175err_out_disable:
1176 ap->ops->port_disable(ap);
1177err_out:
1178 return -1;
1179}
1180
1181/**
0cba632b
JG
1182 * ata_port_probe - Mark port as enabled
1183 * @ap: Port for which we indicate enablement
1da177e4 1184 *
0cba632b
JG
1185 * Modify @ap data structure such that the system
1186 * thinks that the entire port is enabled.
1187 *
1188 * LOCKING: host_set lock, or some other form of
1189 * serialization.
1da177e4
LT
1190 */
1191
1192void ata_port_probe(struct ata_port *ap)
1193{
1194 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1195}
1196
3be680b7
TH
1197/**
1198 * sata_print_link_status - Print SATA link status
1199 * @ap: SATA port to printk link status about
1200 *
1201 * This function prints link speed and status of a SATA link.
1202 *
1203 * LOCKING:
1204 * None.
1205 */
1206static void sata_print_link_status(struct ata_port *ap)
1207{
1208 u32 sstatus, tmp;
1209 const char *speed;
1210
1211 if (!ap->ops->scr_read)
1212 return;
1213
1214 sstatus = scr_read(ap, SCR_STATUS);
1215
1216 if (sata_dev_present(ap)) {
1217 tmp = (sstatus >> 4) & 0xf;
1218 if (tmp & (1 << 0))
1219 speed = "1.5";
1220 else if (tmp & (1 << 1))
1221 speed = "3.0";
1222 else
1223 speed = "<unknown>";
1224 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1225 ap->id, speed, sstatus);
1226 } else {
1227 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1228 ap->id, sstatus);
1229 }
1230}
1231
1da177e4 1232/**
780a87f7
JG
1233 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1234 * @ap: SATA port associated with target SATA PHY.
1da177e4 1235 *
780a87f7
JG
1236 * This function issues commands to standard SATA Sxxx
1237 * PHY registers, to wake up the phy (and device), and
1238 * clear any reset condition.
1da177e4
LT
1239 *
1240 * LOCKING:
0cba632b 1241 * PCI/etc. bus probe sem.
1da177e4
LT
1242 *
1243 */
1244void __sata_phy_reset(struct ata_port *ap)
1245{
1246 u32 sstatus;
1247 unsigned long timeout = jiffies + (HZ * 5);
1248
1249 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1250 /* issue phy wake/reset */
1251 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1252 /* Couldn't find anything in SATA I/II specs, but
1253 * AHCI-1.1 10.4.2 says at least 1 ms. */
1254 mdelay(1);
1da177e4 1255 }
cdcca89e 1256 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1257
1258 /* wait for phy to become ready, if necessary */
1259 do {
1260 msleep(200);
1261 sstatus = scr_read(ap, SCR_STATUS);
1262 if ((sstatus & 0xf) != 1)
1263 break;
1264 } while (time_before(jiffies, timeout));
1265
3be680b7
TH
1266 /* print link status */
1267 sata_print_link_status(ap);
656563e3 1268
3be680b7
TH
1269 /* TODO: phy layer with polling, timeouts, etc. */
1270 if (sata_dev_present(ap))
1da177e4 1271 ata_port_probe(ap);
3be680b7 1272 else
1da177e4 1273 ata_port_disable(ap);
1da177e4
LT
1274
1275 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1276 return;
1277
1278 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1279 ata_port_disable(ap);
1280 return;
1281 }
1282
1283 ap->cbl = ATA_CBL_SATA;
1284}
1285
1286/**
780a87f7
JG
1287 * sata_phy_reset - Reset SATA bus.
1288 * @ap: SATA port associated with target SATA PHY.
1da177e4 1289 *
780a87f7
JG
1290 * This function resets the SATA bus, and then probes
1291 * the bus for devices.
1da177e4
LT
1292 *
1293 * LOCKING:
0cba632b 1294 * PCI/etc. bus probe sem.
1da177e4
LT
1295 *
1296 */
1297void sata_phy_reset(struct ata_port *ap)
1298{
1299 __sata_phy_reset(ap);
1300 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1301 return;
1302 ata_bus_reset(ap);
1303}
1304
1305/**
780a87f7
JG
1306 * ata_port_disable - Disable port.
1307 * @ap: Port to be disabled.
1da177e4 1308 *
780a87f7
JG
1309 * Modify @ap data structure such that the system
1310 * thinks that the entire port is disabled, and should
1311 * never attempt to probe or communicate with devices
1312 * on this port.
1313 *
1314 * LOCKING: host_set lock, or some other form of
1315 * serialization.
1da177e4
LT
1316 */
1317
1318void ata_port_disable(struct ata_port *ap)
1319{
1320 ap->device[0].class = ATA_DEV_NONE;
1321 ap->device[1].class = ATA_DEV_NONE;
1322 ap->flags |= ATA_FLAG_PORT_DISABLED;
1323}
1324
452503f9
AC
1325/*
1326 * This mode timing computation functionality is ported over from
1327 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1328 */
1329/*
1330 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1331 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1332 * for PIO 5, which is a nonstandard extension and UDMA6, which
1333 * is currently supported only by Maxtor drives.
1334 */
1335
1336static const struct ata_timing ata_timing[] = {
1337
1338 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1339 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1340 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1341 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1342
1343 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1344 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1345 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1346
1347/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1348
1349 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1350 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1351 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1352
1353 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1354 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1355 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1356
1357/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1358 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1359 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1360
1361 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1362 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1363 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1364
1365/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1366
1367 { 0xFF }
1368};
1369
1370#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1371#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1372
1373static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1374{
1375 q->setup = EZ(t->setup * 1000, T);
1376 q->act8b = EZ(t->act8b * 1000, T);
1377 q->rec8b = EZ(t->rec8b * 1000, T);
1378 q->cyc8b = EZ(t->cyc8b * 1000, T);
1379 q->active = EZ(t->active * 1000, T);
1380 q->recover = EZ(t->recover * 1000, T);
1381 q->cycle = EZ(t->cycle * 1000, T);
1382 q->udma = EZ(t->udma * 1000, UT);
1383}
1384
1385void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1386 struct ata_timing *m, unsigned int what)
1387{
1388 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1389 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1390 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1391 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1392 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1393 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1394 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1395 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1396}
1397
1398static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1399{
1400 const struct ata_timing *t;
1401
1402 for (t = ata_timing; t->mode != speed; t++)
91190758 1403 if (t->mode == 0xFF)
452503f9
AC
1404 return NULL;
1405 return t;
1406}
1407
1408int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1409 struct ata_timing *t, int T, int UT)
1410{
1411 const struct ata_timing *s;
1412 struct ata_timing p;
1413
1414 /*
1415 * Find the mode.
75b1f2f8 1416 */
452503f9
AC
1417
1418 if (!(s = ata_timing_find_mode(speed)))
1419 return -EINVAL;
1420
75b1f2f8
AL
1421 memcpy(t, s, sizeof(*s));
1422
452503f9
AC
1423 /*
1424 * If the drive is an EIDE drive, it can tell us it needs extended
1425 * PIO/MW_DMA cycle timing.
1426 */
1427
1428 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1429 memset(&p, 0, sizeof(p));
1430 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1431 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1432 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1433 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1434 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1435 }
1436 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1437 }
1438
1439 /*
1440 * Convert the timing to bus clock counts.
1441 */
1442
75b1f2f8 1443 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1444
1445 /*
c893a3ae
RD
1446 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1447 * S.M.A.R.T * and some other commands. We have to ensure that the
1448 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1449 */
1450
1451 if (speed > XFER_PIO_4) {
1452 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1453 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1454 }
1455
1456 /*
c893a3ae 1457 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1458 */
1459
1460 if (t->act8b + t->rec8b < t->cyc8b) {
1461 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1462 t->rec8b = t->cyc8b - t->act8b;
1463 }
1464
1465 if (t->active + t->recover < t->cycle) {
1466 t->active += (t->cycle - (t->active + t->recover)) / 2;
1467 t->recover = t->cycle - t->active;
1468 }
1469
1470 return 0;
1471}
1472
057ace5e 1473static const struct {
1da177e4
LT
1474 unsigned int shift;
1475 u8 base;
1476} xfer_mode_classes[] = {
1477 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1478 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1479 { ATA_SHIFT_PIO, XFER_PIO_0 },
1480};
1481
858119e1 1482static u8 base_from_shift(unsigned int shift)
1da177e4
LT
1483{
1484 int i;
1485
1486 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1487 if (xfer_mode_classes[i].shift == shift)
1488 return xfer_mode_classes[i].base;
1489
1490 return 0xff;
1491}
1492
1493static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1494{
1495 int ofs, idx;
1496 u8 base;
1497
1498 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1499 return;
1500
1501 if (dev->xfer_shift == ATA_SHIFT_PIO)
1502 dev->flags |= ATA_DFLAG_PIO;
1503
1504 ata_dev_set_xfermode(ap, dev);
1505
1506 base = base_from_shift(dev->xfer_shift);
1507 ofs = dev->xfer_mode - base;
1508 idx = ofs + dev->xfer_shift;
1509 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1510
1511 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1512 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1513
1514 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1515 ap->id, dev->devno, xfer_mode_str[idx]);
1516}
1517
1518static int ata_host_set_pio(struct ata_port *ap)
1519{
1520 unsigned int mask;
1521 int x, i;
1522 u8 base, xfer_mode;
1523
1524 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1525 x = fgb(mask);
1526 if (x < 0) {
1527 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1528 return -1;
1529 }
1530
1531 base = base_from_shift(ATA_SHIFT_PIO);
1532 xfer_mode = base + x;
1533
1534 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1535 (int)base, (int)xfer_mode, mask, x);
1536
1537 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1538 struct ata_device *dev = &ap->device[i];
1539 if (ata_dev_present(dev)) {
1540 dev->pio_mode = xfer_mode;
1541 dev->xfer_mode = xfer_mode;
1542 dev->xfer_shift = ATA_SHIFT_PIO;
1543 if (ap->ops->set_piomode)
1544 ap->ops->set_piomode(ap, dev);
1545 }
1546 }
1547
1548 return 0;
1549}
1550
1551static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1552 unsigned int xfer_shift)
1553{
1554 int i;
1555
1556 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1557 struct ata_device *dev = &ap->device[i];
1558 if (ata_dev_present(dev)) {
1559 dev->dma_mode = xfer_mode;
1560 dev->xfer_mode = xfer_mode;
1561 dev->xfer_shift = xfer_shift;
1562 if (ap->ops->set_dmamode)
1563 ap->ops->set_dmamode(ap, dev);
1564 }
1565 }
1566}
1567
1568/**
1569 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1570 * @ap: port on which timings will be programmed
1571 *
780a87f7
JG
1572 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1573 *
1da177e4 1574 * LOCKING:
0cba632b 1575 * PCI/etc. bus probe sem.
1da177e4
LT
1576 */
1577static void ata_set_mode(struct ata_port *ap)
1578{
8cbd6df1 1579 unsigned int xfer_shift;
1da177e4
LT
1580 u8 xfer_mode;
1581 int rc;
1582
1583 /* step 1: always set host PIO timings */
1584 rc = ata_host_set_pio(ap);
1585 if (rc)
1586 goto err_out;
1587
1588 /* step 2: choose the best data xfer mode */
1589 xfer_mode = xfer_shift = 0;
1590 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1591 if (rc)
1592 goto err_out;
1593
1594 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1595 if (xfer_shift != ATA_SHIFT_PIO)
1596 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1597
1598 /* step 4: update devices' xfer mode */
1599 ata_dev_set_mode(ap, &ap->device[0]);
1600 ata_dev_set_mode(ap, &ap->device[1]);
1601
1602 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1603 return;
1604
1605 if (ap->ops->post_set_mode)
1606 ap->ops->post_set_mode(ap);
1607
1da177e4
LT
1608 return;
1609
1610err_out:
1611 ata_port_disable(ap);
1612}
1613
1fdffbce
JG
1614/**
1615 * ata_tf_to_host - issue ATA taskfile to host controller
1616 * @ap: port to which command is being issued
1617 * @tf: ATA taskfile register set
1618 *
1619 * Issues ATA taskfile register set to ATA host controller,
1620 * with proper synchronization with interrupt handler and
1621 * other threads.
1622 *
1623 * LOCKING:
1624 * spin_lock_irqsave(host_set lock)
1625 */
1626
1627static inline void ata_tf_to_host(struct ata_port *ap,
1628 const struct ata_taskfile *tf)
1629{
1630 ap->ops->tf_load(ap, tf);
1631 ap->ops->exec_command(ap, tf);
1632}
1633
1da177e4
LT
1634/**
1635 * ata_busy_sleep - sleep until BSY clears, or timeout
1636 * @ap: port containing status register to be polled
1637 * @tmout_pat: impatience timeout
1638 * @tmout: overall timeout
1639 *
780a87f7
JG
1640 * Sleep until ATA Status register bit BSY clears,
1641 * or a timeout occurs.
1642 *
1643 * LOCKING: None.
1da177e4
LT
1644 */
1645
6f8b9958
TH
1646unsigned int ata_busy_sleep (struct ata_port *ap,
1647 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
1648{
1649 unsigned long timer_start, timeout;
1650 u8 status;
1651
1652 status = ata_busy_wait(ap, ATA_BUSY, 300);
1653 timer_start = jiffies;
1654 timeout = timer_start + tmout_pat;
1655 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1656 msleep(50);
1657 status = ata_busy_wait(ap, ATA_BUSY, 3);
1658 }
1659
1660 if (status & ATA_BUSY)
1661 printk(KERN_WARNING "ata%u is slow to respond, "
1662 "please be patient\n", ap->id);
1663
1664 timeout = timer_start + tmout;
1665 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1666 msleep(50);
1667 status = ata_chk_status(ap);
1668 }
1669
1670 if (status & ATA_BUSY) {
1671 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1672 ap->id, tmout / HZ);
1673 return 1;
1674 }
1675
1676 return 0;
1677}
1678
1679static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1680{
1681 struct ata_ioports *ioaddr = &ap->ioaddr;
1682 unsigned int dev0 = devmask & (1 << 0);
1683 unsigned int dev1 = devmask & (1 << 1);
1684 unsigned long timeout;
1685
1686 /* if device 0 was found in ata_devchk, wait for its
1687 * BSY bit to clear
1688 */
1689 if (dev0)
1690 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1691
1692 /* if device 1 was found in ata_devchk, wait for
1693 * register access, then wait for BSY to clear
1694 */
1695 timeout = jiffies + ATA_TMOUT_BOOT;
1696 while (dev1) {
1697 u8 nsect, lbal;
1698
1699 ap->ops->dev_select(ap, 1);
1700 if (ap->flags & ATA_FLAG_MMIO) {
1701 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1702 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1703 } else {
1704 nsect = inb(ioaddr->nsect_addr);
1705 lbal = inb(ioaddr->lbal_addr);
1706 }
1707 if ((nsect == 1) && (lbal == 1))
1708 break;
1709 if (time_after(jiffies, timeout)) {
1710 dev1 = 0;
1711 break;
1712 }
1713 msleep(50); /* give drive a breather */
1714 }
1715 if (dev1)
1716 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1717
1718 /* is all this really necessary? */
1719 ap->ops->dev_select(ap, 0);
1720 if (dev1)
1721 ap->ops->dev_select(ap, 1);
1722 if (dev0)
1723 ap->ops->dev_select(ap, 0);
1724}
1725
1726/**
0cba632b
JG
1727 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1728 * @ap: Port to reset and probe
1729 *
1730 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1731 * probe the bus. Not often used these days.
1da177e4
LT
1732 *
1733 * LOCKING:
0cba632b 1734 * PCI/etc. bus probe sem.
e5338254 1735 * Obtains host_set lock.
1da177e4
LT
1736 *
1737 */
1738
1739static unsigned int ata_bus_edd(struct ata_port *ap)
1740{
1741 struct ata_taskfile tf;
e5338254 1742 unsigned long flags;
1da177e4
LT
1743
1744 /* set up execute-device-diag (bus reset) taskfile */
1745 /* also, take interrupts to a known state (disabled) */
1746 DPRINTK("execute-device-diag\n");
1747 ata_tf_init(ap, &tf, 0);
1748 tf.ctl |= ATA_NIEN;
1749 tf.command = ATA_CMD_EDD;
1750 tf.protocol = ATA_PROT_NODATA;
1751
1752 /* do bus reset */
e5338254 1753 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 1754 ata_tf_to_host(ap, &tf);
e5338254 1755 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1da177e4
LT
1756
1757 /* spec says at least 2ms. but who knows with those
1758 * crazy ATAPI devices...
1759 */
1760 msleep(150);
1761
1762 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1763}
1764
1765static unsigned int ata_bus_softreset(struct ata_port *ap,
1766 unsigned int devmask)
1767{
1768 struct ata_ioports *ioaddr = &ap->ioaddr;
1769
1770 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1771
1772 /* software reset. causes dev0 to be selected */
1773 if (ap->flags & ATA_FLAG_MMIO) {
1774 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1775 udelay(20); /* FIXME: flush */
1776 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1777 udelay(20); /* FIXME: flush */
1778 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1779 } else {
1780 outb(ap->ctl, ioaddr->ctl_addr);
1781 udelay(10);
1782 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1783 udelay(10);
1784 outb(ap->ctl, ioaddr->ctl_addr);
1785 }
1786
1787 /* spec mandates ">= 2ms" before checking status.
1788 * We wait 150ms, because that was the magic delay used for
1789 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1790 * between when the ATA command register is written, and then
1791 * status is checked. Because waiting for "a while" before
1792 * checking status is fine, post SRST, we perform this magic
1793 * delay here as well.
1794 */
1795 msleep(150);
1796
1797 ata_bus_post_reset(ap, devmask);
1798
1799 return 0;
1800}
1801
1802/**
1803 * ata_bus_reset - reset host port and associated ATA channel
1804 * @ap: port to reset
1805 *
1806 * This is typically the first time we actually start issuing
1807 * commands to the ATA channel. We wait for BSY to clear, then
1808 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1809 * result. Determine what devices, if any, are on the channel
1810 * by looking at the device 0/1 error register. Look at the signature
1811 * stored in each device's taskfile registers, to determine if
1812 * the device is ATA or ATAPI.
1813 *
1814 * LOCKING:
0cba632b
JG
1815 * PCI/etc. bus probe sem.
1816 * Obtains host_set lock.
1da177e4
LT
1817 *
1818 * SIDE EFFECTS:
1819 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1820 */
1821
1822void ata_bus_reset(struct ata_port *ap)
1823{
1824 struct ata_ioports *ioaddr = &ap->ioaddr;
1825 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1826 u8 err;
1827 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1828
1829 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1830
1831 /* determine if device 0/1 are present */
1832 if (ap->flags & ATA_FLAG_SATA_RESET)
1833 dev0 = 1;
1834 else {
1835 dev0 = ata_devchk(ap, 0);
1836 if (slave_possible)
1837 dev1 = ata_devchk(ap, 1);
1838 }
1839
1840 if (dev0)
1841 devmask |= (1 << 0);
1842 if (dev1)
1843 devmask |= (1 << 1);
1844
1845 /* select device 0 again */
1846 ap->ops->dev_select(ap, 0);
1847
1848 /* issue bus reset */
1849 if (ap->flags & ATA_FLAG_SRST)
1850 rc = ata_bus_softreset(ap, devmask);
1851 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1852 /* set up device control */
1853 if (ap->flags & ATA_FLAG_MMIO)
1854 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1855 else
1856 outb(ap->ctl, ioaddr->ctl_addr);
1857 rc = ata_bus_edd(ap);
1858 }
1859
1860 if (rc)
1861 goto err_out;
1862
1863 /*
1864 * determine by signature whether we have ATA or ATAPI devices
1865 */
b4dc7623 1866 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 1867 if ((slave_possible) && (err != 0x81))
b4dc7623 1868 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
1869
1870 /* re-enable interrupts */
1871 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
1872 ata_irq_on(ap);
1873
1874 /* is double-select really necessary? */
1875 if (ap->device[1].class != ATA_DEV_NONE)
1876 ap->ops->dev_select(ap, 1);
1877 if (ap->device[0].class != ATA_DEV_NONE)
1878 ap->ops->dev_select(ap, 0);
1879
1880 /* if no devices were detected, disable this port */
1881 if ((ap->device[0].class == ATA_DEV_NONE) &&
1882 (ap->device[1].class == ATA_DEV_NONE))
1883 goto err_out;
1884
1885 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
1886 /* set up device control for ATA_FLAG_SATA_RESET */
1887 if (ap->flags & ATA_FLAG_MMIO)
1888 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1889 else
1890 outb(ap->ctl, ioaddr->ctl_addr);
1891 }
1892
1893 DPRINTK("EXIT\n");
1894 return;
1895
1896err_out:
1897 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
1898 ap->ops->port_disable(ap);
1899
1900 DPRINTK("EXIT\n");
1901}
1902
7a7921e8
TH
1903static int sata_phy_resume(struct ata_port *ap)
1904{
1905 unsigned long timeout = jiffies + (HZ * 5);
1906 u32 sstatus;
1907
1908 scr_write_flush(ap, SCR_CONTROL, 0x300);
1909
1910 /* Wait for phy to become ready, if necessary. */
1911 do {
1912 msleep(200);
1913 sstatus = scr_read(ap, SCR_STATUS);
1914 if ((sstatus & 0xf) != 1)
1915 return 0;
1916 } while (time_before(jiffies, timeout));
1917
1918 return -1;
1919}
1920
8a19ac89
TH
1921/**
1922 * ata_std_probeinit - initialize probing
1923 * @ap: port to be probed
1924 *
1925 * @ap is about to be probed. Initialize it. This function is
1926 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
1927 *
1928 * NOTE!!! Do not use this function as probeinit if a low level
1929 * driver implements only hardreset. Just pass NULL as probeinit
1930 * in that case. Using this function is probably okay but doing
1931 * so makes reset sequence different from the original
1932 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89
TH
1933 */
1934extern void ata_std_probeinit(struct ata_port *ap)
1935{
3a39746a 1936 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
8a19ac89 1937 sata_phy_resume(ap);
3a39746a
TH
1938 if (sata_dev_present(ap))
1939 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1940 }
8a19ac89
TH
1941}
1942
c2bd5804
TH
1943/**
1944 * ata_std_softreset - reset host port via ATA SRST
1945 * @ap: port to reset
1946 * @verbose: fail verbosely
1947 * @classes: resulting classes of attached devices
1948 *
1949 * Reset host port using ATA SRST. This function is to be used
1950 * as standard callback for ata_drive_*_reset() functions.
1951 *
1952 * LOCKING:
1953 * Kernel thread context (may sleep)
1954 *
1955 * RETURNS:
1956 * 0 on success, -errno otherwise.
1957 */
1958int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
1959{
1960 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1961 unsigned int devmask = 0, err_mask;
1962 u8 err;
1963
1964 DPRINTK("ENTER\n");
1965
3a39746a
TH
1966 if (ap->ops->scr_read && !sata_dev_present(ap)) {
1967 classes[0] = ATA_DEV_NONE;
1968 goto out;
1969 }
1970
c2bd5804
TH
1971 /* determine if device 0/1 are present */
1972 if (ata_devchk(ap, 0))
1973 devmask |= (1 << 0);
1974 if (slave_possible && ata_devchk(ap, 1))
1975 devmask |= (1 << 1);
1976
c2bd5804
TH
1977 /* select device 0 again */
1978 ap->ops->dev_select(ap, 0);
1979
1980 /* issue bus reset */
1981 DPRINTK("about to softreset, devmask=%x\n", devmask);
1982 err_mask = ata_bus_softreset(ap, devmask);
1983 if (err_mask) {
1984 if (verbose)
1985 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
1986 ap->id, err_mask);
1987 else
1988 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
1989 err_mask);
1990 return -EIO;
1991 }
1992
1993 /* determine by signature whether we have ATA or ATAPI devices */
1994 classes[0] = ata_dev_try_classify(ap, 0, &err);
1995 if (slave_possible && err != 0x81)
1996 classes[1] = ata_dev_try_classify(ap, 1, &err);
1997
3a39746a 1998 out:
c2bd5804
TH
1999 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2000 return 0;
2001}
2002
2003/**
2004 * sata_std_hardreset - reset host port via SATA phy reset
2005 * @ap: port to reset
2006 * @verbose: fail verbosely
2007 * @class: resulting class of attached device
2008 *
2009 * SATA phy-reset host port using DET bits of SControl register.
2010 * This function is to be used as standard callback for
2011 * ata_drive_*_reset().
2012 *
2013 * LOCKING:
2014 * Kernel thread context (may sleep)
2015 *
2016 * RETURNS:
2017 * 0 on success, -errno otherwise.
2018 */
2019int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2020{
c2bd5804
TH
2021 DPRINTK("ENTER\n");
2022
2023 /* Issue phy wake/reset */
2024 scr_write_flush(ap, SCR_CONTROL, 0x301);
2025
2026 /*
2027 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2028 * 10.4.2 says at least 1 ms.
2029 */
2030 msleep(1);
2031
7a7921e8
TH
2032 /* Bring phy back */
2033 sata_phy_resume(ap);
c2bd5804 2034
c2bd5804
TH
2035 /* TODO: phy layer with polling, timeouts, etc. */
2036 if (!sata_dev_present(ap)) {
2037 *class = ATA_DEV_NONE;
2038 DPRINTK("EXIT, link offline\n");
2039 return 0;
2040 }
2041
2042 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2043 if (verbose)
2044 printk(KERN_ERR "ata%u: COMRESET failed "
2045 "(device not ready)\n", ap->id);
2046 else
2047 DPRINTK("EXIT, device not ready\n");
2048 return -EIO;
2049 }
2050
3a39746a
TH
2051 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2052
c2bd5804
TH
2053 *class = ata_dev_try_classify(ap, 0, NULL);
2054
2055 DPRINTK("EXIT, class=%u\n", *class);
2056 return 0;
2057}
2058
2059/**
2060 * ata_std_postreset - standard postreset callback
2061 * @ap: the target ata_port
2062 * @classes: classes of attached devices
2063 *
2064 * This function is invoked after a successful reset. Note that
2065 * the device might have been reset more than once using
2066 * different reset methods before postreset is invoked.
2067 * postreset is also reponsible for setting cable type.
2068 *
2069 * This function is to be used as standard callback for
2070 * ata_drive_*_reset().
2071 *
2072 * LOCKING:
2073 * Kernel thread context (may sleep)
2074 */
2075void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2076{
2077 DPRINTK("ENTER\n");
2078
2079 /* set cable type */
2080 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2081 ap->cbl = ATA_CBL_SATA;
2082
2083 /* print link status */
2084 if (ap->cbl == ATA_CBL_SATA)
2085 sata_print_link_status(ap);
2086
3a39746a
TH
2087 /* re-enable interrupts */
2088 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2089 ata_irq_on(ap);
c2bd5804
TH
2090
2091 /* is double-select really necessary? */
2092 if (classes[0] != ATA_DEV_NONE)
2093 ap->ops->dev_select(ap, 1);
2094 if (classes[1] != ATA_DEV_NONE)
2095 ap->ops->dev_select(ap, 0);
2096
3a39746a
TH
2097 /* bail out if no device is present */
2098 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2099 DPRINTK("EXIT, no device\n");
2100 return;
2101 }
2102
2103 /* set up device control */
2104 if (ap->ioaddr.ctl_addr) {
2105 if (ap->flags & ATA_FLAG_MMIO)
2106 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2107 else
2108 outb(ap->ctl, ap->ioaddr.ctl_addr);
2109 }
c2bd5804
TH
2110
2111 DPRINTK("EXIT\n");
2112}
2113
2114/**
2115 * ata_std_probe_reset - standard probe reset method
2116 * @ap: prot to perform probe-reset
2117 * @classes: resulting classes of attached devices
2118 *
2119 * The stock off-the-shelf ->probe_reset method.
2120 *
2121 * LOCKING:
2122 * Kernel thread context (may sleep)
2123 *
2124 * RETURNS:
2125 * 0 on success, -errno otherwise.
2126 */
2127int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2128{
2129 ata_reset_fn_t hardreset;
2130
2131 hardreset = NULL;
b911fc3a 2132 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
c2bd5804
TH
2133 hardreset = sata_std_hardreset;
2134
8a19ac89 2135 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2136 ata_std_softreset, hardreset,
c2bd5804
TH
2137 ata_std_postreset, classes);
2138}
2139
a62c0fc5
TH
2140static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2141 ata_postreset_fn_t postreset,
2142 unsigned int *classes)
2143{
2144 int i, rc;
2145
2146 for (i = 0; i < ATA_MAX_DEVICES; i++)
2147 classes[i] = ATA_DEV_UNKNOWN;
2148
2149 rc = reset(ap, 0, classes);
2150 if (rc)
2151 return rc;
2152
2153 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2154 * is complete and convert all ATA_DEV_UNKNOWN to
2155 * ATA_DEV_NONE.
2156 */
2157 for (i = 0; i < ATA_MAX_DEVICES; i++)
2158 if (classes[i] != ATA_DEV_UNKNOWN)
2159 break;
2160
2161 if (i < ATA_MAX_DEVICES)
2162 for (i = 0; i < ATA_MAX_DEVICES; i++)
2163 if (classes[i] == ATA_DEV_UNKNOWN)
2164 classes[i] = ATA_DEV_NONE;
2165
2166 if (postreset)
2167 postreset(ap, classes);
2168
2169 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2170}
2171
2172/**
2173 * ata_drive_probe_reset - Perform probe reset with given methods
2174 * @ap: port to reset
7944ea95 2175 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2176 * @softreset: softreset method (can be NULL)
2177 * @hardreset: hardreset method (can be NULL)
2178 * @postreset: postreset method (can be NULL)
2179 * @classes: resulting classes of attached devices
2180 *
2181 * Reset the specified port and classify attached devices using
2182 * given methods. This function prefers softreset but tries all
2183 * possible reset sequences to reset and classify devices. This
2184 * function is intended to be used for constructing ->probe_reset
2185 * callback by low level drivers.
2186 *
2187 * Reset methods should follow the following rules.
2188 *
2189 * - Return 0 on sucess, -errno on failure.
2190 * - If classification is supported, fill classes[] with
2191 * recognized class codes.
2192 * - If classification is not supported, leave classes[] alone.
2193 * - If verbose is non-zero, print error message on failure;
2194 * otherwise, shut up.
2195 *
2196 * LOCKING:
2197 * Kernel thread context (may sleep)
2198 *
2199 * RETURNS:
2200 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2201 * if classification fails, and any error code from reset
2202 * methods.
2203 */
7944ea95 2204int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2205 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2206 ata_postreset_fn_t postreset, unsigned int *classes)
2207{
2208 int rc = -EINVAL;
2209
7944ea95
TH
2210 if (probeinit)
2211 probeinit(ap);
2212
a62c0fc5
TH
2213 if (softreset) {
2214 rc = do_probe_reset(ap, softreset, postreset, classes);
2215 if (rc == 0)
2216 return 0;
2217 }
2218
2219 if (!hardreset)
2220 return rc;
2221
2222 rc = do_probe_reset(ap, hardreset, postreset, classes);
2223 if (rc == 0 || rc != -ENODEV)
2224 return rc;
2225
2226 if (softreset)
2227 rc = do_probe_reset(ap, softreset, postreset, classes);
2228
2229 return rc;
2230}
2231
057ace5e
JG
2232static void ata_pr_blacklisted(const struct ata_port *ap,
2233 const struct ata_device *dev)
1da177e4
LT
2234{
2235 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2236 ap->id, dev->devno);
2237}
2238
98ac62de 2239static const char * const ata_dma_blacklist [] = {
1da177e4
LT
2240 "WDC AC11000H",
2241 "WDC AC22100H",
2242 "WDC AC32500H",
2243 "WDC AC33100H",
2244 "WDC AC31600H",
2245 "WDC AC32100H",
2246 "WDC AC23200L",
2247 "Compaq CRD-8241B",
2248 "CRD-8400B",
2249 "CRD-8480B",
2250 "CRD-8482B",
2251 "CRD-84",
2252 "SanDisk SDP3B",
2253 "SanDisk SDP3B-64",
2254 "SANYO CD-ROM CRD",
2255 "HITACHI CDR-8",
2256 "HITACHI CDR-8335",
2257 "HITACHI CDR-8435",
2258 "Toshiba CD-ROM XM-6202B",
e922256a 2259 "TOSHIBA CD-ROM XM-1702BC",
1da177e4
LT
2260 "CD-532E-A",
2261 "E-IDE CD-ROM CR-840",
2262 "CD-ROM Drive/F5A",
2263 "WPI CDD-820",
2264 "SAMSUNG CD-ROM SC-148C",
2265 "SAMSUNG CD-ROM SC",
2266 "SanDisk SDP3B-64",
1da177e4
LT
2267 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2268 "_NEC DV5800A",
2269};
2270
057ace5e 2271static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4
LT
2272{
2273 unsigned char model_num[40];
2274 char *s;
2275 unsigned int len;
2276 int i;
2277
2278 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2279 sizeof(model_num));
2280 s = &model_num[0];
2281 len = strnlen(s, sizeof(model_num));
2282
2283 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2284 while ((len > 0) && (s[len - 1] == ' ')) {
2285 len--;
2286 s[len] = 0;
2287 }
2288
2289 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2290 if (!strncmp(ata_dma_blacklist[i], s, len))
2291 return 1;
2292
2293 return 0;
2294}
2295
057ace5e 2296static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
1da177e4 2297{
057ace5e 2298 const struct ata_device *master, *slave;
1da177e4
LT
2299 unsigned int mask;
2300
2301 master = &ap->device[0];
2302 slave = &ap->device[1];
2303
2304 assert (ata_dev_present(master) || ata_dev_present(slave));
2305
2306 if (shift == ATA_SHIFT_UDMA) {
2307 mask = ap->udma_mask;
2308 if (ata_dev_present(master)) {
2309 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
057ace5e 2310 if (ata_dma_blacklisted(master)) {
1da177e4
LT
2311 mask = 0;
2312 ata_pr_blacklisted(ap, master);
2313 }
2314 }
2315 if (ata_dev_present(slave)) {
2316 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
057ace5e 2317 if (ata_dma_blacklisted(slave)) {
1da177e4
LT
2318 mask = 0;
2319 ata_pr_blacklisted(ap, slave);
2320 }
2321 }
2322 }
2323 else if (shift == ATA_SHIFT_MWDMA) {
2324 mask = ap->mwdma_mask;
2325 if (ata_dev_present(master)) {
2326 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
057ace5e 2327 if (ata_dma_blacklisted(master)) {
1da177e4
LT
2328 mask = 0;
2329 ata_pr_blacklisted(ap, master);
2330 }
2331 }
2332 if (ata_dev_present(slave)) {
2333 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
057ace5e 2334 if (ata_dma_blacklisted(slave)) {
1da177e4
LT
2335 mask = 0;
2336 ata_pr_blacklisted(ap, slave);
2337 }
2338 }
2339 }
2340 else if (shift == ATA_SHIFT_PIO) {
2341 mask = ap->pio_mask;
2342 if (ata_dev_present(master)) {
2343 /* spec doesn't return explicit support for
2344 * PIO0-2, so we fake it
2345 */
2346 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2347 tmp_mode <<= 3;
2348 tmp_mode |= 0x7;
2349 mask &= tmp_mode;
2350 }
2351 if (ata_dev_present(slave)) {
2352 /* spec doesn't return explicit support for
2353 * PIO0-2, so we fake it
2354 */
2355 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2356 tmp_mode <<= 3;
2357 tmp_mode |= 0x7;
2358 mask &= tmp_mode;
2359 }
2360 }
2361 else {
2362 mask = 0xffffffff; /* shut up compiler warning */
2363 BUG();
2364 }
2365
2366 return mask;
2367}
2368
2369/* find greatest bit */
2370static int fgb(u32 bitmap)
2371{
2372 unsigned int i;
2373 int x = -1;
2374
2375 for (i = 0; i < 32; i++)
2376 if (bitmap & (1 << i))
2377 x = i;
2378
2379 return x;
2380}
2381
2382/**
2383 * ata_choose_xfer_mode - attempt to find best transfer mode
2384 * @ap: Port for which an xfer mode will be selected
2385 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2386 * @xfer_shift_out: (output) bit shift that selects this mode
2387 *
0cba632b
JG
2388 * Based on host and device capabilities, determine the
2389 * maximum transfer mode that is amenable to all.
2390 *
1da177e4 2391 * LOCKING:
0cba632b 2392 * PCI/etc. bus probe sem.
1da177e4
LT
2393 *
2394 * RETURNS:
2395 * Zero on success, negative on error.
2396 */
2397
057ace5e 2398static int ata_choose_xfer_mode(const struct ata_port *ap,
1da177e4
LT
2399 u8 *xfer_mode_out,
2400 unsigned int *xfer_shift_out)
2401{
2402 unsigned int mask, shift;
2403 int x, i;
2404
2405 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2406 shift = xfer_mode_classes[i].shift;
2407 mask = ata_get_mode_mask(ap, shift);
2408
2409 x = fgb(mask);
2410 if (x >= 0) {
2411 *xfer_mode_out = xfer_mode_classes[i].base + x;
2412 *xfer_shift_out = shift;
2413 return 0;
2414 }
2415 }
2416
2417 return -1;
2418}
2419
2420/**
2421 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2422 * @ap: Port associated with device @dev
2423 * @dev: Device to which command will be sent
2424 *
780a87f7
JG
2425 * Issue SET FEATURES - XFER MODE command to device @dev
2426 * on port @ap.
2427 *
1da177e4 2428 * LOCKING:
0cba632b 2429 * PCI/etc. bus probe sem.
1da177e4
LT
2430 */
2431
2432static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2433{
a0123703 2434 struct ata_taskfile tf;
1da177e4
LT
2435
2436 /* set up set-features taskfile */
2437 DPRINTK("set features - xfer mode\n");
2438
a0123703
TH
2439 ata_tf_init(ap, &tf, dev->devno);
2440 tf.command = ATA_CMD_SET_FEATURES;
2441 tf.feature = SETFEATURES_XFER;
2442 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2443 tf.protocol = ATA_PROT_NODATA;
2444 tf.nsect = dev->xfer_mode;
1da177e4 2445
a0123703
TH
2446 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2447 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2448 ap->id);
1da177e4 2449 ata_port_disable(ap);
a0123703 2450 }
1da177e4
LT
2451
2452 DPRINTK("EXIT\n");
2453}
2454
59a10b17
AL
2455/**
2456 * ata_dev_reread_id - Reread the device identify device info
2457 * @ap: port where the device is
2458 * @dev: device to reread the identify device info
2459 *
2460 * LOCKING:
2461 */
2462
2463static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2464{
a0123703 2465 struct ata_taskfile tf;
59a10b17 2466
a0123703 2467 ata_tf_init(ap, &tf, dev->devno);
59a10b17
AL
2468
2469 if (dev->class == ATA_DEV_ATA) {
a0123703 2470 tf.command = ATA_CMD_ID_ATA;
59a10b17
AL
2471 DPRINTK("do ATA identify\n");
2472 } else {
a0123703 2473 tf.command = ATA_CMD_ID_ATAPI;
59a10b17
AL
2474 DPRINTK("do ATAPI identify\n");
2475 }
2476
a0123703
TH
2477 tf.flags |= ATA_TFLAG_DEVICE;
2478 tf.protocol = ATA_PROT_PIO;
59a10b17 2479
a0123703
TH
2480 if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
2481 dev->id, sizeof(dev->id)))
59a10b17
AL
2482 goto err_out;
2483
59a10b17
AL
2484 swap_buf_le16(dev->id, ATA_ID_WORDS);
2485
2486 ata_dump_id(dev);
2487
2488 DPRINTK("EXIT\n");
2489
2490 return;
2491err_out:
a0123703 2492 printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
59a10b17
AL
2493 ata_port_disable(ap);
2494}
2495
8bf62ece
AL
2496/**
2497 * ata_dev_init_params - Issue INIT DEV PARAMS command
2498 * @ap: Port associated with device @dev
2499 * @dev: Device to which command will be sent
2500 *
2501 * LOCKING:
2502 */
2503
2504static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2505{
a0123703 2506 struct ata_taskfile tf;
8bf62ece
AL
2507 u16 sectors = dev->id[6];
2508 u16 heads = dev->id[3];
2509
2510 /* Number of sectors per track 1-255. Number of heads 1-16 */
2511 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2512 return;
2513
2514 /* set up init dev params taskfile */
2515 DPRINTK("init dev params \n");
2516
a0123703
TH
2517 ata_tf_init(ap, &tf, dev->devno);
2518 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2519 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2520 tf.protocol = ATA_PROT_NODATA;
2521 tf.nsect = sectors;
2522 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 2523
a0123703
TH
2524 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2525 printk(KERN_ERR "ata%u: failed to init parameters, disabled\n",
2526 ap->id);
8bf62ece 2527 ata_port_disable(ap);
a0123703 2528 }
8bf62ece
AL
2529
2530 DPRINTK("EXIT\n");
2531}
2532
1da177e4 2533/**
0cba632b
JG
2534 * ata_sg_clean - Unmap DMA memory associated with command
2535 * @qc: Command containing DMA memory to be released
2536 *
2537 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2538 *
2539 * LOCKING:
0cba632b 2540 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2541 */
2542
2543static void ata_sg_clean(struct ata_queued_cmd *qc)
2544{
2545 struct ata_port *ap = qc->ap;
cedc9a47 2546 struct scatterlist *sg = qc->__sg;
1da177e4 2547 int dir = qc->dma_dir;
cedc9a47 2548 void *pad_buf = NULL;
1da177e4
LT
2549
2550 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2551 assert(sg != NULL);
2552
2553 if (qc->flags & ATA_QCFLAG_SINGLE)
2554 assert(qc->n_elem == 1);
2555
2c13b7ce 2556 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 2557
cedc9a47
JG
2558 /* if we padded the buffer out to 32-bit bound, and data
2559 * xfer direction is from-device, we must copy from the
2560 * pad buffer back into the supplied buffer
2561 */
2562 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2563 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2564
2565 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d
JG
2566 if (qc->n_elem)
2567 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2568 /* restore last sg */
2569 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2570 if (pad_buf) {
2571 struct scatterlist *psg = &qc->pad_sgent;
2572 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2573 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 2574 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2575 }
2576 } else {
e1410f2d
JG
2577 if (sg_dma_len(&sg[0]) > 0)
2578 dma_unmap_single(ap->host_set->dev,
2579 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2580 dir);
cedc9a47
JG
2581 /* restore sg */
2582 sg->length += qc->pad_len;
2583 if (pad_buf)
2584 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2585 pad_buf, qc->pad_len);
2586 }
1da177e4
LT
2587
2588 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2589 qc->__sg = NULL;
1da177e4
LT
2590}
2591
2592/**
2593 * ata_fill_sg - Fill PCI IDE PRD table
2594 * @qc: Metadata associated with taskfile to be transferred
2595 *
780a87f7
JG
2596 * Fill PCI IDE PRD (scatter-gather) table with segments
2597 * associated with the current disk command.
2598 *
1da177e4 2599 * LOCKING:
780a87f7 2600 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2601 *
2602 */
2603static void ata_fill_sg(struct ata_queued_cmd *qc)
2604{
1da177e4 2605 struct ata_port *ap = qc->ap;
cedc9a47
JG
2606 struct scatterlist *sg;
2607 unsigned int idx;
1da177e4 2608
cedc9a47 2609 assert(qc->__sg != NULL);
1da177e4
LT
2610 assert(qc->n_elem > 0);
2611
2612 idx = 0;
cedc9a47 2613 ata_for_each_sg(sg, qc) {
1da177e4
LT
2614 u32 addr, offset;
2615 u32 sg_len, len;
2616
2617 /* determine if physical DMA addr spans 64K boundary.
2618 * Note h/w doesn't support 64-bit, so we unconditionally
2619 * truncate dma_addr_t to u32.
2620 */
2621 addr = (u32) sg_dma_address(sg);
2622 sg_len = sg_dma_len(sg);
2623
2624 while (sg_len) {
2625 offset = addr & 0xffff;
2626 len = sg_len;
2627 if ((offset + sg_len) > 0x10000)
2628 len = 0x10000 - offset;
2629
2630 ap->prd[idx].addr = cpu_to_le32(addr);
2631 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2632 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2633
2634 idx++;
2635 sg_len -= len;
2636 addr += len;
2637 }
2638 }
2639
2640 if (idx)
2641 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2642}
2643/**
2644 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2645 * @qc: Metadata associated with taskfile to check
2646 *
780a87f7
JG
2647 * Allow low-level driver to filter ATA PACKET commands, returning
2648 * a status indicating whether or not it is OK to use DMA for the
2649 * supplied PACKET command.
2650 *
1da177e4 2651 * LOCKING:
0cba632b
JG
2652 * spin_lock_irqsave(host_set lock)
2653 *
1da177e4
LT
2654 * RETURNS: 0 when ATAPI DMA can be used
2655 * nonzero otherwise
2656 */
2657int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2658{
2659 struct ata_port *ap = qc->ap;
2660 int rc = 0; /* Assume ATAPI DMA is OK by default */
2661
2662 if (ap->ops->check_atapi_dma)
2663 rc = ap->ops->check_atapi_dma(qc);
2664
2665 return rc;
2666}
2667/**
2668 * ata_qc_prep - Prepare taskfile for submission
2669 * @qc: Metadata associated with taskfile to be prepared
2670 *
780a87f7
JG
2671 * Prepare ATA taskfile for submission.
2672 *
1da177e4
LT
2673 * LOCKING:
2674 * spin_lock_irqsave(host_set lock)
2675 */
2676void ata_qc_prep(struct ata_queued_cmd *qc)
2677{
2678 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2679 return;
2680
2681 ata_fill_sg(qc);
2682}
2683
0cba632b
JG
2684/**
2685 * ata_sg_init_one - Associate command with memory buffer
2686 * @qc: Command to be associated
2687 * @buf: Memory buffer
2688 * @buflen: Length of memory buffer, in bytes.
2689 *
2690 * Initialize the data-related elements of queued_cmd @qc
2691 * to point to a single memory buffer, @buf of byte length @buflen.
2692 *
2693 * LOCKING:
2694 * spin_lock_irqsave(host_set lock)
2695 */
2696
1da177e4
LT
2697void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2698{
2699 struct scatterlist *sg;
2700
2701 qc->flags |= ATA_QCFLAG_SINGLE;
2702
2703 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 2704 qc->__sg = &qc->sgent;
1da177e4 2705 qc->n_elem = 1;
cedc9a47 2706 qc->orig_n_elem = 1;
1da177e4
LT
2707 qc->buf_virt = buf;
2708
cedc9a47 2709 sg = qc->__sg;
f0612bbc 2710 sg_init_one(sg, buf, buflen);
1da177e4
LT
2711}
2712
0cba632b
JG
2713/**
2714 * ata_sg_init - Associate command with scatter-gather table.
2715 * @qc: Command to be associated
2716 * @sg: Scatter-gather table.
2717 * @n_elem: Number of elements in s/g table.
2718 *
2719 * Initialize the data-related elements of queued_cmd @qc
2720 * to point to a scatter-gather table @sg, containing @n_elem
2721 * elements.
2722 *
2723 * LOCKING:
2724 * spin_lock_irqsave(host_set lock)
2725 */
2726
1da177e4
LT
2727void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2728 unsigned int n_elem)
2729{
2730 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 2731 qc->__sg = sg;
1da177e4 2732 qc->n_elem = n_elem;
cedc9a47 2733 qc->orig_n_elem = n_elem;
1da177e4
LT
2734}
2735
2736/**
0cba632b
JG
2737 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2738 * @qc: Command with memory buffer to be mapped.
2739 *
2740 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
2741 *
2742 * LOCKING:
2743 * spin_lock_irqsave(host_set lock)
2744 *
2745 * RETURNS:
0cba632b 2746 * Zero on success, negative on error.
1da177e4
LT
2747 */
2748
2749static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2750{
2751 struct ata_port *ap = qc->ap;
2752 int dir = qc->dma_dir;
cedc9a47 2753 struct scatterlist *sg = qc->__sg;
1da177e4
LT
2754 dma_addr_t dma_address;
2755
cedc9a47
JG
2756 /* we must lengthen transfers to end on a 32-bit boundary */
2757 qc->pad_len = sg->length & 3;
2758 if (qc->pad_len) {
2759 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2760 struct scatterlist *psg = &qc->pad_sgent;
2761
2762 assert(qc->dev->class == ATA_DEV_ATAPI);
2763
2764 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2765
2766 if (qc->tf.flags & ATA_TFLAG_WRITE)
2767 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2768 qc->pad_len);
2769
2770 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2771 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2772 /* trim sg */
2773 sg->length -= qc->pad_len;
2774
2775 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2776 sg->length, qc->pad_len);
2777 }
2778
e1410f2d
JG
2779 if (!sg->length) {
2780 sg_dma_address(sg) = 0;
2781 goto skip_map;
2782 }
2783
1da177e4 2784 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
32529e01 2785 sg->length, dir);
537a95d9
TH
2786 if (dma_mapping_error(dma_address)) {
2787 /* restore sg */
2788 sg->length += qc->pad_len;
1da177e4 2789 return -1;
537a95d9 2790 }
1da177e4
LT
2791
2792 sg_dma_address(sg) = dma_address;
e1410f2d 2793skip_map:
32529e01 2794 sg_dma_len(sg) = sg->length;
1da177e4
LT
2795
2796 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2797 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2798
2799 return 0;
2800}
2801
2802/**
0cba632b
JG
2803 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2804 * @qc: Command with scatter-gather table to be mapped.
2805 *
2806 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
2807 *
2808 * LOCKING:
2809 * spin_lock_irqsave(host_set lock)
2810 *
2811 * RETURNS:
0cba632b 2812 * Zero on success, negative on error.
1da177e4
LT
2813 *
2814 */
2815
2816static int ata_sg_setup(struct ata_queued_cmd *qc)
2817{
2818 struct ata_port *ap = qc->ap;
cedc9a47
JG
2819 struct scatterlist *sg = qc->__sg;
2820 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 2821 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
2822
2823 VPRINTK("ENTER, ata%u\n", ap->id);
2824 assert(qc->flags & ATA_QCFLAG_SG);
2825
cedc9a47
JG
2826 /* we must lengthen transfers to end on a 32-bit boundary */
2827 qc->pad_len = lsg->length & 3;
2828 if (qc->pad_len) {
2829 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2830 struct scatterlist *psg = &qc->pad_sgent;
2831 unsigned int offset;
2832
2833 assert(qc->dev->class == ATA_DEV_ATAPI);
2834
2835 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2836
2837 /*
2838 * psg->page/offset are used to copy to-be-written
2839 * data in this function or read data in ata_sg_clean.
2840 */
2841 offset = lsg->offset + lsg->length - qc->pad_len;
2842 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2843 psg->offset = offset_in_page(offset);
2844
2845 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2846 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2847 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 2848 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2849 }
2850
2851 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2852 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2853 /* trim last sg */
2854 lsg->length -= qc->pad_len;
e1410f2d
JG
2855 if (lsg->length == 0)
2856 trim_sg = 1;
cedc9a47
JG
2857
2858 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2859 qc->n_elem - 1, lsg->length, qc->pad_len);
2860 }
2861
e1410f2d
JG
2862 pre_n_elem = qc->n_elem;
2863 if (trim_sg && pre_n_elem)
2864 pre_n_elem--;
2865
2866 if (!pre_n_elem) {
2867 n_elem = 0;
2868 goto skip_map;
2869 }
2870
1da177e4 2871 dir = qc->dma_dir;
e1410f2d 2872 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
537a95d9
TH
2873 if (n_elem < 1) {
2874 /* restore last sg */
2875 lsg->length += qc->pad_len;
1da177e4 2876 return -1;
537a95d9 2877 }
1da177e4
LT
2878
2879 DPRINTK("%d sg elements mapped\n", n_elem);
2880
e1410f2d 2881skip_map:
1da177e4
LT
2882 qc->n_elem = n_elem;
2883
2884 return 0;
2885}
2886
40e8c82c
TH
2887/**
2888 * ata_poll_qc_complete - turn irq back on and finish qc
2889 * @qc: Command to complete
8e8b77dd 2890 * @err_mask: ATA status register content
40e8c82c
TH
2891 *
2892 * LOCKING:
2893 * None. (grabs host lock)
2894 */
2895
a22e2eb0 2896void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
2897{
2898 struct ata_port *ap = qc->ap;
b8f6153e 2899 unsigned long flags;
40e8c82c 2900
b8f6153e 2901 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
2902 ap->flags &= ~ATA_FLAG_NOINTR;
2903 ata_irq_on(ap);
a22e2eb0 2904 ata_qc_complete(qc);
b8f6153e 2905 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
2906}
2907
1da177e4 2908/**
c893a3ae 2909 * ata_pio_poll - poll using PIO, depending on current state
6f0ef4fa 2910 * @ap: the target ata_port
1da177e4
LT
2911 *
2912 * LOCKING:
0cba632b 2913 * None. (executing in kernel thread context)
1da177e4
LT
2914 *
2915 * RETURNS:
6f0ef4fa 2916 * timeout value to use
1da177e4
LT
2917 */
2918
2919static unsigned long ata_pio_poll(struct ata_port *ap)
2920{
c14b8331 2921 struct ata_queued_cmd *qc;
1da177e4 2922 u8 status;
14be71f4
AL
2923 unsigned int poll_state = HSM_ST_UNKNOWN;
2924 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4 2925
c14b8331
AL
2926 qc = ata_qc_from_tag(ap, ap->active_tag);
2927 assert(qc != NULL);
2928
14be71f4
AL
2929 switch (ap->hsm_task_state) {
2930 case HSM_ST:
2931 case HSM_ST_POLL:
2932 poll_state = HSM_ST_POLL;
2933 reg_state = HSM_ST;
1da177e4 2934 break;
14be71f4
AL
2935 case HSM_ST_LAST:
2936 case HSM_ST_LAST_POLL:
2937 poll_state = HSM_ST_LAST_POLL;
2938 reg_state = HSM_ST_LAST;
1da177e4
LT
2939 break;
2940 default:
2941 BUG();
2942 break;
2943 }
2944
2945 status = ata_chk_status(ap);
2946 if (status & ATA_BUSY) {
2947 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 2948 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 2949 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
2950 return 0;
2951 }
14be71f4 2952 ap->hsm_task_state = poll_state;
1da177e4
LT
2953 return ATA_SHORT_PAUSE;
2954 }
2955
14be71f4 2956 ap->hsm_task_state = reg_state;
1da177e4
LT
2957 return 0;
2958}
2959
2960/**
6f0ef4fa
RD
2961 * ata_pio_complete - check if drive is busy or idle
2962 * @ap: the target ata_port
1da177e4
LT
2963 *
2964 * LOCKING:
0cba632b 2965 * None. (executing in kernel thread context)
7fb6ec28
JG
2966 *
2967 * RETURNS:
2968 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
2969 */
2970
7fb6ec28 2971static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
2972{
2973 struct ata_queued_cmd *qc;
2974 u8 drv_stat;
2975
2976 /*
31433ea3
AC
2977 * This is purely heuristic. This is a fast path. Sometimes when
2978 * we enter, BSY will be cleared in a chk-status or two. If not,
2979 * the drive is probably seeking or something. Snooze for a couple
2980 * msecs, then chk-status again. If still busy, fall back to
14be71f4 2981 * HSM_ST_POLL state.
1da177e4 2982 */
fe79e683
AL
2983 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2984 if (drv_stat & ATA_BUSY) {
1da177e4 2985 msleep(2);
fe79e683
AL
2986 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2987 if (drv_stat & ATA_BUSY) {
14be71f4 2988 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 2989 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 2990 return 0;
1da177e4
LT
2991 }
2992 }
2993
c14b8331
AL
2994 qc = ata_qc_from_tag(ap, ap->active_tag);
2995 assert(qc != NULL);
2996
1da177e4
LT
2997 drv_stat = ata_wait_idle(ap);
2998 if (!ata_ok(drv_stat)) {
1c848984 2999 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3000 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3001 return 0;
1da177e4
LT
3002 }
3003
14be71f4 3004 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3005
a22e2eb0
AL
3006 assert(qc->err_mask == 0);
3007 ata_poll_qc_complete(qc);
7fb6ec28
JG
3008
3009 /* another command may start at this point */
3010
3011 return 1;
1da177e4
LT
3012}
3013
0baab86b
EF
3014
3015/**
c893a3ae 3016 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3017 * @buf: Buffer to swap
3018 * @buf_words: Number of 16-bit words in buffer.
3019 *
3020 * Swap halves of 16-bit words if needed to convert from
3021 * little-endian byte order to native cpu byte order, or
3022 * vice-versa.
3023 *
3024 * LOCKING:
6f0ef4fa 3025 * Inherited from caller.
0baab86b 3026 */
1da177e4
LT
3027void swap_buf_le16(u16 *buf, unsigned int buf_words)
3028{
3029#ifdef __BIG_ENDIAN
3030 unsigned int i;
3031
3032 for (i = 0; i < buf_words; i++)
3033 buf[i] = le16_to_cpu(buf[i]);
3034#endif /* __BIG_ENDIAN */
3035}
3036
6ae4cfb5
AL
3037/**
3038 * ata_mmio_data_xfer - Transfer data by MMIO
3039 * @ap: port to read/write
3040 * @buf: data buffer
3041 * @buflen: buffer length
344babaa 3042 * @write_data: read/write
6ae4cfb5
AL
3043 *
3044 * Transfer data from/to the device data register by MMIO.
3045 *
3046 * LOCKING:
3047 * Inherited from caller.
6ae4cfb5
AL
3048 */
3049
1da177e4
LT
3050static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3051 unsigned int buflen, int write_data)
3052{
3053 unsigned int i;
3054 unsigned int words = buflen >> 1;
3055 u16 *buf16 = (u16 *) buf;
3056 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3057
6ae4cfb5 3058 /* Transfer multiple of 2 bytes */
1da177e4
LT
3059 if (write_data) {
3060 for (i = 0; i < words; i++)
3061 writew(le16_to_cpu(buf16[i]), mmio);
3062 } else {
3063 for (i = 0; i < words; i++)
3064 buf16[i] = cpu_to_le16(readw(mmio));
3065 }
6ae4cfb5
AL
3066
3067 /* Transfer trailing 1 byte, if any. */
3068 if (unlikely(buflen & 0x01)) {
3069 u16 align_buf[1] = { 0 };
3070 unsigned char *trailing_buf = buf + buflen - 1;
3071
3072 if (write_data) {
3073 memcpy(align_buf, trailing_buf, 1);
3074 writew(le16_to_cpu(align_buf[0]), mmio);
3075 } else {
3076 align_buf[0] = cpu_to_le16(readw(mmio));
3077 memcpy(trailing_buf, align_buf, 1);
3078 }
3079 }
1da177e4
LT
3080}
3081
6ae4cfb5
AL
3082/**
3083 * ata_pio_data_xfer - Transfer data by PIO
3084 * @ap: port to read/write
3085 * @buf: data buffer
3086 * @buflen: buffer length
344babaa 3087 * @write_data: read/write
6ae4cfb5
AL
3088 *
3089 * Transfer data from/to the device data register by PIO.
3090 *
3091 * LOCKING:
3092 * Inherited from caller.
6ae4cfb5
AL
3093 */
3094
1da177e4
LT
3095static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3096 unsigned int buflen, int write_data)
3097{
6ae4cfb5 3098 unsigned int words = buflen >> 1;
1da177e4 3099
6ae4cfb5 3100 /* Transfer multiple of 2 bytes */
1da177e4 3101 if (write_data)
6ae4cfb5 3102 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3103 else
6ae4cfb5
AL
3104 insw(ap->ioaddr.data_addr, buf, words);
3105
3106 /* Transfer trailing 1 byte, if any. */
3107 if (unlikely(buflen & 0x01)) {
3108 u16 align_buf[1] = { 0 };
3109 unsigned char *trailing_buf = buf + buflen - 1;
3110
3111 if (write_data) {
3112 memcpy(align_buf, trailing_buf, 1);
3113 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3114 } else {
3115 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3116 memcpy(trailing_buf, align_buf, 1);
3117 }
3118 }
1da177e4
LT
3119}
3120
6ae4cfb5
AL
3121/**
3122 * ata_data_xfer - Transfer data from/to the data register.
3123 * @ap: port to read/write
3124 * @buf: data buffer
3125 * @buflen: buffer length
3126 * @do_write: read/write
3127 *
3128 * Transfer data from/to the device data register.
3129 *
3130 * LOCKING:
3131 * Inherited from caller.
6ae4cfb5
AL
3132 */
3133
1da177e4
LT
3134static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3135 unsigned int buflen, int do_write)
3136{
a1bd9e68
AC
3137 /* Make the crap hardware pay the costs not the good stuff */
3138 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3139 unsigned long flags;
3140 local_irq_save(flags);
3141 if (ap->flags & ATA_FLAG_MMIO)
3142 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3143 else
3144 ata_pio_data_xfer(ap, buf, buflen, do_write);
3145 local_irq_restore(flags);
3146 } else {
3147 if (ap->flags & ATA_FLAG_MMIO)
3148 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3149 else
3150 ata_pio_data_xfer(ap, buf, buflen, do_write);
3151 }
1da177e4
LT
3152}
3153
6ae4cfb5
AL
3154/**
3155 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3156 * @qc: Command on going
3157 *
3158 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3159 *
3160 * LOCKING:
3161 * Inherited from caller.
3162 */
3163
1da177e4
LT
3164static void ata_pio_sector(struct ata_queued_cmd *qc)
3165{
3166 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3167 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3168 struct ata_port *ap = qc->ap;
3169 struct page *page;
3170 unsigned int offset;
3171 unsigned char *buf;
3172
3173 if (qc->cursect == (qc->nsect - 1))
14be71f4 3174 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3175
3176 page = sg[qc->cursg].page;
3177 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3178
3179 /* get the current page and offset */
3180 page = nth_page(page, (offset >> PAGE_SHIFT));
3181 offset %= PAGE_SIZE;
3182
3183 buf = kmap(page) + offset;
3184
3185 qc->cursect++;
3186 qc->cursg_ofs++;
3187
32529e01 3188 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3189 qc->cursg++;
3190 qc->cursg_ofs = 0;
3191 }
3192
3193 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3194
3195 /* do the actual data transfer */
3196 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3197 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3198
3199 kunmap(page);
3200}
3201
6ae4cfb5
AL
3202/**
3203 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3204 * @qc: Command on going
3205 * @bytes: number of bytes
3206 *
3207 * Transfer Transfer data from/to the ATAPI device.
3208 *
3209 * LOCKING:
3210 * Inherited from caller.
3211 *
3212 */
3213
1da177e4
LT
3214static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3215{
3216 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3217 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3218 struct ata_port *ap = qc->ap;
3219 struct page *page;
3220 unsigned char *buf;
3221 unsigned int offset, count;
3222
563a6e1f 3223 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3224 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3225
3226next_sg:
563a6e1f 3227 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3228 /*
563a6e1f
AL
3229 * The end of qc->sg is reached and the device expects
3230 * more data to transfer. In order not to overrun qc->sg
3231 * and fulfill length specified in the byte count register,
3232 * - for read case, discard trailing data from the device
3233 * - for write case, padding zero data to the device
3234 */
3235 u16 pad_buf[1] = { 0 };
3236 unsigned int words = bytes >> 1;
3237 unsigned int i;
3238
3239 if (words) /* warning if bytes > 1 */
7fb6ec28 3240 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3241 ap->id, bytes);
3242
3243 for (i = 0; i < words; i++)
3244 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3245
14be71f4 3246 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3247 return;
3248 }
3249
cedc9a47 3250 sg = &qc->__sg[qc->cursg];
1da177e4 3251
1da177e4
LT
3252 page = sg->page;
3253 offset = sg->offset + qc->cursg_ofs;
3254
3255 /* get the current page and offset */
3256 page = nth_page(page, (offset >> PAGE_SHIFT));
3257 offset %= PAGE_SIZE;
3258
6952df03 3259 /* don't overrun current sg */
32529e01 3260 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3261
3262 /* don't cross page boundaries */
3263 count = min(count, (unsigned int)PAGE_SIZE - offset);
3264
3265 buf = kmap(page) + offset;
3266
3267 bytes -= count;
3268 qc->curbytes += count;
3269 qc->cursg_ofs += count;
3270
32529e01 3271 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3272 qc->cursg++;
3273 qc->cursg_ofs = 0;
3274 }
3275
3276 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3277
3278 /* do the actual data transfer */
3279 ata_data_xfer(ap, buf, count, do_write);
3280
3281 kunmap(page);
3282
563a6e1f 3283 if (bytes)
1da177e4 3284 goto next_sg;
1da177e4
LT
3285}
3286
6ae4cfb5
AL
3287/**
3288 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3289 * @qc: Command on going
3290 *
3291 * Transfer Transfer data from/to the ATAPI device.
3292 *
3293 * LOCKING:
3294 * Inherited from caller.
6ae4cfb5
AL
3295 */
3296
1da177e4
LT
3297static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3298{
3299 struct ata_port *ap = qc->ap;
3300 struct ata_device *dev = qc->dev;
3301 unsigned int ireason, bc_lo, bc_hi, bytes;
3302 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3303
3304 ap->ops->tf_read(ap, &qc->tf);
3305 ireason = qc->tf.nsect;
3306 bc_lo = qc->tf.lbam;
3307 bc_hi = qc->tf.lbah;
3308 bytes = (bc_hi << 8) | bc_lo;
3309
3310 /* shall be cleared to zero, indicating xfer of data */
3311 if (ireason & (1 << 0))
3312 goto err_out;
3313
3314 /* make sure transfer direction matches expected */
3315 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3316 if (do_write != i_write)
3317 goto err_out;
3318
3319 __atapi_pio_bytes(qc, bytes);
3320
3321 return;
3322
3323err_out:
3324 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3325 ap->id, dev->devno);
11a56d24 3326 qc->err_mask |= AC_ERR_HSM;
14be71f4 3327 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3328}
3329
3330/**
6f0ef4fa
RD
3331 * ata_pio_block - start PIO on a block
3332 * @ap: the target ata_port
1da177e4
LT
3333 *
3334 * LOCKING:
0cba632b 3335 * None. (executing in kernel thread context)
1da177e4
LT
3336 */
3337
3338static void ata_pio_block(struct ata_port *ap)
3339{
3340 struct ata_queued_cmd *qc;
3341 u8 status;
3342
3343 /*
6f0ef4fa 3344 * This is purely heuristic. This is a fast path.
1da177e4
LT
3345 * Sometimes when we enter, BSY will be cleared in
3346 * a chk-status or two. If not, the drive is probably seeking
3347 * or something. Snooze for a couple msecs, then
3348 * chk-status again. If still busy, fall back to
14be71f4 3349 * HSM_ST_POLL state.
1da177e4
LT
3350 */
3351 status = ata_busy_wait(ap, ATA_BUSY, 5);
3352 if (status & ATA_BUSY) {
3353 msleep(2);
3354 status = ata_busy_wait(ap, ATA_BUSY, 10);
3355 if (status & ATA_BUSY) {
14be71f4 3356 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3357 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3358 return;
3359 }
3360 }
3361
3362 qc = ata_qc_from_tag(ap, ap->active_tag);
3363 assert(qc != NULL);
3364
fe79e683
AL
3365 /* check error */
3366 if (status & (ATA_ERR | ATA_DF)) {
3367 qc->err_mask |= AC_ERR_DEV;
3368 ap->hsm_task_state = HSM_ST_ERR;
3369 return;
3370 }
3371
3372 /* transfer data if any */
1da177e4 3373 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3374 /* DRQ=0 means no more data to transfer */
1da177e4 3375 if ((status & ATA_DRQ) == 0) {
14be71f4 3376 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3377 return;
3378 }
3379
3380 atapi_pio_bytes(qc);
3381 } else {
3382 /* handle BSY=0, DRQ=0 as error */
3383 if ((status & ATA_DRQ) == 0) {
11a56d24 3384 qc->err_mask |= AC_ERR_HSM;
14be71f4 3385 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3386 return;
3387 }
3388
3389 ata_pio_sector(qc);
3390 }
3391}
3392
3393static void ata_pio_error(struct ata_port *ap)
3394{
3395 struct ata_queued_cmd *qc;
a7dac447
JG
3396
3397 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
1da177e4
LT
3398
3399 qc = ata_qc_from_tag(ap, ap->active_tag);
3400 assert(qc != NULL);
3401
1c848984
AL
3402 /* make sure qc->err_mask is available to
3403 * know what's wrong and recover
3404 */
3405 assert(qc->err_mask);
3406
14be71f4 3407 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3408
a22e2eb0 3409 ata_poll_qc_complete(qc);
1da177e4
LT
3410}
3411
3412static void ata_pio_task(void *_data)
3413{
3414 struct ata_port *ap = _data;
7fb6ec28
JG
3415 unsigned long timeout;
3416 int qc_completed;
3417
3418fsm_start:
3419 timeout = 0;
3420 qc_completed = 0;
1da177e4 3421
14be71f4
AL
3422 switch (ap->hsm_task_state) {
3423 case HSM_ST_IDLE:
1da177e4
LT
3424 return;
3425
14be71f4 3426 case HSM_ST:
1da177e4
LT
3427 ata_pio_block(ap);
3428 break;
3429
14be71f4 3430 case HSM_ST_LAST:
7fb6ec28 3431 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3432 break;
3433
14be71f4
AL
3434 case HSM_ST_POLL:
3435 case HSM_ST_LAST_POLL:
1da177e4
LT
3436 timeout = ata_pio_poll(ap);
3437 break;
3438
14be71f4
AL
3439 case HSM_ST_TMOUT:
3440 case HSM_ST_ERR:
1da177e4
LT
3441 ata_pio_error(ap);
3442 return;
3443 }
3444
3445 if (timeout)
95064379 3446 ata_queue_delayed_pio_task(ap, timeout);
7fb6ec28
JG
3447 else if (!qc_completed)
3448 goto fsm_start;
1da177e4
LT
3449}
3450
1da177e4
LT
3451/**
3452 * ata_qc_timeout - Handle timeout of queued command
3453 * @qc: Command that timed out
3454 *
3455 * Some part of the kernel (currently, only the SCSI layer)
3456 * has noticed that the active command on port @ap has not
3457 * completed after a specified length of time. Handle this
3458 * condition by disabling DMA (if necessary) and completing
3459 * transactions, with error if necessary.
3460 *
3461 * This also handles the case of the "lost interrupt", where
3462 * for some reason (possibly hardware bug, possibly driver bug)
3463 * an interrupt was not delivered to the driver, even though the
3464 * transaction completed successfully.
3465 *
3466 * LOCKING:
0cba632b 3467 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3468 */
3469
3470static void ata_qc_timeout(struct ata_queued_cmd *qc)
3471{
3472 struct ata_port *ap = qc->ap;
b8f6153e 3473 struct ata_host_set *host_set = ap->host_set;
1da177e4 3474 u8 host_stat = 0, drv_stat;
b8f6153e 3475 unsigned long flags;
1da177e4
LT
3476
3477 DPRINTK("ENTER\n");
3478
c18d06f8
TH
3479 ata_flush_pio_tasks(ap);
3480 ap->hsm_task_state = HSM_ST_IDLE;
3481
b8f6153e
JG
3482 spin_lock_irqsave(&host_set->lock, flags);
3483
1da177e4
LT
3484 switch (qc->tf.protocol) {
3485
3486 case ATA_PROT_DMA:
3487 case ATA_PROT_ATAPI_DMA:
3488 host_stat = ap->ops->bmdma_status(ap);
3489
3490 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3491 ap->ops->bmdma_stop(qc);
1da177e4
LT
3492
3493 /* fall through */
3494
3495 default:
3496 ata_altstatus(ap);
3497 drv_stat = ata_chk_status(ap);
3498
3499 /* ack bmdma irq events */
3500 ap->ops->irq_clear(ap);
3501
3502 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3503 ap->id, qc->tf.command, drv_stat, host_stat);
3504
3505 /* complete taskfile transaction */
a22e2eb0 3506 qc->err_mask |= ac_err_mask(drv_stat);
1da177e4
LT
3507 break;
3508 }
b8f6153e
JG
3509
3510 spin_unlock_irqrestore(&host_set->lock, flags);
3511
a72ec4ce
TH
3512 ata_eh_qc_complete(qc);
3513
1da177e4
LT
3514 DPRINTK("EXIT\n");
3515}
3516
3517/**
3518 * ata_eng_timeout - Handle timeout of queued command
3519 * @ap: Port on which timed-out command is active
3520 *
3521 * Some part of the kernel (currently, only the SCSI layer)
3522 * has noticed that the active command on port @ap has not
3523 * completed after a specified length of time. Handle this
3524 * condition by disabling DMA (if necessary) and completing
3525 * transactions, with error if necessary.
3526 *
3527 * This also handles the case of the "lost interrupt", where
3528 * for some reason (possibly hardware bug, possibly driver bug)
3529 * an interrupt was not delivered to the driver, even though the
3530 * transaction completed successfully.
3531 *
3532 * LOCKING:
3533 * Inherited from SCSI layer (none, can sleep)
3534 */
3535
3536void ata_eng_timeout(struct ata_port *ap)
3537{
1da177e4
LT
3538 DPRINTK("ENTER\n");
3539
f6379020 3540 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
1da177e4 3541
1da177e4
LT
3542 DPRINTK("EXIT\n");
3543}
3544
3545/**
3546 * ata_qc_new - Request an available ATA command, for queueing
3547 * @ap: Port associated with device @dev
3548 * @dev: Device from whom we request an available command structure
3549 *
3550 * LOCKING:
0cba632b 3551 * None.
1da177e4
LT
3552 */
3553
3554static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3555{
3556 struct ata_queued_cmd *qc = NULL;
3557 unsigned int i;
3558
3559 for (i = 0; i < ATA_MAX_QUEUE; i++)
3560 if (!test_and_set_bit(i, &ap->qactive)) {
3561 qc = ata_qc_from_tag(ap, i);
3562 break;
3563 }
3564
3565 if (qc)
3566 qc->tag = i;
3567
3568 return qc;
3569}
3570
3571/**
3572 * ata_qc_new_init - Request an available ATA command, and initialize it
3573 * @ap: Port associated with device @dev
3574 * @dev: Device from whom we request an available command structure
3575 *
3576 * LOCKING:
0cba632b 3577 * None.
1da177e4
LT
3578 */
3579
3580struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3581 struct ata_device *dev)
3582{
3583 struct ata_queued_cmd *qc;
3584
3585 qc = ata_qc_new(ap);
3586 if (qc) {
1da177e4
LT
3587 qc->scsicmd = NULL;
3588 qc->ap = ap;
3589 qc->dev = dev;
1da177e4 3590
2c13b7ce 3591 ata_qc_reinit(qc);
1da177e4
LT
3592 }
3593
3594 return qc;
3595}
3596
1da177e4
LT
3597/**
3598 * ata_qc_free - free unused ata_queued_cmd
3599 * @qc: Command to complete
3600 *
3601 * Designed to free unused ata_queued_cmd object
3602 * in case something prevents using it.
3603 *
3604 * LOCKING:
0cba632b 3605 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3606 */
3607void ata_qc_free(struct ata_queued_cmd *qc)
3608{
4ba946e9
TH
3609 struct ata_port *ap = qc->ap;
3610 unsigned int tag;
3611
1da177e4 3612 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 3613
4ba946e9
TH
3614 qc->flags = 0;
3615 tag = qc->tag;
3616 if (likely(ata_tag_valid(tag))) {
3617 if (tag == ap->active_tag)
3618 ap->active_tag = ATA_TAG_POISON;
3619 qc->tag = ATA_TAG_POISON;
3620 clear_bit(tag, &ap->qactive);
3621 }
1da177e4
LT
3622}
3623
341963b9 3624inline void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 3625{
1da177e4
LT
3626 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3627 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3628
3629 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3630 ata_sg_clean(qc);
3631
3f3791d3
AL
3632 /* atapi: mark qc as inactive to prevent the interrupt handler
3633 * from completing the command twice later, before the error handler
3634 * is called. (when rc != 0 and atapi request sense is needed)
3635 */
3636 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3637
1da177e4 3638 /* call completion callback */
77853bf2 3639 qc->complete_fn(qc);
1da177e4
LT
3640}
3641
341963b9
TH
3642/**
3643 * ata_qc_complete - Complete an active ATA command
3644 * @qc: Command to complete
3645 * @err_mask: ATA Status register contents
3646 *
3647 * Indicate to the mid and upper layers that an ATA
3648 * command has completed, with either an ok or not-ok status.
3649 *
3650 * LOCKING:
3651 * spin_lock_irqsave(host_set lock)
3652 */
3653void ata_qc_complete(struct ata_queued_cmd *qc)
3654{
3655 if (unlikely(qc->flags & ATA_QCFLAG_EH_SCHEDULED))
3656 return;
3657
3658 __ata_qc_complete(qc);
3659}
3660
1da177e4
LT
3661static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3662{
3663 struct ata_port *ap = qc->ap;
3664
3665 switch (qc->tf.protocol) {
3666 case ATA_PROT_DMA:
3667 case ATA_PROT_ATAPI_DMA:
3668 return 1;
3669
3670 case ATA_PROT_ATAPI:
3671 case ATA_PROT_PIO:
3672 case ATA_PROT_PIO_MULT:
3673 if (ap->flags & ATA_FLAG_PIO_DMA)
3674 return 1;
3675
3676 /* fall through */
3677
3678 default:
3679 return 0;
3680 }
3681
3682 /* never reached */
3683}
3684
3685/**
3686 * ata_qc_issue - issue taskfile to device
3687 * @qc: command to issue to device
3688 *
3689 * Prepare an ATA command to submission to device.
3690 * This includes mapping the data into a DMA-able
3691 * area, filling in the S/G table, and finally
3692 * writing the taskfile to hardware, starting the command.
3693 *
3694 * LOCKING:
3695 * spin_lock_irqsave(host_set lock)
3696 *
3697 * RETURNS:
9a3d9eb0 3698 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
3699 */
3700
9a3d9eb0 3701unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
3702{
3703 struct ata_port *ap = qc->ap;
3704
3705 if (ata_should_dma_map(qc)) {
3706 if (qc->flags & ATA_QCFLAG_SG) {
3707 if (ata_sg_setup(qc))
8e436af9 3708 goto sg_err;
1da177e4
LT
3709 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3710 if (ata_sg_setup_one(qc))
8e436af9 3711 goto sg_err;
1da177e4
LT
3712 }
3713 } else {
3714 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3715 }
3716
3717 ap->ops->qc_prep(qc);
3718
3719 qc->ap->active_tag = qc->tag;
3720 qc->flags |= ATA_QCFLAG_ACTIVE;
3721
3722 return ap->ops->qc_issue(qc);
3723
8e436af9
TH
3724sg_err:
3725 qc->flags &= ~ATA_QCFLAG_DMAMAP;
9a3d9eb0 3726 return AC_ERR_SYSTEM;
1da177e4
LT
3727}
3728
0baab86b 3729
1da177e4
LT
3730/**
3731 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3732 * @qc: command to issue to device
3733 *
3734 * Using various libata functions and hooks, this function
3735 * starts an ATA command. ATA commands are grouped into
3736 * classes called "protocols", and issuing each type of protocol
3737 * is slightly different.
3738 *
0baab86b
EF
3739 * May be used as the qc_issue() entry in ata_port_operations.
3740 *
1da177e4
LT
3741 * LOCKING:
3742 * spin_lock_irqsave(host_set lock)
3743 *
3744 * RETURNS:
9a3d9eb0 3745 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
3746 */
3747
9a3d9eb0 3748unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
3749{
3750 struct ata_port *ap = qc->ap;
3751
3752 ata_dev_select(ap, qc->dev->devno, 1, 0);
3753
3754 switch (qc->tf.protocol) {
3755 case ATA_PROT_NODATA:
e5338254 3756 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
3757 break;
3758
3759 case ATA_PROT_DMA:
3760 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3761 ap->ops->bmdma_setup(qc); /* set up bmdma */
3762 ap->ops->bmdma_start(qc); /* initiate bmdma */
3763 break;
3764
3765 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3766 ata_qc_set_polling(qc);
e5338254 3767 ata_tf_to_host(ap, &qc->tf);
14be71f4 3768 ap->hsm_task_state = HSM_ST;
95064379 3769 ata_queue_pio_task(ap);
1da177e4
LT
3770 break;
3771
3772 case ATA_PROT_ATAPI:
3773 ata_qc_set_polling(qc);
e5338254 3774 ata_tf_to_host(ap, &qc->tf);
95064379 3775 ata_queue_packet_task(ap);
1da177e4
LT
3776 break;
3777
3778 case ATA_PROT_ATAPI_NODATA:
c1389503 3779 ap->flags |= ATA_FLAG_NOINTR;
e5338254 3780 ata_tf_to_host(ap, &qc->tf);
95064379 3781 ata_queue_packet_task(ap);
1da177e4
LT
3782 break;
3783
3784 case ATA_PROT_ATAPI_DMA:
c1389503 3785 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
3786 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3787 ap->ops->bmdma_setup(qc); /* set up bmdma */
95064379 3788 ata_queue_packet_task(ap);
1da177e4
LT
3789 break;
3790
3791 default:
3792 WARN_ON(1);
9a3d9eb0 3793 return AC_ERR_SYSTEM;
1da177e4
LT
3794 }
3795
3796 return 0;
3797}
3798
3799/**
0baab86b 3800 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
1da177e4
LT
3801 * @qc: Info associated with this ATA transaction.
3802 *
3803 * LOCKING:
3804 * spin_lock_irqsave(host_set lock)
3805 */
3806
3807static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3808{
3809 struct ata_port *ap = qc->ap;
3810 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3811 u8 dmactl;
3812 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3813
3814 /* load PRD table addr. */
3815 mb(); /* make sure PRD table writes are visible to controller */
3816 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3817
3818 /* specify data direction, triple-check start bit is clear */
3819 dmactl = readb(mmio + ATA_DMA_CMD);
3820 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3821 if (!rw)
3822 dmactl |= ATA_DMA_WR;
3823 writeb(dmactl, mmio + ATA_DMA_CMD);
3824
3825 /* issue r/w command */
3826 ap->ops->exec_command(ap, &qc->tf);
3827}
3828
3829/**
b73fc89f 3830 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
1da177e4
LT
3831 * @qc: Info associated with this ATA transaction.
3832 *
3833 * LOCKING:
3834 * spin_lock_irqsave(host_set lock)
3835 */
3836
3837static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3838{
3839 struct ata_port *ap = qc->ap;
3840 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3841 u8 dmactl;
3842
3843 /* start host DMA transaction */
3844 dmactl = readb(mmio + ATA_DMA_CMD);
3845 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3846
3847 /* Strictly, one may wish to issue a readb() here, to
3848 * flush the mmio write. However, control also passes
3849 * to the hardware at this point, and it will interrupt
3850 * us when we are to resume control. So, in effect,
3851 * we don't care when the mmio write flushes.
3852 * Further, a read of the DMA status register _immediately_
3853 * following the write may not be what certain flaky hardware
3854 * is expected, so I think it is best to not add a readb()
3855 * without first all the MMIO ATA cards/mobos.
3856 * Or maybe I'm just being paranoid.
3857 */
3858}
3859
3860/**
3861 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3862 * @qc: Info associated with this ATA transaction.
3863 *
3864 * LOCKING:
3865 * spin_lock_irqsave(host_set lock)
3866 */
3867
3868static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3869{
3870 struct ata_port *ap = qc->ap;
3871 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3872 u8 dmactl;
3873
3874 /* load PRD table addr. */
3875 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3876
3877 /* specify data direction, triple-check start bit is clear */
3878 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3879 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3880 if (!rw)
3881 dmactl |= ATA_DMA_WR;
3882 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3883
3884 /* issue r/w command */
3885 ap->ops->exec_command(ap, &qc->tf);
3886}
3887
3888/**
3889 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3890 * @qc: Info associated with this ATA transaction.
3891 *
3892 * LOCKING:
3893 * spin_lock_irqsave(host_set lock)
3894 */
3895
3896static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3897{
3898 struct ata_port *ap = qc->ap;
3899 u8 dmactl;
3900
3901 /* start host DMA transaction */
3902 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3903 outb(dmactl | ATA_DMA_START,
3904 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3905}
3906
0baab86b
EF
3907
3908/**
3909 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3910 * @qc: Info associated with this ATA transaction.
3911 *
3912 * Writes the ATA_DMA_START flag to the DMA command register.
3913 *
3914 * May be used as the bmdma_start() entry in ata_port_operations.
3915 *
3916 * LOCKING:
3917 * spin_lock_irqsave(host_set lock)
3918 */
1da177e4
LT
3919void ata_bmdma_start(struct ata_queued_cmd *qc)
3920{
3921 if (qc->ap->flags & ATA_FLAG_MMIO)
3922 ata_bmdma_start_mmio(qc);
3923 else
3924 ata_bmdma_start_pio(qc);
3925}
3926
0baab86b
EF
3927
3928/**
3929 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3930 * @qc: Info associated with this ATA transaction.
3931 *
3932 * Writes address of PRD table to device's PRD Table Address
3933 * register, sets the DMA control register, and calls
3934 * ops->exec_command() to start the transfer.
3935 *
3936 * May be used as the bmdma_setup() entry in ata_port_operations.
3937 *
3938 * LOCKING:
3939 * spin_lock_irqsave(host_set lock)
3940 */
1da177e4
LT
3941void ata_bmdma_setup(struct ata_queued_cmd *qc)
3942{
3943 if (qc->ap->flags & ATA_FLAG_MMIO)
3944 ata_bmdma_setup_mmio(qc);
3945 else
3946 ata_bmdma_setup_pio(qc);
3947}
3948
0baab86b
EF
3949
3950/**
3951 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
decc6d0b 3952 * @ap: Port associated with this ATA transaction.
0baab86b
EF
3953 *
3954 * Clear interrupt and error flags in DMA status register.
3955 *
3956 * May be used as the irq_clear() entry in ata_port_operations.
3957 *
3958 * LOCKING:
3959 * spin_lock_irqsave(host_set lock)
3960 */
3961
1da177e4
LT
3962void ata_bmdma_irq_clear(struct ata_port *ap)
3963{
3964 if (ap->flags & ATA_FLAG_MMIO) {
3965 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3966 writeb(readb(mmio), mmio);
3967 } else {
3968 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3969 outb(inb(addr), addr);
3970 }
3971
3972}
3973
0baab86b
EF
3974
3975/**
3976 * ata_bmdma_status - Read PCI IDE BMDMA status
decc6d0b 3977 * @ap: Port associated with this ATA transaction.
0baab86b
EF
3978 *
3979 * Read and return BMDMA status register.
3980 *
3981 * May be used as the bmdma_status() entry in ata_port_operations.
3982 *
3983 * LOCKING:
3984 * spin_lock_irqsave(host_set lock)
3985 */
3986
1da177e4
LT
3987u8 ata_bmdma_status(struct ata_port *ap)
3988{
3989 u8 host_stat;
3990 if (ap->flags & ATA_FLAG_MMIO) {
3991 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3992 host_stat = readb(mmio + ATA_DMA_STATUS);
3993 } else
ee500aab 3994 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
1da177e4
LT
3995 return host_stat;
3996}
3997
0baab86b
EF
3998
3999/**
4000 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
b73fc89f 4001 * @qc: Command we are ending DMA for
0baab86b
EF
4002 *
4003 * Clears the ATA_DMA_START flag in the dma control register
4004 *
4005 * May be used as the bmdma_stop() entry in ata_port_operations.
4006 *
4007 * LOCKING:
4008 * spin_lock_irqsave(host_set lock)
4009 */
4010
b73fc89f 4011void ata_bmdma_stop(struct ata_queued_cmd *qc)
1da177e4 4012{
b73fc89f 4013 struct ata_port *ap = qc->ap;
1da177e4
LT
4014 if (ap->flags & ATA_FLAG_MMIO) {
4015 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4016
4017 /* clear start/stop bit */
4018 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4019 mmio + ATA_DMA_CMD);
4020 } else {
4021 /* clear start/stop bit */
4022 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4023 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4024 }
4025
4026 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4027 ata_altstatus(ap); /* dummy read */
4028}
4029
4030/**
4031 * ata_host_intr - Handle host interrupt for given (port, task)
4032 * @ap: Port on which interrupt arrived (possibly...)
4033 * @qc: Taskfile currently active in engine
4034 *
4035 * Handle host interrupt for given queued command. Currently,
4036 * only DMA interrupts are handled. All other commands are
4037 * handled via polling with interrupts disabled (nIEN bit).
4038 *
4039 * LOCKING:
4040 * spin_lock_irqsave(host_set lock)
4041 *
4042 * RETURNS:
4043 * One if interrupt was handled, zero if not (shared irq).
4044 */
4045
4046inline unsigned int ata_host_intr (struct ata_port *ap,
4047 struct ata_queued_cmd *qc)
4048{
4049 u8 status, host_stat;
4050
4051 switch (qc->tf.protocol) {
4052
4053 case ATA_PROT_DMA:
4054 case ATA_PROT_ATAPI_DMA:
4055 case ATA_PROT_ATAPI:
4056 /* check status of DMA engine */
4057 host_stat = ap->ops->bmdma_status(ap);
4058 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4059
4060 /* if it's not our irq... */
4061 if (!(host_stat & ATA_DMA_INTR))
4062 goto idle_irq;
4063
4064 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4065 ap->ops->bmdma_stop(qc);
1da177e4
LT
4066
4067 /* fall through */
4068
4069 case ATA_PROT_ATAPI_NODATA:
4070 case ATA_PROT_NODATA:
4071 /* check altstatus */
4072 status = ata_altstatus(ap);
4073 if (status & ATA_BUSY)
4074 goto idle_irq;
4075
4076 /* check main status, clearing INTRQ */
4077 status = ata_chk_status(ap);
4078 if (unlikely(status & ATA_BUSY))
4079 goto idle_irq;
4080 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4081 ap->id, qc->tf.protocol, status);
4082
4083 /* ack bmdma irq events */
4084 ap->ops->irq_clear(ap);
4085
4086 /* complete taskfile transaction */
a22e2eb0
AL
4087 qc->err_mask |= ac_err_mask(status);
4088 ata_qc_complete(qc);
1da177e4
LT
4089 break;
4090
4091 default:
4092 goto idle_irq;
4093 }
4094
4095 return 1; /* irq handled */
4096
4097idle_irq:
4098 ap->stats.idle_irq++;
4099
4100#ifdef ATA_IRQ_TRAP
4101 if ((ap->stats.idle_irq % 1000) == 0) {
4102 handled = 1;
4103 ata_irq_ack(ap, 0); /* debug trap */
4104 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4105 }
4106#endif
4107 return 0; /* irq not handled */
4108}
4109
4110/**
4111 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4112 * @irq: irq line (unused)
4113 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4114 * @regs: unused
4115 *
0cba632b
JG
4116 * Default interrupt handler for PCI IDE devices. Calls
4117 * ata_host_intr() for each port that is not disabled.
4118 *
1da177e4 4119 * LOCKING:
0cba632b 4120 * Obtains host_set lock during operation.
1da177e4
LT
4121 *
4122 * RETURNS:
0cba632b 4123 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4124 */
4125
4126irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4127{
4128 struct ata_host_set *host_set = dev_instance;
4129 unsigned int i;
4130 unsigned int handled = 0;
4131 unsigned long flags;
4132
4133 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4134 spin_lock_irqsave(&host_set->lock, flags);
4135
4136 for (i = 0; i < host_set->n_ports; i++) {
4137 struct ata_port *ap;
4138
4139 ap = host_set->ports[i];
c1389503
TH
4140 if (ap &&
4141 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4142 struct ata_queued_cmd *qc;
4143
4144 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4145 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4146 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4147 handled |= ata_host_intr(ap, qc);
4148 }
4149 }
4150
4151 spin_unlock_irqrestore(&host_set->lock, flags);
4152
4153 return IRQ_RETVAL(handled);
4154}
4155
4156/**
4157 * atapi_packet_task - Write CDB bytes to hardware
4158 * @_data: Port to which ATAPI device is attached.
4159 *
4160 * When device has indicated its readiness to accept
4161 * a CDB, this function is called. Send the CDB.
4162 * If DMA is to be performed, exit immediately.
4163 * Otherwise, we are in polling mode, so poll
4164 * status under operation succeeds or fails.
4165 *
4166 * LOCKING:
4167 * Kernel thread context (may sleep)
4168 */
4169
4170static void atapi_packet_task(void *_data)
4171{
4172 struct ata_port *ap = _data;
4173 struct ata_queued_cmd *qc;
4174 u8 status;
4175
4176 qc = ata_qc_from_tag(ap, ap->active_tag);
4177 assert(qc != NULL);
4178 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4179
4180 /* sleep-wait for BSY to clear */
4181 DPRINTK("busy wait\n");
d8fe452b 4182 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
11a56d24 4183 qc->err_mask |= AC_ERR_TIMEOUT;
d8fe452b
AL
4184 goto err_out;
4185 }
1da177e4
LT
4186
4187 /* make sure DRQ is set */
4188 status = ata_chk_status(ap);
d8fe452b 4189 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
11a56d24 4190 qc->err_mask |= AC_ERR_HSM;
1da177e4 4191 goto err_out;
d8fe452b 4192 }
1da177e4
LT
4193
4194 /* send SCSI cdb */
4195 DPRINTK("send cdb\n");
4196 assert(ap->cdb_len >= 12);
1da177e4 4197
c1389503
TH
4198 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4199 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4200 unsigned long flags;
1da177e4 4201
c1389503
TH
4202 /* Once we're done issuing command and kicking bmdma,
4203 * irq handler takes over. To not lose irq, we need
4204 * to clear NOINTR flag before sending cdb, but
4205 * interrupt handler shouldn't be invoked before we're
4206 * finished. Hence, the following locking.
4207 */
4208 spin_lock_irqsave(&ap->host_set->lock, flags);
4209 ap->flags &= ~ATA_FLAG_NOINTR;
4210 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4211 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4212 ap->ops->bmdma_start(qc); /* initiate bmdma */
4213 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4214 } else {
4215 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
1da177e4 4216
c1389503 4217 /* PIO commands are handled by polling */
14be71f4 4218 ap->hsm_task_state = HSM_ST;
95064379 4219 ata_queue_pio_task(ap);
1da177e4
LT
4220 }
4221
4222 return;
4223
4224err_out:
a22e2eb0 4225 ata_poll_qc_complete(qc);
1da177e4
LT
4226}
4227
0baab86b 4228
9b847548
JA
4229/*
4230 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4231 * without filling any other registers
4232 */
4233static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4234 u8 cmd)
4235{
4236 struct ata_taskfile tf;
4237 int err;
4238
4239 ata_tf_init(ap, &tf, dev->devno);
4240
4241 tf.command = cmd;
4242 tf.flags |= ATA_TFLAG_DEVICE;
4243 tf.protocol = ATA_PROT_NODATA;
4244
4245 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4246 if (err)
4247 printk(KERN_ERR "%s: ata command failed: %d\n",
4248 __FUNCTION__, err);
4249
4250 return err;
4251}
4252
4253static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4254{
4255 u8 cmd;
4256
4257 if (!ata_try_flush_cache(dev))
4258 return 0;
4259
4260 if (ata_id_has_flush_ext(dev->id))
4261 cmd = ATA_CMD_FLUSH_EXT;
4262 else
4263 cmd = ATA_CMD_FLUSH;
4264
4265 return ata_do_simple_cmd(ap, dev, cmd);
4266}
4267
4268static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4269{
4270 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4271}
4272
4273static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4274{
4275 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4276}
4277
4278/**
4279 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4280 * @ap: port the device is connected to
4281 * @dev: the device to resume
9b847548
JA
4282 *
4283 * Kick the drive back into action, by sending it an idle immediate
4284 * command and making sure its transfer mode matches between drive
4285 * and host.
4286 *
4287 */
4288int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4289{
4290 if (ap->flags & ATA_FLAG_SUSPENDED) {
4291 ap->flags &= ~ATA_FLAG_SUSPENDED;
4292 ata_set_mode(ap);
4293 }
4294 if (!ata_dev_present(dev))
4295 return 0;
4296 if (dev->class == ATA_DEV_ATA)
4297 ata_start_drive(ap, dev);
4298
4299 return 0;
4300}
4301
4302/**
4303 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4304 * @ap: port the device is connected to
4305 * @dev: the device to suspend
9b847548
JA
4306 *
4307 * Flush the cache on the drive, if appropriate, then issue a
4308 * standbynow command.
9b847548
JA
4309 */
4310int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4311{
4312 if (!ata_dev_present(dev))
4313 return 0;
4314 if (dev->class == ATA_DEV_ATA)
4315 ata_flush_cache(ap, dev);
4316
4317 ata_standby_drive(ap, dev);
4318 ap->flags |= ATA_FLAG_SUSPENDED;
4319 return 0;
4320}
4321
c893a3ae
RD
4322/**
4323 * ata_port_start - Set port up for dma.
4324 * @ap: Port to initialize
4325 *
4326 * Called just after data structures for each port are
4327 * initialized. Allocates space for PRD table.
4328 *
4329 * May be used as the port_start() entry in ata_port_operations.
4330 *
4331 * LOCKING:
4332 * Inherited from caller.
4333 */
4334
1da177e4
LT
4335int ata_port_start (struct ata_port *ap)
4336{
4337 struct device *dev = ap->host_set->dev;
6037d6bb 4338 int rc;
1da177e4
LT
4339
4340 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4341 if (!ap->prd)
4342 return -ENOMEM;
4343
6037d6bb
JG
4344 rc = ata_pad_alloc(ap, dev);
4345 if (rc) {
cedc9a47 4346 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4347 return rc;
cedc9a47
JG
4348 }
4349
1da177e4
LT
4350 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4351
4352 return 0;
4353}
4354
0baab86b
EF
4355
4356/**
4357 * ata_port_stop - Undo ata_port_start()
4358 * @ap: Port to shut down
4359 *
4360 * Frees the PRD table.
4361 *
4362 * May be used as the port_stop() entry in ata_port_operations.
4363 *
4364 * LOCKING:
6f0ef4fa 4365 * Inherited from caller.
0baab86b
EF
4366 */
4367
1da177e4
LT
4368void ata_port_stop (struct ata_port *ap)
4369{
4370 struct device *dev = ap->host_set->dev;
4371
4372 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4373 ata_pad_free(ap, dev);
1da177e4
LT
4374}
4375
aa8f0dc6
JG
4376void ata_host_stop (struct ata_host_set *host_set)
4377{
4378 if (host_set->mmio_base)
4379 iounmap(host_set->mmio_base);
4380}
4381
4382
1da177e4
LT
4383/**
4384 * ata_host_remove - Unregister SCSI host structure with upper layers
4385 * @ap: Port to unregister
4386 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4387 *
4388 * LOCKING:
6f0ef4fa 4389 * Inherited from caller.
1da177e4
LT
4390 */
4391
4392static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4393{
4394 struct Scsi_Host *sh = ap->host;
4395
4396 DPRINTK("ENTER\n");
4397
4398 if (do_unregister)
4399 scsi_remove_host(sh);
4400
4401 ap->ops->port_stop(ap);
4402}
4403
4404/**
4405 * ata_host_init - Initialize an ata_port structure
4406 * @ap: Structure to initialize
4407 * @host: associated SCSI mid-layer structure
4408 * @host_set: Collection of hosts to which @ap belongs
4409 * @ent: Probe information provided by low-level driver
4410 * @port_no: Port number associated with this ata_port
4411 *
0cba632b
JG
4412 * Initialize a new ata_port structure, and its associated
4413 * scsi_host.
4414 *
1da177e4 4415 * LOCKING:
0cba632b 4416 * Inherited from caller.
1da177e4
LT
4417 */
4418
4419static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4420 struct ata_host_set *host_set,
057ace5e 4421 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4422{
4423 unsigned int i;
4424
4425 host->max_id = 16;
4426 host->max_lun = 1;
4427 host->max_channel = 1;
4428 host->unique_id = ata_unique_id++;
4429 host->max_cmd_len = 12;
12413197 4430
1da177e4
LT
4431 ap->flags = ATA_FLAG_PORT_DISABLED;
4432 ap->id = host->unique_id;
4433 ap->host = host;
4434 ap->ctl = ATA_DEVCTL_OBS;
4435 ap->host_set = host_set;
4436 ap->port_no = port_no;
4437 ap->hard_port_no =
4438 ent->legacy_mode ? ent->hard_port_no : port_no;
4439 ap->pio_mask = ent->pio_mask;
4440 ap->mwdma_mask = ent->mwdma_mask;
4441 ap->udma_mask = ent->udma_mask;
4442 ap->flags |= ent->host_flags;
4443 ap->ops = ent->port_ops;
4444 ap->cbl = ATA_CBL_NONE;
4445 ap->active_tag = ATA_TAG_POISON;
4446 ap->last_ctl = 0xFF;
4447
4448 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4449 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
a72ec4ce 4450 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4
LT
4451
4452 for (i = 0; i < ATA_MAX_DEVICES; i++)
4453 ap->device[i].devno = i;
4454
4455#ifdef ATA_IRQ_TRAP
4456 ap->stats.unhandled_irq = 1;
4457 ap->stats.idle_irq = 1;
4458#endif
4459
4460 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4461}
4462
4463/**
4464 * ata_host_add - Attach low-level ATA driver to system
4465 * @ent: Information provided by low-level driver
4466 * @host_set: Collections of ports to which we add
4467 * @port_no: Port number associated with this host
4468 *
0cba632b
JG
4469 * Attach low-level ATA driver to system.
4470 *
1da177e4 4471 * LOCKING:
0cba632b 4472 * PCI/etc. bus probe sem.
1da177e4
LT
4473 *
4474 * RETURNS:
0cba632b 4475 * New ata_port on success, for NULL on error.
1da177e4
LT
4476 */
4477
057ace5e 4478static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4479 struct ata_host_set *host_set,
4480 unsigned int port_no)
4481{
4482 struct Scsi_Host *host;
4483 struct ata_port *ap;
4484 int rc;
4485
4486 DPRINTK("ENTER\n");
4487 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4488 if (!host)
4489 return NULL;
4490
4491 ap = (struct ata_port *) &host->hostdata[0];
4492
4493 ata_host_init(ap, host, host_set, ent, port_no);
4494
4495 rc = ap->ops->port_start(ap);
4496 if (rc)
4497 goto err_out;
4498
4499 return ap;
4500
4501err_out:
4502 scsi_host_put(host);
4503 return NULL;
4504}
4505
4506/**
0cba632b
JG
4507 * ata_device_add - Register hardware device with ATA and SCSI layers
4508 * @ent: Probe information describing hardware device to be registered
4509 *
4510 * This function processes the information provided in the probe
4511 * information struct @ent, allocates the necessary ATA and SCSI
4512 * host information structures, initializes them, and registers
4513 * everything with requisite kernel subsystems.
4514 *
4515 * This function requests irqs, probes the ATA bus, and probes
4516 * the SCSI bus.
1da177e4
LT
4517 *
4518 * LOCKING:
0cba632b 4519 * PCI/etc. bus probe sem.
1da177e4
LT
4520 *
4521 * RETURNS:
0cba632b 4522 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4523 */
4524
057ace5e 4525int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4526{
4527 unsigned int count = 0, i;
4528 struct device *dev = ent->dev;
4529 struct ata_host_set *host_set;
4530
4531 DPRINTK("ENTER\n");
4532 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4533 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4534 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4535 if (!host_set)
4536 return 0;
1da177e4
LT
4537 spin_lock_init(&host_set->lock);
4538
4539 host_set->dev = dev;
4540 host_set->n_ports = ent->n_ports;
4541 host_set->irq = ent->irq;
4542 host_set->mmio_base = ent->mmio_base;
4543 host_set->private_data = ent->private_data;
4544 host_set->ops = ent->port_ops;
4545
4546 /* register each port bound to this device */
4547 for (i = 0; i < ent->n_ports; i++) {
4548 struct ata_port *ap;
4549 unsigned long xfer_mode_mask;
4550
4551 ap = ata_host_add(ent, host_set, i);
4552 if (!ap)
4553 goto err_out;
4554
4555 host_set->ports[i] = ap;
4556 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4557 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4558 (ap->pio_mask << ATA_SHIFT_PIO);
4559
4560 /* print per-port info to dmesg */
4561 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4562 "bmdma 0x%lX irq %lu\n",
4563 ap->id,
4564 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4565 ata_mode_string(xfer_mode_mask),
4566 ap->ioaddr.cmd_addr,
4567 ap->ioaddr.ctl_addr,
4568 ap->ioaddr.bmdma_addr,
4569 ent->irq);
4570
4571 ata_chk_status(ap);
4572 host_set->ops->irq_clear(ap);
4573 count++;
4574 }
4575
57f3bda8
RD
4576 if (!count)
4577 goto err_free_ret;
1da177e4
LT
4578
4579 /* obtain irq, that is shared between channels */
4580 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4581 DRV_NAME, host_set))
4582 goto err_out;
4583
4584 /* perform each probe synchronously */
4585 DPRINTK("probe begin\n");
4586 for (i = 0; i < count; i++) {
4587 struct ata_port *ap;
4588 int rc;
4589
4590 ap = host_set->ports[i];
4591
c893a3ae 4592 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4593 rc = ata_bus_probe(ap);
c893a3ae 4594 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4595
4596 if (rc) {
4597 /* FIXME: do something useful here?
4598 * Current libata behavior will
4599 * tear down everything when
4600 * the module is removed
4601 * or the h/w is unplugged.
4602 */
4603 }
4604
4605 rc = scsi_add_host(ap->host, dev);
4606 if (rc) {
4607 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4608 ap->id);
4609 /* FIXME: do something useful here */
4610 /* FIXME: handle unconditional calls to
4611 * scsi_scan_host and ata_host_remove, below,
4612 * at the very least
4613 */
4614 }
4615 }
4616
4617 /* probes are done, now scan each port's disk(s) */
c893a3ae 4618 DPRINTK("host probe begin\n");
1da177e4
LT
4619 for (i = 0; i < count; i++) {
4620 struct ata_port *ap = host_set->ports[i];
4621
644dd0cc 4622 ata_scsi_scan_host(ap);
1da177e4
LT
4623 }
4624
4625 dev_set_drvdata(dev, host_set);
4626
4627 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4628 return ent->n_ports; /* success */
4629
4630err_out:
4631 for (i = 0; i < count; i++) {
4632 ata_host_remove(host_set->ports[i], 1);
4633 scsi_host_put(host_set->ports[i]->host);
4634 }
57f3bda8 4635err_free_ret:
1da177e4
LT
4636 kfree(host_set);
4637 VPRINTK("EXIT, returning 0\n");
4638 return 0;
4639}
4640
17b14451
AC
4641/**
4642 * ata_host_set_remove - PCI layer callback for device removal
4643 * @host_set: ATA host set that was removed
4644 *
4645 * Unregister all objects associated with this host set. Free those
4646 * objects.
4647 *
4648 * LOCKING:
4649 * Inherited from calling layer (may sleep).
4650 */
4651
17b14451
AC
4652void ata_host_set_remove(struct ata_host_set *host_set)
4653{
4654 struct ata_port *ap;
4655 unsigned int i;
4656
4657 for (i = 0; i < host_set->n_ports; i++) {
4658 ap = host_set->ports[i];
4659 scsi_remove_host(ap->host);
4660 }
4661
4662 free_irq(host_set->irq, host_set);
4663
4664 for (i = 0; i < host_set->n_ports; i++) {
4665 ap = host_set->ports[i];
4666
4667 ata_scsi_release(ap->host);
4668
4669 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4670 struct ata_ioports *ioaddr = &ap->ioaddr;
4671
4672 if (ioaddr->cmd_addr == 0x1f0)
4673 release_region(0x1f0, 8);
4674 else if (ioaddr->cmd_addr == 0x170)
4675 release_region(0x170, 8);
4676 }
4677
4678 scsi_host_put(ap->host);
4679 }
4680
4681 if (host_set->ops->host_stop)
4682 host_set->ops->host_stop(host_set);
4683
4684 kfree(host_set);
4685}
4686
1da177e4
LT
4687/**
4688 * ata_scsi_release - SCSI layer callback hook for host unload
4689 * @host: libata host to be unloaded
4690 *
4691 * Performs all duties necessary to shut down a libata port...
4692 * Kill port kthread, disable port, and release resources.
4693 *
4694 * LOCKING:
4695 * Inherited from SCSI layer.
4696 *
4697 * RETURNS:
4698 * One.
4699 */
4700
4701int ata_scsi_release(struct Scsi_Host *host)
4702{
4703 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4704
4705 DPRINTK("ENTER\n");
4706
4707 ap->ops->port_disable(ap);
4708 ata_host_remove(ap, 0);
4709
4710 DPRINTK("EXIT\n");
4711 return 1;
4712}
4713
4714/**
4715 * ata_std_ports - initialize ioaddr with standard port offsets.
4716 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4717 *
4718 * Utility function which initializes data_addr, error_addr,
4719 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4720 * device_addr, status_addr, and command_addr to standard offsets
4721 * relative to cmd_addr.
4722 *
4723 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4724 */
0baab86b 4725
1da177e4
LT
4726void ata_std_ports(struct ata_ioports *ioaddr)
4727{
4728 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4729 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4730 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4731 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4732 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4733 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4734 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4735 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4736 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4737 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4738}
4739
0baab86b 4740
374b1873
JG
4741#ifdef CONFIG_PCI
4742
4743void ata_pci_host_stop (struct ata_host_set *host_set)
4744{
4745 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4746
4747 pci_iounmap(pdev, host_set->mmio_base);
4748}
4749
1da177e4
LT
4750/**
4751 * ata_pci_remove_one - PCI layer callback for device removal
4752 * @pdev: PCI device that was removed
4753 *
4754 * PCI layer indicates to libata via this hook that
6f0ef4fa 4755 * hot-unplug or module unload event has occurred.
1da177e4
LT
4756 * Handle this by unregistering all objects associated
4757 * with this PCI device. Free those objects. Then finally
4758 * release PCI resources and disable device.
4759 *
4760 * LOCKING:
4761 * Inherited from PCI layer (may sleep).
4762 */
4763
4764void ata_pci_remove_one (struct pci_dev *pdev)
4765{
4766 struct device *dev = pci_dev_to_dev(pdev);
4767 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4768
17b14451 4769 ata_host_set_remove(host_set);
1da177e4
LT
4770 pci_release_regions(pdev);
4771 pci_disable_device(pdev);
4772 dev_set_drvdata(dev, NULL);
4773}
4774
4775/* move to PCI subsystem */
057ace5e 4776int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4777{
4778 unsigned long tmp = 0;
4779
4780 switch (bits->width) {
4781 case 1: {
4782 u8 tmp8 = 0;
4783 pci_read_config_byte(pdev, bits->reg, &tmp8);
4784 tmp = tmp8;
4785 break;
4786 }
4787 case 2: {
4788 u16 tmp16 = 0;
4789 pci_read_config_word(pdev, bits->reg, &tmp16);
4790 tmp = tmp16;
4791 break;
4792 }
4793 case 4: {
4794 u32 tmp32 = 0;
4795 pci_read_config_dword(pdev, bits->reg, &tmp32);
4796 tmp = tmp32;
4797 break;
4798 }
4799
4800 default:
4801 return -EINVAL;
4802 }
4803
4804 tmp &= bits->mask;
4805
4806 return (tmp == bits->val) ? 1 : 0;
4807}
9b847548
JA
4808
4809int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4810{
4811 pci_save_state(pdev);
4812 pci_disable_device(pdev);
4813 pci_set_power_state(pdev, PCI_D3hot);
4814 return 0;
4815}
4816
4817int ata_pci_device_resume(struct pci_dev *pdev)
4818{
4819 pci_set_power_state(pdev, PCI_D0);
4820 pci_restore_state(pdev);
4821 pci_enable_device(pdev);
4822 pci_set_master(pdev);
4823 return 0;
4824}
1da177e4
LT
4825#endif /* CONFIG_PCI */
4826
4827
1da177e4
LT
4828static int __init ata_init(void)
4829{
4830 ata_wq = create_workqueue("ata");
4831 if (!ata_wq)
4832 return -ENOMEM;
4833
4834 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4835 return 0;
4836}
4837
4838static void __exit ata_exit(void)
4839{
4840 destroy_workqueue(ata_wq);
4841}
4842
4843module_init(ata_init);
4844module_exit(ata_exit);
4845
67846b30
JG
4846static unsigned long ratelimit_time;
4847static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4848
4849int ata_ratelimit(void)
4850{
4851 int rc;
4852 unsigned long flags;
4853
4854 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4855
4856 if (time_after(jiffies, ratelimit_time)) {
4857 rc = 1;
4858 ratelimit_time = jiffies + (HZ/5);
4859 } else
4860 rc = 0;
4861
4862 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4863
4864 return rc;
4865}
4866
1da177e4
LT
4867/*
4868 * libata is essentially a library of internal helper functions for
4869 * low-level ATA host controller drivers. As such, the API/ABI is
4870 * likely to change as new drivers are added and updated.
4871 * Do not depend on ABI/API stability.
4872 */
4873
4874EXPORT_SYMBOL_GPL(ata_std_bios_param);
4875EXPORT_SYMBOL_GPL(ata_std_ports);
4876EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 4877EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
4878EXPORT_SYMBOL_GPL(ata_sg_init);
4879EXPORT_SYMBOL_GPL(ata_sg_init_one);
4880EXPORT_SYMBOL_GPL(ata_qc_complete);
4881EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4882EXPORT_SYMBOL_GPL(ata_eng_timeout);
4883EXPORT_SYMBOL_GPL(ata_tf_load);
4884EXPORT_SYMBOL_GPL(ata_tf_read);
4885EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4886EXPORT_SYMBOL_GPL(ata_std_dev_select);
4887EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4888EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4889EXPORT_SYMBOL_GPL(ata_check_status);
4890EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
4891EXPORT_SYMBOL_GPL(ata_exec_command);
4892EXPORT_SYMBOL_GPL(ata_port_start);
4893EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 4894EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
4895EXPORT_SYMBOL_GPL(ata_interrupt);
4896EXPORT_SYMBOL_GPL(ata_qc_prep);
4897EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4898EXPORT_SYMBOL_GPL(ata_bmdma_start);
4899EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4900EXPORT_SYMBOL_GPL(ata_bmdma_status);
4901EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4902EXPORT_SYMBOL_GPL(ata_port_probe);
4903EXPORT_SYMBOL_GPL(sata_phy_reset);
4904EXPORT_SYMBOL_GPL(__sata_phy_reset);
4905EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 4906EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
4907EXPORT_SYMBOL_GPL(ata_std_softreset);
4908EXPORT_SYMBOL_GPL(sata_std_hardreset);
4909EXPORT_SYMBOL_GPL(ata_std_postreset);
4910EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 4911EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
1da177e4 4912EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 4913EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 4914EXPORT_SYMBOL_GPL(ata_busy_sleep);
1da177e4
LT
4915EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4916EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
f29841e0 4917EXPORT_SYMBOL_GPL(ata_scsi_timed_out);
1da177e4
LT
4918EXPORT_SYMBOL_GPL(ata_scsi_error);
4919EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4920EXPORT_SYMBOL_GPL(ata_scsi_release);
4921EXPORT_SYMBOL_GPL(ata_host_intr);
4922EXPORT_SYMBOL_GPL(ata_dev_classify);
4923EXPORT_SYMBOL_GPL(ata_dev_id_string);
6f2f3812 4924EXPORT_SYMBOL_GPL(ata_dev_config);
1da177e4 4925EXPORT_SYMBOL_GPL(ata_scsi_simulate);
a72ec4ce
TH
4926EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
4927EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
1da177e4 4928
1bc4ccff 4929EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
4930EXPORT_SYMBOL_GPL(ata_timing_compute);
4931EXPORT_SYMBOL_GPL(ata_timing_merge);
4932
1da177e4
LT
4933#ifdef CONFIG_PCI
4934EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 4935EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
4936EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4937EXPORT_SYMBOL_GPL(ata_pci_init_one);
4938EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
4939EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
4940EXPORT_SYMBOL_GPL(ata_pci_device_resume);
1da177e4 4941#endif /* CONFIG_PCI */
9b847548
JA
4942
4943EXPORT_SYMBOL_GPL(ata_device_suspend);
4944EXPORT_SYMBOL_GPL(ata_device_resume);
4945EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
4946EXPORT_SYMBOL_GPL(ata_scsi_device_resume);