Various drivers' irq handlers: kill dead code, needless casts
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / scsi / aic7xxx_old.c
CommitLineData
1da177e4
LT
1/*+M*************************************************************************
2 * Adaptec AIC7xxx device driver for Linux.
3 *
4 * Copyright (c) 1994 John Aycock
5 * The University of Calgary Department of Computer Science.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; see the file COPYING. If not, write to
19 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
20 *
21 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
22 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
23 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
24 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
25 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
26 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
27 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
28 * ANSI SCSI-2 specification (draft 10c), ...
29 *
30 * --------------------------------------------------------------------------
31 *
32 * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org):
33 *
34 * Substantially modified to include support for wide and twin bus
35 * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
36 * SCB paging, and other rework of the code.
37 *
38 * Parts of this driver were also based on the FreeBSD driver by
39 * Justin T. Gibbs. His copyright follows:
40 *
41 * --------------------------------------------------------------------------
42 * Copyright (c) 1994-1997 Justin Gibbs.
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions, and the following disclaimer,
50 * without modification, immediately at the beginning of the file.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The name of the author may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * Where this Software is combined with software released under the terms of
58 * the GNU General Public License ("GPL") and the terms of the GPL would require the
59 * combined work to also be released under the terms of the GPL, the terms
60 * and conditions of this License will apply in addition to those of the
61 * GPL with the exception of any terms or conditions of this License that
62 * conflict with, or are expressly prohibited by, the GPL.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
68 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 *
76 * $Id: aic7xxx.c,v 1.119 1997/06/27 19:39:18 gibbs Exp $
77 *---------------------------------------------------------------------------
78 *
79 * Thanks also go to (in alphabetical order) the following:
80 *
81 * Rory Bolt - Sequencer bug fixes
82 * Jay Estabrook - Initial DEC Alpha support
83 * Doug Ledford - Much needed abort/reset bug fixes
84 * Kai Makisara - DMAing of SCBs
85 *
86 * A Boot time option was also added for not resetting the scsi bus.
87 *
88 * Form: aic7xxx=extended
89 * aic7xxx=no_reset
90 * aic7xxx=ultra
91 * aic7xxx=irq_trigger:[0,1] # 0 edge, 1 level
92 * aic7xxx=verbose
93 *
94 * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97
95 *
96 * $Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp $
97 *-M*************************************************************************/
98
99/*+M**************************************************************************
100 *
101 * Further driver modifications made by Doug Ledford <dledford@redhat.com>
102 *
103 * Copyright (c) 1997-1999 Doug Ledford
104 *
105 * These changes are released under the same licensing terms as the FreeBSD
106 * driver written by Justin Gibbs. Please see his Copyright notice above
107 * for the exact terms and conditions covering my changes as well as the
108 * warranty statement.
109 *
110 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
111 * but are not limited to:
112 *
113 * 1: Import of the latest FreeBSD sequencer code for this driver
114 * 2: Modification of kernel code to accommodate different sequencer semantics
115 * 3: Extensive changes throughout kernel portion of driver to improve
116 * abort/reset processing and error hanndling
117 * 4: Other work contributed by various people on the Internet
118 * 5: Changes to printk information and verbosity selection code
119 * 6: General reliability related changes, especially in IRQ management
120 * 7: Modifications to the default probe/attach order for supported cards
121 * 8: SMP friendliness has been improved
122 *
123 * Overall, this driver represents a significant departure from the official
124 * aic7xxx driver released by Dan Eischen in two ways. First, in the code
125 * itself. A diff between the two version of the driver is now a several
126 * thousand line diff. Second, in approach to solving the same problem. The
127 * problem is importing the FreeBSD aic7xxx driver code to linux can be a
128 * difficult and time consuming process, that also can be error prone. Dan
129 * Eischen's official driver uses the approach that the linux and FreeBSD
130 * drivers should be as identical as possible. To that end, his next version
131 * of this driver will be using a mid-layer code library that he is developing
132 * to moderate communications between the linux mid-level SCSI code and the
133 * low level FreeBSD driver. He intends to be able to essentially drop the
134 * FreeBSD driver into the linux kernel with only a few minor tweaks to some
135 * include files and the like and get things working, making for fast easy
136 * imports of the FreeBSD code into linux.
137 *
138 * I disagree with Dan's approach. Not that I don't think his way of doing
139 * things would be nice, easy to maintain, and create a more uniform driver
140 * between FreeBSD and Linux. I have no objection to those issues. My
141 * disagreement is on the needed functionality. There simply are certain
142 * things that are done differently in FreeBSD than linux that will cause
143 * problems for this driver regardless of any middle ware Dan implements.
144 * The biggest example of this at the moment is interrupt semantics. Linux
145 * doesn't provide the same protection techniques as FreeBSD does, nor can
146 * they be easily implemented in any middle ware code since they would truly
147 * belong in the kernel proper and would effect all drivers. For the time
148 * being, I see issues such as these as major stumbling blocks to the
149 * reliability of code based upon such middle ware. Therefore, I choose to
150 * use a different approach to importing the FreeBSD code that doesn't
151 * involve any middle ware type code. My approach is to import the sequencer
152 * code from FreeBSD wholesale. Then, to only make changes in the kernel
153 * portion of the driver as they are needed for the new sequencer semantics.
154 * In this way, the portion of the driver that speaks to the rest of the
155 * linux kernel is fairly static and can be changed/modified to solve
156 * any problems one might encounter without concern for the FreeBSD driver.
157 *
158 * Note: If time and experience should prove me wrong that the middle ware
159 * code Dan writes is reliable in its operation, then I'll retract my above
160 * statements. But, for those that don't know, I'm from Missouri (in the US)
161 * and our state motto is "The Show-Me State". Well, before I will put
162 * faith into it, you'll have to show me that it works :)
163 *
164 *_M*************************************************************************/
165
166/*
167 * The next three defines are user configurable. These should be the only
168 * defines a user might need to get in here and change. There are other
169 * defines buried deeper in the code, but those really shouldn't need touched
170 * under normal conditions.
171 */
172
173/*
174 * AIC7XXX_STRICT_PCI_SETUP
175 * Should we assume the PCI config options on our controllers are set with
176 * sane and proper values, or should we be anal about our PCI config
177 * registers and force them to what we want? The main advantage to
178 * defining this option is on non-Intel hardware where the BIOS may not
179 * have been run to set things up, or if you have one of the BIOSless
180 * Adaptec controllers, such as a 2910, that don't get set up by the
181 * BIOS. However, keep in mind that we really do set the most important
182 * items in the driver regardless of this setting, this only controls some
183 * of the more esoteric PCI options on these cards. In that sense, I
184 * would default to leaving this off. However, if people wish to try
185 * things both ways, that would also help me to know if there are some
186 * machines where it works one way but not another.
187 *
188 * -- July 7, 17:09
189 * OK...I need this on my machine for testing, so the default is to
190 * leave it defined.
191 *
192 * -- July 7, 18:49
193 * I needed it for testing, but it didn't make any difference, so back
194 * off she goes.
195 *
196 * -- July 16, 23:04
197 * I turned it back on to try and compensate for the 2.1.x PCI code
198 * which no longer relies solely on the BIOS and now tries to set
199 * things itself.
200 */
201
202#define AIC7XXX_STRICT_PCI_SETUP
203
204/*
205 * AIC7XXX_VERBOSE_DEBUGGING
206 * This option enables a lot of extra printk();s in the code, surrounded
207 * by if (aic7xxx_verbose ...) statements. Executing all of those if
208 * statements and the extra checks can get to where it actually does have
209 * an impact on CPU usage and such, as well as code size. Disabling this
210 * define will keep some of those from becoming part of the code.
211 *
212 * NOTE: Currently, this option has no real effect, I will be adding the
213 * various #ifdef's in the code later when I've decided a section is
214 * complete and no longer needs debugging. OK...a lot of things are now
215 * surrounded by this define, so turning this off does have an impact.
216 */
217
218/*
219 * #define AIC7XXX_VERBOSE_DEBUGGING
220 */
221
222#include <linux/module.h>
223#include <stdarg.h>
224#include <asm/io.h>
225#include <asm/irq.h>
226#include <asm/byteorder.h>
227#include <linux/string.h>
228#include <linux/errno.h>
229#include <linux/kernel.h>
230#include <linux/ioport.h>
231#include <linux/delay.h>
232#include <linux/sched.h>
233#include <linux/pci.h>
234#include <linux/proc_fs.h>
235#include <linux/blkdev.h>
236#include <linux/init.h>
237#include <linux/spinlock.h>
238#include <linux/smp.h>
239#include <linux/interrupt.h>
240#include "scsi.h"
241#include <scsi/scsi_host.h>
242#include "aic7xxx_old/aic7xxx.h"
243
244#include "aic7xxx_old/sequencer.h"
245#include "aic7xxx_old/scsi_message.h"
246#include "aic7xxx_old/aic7xxx_reg.h"
247#include <scsi/scsicam.h>
248
249#include <linux/stat.h>
250#include <linux/slab.h> /* for kmalloc() */
251
1da177e4
LT
252#define AIC7XXX_C_VERSION "5.2.6"
253
254#define ALL_TARGETS -1
255#define ALL_CHANNELS -1
256#define ALL_LUNS -1
257#define MAX_TARGETS 16
258#define MAX_LUNS 8
259#ifndef TRUE
260# define TRUE 1
261#endif
262#ifndef FALSE
263# define FALSE 0
264#endif
265
266#if defined(__powerpc__) || defined(__i386__) || defined(__x86_64__)
267# define MMAPIO
268#endif
269
270/*
271 * You can try raising me for better performance or lowering me if you have
272 * flaky devices that go off the scsi bus when hit with too many tagged
273 * commands (like some IBM SCSI-3 LVD drives).
274 */
275#define AIC7XXX_CMDS_PER_DEVICE 32
276
277typedef struct
278{
279 unsigned char tag_commands[16]; /* Allow for wide/twin adapters. */
280} adapter_tag_info_t;
281
282/*
283 * Make a define that will tell the driver not to the default tag depth
284 * everywhere.
285 */
286#define DEFAULT_TAG_COMMANDS {0, 0, 0, 0, 0, 0, 0, 0,\
287 0, 0, 0, 0, 0, 0, 0, 0}
288
289/*
290 * Modify this as you see fit for your system. By setting tag_commands
291 * to 0, the driver will use it's own algorithm for determining the
292 * number of commands to use (see above). When 255, the driver will
293 * not enable tagged queueing for that particular device. When positive
294 * (> 0) and (< 255) the values in the array are used for the queue_depth.
295 * Note that the maximum value for an entry is 254, but you're insane if
296 * you try to use that many commands on one device.
297 *
298 * In this example, the first line will disable tagged queueing for all
299 * the devices on the first probed aic7xxx adapter.
300 *
301 * The second line enables tagged queueing with 4 commands/LUN for IDs
302 * (1, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
303 * driver to use its own algorithm for ID 1.
304 *
305 * The third line is the same as the first line.
306 *
307 * The fourth line disables tagged queueing for devices 0 and 3. It
308 * enables tagged queueing for the other IDs, with 16 commands/LUN
309 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
310 * IDs 2, 5-7, and 9-15.
311 */
312
313/*
314 * NOTE: The below structure is for reference only, the actual structure
315 * to modify in order to change things is found after this fake one.
316 *
317adapter_tag_info_t aic7xxx_tag_info[] =
318{
319 {DEFAULT_TAG_COMMANDS},
320 {{4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 255, 4, 4, 4}},
321 {DEFAULT_TAG_COMMANDS},
322 {{255, 16, 4, 255, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
323};
324*/
325
326static adapter_tag_info_t aic7xxx_tag_info[] =
327{
328 {DEFAULT_TAG_COMMANDS},
329 {DEFAULT_TAG_COMMANDS},
330 {DEFAULT_TAG_COMMANDS},
331 {DEFAULT_TAG_COMMANDS},
332 {DEFAULT_TAG_COMMANDS},
333 {DEFAULT_TAG_COMMANDS},
334 {DEFAULT_TAG_COMMANDS},
335 {DEFAULT_TAG_COMMANDS},
336 {DEFAULT_TAG_COMMANDS},
337 {DEFAULT_TAG_COMMANDS},
338 {DEFAULT_TAG_COMMANDS},
339 {DEFAULT_TAG_COMMANDS},
340 {DEFAULT_TAG_COMMANDS},
341 {DEFAULT_TAG_COMMANDS},
342 {DEFAULT_TAG_COMMANDS},
343 {DEFAULT_TAG_COMMANDS}
344};
345
346
347/*
348 * Define an array of board names that can be indexed by aha_type.
349 * Don't forget to change this when changing the types!
350 */
351static const char *board_names[] = {
352 "AIC-7xxx Unknown", /* AIC_NONE */
353 "Adaptec AIC-7810 Hardware RAID Controller", /* AIC_7810 */
354 "Adaptec AIC-7770 SCSI host adapter", /* AIC_7770 */
355 "Adaptec AHA-274X SCSI host adapter", /* AIC_7771 */
356 "Adaptec AHA-284X SCSI host adapter", /* AIC_284x */
357 "Adaptec AIC-7850 SCSI host adapter", /* AIC_7850 */
358 "Adaptec AIC-7855 SCSI host adapter", /* AIC_7855 */
359 "Adaptec AIC-7860 Ultra SCSI host adapter", /* AIC_7860 */
360 "Adaptec AHA-2940A Ultra SCSI host adapter", /* AIC_7861 */
361 "Adaptec AIC-7870 SCSI host adapter", /* AIC_7870 */
362 "Adaptec AHA-294X SCSI host adapter", /* AIC_7871 */
363 "Adaptec AHA-394X SCSI host adapter", /* AIC_7872 */
364 "Adaptec AHA-398X SCSI host adapter", /* AIC_7873 */
365 "Adaptec AHA-2944 SCSI host adapter", /* AIC_7874 */
366 "Adaptec AIC-7880 Ultra SCSI host adapter", /* AIC_7880 */
367 "Adaptec AHA-294X Ultra SCSI host adapter", /* AIC_7881 */
368 "Adaptec AHA-394X Ultra SCSI host adapter", /* AIC_7882 */
369 "Adaptec AHA-398X Ultra SCSI host adapter", /* AIC_7883 */
370 "Adaptec AHA-2944 Ultra SCSI host adapter", /* AIC_7884 */
371 "Adaptec AHA-2940UW Pro Ultra SCSI host adapter", /* AIC_7887 */
372 "Adaptec AIC-7895 Ultra SCSI host adapter", /* AIC_7895 */
373 "Adaptec AIC-7890/1 Ultra2 SCSI host adapter", /* AIC_7890 */
374 "Adaptec AHA-293X Ultra2 SCSI host adapter", /* AIC_7890 */
375 "Adaptec AHA-294X Ultra2 SCSI host adapter", /* AIC_7890 */
376 "Adaptec AIC-7896/7 Ultra2 SCSI host adapter", /* AIC_7896 */
377 "Adaptec AHA-394X Ultra2 SCSI host adapter", /* AIC_7897 */
378 "Adaptec AHA-395X Ultra2 SCSI host adapter", /* AIC_7897 */
379 "Adaptec PCMCIA SCSI controller", /* card bus stuff */
380 "Adaptec AIC-7892 Ultra 160/m SCSI host adapter", /* AIC_7892 */
381 "Adaptec AIC-7899 Ultra 160/m SCSI host adapter", /* AIC_7899 */
382};
383
384/*
385 * There should be a specific return value for this in scsi.h, but
386 * it seems that most drivers ignore it.
387 */
388#define DID_UNDERFLOW DID_ERROR
389
390/*
391 * What we want to do is have the higher level scsi driver requeue
392 * the command to us. There is no specific driver status for this
393 * condition, but the higher level scsi driver will requeue the
394 * command on a DID_BUS_BUSY error.
395 *
396 * Upon further inspection and testing, it seems that DID_BUS_BUSY
397 * will *always* retry the command. We can get into an infinite loop
398 * if this happens when we really want some sort of counter that
399 * will automatically abort/reset the command after so many retries.
400 * Using DID_ERROR will do just that. (Made by a suggestion by
401 * Doug Ledford 8/1/96)
402 */
403#define DID_RETRY_COMMAND DID_ERROR
404
405#define HSCSIID 0x07
406#define SCSI_RESET 0x040
407
408/*
409 * EISA/VL-bus stuff
410 */
411#define MINSLOT 1
412#define MAXSLOT 15
413#define SLOTBASE(x) ((x) << 12)
414#define BASE_TO_SLOT(x) ((x) >> 12)
415
416/*
417 * Standard EISA Host ID regs (Offset from slot base)
418 */
419#define AHC_HID0 0x80 /* 0,1: msb of ID2, 2-7: ID1 */
420#define AHC_HID1 0x81 /* 0-4: ID3, 5-7: LSB ID2 */
421#define AHC_HID2 0x82 /* product */
422#define AHC_HID3 0x83 /* firmware revision */
423
424/*
425 * AIC-7770 I/O range to reserve for a card
426 */
427#define MINREG 0xC00
428#define MAXREG 0xCFF
429
430#define INTDEF 0x5C /* Interrupt Definition Register */
431
432/*
433 * AIC-78X0 PCI registers
434 */
435#define CLASS_PROGIF_REVID 0x08
436#define DEVREVID 0x000000FFul
437#define PROGINFC 0x0000FF00ul
438#define SUBCLASS 0x00FF0000ul
439#define BASECLASS 0xFF000000ul
440
441#define CSIZE_LATTIME 0x0C
442#define CACHESIZE 0x0000003Ful /* only 5 bits */
443#define LATTIME 0x0000FF00ul
444
445#define DEVCONFIG 0x40
446#define SCBSIZE32 0x00010000ul /* aic789X only */
447#define MPORTMODE 0x00000400ul /* aic7870 only */
448#define RAMPSM 0x00000200ul /* aic7870 only */
449#define RAMPSM_ULTRA2 0x00000004
450#define VOLSENSE 0x00000100ul
451#define SCBRAMSEL 0x00000080ul
452#define SCBRAMSEL_ULTRA2 0x00000008
453#define MRDCEN 0x00000040ul
454#define EXTSCBTIME 0x00000020ul /* aic7870 only */
455#define EXTSCBPEN 0x00000010ul /* aic7870 only */
456#define BERREN 0x00000008ul
457#define DACEN 0x00000004ul
458#define STPWLEVEL 0x00000002ul
459#define DIFACTNEGEN 0x00000001ul /* aic7870 only */
460
461#define SCAMCTL 0x1a /* Ultra2 only */
462#define CCSCBBADDR 0xf0 /* aic7895/6/7 */
463
464/*
465 * Define the different types of SEEPROMs on aic7xxx adapters
466 * and make it also represent the address size used in accessing
467 * its registers. The 93C46 chips have 1024 bits organized into
468 * 64 16-bit words, while the 93C56 chips have 2048 bits organized
469 * into 128 16-bit words. The C46 chips use 6 bits to address
470 * each word, while the C56 and C66 (4096 bits) use 8 bits to
471 * address each word.
472 */
473typedef enum {C46 = 6, C56_66 = 8} seeprom_chip_type;
474
475/*
476 *
477 * Define the format of the SEEPROM registers (16 bits).
478 *
479 */
480struct seeprom_config {
481
482/*
483 * SCSI ID Configuration Flags
484 */
485#define CFXFER 0x0007 /* synchronous transfer rate */
486#define CFSYNCH 0x0008 /* enable synchronous transfer */
487#define CFDISC 0x0010 /* enable disconnection */
488#define CFWIDEB 0x0020 /* wide bus device (wide card) */
489#define CFSYNCHISULTRA 0x0040 /* CFSYNC is an ultra offset */
490#define CFNEWULTRAFORMAT 0x0080 /* Use the Ultra2 SEEPROM format */
491#define CFSTART 0x0100 /* send start unit SCSI command */
492#define CFINCBIOS 0x0200 /* include in BIOS scan */
493#define CFRNFOUND 0x0400 /* report even if not found */
494#define CFMULTILUN 0x0800 /* probe mult luns in BIOS scan */
495#define CFWBCACHEYES 0x4000 /* Enable W-Behind Cache on drive */
496#define CFWBCACHENC 0xc000 /* Don't change W-Behind Cache */
497/* UNUSED 0x3000 */
498 unsigned short device_flags[16]; /* words 0-15 */
499
500/*
501 * BIOS Control Bits
502 */
503#define CFSUPREM 0x0001 /* support all removable drives */
504#define CFSUPREMB 0x0002 /* support removable drives for boot only */
505#define CFBIOSEN 0x0004 /* BIOS enabled */
506/* UNUSED 0x0008 */
507#define CFSM2DRV 0x0010 /* support more than two drives */
508#define CF284XEXTEND 0x0020 /* extended translation (284x cards) */
509/* UNUSED 0x0040 */
510#define CFEXTEND 0x0080 /* extended translation enabled */
511/* UNUSED 0xFF00 */
512 unsigned short bios_control; /* word 16 */
513
514/*
515 * Host Adapter Control Bits
516 */
517#define CFAUTOTERM 0x0001 /* Perform Auto termination */
518#define CFULTRAEN 0x0002 /* Ultra SCSI speed enable (Ultra cards) */
519#define CF284XSELTO 0x0003 /* Selection timeout (284x cards) */
520#define CF284XFIFO 0x000C /* FIFO Threshold (284x cards) */
521#define CFSTERM 0x0004 /* SCSI low byte termination */
522#define CFWSTERM 0x0008 /* SCSI high byte termination (wide card) */
523#define CFSPARITY 0x0010 /* SCSI parity */
524#define CF284XSTERM 0x0020 /* SCSI low byte termination (284x cards) */
525#define CFRESETB 0x0040 /* reset SCSI bus at boot */
526#define CFBPRIMARY 0x0100 /* Channel B primary on 7895 chipsets */
527#define CFSEAUTOTERM 0x0400 /* aic7890 Perform SE Auto Term */
528#define CFLVDSTERM 0x0800 /* aic7890 LVD Termination */
529/* UNUSED 0xF280 */
530 unsigned short adapter_control; /* word 17 */
531
532/*
533 * Bus Release, Host Adapter ID
534 */
535#define CFSCSIID 0x000F /* host adapter SCSI ID */
536/* UNUSED 0x00F0 */
537#define CFBRTIME 0xFF00 /* bus release time */
538 unsigned short brtime_id; /* word 18 */
539
540/*
541 * Maximum targets
542 */
543#define CFMAXTARG 0x00FF /* maximum targets */
544/* UNUSED 0xFF00 */
545 unsigned short max_targets; /* word 19 */
546
547 unsigned short res_1[11]; /* words 20-30 */
548 unsigned short checksum; /* word 31 */
549};
550
551#define SELBUS_MASK 0x0a
552#define SELNARROW 0x00
553#define SELBUSB 0x08
554#define SINGLE_BUS 0x00
555
556#define SCB_TARGET(scb) \
557 (((scb)->hscb->target_channel_lun & TID) >> 4)
558#define SCB_LUN(scb) \
559 ((scb)->hscb->target_channel_lun & LID)
560#define SCB_IS_SCSIBUS_B(scb) \
561 (((scb)->hscb->target_channel_lun & SELBUSB) != 0)
562
563/*
564 * If an error occurs during a data transfer phase, run the command
565 * to completion - it's easier that way - making a note of the error
566 * condition in this location. This then will modify a DID_OK status
567 * into an appropriate error for the higher-level SCSI code.
568 */
569#define aic7xxx_error(cmd) ((cmd)->SCp.Status)
570
571/*
572 * Keep track of the targets returned status.
573 */
574#define aic7xxx_status(cmd) ((cmd)->SCp.sent_command)
575
576/*
577 * The position of the SCSI commands scb within the scb array.
578 */
579#define aic7xxx_position(cmd) ((cmd)->SCp.have_data_in)
580
581/*
582 * The stored DMA mapping for single-buffer data transfers.
583 */
584#define aic7xxx_mapping(cmd) ((cmd)->SCp.phase)
585
586/*
587 * Get out private data area from a scsi cmd pointer
588 */
589#define AIC_DEV(cmd) ((struct aic_dev_data *)(cmd)->device->hostdata)
590
591/*
592 * So we can keep track of our host structs
593 */
594static struct aic7xxx_host *first_aic7xxx = NULL;
595
596/*
597 * As of Linux 2.1, the mid-level SCSI code uses virtual addresses
598 * in the scatter-gather lists. We need to convert the virtual
599 * addresses to physical addresses.
600 */
601struct hw_scatterlist {
602 unsigned int address;
603 unsigned int length;
604};
605
606/*
607 * Maximum number of SG segments these cards can support.
608 */
609#define AIC7XXX_MAX_SG 128
610
611/*
612 * The maximum number of SCBs we could have for ANY type
613 * of card. DON'T FORGET TO CHANGE THE SCB MASK IN THE
614 * SEQUENCER CODE IF THIS IS MODIFIED!
615 */
616#define AIC7XXX_MAXSCB 255
617
618
619struct aic7xxx_hwscb {
620/* ------------ Begin hardware supported fields ---------------- */
621/* 0*/ unsigned char control;
622/* 1*/ unsigned char target_channel_lun; /* 4/1/3 bits */
623/* 2*/ unsigned char target_status;
624/* 3*/ unsigned char SG_segment_count;
625/* 4*/ unsigned int SG_list_pointer;
626/* 8*/ unsigned char residual_SG_segment_count;
627/* 9*/ unsigned char residual_data_count[3];
628/*12*/ unsigned int data_pointer;
629/*16*/ unsigned int data_count;
630/*20*/ unsigned int SCSI_cmd_pointer;
631/*24*/ unsigned char SCSI_cmd_length;
632/*25*/ unsigned char tag; /* Index into our kernel SCB array.
633 * Also used as the tag for tagged I/O
634 */
635#define SCB_PIO_TRANSFER_SIZE 26 /* amount we need to upload/download
636 * via PIO to initialize a transaction.
637 */
638/*26*/ unsigned char next; /* Used to thread SCBs awaiting selection
639 * or disconnected down in the sequencer.
640 */
641/*27*/ unsigned char prev;
642/*28*/ unsigned int pad; /*
643 * Unused by the kernel, but we require
644 * the padding so that the array of
645 * hardware SCBs is aligned on 32 byte
646 * boundaries so the sequencer can index
647 */
648};
649
650typedef enum {
651 SCB_FREE = 0x0000,
652 SCB_DTR_SCB = 0x0001,
653 SCB_WAITINGQ = 0x0002,
654 SCB_ACTIVE = 0x0004,
655 SCB_SENSE = 0x0008,
656 SCB_ABORT = 0x0010,
657 SCB_DEVICE_RESET = 0x0020,
658 SCB_RESET = 0x0040,
659 SCB_RECOVERY_SCB = 0x0080,
660 SCB_MSGOUT_PPR = 0x0100,
661 SCB_MSGOUT_SENT = 0x0200,
662 SCB_MSGOUT_SDTR = 0x0400,
663 SCB_MSGOUT_WDTR = 0x0800,
664 SCB_MSGOUT_BITS = SCB_MSGOUT_PPR |
665 SCB_MSGOUT_SENT |
666 SCB_MSGOUT_SDTR |
667 SCB_MSGOUT_WDTR,
668 SCB_QUEUED_ABORT = 0x1000,
669 SCB_QUEUED_FOR_DONE = 0x2000,
670 SCB_WAS_BUSY = 0x4000,
671 SCB_QUEUE_FULL = 0x8000
672} scb_flag_type;
673
674typedef enum {
675 AHC_FNONE = 0x00000000,
676 AHC_PAGESCBS = 0x00000001,
677 AHC_CHANNEL_B_PRIMARY = 0x00000002,
678 AHC_USEDEFAULTS = 0x00000004,
679 AHC_INDIRECT_PAGING = 0x00000008,
680 AHC_CHNLB = 0x00000020,
681 AHC_CHNLC = 0x00000040,
682 AHC_EXTEND_TRANS_A = 0x00000100,
683 AHC_EXTEND_TRANS_B = 0x00000200,
684 AHC_TERM_ENB_A = 0x00000400,
685 AHC_TERM_ENB_SE_LOW = 0x00000400,
686 AHC_TERM_ENB_B = 0x00000800,
687 AHC_TERM_ENB_SE_HIGH = 0x00000800,
688 AHC_HANDLING_REQINITS = 0x00001000,
689 AHC_TARGETMODE = 0x00002000,
690 AHC_NEWEEPROM_FMT = 0x00004000,
691 /*
692 * Here ends the FreeBSD defined flags and here begins the linux defined
693 * flags. NOTE: I did not preserve the old flag name during this change
694 * specifically to force me to evaluate what flags were being used properly
695 * and what flags weren't. This way, I could clean up the flag usage on
696 * a use by use basis. Doug Ledford
697 */
698 AHC_MOTHERBOARD = 0x00020000,
699 AHC_NO_STPWEN = 0x00040000,
700 AHC_RESET_DELAY = 0x00080000,
701 AHC_A_SCANNED = 0x00100000,
702 AHC_B_SCANNED = 0x00200000,
703 AHC_MULTI_CHANNEL = 0x00400000,
704 AHC_BIOS_ENABLED = 0x00800000,
705 AHC_SEEPROM_FOUND = 0x01000000,
706 AHC_TERM_ENB_LVD = 0x02000000,
707 AHC_ABORT_PENDING = 0x04000000,
708 AHC_RESET_PENDING = 0x08000000,
709#define AHC_IN_ISR_BIT 28
710 AHC_IN_ISR = 0x10000000,
711 AHC_IN_ABORT = 0x20000000,
712 AHC_IN_RESET = 0x40000000,
713 AHC_EXTERNAL_SRAM = 0x80000000
714} ahc_flag_type;
715
716typedef enum {
717 AHC_NONE = 0x0000,
718 AHC_CHIPID_MASK = 0x00ff,
719 AHC_AIC7770 = 0x0001,
720 AHC_AIC7850 = 0x0002,
721 AHC_AIC7860 = 0x0003,
722 AHC_AIC7870 = 0x0004,
723 AHC_AIC7880 = 0x0005,
724 AHC_AIC7890 = 0x0006,
725 AHC_AIC7895 = 0x0007,
726 AHC_AIC7896 = 0x0008,
727 AHC_AIC7892 = 0x0009,
728 AHC_AIC7899 = 0x000a,
729 AHC_VL = 0x0100,
730 AHC_EISA = 0x0200,
731 AHC_PCI = 0x0400,
732} ahc_chip;
733
734typedef enum {
735 AHC_FENONE = 0x0000,
736 AHC_ULTRA = 0x0001,
737 AHC_ULTRA2 = 0x0002,
738 AHC_WIDE = 0x0004,
739 AHC_TWIN = 0x0008,
740 AHC_MORE_SRAM = 0x0010,
741 AHC_CMD_CHAN = 0x0020,
742 AHC_QUEUE_REGS = 0x0040,
743 AHC_SG_PRELOAD = 0x0080,
744 AHC_SPIOCAP = 0x0100,
745 AHC_ULTRA3 = 0x0200,
746 AHC_NEW_AUTOTERM = 0x0400,
747 AHC_AIC7770_FE = AHC_FENONE,
748 AHC_AIC7850_FE = AHC_SPIOCAP,
749 AHC_AIC7860_FE = AHC_ULTRA|AHC_SPIOCAP,
750 AHC_AIC7870_FE = AHC_FENONE,
751 AHC_AIC7880_FE = AHC_ULTRA,
752 AHC_AIC7890_FE = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA2|
753 AHC_QUEUE_REGS|AHC_SG_PRELOAD|AHC_NEW_AUTOTERM,
754 AHC_AIC7895_FE = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA,
755 AHC_AIC7896_FE = AHC_AIC7890_FE,
756 AHC_AIC7892_FE = AHC_AIC7890_FE|AHC_ULTRA3,
757 AHC_AIC7899_FE = AHC_AIC7890_FE|AHC_ULTRA3,
758} ahc_feature;
759
760#define SCB_DMA_ADDR(scb, addr) ((unsigned long)(addr) + (scb)->scb_dma->dma_offset)
761
762struct aic7xxx_scb_dma {
763 unsigned long dma_offset; /* Correction you have to add
764 * to virtual address to get
765 * dma handle in this region */
766 dma_addr_t dma_address; /* DMA handle of the start,
767 * for unmap */
768 unsigned int dma_len; /* DMA length */
769};
770
771typedef enum {
772 AHC_BUG_NONE = 0x0000,
773 AHC_BUG_TMODE_WIDEODD = 0x0001,
774 AHC_BUG_AUTOFLUSH = 0x0002,
775 AHC_BUG_CACHETHEN = 0x0004,
776 AHC_BUG_CACHETHEN_DIS = 0x0008,
777 AHC_BUG_PCI_2_1_RETRY = 0x0010,
778 AHC_BUG_PCI_MWI = 0x0020,
779 AHC_BUG_SCBCHAN_UPLOAD = 0x0040,
780} ahc_bugs;
781
782struct aic7xxx_scb {
c1278289
HK
783 struct aic7xxx_hwscb *hscb; /* corresponding hardware scb */
784 struct scsi_cmnd *cmd; /* scsi_cmnd for this scb */
785 struct aic7xxx_scb *q_next; /* next scb in queue */
786 volatile scb_flag_type flags; /* current state of scb */
787 struct hw_scatterlist *sg_list; /* SG list in adapter format */
788 unsigned char tag_action;
789 unsigned char sg_count;
790 unsigned char *sense_cmd; /*
791 * Allocate 6 characters for
792 * sense command.
793 */
794 unsigned char *cmnd;
795 unsigned int sg_length; /*
796 * We init this during
797 * buildscb so we don't have
798 * to calculate anything during
799 * underflow/overflow/stat code
800 */
801 void *kmalloc_ptr;
802 struct aic7xxx_scb_dma *scb_dma;
1da177e4
LT
803};
804
805/*
806 * Define a linked list of SCBs.
807 */
808typedef struct {
809 struct aic7xxx_scb *head;
810 struct aic7xxx_scb *tail;
811} scb_queue_type;
812
813static struct {
814 unsigned char errno;
815 const char *errmesg;
816} hard_error[] = {
817 { ILLHADDR, "Illegal Host Access" },
818 { ILLSADDR, "Illegal Sequencer Address referenced" },
819 { ILLOPCODE, "Illegal Opcode in sequencer program" },
820 { SQPARERR, "Sequencer Ram Parity Error" },
821 { DPARERR, "Data-Path Ram Parity Error" },
822 { MPARERR, "Scratch Ram/SCB Array Ram Parity Error" },
823 { PCIERRSTAT,"PCI Error detected" },
824 { CIOPARERR, "CIOBUS Parity Error" }
825};
826
827static unsigned char
828generic_sense[] = { REQUEST_SENSE, 0, 0, 0, 255, 0 };
829
830typedef struct {
831 scb_queue_type free_scbs; /*
832 * SCBs assigned to free slot on
833 * card (no paging required)
834 */
835 struct aic7xxx_scb *scb_array[AIC7XXX_MAXSCB];
836 struct aic7xxx_hwscb *hscbs;
837 unsigned char numscbs; /* current number of scbs */
838 unsigned char maxhscbs; /* hardware scbs */
839 unsigned char maxscbs; /* max scbs including pageable scbs */
840 dma_addr_t hscbs_dma; /* DMA handle to hscbs */
841 unsigned int hscbs_dma_len; /* length of the above DMA area */
842 void *hscb_kmalloc_ptr;
843} scb_data_type;
844
845struct target_cmd {
846 unsigned char mesg_bytes[4];
847 unsigned char command[28];
848};
849
850#define AHC_TRANS_CUR 0x0001
851#define AHC_TRANS_ACTIVE 0x0002
852#define AHC_TRANS_GOAL 0x0004
853#define AHC_TRANS_USER 0x0008
854#define AHC_TRANS_QUITE 0x0010
855typedef struct {
856 unsigned char width;
857 unsigned char period;
858 unsigned char offset;
859 unsigned char options;
860} transinfo_type;
861
862struct aic_dev_data {
863 volatile scb_queue_type delayed_scbs;
864 volatile unsigned short temp_q_depth;
865 unsigned short max_q_depth;
866 volatile unsigned char active_cmds;
867 /*
868 * Statistics Kept:
869 *
870 * Total Xfers (count for each command that has a data xfer),
871 * broken down by reads && writes.
872 *
873 * Further sorted into a few bins for keeping tabs on how many commands
874 * we get of various sizes.
875 *
876 */
877 long w_total; /* total writes */
878 long r_total; /* total reads */
879 long barrier_total; /* total num of REQ_BARRIER commands */
880 long ordered_total; /* How many REQ_BARRIER commands we
881 used ordered tags to satisfy */
882 long w_bins[6]; /* binned write */
883 long r_bins[6]; /* binned reads */
884 transinfo_type cur;
885 transinfo_type goal;
886#define BUS_DEVICE_RESET_PENDING 0x01
887#define DEVICE_RESET_DELAY 0x02
888#define DEVICE_PRINT_DTR 0x04
889#define DEVICE_WAS_BUSY 0x08
890#define DEVICE_DTR_SCANNED 0x10
891#define DEVICE_SCSI_3 0x20
892 volatile unsigned char flags;
893 unsigned needppr:1;
894 unsigned needppr_copy:1;
895 unsigned needsdtr:1;
896 unsigned needsdtr_copy:1;
897 unsigned needwdtr:1;
898 unsigned needwdtr_copy:1;
899 unsigned dtr_pending:1;
900 struct scsi_device *SDptr;
901 struct list_head list;
902};
903
904/*
905 * Define a structure used for each host adapter. Note, in order to avoid
906 * problems with architectures I can't test on (because I don't have one,
907 * such as the Alpha based systems) which happen to give faults for
908 * non-aligned memory accesses, care was taken to align this structure
909 * in a way that gauranteed all accesses larger than 8 bits were aligned
910 * on the appropriate boundary. It's also organized to try and be more
911 * cache line efficient. Be careful when changing this lest you might hurt
912 * overall performance and bring down the wrath of the masses.
913 */
914struct aic7xxx_host {
915 /*
916 * This is the first 64 bytes in the host struct
917 */
918
919 /*
920 * We are grouping things here....first, items that get either read or
921 * written with nearly every interrupt
922 */
c1278289
HK
923 volatile long flags;
924 ahc_feature features; /* chip features */
925 unsigned long base; /* card base address */
926 volatile unsigned char __iomem *maddr; /* memory mapped address */
927 unsigned long isr_count; /* Interrupt count */
928 unsigned long spurious_int;
929 scb_data_type *scb_data;
930 struct aic7xxx_cmd_queue {
931 struct scsi_cmnd *head;
932 struct scsi_cmnd *tail;
933 } completeq;
1da177e4 934
c1278289
HK
935 /*
936 * Things read/written on nearly every entry into aic7xxx_queue()
937 */
938 volatile scb_queue_type waiting_scbs;
939 unsigned char unpause; /* unpause value for HCNTRL */
940 unsigned char pause; /* pause value for HCNTRL */
941 volatile unsigned char qoutfifonext;
942 volatile unsigned char activescbs; /* active scbs */
943 volatile unsigned char max_activescbs;
944 volatile unsigned char qinfifonext;
945 volatile unsigned char *untagged_scbs;
946 volatile unsigned char *qoutfifo;
947 volatile unsigned char *qinfifo;
948
949 unsigned char dev_last_queue_full[MAX_TARGETS];
950 unsigned char dev_last_queue_full_count[MAX_TARGETS];
951 unsigned short ultraenb; /* Gets downloaded to card as a bitmap */
952 unsigned short discenable; /* Gets downloaded to card as a bitmap */
953 transinfo_type user[MAX_TARGETS];
954
955 unsigned char msg_buf[13]; /* The message for the target */
956 unsigned char msg_type;
1da177e4
LT
957#define MSG_TYPE_NONE 0x00
958#define MSG_TYPE_INITIATOR_MSGOUT 0x01
959#define MSG_TYPE_INITIATOR_MSGIN 0x02
c1278289
HK
960 unsigned char msg_len; /* Length of message */
961 unsigned char msg_index; /* Index into msg_buf array */
1da177e4
LT
962
963
c1278289
HK
964 /*
965 * We put the less frequently used host structure items
966 * after the more frequently used items to try and ease
967 * the burden on the cache subsystem.
968 * These entries are not *commonly* accessed, whereas
969 * the preceding entries are accessed very often.
970 */
1da177e4 971
c1278289
HK
972 unsigned int irq; /* IRQ for this adapter */
973 int instance; /* aic7xxx instance number */
974 int scsi_id; /* host adapter SCSI ID */
975 int scsi_id_b; /* channel B for twin adapters */
976 unsigned int bios_address;
977 int board_name_index;
978 unsigned short bios_control; /* bios control - SEEPROM */
979 unsigned short adapter_control; /* adapter control - SEEPROM */
980 struct pci_dev *pdev;
981 unsigned char pci_bus;
982 unsigned char pci_device_fn;
983 struct seeprom_config sc;
984 unsigned short sc_type;
985 unsigned short sc_size;
986 struct aic7xxx_host *next; /* allow for multiple IRQs */
987 struct Scsi_Host *host; /* pointer to scsi host */
988 struct list_head aic_devs; /* all aic_dev structs on host */
989 int host_no; /* SCSI host number */
990 unsigned long mbase; /* I/O memory address */
991 ahc_chip chip; /* chip type */
992 ahc_bugs bugs;
993 dma_addr_t fifo_dma; /* DMA handle for fifo arrays */
1da177e4
LT
994};
995
996/*
997 * Valid SCSIRATE values. (p. 3-17)
998 * Provides a mapping of transfer periods in ns/4 to the proper value to
999 * stick in the SCSIRATE reg to use that transfer rate.
1000 */
1001#define AHC_SYNCRATE_ULTRA3 0
1002#define AHC_SYNCRATE_ULTRA2 1
1003#define AHC_SYNCRATE_ULTRA 3
1004#define AHC_SYNCRATE_FAST 6
1005#define AHC_SYNCRATE_CRC 0x40
1006#define AHC_SYNCRATE_SE 0x10
1007static struct aic7xxx_syncrate {
1008 /* Rates in Ultra mode have bit 8 of sxfr set */
1009#define ULTRA_SXFR 0x100
1010 int sxfr_ultra2;
1011 int sxfr;
1012 unsigned char period;
1013 const char *rate[2];
1014} aic7xxx_syncrates[] = {
1015 { 0x42, 0x000, 9, {"80.0", "160.0"} },
1016 { 0x13, 0x000, 10, {"40.0", "80.0"} },
1017 { 0x14, 0x000, 11, {"33.0", "66.6"} },
1018 { 0x15, 0x100, 12, {"20.0", "40.0"} },
1019 { 0x16, 0x110, 15, {"16.0", "32.0"} },
1020 { 0x17, 0x120, 18, {"13.4", "26.8"} },
1021 { 0x18, 0x000, 25, {"10.0", "20.0"} },
1022 { 0x19, 0x010, 31, {"8.0", "16.0"} },
1023 { 0x1a, 0x020, 37, {"6.67", "13.3"} },
1024 { 0x1b, 0x030, 43, {"5.7", "11.4"} },
1025 { 0x10, 0x040, 50, {"5.0", "10.0"} },
1026 { 0x00, 0x050, 56, {"4.4", "8.8" } },
1027 { 0x00, 0x060, 62, {"4.0", "8.0" } },
1028 { 0x00, 0x070, 68, {"3.6", "7.2" } },
1029 { 0x00, 0x000, 0, {NULL, NULL} },
1030};
1031
1032#define CTL_OF_SCB(scb) (((scb->hscb)->target_channel_lun >> 3) & 0x1), \
1033 (((scb->hscb)->target_channel_lun >> 4) & 0xf), \
1034 ((scb->hscb)->target_channel_lun & 0x07)
1035
1036#define CTL_OF_CMD(cmd) ((cmd->device->channel) & 0x01), \
1037 ((cmd->device->id) & 0x0f), \
1038 ((cmd->device->lun) & 0x07)
1039
1040#define TARGET_INDEX(cmd) ((cmd)->device->id | ((cmd)->device->channel << 3))
1041
1042/*
1043 * A nice little define to make doing our printks a little easier
1044 */
1045
1046#define WARN_LEAD KERN_WARNING "(scsi%d:%d:%d:%d) "
1047#define INFO_LEAD KERN_INFO "(scsi%d:%d:%d:%d) "
1048
1049/*
1050 * XXX - these options apply unilaterally to _all_ 274x/284x/294x
1051 * cards in the system. This should be fixed. Exceptions to this
1052 * rule are noted in the comments.
1053 */
1054
1055/*
1056 * Use this as the default queue depth when setting tagged queueing on.
1057 */
1058static unsigned int aic7xxx_default_queue_depth = AIC7XXX_CMDS_PER_DEVICE;
1059
1060/*
1061 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
1062 * has no effect on any later resets that might occur due to things like
1063 * SCSI bus timeouts.
1064 */
1065static unsigned int aic7xxx_no_reset = 0;
1066/*
1067 * Certain PCI motherboards will scan PCI devices from highest to lowest,
1068 * others scan from lowest to highest, and they tend to do all kinds of
1069 * strange things when they come into contact with PCI bridge chips. The
1070 * net result of all this is that the PCI card that is actually used to boot
1071 * the machine is very hard to detect. Most motherboards go from lowest
1072 * PCI slot number to highest, and the first SCSI controller found is the
1073 * one you boot from. The only exceptions to this are when a controller
1074 * has its BIOS disabled. So, we by default sort all of our SCSI controllers
1075 * from lowest PCI slot number to highest PCI slot number. We also force
1076 * all controllers with their BIOS disabled to the end of the list. This
1077 * works on *almost* all computers. Where it doesn't work, we have this
1078 * option. Setting this option to non-0 will reverse the order of the sort
1079 * to highest first, then lowest, but will still leave cards with their BIOS
1080 * disabled at the very end. That should fix everyone up unless there are
1081 * really strange cirumstances.
1082 */
1083static int aic7xxx_reverse_scan = 0;
1084/*
1085 * Should we force EXTENDED translation on a controller.
1086 * 0 == Use whatever is in the SEEPROM or default to off
1087 * 1 == Use whatever is in the SEEPROM or default to on
1088 */
1089static unsigned int aic7xxx_extended = 0;
1090/*
1091 * The IRQ trigger method used on EISA controllers. Does not effect PCI cards.
1092 * -1 = Use detected settings.
1093 * 0 = Force Edge triggered mode.
1094 * 1 = Force Level triggered mode.
1095 */
1096static int aic7xxx_irq_trigger = -1;
1097/*
1098 * This variable is used to override the termination settings on a controller.
1099 * This should not be used under normal conditions. However, in the case
1100 * that a controller does not have a readable SEEPROM (so that we can't
1101 * read the SEEPROM settings directly) and that a controller has a buggered
1102 * version of the cable detection logic, this can be used to force the
1103 * correct termination. It is preferable to use the manual termination
1104 * settings in the BIOS if possible, but some motherboard controllers store
1105 * those settings in a format we can't read. In other cases, auto term
1106 * should also work, but the chipset was put together with no auto term
1107 * logic (common on motherboard controllers). In those cases, we have
1108 * 32 bits here to work with. That's good for 8 controllers/channels. The
1109 * bits are organized as 4 bits per channel, with scsi0 getting the lowest
1110 * 4 bits in the int. A 1 in a bit position indicates the termination setting
1111 * that corresponds to that bit should be enabled, a 0 is disabled.
1112 * It looks something like this:
1113 *
1114 * 0x0f = 1111-Single Ended Low Byte Termination on/off
1115 * ||\-Single Ended High Byte Termination on/off
1116 * |\-LVD Low Byte Termination on/off
1117 * \-LVD High Byte Termination on/off
1118 *
1119 * For non-Ultra2 controllers, the upper 2 bits are not important. So, to
1120 * enable both high byte and low byte termination on scsi0, I would need to
1121 * make sure that the override_term variable was set to 0x03 (bits 0011).
1122 * To make sure that all termination is enabled on an Ultra2 controller at
1123 * scsi2 and only high byte termination on scsi1 and high and low byte
1124 * termination on scsi0, I would set override_term=0xf23 (bits 1111 0010 0011)
1125 *
1126 * For the most part, users should never have to use this, that's why I
1127 * left it fairly cryptic instead of easy to understand. If you need it,
1128 * most likely someone will be telling you what your's needs to be set to.
1129 */
1130static int aic7xxx_override_term = -1;
1131/*
1132 * Certain motherboard chipset controllers tend to screw
1133 * up the polarity of the term enable output pin. Use this variable
1134 * to force the correct polarity for your system. This is a bitfield variable
1135 * similar to the previous one, but this one has one bit per channel instead
1136 * of four.
1137 * 0 = Force the setting to active low.
1138 * 1 = Force setting to active high.
1139 * Most Adaptec cards are active high, several motherboards are active low.
1140 * To force a 2940 card at SCSI 0 to active high and a motherboard 7895
1141 * controller at scsi1 and scsi2 to active low, and a 2910 card at scsi3
1142 * to active high, you would need to set stpwlev=0x9 (bits 1001).
1143 *
1144 * People shouldn't need to use this, but if you are experiencing lots of
1145 * SCSI timeout problems, this may help. There is one sure way to test what
1146 * this option needs to be. Using a boot floppy to boot the system, configure
1147 * your system to enable all SCSI termination (in the Adaptec SCSI BIOS) and
1148 * if needed then also pass a value to override_term to make sure that the
1149 * driver is enabling SCSI termination, then set this variable to either 0
1150 * or 1. When the driver boots, make sure there are *NO* SCSI cables
1151 * connected to your controller. If it finds and inits the controller
1152 * without problem, then the setting you passed to stpwlev was correct. If
1153 * the driver goes into a reset loop and hangs the system, then you need the
1154 * other setting for this variable. If neither setting lets the machine
1155 * boot then you have definite termination problems that may not be fixable.
1156 */
1157static int aic7xxx_stpwlev = -1;
1158/*
1159 * Set this to non-0 in order to force the driver to panic the kernel
1160 * and print out debugging info on a SCSI abort or reset cycle.
1161 */
1162static int aic7xxx_panic_on_abort = 0;
1163/*
1164 * PCI bus parity checking of the Adaptec controllers. This is somewhat
1165 * dubious at best. To my knowledge, this option has never actually
1166 * solved a PCI parity problem, but on certain machines with broken PCI
1167 * chipset configurations, it can generate tons of false error messages.
1168 * It's included in the driver for completeness.
1169 * 0 = Shut off PCI parity check
1170 * -1 = Normal polarity pci parity checking
1171 * 1 = reverse polarity pci parity checking
1172 *
1173 * NOTE: you can't actually pass -1 on the lilo prompt. So, to set this
1174 * variable to -1 you would actually want to simply pass the variable
1175 * name without a number. That will invert the 0 which will result in
1176 * -1.
1177 */
1178static int aic7xxx_pci_parity = 0;
1179/*
1180 * Set this to any non-0 value to cause us to dump the contents of all
1181 * the card's registers in a hex dump format tailored to each model of
1182 * controller.
1183 *
1184 * NOTE: THE CONTROLLER IS LEFT IN AN UNUSEABLE STATE BY THIS OPTION.
1185 * YOU CANNOT BOOT UP WITH THIS OPTION, IT IS FOR DEBUGGING PURPOSES
1186 * ONLY
1187 */
1188static int aic7xxx_dump_card = 0;
1189/*
1190 * Set this to a non-0 value to make us dump out the 32 bit instruction
1191 * registers on the card after completing the sequencer download. This
1192 * allows the actual sequencer download to be verified. It is possible
1193 * to use this option and still boot up and run your system. This is
1194 * only intended for debugging purposes.
1195 */
1196static int aic7xxx_dump_sequencer = 0;
1197/*
1198 * Certain newer motherboards have put new PCI based devices into the
1199 * IO spaces that used to typically be occupied by VLB or EISA cards.
1200 * This overlap can cause these newer motherboards to lock up when scanned
1201 * for older EISA and VLB devices. Setting this option to non-0 will
1202 * cause the driver to skip scanning for any VLB or EISA controllers and
1203 * only support the PCI controllers. NOTE: this means that if the kernel
1204 * os compiled with PCI support disabled, then setting this to non-0
1205 * would result in never finding any devices :)
1206 */
1207static int aic7xxx_no_probe = 0;
1208/*
1209 * On some machines, enabling the external SCB RAM isn't reliable yet. I
1210 * haven't had time to make test patches for things like changing the
1211 * timing mode on that external RAM either. Some of those changes may
1212 * fix the problem. Until then though, we default to external SCB RAM
1213 * off and give a command line option to enable it.
1214 */
1215static int aic7xxx_scbram = 0;
1216/*
1217 * So that we can set how long each device is given as a selection timeout.
1218 * The table of values goes like this:
1219 * 0 - 256ms
1220 * 1 - 128ms
1221 * 2 - 64ms
1222 * 3 - 32ms
1223 * We default to 64ms because it's fast. Some old SCSI-I devices need a
1224 * longer time. The final value has to be left shifted by 3, hence 0x10
1225 * is the final value.
1226 */
1227static int aic7xxx_seltime = 0x10;
1228/*
1229 * So that insmod can find the variable and make it point to something
1230 */
1231#ifdef MODULE
1232static char * aic7xxx = NULL;
1233module_param(aic7xxx, charp, 0);
1234#endif
1235
1236#define VERBOSE_NORMAL 0x0000
1237#define VERBOSE_NEGOTIATION 0x0001
1238#define VERBOSE_SEQINT 0x0002
1239#define VERBOSE_SCSIINT 0x0004
1240#define VERBOSE_PROBE 0x0008
1241#define VERBOSE_PROBE2 0x0010
1242#define VERBOSE_NEGOTIATION2 0x0020
1243#define VERBOSE_MINOR_ERROR 0x0040
1244#define VERBOSE_TRACING 0x0080
1245#define VERBOSE_ABORT 0x0f00
1246#define VERBOSE_ABORT_MID 0x0100
1247#define VERBOSE_ABORT_FIND 0x0200
1248#define VERBOSE_ABORT_PROCESS 0x0400
1249#define VERBOSE_ABORT_RETURN 0x0800
1250#define VERBOSE_RESET 0xf000
1251#define VERBOSE_RESET_MID 0x1000
1252#define VERBOSE_RESET_FIND 0x2000
1253#define VERBOSE_RESET_PROCESS 0x4000
1254#define VERBOSE_RESET_RETURN 0x8000
1255static int aic7xxx_verbose = VERBOSE_NORMAL | VERBOSE_NEGOTIATION |
1256 VERBOSE_PROBE; /* verbose messages */
1257
1258
1259/****************************************************************************
1260 *
1261 * We're going to start putting in function declarations so that order of
1262 * functions is no longer important. As needed, they are added here.
1263 *
1264 ***************************************************************************/
1265
1266static int aic7xxx_release(struct Scsi_Host *host);
1267static void aic7xxx_set_syncrate(struct aic7xxx_host *p,
1268 struct aic7xxx_syncrate *syncrate, int target, int channel,
1269 unsigned int period, unsigned int offset, unsigned char options,
1270 unsigned int type, struct aic_dev_data *aic_dev);
1271static void aic7xxx_set_width(struct aic7xxx_host *p, int target, int channel,
1272 int lun, unsigned int width, unsigned int type,
1273 struct aic_dev_data *aic_dev);
c1278289 1274static void aic7xxx_panic_abort(struct aic7xxx_host *p, struct scsi_cmnd *cmd);
1da177e4
LT
1275static void aic7xxx_print_card(struct aic7xxx_host *p);
1276static void aic7xxx_print_scratch_ram(struct aic7xxx_host *p);
1277static void aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded);
1278#ifdef AIC7XXX_VERBOSE_DEBUGGING
1279static void aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer);
1280#endif
1281
1282/****************************************************************************
1283 *
1284 * These functions are now used. They happen to be wrapped in useless
1285 * inb/outb port read/writes around the real reads and writes because it
1286 * seems that certain very fast CPUs have a problem dealing with us when
1287 * going at full speed.
1288 *
1289 ***************************************************************************/
1290
858119e1 1291static unsigned char
1da177e4
LT
1292aic_inb(struct aic7xxx_host *p, long port)
1293{
1294#ifdef MMAPIO
1295 unsigned char x;
1296 if(p->maddr)
1297 {
1298 x = readb(p->maddr + port);
1299 }
1300 else
1301 {
1302 x = inb(p->base + port);
1303 }
1304 return(x);
1305#else
1306 return(inb(p->base + port));
1307#endif
1308}
1309
858119e1 1310static void
1da177e4
LT
1311aic_outb(struct aic7xxx_host *p, unsigned char val, long port)
1312{
1313#ifdef MMAPIO
1314 if(p->maddr)
1315 {
1316 writeb(val, p->maddr + port);
1317 mb(); /* locked operation in order to force CPU ordering */
1318 readb(p->maddr + HCNTRL); /* dummy read to flush the PCI write */
1319 }
1320 else
1321 {
1322 outb(val, p->base + port);
1323 mb(); /* locked operation in order to force CPU ordering */
1324 }
1325#else
1326 outb(val, p->base + port);
1327 mb(); /* locked operation in order to force CPU ordering */
1328#endif
1329}
1330
1331/*+F*************************************************************************
1332 * Function:
1333 * aic7xxx_setup
1334 *
1335 * Description:
1336 * Handle Linux boot parameters. This routine allows for assigning a value
1337 * to a parameter with a ':' between the parameter and the value.
1338 * ie. aic7xxx=unpause:0x0A,extended
1339 *-F*************************************************************************/
1340static int
1341aic7xxx_setup(char *s)
1342{
1343 int i, n;
1344 char *p;
1345 char *end;
1346
1347 static struct {
1348 const char *name;
1349 unsigned int *flag;
1350 } options[] = {
1351 { "extended", &aic7xxx_extended },
1352 { "no_reset", &aic7xxx_no_reset },
1353 { "irq_trigger", &aic7xxx_irq_trigger },
1354 { "verbose", &aic7xxx_verbose },
1355 { "reverse_scan",&aic7xxx_reverse_scan },
1356 { "override_term", &aic7xxx_override_term },
1357 { "stpwlev", &aic7xxx_stpwlev },
1358 { "no_probe", &aic7xxx_no_probe },
1359 { "panic_on_abort", &aic7xxx_panic_on_abort },
1360 { "pci_parity", &aic7xxx_pci_parity },
1361 { "dump_card", &aic7xxx_dump_card },
1362 { "dump_sequencer", &aic7xxx_dump_sequencer },
1363 { "default_queue_depth", &aic7xxx_default_queue_depth },
1364 { "scbram", &aic7xxx_scbram },
1365 { "seltime", &aic7xxx_seltime },
1366 { "tag_info", NULL }
1367 };
1368
1369 end = strchr(s, '\0');
1370
1371 while ((p = strsep(&s, ",.")) != NULL)
1372 {
1373 for (i = 0; i < ARRAY_SIZE(options); i++)
1374 {
1375 n = strlen(options[i].name);
1376 if (!strncmp(options[i].name, p, n))
1377 {
1378 if (!strncmp(p, "tag_info", n))
1379 {
1380 if (p[n] == ':')
1381 {
1382 char *base;
1383 char *tok, *tok_end, *tok_end2;
1384 char tok_list[] = { '.', ',', '{', '}', '\0' };
1385 int i, instance = -1, device = -1;
1386 unsigned char done = FALSE;
1387
1388 base = p;
1389 tok = base + n + 1; /* Forward us just past the ':' */
1390 tok_end = strchr(tok, '\0');
1391 if (tok_end < end)
1392 *tok_end = ',';
1393 while(!done)
1394 {
1395 switch(*tok)
1396 {
1397 case '{':
1398 if (instance == -1)
1399 instance = 0;
1400 else if (device == -1)
1401 device = 0;
1402 tok++;
1403 break;
1404 case '}':
1405 if (device != -1)
1406 device = -1;
1407 else if (instance != -1)
1408 instance = -1;
1409 tok++;
1410 break;
1411 case ',':
1412 case '.':
1413 if (instance == -1)
1414 done = TRUE;
1415 else if (device >= 0)
1416 device++;
1417 else if (instance >= 0)
1418 instance++;
1419 if ( (device >= MAX_TARGETS) ||
1420 (instance >= ARRAY_SIZE(aic7xxx_tag_info)) )
1421 done = TRUE;
1422 tok++;
1423 if (!done)
1424 {
1425 base = tok;
1426 }
1427 break;
1428 case '\0':
1429 done = TRUE;
1430 break;
1431 default:
1432 done = TRUE;
1433 tok_end = strchr(tok, '\0');
1434 for(i=0; tok_list[i]; i++)
1435 {
1436 tok_end2 = strchr(tok, tok_list[i]);
1437 if ( (tok_end2) && (tok_end2 < tok_end) )
1438 {
1439 tok_end = tok_end2;
1440 done = FALSE;
1441 }
1442 }
1443 if ( (instance >= 0) && (device >= 0) &&
1444 (instance < ARRAY_SIZE(aic7xxx_tag_info)) &&
1445 (device < MAX_TARGETS) )
1446 aic7xxx_tag_info[instance].tag_commands[device] =
1447 simple_strtoul(tok, NULL, 0) & 0xff;
1448 tok = tok_end;
1449 break;
1450 }
1451 }
1452 while((p != base) && (p != NULL))
1453 p = strsep(&s, ",.");
1454 }
1455 }
1456 else if (p[n] == ':')
1457 {
1458 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
1459 if(!strncmp(p, "seltime", n))
1460 {
1461 *(options[i].flag) = (*(options[i].flag) % 4) << 3;
1462 }
1463 }
1464 else if (!strncmp(p, "verbose", n))
1465 {
1466 *(options[i].flag) = 0xff29;
1467 }
1468 else
1469 {
1470 *(options[i].flag) = ~(*(options[i].flag));
1471 if(!strncmp(p, "seltime", n))
1472 {
1473 *(options[i].flag) = (*(options[i].flag) % 4) << 3;
1474 }
1475 }
1476 }
1477 }
1478 }
1479 return 1;
1480}
1481
1482__setup("aic7xxx=", aic7xxx_setup);
1483
1484/*+F*************************************************************************
1485 * Function:
1486 * pause_sequencer
1487 *
1488 * Description:
1489 * Pause the sequencer and wait for it to actually stop - this
1490 * is important since the sequencer can disable pausing for critical
1491 * sections.
1492 *-F*************************************************************************/
1493static void
1494pause_sequencer(struct aic7xxx_host *p)
1495{
1496 aic_outb(p, p->pause, HCNTRL);
1497 while ((aic_inb(p, HCNTRL) & PAUSE) == 0)
1498 {
1499 ;
1500 }
1501 if(p->features & AHC_ULTRA2)
1502 {
1503 aic_inb(p, CCSCBCTL);
1504 }
1505}
1506
1507/*+F*************************************************************************
1508 * Function:
1509 * unpause_sequencer
1510 *
1511 * Description:
1512 * Unpause the sequencer. Unremarkable, yet done often enough to
1513 * warrant an easy way to do it.
1514 *-F*************************************************************************/
1515static void
1516unpause_sequencer(struct aic7xxx_host *p, int unpause_always)
1517{
1518 if (unpause_always ||
1519 ( !(aic_inb(p, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) &&
1520 !(p->flags & AHC_HANDLING_REQINITS) ) )
1521 {
1522 aic_outb(p, p->unpause, HCNTRL);
1523 }
1524}
1525
1526/*+F*************************************************************************
1527 * Function:
1528 * restart_sequencer
1529 *
1530 * Description:
1531 * Restart the sequencer program from address zero. This assumes
1532 * that the sequencer is already paused.
1533 *-F*************************************************************************/
1534static void
1535restart_sequencer(struct aic7xxx_host *p)
1536{
1537 aic_outb(p, 0, SEQADDR0);
1538 aic_outb(p, 0, SEQADDR1);
1539 aic_outb(p, FASTMODE, SEQCTL);
1540}
1541
1542/*
1543 * We include the aic7xxx_seq.c file here so that the other defines have
1544 * already been made, and so that it comes before the code that actually
1545 * downloads the instructions (since we don't typically use function
1546 * prototype, our code has to be ordered that way, it's a left-over from
1547 * the original driver days.....I should fix it some time DL).
1548 */
1549#include "aic7xxx_old/aic7xxx_seq.c"
1550
1551/*+F*************************************************************************
1552 * Function:
1553 * aic7xxx_check_patch
1554 *
1555 * Description:
1556 * See if the next patch to download should be downloaded.
1557 *-F*************************************************************************/
1558static int
1559aic7xxx_check_patch(struct aic7xxx_host *p,
1560 struct sequencer_patch **start_patch, int start_instr, int *skip_addr)
1561{
1562 struct sequencer_patch *cur_patch;
1563 struct sequencer_patch *last_patch;
1564 int num_patches;
1565
6391a113 1566 num_patches = ARRAY_SIZE(sequencer_patches);
1da177e4
LT
1567 last_patch = &sequencer_patches[num_patches];
1568 cur_patch = *start_patch;
1569
1570 while ((cur_patch < last_patch) && (start_instr == cur_patch->begin))
1571 {
1572 if (cur_patch->patch_func(p) == 0)
1573 {
1574 /*
1575 * Start rejecting code.
1576 */
1577 *skip_addr = start_instr + cur_patch->skip_instr;
1578 cur_patch += cur_patch->skip_patch;
1579 }
1580 else
1581 {
1582 /*
1583 * Found an OK patch. Advance the patch pointer to the next patch
1584 * and wait for our instruction pointer to get here.
1585 */
1586 cur_patch++;
1587 }
1588 }
1589
1590 *start_patch = cur_patch;
1591 if (start_instr < *skip_addr)
1592 /*
1593 * Still skipping
1594 */
1595 return (0);
1596 return(1);
1597}
1598
1599
1600/*+F*************************************************************************
1601 * Function:
1602 * aic7xxx_download_instr
1603 *
1604 * Description:
1605 * Find the next patch to download.
1606 *-F*************************************************************************/
1607static void
1608aic7xxx_download_instr(struct aic7xxx_host *p, int instrptr,
1609 unsigned char *dconsts)
1610{
1611 union ins_formats instr;
1612 struct ins_format1 *fmt1_ins;
1613 struct ins_format3 *fmt3_ins;
1614 unsigned char opcode;
1615
1616 instr = *(union ins_formats*) &seqprog[instrptr * 4];
1617
1618 instr.integer = le32_to_cpu(instr.integer);
1619
1620 fmt1_ins = &instr.format1;
1621 fmt3_ins = NULL;
1622
1623 /* Pull the opcode */
1624 opcode = instr.format1.opcode;
1625 switch (opcode)
1626 {
1627 case AIC_OP_JMP:
1628 case AIC_OP_JC:
1629 case AIC_OP_JNC:
1630 case AIC_OP_CALL:
1631 case AIC_OP_JNE:
1632 case AIC_OP_JNZ:
1633 case AIC_OP_JE:
1634 case AIC_OP_JZ:
1635 {
1636 struct sequencer_patch *cur_patch;
1637 int address_offset;
1638 unsigned int address;
1639 int skip_addr;
1640 int i;
1641
1642 fmt3_ins = &instr.format3;
1643 address_offset = 0;
1644 address = fmt3_ins->address;
1645 cur_patch = sequencer_patches;
1646 skip_addr = 0;
1647
1648 for (i = 0; i < address;)
1649 {
1650 aic7xxx_check_patch(p, &cur_patch, i, &skip_addr);
1651 if (skip_addr > i)
1652 {
1653 int end_addr;
1654
1655 end_addr = min_t(int, address, skip_addr);
1656 address_offset += end_addr - i;
1657 i = skip_addr;
1658 }
1659 else
1660 {
1661 i++;
1662 }
1663 }
1664 address -= address_offset;
1665 fmt3_ins->address = address;
1666 /* Fall Through to the next code section */
1667 }
1668 case AIC_OP_OR:
1669 case AIC_OP_AND:
1670 case AIC_OP_XOR:
1671 case AIC_OP_ADD:
1672 case AIC_OP_ADC:
1673 case AIC_OP_BMOV:
1674 if (fmt1_ins->parity != 0)
1675 {
1676 fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
1677 }
1678 fmt1_ins->parity = 0;
1679 /* Fall Through to the next code section */
1680 case AIC_OP_ROL:
1681 if ((p->features & AHC_ULTRA2) != 0)
1682 {
1683 int i, count;
1684
1685 /* Calculate odd parity for the instruction */
1686 for ( i=0, count=0; i < 31; i++)
1687 {
1688 unsigned int mask;
1689
1690 mask = 0x01 << i;
1691 if ((instr.integer & mask) != 0)
1692 count++;
1693 }
1694 if (!(count & 0x01))
1695 instr.format1.parity = 1;
1696 }
1697 else
1698 {
1699 if (fmt3_ins != NULL)
1700 {
1701 instr.integer = fmt3_ins->immediate |
1702 (fmt3_ins->source << 8) |
1703 (fmt3_ins->address << 16) |
1704 (fmt3_ins->opcode << 25);
1705 }
1706 else
1707 {
1708 instr.integer = fmt1_ins->immediate |
1709 (fmt1_ins->source << 8) |
1710 (fmt1_ins->destination << 16) |
1711 (fmt1_ins->ret << 24) |
1712 (fmt1_ins->opcode << 25);
1713 }
1714 }
1715 aic_outb(p, (instr.integer & 0xff), SEQRAM);
1716 aic_outb(p, ((instr.integer >> 8) & 0xff), SEQRAM);
1717 aic_outb(p, ((instr.integer >> 16) & 0xff), SEQRAM);
1718 aic_outb(p, ((instr.integer >> 24) & 0xff), SEQRAM);
1719 udelay(10);
1720 break;
1721
1722 default:
1723 panic("aic7xxx: Unknown opcode encountered in sequencer program.");
1724 break;
1725 }
1726}
1727
1728
1729/*+F*************************************************************************
1730 * Function:
1731 * aic7xxx_loadseq
1732 *
1733 * Description:
1734 * Load the sequencer code into the controller memory.
1735 *-F*************************************************************************/
1736static void
1737aic7xxx_loadseq(struct aic7xxx_host *p)
1738{
1739 struct sequencer_patch *cur_patch;
1740 int i;
1741 int downloaded;
1742 int skip_addr;
1743 unsigned char download_consts[4] = {0, 0, 0, 0};
1744
1745 if (aic7xxx_verbose & VERBOSE_PROBE)
1746 {
1747 printk(KERN_INFO "(scsi%d) Downloading sequencer code...", p->host_no);
1748 }
1749#if 0
1750 download_consts[TMODE_NUMCMDS] = p->num_targetcmds;
1751#endif
1752 download_consts[TMODE_NUMCMDS] = 0;
1753 cur_patch = &sequencer_patches[0];
1754 downloaded = 0;
1755 skip_addr = 0;
1756
1757 aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL);
1758 aic_outb(p, 0, SEQADDR0);
1759 aic_outb(p, 0, SEQADDR1);
1760
1761 for (i = 0; i < sizeof(seqprog) / 4; i++)
1762 {
1763 if (aic7xxx_check_patch(p, &cur_patch, i, &skip_addr) == 0)
1764 {
1765 /* Skip this instruction for this configuration. */
1766 continue;
1767 }
1768 aic7xxx_download_instr(p, i, &download_consts[0]);
1769 downloaded++;
1770 }
1771
1772 aic_outb(p, 0, SEQADDR0);
1773 aic_outb(p, 0, SEQADDR1);
1774 aic_outb(p, FASTMODE | FAILDIS, SEQCTL);
1775 unpause_sequencer(p, TRUE);
1776 mdelay(1);
1777 pause_sequencer(p);
1778 aic_outb(p, FASTMODE, SEQCTL);
1779 if (aic7xxx_verbose & VERBOSE_PROBE)
1780 {
1781 printk(" %d instructions downloaded\n", downloaded);
1782 }
1783 if (aic7xxx_dump_sequencer)
1784 aic7xxx_print_sequencer(p, downloaded);
1785}
1786
1787/*+F*************************************************************************
1788 * Function:
1789 * aic7xxx_print_sequencer
1790 *
1791 * Description:
1792 * Print the contents of the sequencer memory to the screen.
1793 *-F*************************************************************************/
1794static void
1795aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded)
1796{
1797 int i, k, temp;
1798
1799 aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL);
1800 aic_outb(p, 0, SEQADDR0);
1801 aic_outb(p, 0, SEQADDR1);
1802
1803 k = 0;
1804 for (i=0; i < downloaded; i++)
1805 {
1806 if ( k == 0 )
1807 printk("%03x: ", i);
1808 temp = aic_inb(p, SEQRAM);
1809 temp |= (aic_inb(p, SEQRAM) << 8);
1810 temp |= (aic_inb(p, SEQRAM) << 16);
1811 temp |= (aic_inb(p, SEQRAM) << 24);
1812 printk("%08x", temp);
1813 if ( ++k == 8 )
1814 {
1815 printk("\n");
1816 k = 0;
1817 }
1818 else
1819 printk(" ");
1820 }
1821 aic_outb(p, 0, SEQADDR0);
1822 aic_outb(p, 0, SEQADDR1);
1823 aic_outb(p, FASTMODE | FAILDIS, SEQCTL);
1824 unpause_sequencer(p, TRUE);
1825 mdelay(1);
1826 pause_sequencer(p);
1827 aic_outb(p, FASTMODE, SEQCTL);
1828 printk("\n");
1829}
1830
1831/*+F*************************************************************************
1832 * Function:
1833 * aic7xxx_info
1834 *
1835 * Description:
1836 * Return a string describing the driver.
1837 *-F*************************************************************************/
1838static const char *
1839aic7xxx_info(struct Scsi_Host *dooh)
1840{
1841 static char buffer[256];
1842 char *bp;
1843 struct aic7xxx_host *p;
1844
1845 bp = &buffer[0];
1846 p = (struct aic7xxx_host *)dooh->hostdata;
1847 memset(bp, 0, sizeof(buffer));
1848 strcpy(bp, "Adaptec AHA274x/284x/294x (EISA/VLB/PCI-Fast SCSI) ");
1849 strcat(bp, AIC7XXX_C_VERSION);
1850 strcat(bp, "/");
1851 strcat(bp, AIC7XXX_H_VERSION);
1852 strcat(bp, "\n");
1853 strcat(bp, " <");
1854 strcat(bp, board_names[p->board_name_index]);
1855 strcat(bp, ">");
1856
1857 return(bp);
1858}
1859
1860/*+F*************************************************************************
1861 * Function:
1862 * aic7xxx_find_syncrate
1863 *
1864 * Description:
1865 * Look up the valid period to SCSIRATE conversion in our table
1866 *-F*************************************************************************/
1867static struct aic7xxx_syncrate *
1868aic7xxx_find_syncrate(struct aic7xxx_host *p, unsigned int *period,
1869 unsigned int maxsync, unsigned char *options)
1870{
1871 struct aic7xxx_syncrate *syncrate;
1872 int done = FALSE;
1873
1874 switch(*options)
1875 {
1876 case MSG_EXT_PPR_OPTION_DT_CRC:
1877 case MSG_EXT_PPR_OPTION_DT_UNITS:
1878 if(!(p->features & AHC_ULTRA3))
1879 {
1880 *options = 0;
1881 maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1882 }
1883 break;
1884 case MSG_EXT_PPR_OPTION_DT_CRC_QUICK:
1885 case MSG_EXT_PPR_OPTION_DT_UNITS_QUICK:
1886 if(!(p->features & AHC_ULTRA3))
1887 {
1888 *options = 0;
1889 maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1890 }
1891 else
1892 {
1893 /*
1894 * we don't support the Quick Arbitration variants of dual edge
1895 * clocking. As it turns out, we want to send back the
1896 * same basic option, but without the QA attribute.
1897 * We know that we are responding because we would never set
1898 * these options ourself, we would only respond to them.
1899 */
1900 switch(*options)
1901 {
1902 case MSG_EXT_PPR_OPTION_DT_CRC_QUICK:
1903 *options = MSG_EXT_PPR_OPTION_DT_CRC;
1904 break;
1905 case MSG_EXT_PPR_OPTION_DT_UNITS_QUICK:
1906 *options = MSG_EXT_PPR_OPTION_DT_UNITS;
1907 break;
1908 }
1909 }
1910 break;
1911 default:
1912 *options = 0;
1913 maxsync = max_t(unsigned int, maxsync, AHC_SYNCRATE_ULTRA2);
1914 break;
1915 }
1916 syncrate = &aic7xxx_syncrates[maxsync];
1917 while ( (syncrate->rate[0] != NULL) &&
1918 (!(p->features & AHC_ULTRA2) || syncrate->sxfr_ultra2) )
1919 {
1920 if (*period <= syncrate->period)
1921 {
1922 switch(*options)
1923 {
1924 case MSG_EXT_PPR_OPTION_DT_CRC:
1925 case MSG_EXT_PPR_OPTION_DT_UNITS:
1926 if(!(syncrate->sxfr_ultra2 & AHC_SYNCRATE_CRC))
1927 {
1928 done = TRUE;
1929 /*
1930 * oops, we went too low for the CRC/DualEdge signalling, so
1931 * clear the options byte
1932 */
1933 *options = 0;
1934 /*
1935 * We'll be sending a reply to this packet to set the options
1936 * properly, so unilaterally set the period as well.
1937 */
1938 *period = syncrate->period;
1939 }
1940 else
1941 {
1942 done = TRUE;
1943 if(syncrate == &aic7xxx_syncrates[maxsync])
1944 {
1945 *period = syncrate->period;
1946 }
1947 }
1948 break;
1949 default:
1950 if(!(syncrate->sxfr_ultra2 & AHC_SYNCRATE_CRC))
1951 {
1952 done = TRUE;
1953 if(syncrate == &aic7xxx_syncrates[maxsync])
1954 {
1955 *period = syncrate->period;
1956 }
1957 }
1958 break;
1959 }
1960 if(done)
1961 {
1962 break;
1963 }
1964 }
1965 syncrate++;
1966 }
1967 if ( (*period == 0) || (syncrate->rate[0] == NULL) ||
1968 ((p->features & AHC_ULTRA2) && (syncrate->sxfr_ultra2 == 0)) )
1969 {
1970 /*
1971 * Use async transfers for this target
1972 */
1973 *options = 0;
1974 *period = 255;
1975 syncrate = NULL;
1976 }
1977 return (syncrate);
1978}
1979
1980
1981/*+F*************************************************************************
1982 * Function:
1983 * aic7xxx_find_period
1984 *
1985 * Description:
1986 * Look up the valid SCSIRATE to period conversion in our table
1987 *-F*************************************************************************/
1988static unsigned int
1989aic7xxx_find_period(struct aic7xxx_host *p, unsigned int scsirate,
1990 unsigned int maxsync)
1991{
1992 struct aic7xxx_syncrate *syncrate;
1993
1994 if (p->features & AHC_ULTRA2)
1995 {
1996 scsirate &= SXFR_ULTRA2;
1997 }
1998 else
1999 {
2000 scsirate &= SXFR;
2001 }
2002
2003 syncrate = &aic7xxx_syncrates[maxsync];
2004 while (syncrate->rate[0] != NULL)
2005 {
2006 if (p->features & AHC_ULTRA2)
2007 {
2008 if (syncrate->sxfr_ultra2 == 0)
2009 break;
2010 else if (scsirate == syncrate->sxfr_ultra2)
2011 return (syncrate->period);
2012 else if (scsirate == (syncrate->sxfr_ultra2 & ~AHC_SYNCRATE_CRC))
2013 return (syncrate->period);
2014 }
2015 else if (scsirate == (syncrate->sxfr & ~ULTRA_SXFR))
2016 {
2017 return (syncrate->period);
2018 }
2019 syncrate++;
2020 }
2021 return (0); /* async */
2022}
2023
2024/*+F*************************************************************************
2025 * Function:
2026 * aic7xxx_validate_offset
2027 *
2028 * Description:
2029 * Set a valid offset value for a particular card in use and transfer
2030 * settings in use.
2031 *-F*************************************************************************/
2032static void
2033aic7xxx_validate_offset(struct aic7xxx_host *p,
2034 struct aic7xxx_syncrate *syncrate, unsigned int *offset, int wide)
2035{
2036 unsigned int maxoffset;
2037
2038 /* Limit offset to what the card (and device) can do */
2039 if (syncrate == NULL)
2040 {
2041 maxoffset = 0;
2042 }
2043 else if (p->features & AHC_ULTRA2)
2044 {
2045 maxoffset = MAX_OFFSET_ULTRA2;
2046 }
2047 else
2048 {
2049 if (wide)
2050 maxoffset = MAX_OFFSET_16BIT;
2051 else
2052 maxoffset = MAX_OFFSET_8BIT;
2053 }
2054 *offset = min(*offset, maxoffset);
2055}
2056
2057/*+F*************************************************************************
2058 * Function:
2059 * aic7xxx_set_syncrate
2060 *
2061 * Description:
2062 * Set the actual syncrate down in the card and in our host structs
2063 *-F*************************************************************************/
2064static void
2065aic7xxx_set_syncrate(struct aic7xxx_host *p, struct aic7xxx_syncrate *syncrate,
2066 int target, int channel, unsigned int period, unsigned int offset,
2067 unsigned char options, unsigned int type, struct aic_dev_data *aic_dev)
2068{
2069 unsigned char tindex;
2070 unsigned short target_mask;
2071 unsigned char lun, old_options;
2072 unsigned int old_period, old_offset;
2073
2074 tindex = target | (channel << 3);
2075 target_mask = 0x01 << tindex;
2076 lun = aic_inb(p, SCB_TCL) & 0x07;
2077
2078 if (syncrate == NULL)
2079 {
2080 period = 0;
2081 offset = 0;
2082 }
2083
2084 old_period = aic_dev->cur.period;
2085 old_offset = aic_dev->cur.offset;
2086 old_options = aic_dev->cur.options;
2087
2088
2089 if (type & AHC_TRANS_CUR)
2090 {
2091 unsigned int scsirate;
2092
2093 scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
2094 if (p->features & AHC_ULTRA2)
2095 {
2096 scsirate &= ~SXFR_ULTRA2;
2097 if (syncrate != NULL)
2098 {
2099 switch(options)
2100 {
2101 case MSG_EXT_PPR_OPTION_DT_UNITS:
2102 /*
2103 * mask off the CRC bit in the xfer settings
2104 */
2105 scsirate |= (syncrate->sxfr_ultra2 & ~AHC_SYNCRATE_CRC);
2106 break;
2107 default:
2108 scsirate |= syncrate->sxfr_ultra2;
2109 break;
2110 }
2111 }
2112 if (type & AHC_TRANS_ACTIVE)
2113 {
2114 aic_outb(p, offset, SCSIOFFSET);
2115 }
2116 aic_outb(p, offset, TARG_OFFSET + tindex);
2117 }
2118 else /* Not an Ultra2 controller */
2119 {
2120 scsirate &= ~(SXFR|SOFS);
2121 p->ultraenb &= ~target_mask;
2122 if (syncrate != NULL)
2123 {
2124 if (syncrate->sxfr & ULTRA_SXFR)
2125 {
2126 p->ultraenb |= target_mask;
2127 }
2128 scsirate |= (syncrate->sxfr & SXFR);
2129 scsirate |= (offset & SOFS);
2130 }
2131 if (type & AHC_TRANS_ACTIVE)
2132 {
2133 unsigned char sxfrctl0;
2134
2135 sxfrctl0 = aic_inb(p, SXFRCTL0);
2136 sxfrctl0 &= ~FAST20;
2137 if (p->ultraenb & target_mask)
2138 sxfrctl0 |= FAST20;
2139 aic_outb(p, sxfrctl0, SXFRCTL0);
2140 }
2141 aic_outb(p, p->ultraenb & 0xff, ULTRA_ENB);
2142 aic_outb(p, (p->ultraenb >> 8) & 0xff, ULTRA_ENB + 1 );
2143 }
2144 if (type & AHC_TRANS_ACTIVE)
2145 {
2146 aic_outb(p, scsirate, SCSIRATE);
2147 }
2148 aic_outb(p, scsirate, TARG_SCSIRATE + tindex);
2149 aic_dev->cur.period = period;
2150 aic_dev->cur.offset = offset;
2151 aic_dev->cur.options = options;
2152 if ( !(type & AHC_TRANS_QUITE) &&
2153 (aic7xxx_verbose & VERBOSE_NEGOTIATION) &&
2154 (aic_dev->flags & DEVICE_PRINT_DTR) )
2155 {
2156 if (offset)
2157 {
2158 int rate_mod = (scsirate & WIDEXFER) ? 1 : 0;
2159
2160 printk(INFO_LEAD "Synchronous at %s Mbyte/sec, "
2161 "offset %d.\n", p->host_no, channel, target, lun,
2162 syncrate->rate[rate_mod], offset);
2163 }
2164 else
2165 {
2166 printk(INFO_LEAD "Using asynchronous transfers.\n",
2167 p->host_no, channel, target, lun);
2168 }
2169 aic_dev->flags &= ~DEVICE_PRINT_DTR;
2170 }
2171 }
2172
2173 if (type & AHC_TRANS_GOAL)
2174 {
2175 aic_dev->goal.period = period;
2176 aic_dev->goal.offset = offset;
2177 aic_dev->goal.options = options;
2178 }
2179
2180 if (type & AHC_TRANS_USER)
2181 {
2182 p->user[tindex].period = period;
2183 p->user[tindex].offset = offset;
2184 p->user[tindex].options = options;
2185 }
2186}
2187
2188/*+F*************************************************************************
2189 * Function:
2190 * aic7xxx_set_width
2191 *
2192 * Description:
2193 * Set the actual width down in the card and in our host structs
2194 *-F*************************************************************************/
2195static void
2196aic7xxx_set_width(struct aic7xxx_host *p, int target, int channel, int lun,
2197 unsigned int width, unsigned int type, struct aic_dev_data *aic_dev)
2198{
2199 unsigned char tindex;
2200 unsigned short target_mask;
2201 unsigned int old_width;
2202
2203 tindex = target | (channel << 3);
2204 target_mask = 1 << tindex;
2205
2206 old_width = aic_dev->cur.width;
2207
2208 if (type & AHC_TRANS_CUR)
2209 {
2210 unsigned char scsirate;
2211
2212 scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
2213
2214 scsirate &= ~WIDEXFER;
2215 if (width == MSG_EXT_WDTR_BUS_16_BIT)
2216 scsirate |= WIDEXFER;
2217
2218 aic_outb(p, scsirate, TARG_SCSIRATE + tindex);
2219
2220 if (type & AHC_TRANS_ACTIVE)
2221 aic_outb(p, scsirate, SCSIRATE);
2222
2223 aic_dev->cur.width = width;
2224
2225 if ( !(type & AHC_TRANS_QUITE) &&
2226 (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2227 (aic_dev->flags & DEVICE_PRINT_DTR) )
2228 {
2229 printk(INFO_LEAD "Using %s transfers\n", p->host_no, channel, target,
2230 lun, (scsirate & WIDEXFER) ? "Wide(16bit)" : "Narrow(8bit)" );
2231 }
2232 }
2233
2234 if (type & AHC_TRANS_GOAL)
2235 aic_dev->goal.width = width;
2236 if (type & AHC_TRANS_USER)
2237 p->user[tindex].width = width;
2238
2239 if (aic_dev->goal.offset)
2240 {
2241 if (p->features & AHC_ULTRA2)
2242 {
2243 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
2244 }
2245 else if (width == MSG_EXT_WDTR_BUS_16_BIT)
2246 {
2247 aic_dev->goal.offset = MAX_OFFSET_16BIT;
2248 }
2249 else
2250 {
2251 aic_dev->goal.offset = MAX_OFFSET_8BIT;
2252 }
2253 }
2254}
2255
2256/*+F*************************************************************************
2257 * Function:
2258 * scbq_init
2259 *
2260 * Description:
2261 * SCB queue initialization.
2262 *
2263 *-F*************************************************************************/
2264static void
2265scbq_init(volatile scb_queue_type *queue)
2266{
2267 queue->head = NULL;
2268 queue->tail = NULL;
2269}
2270
2271/*+F*************************************************************************
2272 * Function:
2273 * scbq_insert_head
2274 *
2275 * Description:
2276 * Add an SCB to the head of the list.
2277 *
2278 *-F*************************************************************************/
2279static inline void
2280scbq_insert_head(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2281{
2282 scb->q_next = queue->head;
2283 queue->head = scb;
2284 if (queue->tail == NULL) /* If list was empty, update tail. */
2285 queue->tail = queue->head;
2286}
2287
2288/*+F*************************************************************************
2289 * Function:
2290 * scbq_remove_head
2291 *
2292 * Description:
2293 * Remove an SCB from the head of the list.
2294 *
2295 *-F*************************************************************************/
2296static inline struct aic7xxx_scb *
2297scbq_remove_head(volatile scb_queue_type *queue)
2298{
2299 struct aic7xxx_scb * scbp;
2300
2301 scbp = queue->head;
2302 if (queue->head != NULL)
2303 queue->head = queue->head->q_next;
2304 if (queue->head == NULL) /* If list is now empty, update tail. */
2305 queue->tail = NULL;
2306 return(scbp);
2307}
2308
2309/*+F*************************************************************************
2310 * Function:
2311 * scbq_remove
2312 *
2313 * Description:
2314 * Removes an SCB from the list.
2315 *
2316 *-F*************************************************************************/
2317static inline void
2318scbq_remove(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2319{
2320 if (queue->head == scb)
2321 {
2322 /* At beginning of queue, remove from head. */
2323 scbq_remove_head(queue);
2324 }
2325 else
2326 {
2327 struct aic7xxx_scb *curscb = queue->head;
2328
2329 /*
2330 * Search until the next scb is the one we're looking for, or
2331 * we run out of queue.
2332 */
2333 while ((curscb != NULL) && (curscb->q_next != scb))
2334 {
2335 curscb = curscb->q_next;
2336 }
2337 if (curscb != NULL)
2338 {
2339 /* Found it. */
2340 curscb->q_next = scb->q_next;
2341 if (scb->q_next == NULL)
2342 {
2343 /* Update the tail when removing the tail. */
2344 queue->tail = curscb;
2345 }
2346 }
2347 }
2348}
2349
2350/*+F*************************************************************************
2351 * Function:
2352 * scbq_insert_tail
2353 *
2354 * Description:
2355 * Add an SCB at the tail of the list.
2356 *
2357 *-F*************************************************************************/
2358static inline void
2359scbq_insert_tail(volatile scb_queue_type *queue, struct aic7xxx_scb *scb)
2360{
2361 scb->q_next = NULL;
2362 if (queue->tail != NULL) /* Add the scb at the end of the list. */
2363 queue->tail->q_next = scb;
2364 queue->tail = scb; /* Update the tail. */
2365 if (queue->head == NULL) /* If list was empty, update head. */
2366 queue->head = queue->tail;
2367}
2368
2369/*+F*************************************************************************
2370 * Function:
2371 * aic7xxx_match_scb
2372 *
2373 * Description:
2374 * Checks to see if an scb matches the target/channel as specified.
2375 * If target is ALL_TARGETS (-1), then we're looking for any device
2376 * on the specified channel; this happens when a channel is going
2377 * to be reset and all devices on that channel must be aborted.
2378 *-F*************************************************************************/
2379static int
2380aic7xxx_match_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb,
2381 int target, int channel, int lun, unsigned char tag)
2382{
2383 int targ = (scb->hscb->target_channel_lun >> 4) & 0x0F;
2384 int chan = (scb->hscb->target_channel_lun >> 3) & 0x01;
2385 int slun = scb->hscb->target_channel_lun & 0x07;
2386 int match;
2387
2388 match = ((chan == channel) || (channel == ALL_CHANNELS));
2389 if (match != 0)
2390 match = ((targ == target) || (target == ALL_TARGETS));
2391 if (match != 0)
2392 match = ((lun == slun) || (lun == ALL_LUNS));
2393 if (match != 0)
2394 match = ((tag == scb->hscb->tag) || (tag == SCB_LIST_NULL));
2395
2396 return (match);
2397}
2398
2399/*+F*************************************************************************
2400 * Function:
2401 * aic7xxx_add_curscb_to_free_list
2402 *
2403 * Description:
2404 * Adds the current scb (in SCBPTR) to the list of free SCBs.
2405 *-F*************************************************************************/
2406static void
2407aic7xxx_add_curscb_to_free_list(struct aic7xxx_host *p)
2408{
2409 /*
2410 * Invalidate the tag so that aic7xxx_find_scb doesn't think
2411 * it's active
2412 */
2413 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
2414 aic_outb(p, 0, SCB_CONTROL);
2415
2416 aic_outb(p, aic_inb(p, FREE_SCBH), SCB_NEXT);
2417 aic_outb(p, aic_inb(p, SCBPTR), FREE_SCBH);
2418}
2419
2420/*+F*************************************************************************
2421 * Function:
2422 * aic7xxx_rem_scb_from_disc_list
2423 *
2424 * Description:
2425 * Removes the current SCB from the disconnected list and adds it
2426 * to the free list.
2427 *-F*************************************************************************/
2428static unsigned char
2429aic7xxx_rem_scb_from_disc_list(struct aic7xxx_host *p, unsigned char scbptr,
2430 unsigned char prev)
2431{
2432 unsigned char next;
2433
2434 aic_outb(p, scbptr, SCBPTR);
2435 next = aic_inb(p, SCB_NEXT);
2436 aic7xxx_add_curscb_to_free_list(p);
2437
2438 if (prev != SCB_LIST_NULL)
2439 {
2440 aic_outb(p, prev, SCBPTR);
2441 aic_outb(p, next, SCB_NEXT);
2442 }
2443 else
2444 {
2445 aic_outb(p, next, DISCONNECTED_SCBH);
2446 }
2447
2448 return next;
2449}
2450
2451/*+F*************************************************************************
2452 * Function:
2453 * aic7xxx_busy_target
2454 *
2455 * Description:
2456 * Set the specified target busy.
2457 *-F*************************************************************************/
2458static inline void
2459aic7xxx_busy_target(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2460{
2461 p->untagged_scbs[scb->hscb->target_channel_lun] = scb->hscb->tag;
2462}
2463
2464/*+F*************************************************************************
2465 * Function:
2466 * aic7xxx_index_busy_target
2467 *
2468 * Description:
2469 * Returns the index of the busy target, and optionally sets the
2470 * target inactive.
2471 *-F*************************************************************************/
2472static inline unsigned char
2473aic7xxx_index_busy_target(struct aic7xxx_host *p, unsigned char tcl,
2474 int unbusy)
2475{
2476 unsigned char busy_scbid;
2477
2478 busy_scbid = p->untagged_scbs[tcl];
2479 if (unbusy)
2480 {
2481 p->untagged_scbs[tcl] = SCB_LIST_NULL;
2482 }
2483 return (busy_scbid);
2484}
2485
2486/*+F*************************************************************************
2487 * Function:
2488 * aic7xxx_find_scb
2489 *
2490 * Description:
2491 * Look through the SCB array of the card and attempt to find the
2492 * hardware SCB that corresponds to the passed in SCB. Return
2493 * SCB_LIST_NULL if unsuccessful. This routine assumes that the
2494 * card is already paused.
2495 *-F*************************************************************************/
2496static unsigned char
2497aic7xxx_find_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2498{
2499 unsigned char saved_scbptr;
2500 unsigned char curindex;
2501
2502 saved_scbptr = aic_inb(p, SCBPTR);
2503 curindex = 0;
2504 for (curindex = 0; curindex < p->scb_data->maxhscbs; curindex++)
2505 {
2506 aic_outb(p, curindex, SCBPTR);
2507 if (aic_inb(p, SCB_TAG) == scb->hscb->tag)
2508 {
2509 break;
2510 }
2511 }
2512 aic_outb(p, saved_scbptr, SCBPTR);
2513 if (curindex >= p->scb_data->maxhscbs)
2514 {
2515 curindex = SCB_LIST_NULL;
2516 }
2517
2518 return (curindex);
2519}
2520
2521/*+F*************************************************************************
2522 * Function:
2523 * aic7xxx_allocate_scb
2524 *
2525 * Description:
2526 * Get an SCB from the free list or by allocating a new one.
2527 *-F*************************************************************************/
2528static int
2529aic7xxx_allocate_scb(struct aic7xxx_host *p)
2530{
2531 struct aic7xxx_scb *scbp = NULL;
2532 int scb_size = (sizeof (struct hw_scatterlist) * AIC7XXX_MAX_SG) + 12 + 6;
2533 int i;
2534 int step = PAGE_SIZE / 1024;
2535 unsigned long scb_count = 0;
2536 struct hw_scatterlist *hsgp;
2537 struct aic7xxx_scb *scb_ap;
2538 struct aic7xxx_scb_dma *scb_dma;
2539 unsigned char *bufs;
2540
2541 if (p->scb_data->numscbs < p->scb_data->maxscbs)
2542 {
2543 /*
2544 * Calculate the optimal number of SCBs to allocate.
2545 *
2546 * NOTE: This formula works because the sizeof(sg_array) is always
2547 * 1024. Therefore, scb_size * i would always be > PAGE_SIZE *
2548 * (i/step). The (i-1) allows the left hand side of the equation
2549 * to grow into the right hand side to a point of near perfect
2550 * efficiency since scb_size * (i -1) is growing slightly faster
2551 * than the right hand side. If the number of SG array elements
2552 * is changed, this function may not be near so efficient any more.
2553 *
2554 * Since the DMA'able buffers are now allocated in a separate
2555 * chunk this algorithm has been modified to match. The '12'
2556 * and '6' factors in scb_size are for the DMA'able command byte
2557 * and sensebuffers respectively. -DaveM
2558 */
2559 for ( i=step;; i *= 2 )
2560 {
2561 if ( (scb_size * (i-1)) >= ( (PAGE_SIZE * (i/step)) - 64 ) )
2562 {
2563 i /= 2;
2564 break;
2565 }
2566 }
2567 scb_count = min( (i-1), p->scb_data->maxscbs - p->scb_data->numscbs);
2568 scb_ap = (struct aic7xxx_scb *)kmalloc(sizeof (struct aic7xxx_scb) * scb_count
2569 + sizeof(struct aic7xxx_scb_dma), GFP_ATOMIC);
2570 if (scb_ap == NULL)
2571 return(0);
2572 scb_dma = (struct aic7xxx_scb_dma *)&scb_ap[scb_count];
2573 hsgp = (struct hw_scatterlist *)
2574 pci_alloc_consistent(p->pdev, scb_size * scb_count,
2575 &scb_dma->dma_address);
2576 if (hsgp == NULL)
2577 {
2578 kfree(scb_ap);
2579 return(0);
2580 }
2581 bufs = (unsigned char *)&hsgp[scb_count * AIC7XXX_MAX_SG];
2582#ifdef AIC7XXX_VERBOSE_DEBUGGING
2583 if (aic7xxx_verbose > 0xffff)
2584 {
2585 if (p->scb_data->numscbs == 0)
2586 printk(INFO_LEAD "Allocating initial %ld SCB structures.\n",
2587 p->host_no, -1, -1, -1, scb_count);
2588 else
2589 printk(INFO_LEAD "Allocating %ld additional SCB structures.\n",
2590 p->host_no, -1, -1, -1, scb_count);
2591 }
2592#endif
2593 memset(scb_ap, 0, sizeof (struct aic7xxx_scb) * scb_count);
2594 scb_dma->dma_offset = (unsigned long)scb_dma->dma_address
2595 - (unsigned long)hsgp;
2596 scb_dma->dma_len = scb_size * scb_count;
2597 for (i=0; i < scb_count; i++)
2598 {
2599 scbp = &scb_ap[i];
2600 scbp->hscb = &p->scb_data->hscbs[p->scb_data->numscbs];
2601 scbp->sg_list = &hsgp[i * AIC7XXX_MAX_SG];
2602 scbp->sense_cmd = bufs;
2603 scbp->cmnd = bufs + 6;
2604 bufs += 12 + 6;
2605 scbp->scb_dma = scb_dma;
2606 memset(scbp->hscb, 0, sizeof(struct aic7xxx_hwscb));
2607 scbp->hscb->tag = p->scb_data->numscbs;
2608 /*
2609 * Place in the scb array; never is removed
2610 */
2611 p->scb_data->scb_array[p->scb_data->numscbs++] = scbp;
2612 scbq_insert_tail(&p->scb_data->free_scbs, scbp);
2613 }
2614 scbp->kmalloc_ptr = scb_ap;
2615 }
2616 return(scb_count);
2617}
2618
2619/*+F*************************************************************************
2620 * Function:
2621 * aic7xxx_queue_cmd_complete
2622 *
2623 * Description:
2624 * Due to race conditions present in the SCSI subsystem, it is easier
2625 * to queue completed commands, then call scsi_done() on them when
2626 * we're finished. This function queues the completed commands.
2627 *-F*************************************************************************/
2628static void
c1278289 2629aic7xxx_queue_cmd_complete(struct aic7xxx_host *p, struct scsi_cmnd *cmd)
1da177e4
LT
2630{
2631 aic7xxx_position(cmd) = SCB_LIST_NULL;
2632 cmd->host_scribble = (char *)p->completeq.head;
2633 p->completeq.head = cmd;
2634}
2635
2636/*+F*************************************************************************
2637 * Function:
2638 * aic7xxx_done_cmds_complete
2639 *
2640 * Description:
2641 * Process the completed command queue.
2642 *-F*************************************************************************/
c1278289 2643static void aic7xxx_done_cmds_complete(struct aic7xxx_host *p)
1da177e4 2644{
c1278289
HK
2645 struct scsi_cmnd *cmd;
2646
2647 while (p->completeq.head != NULL) {
2648 cmd = p->completeq.head;
2649 p->completeq.head = (struct scsi_Cmnd *) cmd->host_scribble;
2650 cmd->host_scribble = NULL;
2651 cmd->scsi_done(cmd);
2652 }
1da177e4
LT
2653}
2654
2655/*+F*************************************************************************
2656 * Function:
2657 * aic7xxx_free_scb
2658 *
2659 * Description:
2660 * Free the scb and insert into the free scb list.
2661 *-F*************************************************************************/
2662static void
2663aic7xxx_free_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2664{
2665
2666 scb->flags = SCB_FREE;
2667 scb->cmd = NULL;
2668 scb->sg_count = 0;
2669 scb->sg_length = 0;
2670 scb->tag_action = 0;
2671 scb->hscb->control = 0;
2672 scb->hscb->target_status = 0;
2673 scb->hscb->target_channel_lun = SCB_LIST_NULL;
2674
2675 scbq_insert_head(&p->scb_data->free_scbs, scb);
2676}
2677
2678/*+F*************************************************************************
2679 * Function:
2680 * aic7xxx_done
2681 *
2682 * Description:
2683 * Calls the higher level scsi done function and frees the scb.
2684 *-F*************************************************************************/
2685static void
2686aic7xxx_done(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
2687{
c1278289
HK
2688 struct scsi_cmnd *cmd = scb->cmd;
2689 struct aic_dev_data *aic_dev = cmd->device->hostdata;
2690 int tindex = TARGET_INDEX(cmd);
2691 struct aic7xxx_scb *scbp;
2692 unsigned char queue_depth;
1da177e4
LT
2693
2694 if (cmd->use_sg > 1)
2695 {
2696 struct scatterlist *sg;
2697
2698 sg = (struct scatterlist *)cmd->request_buffer;
be7db055 2699 pci_unmap_sg(p->pdev, sg, cmd->use_sg, cmd->sc_data_direction);
1da177e4
LT
2700 }
2701 else if (cmd->request_bufflen)
2702 pci_unmap_single(p->pdev, aic7xxx_mapping(cmd),
2703 cmd->request_bufflen,
be7db055 2704 cmd->sc_data_direction);
1da177e4
LT
2705 if (scb->flags & SCB_SENSE)
2706 {
2707 pci_unmap_single(p->pdev,
2708 le32_to_cpu(scb->sg_list[0].address),
2709 sizeof(cmd->sense_buffer),
2710 PCI_DMA_FROMDEVICE);
2711 }
2712 if (scb->flags & SCB_RECOVERY_SCB)
2713 {
2714 p->flags &= ~AHC_ABORT_PENDING;
2715 }
2716 if (scb->flags & (SCB_RESET|SCB_ABORT))
2717 {
2718 cmd->result |= (DID_RESET << 16);
2719 }
2720
2721 if ((scb->flags & SCB_MSGOUT_BITS) != 0)
2722 {
2723 unsigned short mask;
2724 int message_error = FALSE;
2725
2726 mask = 0x01 << tindex;
2727
2728 /*
2729 * Check to see if we get an invalid message or a message error
2730 * after failing to negotiate a wide or sync transfer message.
2731 */
2732 if ((scb->flags & SCB_SENSE) &&
2733 ((scb->cmd->sense_buffer[12] == 0x43) || /* INVALID_MESSAGE */
2734 (scb->cmd->sense_buffer[12] == 0x49))) /* MESSAGE_ERROR */
2735 {
2736 message_error = TRUE;
2737 }
2738
2739 if (scb->flags & SCB_MSGOUT_WDTR)
2740 {
2741 if (message_error)
2742 {
2743 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2744 (aic_dev->flags & DEVICE_PRINT_DTR) )
2745 {
2746 printk(INFO_LEAD "Device failed to complete Wide Negotiation "
2747 "processing and\n", p->host_no, CTL_OF_SCB(scb));
2748 printk(INFO_LEAD "returned a sense error code for invalid message, "
2749 "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2750 printk(INFO_LEAD "Wide negotiation to this device.\n", p->host_no,
2751 CTL_OF_SCB(scb));
2752 }
2753 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
2754 }
2755 }
2756 if (scb->flags & SCB_MSGOUT_SDTR)
2757 {
2758 if (message_error)
2759 {
2760 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2761 (aic_dev->flags & DEVICE_PRINT_DTR) )
2762 {
2763 printk(INFO_LEAD "Device failed to complete Sync Negotiation "
2764 "processing and\n", p->host_no, CTL_OF_SCB(scb));
2765 printk(INFO_LEAD "returned a sense error code for invalid message, "
2766 "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2767 printk(INFO_LEAD "Sync negotiation to this device.\n", p->host_no,
2768 CTL_OF_SCB(scb));
2769 aic_dev->flags &= ~DEVICE_PRINT_DTR;
2770 }
2771 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
2772 }
2773 }
2774 if (scb->flags & SCB_MSGOUT_PPR)
2775 {
2776 if(message_error)
2777 {
2778 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
2779 (aic_dev->flags & DEVICE_PRINT_DTR) )
2780 {
2781 printk(INFO_LEAD "Device failed to complete Parallel Protocol "
2782 "Request processing and\n", p->host_no, CTL_OF_SCB(scb));
2783 printk(INFO_LEAD "returned a sense error code for invalid message, "
2784 "disabling future\n", p->host_no, CTL_OF_SCB(scb));
2785 printk(INFO_LEAD "Parallel Protocol Request negotiation to this "
2786 "device.\n", p->host_no, CTL_OF_SCB(scb));
2787 }
2788 /*
2789 * Disable PPR negotiation and revert back to WDTR and SDTR setup
2790 */
2791 aic_dev->needppr = aic_dev->needppr_copy = 0;
2792 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
2793 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
2794 }
2795 }
2796 }
2797
2798 queue_depth = aic_dev->temp_q_depth;
2799 if (queue_depth >= aic_dev->active_cmds)
2800 {
2801 scbp = scbq_remove_head(&aic_dev->delayed_scbs);
2802 if (scbp)
2803 {
2804 if (queue_depth == 1)
2805 {
2806 /*
2807 * Give extra preference to untagged devices, such as CD-R devices
2808 * This makes it more likely that a drive *won't* stuff up while
2809 * waiting on data at a critical time, such as CD-R writing and
2810 * audio CD ripping operations. Should also benefit tape drives.
2811 */
2812 scbq_insert_head(&p->waiting_scbs, scbp);
2813 }
2814 else
2815 {
2816 scbq_insert_tail(&p->waiting_scbs, scbp);
2817 }
2818#ifdef AIC7XXX_VERBOSE_DEBUGGING
2819 if (aic7xxx_verbose > 0xffff)
2820 printk(INFO_LEAD "Moving SCB from delayed to waiting queue.\n",
2821 p->host_no, CTL_OF_SCB(scbp));
2822#endif
2823 if (queue_depth > aic_dev->active_cmds)
2824 {
2825 scbp = scbq_remove_head(&aic_dev->delayed_scbs);
2826 if (scbp)
2827 scbq_insert_tail(&p->waiting_scbs, scbp);
2828 }
2829 }
2830 }
2831 if (!(scb->tag_action))
2832 {
2833 aic7xxx_index_busy_target(p, scb->hscb->target_channel_lun,
2834 /* unbusy */ TRUE);
2835 if (cmd->device->simple_tags)
2836 {
2837 aic_dev->temp_q_depth = aic_dev->max_q_depth;
2838 }
2839 }
2840 if(scb->flags & SCB_DTR_SCB)
2841 {
2842 aic_dev->dtr_pending = 0;
2843 }
2844 aic_dev->active_cmds--;
2845 p->activescbs--;
2846
2847 if ((scb->sg_length >= 512) && (((cmd->result >> 16) & 0xf) == DID_OK))
2848 {
2849 long *ptr;
2850 int x, i;
2851
2852
2853 if (rq_data_dir(cmd->request) == WRITE)
2854 {
2855 aic_dev->w_total++;
2856 ptr = aic_dev->w_bins;
2857 }
2858 else
2859 {
2860 aic_dev->r_total++;
2861 ptr = aic_dev->r_bins;
2862 }
4aff5e23 2863 if(cmd->device->simple_tags && cmd->request->cmd_flags & REQ_HARDBARRIER)
1da177e4
LT
2864 {
2865 aic_dev->barrier_total++;
2866 if(scb->tag_action == MSG_ORDERED_Q_TAG)
2867 aic_dev->ordered_total++;
2868 }
2869 x = scb->sg_length;
2870 x >>= 10;
2871 for(i=0; i<6; i++)
2872 {
2873 x >>= 2;
2874 if(!x) {
2875 ptr[i]++;
2876 break;
2877 }
2878 }
2879 if(i == 6 && x)
2880 ptr[5]++;
2881 }
2882 aic7xxx_free_scb(p, scb);
2883 aic7xxx_queue_cmd_complete(p, cmd);
2884
2885}
2886
2887/*+F*************************************************************************
2888 * Function:
2889 * aic7xxx_run_done_queue
2890 *
2891 * Description:
c1278289 2892 * Calls the aic7xxx_done() for the scsi_cmnd of each scb in the
1da177e4
LT
2893 * aborted list, and adds each scb to the free list. If complete
2894 * is TRUE, we also process the commands complete list.
2895 *-F*************************************************************************/
2896static void
2897aic7xxx_run_done_queue(struct aic7xxx_host *p, /*complete*/ int complete)
2898{
2899 struct aic7xxx_scb *scb;
2900 int i, found = 0;
2901
2902 for (i = 0; i < p->scb_data->numscbs; i++)
2903 {
2904 scb = p->scb_data->scb_array[i];
2905 if (scb->flags & SCB_QUEUED_FOR_DONE)
2906 {
2907 if (scb->flags & SCB_QUEUE_FULL)
2908 {
2909 scb->cmd->result = QUEUE_FULL << 1;
2910 }
2911 else
2912 {
2913 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
2914 printk(INFO_LEAD "Aborting scb %d\n",
2915 p->host_no, CTL_OF_SCB(scb), scb->hscb->tag);
2916 /*
2917 * Clear any residual information since the normal aic7xxx_done() path
2918 * doesn't touch the residuals.
2919 */
2920 scb->hscb->residual_SG_segment_count = 0;
2921 scb->hscb->residual_data_count[0] = 0;
2922 scb->hscb->residual_data_count[1] = 0;
2923 scb->hscb->residual_data_count[2] = 0;
2924 }
2925 found++;
2926 aic7xxx_done(p, scb);
2927 }
2928 }
2929 if (aic7xxx_verbose & (VERBOSE_ABORT_RETURN | VERBOSE_RESET_RETURN))
2930 {
2931 printk(INFO_LEAD "%d commands found and queued for "
2932 "completion.\n", p->host_no, -1, -1, -1, found);
2933 }
2934 if (complete)
2935 {
2936 aic7xxx_done_cmds_complete(p);
2937 }
2938}
2939
2940/*+F*************************************************************************
2941 * Function:
2942 * aic7xxx_abort_waiting_scb
2943 *
2944 * Description:
2945 * Manipulate the waiting for selection list and return the
2946 * scb that follows the one that we remove.
2947 *-F*************************************************************************/
2948static unsigned char
2949aic7xxx_abort_waiting_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb,
2950 unsigned char scbpos, unsigned char prev)
2951{
2952 unsigned char curscb, next;
2953
2954 /*
2955 * Select the SCB we want to abort and pull the next pointer out of it.
2956 */
2957 curscb = aic_inb(p, SCBPTR);
2958 aic_outb(p, scbpos, SCBPTR);
2959 next = aic_inb(p, SCB_NEXT);
2960
2961 aic7xxx_add_curscb_to_free_list(p);
2962
2963 /*
2964 * Update the waiting list
2965 */
2966 if (prev == SCB_LIST_NULL)
2967 {
2968 /*
2969 * First in the list
2970 */
2971 aic_outb(p, next, WAITING_SCBH);
2972 }
2973 else
2974 {
2975 /*
2976 * Select the scb that pointed to us and update its next pointer.
2977 */
2978 aic_outb(p, prev, SCBPTR);
2979 aic_outb(p, next, SCB_NEXT);
2980 }
2981 /*
2982 * Point us back at the original scb position and inform the SCSI
2983 * system that the command has been aborted.
2984 */
2985 aic_outb(p, curscb, SCBPTR);
2986 return (next);
2987}
2988
2989/*+F*************************************************************************
2990 * Function:
2991 * aic7xxx_search_qinfifo
2992 *
2993 * Description:
2994 * Search the queue-in FIFO for matching SCBs and conditionally
2995 * requeue. Returns the number of matching SCBs.
2996 *-F*************************************************************************/
2997static int
2998aic7xxx_search_qinfifo(struct aic7xxx_host *p, int target, int channel,
2999 int lun, unsigned char tag, int flags, int requeue,
3000 volatile scb_queue_type *queue)
3001{
3002 int found;
3003 unsigned char qinpos, qintail;
3004 struct aic7xxx_scb *scbp;
3005
3006 found = 0;
3007 qinpos = aic_inb(p, QINPOS);
3008 qintail = p->qinfifonext;
3009
3010 p->qinfifonext = qinpos;
3011
3012 while (qinpos != qintail)
3013 {
3014 scbp = p->scb_data->scb_array[p->qinfifo[qinpos++]];
3015 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3016 {
3017 /*
3018 * We found an scb that needs to be removed.
3019 */
3020 if (requeue && (queue != NULL))
3021 {
3022 if (scbp->flags & SCB_WAITINGQ)
3023 {
3024 scbq_remove(queue, scbp);
3025 scbq_remove(&p->waiting_scbs, scbp);
3026 scbq_remove(&AIC_DEV(scbp->cmd)->delayed_scbs, scbp);
3027 AIC_DEV(scbp->cmd)->active_cmds++;
3028 p->activescbs++;
3029 }
3030 scbq_insert_tail(queue, scbp);
3031 AIC_DEV(scbp->cmd)->active_cmds--;
3032 p->activescbs--;
3033 scbp->flags |= SCB_WAITINGQ;
3034 if ( !(scbp->tag_action & TAG_ENB) )
3035 {
3036 aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3037 TRUE);
3038 }
3039 }
3040 else if (requeue)
3041 {
3042 p->qinfifo[p->qinfifonext++] = scbp->hscb->tag;
3043 }
3044 else
3045 {
3046 /*
3047 * Preserve any SCB_RECOVERY_SCB flags on this scb then set the
3048 * flags we were called with, presumeably so aic7xxx_run_done_queue
3049 * can find this scb
3050 */
3051 scbp->flags = flags | (scbp->flags & SCB_RECOVERY_SCB);
3052 if (aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3053 FALSE) == scbp->hscb->tag)
3054 {
3055 aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun,
3056 TRUE);
3057 }
3058 }
3059 found++;
3060 }
3061 else
3062 {
3063 p->qinfifo[p->qinfifonext++] = scbp->hscb->tag;
3064 }
3065 }
3066 /*
3067 * Now that we've done the work, clear out any left over commands in the
3068 * qinfifo and update the KERNEL_QINPOS down on the card.
3069 *
3070 * NOTE: This routine expect the sequencer to already be paused when
3071 * it is run....make sure it's that way!
3072 */
3073 qinpos = p->qinfifonext;
3074 while(qinpos != qintail)
3075 {
3076 p->qinfifo[qinpos++] = SCB_LIST_NULL;
3077 }
3078 if (p->features & AHC_QUEUE_REGS)
3079 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
3080 else
3081 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
3082
3083 return (found);
3084}
3085
3086/*+F*************************************************************************
3087 * Function:
3088 * aic7xxx_scb_on_qoutfifo
3089 *
3090 * Description:
3091 * Is the scb that was passed to us currently on the qoutfifo?
3092 *-F*************************************************************************/
3093static int
3094aic7xxx_scb_on_qoutfifo(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3095{
3096 int i=0;
3097
3098 while(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] != SCB_LIST_NULL)
3099 {
3100 if(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] == scb->hscb->tag)
3101 return TRUE;
3102 else
3103 i++;
3104 }
3105 return FALSE;
3106}
3107
3108
3109/*+F*************************************************************************
3110 * Function:
3111 * aic7xxx_reset_device
3112 *
3113 * Description:
3114 * The device at the given target/channel has been reset. Abort
3115 * all active and queued scbs for that target/channel. This function
3116 * need not worry about linked next pointers because if was a MSG_ABORT_TAG
3117 * then we had a tagged command (no linked next), if it was MSG_ABORT or
3118 * MSG_BUS_DEV_RESET then the device won't know about any commands any more
3119 * and no busy commands will exist, and if it was a bus reset, then nothing
3120 * knows about any linked next commands any more. In all cases, we don't
3121 * need to worry about the linked next or busy scb, we just need to clear
3122 * them.
3123 *-F*************************************************************************/
3124static void
3125aic7xxx_reset_device(struct aic7xxx_host *p, int target, int channel,
3126 int lun, unsigned char tag)
3127{
3128 struct aic7xxx_scb *scbp, *prev_scbp;
3129 struct scsi_device *sd;
3130 unsigned char active_scb, tcl, scb_tag;
3131 int i = 0, init_lists = FALSE;
3132 struct aic_dev_data *aic_dev;
3133
3134 /*
3135 * Restore this when we're done
3136 */
3137 active_scb = aic_inb(p, SCBPTR);
3138 scb_tag = aic_inb(p, SCB_TAG);
3139
3140 if (aic7xxx_verbose & (VERBOSE_RESET_PROCESS | VERBOSE_ABORT_PROCESS))
3141 {
3142 printk(INFO_LEAD "Reset device, hardware_scb %d,\n",
3143 p->host_no, channel, target, lun, active_scb);
3144 printk(INFO_LEAD "Current scb %d, SEQADDR 0x%x, LASTPHASE "
3145 "0x%x\n",
3146 p->host_no, channel, target, lun, scb_tag,
3147 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
3148 aic_inb(p, LASTPHASE));
3149 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SG_COUNT %d, SCSISIGI 0x%x\n",
3150 p->host_no, channel, target, lun,
3151 (p->features & AHC_ULTRA2) ? aic_inb(p, SG_CACHEPTR) : 0,
3152 aic_inb(p, SG_COUNT), aic_inb(p, SCSISIGI));
3153 printk(INFO_LEAD "SSTAT0 0x%x, SSTAT1 0x%x, SSTAT2 0x%x\n",
3154 p->host_no, channel, target, lun, aic_inb(p, SSTAT0),
3155 aic_inb(p, SSTAT1), aic_inb(p, SSTAT2));
3156 }
3157
3158 /*
3159 * Deal with the busy target and linked next issues.
3160 */
3161 list_for_each_entry(aic_dev, &p->aic_devs, list)
3162 {
3163 if (aic7xxx_verbose & (VERBOSE_RESET_PROCESS | VERBOSE_ABORT_PROCESS))
3164 printk(INFO_LEAD "processing aic_dev %p\n", p->host_no, channel, target,
3165 lun, aic_dev);
3166 sd = aic_dev->SDptr;
3167
3168 if((target != ALL_TARGETS && target != sd->id) ||
3169 (channel != ALL_CHANNELS && channel != sd->channel))
3170 continue;
3171 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3172 printk(INFO_LEAD "Cleaning up status information "
3173 "and delayed_scbs.\n", p->host_no, sd->channel, sd->id, sd->lun);
3174 aic_dev->flags &= ~BUS_DEVICE_RESET_PENDING;
3175 if ( tag == SCB_LIST_NULL )
3176 {
3177 aic_dev->dtr_pending = 0;
3178 aic_dev->needppr = aic_dev->needppr_copy;
3179 aic_dev->needsdtr = aic_dev->needsdtr_copy;
3180 aic_dev->needwdtr = aic_dev->needwdtr_copy;
3181 aic_dev->flags = DEVICE_PRINT_DTR;
3182 aic_dev->temp_q_depth = aic_dev->max_q_depth;
3183 }
3184 tcl = (sd->id << 4) | (sd->channel << 3) | sd->lun;
3185 if ( (aic7xxx_index_busy_target(p, tcl, FALSE) == tag) ||
3186 (tag == SCB_LIST_NULL) )
3187 aic7xxx_index_busy_target(p, tcl, /* unbusy */ TRUE);
3188 prev_scbp = NULL;
3189 scbp = aic_dev->delayed_scbs.head;
3190 while (scbp != NULL)
3191 {
3192 prev_scbp = scbp;
3193 scbp = scbp->q_next;
3194 if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag))
3195 {
3196 scbq_remove(&aic_dev->delayed_scbs, prev_scbp);
3197 if (prev_scbp->flags & SCB_WAITINGQ)
3198 {
3199 aic_dev->active_cmds++;
3200 p->activescbs++;
3201 }
3202 prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3203 prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3204 }
3205 }
3206 }
3207
3208 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3209 printk(INFO_LEAD "Cleaning QINFIFO.\n", p->host_no, channel, target, lun );
3210 aic7xxx_search_qinfifo(p, target, channel, lun, tag,
3211 SCB_RESET | SCB_QUEUED_FOR_DONE, /* requeue */ FALSE, NULL);
3212
3213/*
3214 * Search the waiting_scbs queue for matches, this catches any SCB_QUEUED
3215 * ABORT/RESET commands.
3216 */
3217 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3218 printk(INFO_LEAD "Cleaning waiting_scbs.\n", p->host_no, channel,
3219 target, lun );
3220 {
3221 struct aic7xxx_scb *scbp, *prev_scbp;
3222
3223 prev_scbp = NULL;
3224 scbp = p->waiting_scbs.head;
3225 while (scbp != NULL)
3226 {
3227 prev_scbp = scbp;
3228 scbp = scbp->q_next;
3229 if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag))
3230 {
3231 scbq_remove(&p->waiting_scbs, prev_scbp);
3232 if (prev_scbp->flags & SCB_WAITINGQ)
3233 {
3234 AIC_DEV(prev_scbp->cmd)->active_cmds++;
3235 p->activescbs++;
3236 }
3237 prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3238 prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3239 }
3240 }
3241 }
3242
3243
3244 /*
3245 * Search waiting for selection list.
3246 */
3247 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3248 printk(INFO_LEAD "Cleaning waiting for selection "
3249 "list.\n", p->host_no, channel, target, lun);
3250 {
3251 unsigned char next, prev, scb_index;
3252
3253 next = aic_inb(p, WAITING_SCBH); /* Start at head of list. */
3254 prev = SCB_LIST_NULL;
3255 while (next != SCB_LIST_NULL)
3256 {
3257 aic_outb(p, next, SCBPTR);
3258 scb_index = aic_inb(p, SCB_TAG);
3259 if (scb_index >= p->scb_data->numscbs)
3260 {
3261 /*
3262 * No aic7xxx_verbose check here.....we want to see this since it
3263 * means either the kernel driver or the sequencer screwed things up
3264 */
3265 printk(WARN_LEAD "Waiting List inconsistency; SCB index=%d, "
3266 "numscbs=%d\n", p->host_no, channel, target, lun, scb_index,
3267 p->scb_data->numscbs);
3268 next = aic_inb(p, SCB_NEXT);
3269 aic7xxx_add_curscb_to_free_list(p);
3270 }
3271 else
3272 {
3273 scbp = p->scb_data->scb_array[scb_index];
3274 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3275 {
3276 next = aic7xxx_abort_waiting_scb(p, scbp, next, prev);
3277 if (scbp->flags & SCB_WAITINGQ)
3278 {
3279 AIC_DEV(scbp->cmd)->active_cmds++;
3280 p->activescbs++;
3281 }
3282 scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3283 scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3284 if (prev == SCB_LIST_NULL)
3285 {
3286 /*
3287 * This is either the first scb on the waiting list, or we
3288 * have already yanked the first and haven't left any behind.
3289 * Either way, we need to turn off the selection hardware if
3290 * it isn't already off.
3291 */
3292 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
3293 aic_outb(p, CLRSELTIMEO, CLRSINT1);
3294 }
3295 }
3296 else
3297 {
3298 prev = next;
3299 next = aic_inb(p, SCB_NEXT);
3300 }
3301 }
3302 }
3303 }
3304
3305 /*
3306 * Go through disconnected list and remove any entries we have queued
3307 * for completion, zeroing their control byte too.
3308 */
3309 if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS))
3310 printk(INFO_LEAD "Cleaning disconnected scbs "
3311 "list.\n", p->host_no, channel, target, lun);
3312 if (p->flags & AHC_PAGESCBS)
3313 {
3314 unsigned char next, prev, scb_index;
3315
3316 next = aic_inb(p, DISCONNECTED_SCBH);
3317 prev = SCB_LIST_NULL;
3318 while (next != SCB_LIST_NULL)
3319 {
3320 aic_outb(p, next, SCBPTR);
3321 scb_index = aic_inb(p, SCB_TAG);
3322 if (scb_index > p->scb_data->numscbs)
3323 {
3324 printk(WARN_LEAD "Disconnected List inconsistency; SCB index=%d, "
3325 "numscbs=%d\n", p->host_no, channel, target, lun, scb_index,
3326 p->scb_data->numscbs);
3327 next = aic7xxx_rem_scb_from_disc_list(p, next, prev);
3328 }
3329 else
3330 {
3331 scbp = p->scb_data->scb_array[scb_index];
3332 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3333 {
3334 next = aic7xxx_rem_scb_from_disc_list(p, next, prev);
3335 if (scbp->flags & SCB_WAITINGQ)
3336 {
3337 AIC_DEV(scbp->cmd)->active_cmds++;
3338 p->activescbs++;
3339 }
3340 scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3341 scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3342 scbp->hscb->control = 0;
3343 }
3344 else
3345 {
3346 prev = next;
3347 next = aic_inb(p, SCB_NEXT);
3348 }
3349 }
3350 }
3351 }
3352
3353 /*
3354 * Walk the free list making sure no entries on the free list have
3355 * a valid SCB_TAG value or SCB_CONTROL byte.
3356 */
3357 if (p->flags & AHC_PAGESCBS)
3358 {
3359 unsigned char next;
3360
3361 next = aic_inb(p, FREE_SCBH);
3362 while (next != SCB_LIST_NULL)
3363 {
3364 aic_outb(p, next, SCBPTR);
3365 if (aic_inb(p, SCB_TAG) < p->scb_data->numscbs)
3366 {
3367 printk(WARN_LEAD "Free list inconsistency!.\n", p->host_no, channel,
3368 target, lun);
3369 init_lists = TRUE;
3370 next = SCB_LIST_NULL;
3371 }
3372 else
3373 {
3374 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3375 aic_outb(p, 0, SCB_CONTROL);
3376 next = aic_inb(p, SCB_NEXT);
3377 }
3378 }
3379 }
3380
3381 /*
3382 * Go through the hardware SCB array looking for commands that
3383 * were active but not on any list.
3384 */
3385 if (init_lists)
3386 {
3387 aic_outb(p, SCB_LIST_NULL, FREE_SCBH);
3388 aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
3389 aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH);
3390 }
3391 for (i = p->scb_data->maxhscbs - 1; i >= 0; i--)
3392 {
3393 unsigned char scbid;
3394
3395 aic_outb(p, i, SCBPTR);
3396 if (init_lists)
3397 {
3398 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3399 aic_outb(p, SCB_LIST_NULL, SCB_NEXT);
3400 aic_outb(p, 0, SCB_CONTROL);
3401 aic7xxx_add_curscb_to_free_list(p);
3402 }
3403 else
3404 {
3405 scbid = aic_inb(p, SCB_TAG);
3406 if (scbid < p->scb_data->numscbs)
3407 {
3408 scbp = p->scb_data->scb_array[scbid];
3409 if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag))
3410 {
3411 aic_outb(p, 0, SCB_CONTROL);
3412 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
3413 aic7xxx_add_curscb_to_free_list(p);
3414 }
3415 }
3416 }
3417 }
3418
3419 /*
3420 * Go through the entire SCB array now and look for commands for
3421 * for this target that are stillactive. These are other (most likely
3422 * tagged) commands that were disconnected when the reset occurred.
3423 * Any commands we find here we know this about, it wasn't on any queue,
3424 * it wasn't in the qinfifo, it wasn't in the disconnected or waiting
3425 * lists, so it really must have been a paged out SCB. In that case,
3426 * we shouldn't need to bother with updating any counters, just mark
3427 * the correct flags and go on.
3428 */
3429 for (i = 0; i < p->scb_data->numscbs; i++)
3430 {
3431 scbp = p->scb_data->scb_array[i];
3432 if ((scbp->flags & SCB_ACTIVE) &&
3433 aic7xxx_match_scb(p, scbp, target, channel, lun, tag) &&
3434 !aic7xxx_scb_on_qoutfifo(p, scbp))
3435 {
3436 if (scbp->flags & SCB_WAITINGQ)
3437 {
3438 scbq_remove(&p->waiting_scbs, scbp);
3439 scbq_remove(&AIC_DEV(scbp->cmd)->delayed_scbs, scbp);
3440 AIC_DEV(scbp->cmd)->active_cmds++;
3441 p->activescbs++;
3442 }
3443 scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE;
3444 scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ);
3445 }
3446 }
3447
3448 aic_outb(p, active_scb, SCBPTR);
3449}
3450
3451
3452/*+F*************************************************************************
3453 * Function:
3454 * aic7xxx_clear_intstat
3455 *
3456 * Description:
3457 * Clears the interrupt status.
3458 *-F*************************************************************************/
3459static void
3460aic7xxx_clear_intstat(struct aic7xxx_host *p)
3461{
3462 /* Clear any interrupt conditions this may have caused. */
3463 aic_outb(p, CLRSELDO | CLRSELDI | CLRSELINGO, CLRSINT0);
3464 aic_outb(p, CLRSELTIMEO | CLRATNO | CLRSCSIRSTI | CLRBUSFREE | CLRSCSIPERR |
3465 CLRPHASECHG | CLRREQINIT, CLRSINT1);
3466 aic_outb(p, CLRSCSIINT | CLRSEQINT | CLRBRKADRINT | CLRPARERR, CLRINT);
3467}
3468
3469/*+F*************************************************************************
3470 * Function:
3471 * aic7xxx_reset_current_bus
3472 *
3473 * Description:
3474 * Reset the current SCSI bus.
3475 *-F*************************************************************************/
3476static void
3477aic7xxx_reset_current_bus(struct aic7xxx_host *p)
3478{
3479
3480 /* Disable reset interrupts. */
3481 aic_outb(p, aic_inb(p, SIMODE1) & ~ENSCSIRST, SIMODE1);
3482
3483 /* Turn off the bus' current operations, after all, we shouldn't have any
3484 * valid commands left to cause a RSELI and SELO once we've tossed the
3485 * bus away with this reset, so we might as well shut down the sequencer
3486 * until the bus is restarted as oppossed to saving the current settings
3487 * and restoring them (which makes no sense to me). */
3488
3489 /* Turn on the bus reset. */
3490 aic_outb(p, aic_inb(p, SCSISEQ) | SCSIRSTO, SCSISEQ);
3491 while ( (aic_inb(p, SCSISEQ) & SCSIRSTO) == 0)
3492 mdelay(5);
3493
3494 /*
3495 * Some of the new Ultra2 chipsets need a longer delay after a chip
3496 * reset than just the init setup creates, so we have to delay here
3497 * before we go into a reset in order to make the chips happy.
3498 */
3499 if (p->features & AHC_ULTRA2)
3500 mdelay(250);
3501 else
3502 mdelay(50);
3503
3504 /* Turn off the bus reset. */
3505 aic_outb(p, 0, SCSISEQ);
3506 mdelay(10);
3507
3508 aic7xxx_clear_intstat(p);
3509 /* Re-enable reset interrupts. */
3510 aic_outb(p, aic_inb(p, SIMODE1) | ENSCSIRST, SIMODE1);
3511
3512}
3513
3514/*+F*************************************************************************
3515 * Function:
3516 * aic7xxx_reset_channel
3517 *
3518 * Description:
3519 * Reset the channel.
3520 *-F*************************************************************************/
3521static void
3522aic7xxx_reset_channel(struct aic7xxx_host *p, int channel, int initiate_reset)
3523{
3524 unsigned long offset_min, offset_max;
3525 unsigned char sblkctl;
3526 int cur_channel;
3527
3528 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3529 printk(INFO_LEAD "Reset channel called, %s initiate reset.\n",
3530 p->host_no, channel, -1, -1, (initiate_reset==TRUE) ? "will" : "won't" );
3531
3532
3533 if (channel == 1)
3534 {
3535 offset_min = 8;
3536 offset_max = 16;
3537 }
3538 else
3539 {
3540 if (p->features & AHC_TWIN)
3541 {
3542 /* Channel A */
3543 offset_min = 0;
3544 offset_max = 8;
3545 }
3546 else
3547 {
3548 offset_min = 0;
3549 if (p->features & AHC_WIDE)
3550 {
3551 offset_max = 16;
3552 }
3553 else
3554 {
3555 offset_max = 8;
3556 }
3557 }
3558 }
3559
3560 while (offset_min < offset_max)
3561 {
3562 /*
3563 * Revert to async/narrow transfers until we renegotiate.
3564 */
3565 aic_outb(p, 0, TARG_SCSIRATE + offset_min);
3566 if (p->features & AHC_ULTRA2)
3567 {
3568 aic_outb(p, 0, TARG_OFFSET + offset_min);
3569 }
3570 offset_min++;
3571 }
3572
3573 /*
3574 * Reset the bus and unpause/restart the controller
3575 */
3576 sblkctl = aic_inb(p, SBLKCTL);
3577 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
3578 cur_channel = (sblkctl & SELBUSB) >> 3;
3579 else
3580 cur_channel = 0;
3581 if ( (cur_channel != channel) && (p->features & AHC_TWIN) )
3582 {
3583 /*
3584 * Case 1: Command for another bus is active
3585 */
3586 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3587 printk(INFO_LEAD "Stealthily resetting idle channel.\n", p->host_no,
3588 channel, -1, -1);
3589 /*
3590 * Stealthily reset the other bus without upsetting the current bus.
3591 */
3592 aic_outb(p, sblkctl ^ SELBUSB, SBLKCTL);
3593 aic_outb(p, aic_inb(p, SIMODE1) & ~ENBUSFREE, SIMODE1);
3594 if (initiate_reset)
3595 {
3596 aic7xxx_reset_current_bus(p);
3597 }
3598 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ);
3599 aic7xxx_clear_intstat(p);
3600 aic_outb(p, sblkctl, SBLKCTL);
3601 }
3602 else
3603 {
3604 /*
3605 * Case 2: A command from this bus is active or we're idle.
3606 */
3607 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3608 printk(INFO_LEAD "Resetting currently active channel.\n", p->host_no,
3609 channel, -1, -1);
3610 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT),
3611 SIMODE1);
3612 p->flags &= ~AHC_HANDLING_REQINITS;
3613 p->msg_type = MSG_TYPE_NONE;
3614 p->msg_len = 0;
3615 if (initiate_reset)
3616 {
3617 aic7xxx_reset_current_bus(p);
3618 }
3619 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ);
3620 aic7xxx_clear_intstat(p);
3621 }
3622 if (aic7xxx_verbose & VERBOSE_RESET_RETURN)
3623 printk(INFO_LEAD "Channel reset\n", p->host_no, channel, -1, -1);
3624 /*
3625 * Clean up all the state information for the pending transactions
3626 * on this bus.
3627 */
3628 aic7xxx_reset_device(p, ALL_TARGETS, channel, ALL_LUNS, SCB_LIST_NULL);
3629
3630 if ( !(p->features & AHC_TWIN) )
3631 {
3632 restart_sequencer(p);
3633 }
3634
3635 return;
3636}
3637
3638/*+F*************************************************************************
3639 * Function:
3640 * aic7xxx_run_waiting_queues
3641 *
3642 * Description:
3643 * Scan the awaiting_scbs queue downloading and starting as many
3644 * scbs as we can.
3645 *-F*************************************************************************/
3646static void
3647aic7xxx_run_waiting_queues(struct aic7xxx_host *p)
3648{
3649 struct aic7xxx_scb *scb;
3650 struct aic_dev_data *aic_dev;
3651 int sent;
3652
3653
3654 if (p->waiting_scbs.head == NULL)
3655 return;
3656
3657 sent = 0;
3658
3659 /*
3660 * First handle SCBs that are waiting but have been assigned a slot.
3661 */
3662 while ((scb = scbq_remove_head(&p->waiting_scbs)) != NULL)
3663 {
3664 aic_dev = scb->cmd->device->hostdata;
3665 if ( !scb->tag_action )
3666 {
3667 aic_dev->temp_q_depth = 1;
3668 }
3669 if ( aic_dev->active_cmds >= aic_dev->temp_q_depth)
3670 {
3671 scbq_insert_tail(&aic_dev->delayed_scbs, scb);
3672 }
3673 else
3674 {
3675 scb->flags &= ~SCB_WAITINGQ;
3676 aic_dev->active_cmds++;
3677 p->activescbs++;
3678 if ( !(scb->tag_action) )
3679 {
3680 aic7xxx_busy_target(p, scb);
3681 }
3682 p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
3683 sent++;
3684 }
3685 }
3686 if (sent)
3687 {
3688 if (p->features & AHC_QUEUE_REGS)
3689 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
3690 else
3691 {
3692 pause_sequencer(p);
3693 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
3694 unpause_sequencer(p, FALSE);
3695 }
3696 if (p->activescbs > p->max_activescbs)
3697 p->max_activescbs = p->activescbs;
3698 }
3699}
3700
3701#ifdef CONFIG_PCI
3702
3703#define DPE 0x80
3704#define SSE 0x40
3705#define RMA 0x20
3706#define RTA 0x10
3707#define STA 0x08
3708#define DPR 0x01
3709
3710/*+F*************************************************************************
3711 * Function:
3712 * aic7xxx_pci_intr
3713 *
3714 * Description:
3715 * Check the scsi card for PCI errors and clear the interrupt
3716 *
3717 * NOTE: If you don't have this function and a 2940 card encounters
3718 * a PCI error condition, the machine will end up locked as the
3719 * interrupt handler gets slammed with non-stop PCI error interrupts
3720 *-F*************************************************************************/
3721static void
3722aic7xxx_pci_intr(struct aic7xxx_host *p)
3723{
3724 unsigned char status1;
3725
3726 pci_read_config_byte(p->pdev, PCI_STATUS + 1, &status1);
3727
3728 if ( (status1 & DPE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3729 printk(WARN_LEAD "Data Parity Error during PCI address or PCI write"
3730 "phase.\n", p->host_no, -1, -1, -1);
3731 if ( (status1 & SSE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3732 printk(WARN_LEAD "Signal System Error Detected\n", p->host_no,
3733 -1, -1, -1);
3734 if ( (status1 & RMA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3735 printk(WARN_LEAD "Received a PCI Master Abort\n", p->host_no,
3736 -1, -1, -1);
3737 if ( (status1 & RTA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3738 printk(WARN_LEAD "Received a PCI Target Abort\n", p->host_no,
3739 -1, -1, -1);
3740 if ( (status1 & STA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3741 printk(WARN_LEAD "Signaled a PCI Target Abort\n", p->host_no,
3742 -1, -1, -1);
3743 if ( (status1 & DPR) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) )
3744 printk(WARN_LEAD "Data Parity Error has been reported via PCI pin "
3745 "PERR#\n", p->host_no, -1, -1, -1);
3746
3747 pci_write_config_byte(p->pdev, PCI_STATUS + 1, status1);
3748 if (status1 & (DPR|RMA|RTA))
3749 aic_outb(p, CLRPARERR, CLRINT);
3750
3751 if ( (aic7xxx_panic_on_abort) && (p->spurious_int > 500) )
3752 aic7xxx_panic_abort(p, NULL);
3753
3754}
3755#endif /* CONFIG_PCI */
3756
3757/*+F*************************************************************************
3758 * Function:
3759 * aic7xxx_construct_ppr
3760 *
3761 * Description:
3762 * Build up a Parallel Protocol Request message for use with SCSI-3
3763 * devices.
3764 *-F*************************************************************************/
3765static void
3766aic7xxx_construct_ppr(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3767{
3768 p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3769 p->msg_buf[p->msg_index++] = MSG_EXT_PPR_LEN;
3770 p->msg_buf[p->msg_index++] = MSG_EXT_PPR;
3771 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.period;
3772 p->msg_buf[p->msg_index++] = 0;
3773 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.offset;
3774 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.width;
3775 p->msg_buf[p->msg_index++] = AIC_DEV(scb->cmd)->goal.options;
3776 p->msg_len += 8;
3777}
3778
3779/*+F*************************************************************************
3780 * Function:
3781 * aic7xxx_construct_sdtr
3782 *
3783 * Description:
3784 * Constucts a synchronous data transfer message in the message
3785 * buffer on the sequencer.
3786 *-F*************************************************************************/
3787static void
3788aic7xxx_construct_sdtr(struct aic7xxx_host *p, unsigned char period,
3789 unsigned char offset)
3790{
3791 p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3792 p->msg_buf[p->msg_index++] = MSG_EXT_SDTR_LEN;
3793 p->msg_buf[p->msg_index++] = MSG_EXT_SDTR;
3794 p->msg_buf[p->msg_index++] = period;
3795 p->msg_buf[p->msg_index++] = offset;
3796 p->msg_len += 5;
3797}
3798
3799/*+F*************************************************************************
3800 * Function:
3801 * aic7xxx_construct_wdtr
3802 *
3803 * Description:
3804 * Constucts a wide data transfer message in the message buffer
3805 * on the sequencer.
3806 *-F*************************************************************************/
3807static void
3808aic7xxx_construct_wdtr(struct aic7xxx_host *p, unsigned char bus_width)
3809{
3810 p->msg_buf[p->msg_index++] = MSG_EXTENDED;
3811 p->msg_buf[p->msg_index++] = MSG_EXT_WDTR_LEN;
3812 p->msg_buf[p->msg_index++] = MSG_EXT_WDTR;
3813 p->msg_buf[p->msg_index++] = bus_width;
3814 p->msg_len += 4;
3815}
3816
3817/*+F*************************************************************************
3818 * Function:
3819 * aic7xxx_calc_residual
3820 *
3821 * Description:
3822 * Calculate the residual data not yet transferred.
3823 *-F*************************************************************************/
3824static void
3825aic7xxx_calculate_residual (struct aic7xxx_host *p, struct aic7xxx_scb *scb)
3826{
c1278289
HK
3827 struct aic7xxx_hwscb *hscb;
3828 struct scsi_cmnd *cmd;
3829 int actual, i;
1da177e4
LT
3830
3831 cmd = scb->cmd;
3832 hscb = scb->hscb;
3833
3834 /*
3835 * Don't destroy valid residual information with
3836 * residual coming from a check sense operation.
3837 */
3838 if (((scb->hscb->control & DISCONNECTED) == 0) &&
3839 (scb->flags & SCB_SENSE) == 0)
3840 {
3841 /*
3842 * We had an underflow. At this time, there's only
3843 * one other driver that bothers to check for this,
3844 * and cmd->underflow seems to be set rather half-
3845 * heartedly in the higher-level SCSI code.
3846 */
3847 actual = scb->sg_length;
3848 for (i=1; i < hscb->residual_SG_segment_count; i++)
3849 {
3850 actual -= scb->sg_list[scb->sg_count - i].length;
3851 }
3852 actual -= (hscb->residual_data_count[2] << 16) |
3853 (hscb->residual_data_count[1] << 8) |
3854 hscb->residual_data_count[0];
3855
3856 if (actual < cmd->underflow)
3857 {
3858 if (aic7xxx_verbose & VERBOSE_MINOR_ERROR)
3859 {
3860 printk(INFO_LEAD "Underflow - Wanted %u, %s %u, residual SG "
3861 "count %d.\n", p->host_no, CTL_OF_SCB(scb), cmd->underflow,
3862 (rq_data_dir(cmd->request) == WRITE) ? "wrote" : "read", actual,
3863 hscb->residual_SG_segment_count);
3864 printk(INFO_LEAD "status 0x%x.\n", p->host_no, CTL_OF_SCB(scb),
3865 hscb->target_status);
3866 }
3867 /*
3868 * In 2.4, only send back the residual information, don't flag this
3869 * as an error. Before 2.4 we had to flag this as an error because
3870 * the mid layer didn't check residual data counts to see if the
3871 * command needs retried.
3872 */
3873 cmd->resid = scb->sg_length - actual;
3874 aic7xxx_status(cmd) = hscb->target_status;
3875 }
3876 }
3877
3878 /*
3879 * Clean out the residual information in the SCB for the
3880 * next consumer.
3881 */
3882 hscb->residual_data_count[2] = 0;
3883 hscb->residual_data_count[1] = 0;
3884 hscb->residual_data_count[0] = 0;
3885 hscb->residual_SG_segment_count = 0;
3886}
3887
3888/*+F*************************************************************************
3889 * Function:
3890 * aic7xxx_handle_device_reset
3891 *
3892 * Description:
3893 * Interrupt handler for sequencer interrupts (SEQINT).
3894 *-F*************************************************************************/
3895static void
3896aic7xxx_handle_device_reset(struct aic7xxx_host *p, int target, int channel)
3897{
3898 unsigned char tindex = target;
3899
3900 tindex |= ((channel & 0x01) << 3);
3901
3902 /*
3903 * Go back to async/narrow transfers and renegotiate.
3904 */
3905 aic_outb(p, 0, TARG_SCSIRATE + tindex);
3906 if (p->features & AHC_ULTRA2)
3907 aic_outb(p, 0, TARG_OFFSET + tindex);
3908 aic7xxx_reset_device(p, target, channel, ALL_LUNS, SCB_LIST_NULL);
3909 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
3910 printk(INFO_LEAD "Bus Device Reset delivered.\n", p->host_no, channel,
3911 target, -1);
3912 aic7xxx_run_done_queue(p, /*complete*/ TRUE);
3913}
3914
3915/*+F*************************************************************************
3916 * Function:
3917 * aic7xxx_handle_seqint
3918 *
3919 * Description:
3920 * Interrupt handler for sequencer interrupts (SEQINT).
3921 *-F*************************************************************************/
3922static void
3923aic7xxx_handle_seqint(struct aic7xxx_host *p, unsigned char intstat)
3924{
3925 struct aic7xxx_scb *scb;
3926 struct aic_dev_data *aic_dev;
3927 unsigned short target_mask;
3928 unsigned char target, lun, tindex;
3929 unsigned char queue_flag = FALSE;
3930 char channel;
3931 int result;
3932
3933 target = ((aic_inb(p, SAVED_TCL) >> 4) & 0x0f);
3934 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
3935 channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
3936 else
3937 channel = 0;
3938 tindex = target + (channel << 3);
3939 lun = aic_inb(p, SAVED_TCL) & 0x07;
3940 target_mask = (0x01 << tindex);
3941
3942 /*
3943 * Go ahead and clear the SEQINT now, that avoids any interrupt race
3944 * conditions later on in case we enable some other interrupt.
3945 */
3946 aic_outb(p, CLRSEQINT, CLRINT);
3947 switch (intstat & SEQINT_MASK)
3948 {
3949 case NO_MATCH:
3950 {
3951 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP),
3952 SCSISEQ);
3953 printk(WARN_LEAD "No active SCB for reconnecting target - Issuing "
3954 "BUS DEVICE RESET.\n", p->host_no, channel, target, lun);
3955 printk(WARN_LEAD " SAVED_TCL=0x%x, ARG_1=0x%x, SEQADDR=0x%x\n",
3956 p->host_no, channel, target, lun,
3957 aic_inb(p, SAVED_TCL), aic_inb(p, ARG_1),
3958 (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
3959 if (aic7xxx_panic_on_abort)
3960 aic7xxx_panic_abort(p, NULL);
3961 }
3962 break;
3963
3964 case SEND_REJECT:
3965 {
3966 if (aic7xxx_verbose & VERBOSE_MINOR_ERROR)
3967 printk(INFO_LEAD "Rejecting unknown message (0x%x) received from "
3968 "target, SEQ_FLAGS=0x%x\n", p->host_no, channel, target, lun,
3969 aic_inb(p, ACCUM), aic_inb(p, SEQ_FLAGS));
3970 }
3971 break;
3972
3973 case NO_IDENT:
3974 {
3975 /*
3976 * The reconnecting target either did not send an identify
3977 * message, or did, but we didn't find an SCB to match and
3978 * before it could respond to our ATN/abort, it hit a dataphase.
3979 * The only safe thing to do is to blow it away with a bus
3980 * reset.
3981 */
3982 if (aic7xxx_verbose & (VERBOSE_SEQINT | VERBOSE_RESET_MID))
3983 printk(INFO_LEAD "Target did not send an IDENTIFY message; "
3984 "LASTPHASE 0x%x, SAVED_TCL 0x%x\n", p->host_no, channel, target,
3985 lun, aic_inb(p, LASTPHASE), aic_inb(p, SAVED_TCL));
3986
3987 aic7xxx_reset_channel(p, channel, /*initiate reset*/ TRUE);
3988 aic7xxx_run_done_queue(p, TRUE);
3989
3990 }
3991 break;
3992
3993 case BAD_PHASE:
3994 if (aic_inb(p, LASTPHASE) == P_BUSFREE)
3995 {
3996 if (aic7xxx_verbose & VERBOSE_SEQINT)
3997 printk(INFO_LEAD "Missed busfree.\n", p->host_no, channel,
3998 target, lun);
3999 restart_sequencer(p);
4000 }
4001 else
4002 {
4003 if (aic7xxx_verbose & VERBOSE_SEQINT)
4004 printk(INFO_LEAD "Unknown scsi bus phase, continuing\n", p->host_no,
4005 channel, target, lun);
4006 }
4007 break;
4008
4009 case EXTENDED_MSG:
4010 {
4011 p->msg_type = MSG_TYPE_INITIATOR_MSGIN;
4012 p->msg_len = 0;
4013 p->msg_index = 0;
4014
4015#ifdef AIC7XXX_VERBOSE_DEBUGGING
4016 if (aic7xxx_verbose > 0xffff)
4017 printk(INFO_LEAD "Enabling REQINITs for MSG_IN\n", p->host_no,
4018 channel, target, lun);
4019#endif
4020
4021 /*
4022 * To actually receive the message, simply turn on
4023 * REQINIT interrupts and let our interrupt handler
4024 * do the rest (REQINIT should already be true).
4025 */
4026 p->flags |= AHC_HANDLING_REQINITS;
4027 aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1);
4028
4029 /*
4030 * We don't want the sequencer unpaused yet so we return early
4031 */
4032 return;
4033 }
4034
4035 case REJECT_MSG:
4036 {
4037 /*
4038 * What we care about here is if we had an outstanding SDTR
4039 * or WDTR message for this target. If we did, this is a
4040 * signal that the target is refusing negotiation.
4041 */
4042 unsigned char scb_index;
4043 unsigned char last_msg;
4044
4045 scb_index = aic_inb(p, SCB_TAG);
4046 scb = p->scb_data->scb_array[scb_index];
4047 aic_dev = AIC_DEV(scb->cmd);
4048 last_msg = aic_inb(p, LAST_MSG);
4049
4050 if ( (last_msg == MSG_IDENTIFYFLAG) &&
4051 (scb->tag_action) &&
4052 !(scb->flags & SCB_MSGOUT_BITS) )
4053 {
4054 if (scb->tag_action == MSG_ORDERED_Q_TAG)
4055 {
4056 /*
4057 * OK...the device seems able to accept tagged commands, but
4058 * not ordered tag commands, only simple tag commands. So, we
4059 * disable ordered tag commands and go on with life just like
4060 * normal.
4061 */
4062 scsi_adjust_queue_depth(scb->cmd->device, MSG_SIMPLE_TAG,
4063 scb->cmd->device->queue_depth);
4064 scb->tag_action = MSG_SIMPLE_Q_TAG;
4065 scb->hscb->control &= ~SCB_TAG_TYPE;
4066 scb->hscb->control |= MSG_SIMPLE_Q_TAG;
4067 aic_outb(p, scb->hscb->control, SCB_CONTROL);
4068 /*
4069 * OK..we set the tag type to simple tag command, now we re-assert
4070 * ATNO and hope this will take us into the identify phase again
4071 * so we can resend the tag type and info to the device.
4072 */
4073 aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT);
4074 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4075 }
4076 else if (scb->tag_action == MSG_SIMPLE_Q_TAG)
4077 {
4078 unsigned char i;
4079 struct aic7xxx_scb *scbp;
4080 int old_verbose;
4081 /*
4082 * Hmmmm....the device is flaking out on tagged commands.
4083 */
4084 scsi_adjust_queue_depth(scb->cmd->device, 0 /* untagged */,
4085 p->host->cmd_per_lun);
4086 aic_dev->max_q_depth = aic_dev->temp_q_depth = 1;
4087 /*
4088 * We set this command up as a bus device reset. However, we have
4089 * to clear the tag type as it's causing us problems. We shouldnt
4090 * have to worry about any other commands being active, since if
4091 * the device is refusing tagged commands, this should be the
4092 * first tagged command sent to the device, however, we do have
4093 * to worry about any other tagged commands that may already be
4094 * in the qinfifo. The easiest way to do this, is to issue a BDR,
4095 * send all the commands back to the mid level code, then let them
4096 * come back and get rebuilt as untagged commands.
4097 */
4098 scb->tag_action = 0;
4099 scb->hscb->control &= ~(TAG_ENB | SCB_TAG_TYPE);
4100 aic_outb(p, scb->hscb->control, SCB_CONTROL);
4101
4102 old_verbose = aic7xxx_verbose;
4103 aic7xxx_verbose &= ~(VERBOSE_RESET|VERBOSE_ABORT);
4104 for (i=0; i < p->scb_data->numscbs; i++)
4105 {
4106 scbp = p->scb_data->scb_array[i];
4107 if ((scbp->flags & SCB_ACTIVE) && (scbp != scb))
4108 {
4109 if (aic7xxx_match_scb(p, scbp, target, channel, lun, i))
4110 {
4111 aic7xxx_reset_device(p, target, channel, lun, i);
4112 }
4113 }
4114 }
4115 aic7xxx_run_done_queue(p, TRUE);
4116 aic7xxx_verbose = old_verbose;
4117 /*
4118 * Wait until after the for loop to set the busy index since
4119 * aic7xxx_reset_device will clear the busy index during its
4120 * operation.
4121 */
4122 aic7xxx_busy_target(p, scb);
4123 printk(INFO_LEAD "Device is refusing tagged commands, using "
4124 "untagged I/O.\n", p->host_no, channel, target, lun);
4125 aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT);
4126 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4127 }
4128 }
4129 else if (scb->flags & SCB_MSGOUT_PPR)
4130 {
4131 /*
4132 * As per the draft specs, any device capable of supporting any of
4133 * the option values other than 0 are not allowed to reject the
4134 * PPR message. Instead, they must negotiate out what they do
4135 * support instead of rejecting our offering or else they cause
4136 * a parity error during msg_out phase to signal that they don't
4137 * like our settings.
4138 */
4139 aic_dev->needppr = aic_dev->needppr_copy = 0;
4140 aic7xxx_set_width(p, target, channel, lun, MSG_EXT_WDTR_BUS_8_BIT,
4141 (AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE), aic_dev);
4142 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4143 AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
4144 aic_dev);
4145 aic_dev->goal.options = aic_dev->dtr_pending = 0;
4146 scb->flags &= ~SCB_MSGOUT_BITS;
4147 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4148 {
4149 printk(INFO_LEAD "Device is rejecting PPR messages, falling "
4150 "back.\n", p->host_no, channel, target, lun);
4151 }
4152 if ( aic_dev->goal.width )
4153 {
4154 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
4155 aic_dev->dtr_pending = 1;
4156 scb->flags |= SCB_MSGOUT_WDTR;
4157 }
4158 if ( aic_dev->goal.offset )
4159 {
4160 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
4161 if( !aic_dev->dtr_pending )
4162 {
4163 aic_dev->dtr_pending = 1;
4164 scb->flags |= SCB_MSGOUT_SDTR;
4165 }
4166 }
4167 if ( aic_dev->dtr_pending )
4168 {
4169 aic_outb(p, HOST_MSG, MSG_OUT);
4170 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
4171 }
4172 }
4173 else if (scb->flags & SCB_MSGOUT_WDTR)
4174 {
4175 /*
4176 * note 8bit xfers and clear flag
4177 */
4178 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
4179 scb->flags &= ~SCB_MSGOUT_BITS;
4180 aic7xxx_set_width(p, target, channel, lun, MSG_EXT_WDTR_BUS_8_BIT,
4181 (AHC_TRANS_ACTIVE|AHC_TRANS_GOAL|AHC_TRANS_CUR), aic_dev);
4182 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4183 AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
4184 aic_dev);
4185 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4186 {
4187 printk(INFO_LEAD "Device is rejecting WDTR messages, using "
4188 "narrow transfers.\n", p->host_no, channel, target, lun);
4189 }
4190 aic_dev->needsdtr = aic_dev->needsdtr_copy;
4191 }
4192 else if (scb->flags & SCB_MSGOUT_SDTR)
4193 {
4194 /*
4195 * note asynch xfers and clear flag
4196 */
4197 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
4198 scb->flags &= ~SCB_MSGOUT_BITS;
4199 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
4200 (AHC_TRANS_CUR|AHC_TRANS_ACTIVE|AHC_TRANS_GOAL), aic_dev);
4201 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4202 {
4203 printk(INFO_LEAD "Device is rejecting SDTR messages, using "
4204 "async transfers.\n", p->host_no, channel, target, lun);
4205 }
4206 }
4207 else if (aic7xxx_verbose & VERBOSE_SEQINT)
4208 {
4209 /*
4210 * Otherwise, we ignore it.
4211 */
4212 printk(INFO_LEAD "Received MESSAGE_REJECT for unknown cause. "
4213 "Ignoring.\n", p->host_no, channel, target, lun);
4214 }
4215 }
4216 break;
4217
4218 case BAD_STATUS:
4219 {
c1278289
HK
4220 unsigned char scb_index;
4221 struct aic7xxx_hwscb *hscb;
4222 struct scsi_cmnd *cmd;
4223
4224 /* The sequencer will notify us when a command has an error that
4225 * would be of interest to the kernel. This allows us to leave
4226 * the sequencer running in the common case of command completes
4227 * without error. The sequencer will have DMA'd the SCB back
4228 * up to us, so we can reference the drivers SCB array.
4229 *
4230 * Set the default return value to 0 indicating not to send
4231 * sense. The sense code will change this if needed and this
4232 * reduces code duplication.
4233 */
1da177e4
LT
4234 aic_outb(p, 0, RETURN_1);
4235 scb_index = aic_inb(p, SCB_TAG);
4236 if (scb_index > p->scb_data->numscbs)
4237 {
4238 printk(WARN_LEAD "Invalid SCB during SEQINT 0x%02x, SCB_TAG %d.\n",
4239 p->host_no, channel, target, lun, intstat, scb_index);
4240 break;
4241 }
4242 scb = p->scb_data->scb_array[scb_index];
4243 hscb = scb->hscb;
4244
4245 if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4246 {
4247 printk(WARN_LEAD "Invalid SCB during SEQINT 0x%x, scb %d, flags 0x%x,"
4248 " cmd 0x%lx.\n", p->host_no, channel, target, lun, intstat,
4249 scb_index, scb->flags, (unsigned long) scb->cmd);
4250 }
4251 else
4252 {
4253 cmd = scb->cmd;
4254 aic_dev = AIC_DEV(scb->cmd);
4255 hscb->target_status = aic_inb(p, SCB_TARGET_STATUS);
4256 aic7xxx_status(cmd) = hscb->target_status;
4257
4258 cmd->result = hscb->target_status;
4259
4260 switch (status_byte(hscb->target_status))
4261 {
4262 case GOOD:
4263 if (aic7xxx_verbose & VERBOSE_SEQINT)
4264 printk(INFO_LEAD "Interrupted for status of GOOD???\n",
4265 p->host_no, CTL_OF_SCB(scb));
4266 break;
4267
4268 case COMMAND_TERMINATED:
4269 case CHECK_CONDITION:
4270 if ( !(scb->flags & SCB_SENSE) )
4271 {
4272 /*
4273 * Send a sense command to the requesting target.
4274 * XXX - revisit this and get rid of the memcopys.
4275 */
4276 memcpy(scb->sense_cmd, &generic_sense[0],
4277 sizeof(generic_sense));
4278
4279 scb->sense_cmd[1] = (cmd->device->lun << 5);
4280 scb->sense_cmd[4] = sizeof(cmd->sense_buffer);
4281
4282 scb->sg_list[0].length =
4283 cpu_to_le32(sizeof(cmd->sense_buffer));
4284 scb->sg_list[0].address =
4285 cpu_to_le32(pci_map_single(p->pdev, cmd->sense_buffer,
4286 sizeof(cmd->sense_buffer),
4287 PCI_DMA_FROMDEVICE));
4288
4289 /*
4290 * XXX - We should allow disconnection, but can't as it
4291 * might allow overlapped tagged commands.
4292 */
4293 /* hscb->control &= DISCENB; */
4294 hscb->control = 0;
4295 hscb->target_status = 0;
4296 hscb->SG_list_pointer =
4297 cpu_to_le32(SCB_DMA_ADDR(scb, scb->sg_list));
4298 hscb->SCSI_cmd_pointer =
4299 cpu_to_le32(SCB_DMA_ADDR(scb, scb->sense_cmd));
4300 hscb->data_count = scb->sg_list[0].length;
4301 hscb->data_pointer = scb->sg_list[0].address;
4302 hscb->SCSI_cmd_length = COMMAND_SIZE(scb->sense_cmd[0]);
4303 hscb->residual_SG_segment_count = 0;
4304 hscb->residual_data_count[0] = 0;
4305 hscb->residual_data_count[1] = 0;
4306 hscb->residual_data_count[2] = 0;
4307
4308 scb->sg_count = hscb->SG_segment_count = 1;
4309 scb->sg_length = sizeof(cmd->sense_buffer);
4310 scb->tag_action = 0;
4311 scb->flags |= SCB_SENSE;
4312 /*
4313 * Ensure the target is busy since this will be an
4314 * an untagged request.
4315 */
4316#ifdef AIC7XXX_VERBOSE_DEBUGGING
4317 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4318 {
4319 if (scb->flags & SCB_MSGOUT_BITS)
4320 printk(INFO_LEAD "Requesting SENSE with %s\n", p->host_no,
4321 CTL_OF_SCB(scb), (scb->flags & SCB_MSGOUT_SDTR) ?
4322 "SDTR" : "WDTR");
4323 else
4324 printk(INFO_LEAD "Requesting SENSE, no MSG\n", p->host_no,
4325 CTL_OF_SCB(scb));
4326 }
4327#endif
4328 aic7xxx_busy_target(p, scb);
4329 aic_outb(p, SEND_SENSE, RETURN_1);
4330 aic7xxx_error(cmd) = DID_OK;
4331 break;
4332 } /* first time sense, no errors */
4333 printk(INFO_LEAD "CHECK_CONDITION on REQUEST_SENSE, returning "
4334 "an error.\n", p->host_no, CTL_OF_SCB(scb));
4335 aic7xxx_error(cmd) = DID_ERROR;
4336 scb->flags &= ~SCB_SENSE;
4337 break;
4338
4339 case QUEUE_FULL:
4340 queue_flag = TRUE; /* Mark that this is a QUEUE_FULL and */
4341 case BUSY: /* drop through to here */
4342 {
4343 struct aic7xxx_scb *next_scbp, *prev_scbp;
4344 unsigned char active_hscb, next_hscb, prev_hscb, scb_index;
4345 /*
4346 * We have to look three places for queued commands:
4347 * 1: p->waiting_scbs queue
4348 * 2: QINFIFO
4349 * 3: WAITING_SCBS list on card (for commands that are started
4350 * but haven't yet made it to the device)
4351 *
4352 * Of special note here is that commands on 2 or 3 above will
4353 * have already been marked as active, while commands on 1 will
4354 * not. The aic7xxx_done() function will want to unmark them
4355 * from active, so any commands we pull off of 1 need to
4356 * up the active count.
4357 */
4358 next_scbp = p->waiting_scbs.head;
4359 while ( next_scbp != NULL )
4360 {
4361 prev_scbp = next_scbp;
4362 next_scbp = next_scbp->q_next;
4363 if ( aic7xxx_match_scb(p, prev_scbp, target, channel, lun,
4364 SCB_LIST_NULL) )
4365 {
4366 scbq_remove(&p->waiting_scbs, prev_scbp);
4367 scb->flags = SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL;
4368 p->activescbs++;
4369 aic_dev->active_cmds++;
4370 }
4371 }
4372 aic7xxx_search_qinfifo(p, target, channel, lun,
4373 SCB_LIST_NULL, SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL,
4374 FALSE, NULL);
4375 next_scbp = NULL;
4376 active_hscb = aic_inb(p, SCBPTR);
4377 prev_hscb = next_hscb = scb_index = SCB_LIST_NULL;
4378 next_hscb = aic_inb(p, WAITING_SCBH);
4379 while (next_hscb != SCB_LIST_NULL)
4380 {
4381 aic_outb(p, next_hscb, SCBPTR);
4382 scb_index = aic_inb(p, SCB_TAG);
4383 if (scb_index < p->scb_data->numscbs)
4384 {
4385 next_scbp = p->scb_data->scb_array[scb_index];
4386 if (aic7xxx_match_scb(p, next_scbp, target, channel, lun,
4387 SCB_LIST_NULL) )
4388 {
4389 next_scbp->flags = SCB_QUEUED_FOR_DONE | SCB_QUEUE_FULL;
4390 next_hscb = aic_inb(p, SCB_NEXT);
4391 aic_outb(p, 0, SCB_CONTROL);
4392 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
4393 aic7xxx_add_curscb_to_free_list(p);
4394 if (prev_hscb == SCB_LIST_NULL)
4395 {
4396 /* We were first on the list,
4397 * so we kill the selection
4398 * hardware. Let the sequencer
4399 * re-init the hardware itself
4400 */
4401 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
4402 aic_outb(p, CLRSELTIMEO, CLRSINT1);
4403 aic_outb(p, next_hscb, WAITING_SCBH);
4404 }
4405 else
4406 {
4407 aic_outb(p, prev_hscb, SCBPTR);
4408 aic_outb(p, next_hscb, SCB_NEXT);
4409 }
4410 }
4411 else
4412 {
4413 prev_hscb = next_hscb;
4414 next_hscb = aic_inb(p, SCB_NEXT);
4415 }
4416 } /* scb_index >= p->scb_data->numscbs */
4417 }
4418 aic_outb(p, active_hscb, SCBPTR);
4419 aic7xxx_run_done_queue(p, FALSE);
4420
4421#ifdef AIC7XXX_VERBOSE_DEBUGGING
4422 if( (aic7xxx_verbose & VERBOSE_MINOR_ERROR) ||
4423 (aic7xxx_verbose > 0xffff) )
4424 {
4425 if (queue_flag)
4426 printk(INFO_LEAD "Queue full received; queue depth %d, "
4427 "active %d\n", p->host_no, CTL_OF_SCB(scb),
4428 aic_dev->max_q_depth, aic_dev->active_cmds);
4429 else
4430 printk(INFO_LEAD "Target busy\n", p->host_no, CTL_OF_SCB(scb));
4431 }
4432#endif
4433 if (queue_flag)
4434 {
4435 int diff;
4436 result = scsi_track_queue_full(cmd->device,
4437 aic_dev->active_cmds);
4438 if ( result < 0 )
4439 {
4440 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4441 printk(INFO_LEAD "Tagged Command Queueing disabled.\n",
4442 p->host_no, CTL_OF_SCB(scb));
4443 diff = aic_dev->max_q_depth - p->host->cmd_per_lun;
4444 aic_dev->temp_q_depth = 1;
4445 aic_dev->max_q_depth = 1;
4446 }
4447 else if ( result > 0 )
4448 {
4449 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4450 printk(INFO_LEAD "Queue depth reduced to %d\n", p->host_no,
4451 CTL_OF_SCB(scb), result);
4452 diff = aic_dev->max_q_depth - result;
4453 aic_dev->max_q_depth = result;
4454 /* temp_q_depth could have been dropped to 1 for an untagged
4455 * command that might be coming up */
4456 if(aic_dev->temp_q_depth > result)
4457 aic_dev->temp_q_depth = result;
4458 }
4459 /* We should free up the no unused SCB entries. But, that's
4460 * a difficult thing to do because we use a direct indexed
4461 * array, so we can't just take any entries and free them,
4462 * we *have* to free the ones at the end of the array, and
4463 * they very well could be in use right now, which means
4464 * in order to do this right, we have to add a delayed
4465 * freeing mechanism tied into the scb_free() code area.
4466 * We'll add that later.
4467 */
4468 }
4469 break;
4470 }
4471
4472 default:
4473 if (aic7xxx_verbose & VERBOSE_SEQINT)
4474 printk(INFO_LEAD "Unexpected target status 0x%x.\n", p->host_no,
4475 CTL_OF_SCB(scb), scb->hscb->target_status);
4476 if (!aic7xxx_error(cmd))
4477 {
4478 aic7xxx_error(cmd) = DID_RETRY_COMMAND;
4479 }
4480 break;
4481 } /* end switch */
4482 } /* end else of */
4483 }
4484 break;
4485
4486 case AWAITING_MSG:
4487 {
4488 unsigned char scb_index, msg_out;
4489
4490 scb_index = aic_inb(p, SCB_TAG);
4491 msg_out = aic_inb(p, MSG_OUT);
4492 scb = p->scb_data->scb_array[scb_index];
4493 aic_dev = AIC_DEV(scb->cmd);
4494 p->msg_index = p->msg_len = 0;
4495 /*
4496 * This SCB had a MK_MESSAGE set in its control byte informing
4497 * the sequencer that we wanted to send a special message to
4498 * this target.
4499 */
4500
4501 if ( !(scb->flags & SCB_DEVICE_RESET) &&
4502 (msg_out == MSG_IDENTIFYFLAG) &&
4503 (scb->hscb->control & TAG_ENB) )
4504 {
4505 p->msg_buf[p->msg_index++] = scb->tag_action;
4506 p->msg_buf[p->msg_index++] = scb->hscb->tag;
4507 p->msg_len += 2;
4508 }
4509
4510 if (scb->flags & SCB_DEVICE_RESET)
4511 {
4512 p->msg_buf[p->msg_index++] = MSG_BUS_DEV_RESET;
4513 p->msg_len++;
4514 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
4515 printk(INFO_LEAD "Bus device reset mailed.\n",
4516 p->host_no, CTL_OF_SCB(scb));
4517 }
4518 else if (scb->flags & SCB_ABORT)
4519 {
4520 if (scb->tag_action)
4521 {
4522 p->msg_buf[p->msg_index++] = MSG_ABORT_TAG;
4523 }
4524 else
4525 {
4526 p->msg_buf[p->msg_index++] = MSG_ABORT;
4527 }
4528 p->msg_len++;
4529 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
4530 printk(INFO_LEAD "Abort message mailed.\n", p->host_no,
4531 CTL_OF_SCB(scb));
4532 }
4533 else if (scb->flags & SCB_MSGOUT_PPR)
4534 {
4535 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4536 {
4537 printk(INFO_LEAD "Sending PPR (%d/%d/%d/%d) message.\n",
4538 p->host_no, CTL_OF_SCB(scb),
4539 aic_dev->goal.period,
4540 aic_dev->goal.offset,
4541 aic_dev->goal.width,
4542 aic_dev->goal.options);
4543 }
4544 aic7xxx_construct_ppr(p, scb);
4545 }
4546 else if (scb->flags & SCB_MSGOUT_WDTR)
4547 {
4548 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4549 {
4550 printk(INFO_LEAD "Sending WDTR message.\n", p->host_no,
4551 CTL_OF_SCB(scb));
4552 }
4553 aic7xxx_construct_wdtr(p, aic_dev->goal.width);
4554 }
4555 else if (scb->flags & SCB_MSGOUT_SDTR)
4556 {
4557 unsigned int max_sync, period;
4558 unsigned char options = 0;
4559 /*
4560 * Now that the device is selected, use the bits in SBLKCTL and
4561 * SSTAT2 to determine the max sync rate for this device.
4562 */
4563 if (p->features & AHC_ULTRA2)
4564 {
4565 if ( (aic_inb(p, SBLKCTL) & ENAB40) &&
4566 !(aic_inb(p, SSTAT2) & EXP_ACTIVE) )
4567 {
4568 max_sync = AHC_SYNCRATE_ULTRA2;
4569 }
4570 else
4571 {
4572 max_sync = AHC_SYNCRATE_ULTRA;
4573 }
4574 }
4575 else if (p->features & AHC_ULTRA)
4576 {
4577 max_sync = AHC_SYNCRATE_ULTRA;
4578 }
4579 else
4580 {
4581 max_sync = AHC_SYNCRATE_FAST;
4582 }
4583 period = aic_dev->goal.period;
4584 aic7xxx_find_syncrate(p, &period, max_sync, &options);
4585 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
4586 {
4587 printk(INFO_LEAD "Sending SDTR %d/%d message.\n", p->host_no,
4588 CTL_OF_SCB(scb), period,
4589 aic_dev->goal.offset);
4590 }
4591 aic7xxx_construct_sdtr(p, period, aic_dev->goal.offset);
4592 }
4593 else
4594 {
4595 panic("aic7xxx: AWAITING_MSG for an SCB that does "
4596 "not have a waiting message.\n");
4597 }
4598 /*
4599 * We've set everything up to send our message, now to actually do
4600 * so we need to enable reqinit interrupts and let the interrupt
4601 * handler do the rest. We don't want to unpause the sequencer yet
4602 * though so we'll return early. We also have to make sure that
4603 * we clear the SEQINT *BEFORE* we set the REQINIT handler active
4604 * or else it's possible on VLB cards to lose the first REQINIT
4605 * interrupt. Edge triggered EISA cards could also lose this
4606 * interrupt, although PCI and level triggered cards should not
4607 * have this problem since they continually interrupt the kernel
4608 * until we take care of the situation.
4609 */
4610 scb->flags |= SCB_MSGOUT_SENT;
4611 p->msg_index = 0;
4612 p->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4613 p->flags |= AHC_HANDLING_REQINITS;
4614 aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1);
4615 return;
4616 }
4617 break;
4618
4619 case DATA_OVERRUN:
4620 {
4621 unsigned char scb_index = aic_inb(p, SCB_TAG);
4622 unsigned char lastphase = aic_inb(p, LASTPHASE);
4623 unsigned int i;
4624
4625 scb = (p->scb_data->scb_array[scb_index]);
4626 /*
4627 * XXX - What do we really want to do on an overrun? The
4628 * mid-level SCSI code should handle this, but for now,
4629 * we'll just indicate that the command should retried.
4630 * If we retrieved sense info on this target, then the
4631 * base SENSE info should have been saved prior to the
4632 * overrun error. In that case, we return DID_OK and let
4633 * the mid level code pick up on the sense info. Otherwise
4634 * we return DID_ERROR so the command will get retried.
4635 */
4636 if ( !(scb->flags & SCB_SENSE) )
4637 {
4638 printk(WARN_LEAD "Data overrun detected in %s phase, tag %d;\n",
4639 p->host_no, CTL_OF_SCB(scb),
4640 (lastphase == P_DATAIN) ? "Data-In" : "Data-Out", scb->hscb->tag);
4641 printk(KERN_WARNING " %s seen Data Phase. Length=%d, NumSGs=%d.\n",
4642 (aic_inb(p, SEQ_FLAGS) & DPHASE) ? "Have" : "Haven't",
4643 scb->sg_length, scb->sg_count);
4644 printk(KERN_WARNING " Raw SCSI Command: 0x");
4645 for (i = 0; i < scb->hscb->SCSI_cmd_length; i++)
4646 {
4647 printk("%02x ", scb->cmd->cmnd[i]);
4648 }
4649 printk("\n");
4650 if(aic7xxx_verbose > 0xffff)
4651 {
4652 for (i = 0; i < scb->sg_count; i++)
4653 {
4654 printk(KERN_WARNING " sg[%d] - Addr 0x%x : Length %d\n",
4655 i,
4656 le32_to_cpu(scb->sg_list[i].address),
4657 le32_to_cpu(scb->sg_list[i].length) );
4658 }
4659 }
4660 aic7xxx_error(scb->cmd) = DID_ERROR;
4661 }
4662 else
4663 printk(INFO_LEAD "Data Overrun during SEND_SENSE operation.\n",
4664 p->host_no, CTL_OF_SCB(scb));
4665 }
4666 break;
4667
4668 case WIDE_RESIDUE:
4669 {
4670 unsigned char resid_sgcnt, index;
4671 unsigned char scb_index = aic_inb(p, SCB_TAG);
4672 unsigned int cur_addr, resid_dcnt;
4673 unsigned int native_addr, native_length, sg_addr;
4674 int i;
4675
4676 if(scb_index > p->scb_data->numscbs)
4677 {
4678 printk(WARN_LEAD "invalid scb_index during WIDE_RESIDUE.\n",
4679 p->host_no, -1, -1, -1);
4680 /*
4681 * XXX: Add error handling here
4682 */
4683 break;
4684 }
4685 scb = p->scb_data->scb_array[scb_index];
4686 if(!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4687 {
4688 printk(WARN_LEAD "invalid scb during WIDE_RESIDUE flags:0x%x "
4689 "scb->cmd:0x%lx\n", p->host_no, CTL_OF_SCB(scb),
4690 scb->flags, (unsigned long)scb->cmd);
4691 break;
4692 }
4693 if(aic7xxx_verbose & VERBOSE_MINOR_ERROR)
4694 printk(INFO_LEAD "Got WIDE_RESIDUE message, patching up data "
4695 "pointer.\n", p->host_no, CTL_OF_SCB(scb));
4696
4697 /*
4698 * We have a valid scb to use on this WIDE_RESIDUE message, so
4699 * we need to walk the sg list looking for this particular sg
4700 * segment, then see if we happen to be at the very beginning of
4701 * the segment. If we are, then we have to back things up to
4702 * the previous segment. If not, then we simply need to remove
4703 * one byte from this segments address and add one to the byte
4704 * count.
4705 */
4706 cur_addr = aic_inb(p, SHADDR) | (aic_inb(p, SHADDR + 1) << 8) |
4707 (aic_inb(p, SHADDR + 2) << 16) | (aic_inb(p, SHADDR + 3) << 24);
4708 sg_addr = aic_inb(p, SG_COUNT + 1) | (aic_inb(p, SG_COUNT + 2) << 8) |
4709 (aic_inb(p, SG_COUNT + 3) << 16) | (aic_inb(p, SG_COUNT + 4) << 24);
4710 resid_sgcnt = aic_inb(p, SCB_RESID_SGCNT);
4711 resid_dcnt = aic_inb(p, SCB_RESID_DCNT) |
4712 (aic_inb(p, SCB_RESID_DCNT + 1) << 8) |
4713 (aic_inb(p, SCB_RESID_DCNT + 2) << 16);
4714 index = scb->sg_count - ((resid_sgcnt) ? resid_sgcnt : 1);
4715 native_addr = le32_to_cpu(scb->sg_list[index].address);
4716 native_length = le32_to_cpu(scb->sg_list[index].length);
4717 /*
4718 * If resid_dcnt == native_length, then we just loaded this SG
4719 * segment and we need to back it up one...
4720 */
4721 if(resid_dcnt == native_length)
4722 {
4723 if(index == 0)
4724 {
4725 /*
4726 * Oops, this isn't right, we can't back up to before the
4727 * beginning. This must be a bogus message, ignore it.
4728 */
4729 break;
4730 }
4731 resid_dcnt = 1;
4732 resid_sgcnt += 1;
4733 native_addr = le32_to_cpu(scb->sg_list[index - 1].address);
4734 native_length = le32_to_cpu(scb->sg_list[index - 1].length);
4735 cur_addr = native_addr + (native_length - 1);
4736 sg_addr -= sizeof(struct hw_scatterlist);
4737 }
4738 else
4739 {
4740 /*
4741 * resid_dcnt != native_length, so we are in the middle of a SG
4742 * element. Back it up one byte and leave the rest alone.
4743 */
4744 resid_dcnt += 1;
4745 cur_addr -= 1;
4746 }
4747
4748 /*
4749 * Output the new addresses and counts to the right places on the
4750 * card.
4751 */
4752 aic_outb(p, resid_sgcnt, SG_COUNT);
4753 aic_outb(p, resid_sgcnt, SCB_RESID_SGCNT);
4754 aic_outb(p, sg_addr & 0xff, SG_COUNT + 1);
4755 aic_outb(p, (sg_addr >> 8) & 0xff, SG_COUNT + 2);
4756 aic_outb(p, (sg_addr >> 16) & 0xff, SG_COUNT + 3);
4757 aic_outb(p, (sg_addr >> 24) & 0xff, SG_COUNT + 4);
4758 aic_outb(p, resid_dcnt & 0xff, SCB_RESID_DCNT);
4759 aic_outb(p, (resid_dcnt >> 8) & 0xff, SCB_RESID_DCNT + 1);
4760 aic_outb(p, (resid_dcnt >> 16) & 0xff, SCB_RESID_DCNT + 2);
4761
4762 /*
4763 * The sequencer actually wants to find the new address
4764 * in the SHADDR register set. On the Ultra2 and later controllers
4765 * this register set is readonly. In order to get the right number
4766 * into the register, you actually have to enter it in HADDR and then
4767 * use the PRELOADEN bit of DFCNTRL to drop it through from the
4768 * HADDR register to the SHADDR register. On non-Ultra2 controllers,
4769 * we simply write it direct.
4770 */
4771 if(p->features & AHC_ULTRA2)
4772 {
4773 /*
4774 * We might as well be accurate and drop both the resid_dcnt and
4775 * cur_addr into HCNT and HADDR and have both of them drop
4776 * through to the shadow layer together.
4777 */
4778 aic_outb(p, resid_dcnt & 0xff, HCNT);
4779 aic_outb(p, (resid_dcnt >> 8) & 0xff, HCNT + 1);
4780 aic_outb(p, (resid_dcnt >> 16) & 0xff, HCNT + 2);
4781 aic_outb(p, cur_addr & 0xff, HADDR);
4782 aic_outb(p, (cur_addr >> 8) & 0xff, HADDR + 1);
4783 aic_outb(p, (cur_addr >> 16) & 0xff, HADDR + 2);
4784 aic_outb(p, (cur_addr >> 24) & 0xff, HADDR + 3);
4785 aic_outb(p, aic_inb(p, DMAPARAMS) | PRELOADEN, DFCNTRL);
4786 udelay(1);
4787 aic_outb(p, aic_inb(p, DMAPARAMS) & ~(SCSIEN|HDMAEN), DFCNTRL);
4788 i=0;
4789 while(((aic_inb(p, DFCNTRL) & (SCSIEN|HDMAEN)) != 0) && (i++ < 1000))
4790 {
4791 udelay(1);
4792 }
4793 }
4794 else
4795 {
4796 aic_outb(p, cur_addr & 0xff, SHADDR);
4797 aic_outb(p, (cur_addr >> 8) & 0xff, SHADDR + 1);
4798 aic_outb(p, (cur_addr >> 16) & 0xff, SHADDR + 2);
4799 aic_outb(p, (cur_addr >> 24) & 0xff, SHADDR + 3);
4800 }
4801 }
4802 break;
4803
4804 case SEQ_SG_FIXUP:
4805 {
4806 unsigned char scb_index, tmp;
4807 int sg_addr, sg_length;
4808
4809 scb_index = aic_inb(p, SCB_TAG);
4810
4811 if(scb_index > p->scb_data->numscbs)
4812 {
4813 printk(WARN_LEAD "invalid scb_index during SEQ_SG_FIXUP.\n",
4814 p->host_no, -1, -1, -1);
4815 printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
4816 "0x%x\n", p->host_no, -1, -1, -1,
4817 aic_inb(p, SCSISIGI),
4818 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
4819 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
4820 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n",
4821 p->host_no, -1, -1, -1, aic_inb(p, SG_CACHEPTR),
4822 aic_inb(p, SSTAT2), aic_inb(p, STCNT + 2) << 16 |
4823 aic_inb(p, STCNT + 1) << 8 | aic_inb(p, STCNT));
4824 /*
4825 * XXX: Add error handling here
4826 */
4827 break;
4828 }
4829 scb = p->scb_data->scb_array[scb_index];
4830 if(!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
4831 {
4832 printk(WARN_LEAD "invalid scb during SEQ_SG_FIXUP flags:0x%x "
4833 "scb->cmd:0x%p\n", p->host_no, CTL_OF_SCB(scb),
4834 scb->flags, scb->cmd);
4835 printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
4836 "0x%x\n", p->host_no, CTL_OF_SCB(scb),
4837 aic_inb(p, SCSISIGI),
4838 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
4839 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
4840 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n",
4841 p->host_no, CTL_OF_SCB(scb), aic_inb(p, SG_CACHEPTR),
4842 aic_inb(p, SSTAT2), aic_inb(p, STCNT + 2) << 16 |
4843 aic_inb(p, STCNT + 1) << 8 | aic_inb(p, STCNT));
4844 break;
4845 }
4846 if(aic7xxx_verbose & VERBOSE_MINOR_ERROR)
4847 printk(INFO_LEAD "Fixing up SG address for sequencer.\n", p->host_no,
4848 CTL_OF_SCB(scb));
4849 /*
4850 * Advance the SG pointer to the next element in the list
4851 */
4852 tmp = aic_inb(p, SG_NEXT);
4853 tmp += SG_SIZEOF;
4854 aic_outb(p, tmp, SG_NEXT);
4855 if( tmp < SG_SIZEOF )
4856 aic_outb(p, aic_inb(p, SG_NEXT + 1) + 1, SG_NEXT + 1);
4857 tmp = aic_inb(p, SG_COUNT) - 1;
4858 aic_outb(p, tmp, SG_COUNT);
4859 sg_addr = le32_to_cpu(scb->sg_list[scb->sg_count - tmp].address);
4860 sg_length = le32_to_cpu(scb->sg_list[scb->sg_count - tmp].length);
4861 /*
4862 * Now stuff the element we just advanced past down onto the
4863 * card so it can be stored in the residual area.
4864 */
4865 aic_outb(p, sg_addr & 0xff, HADDR);
4866 aic_outb(p, (sg_addr >> 8) & 0xff, HADDR + 1);
4867 aic_outb(p, (sg_addr >> 16) & 0xff, HADDR + 2);
4868 aic_outb(p, (sg_addr >> 24) & 0xff, HADDR + 3);
4869 aic_outb(p, sg_length & 0xff, HCNT);
4870 aic_outb(p, (sg_length >> 8) & 0xff, HCNT + 1);
4871 aic_outb(p, (sg_length >> 16) & 0xff, HCNT + 2);
4872 aic_outb(p, (tmp << 2) | ((tmp == 1) ? LAST_SEG : 0), SG_CACHEPTR);
4873 aic_outb(p, aic_inb(p, DMAPARAMS), DFCNTRL);
4874 while(aic_inb(p, SSTAT0) & SDONE) udelay(1);
4875 while(aic_inb(p, DFCNTRL) & (HDMAEN|SCSIEN)) aic_outb(p, 0, DFCNTRL);
4876 }
4877 break;
4878
4879#ifdef AIC7XXX_NOT_YET
4880 case TRACEPOINT2:
4881 {
4882 printk(INFO_LEAD "Tracepoint #2 reached.\n", p->host_no,
4883 channel, target, lun);
4884 }
4885 break;
4886
4887 /* XXX Fill these in later */
4888 case MSG_BUFFER_BUSY:
4889 printk("aic7xxx: Message buffer busy.\n");
4890 break;
4891 case MSGIN_PHASEMIS:
4892 printk("aic7xxx: Message-in phasemis.\n");
4893 break;
4894#endif
4895
4896 default: /* unknown */
4897 printk(WARN_LEAD "Unknown SEQINT, INTSTAT 0x%x, SCSISIGI 0x%x.\n",
4898 p->host_no, channel, target, lun, intstat,
4899 aic_inb(p, SCSISIGI));
4900 break;
4901 }
4902
4903 /*
4904 * Clear the sequencer interrupt and unpause the sequencer.
4905 */
4906 unpause_sequencer(p, /* unpause always */ TRUE);
4907}
4908
4909/*+F*************************************************************************
4910 * Function:
4911 * aic7xxx_parse_msg
4912 *
4913 * Description:
4914 * Parses incoming messages into actions on behalf of
4915 * aic7xxx_handle_reqinit
4916 *_F*************************************************************************/
4917static int
4918aic7xxx_parse_msg(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
4919{
4920 int reject, reply, done;
4921 unsigned char target_scsirate, tindex;
4922 unsigned short target_mask;
4923 unsigned char target, channel, lun;
4924 unsigned char bus_width, new_bus_width;
4925 unsigned char trans_options, new_trans_options;
4926 unsigned int period, new_period, offset, new_offset, maxsync;
4927 struct aic7xxx_syncrate *syncrate;
4928 struct aic_dev_data *aic_dev;
4929
4930 target = scb->cmd->device->id;
4931 channel = scb->cmd->device->channel;
4932 lun = scb->cmd->device->lun;
4933 reply = reject = done = FALSE;
4934 tindex = TARGET_INDEX(scb->cmd);
4935 aic_dev = AIC_DEV(scb->cmd);
4936 target_scsirate = aic_inb(p, TARG_SCSIRATE + tindex);
4937 target_mask = (0x01 << tindex);
4938
4939 /*
4940 * Parse as much of the message as is available,
4941 * rejecting it if we don't support it. When
4942 * the entire message is available and has been
4943 * handled, return TRUE indicating that we have
4944 * parsed an entire message.
4945 */
4946
4947 if (p->msg_buf[0] != MSG_EXTENDED)
4948 {
4949 reject = TRUE;
4950 }
4951
4952 /*
4953 * Even if we are an Ultra3 card, don't allow Ultra3 sync rates when
4954 * using the SDTR messages. We need the PPR messages to enable the
4955 * higher speeds that include things like Dual Edge clocking.
4956 */
4957 if (p->features & AHC_ULTRA2)
4958 {
4959 if ( (aic_inb(p, SBLKCTL) & ENAB40) &&
4960 !(aic_inb(p, SSTAT2) & EXP_ACTIVE) )
4961 {
4962 if (p->features & AHC_ULTRA3)
4963 maxsync = AHC_SYNCRATE_ULTRA3;
4964 else
4965 maxsync = AHC_SYNCRATE_ULTRA2;
4966 }
4967 else
4968 {
4969 maxsync = AHC_SYNCRATE_ULTRA;
4970 }
4971 }
4972 else if (p->features & AHC_ULTRA)
4973 {
4974 maxsync = AHC_SYNCRATE_ULTRA;
4975 }
4976 else
4977 {
4978 maxsync = AHC_SYNCRATE_FAST;
4979 }
4980
4981 /*
4982 * Just accept the length byte outright and perform
4983 * more checking once we know the message type.
4984 */
4985
4986 if ( !reject && (p->msg_len > 2) )
4987 {
4988 switch(p->msg_buf[2])
4989 {
4990 case MSG_EXT_SDTR:
4991 {
4992
4993 if (p->msg_buf[1] != MSG_EXT_SDTR_LEN)
4994 {
4995 reject = TRUE;
4996 break;
4997 }
4998
4999 if (p->msg_len < (MSG_EXT_SDTR_LEN + 2))
5000 {
5001 break;
5002 }
5003
5004 period = new_period = p->msg_buf[3];
5005 offset = new_offset = p->msg_buf[4];
5006 trans_options = new_trans_options = 0;
5007 bus_width = new_bus_width = target_scsirate & WIDEXFER;
5008
5009 /*
5010 * If our current max syncrate is in the Ultra3 range, bump it back
5011 * down to Ultra2 since we can't negotiate DT transfers using SDTR
5012 */
5013 if(maxsync == AHC_SYNCRATE_ULTRA3)
5014 maxsync = AHC_SYNCRATE_ULTRA2;
5015
5016 /*
5017 * We might have a device that is starting negotiation with us
5018 * before we can start up negotiation with it....be prepared to
5019 * have a device ask for a higher speed then we want to give it
5020 * in that case
5021 */
5022 if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR)) !=
5023 (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR) )
5024 {
5025 if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
5026 {
5027 /*
5028 * We shouldn't get here unless this is a narrow drive, wide
5029 * devices should trigger this same section of code in the WDTR
5030 * handler first instead.
5031 */
5032 aic_dev->goal.width = MSG_EXT_WDTR_BUS_8_BIT;
5033 aic_dev->goal.options = 0;
5034 if(p->user[tindex].offset)
5035 {
5036 aic_dev->needsdtr_copy = 1;
5037 aic_dev->goal.period = max_t(unsigned char, 10,p->user[tindex].period);
5038 if(p->features & AHC_ULTRA2)
5039 {
5040 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5041 }
5042 else
5043 {
5044 aic_dev->goal.offset = MAX_OFFSET_8BIT;
5045 }
5046 }
5047 else
5048 {
5049 aic_dev->needsdtr_copy = 0;
5050 aic_dev->goal.period = 255;
5051 aic_dev->goal.offset = 0;
5052 }
5053 aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
5054 }
5055 else if (aic_dev->needsdtr_copy == 0)
5056 {
5057 /*
5058 * This is a preemptive message from the target, we've already
5059 * scanned this target and set our options for it, and we
5060 * don't need a SDTR with this target (for whatever reason),
5061 * so reject this incoming SDTR
5062 */
5063 reject = TRUE;
5064 break;
5065 }
5066
5067 /* The device is sending this message first and we have to reply */
5068 reply = TRUE;
5069
5070 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5071 {
5072 printk(INFO_LEAD "Received pre-emptive SDTR message from "
5073 "target.\n", p->host_no, CTL_OF_SCB(scb));
5074 }
5075 /*
5076 * Validate the values the device passed to us against our SEEPROM
5077 * settings. We don't have to do this if we aren't replying since
5078 * the device isn't allowed to send values greater than the ones
5079 * we first sent to it.
5080 */
5081 new_period = max_t(unsigned int, period, aic_dev->goal.period);
5082 new_offset = min_t(unsigned int, offset, aic_dev->goal.offset);
5083 }
5084
5085 /*
5086 * Use our new_period, new_offset, bus_width, and card options
5087 * to determine the actual syncrate settings
5088 */
5089 syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5090 &trans_options);
5091 aic7xxx_validate_offset(p, syncrate, &new_offset, bus_width);
5092
5093 /*
5094 * Did we drop to async? If so, send a reply regardless of whether
5095 * or not we initiated this negotiation.
5096 */
5097 if ((new_offset == 0) && (new_offset != offset))
5098 {
5099 aic_dev->needsdtr_copy = 0;
5100 reply = TRUE;
5101 }
5102
5103 /*
5104 * Did we start this, if not, or if we went too low and had to
5105 * go async, then send an SDTR back to the target
5106 */
5107 if(reply)
5108 {
5109 /* when sending a reply, make sure that the goal settings are
5110 * updated along with current and active since the code that
5111 * will actually build the message for the sequencer uses the
5112 * goal settings as its guidelines.
5113 */
5114 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5115 new_offset, trans_options,
5116 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5117 aic_dev);
5118 scb->flags &= ~SCB_MSGOUT_BITS;
5119 scb->flags |= SCB_MSGOUT_SDTR;
5120 aic_outb(p, HOST_MSG, MSG_OUT);
5121 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5122 }
5123 else
5124 {
5125 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5126 new_offset, trans_options,
5127 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5128 aic_dev->needsdtr = 0;
5129 }
5130 done = TRUE;
5131 break;
5132 }
5133 case MSG_EXT_WDTR:
5134 {
5135
5136 if (p->msg_buf[1] != MSG_EXT_WDTR_LEN)
5137 {
5138 reject = TRUE;
5139 break;
5140 }
5141
5142 if (p->msg_len < (MSG_EXT_WDTR_LEN + 2))
5143 {
5144 break;
5145 }
5146
5147 bus_width = new_bus_width = p->msg_buf[3];
5148
5149 if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_WDTR)) ==
5150 (SCB_MSGOUT_SENT|SCB_MSGOUT_WDTR) )
5151 {
5152 switch(bus_width)
5153 {
5154 default:
5155 {
5156 reject = TRUE;
5157 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
5158 ((aic_dev->flags & DEVICE_PRINT_DTR) ||
5159 (aic7xxx_verbose > 0xffff)) )
5160 {
5161 printk(INFO_LEAD "Requesting %d bit transfers, rejecting.\n",
5162 p->host_no, CTL_OF_SCB(scb), 8 * (0x01 << bus_width));
5163 }
5164 } /* We fall through on purpose */
5165 case MSG_EXT_WDTR_BUS_8_BIT:
5166 {
5167 aic_dev->goal.width = MSG_EXT_WDTR_BUS_8_BIT;
5168 aic_dev->needwdtr_copy &= ~target_mask;
5169 break;
5170 }
5171 case MSG_EXT_WDTR_BUS_16_BIT:
5172 {
5173 break;
5174 }
5175 }
5176 aic_dev->needwdtr = 0;
5177 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5178 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5179 }
5180 else
5181 {
5182 if ( !(aic_dev->flags & DEVICE_DTR_SCANNED) )
5183 {
5184 /*
5185 * Well, we now know the WDTR and SYNC caps of this device since
5186 * it contacted us first, mark it as such and copy the user stuff
5187 * over to the goal stuff.
5188 */
5189 if( (p->features & AHC_WIDE) && p->user[tindex].width )
5190 {
5191 aic_dev->goal.width = MSG_EXT_WDTR_BUS_16_BIT;
5192 aic_dev->needwdtr_copy = 1;
5193 }
5194
5195 /*
5196 * Devices that support DT transfers don't start WDTR requests
5197 */
5198 aic_dev->goal.options = 0;
5199
5200 if(p->user[tindex].offset)
5201 {
5202 aic_dev->needsdtr_copy = 1;
5203 aic_dev->goal.period = max_t(unsigned char, 10, p->user[tindex].period);
5204 if(p->features & AHC_ULTRA2)
5205 {
5206 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5207 }
5208 else if( aic_dev->goal.width )
5209 {
5210 aic_dev->goal.offset = MAX_OFFSET_16BIT;
5211 }
5212 else
5213 {
5214 aic_dev->goal.offset = MAX_OFFSET_8BIT;
5215 }
5216 } else {
5217 aic_dev->needsdtr_copy = 0;
5218 aic_dev->goal.period = 255;
5219 aic_dev->goal.offset = 0;
5220 }
5221
5222 aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
5223 }
5224 else if (aic_dev->needwdtr_copy == 0)
5225 {
5226 /*
5227 * This is a preemptive message from the target, we've already
5228 * scanned this target and set our options for it, and we
5229 * don't need a WDTR with this target (for whatever reason),
5230 * so reject this incoming WDTR
5231 */
5232 reject = TRUE;
5233 break;
5234 }
5235
5236 /* The device is sending this message first and we have to reply */
5237 reply = TRUE;
5238
5239 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5240 {
5241 printk(INFO_LEAD "Received pre-emptive WDTR message from "
5242 "target.\n", p->host_no, CTL_OF_SCB(scb));
5243 }
5244 switch(bus_width)
5245 {
5246 case MSG_EXT_WDTR_BUS_16_BIT:
5247 {
5248 if ( (p->features & AHC_WIDE) &&
5249 (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT) )
5250 {
5251 new_bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5252 break;
5253 }
5254 } /* Fall through if we aren't a wide card */
5255 default:
5256 case MSG_EXT_WDTR_BUS_8_BIT:
5257 {
5258 aic_dev->needwdtr_copy = 0;
5259 new_bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5260 break;
5261 }
5262 }
5263 scb->flags &= ~SCB_MSGOUT_BITS;
5264 scb->flags |= SCB_MSGOUT_WDTR;
5265 aic_dev->needwdtr = 0;
5266 if(aic_dev->dtr_pending == 0)
5267 {
5268 /* there is no other command with SCB_DTR_SCB already set that will
5269 * trigger the release of the dtr_pending bit. Both set the bit
5270 * and set scb->flags |= SCB_DTR_SCB
5271 */
5272 aic_dev->dtr_pending = 1;
5273 scb->flags |= SCB_DTR_SCB;
5274 }
5275 aic_outb(p, HOST_MSG, MSG_OUT);
5276 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5277 /* when sending a reply, make sure that the goal settings are
5278 * updated along with current and active since the code that
5279 * will actually build the message for the sequencer uses the
5280 * goal settings as its guidelines.
5281 */
5282 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5283 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5284 aic_dev);
5285 }
5286
5287 /*
5288 * By virtue of the SCSI spec, a WDTR message negates any existing
5289 * SDTR negotiations. So, even if needsdtr isn't marked for this
5290 * device, we still have to do a new SDTR message if the device
5291 * supports SDTR at all. Therefore, we check needsdtr_copy instead
5292 * of needstr.
5293 */
5294 aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, 0,
5295 AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
5296 aic_dev);
5297 aic_dev->needsdtr = aic_dev->needsdtr_copy;
5298 done = TRUE;
5299 break;
5300 }
5301 case MSG_EXT_PPR:
5302 {
5303
5304 if (p->msg_buf[1] != MSG_EXT_PPR_LEN)
5305 {
5306 reject = TRUE;
5307 break;
5308 }
5309
5310 if (p->msg_len < (MSG_EXT_PPR_LEN + 2))
5311 {
5312 break;
5313 }
5314
5315 period = new_period = p->msg_buf[3];
5316 offset = new_offset = p->msg_buf[5];
5317 bus_width = new_bus_width = p->msg_buf[6];
5318 trans_options = new_trans_options = p->msg_buf[7] & 0xf;
5319
5320 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5321 {
5322 printk(INFO_LEAD "Parsing PPR message (%d/%d/%d/%d)\n",
5323 p->host_no, CTL_OF_SCB(scb), period, offset, bus_width,
5324 trans_options);
5325 }
5326
5327 /*
5328 * We might have a device that is starting negotiation with us
5329 * before we can start up negotiation with it....be prepared to
5330 * have a device ask for a higher speed then we want to give it
5331 * in that case
5332 */
5333 if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_PPR)) !=
5334 (SCB_MSGOUT_SENT|SCB_MSGOUT_PPR) )
5335 {
5336 /* Have we scanned the device yet? */
5337 if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
5338 {
5339 /* The device is electing to use PPR messages, so we will too until
5340 * we know better */
5341 aic_dev->needppr = aic_dev->needppr_copy = 1;
5342 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
5343 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
5344
5345 /* We know the device is SCSI-3 compliant due to PPR */
5346 aic_dev->flags |= DEVICE_SCSI_3;
5347
5348 /*
5349 * Not only is the device starting this up, but it also hasn't
5350 * been scanned yet, so this would likely be our TUR or our
5351 * INQUIRY command at scan time, so we need to use the
5352 * settings from the SEEPROM if they existed. Of course, even
5353 * if we didn't find a SEEPROM, we stuffed default values into
5354 * the user settings anyway, so use those in all cases.
5355 */
5356 aic_dev->goal.width = p->user[tindex].width;
5357 if(p->user[tindex].offset)
5358 {
5359 aic_dev->goal.period = p->user[tindex].period;
5360 aic_dev->goal.options = p->user[tindex].options;
5361 if(p->features & AHC_ULTRA2)
5362 {
5363 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
5364 }
5365 else if( aic_dev->goal.width &&
5366 (bus_width == MSG_EXT_WDTR_BUS_16_BIT) &&
5367 p->features & AHC_WIDE )
5368 {
5369 aic_dev->goal.offset = MAX_OFFSET_16BIT;
5370 }
5371 else
5372 {
5373 aic_dev->goal.offset = MAX_OFFSET_8BIT;
5374 }
5375 }
5376 else
5377 {
5378 aic_dev->goal.period = 255;
5379 aic_dev->goal.offset = 0;
5380 aic_dev->goal.options = 0;
5381 }
5382 aic_dev->flags |= DEVICE_DTR_SCANNED | DEVICE_PRINT_DTR;
5383 }
5384 else if (aic_dev->needppr_copy == 0)
5385 {
5386 /*
5387 * This is a preemptive message from the target, we've already
5388 * scanned this target and set our options for it, and we
5389 * don't need a PPR with this target (for whatever reason),
5390 * so reject this incoming PPR
5391 */
5392 reject = TRUE;
5393 break;
5394 }
5395
5396 /* The device is sending this message first and we have to reply */
5397 reply = TRUE;
5398
5399 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
5400 {
5401 printk(INFO_LEAD "Received pre-emptive PPR message from "
5402 "target.\n", p->host_no, CTL_OF_SCB(scb));
5403 }
5404
5405 }
5406
5407 switch(bus_width)
5408 {
5409 case MSG_EXT_WDTR_BUS_16_BIT:
5410 {
5411 if ( (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT) &&
5412 p->features & AHC_WIDE)
5413 {
5414 break;
5415 }
5416 }
5417 default:
5418 {
5419 if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) &&
5420 ((aic_dev->flags & DEVICE_PRINT_DTR) ||
5421 (aic7xxx_verbose > 0xffff)) )
5422 {
5423 reply = TRUE;
5424 printk(INFO_LEAD "Requesting %d bit transfers, rejecting.\n",
5425 p->host_no, CTL_OF_SCB(scb), 8 * (0x01 << bus_width));
5426 }
5427 } /* We fall through on purpose */
5428 case MSG_EXT_WDTR_BUS_8_BIT:
5429 {
5430 /*
5431 * According to the spec, if we aren't wide, we also can't be
5432 * Dual Edge so clear the options byte
5433 */
5434 new_trans_options = 0;
5435 new_bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5436 break;
5437 }
5438 }
5439
5440 if(reply)
5441 {
5442 /* when sending a reply, make sure that the goal settings are
5443 * updated along with current and active since the code that
5444 * will actually build the message for the sequencer uses the
5445 * goal settings as its guidelines.
5446 */
5447 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5448 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5449 aic_dev);
5450 syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5451 &new_trans_options);
5452 aic7xxx_validate_offset(p, syncrate, &new_offset, new_bus_width);
5453 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5454 new_offset, new_trans_options,
5455 AHC_TRANS_GOAL|AHC_TRANS_ACTIVE|AHC_TRANS_CUR,
5456 aic_dev);
5457 }
5458 else
5459 {
5460 aic7xxx_set_width(p, target, channel, lun, new_bus_width,
5461 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5462 syncrate = aic7xxx_find_syncrate(p, &new_period, maxsync,
5463 &new_trans_options);
5464 aic7xxx_validate_offset(p, syncrate, &new_offset, new_bus_width);
5465 aic7xxx_set_syncrate(p, syncrate, target, channel, new_period,
5466 new_offset, new_trans_options,
5467 AHC_TRANS_ACTIVE|AHC_TRANS_CUR, aic_dev);
5468 }
5469
5470 /*
5471 * As it turns out, if we don't *have* to have PPR messages, then
5472 * configure ourselves not to use them since that makes some
5473 * external drive chassis work (those chassis can't parse PPR
5474 * messages and they mangle the SCSI bus until you send a WDTR
5475 * and SDTR that they can understand).
5476 */
5477 if(new_trans_options == 0)
5478 {
5479 aic_dev->needppr = aic_dev->needppr_copy = 0;
5480 if(new_offset)
5481 {
5482 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
5483 }
5484 if (new_bus_width)
5485 {
5486 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
5487 }
5488 }
5489
5490 if((new_offset == 0) && (offset != 0))
5491 {
5492 /*
5493 * Oops, the syncrate went to low for this card and we fell off
5494 * to async (should never happen with a device that uses PPR
5495 * messages, but have to be complete)
5496 */
5497 reply = TRUE;
5498 }
5499
5500 if(reply)
5501 {
5502 scb->flags &= ~SCB_MSGOUT_BITS;
5503 scb->flags |= SCB_MSGOUT_PPR;
5504 aic_outb(p, HOST_MSG, MSG_OUT);
5505 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5506 }
5507 else
5508 {
5509 aic_dev->needppr = 0;
5510 }
5511 done = TRUE;
5512 break;
5513 }
5514 default:
5515 {
5516 reject = TRUE;
5517 break;
5518 }
5519 } /* end of switch(p->msg_type) */
5520 } /* end of if (!reject && (p->msg_len > 2)) */
5521
5522 if (!reply && reject)
5523 {
5524 aic_outb(p, MSG_MESSAGE_REJECT, MSG_OUT);
5525 aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO);
5526 done = TRUE;
5527 }
5528 return(done);
5529}
5530
5531
5532/*+F*************************************************************************
5533 * Function:
5534 * aic7xxx_handle_reqinit
5535 *
5536 * Description:
5537 * Interrupt handler for REQINIT interrupts (used to transfer messages to
5538 * and from devices).
5539 *_F*************************************************************************/
5540static void
5541aic7xxx_handle_reqinit(struct aic7xxx_host *p, struct aic7xxx_scb *scb)
5542{
5543 unsigned char lastbyte;
5544 unsigned char phasemis;
5545 int done = FALSE;
5546
5547 switch(p->msg_type)
5548 {
5549 case MSG_TYPE_INITIATOR_MSGOUT:
5550 {
5551 if (p->msg_len == 0)
5552 panic("aic7xxx: REQINIT with no active message!\n");
5553
5554 lastbyte = (p->msg_index == (p->msg_len - 1));
5555 phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK) != P_MESGOUT;
5556
5557 if (lastbyte || phasemis)
5558 {
5559 /* Time to end the message */
5560 p->msg_len = 0;
5561 p->msg_type = MSG_TYPE_NONE;
5562 /*
5563 * NOTE-TO-MYSELF: If you clear the REQINIT after you
5564 * disable REQINITs, then cases of REJECT_MSG stop working
5565 * and hang the bus
5566 */
5567 aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1);
5568 aic_outb(p, CLRSCSIINT, CLRINT);
5569 p->flags &= ~AHC_HANDLING_REQINITS;
5570
5571 if (phasemis == 0)
5572 {
5573 aic_outb(p, p->msg_buf[p->msg_index], SINDEX);
5574 aic_outb(p, 0, RETURN_1);
5575#ifdef AIC7XXX_VERBOSE_DEBUGGING
5576 if (aic7xxx_verbose > 0xffff)
5577 printk(INFO_LEAD "Completed sending of REQINIT message.\n",
5578 p->host_no, CTL_OF_SCB(scb));
5579#endif
5580 }
5581 else
5582 {
5583 aic_outb(p, MSGOUT_PHASEMIS, RETURN_1);
5584#ifdef AIC7XXX_VERBOSE_DEBUGGING
5585 if (aic7xxx_verbose > 0xffff)
5586 printk(INFO_LEAD "PHASEMIS while sending REQINIT message.\n",
5587 p->host_no, CTL_OF_SCB(scb));
5588#endif
5589 }
5590 unpause_sequencer(p, TRUE);
5591 }
5592 else
5593 {
5594 /*
5595 * Present the byte on the bus (clearing REQINIT) but don't
5596 * unpause the sequencer.
5597 */
5598 aic_outb(p, CLRREQINIT, CLRSINT1);
5599 aic_outb(p, CLRSCSIINT, CLRINT);
5600 aic_outb(p, p->msg_buf[p->msg_index++], SCSIDATL);
5601 }
5602 break;
5603 }
5604 case MSG_TYPE_INITIATOR_MSGIN:
5605 {
5606 phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK ) != P_MESGIN;
5607
5608 if (phasemis == 0)
5609 {
5610 p->msg_len++;
5611 /* Pull the byte in without acking it */
5612 p->msg_buf[p->msg_index] = aic_inb(p, SCSIBUSL);
5613 done = aic7xxx_parse_msg(p, scb);
5614 /* Ack the byte */
5615 aic_outb(p, CLRREQINIT, CLRSINT1);
5616 aic_outb(p, CLRSCSIINT, CLRINT);
5617 aic_inb(p, SCSIDATL);
5618 p->msg_index++;
5619 }
5620 if (phasemis || done)
5621 {
5622#ifdef AIC7XXX_VERBOSE_DEBUGGING
5623 if (aic7xxx_verbose > 0xffff)
5624 {
5625 if (phasemis)
5626 printk(INFO_LEAD "PHASEMIS while receiving REQINIT message.\n",
5627 p->host_no, CTL_OF_SCB(scb));
5628 else
5629 printk(INFO_LEAD "Completed receipt of REQINIT message.\n",
5630 p->host_no, CTL_OF_SCB(scb));
5631 }
5632#endif
5633 /* Time to end our message session */
5634 p->msg_len = 0;
5635 p->msg_type = MSG_TYPE_NONE;
5636 aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1);
5637 aic_outb(p, CLRSCSIINT, CLRINT);
5638 p->flags &= ~AHC_HANDLING_REQINITS;
5639 unpause_sequencer(p, TRUE);
5640 }
5641 break;
5642 }
5643 default:
5644 {
5645 panic("aic7xxx: Unknown REQINIT message type.\n");
5646 break;
5647 }
5648 } /* End of switch(p->msg_type) */
5649}
5650
5651/*+F*************************************************************************
5652 * Function:
5653 * aic7xxx_handle_scsiint
5654 *
5655 * Description:
5656 * Interrupt handler for SCSI interrupts (SCSIINT).
5657 *-F*************************************************************************/
5658static void
5659aic7xxx_handle_scsiint(struct aic7xxx_host *p, unsigned char intstat)
5660{
5661 unsigned char scb_index;
5662 unsigned char status;
5663 struct aic7xxx_scb *scb;
5664 struct aic_dev_data *aic_dev;
5665
5666 scb_index = aic_inb(p, SCB_TAG);
5667 status = aic_inb(p, SSTAT1);
5668
5669 if (scb_index < p->scb_data->numscbs)
5670 {
5671 scb = p->scb_data->scb_array[scb_index];
5672 if ((scb->flags & SCB_ACTIVE) == 0)
5673 {
5674 scb = NULL;
5675 }
5676 }
5677 else
5678 {
5679 scb = NULL;
5680 }
5681
5682
5683 if ((status & SCSIRSTI) != 0)
5684 {
5685 int channel;
5686
5687 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
5688 channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
5689 else
5690 channel = 0;
5691
5692 if (aic7xxx_verbose & VERBOSE_RESET)
5693 printk(WARN_LEAD "Someone else reset the channel!!\n",
5694 p->host_no, channel, -1, -1);
5695 if (aic7xxx_panic_on_abort)
5696 aic7xxx_panic_abort(p, NULL);
5697 /*
5698 * Go through and abort all commands for the channel, but do not
5699 * reset the channel again.
5700 */
5701 aic7xxx_reset_channel(p, channel, /* Initiate Reset */ FALSE);
5702 aic7xxx_run_done_queue(p, TRUE);
5703 scb = NULL;
5704 }
5705 else if ( ((status & BUSFREE) != 0) && ((status & SELTO) == 0) )
5706 {
5707 /*
5708 * First look at what phase we were last in. If it's message-out,
5709 * chances are pretty good that the bus free was in response to
5710 * one of our abort requests.
5711 */
5712 unsigned char lastphase = aic_inb(p, LASTPHASE);
5713 unsigned char saved_tcl = aic_inb(p, SAVED_TCL);
5714 unsigned char target = (saved_tcl >> 4) & 0x0F;
5715 int channel;
5716 int printerror = TRUE;
5717
5718 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
5719 channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3;
5720 else
5721 channel = 0;
5722
5723 aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP),
5724 SCSISEQ);
5725 if (lastphase == P_MESGOUT)
5726 {
5727 unsigned char message;
5728
5729 message = aic_inb(p, SINDEX);
5730
5731 if ((message == MSG_ABORT) || (message == MSG_ABORT_TAG))
5732 {
5733 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
5734 printk(INFO_LEAD "SCB %d abort delivered.\n", p->host_no,
5735 CTL_OF_SCB(scb), scb->hscb->tag);
5736 aic7xxx_reset_device(p, target, channel, ALL_LUNS,
5737 (message == MSG_ABORT) ? SCB_LIST_NULL : scb->hscb->tag );
5738 aic7xxx_run_done_queue(p, TRUE);
5739 scb = NULL;
5740 printerror = 0;
5741 }
5742 else if (message == MSG_BUS_DEV_RESET)
5743 {
5744 aic7xxx_handle_device_reset(p, target, channel);
5745 scb = NULL;
5746 printerror = 0;
5747 }
5748 }
5749 if ( (scb != NULL) && (scb->flags & SCB_DTR_SCB) )
5750 {
5751 /*
5752 * Hmmm...error during a negotiation command. Either we have a
5753 * borken bus, or the device doesn't like our negotiation message.
5754 * Since we check the INQUIRY data of a device before sending it
5755 * negotiation messages, assume the bus is borken for whatever
5756 * reason. Complete the command.
5757 */
5758 printerror = 0;
5759 aic7xxx_reset_device(p, target, channel, ALL_LUNS, scb->hscb->tag);
5760 aic7xxx_run_done_queue(p, TRUE);
5761 scb = NULL;
5762 }
5763 if (printerror != 0)
5764 {
5765 if (scb != NULL)
5766 {
5767 unsigned char tag;
5768
5769 if ((scb->hscb->control & TAG_ENB) != 0)
5770 {
5771 tag = scb->hscb->tag;
5772 }
5773 else
5774 {
5775 tag = SCB_LIST_NULL;
5776 }
5777 aic7xxx_reset_device(p, target, channel, ALL_LUNS, tag);
5778 aic7xxx_run_done_queue(p, TRUE);
5779 }
5780 else
5781 {
5782 aic7xxx_reset_device(p, target, channel, ALL_LUNS, SCB_LIST_NULL);
5783 aic7xxx_run_done_queue(p, TRUE);
5784 }
5785 printk(INFO_LEAD "Unexpected busfree, LASTPHASE = 0x%x, "
5786 "SEQADDR = 0x%x\n", p->host_no, channel, target, -1, lastphase,
5787 (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
5788 scb = NULL;
5789 }
5790 aic_outb(p, MSG_NOOP, MSG_OUT);
5791 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT),
5792 SIMODE1);
5793 p->flags &= ~AHC_HANDLING_REQINITS;
5794 aic_outb(p, CLRBUSFREE, CLRSINT1);
5795 aic_outb(p, CLRSCSIINT, CLRINT);
5796 restart_sequencer(p);
5797 unpause_sequencer(p, TRUE);
5798 }
5799 else if ((status & SELTO) != 0)
5800 {
c1278289
HK
5801 unsigned char scbptr;
5802 unsigned char nextscb;
5803 struct scsi_cmnd *cmd;
1da177e4
LT
5804
5805 scbptr = aic_inb(p, WAITING_SCBH);
5806 if (scbptr > p->scb_data->maxhscbs)
5807 {
5808 /*
5809 * I'm still trying to track down exactly how this happens, but until
5810 * I find it, this code will make sure we aren't passing bogus values
5811 * into the SCBPTR register, even if that register will just wrap
5812 * things around, we still don't like having out of range variables.
5813 *
5814 * NOTE: Don't check the aic7xxx_verbose variable, I want this message
5815 * to always be displayed.
5816 */
5817 printk(INFO_LEAD "Invalid WAITING_SCBH value %d, improvising.\n",
5818 p->host_no, -1, -1, -1, scbptr);
5819 if (p->scb_data->maxhscbs > 4)
5820 scbptr &= (p->scb_data->maxhscbs - 1);
5821 else
5822 scbptr &= 0x03;
5823 }
5824 aic_outb(p, scbptr, SCBPTR);
5825 scb_index = aic_inb(p, SCB_TAG);
5826
5827 scb = NULL;
5828 if (scb_index < p->scb_data->numscbs)
5829 {
5830 scb = p->scb_data->scb_array[scb_index];
5831 if ((scb->flags & SCB_ACTIVE) == 0)
5832 {
5833 scb = NULL;
5834 }
5835 }
5836 if (scb == NULL)
5837 {
5838 printk(WARN_LEAD "Referenced SCB %d not valid during SELTO.\n",
5839 p->host_no, -1, -1, -1, scb_index);
5840 printk(KERN_WARNING " SCSISEQ = 0x%x SEQADDR = 0x%x SSTAT0 = 0x%x "
5841 "SSTAT1 = 0x%x\n", aic_inb(p, SCSISEQ),
5842 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
5843 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
5844 if (aic7xxx_panic_on_abort)
5845 aic7xxx_panic_abort(p, NULL);
5846 }
5847 else
5848 {
5849 cmd = scb->cmd;
5850 cmd->result = (DID_TIME_OUT << 16);
5851
5852 /*
5853 * Clear out this hardware SCB
5854 */
5855 aic_outb(p, 0, SCB_CONTROL);
5856
5857 /*
5858 * Clear out a few values in the card that are in an undetermined
5859 * state.
5860 */
5861 aic_outb(p, MSG_NOOP, MSG_OUT);
5862
5863 /*
5864 * Shift the waiting for selection queue forward
5865 */
5866 nextscb = aic_inb(p, SCB_NEXT);
5867 aic_outb(p, nextscb, WAITING_SCBH);
5868
5869 /*
5870 * Put this SCB back on the free list.
5871 */
5872 aic7xxx_add_curscb_to_free_list(p);
5873#ifdef AIC7XXX_VERBOSE_DEBUGGING
5874 if (aic7xxx_verbose > 0xffff)
5875 printk(INFO_LEAD "Selection Timeout.\n", p->host_no, CTL_OF_SCB(scb));
5876#endif
5877 if (scb->flags & SCB_QUEUED_ABORT)
5878 {
5879 /*
5880 * We know that this particular SCB had to be the queued abort since
5881 * the disconnected SCB would have gotten a reconnect instead.
5882 * What we need to do then is to let the command timeout again so
5883 * we get a reset since this abort just failed.
5884 */
5885 cmd->result = 0;
5886 scb = NULL;
5887 }
5888 }
5889 /*
5890 * Keep the sequencer from trying to restart any selections
5891 */
5892 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
5893 /*
5894 * Make sure the data bits on the bus are released
5895 * Don't do this on 7770 chipsets, it makes them give us
5896 * a BRKADDRINT and kills the card.
5897 */
5898 if( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI )
5899 aic_outb(p, 0, SCSIBUSL);
5900
5901 /*
5902 * Delay for the selection timeout delay period then stop the selection
5903 */
5904 udelay(301);
5905 aic_outb(p, CLRSELINGO, CLRSINT0);
5906 /*
5907 * Clear out all the interrupt status bits
5908 */
5909 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1);
5910 p->flags &= ~AHC_HANDLING_REQINITS;
5911 aic_outb(p, CLRSELTIMEO | CLRBUSFREE, CLRSINT1);
5912 aic_outb(p, CLRSCSIINT, CLRINT);
5913 /*
5914 * Restarting the sequencer will stop the selection and make sure devices
5915 * are allowed to reselect in.
5916 */
5917 restart_sequencer(p);
5918 unpause_sequencer(p, TRUE);
5919 }
5920 else if (scb == NULL)
5921 {
5922 printk(WARN_LEAD "aic7xxx_isr - referenced scb not valid "
5923 "during scsiint 0x%x scb(%d)\n"
5924 " SIMODE0 0x%x, SIMODE1 0x%x, SSTAT0 0x%x, SEQADDR 0x%x\n",
5925 p->host_no, -1, -1, -1, status, scb_index, aic_inb(p, SIMODE0),
5926 aic_inb(p, SIMODE1), aic_inb(p, SSTAT0),
5927 (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0));
5928 /*
5929 * Turn off the interrupt and set status to zero, so that it
5930 * falls through the rest of the SCSIINT code.
5931 */
5932 aic_outb(p, status, CLRSINT1);
5933 aic_outb(p, CLRSCSIINT, CLRINT);
5934 unpause_sequencer(p, /* unpause always */ TRUE);
5935 scb = NULL;
5936 }
5937 else if (status & SCSIPERR)
5938 {
5939 /*
5940 * Determine the bus phase and queue an appropriate message.
5941 */
c1278289
HK
5942 char *phase;
5943 struct scsi_cmnd *cmd;
5944 unsigned char mesg_out = MSG_NOOP;
5945 unsigned char lastphase = aic_inb(p, LASTPHASE);
5946 unsigned char sstat2 = aic_inb(p, SSTAT2);
1da177e4
LT
5947
5948 cmd = scb->cmd;
5949 switch (lastphase)
5950 {
5951 case P_DATAOUT:
5952 phase = "Data-Out";
5953 break;
5954 case P_DATAIN:
5955 phase = "Data-In";
5956 mesg_out = MSG_INITIATOR_DET_ERR;
5957 break;
5958 case P_COMMAND:
5959 phase = "Command";
5960 break;
5961 case P_MESGOUT:
5962 phase = "Message-Out";
5963 break;
5964 case P_STATUS:
5965 phase = "Status";
5966 mesg_out = MSG_INITIATOR_DET_ERR;
5967 break;
5968 case P_MESGIN:
5969 phase = "Message-In";
5970 mesg_out = MSG_PARITY_ERROR;
5971 break;
5972 default:
5973 phase = "unknown";
5974 break;
5975 }
5976
5977 /*
5978 * A parity error has occurred during a data
5979 * transfer phase. Flag it and continue.
5980 */
5981 if( (p->features & AHC_ULTRA3) &&
5982 (aic_inb(p, SCSIRATE) & AHC_SYNCRATE_CRC) &&
5983 (lastphase == P_DATAIN) )
5984 {
5985 printk(WARN_LEAD "CRC error during %s phase.\n",
5986 p->host_no, CTL_OF_SCB(scb), phase);
5987 if(sstat2 & CRCVALERR)
5988 {
5989 printk(WARN_LEAD " CRC error in intermediate CRC packet.\n",
5990 p->host_no, CTL_OF_SCB(scb));
5991 }
5992 if(sstat2 & CRCENDERR)
5993 {
5994 printk(WARN_LEAD " CRC error in ending CRC packet.\n",
5995 p->host_no, CTL_OF_SCB(scb));
5996 }
5997 if(sstat2 & CRCREQERR)
5998 {
5999 printk(WARN_LEAD " Target incorrectly requested a CRC packet.\n",
6000 p->host_no, CTL_OF_SCB(scb));
6001 }
6002 if(sstat2 & DUAL_EDGE_ERROR)
6003 {
6004 printk(WARN_LEAD " Dual Edge transmission error.\n",
6005 p->host_no, CTL_OF_SCB(scb));
6006 }
6007 }
6008 else if( (lastphase == P_MESGOUT) &&
6009 (scb->flags & SCB_MSGOUT_PPR) )
6010 {
6011 /*
6012 * As per the draft specs, any device capable of supporting any of
6013 * the option values other than 0 are not allowed to reject the
6014 * PPR message. Instead, they must negotiate out what they do
6015 * support instead of rejecting our offering or else they cause
6016 * a parity error during msg_out phase to signal that they don't
6017 * like our settings.
6018 */
6019 aic_dev = AIC_DEV(scb->cmd);
6020 aic_dev->needppr = aic_dev->needppr_copy = 0;
6021 aic7xxx_set_width(p, scb->cmd->device->id, scb->cmd->device->channel, scb->cmd->device->lun,
6022 MSG_EXT_WDTR_BUS_8_BIT,
6023 (AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE),
6024 aic_dev);
6025 aic7xxx_set_syncrate(p, NULL, scb->cmd->device->id, scb->cmd->device->channel, 0, 0,
6026 0, AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE,
6027 aic_dev);
6028 aic_dev->goal.options = 0;
6029 scb->flags &= ~SCB_MSGOUT_BITS;
6030 if(aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6031 {
6032 printk(INFO_LEAD "parity error during PPR message, reverting "
6033 "to WDTR/SDTR\n", p->host_no, CTL_OF_SCB(scb));
6034 }
6035 if ( aic_dev->goal.width )
6036 {
6037 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
6038 }
6039 if ( aic_dev->goal.offset )
6040 {
6041 if( aic_dev->goal.period <= 9 )
6042 {
6043 aic_dev->goal.period = 10;
6044 }
6045 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
6046 }
6047 scb = NULL;
6048 }
6049
6050 /*
6051 * We've set the hardware to assert ATN if we get a parity
6052 * error on "in" phases, so all we need to do is stuff the
6053 * message buffer with the appropriate message. "In" phases
6054 * have set mesg_out to something other than MSG_NOP.
6055 */
6056 if (mesg_out != MSG_NOOP)
6057 {
6058 aic_outb(p, mesg_out, MSG_OUT);
6059 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
6060 scb = NULL;
6061 }
6062 aic_outb(p, CLRSCSIPERR, CLRSINT1);
6063 aic_outb(p, CLRSCSIINT, CLRINT);
6064 unpause_sequencer(p, /* unpause_always */ TRUE);
6065 }
6066 else if ( (status & REQINIT) &&
6067 (p->flags & AHC_HANDLING_REQINITS) )
6068 {
6069#ifdef AIC7XXX_VERBOSE_DEBUGGING
6070 if (aic7xxx_verbose > 0xffff)
6071 printk(INFO_LEAD "Handling REQINIT, SSTAT1=0x%x.\n", p->host_no,
6072 CTL_OF_SCB(scb), aic_inb(p, SSTAT1));
6073#endif
6074 aic7xxx_handle_reqinit(p, scb);
6075 return;
6076 }
6077 else
6078 {
6079 /*
6080 * We don't know what's going on. Turn off the
6081 * interrupt source and try to continue.
6082 */
6083 if (aic7xxx_verbose & VERBOSE_SCSIINT)
6084 printk(INFO_LEAD "Unknown SCSIINT status, SSTAT1(0x%x).\n",
6085 p->host_no, -1, -1, -1, status);
6086 aic_outb(p, status, CLRSINT1);
6087 aic_outb(p, CLRSCSIINT, CLRINT);
6088 unpause_sequencer(p, /* unpause always */ TRUE);
6089 scb = NULL;
6090 }
6091 if (scb != NULL)
6092 {
6093 aic7xxx_done(p, scb);
6094 }
6095}
6096
6097#ifdef AIC7XXX_VERBOSE_DEBUGGING
6098static void
6099aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer)
6100{
6101 unsigned char saved_scbptr, free_scbh, dis_scbh, wait_scbh, temp;
6102 int i, bogus, lost;
6103 static unsigned char scb_status[AIC7XXX_MAXSCB];
6104
6105#define SCB_NO_LIST 0
6106#define SCB_FREE_LIST 1
6107#define SCB_WAITING_LIST 2
6108#define SCB_DISCONNECTED_LIST 4
6109#define SCB_CURRENTLY_ACTIVE 8
6110
6111 /*
6112 * Note, these checks will fail on a regular basis once the machine moves
6113 * beyond the bus scan phase. The problem is race conditions concerning
6114 * the scbs and where they are linked in. When you have 30 or so commands
6115 * outstanding on the bus, and run this twice with every interrupt, the
6116 * chances get pretty good that you'll catch the sequencer with an SCB
6117 * only partially linked in. Therefore, once we pass the scan phase
6118 * of the bus, we really should disable this function.
6119 */
6120 bogus = FALSE;
6121 memset(&scb_status[0], 0, sizeof(scb_status));
6122 pause_sequencer(p);
6123 saved_scbptr = aic_inb(p, SCBPTR);
6124 if (saved_scbptr >= p->scb_data->maxhscbs)
6125 {
6126 printk("Bogus SCBPTR %d\n", saved_scbptr);
6127 bogus = TRUE;
6128 }
6129 scb_status[saved_scbptr] = SCB_CURRENTLY_ACTIVE;
6130 free_scbh = aic_inb(p, FREE_SCBH);
6131 if ( (free_scbh != SCB_LIST_NULL) &&
6132 (free_scbh >= p->scb_data->maxhscbs) )
6133 {
6134 printk("Bogus FREE_SCBH %d\n", free_scbh);
6135 bogus = TRUE;
6136 }
6137 else
6138 {
6139 temp = free_scbh;
6140 while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6141 {
6142 if(scb_status[temp] & 0x07)
6143 {
6144 printk("HSCB %d on multiple lists, status 0x%02x", temp,
6145 scb_status[temp] | SCB_FREE_LIST);
6146 bogus = TRUE;
6147 }
6148 scb_status[temp] |= SCB_FREE_LIST;
6149 aic_outb(p, temp, SCBPTR);
6150 temp = aic_inb(p, SCB_NEXT);
6151 }
6152 }
6153
6154 dis_scbh = aic_inb(p, DISCONNECTED_SCBH);
6155 if ( (dis_scbh != SCB_LIST_NULL) &&
6156 (dis_scbh >= p->scb_data->maxhscbs) )
6157 {
6158 printk("Bogus DISCONNECTED_SCBH %d\n", dis_scbh);
6159 bogus = TRUE;
6160 }
6161 else
6162 {
6163 temp = dis_scbh;
6164 while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6165 {
6166 if(scb_status[temp] & 0x07)
6167 {
6168 printk("HSCB %d on multiple lists, status 0x%02x", temp,
6169 scb_status[temp] | SCB_DISCONNECTED_LIST);
6170 bogus = TRUE;
6171 }
6172 scb_status[temp] |= SCB_DISCONNECTED_LIST;
6173 aic_outb(p, temp, SCBPTR);
6174 temp = aic_inb(p, SCB_NEXT);
6175 }
6176 }
6177
6178 wait_scbh = aic_inb(p, WAITING_SCBH);
6179 if ( (wait_scbh != SCB_LIST_NULL) &&
6180 (wait_scbh >= p->scb_data->maxhscbs) )
6181 {
6182 printk("Bogus WAITING_SCBH %d\n", wait_scbh);
6183 bogus = TRUE;
6184 }
6185 else
6186 {
6187 temp = wait_scbh;
6188 while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) )
6189 {
6190 if(scb_status[temp] & 0x07)
6191 {
6192 printk("HSCB %d on multiple lists, status 0x%02x", temp,
6193 scb_status[temp] | SCB_WAITING_LIST);
6194 bogus = TRUE;
6195 }
6196 scb_status[temp] |= SCB_WAITING_LIST;
6197 aic_outb(p, temp, SCBPTR);
6198 temp = aic_inb(p, SCB_NEXT);
6199 }
6200 }
6201
6202 lost=0;
6203 for(i=0; i < p->scb_data->maxhscbs; i++)
6204 {
6205 aic_outb(p, i, SCBPTR);
6206 temp = aic_inb(p, SCB_NEXT);
6207 if ( ((temp != SCB_LIST_NULL) &&
6208 (temp >= p->scb_data->maxhscbs)) )
6209 {
6210 printk("HSCB %d bad, SCB_NEXT invalid(%d).\n", i, temp);
6211 bogus = TRUE;
6212 }
6213 if ( temp == i )
6214 {
6215 printk("HSCB %d bad, SCB_NEXT points to self.\n", i);
6216 bogus = TRUE;
6217 }
6218 if (scb_status[i] == 0)
6219 lost++;
6220 if (lost > 1)
6221 {
6222 printk("Too many lost scbs.\n");
6223 bogus=TRUE;
6224 }
6225 }
6226 aic_outb(p, saved_scbptr, SCBPTR);
6227 unpause_sequencer(p, FALSE);
6228 if (bogus)
6229 {
6230 printk("Bogus parameters found in card SCB array structures.\n");
6231 printk("%s\n", buffer);
6232 aic7xxx_panic_abort(p, NULL);
6233 }
6234 return;
6235}
6236#endif
6237
6238
6239/*+F*************************************************************************
6240 * Function:
6241 * aic7xxx_handle_command_completion_intr
6242 *
6243 * Description:
6244 * SCSI command completion interrupt handler.
6245 *-F*************************************************************************/
6246static void
6247aic7xxx_handle_command_completion_intr(struct aic7xxx_host *p)
6248{
c1278289
HK
6249 struct aic7xxx_scb *scb = NULL;
6250 struct aic_dev_data *aic_dev;
6251 struct scsi_cmnd *cmd;
6252 unsigned char scb_index, tindex;
1da177e4
LT
6253
6254#ifdef AIC7XXX_VERBOSE_DEBUGGING
6255 if( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) )
6256 printk(INFO_LEAD "Command Complete Int.\n", p->host_no, -1, -1, -1);
6257#endif
6258
6259 /*
6260 * Read the INTSTAT location after clearing the CMDINT bit. This forces
6261 * any posted PCI writes to flush to memory. Gerard Roudier suggested
6262 * this fix to the possible race of clearing the CMDINT bit but not
6263 * having all command bytes flushed onto the qoutfifo.
6264 */
6265 aic_outb(p, CLRCMDINT, CLRINT);
6266 aic_inb(p, INTSTAT);
6267 /*
6268 * The sequencer will continue running when it
6269 * issues this interrupt. There may be >1 commands
6270 * finished, so loop until we've processed them all.
6271 */
6272
6273 while (p->qoutfifo[p->qoutfifonext] != SCB_LIST_NULL)
6274 {
6275 scb_index = p->qoutfifo[p->qoutfifonext];
6276 p->qoutfifo[p->qoutfifonext++] = SCB_LIST_NULL;
6277 if ( scb_index >= p->scb_data->numscbs )
6278 {
6279 printk(WARN_LEAD "CMDCMPLT with invalid SCB index %d\n", p->host_no,
6280 -1, -1, -1, scb_index);
6281 continue;
6282 }
6283 scb = p->scb_data->scb_array[scb_index];
6284 if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL))
6285 {
6286 printk(WARN_LEAD "CMDCMPLT without command for SCB %d, SCB flags "
6287 "0x%x, cmd 0x%lx\n", p->host_no, -1, -1, -1, scb_index, scb->flags,
6288 (unsigned long) scb->cmd);
6289 continue;
6290 }
6291 tindex = TARGET_INDEX(scb->cmd);
6292 aic_dev = AIC_DEV(scb->cmd);
6293 if (scb->flags & SCB_QUEUED_ABORT)
6294 {
6295 pause_sequencer(p);
6296 if ( ((aic_inb(p, LASTPHASE) & PHASE_MASK) != P_BUSFREE) &&
6297 (aic_inb(p, SCB_TAG) == scb->hscb->tag) )
6298 {
6299 unpause_sequencer(p, FALSE);
6300 continue;
6301 }
6302 aic7xxx_reset_device(p, scb->cmd->device->id, scb->cmd->device->channel,
6303 scb->cmd->device->lun, scb->hscb->tag);
6304 scb->flags &= ~(SCB_QUEUED_FOR_DONE | SCB_RESET | SCB_ABORT |
6305 SCB_QUEUED_ABORT);
6306 unpause_sequencer(p, FALSE);
6307 }
6308 else if (scb->flags & SCB_ABORT)
6309 {
6310 /*
6311 * We started to abort this, but it completed on us, let it
6312 * through as successful
6313 */
6314 scb->flags &= ~(SCB_ABORT|SCB_RESET);
6315 }
6316 else if (scb->flags & SCB_SENSE)
6317 {
6318 char *buffer = &scb->cmd->sense_buffer[0];
6319
6320 if (buffer[12] == 0x47 || buffer[12] == 0x54)
6321 {
6322 /*
6323 * Signal that we need to re-negotiate things.
6324 */
6325 aic_dev->needppr = aic_dev->needppr_copy;
6326 aic_dev->needsdtr = aic_dev->needsdtr_copy;
6327 aic_dev->needwdtr = aic_dev->needwdtr_copy;
6328 }
6329 }
6330 cmd = scb->cmd;
6331 if (scb->hscb->residual_SG_segment_count != 0)
6332 {
6333 aic7xxx_calculate_residual(p, scb);
6334 }
6335 cmd->result |= (aic7xxx_error(cmd) << 16);
6336 aic7xxx_done(p, scb);
6337 }
6338}
6339
6340/*+F*************************************************************************
6341 * Function:
6342 * aic7xxx_isr
6343 *
6344 * Description:
6345 * SCSI controller interrupt handler.
6346 *-F*************************************************************************/
6347static void
c7bec5ab 6348aic7xxx_isr(void *dev_id)
1da177e4
LT
6349{
6350 struct aic7xxx_host *p;
6351 unsigned char intstat;
6352
c7bec5ab 6353 p = dev_id;
1da177e4
LT
6354
6355 /*
6356 * Just a few sanity checks. Make sure that we have an int pending.
6357 * Also, if PCI, then we are going to check for a PCI bus error status
6358 * should we get too many spurious interrupts.
6359 */
6360 if (!((intstat = aic_inb(p, INTSTAT)) & INT_PEND))
6361 {
6362#ifdef CONFIG_PCI
6363 if ( (p->chip & AHC_PCI) && (p->spurious_int > 500) &&
6364 !(p->flags & AHC_HANDLING_REQINITS) )
6365 {
6366 if ( aic_inb(p, ERROR) & PCIERRSTAT )
6367 {
6368 aic7xxx_pci_intr(p);
6369 }
6370 p->spurious_int = 0;
6371 }
6372 else if ( !(p->flags & AHC_HANDLING_REQINITS) )
6373 {
6374 p->spurious_int++;
6375 }
6376#endif
6377 return;
6378 }
6379
6380 p->spurious_int = 0;
6381
6382 /*
6383 * Keep track of interrupts for /proc/scsi
6384 */
6385 p->isr_count++;
6386
6387#ifdef AIC7XXX_VERBOSE_DEBUGGING
6388 if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) &&
6389 (aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) )
6390 aic7xxx_check_scbs(p, "Bogus settings at start of interrupt.");
6391#endif
6392
6393 /*
6394 * Handle all the interrupt sources - especially for SCSI
6395 * interrupts, we won't get a second chance at them.
6396 */
6397 if (intstat & CMDCMPLT)
6398 {
6399 aic7xxx_handle_command_completion_intr(p);
6400 }
6401
6402 if (intstat & BRKADRINT)
6403 {
6404 int i;
6405 unsigned char errno = aic_inb(p, ERROR);
6406
6407 printk(KERN_ERR "(scsi%d) BRKADRINT error(0x%x):\n", p->host_no, errno);
6408 for (i = 0; i < ARRAY_SIZE(hard_error); i++)
6409 {
6410 if (errno & hard_error[i].errno)
6411 {
6412 printk(KERN_ERR " %s\n", hard_error[i].errmesg);
6413 }
6414 }
6415 printk(KERN_ERR "(scsi%d) SEQADDR=0x%x\n", p->host_no,
6416 (((aic_inb(p, SEQADDR1) << 8) & 0x100) | aic_inb(p, SEQADDR0)));
6417 if (aic7xxx_panic_on_abort)
6418 aic7xxx_panic_abort(p, NULL);
6419#ifdef CONFIG_PCI
6420 if (errno & PCIERRSTAT)
6421 aic7xxx_pci_intr(p);
6422#endif
6423 if (errno & (SQPARERR | ILLOPCODE | ILLSADDR))
6424 {
6425 panic("aic7xxx: unrecoverable BRKADRINT.\n");
6426 }
6427 if (errno & ILLHADDR)
6428 {
6429 printk(KERN_ERR "(scsi%d) BUG! Driver accessed chip without first "
6430 "pausing controller!\n", p->host_no);
6431 }
6432#ifdef AIC7XXX_VERBOSE_DEBUGGING
6433 if (errno & DPARERR)
6434 {
6435 if (aic_inb(p, DMAPARAMS) & DIRECTION)
6436 printk("(scsi%d) while DMAing SCB from host to card.\n", p->host_no);
6437 else
6438 printk("(scsi%d) while DMAing SCB from card to host.\n", p->host_no);
6439 }
6440#endif
6441 aic_outb(p, CLRPARERR | CLRBRKADRINT, CLRINT);
6442 unpause_sequencer(p, FALSE);
6443 }
6444
6445 if (intstat & SEQINT)
6446 {
6447 /*
6448 * Read the CCSCBCTL register to work around a bug in the Ultra2 cards
6449 */
6450 if(p->features & AHC_ULTRA2)
6451 {
6452 aic_inb(p, CCSCBCTL);
6453 }
6454 aic7xxx_handle_seqint(p, intstat);
6455 }
6456
6457 if (intstat & SCSIINT)
6458 {
6459 aic7xxx_handle_scsiint(p, intstat);
6460 }
6461
6462#ifdef AIC7XXX_VERBOSE_DEBUGGING
6463 if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) &&
6464 (aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) )
6465 aic7xxx_check_scbs(p, "Bogus settings at end of interrupt.");
6466#endif
6467
6468}
6469
6470/*+F*************************************************************************
6471 * Function:
6472 * do_aic7xxx_isr
6473 *
6474 * Description:
6475 * This is a gross hack to solve a problem in linux kernels 2.1.85 and
6476 * above. Please, children, do not try this at home, and if you ever see
6477 * anything like it, please inform the Gross Hack Police immediately
6478 *-F*************************************************************************/
6479static irqreturn_t
7d12e780 6480do_aic7xxx_isr(int irq, void *dev_id)
1da177e4
LT
6481{
6482 unsigned long cpu_flags;
6483 struct aic7xxx_host *p;
6484
6485 p = (struct aic7xxx_host *)dev_id;
6486 if(!p)
6487 return IRQ_NONE;
6488 spin_lock_irqsave(p->host->host_lock, cpu_flags);
6489 p->flags |= AHC_IN_ISR;
6490 do
6491 {
c7bec5ab 6492 aic7xxx_isr(dev_id);
1da177e4
LT
6493 } while ( (aic_inb(p, INTSTAT) & INT_PEND) );
6494 aic7xxx_done_cmds_complete(p);
6495 aic7xxx_run_waiting_queues(p);
6496 p->flags &= ~AHC_IN_ISR;
6497 spin_unlock_irqrestore(p->host->host_lock, cpu_flags);
6498
6499 return IRQ_HANDLED;
6500}
6501
6502/*+F*************************************************************************
6503 * Function:
6504 * aic7xxx_init_transinfo
6505 *
6506 * Description:
6507 * Set up the initial aic_dev values from the BIOS settings and from
6508 * INQUIRY results
6509 *-F*************************************************************************/
6510static void
6511aic7xxx_init_transinfo(struct aic7xxx_host *p, struct aic_dev_data *aic_dev)
6512{
f64a181d 6513 struct scsi_device *sdpnt = aic_dev->SDptr;
1da177e4
LT
6514 unsigned char tindex;
6515
6516 tindex = sdpnt->id | (sdpnt->channel << 3);
6517 if (!(aic_dev->flags & DEVICE_DTR_SCANNED))
6518 {
6519 aic_dev->flags |= DEVICE_DTR_SCANNED;
6520
6521 if ( sdpnt->wdtr && (p->features & AHC_WIDE) )
6522 {
6523 aic_dev->needwdtr = aic_dev->needwdtr_copy = 1;
6524 aic_dev->goal.width = p->user[tindex].width;
6525 }
6526 else
6527 {
6528 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
6529 pause_sequencer(p);
6530 aic7xxx_set_width(p, sdpnt->id, sdpnt->channel, sdpnt->lun,
6531 MSG_EXT_WDTR_BUS_8_BIT, (AHC_TRANS_ACTIVE |
6532 AHC_TRANS_GOAL |
6533 AHC_TRANS_CUR), aic_dev );
6534 unpause_sequencer(p, FALSE);
6535 }
6536 if ( sdpnt->sdtr && p->user[tindex].offset )
6537 {
6538 aic_dev->goal.period = p->user[tindex].period;
6539 aic_dev->goal.options = p->user[tindex].options;
6540 if (p->features & AHC_ULTRA2)
6541 aic_dev->goal.offset = MAX_OFFSET_ULTRA2;
6542 else if (aic_dev->goal.width == MSG_EXT_WDTR_BUS_16_BIT)
6543 aic_dev->goal.offset = MAX_OFFSET_16BIT;
6544 else
6545 aic_dev->goal.offset = MAX_OFFSET_8BIT;
6546 if ( sdpnt->ppr && p->user[tindex].period <= 9 &&
6547 p->user[tindex].options )
6548 {
6549 aic_dev->needppr = aic_dev->needppr_copy = 1;
6550 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
6551 aic_dev->needwdtr = aic_dev->needwdtr_copy = 0;
6552 aic_dev->flags |= DEVICE_SCSI_3;
6553 }
6554 else
6555 {
6556 aic_dev->needsdtr = aic_dev->needsdtr_copy = 1;
6557 aic_dev->goal.period = max_t(unsigned char, 10, aic_dev->goal.period);
6558 aic_dev->goal.options = 0;
6559 }
6560 }
6561 else
6562 {
6563 aic_dev->needsdtr = aic_dev->needsdtr_copy = 0;
6564 aic_dev->goal.period = 255;
6565 aic_dev->goal.offset = 0;
6566 aic_dev->goal.options = 0;
6567 }
6568 aic_dev->flags |= DEVICE_PRINT_DTR;
6569 }
6570}
6571
6572/*+F*************************************************************************
6573 * Function:
6574 * aic7xxx_slave_alloc
6575 *
6576 * Description:
6577 * Set up the initial aic_dev struct pointers
6578 *-F*************************************************************************/
6579static int
f64a181d 6580aic7xxx_slave_alloc(struct scsi_device *SDptr)
1da177e4
LT
6581{
6582 struct aic7xxx_host *p = (struct aic7xxx_host *)SDptr->host->hostdata;
6583 struct aic_dev_data *aic_dev;
6584
6585 aic_dev = kmalloc(sizeof(struct aic_dev_data), GFP_ATOMIC | GFP_KERNEL);
6586 if(!aic_dev)
6587 return 1;
6588 /*
6589 * Check to see if channel was scanned.
6590 */
6591
6592 if (!(p->flags & AHC_A_SCANNED) && (SDptr->channel == 0))
6593 {
6594 if (aic7xxx_verbose & VERBOSE_PROBE2)
6595 printk(INFO_LEAD "Scanning channel for devices.\n",
6596 p->host_no, 0, -1, -1);
6597 p->flags |= AHC_A_SCANNED;
6598 }
6599 else
6600 {
6601 if (!(p->flags & AHC_B_SCANNED) && (SDptr->channel == 1))
6602 {
6603 if (aic7xxx_verbose & VERBOSE_PROBE2)
6604 printk(INFO_LEAD "Scanning channel for devices.\n",
6605 p->host_no, 1, -1, -1);
6606 p->flags |= AHC_B_SCANNED;
6607 }
6608 }
6609
6610 memset(aic_dev, 0, sizeof(struct aic_dev_data));
6611 SDptr->hostdata = aic_dev;
6612 aic_dev->SDptr = SDptr;
6613 aic_dev->max_q_depth = 1;
6614 aic_dev->temp_q_depth = 1;
6615 scbq_init(&aic_dev->delayed_scbs);
6616 INIT_LIST_HEAD(&aic_dev->list);
6617 list_add_tail(&aic_dev->list, &p->aic_devs);
6618 return 0;
6619}
6620
6621/*+F*************************************************************************
6622 * Function:
6623 * aic7xxx_device_queue_depth
6624 *
6625 * Description:
6626 * Determines the queue depth for a given device. There are two ways
6627 * a queue depth can be obtained for a tagged queueing device. One
6628 * way is the default queue depth which is determined by whether
6629 * aic7xxx_default_queue_depth. The other is by the aic7xxx_tag_info
6630 * array.
6631 *
6632 * If tagged queueing isn't supported on the device, then we set the
6633 * depth to p->host->hostt->cmd_per_lun for internal driver queueing.
6634 * as the default queue depth. Otherwise, we use either 4 or 8 as the
6635 * default queue depth (dependent on the number of hardware SCBs).
6636 * The other way we determine queue depth is through the use of the
6637 * aic7xxx_tag_info array which is enabled by defining
6638 * AIC7XXX_TAGGED_QUEUEING_BY_DEVICE. This array can be initialized
6639 * with queue depths for individual devices. It also allows tagged
6640 * queueing to be [en|dis]abled for a specific adapter.
6641 *-F*************************************************************************/
6642static void
f64a181d 6643aic7xxx_device_queue_depth(struct aic7xxx_host *p, struct scsi_device *device)
1da177e4
LT
6644{
6645 int tag_enabled = FALSE;
6646 struct aic_dev_data *aic_dev = device->hostdata;
6647 unsigned char tindex;
6648
6649 tindex = device->id | (device->channel << 3);
6650
6651 if (device->simple_tags)
6652 return; // We've already enabled this device
6653
6654 if (device->tagged_supported)
6655 {
6656 tag_enabled = TRUE;
6657
6658 if (!(p->discenable & (1 << tindex)))
6659 {
6660 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6661 printk(INFO_LEAD "Disconnection disabled, unable to "
6662 "enable tagged queueing.\n",
6663 p->host_no, device->channel, device->id, device->lun);
6664 tag_enabled = FALSE;
6665 }
6666 else
6667 {
6668 if (p->instance >= ARRAY_SIZE(aic7xxx_tag_info))
6669 {
6670 static int print_warning = TRUE;
6671 if(print_warning)
6672 {
6673 printk(KERN_INFO "aic7xxx: WARNING, insufficient tag_info instances for"
6674 " installed controllers.\n");
6675 printk(KERN_INFO "aic7xxx: Please update the aic7xxx_tag_info array in"
6676 " the aic7xxx.c source file.\n");
6677 print_warning = FALSE;
6678 }
6679 aic_dev->max_q_depth = aic_dev->temp_q_depth =
6680 aic7xxx_default_queue_depth;
6681 }
6682 else
6683 {
6684
6685 if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 255)
6686 {
6687 tag_enabled = FALSE;
6688 }
6689 else if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 0)
6690 {
6691 aic_dev->max_q_depth = aic_dev->temp_q_depth =
6692 aic7xxx_default_queue_depth;
6693 }
6694 else
6695 {
6696 aic_dev->max_q_depth = aic_dev->temp_q_depth =
6697 aic7xxx_tag_info[p->instance].tag_commands[tindex];
6698 }
6699 }
6700 }
6701 }
6702 if (tag_enabled)
6703 {
6704 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6705 {
6706 printk(INFO_LEAD "Tagged queuing enabled, queue depth %d.\n",
6707 p->host_no, device->channel, device->id,
6708 device->lun, aic_dev->max_q_depth);
6709 }
6710 scsi_adjust_queue_depth(device, MSG_ORDERED_TAG, aic_dev->max_q_depth);
6711 }
6712 else
6713 {
6714 if (aic7xxx_verbose & VERBOSE_NEGOTIATION2)
6715 {
6716 printk(INFO_LEAD "Tagged queuing disabled, queue depth %d.\n",
6717 p->host_no, device->channel, device->id,
6718 device->lun, device->host->cmd_per_lun);
6719 }
6720 scsi_adjust_queue_depth(device, 0, device->host->cmd_per_lun);
6721 }
6722 return;
6723}
6724
6725/*+F*************************************************************************
6726 * Function:
6727 * aic7xxx_slave_destroy
6728 *
6729 * Description:
6730 * prepare for this device to go away
6731 *-F*************************************************************************/
6732static void
f64a181d 6733aic7xxx_slave_destroy(struct scsi_device *SDptr)
1da177e4
LT
6734{
6735 struct aic_dev_data *aic_dev = SDptr->hostdata;
6736
6737 list_del(&aic_dev->list);
6738 SDptr->hostdata = NULL;
6739 kfree(aic_dev);
6740 return;
6741}
6742
6743/*+F*************************************************************************
6744 * Function:
6745 * aic7xxx_slave_configure
6746 *
6747 * Description:
6748 * Configure the device we are attaching to the controller. This is
6749 * where we get to do things like scan the INQUIRY data, set queue
6750 * depths, allocate command structs, etc.
6751 *-F*************************************************************************/
6752static int
f64a181d 6753aic7xxx_slave_configure(struct scsi_device *SDptr)
1da177e4
LT
6754{
6755 struct aic7xxx_host *p = (struct aic7xxx_host *) SDptr->host->hostdata;
6756 struct aic_dev_data *aic_dev;
6757 int scbnum;
6758
6759 aic_dev = (struct aic_dev_data *)SDptr->hostdata;
6760
6761 aic7xxx_init_transinfo(p, aic_dev);
6762 aic7xxx_device_queue_depth(p, SDptr);
6763 if(list_empty(&aic_dev->list))
6764 list_add_tail(&aic_dev->list, &p->aic_devs);
6765
6766 scbnum = 0;
6767 list_for_each_entry(aic_dev, &p->aic_devs, list) {
6768 scbnum += aic_dev->max_q_depth;
6769 }
6770 while (scbnum > p->scb_data->numscbs)
6771 {
6772 /*
6773 * Pre-allocate the needed SCBs to get around the possibility of having
6774 * to allocate some when memory is more or less exhausted and we need
6775 * the SCB in order to perform a swap operation (possible deadlock)
6776 */
6777 if ( aic7xxx_allocate_scb(p) == 0 )
6778 break;
6779 }
6780
6781
6782 return(0);
6783}
6784
6785/*+F*************************************************************************
6786 * Function:
6787 * aic7xxx_probe
6788 *
6789 * Description:
6790 * Probing for EISA boards: it looks like the first two bytes
6791 * are a manufacturer code - three characters, five bits each:
6792 *
6793 * BYTE 0 BYTE 1 BYTE 2 BYTE 3
6794 * ?1111122 22233333 PPPPPPPP RRRRRRRR
6795 *
6796 * The characters are baselined off ASCII '@', so add that value
6797 * to each to get the real ASCII code for it. The next two bytes
6798 * appear to be a product and revision number, probably vendor-
6799 * specific. This is what is being searched for at each port,
6800 * and what should probably correspond to the ID= field in the
6801 * ECU's .cfg file for the card - if your card is not detected,
6802 * make sure your signature is listed in the array.
6803 *
6804 * The fourth byte's lowest bit seems to be an enabled/disabled
6805 * flag (rest of the bits are reserved?).
6806 *
6807 * NOTE: This function is only needed on Intel and Alpha platforms,
6808 * the other platforms we support don't have EISA/VLB busses. So,
6809 * we #ifdef this entire function to avoid compiler warnings about
6810 * an unused function.
6811 *-F*************************************************************************/
6812#if defined(__i386__) || defined(__alpha__)
6813static int
6814aic7xxx_probe(int slot, int base, ahc_flag_type *flags)
6815{
6816 int i;
6817 unsigned char buf[4];
6818
6819 static struct {
6820 int n;
6821 unsigned char signature[sizeof(buf)];
6822 ahc_chip type;
6823 int bios_disabled;
6824 } AIC7xxx[] = {
6825 { 4, { 0x04, 0x90, 0x77, 0x70 },
6826 AHC_AIC7770|AHC_EISA, FALSE }, /* mb 7770 */
6827 { 4, { 0x04, 0x90, 0x77, 0x71 },
6828 AHC_AIC7770|AHC_EISA, FALSE }, /* host adapter 274x */
6829 { 4, { 0x04, 0x90, 0x77, 0x56 },
6830 AHC_AIC7770|AHC_VL, FALSE }, /* 284x BIOS enabled */
6831 { 4, { 0x04, 0x90, 0x77, 0x57 },
6832 AHC_AIC7770|AHC_VL, TRUE } /* 284x BIOS disabled */
6833 };
6834
6835 /*
6836 * The VL-bus cards need to be primed by
6837 * writing before a signature check.
6838 */
6839 for (i = 0; i < sizeof(buf); i++)
6840 {
6841 outb(0x80 + i, base);
6842 buf[i] = inb(base + i);
6843 }
6844
6845 for (i = 0; i < ARRAY_SIZE(AIC7xxx); i++)
6846 {
6847 /*
6848 * Signature match on enabled card?
6849 */
6850 if (!memcmp(buf, AIC7xxx[i].signature, AIC7xxx[i].n))
6851 {
6852 if (inb(base + 4) & 1)
6853 {
6854 if (AIC7xxx[i].bios_disabled)
6855 {
6856 *flags |= AHC_USEDEFAULTS;
6857 }
6858 else
6859 {
6860 *flags |= AHC_BIOS_ENABLED;
6861 }
6862 return (i);
6863 }
6864
6865 printk("aic7xxx: <Adaptec 7770 SCSI Host Adapter> "
6866 "disabled at slot %d, ignored.\n", slot);
6867 }
6868 }
6869
6870 return (-1);
6871}
6872#endif /* (__i386__) || (__alpha__) */
6873
6874
6875/*+F*************************************************************************
6876 * Function:
6877 * read_2840_seeprom
6878 *
6879 * Description:
6880 * Reads the 2840 serial EEPROM and returns 1 if successful and 0 if
6881 * not successful.
6882 *
6883 * See read_seeprom (for the 2940) for the instruction set of the 93C46
6884 * chip.
6885 *
6886 * The 2840 interface to the 93C46 serial EEPROM is through the
6887 * STATUS_2840 and SEECTL_2840 registers. The CS_2840, CK_2840, and
6888 * DO_2840 bits of the SEECTL_2840 register are connected to the chip
6889 * select, clock, and data out lines respectively of the serial EEPROM.
6890 * The DI_2840 bit of the STATUS_2840 is connected to the data in line
6891 * of the serial EEPROM. The EEPROM_TF bit of STATUS_2840 register is
6892 * useful in that it gives us an 800 nsec timer. After a read from the
6893 * SEECTL_2840 register the timing flag is cleared and goes high 800 nsec
6894 * later.
6895 *-F*************************************************************************/
6896static int
6897read_284x_seeprom(struct aic7xxx_host *p, struct seeprom_config *sc)
6898{
6899 int i = 0, k = 0;
6900 unsigned char temp;
6901 unsigned short checksum = 0;
6902 unsigned short *seeprom = (unsigned short *) sc;
6903 struct seeprom_cmd {
6904 unsigned char len;
6905 unsigned char bits[3];
6906 };
6907 struct seeprom_cmd seeprom_read = {3, {1, 1, 0}};
6908
6909#define CLOCK_PULSE(p) \
6910 while ((aic_inb(p, STATUS_2840) & EEPROM_TF) == 0) \
6911 { \
6912 ; /* Do nothing */ \
6913 } \
6914 (void) aic_inb(p, SEECTL_2840);
6915
6916 /*
6917 * Read the first 32 registers of the seeprom. For the 2840,
6918 * the 93C46 SEEPROM is a 1024-bit device with 64 16-bit registers
6919 * but only the first 32 are used by Adaptec BIOS. The loop
6920 * will range from 0 to 31.
6921 */
6922 for (k = 0; k < (sizeof(*sc) / 2); k++)
6923 {
6924 /*
6925 * Send chip select for one clock cycle.
6926 */
6927 aic_outb(p, CK_2840 | CS_2840, SEECTL_2840);
6928 CLOCK_PULSE(p);
6929
6930 /*
6931 * Now we're ready to send the read command followed by the
6932 * address of the 16-bit register we want to read.
6933 */
6934 for (i = 0; i < seeprom_read.len; i++)
6935 {
6936 temp = CS_2840 | seeprom_read.bits[i];
6937 aic_outb(p, temp, SEECTL_2840);
6938 CLOCK_PULSE(p);
6939 temp = temp ^ CK_2840;
6940 aic_outb(p, temp, SEECTL_2840);
6941 CLOCK_PULSE(p);
6942 }
6943 /*
6944 * Send the 6 bit address (MSB first, LSB last).
6945 */
6946 for (i = 5; i >= 0; i--)
6947 {
6948 temp = k;
6949 temp = (temp >> i) & 1; /* Mask out all but lower bit. */
6950 temp = CS_2840 | temp;
6951 aic_outb(p, temp, SEECTL_2840);
6952 CLOCK_PULSE(p);
6953 temp = temp ^ CK_2840;
6954 aic_outb(p, temp, SEECTL_2840);
6955 CLOCK_PULSE(p);
6956 }
6957
6958 /*
6959 * Now read the 16 bit register. An initial 0 precedes the
6960 * register contents which begins with bit 15 (MSB) and ends
6961 * with bit 0 (LSB). The initial 0 will be shifted off the
6962 * top of our word as we let the loop run from 0 to 16.
6963 */
6964 for (i = 0; i <= 16; i++)
6965 {
6966 temp = CS_2840;
6967 aic_outb(p, temp, SEECTL_2840);
6968 CLOCK_PULSE(p);
6969 temp = temp ^ CK_2840;
6970 seeprom[k] = (seeprom[k] << 1) | (aic_inb(p, STATUS_2840) & DI_2840);
6971 aic_outb(p, temp, SEECTL_2840);
6972 CLOCK_PULSE(p);
6973 }
6974 /*
6975 * The serial EEPROM has a checksum in the last word. Keep a
6976 * running checksum for all words read except for the last
6977 * word. We'll verify the checksum after all words have been
6978 * read.
6979 */
6980 if (k < (sizeof(*sc) / 2) - 1)
6981 {
6982 checksum = checksum + seeprom[k];
6983 }
6984
6985 /*
6986 * Reset the chip select for the next command cycle.
6987 */
6988 aic_outb(p, 0, SEECTL_2840);
6989 CLOCK_PULSE(p);
6990 aic_outb(p, CK_2840, SEECTL_2840);
6991 CLOCK_PULSE(p);
6992 aic_outb(p, 0, SEECTL_2840);
6993 CLOCK_PULSE(p);
6994 }
6995
6996#if 0
6997 printk("Computed checksum 0x%x, checksum read 0x%x\n", checksum, sc->checksum);
6998 printk("Serial EEPROM:");
6999 for (k = 0; k < (sizeof(*sc) / 2); k++)
7000 {
7001 if (((k % 8) == 0) && (k != 0))
7002 {
7003 printk("\n ");
7004 }
7005 printk(" 0x%x", seeprom[k]);
7006 }
7007 printk("\n");
7008#endif
7009
7010 if (checksum != sc->checksum)
7011 {
7012 printk("aic7xxx: SEEPROM checksum error, ignoring SEEPROM settings.\n");
7013 return (0);
7014 }
7015
7016 return (1);
7017#undef CLOCK_PULSE
7018}
7019
7020#define CLOCK_PULSE(p) \
7021 do { \
7022 int limit = 0; \
7023 do { \
7024 mb(); \
7025 pause_sequencer(p); /* This is just to generate some PCI */ \
7026 /* traffic so the PCI read is flushed */ \
7027 /* it shouldn't be needed, but some */ \
7028 /* chipsets do indeed appear to need */ \
7029 /* something to force PCI reads to get */ \
7030 /* flushed */ \
7031 udelay(1); /* Do nothing */ \
7032 } while (((aic_inb(p, SEECTL) & SEERDY) == 0) && (++limit < 1000)); \
7033 } while(0)
7034
7035/*+F*************************************************************************
7036 * Function:
7037 * acquire_seeprom
7038 *
7039 * Description:
7040 * Acquires access to the memory port on PCI controllers.
7041 *-F*************************************************************************/
7042static int
7043acquire_seeprom(struct aic7xxx_host *p)
7044{
7045
7046 /*
7047 * Request access of the memory port. When access is
7048 * granted, SEERDY will go high. We use a 1 second
7049 * timeout which should be near 1 second more than
7050 * is needed. Reason: after the 7870 chip reset, there
7051 * should be no contention.
7052 */
7053 aic_outb(p, SEEMS, SEECTL);
7054 CLOCK_PULSE(p);
7055 if ((aic_inb(p, SEECTL) & SEERDY) == 0)
7056 {
7057 aic_outb(p, 0, SEECTL);
7058 return (0);
7059 }
7060 return (1);
7061}
7062
7063/*+F*************************************************************************
7064 * Function:
7065 * release_seeprom
7066 *
7067 * Description:
7068 * Releases access to the memory port on PCI controllers.
7069 *-F*************************************************************************/
7070static void
7071release_seeprom(struct aic7xxx_host *p)
7072{
7073 /*
7074 * Make sure the SEEPROM is ready before we release it.
7075 */
7076 CLOCK_PULSE(p);
7077 aic_outb(p, 0, SEECTL);
7078}
7079
7080/*+F*************************************************************************
7081 * Function:
7082 * read_seeprom
7083 *
7084 * Description:
7085 * Reads the serial EEPROM and returns 1 if successful and 0 if
7086 * not successful.
7087 *
7088 * The instruction set of the 93C46/56/66 chips is as follows:
7089 *
7090 * Start OP
7091 * Function Bit Code Address Data Description
7092 * -------------------------------------------------------------------
7093 * READ 1 10 A5 - A0 Reads data stored in memory,
7094 * starting at specified address
7095 * EWEN 1 00 11XXXX Write enable must precede
7096 * all programming modes
7097 * ERASE 1 11 A5 - A0 Erase register A5A4A3A2A1A0
7098 * WRITE 1 01 A5 - A0 D15 - D0 Writes register
7099 * ERAL 1 00 10XXXX Erase all registers
7100 * WRAL 1 00 01XXXX D15 - D0 Writes to all registers
7101 * EWDS 1 00 00XXXX Disables all programming
7102 * instructions
7103 * *Note: A value of X for address is a don't care condition.
7104 * *Note: The 93C56 and 93C66 have 8 address bits.
7105 *
7106 *
7107 * The 93C46 has a four wire interface: clock, chip select, data in, and
7108 * data out. In order to perform one of the above functions, you need
7109 * to enable the chip select for a clock period (typically a minimum of
7110 * 1 usec, with the clock high and low a minimum of 750 and 250 nsec
7111 * respectively. While the chip select remains high, you can clock in
7112 * the instructions (above) starting with the start bit, followed by the
7113 * OP code, Address, and Data (if needed). For the READ instruction, the
7114 * requested 16-bit register contents is read from the data out line but
7115 * is preceded by an initial zero (leading 0, followed by 16-bits, MSB
7116 * first). The clock cycling from low to high initiates the next data
7117 * bit to be sent from the chip.
7118 *
7119 * The 78xx interface to the 93C46 serial EEPROM is through the SEECTL
7120 * register. After successful arbitration for the memory port, the
7121 * SEECS bit of the SEECTL register is connected to the chip select.
7122 * The SEECK, SEEDO, and SEEDI are connected to the clock, data out,
7123 * and data in lines respectively. The SEERDY bit of SEECTL is useful
7124 * in that it gives us an 800 nsec timer. After a write to the SEECTL
7125 * register, the SEERDY goes high 800 nsec later. The one exception
7126 * to this is when we first request access to the memory port. The
7127 * SEERDY goes high to signify that access has been granted and, for
7128 * this case, has no implied timing.
7129 *-F*************************************************************************/
7130static int
7131read_seeprom(struct aic7xxx_host *p, int offset,
7132 unsigned short *scarray, unsigned int len, seeprom_chip_type chip)
7133{
7134 int i = 0, k;
7135 unsigned char temp;
7136 unsigned short checksum = 0;
7137 struct seeprom_cmd {
7138 unsigned char len;
7139 unsigned char bits[3];
7140 };
7141 struct seeprom_cmd seeprom_read = {3, {1, 1, 0}};
7142
7143 /*
7144 * Request access of the memory port.
7145 */
7146 if (acquire_seeprom(p) == 0)
7147 {
7148 return (0);
7149 }
7150
7151 /*
7152 * Read 'len' registers of the seeprom. For the 7870, the 93C46
7153 * SEEPROM is a 1024-bit device with 64 16-bit registers but only
7154 * the first 32 are used by Adaptec BIOS. Some adapters use the
7155 * 93C56 SEEPROM which is a 2048-bit device. The loop will range
7156 * from 0 to 'len' - 1.
7157 */
7158 for (k = 0; k < len; k++)
7159 {
7160 /*
7161 * Send chip select for one clock cycle.
7162 */
7163 aic_outb(p, SEEMS | SEECK | SEECS, SEECTL);
7164 CLOCK_PULSE(p);
7165
7166 /*
7167 * Now we're ready to send the read command followed by the
7168 * address of the 16-bit register we want to read.
7169 */
7170 for (i = 0; i < seeprom_read.len; i++)
7171 {
7172 temp = SEEMS | SEECS | (seeprom_read.bits[i] << 1);
7173 aic_outb(p, temp, SEECTL);
7174 CLOCK_PULSE(p);
7175 temp = temp ^ SEECK;
7176 aic_outb(p, temp, SEECTL);
7177 CLOCK_PULSE(p);
7178 }
7179 /*
7180 * Send the 6 or 8 bit address (MSB first, LSB last).
7181 */
7182 for (i = ((int) chip - 1); i >= 0; i--)
7183 {
7184 temp = k + offset;
7185 temp = (temp >> i) & 1; /* Mask out all but lower bit. */
7186 temp = SEEMS | SEECS | (temp << 1);
7187 aic_outb(p, temp, SEECTL);
7188 CLOCK_PULSE(p);
7189 temp = temp ^ SEECK;
7190 aic_outb(p, temp, SEECTL);
7191 CLOCK_PULSE(p);
7192 }
7193
7194 /*
7195 * Now read the 16 bit register. An initial 0 precedes the
7196 * register contents which begins with bit 15 (MSB) and ends
7197 * with bit 0 (LSB). The initial 0 will be shifted off the
7198 * top of our word as we let the loop run from 0 to 16.
7199 */
7200 for (i = 0; i <= 16; i++)
7201 {
7202 temp = SEEMS | SEECS;
7203 aic_outb(p, temp, SEECTL);
7204 CLOCK_PULSE(p);
7205 temp = temp ^ SEECK;
7206 scarray[k] = (scarray[k] << 1) | (aic_inb(p, SEECTL) & SEEDI);
7207 aic_outb(p, temp, SEECTL);
7208 CLOCK_PULSE(p);
7209 }
7210
7211 /*
7212 * The serial EEPROM should have a checksum in the last word.
7213 * Keep a running checksum for all words read except for the
7214 * last word. We'll verify the checksum after all words have
7215 * been read.
7216 */
7217 if (k < (len - 1))
7218 {
7219 checksum = checksum + scarray[k];
7220 }
7221
7222 /*
7223 * Reset the chip select for the next command cycle.
7224 */
7225 aic_outb(p, SEEMS, SEECTL);
7226 CLOCK_PULSE(p);
7227 aic_outb(p, SEEMS | SEECK, SEECTL);
7228 CLOCK_PULSE(p);
7229 aic_outb(p, SEEMS, SEECTL);
7230 CLOCK_PULSE(p);
7231 }
7232
7233 /*
7234 * Release access to the memory port and the serial EEPROM.
7235 */
7236 release_seeprom(p);
7237
7238#if 0
7239 printk("Computed checksum 0x%x, checksum read 0x%x\n",
7240 checksum, scarray[len - 1]);
7241 printk("Serial EEPROM:");
7242 for (k = 0; k < len; k++)
7243 {
7244 if (((k % 8) == 0) && (k != 0))
7245 {
7246 printk("\n ");
7247 }
7248 printk(" 0x%x", scarray[k]);
7249 }
7250 printk("\n");
7251#endif
7252 if ( (checksum != scarray[len - 1]) || (checksum == 0) )
7253 {
7254 return (0);
7255 }
7256
7257 return (1);
7258}
7259
7260/*+F*************************************************************************
7261 * Function:
7262 * read_brdctl
7263 *
7264 * Description:
7265 * Reads the BRDCTL register.
7266 *-F*************************************************************************/
7267static unsigned char
7268read_brdctl(struct aic7xxx_host *p)
7269{
7270 unsigned char brdctl, value;
7271
7272 /*
7273 * Make sure the SEEPROM is ready before we access it
7274 */
7275 CLOCK_PULSE(p);
7276 if (p->features & AHC_ULTRA2)
7277 {
7278 brdctl = BRDRW_ULTRA2;
7279 aic_outb(p, brdctl, BRDCTL);
7280 CLOCK_PULSE(p);
7281 value = aic_inb(p, BRDCTL);
7282 CLOCK_PULSE(p);
7283 return(value);
7284 }
7285 brdctl = BRDRW;
7286 if ( !((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) ||
7287 (p->flags & AHC_CHNLB) )
7288 {
7289 brdctl |= BRDCS;
7290 }
7291 aic_outb(p, brdctl, BRDCTL);
7292 CLOCK_PULSE(p);
7293 value = aic_inb(p, BRDCTL);
7294 CLOCK_PULSE(p);
7295 aic_outb(p, 0, BRDCTL);
7296 CLOCK_PULSE(p);
7297 return (value);
7298}
7299
7300/*+F*************************************************************************
7301 * Function:
7302 * write_brdctl
7303 *
7304 * Description:
7305 * Writes a value to the BRDCTL register.
7306 *-F*************************************************************************/
7307static void
7308write_brdctl(struct aic7xxx_host *p, unsigned char value)
7309{
7310 unsigned char brdctl;
7311
7312 /*
7313 * Make sure the SEEPROM is ready before we access it
7314 */
7315 CLOCK_PULSE(p);
7316 if (p->features & AHC_ULTRA2)
7317 {
7318 brdctl = value;
7319 aic_outb(p, brdctl, BRDCTL);
7320 CLOCK_PULSE(p);
7321 brdctl |= BRDSTB_ULTRA2;
7322 aic_outb(p, brdctl, BRDCTL);
7323 CLOCK_PULSE(p);
7324 brdctl &= ~BRDSTB_ULTRA2;
7325 aic_outb(p, brdctl, BRDCTL);
7326 CLOCK_PULSE(p);
7327 read_brdctl(p);
7328 CLOCK_PULSE(p);
7329 }
7330 else
7331 {
7332 brdctl = BRDSTB;
7333 if ( !((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) ||
7334 (p->flags & AHC_CHNLB) )
7335 {
7336 brdctl |= BRDCS;
7337 }
7338 brdctl = BRDSTB | BRDCS;
7339 aic_outb(p, brdctl, BRDCTL);
7340 CLOCK_PULSE(p);
7341 brdctl |= value;
7342 aic_outb(p, brdctl, BRDCTL);
7343 CLOCK_PULSE(p);
7344 brdctl &= ~BRDSTB;
7345 aic_outb(p, brdctl, BRDCTL);
7346 CLOCK_PULSE(p);
7347 brdctl &= ~BRDCS;
7348 aic_outb(p, brdctl, BRDCTL);
7349 CLOCK_PULSE(p);
7350 }
7351}
7352
7353/*+F*************************************************************************
7354 * Function:
7355 * aic785x_cable_detect
7356 *
7357 * Description:
7358 * Detect the cables that are present on aic785x class controller chips
7359 *-F*************************************************************************/
7360static void
7361aic785x_cable_detect(struct aic7xxx_host *p, int *int_50,
7362 int *ext_present, int *eeprom)
7363{
7364 unsigned char brdctl;
7365
7366 aic_outb(p, BRDRW | BRDCS, BRDCTL);
7367 CLOCK_PULSE(p);
7368 aic_outb(p, 0, BRDCTL);
7369 CLOCK_PULSE(p);
7370 brdctl = aic_inb(p, BRDCTL);
7371 CLOCK_PULSE(p);
7372 *int_50 = !(brdctl & BRDDAT5);
7373 *ext_present = !(brdctl & BRDDAT6);
7374 *eeprom = (aic_inb(p, SPIOCAP) & EEPROM);
7375}
7376
7377#undef CLOCK_PULSE
7378
7379/*+F*************************************************************************
7380 * Function:
7381 * aic2940_uwpro_cable_detect
7382 *
7383 * Description:
7384 * Detect the cables that are present on the 2940-UWPro cards
7385 *
7386 * NOTE: This function assumes the SEEPROM will have already been acquired
7387 * prior to invocation of this function.
7388 *-F*************************************************************************/
7389static void
7390aic2940_uwpro_wide_cable_detect(struct aic7xxx_host *p, int *int_68,
7391 int *ext_68, int *eeprom)
7392{
7393 unsigned char brdctl;
7394
7395 /*
7396 * First read the status of our cables. Set the rom bank to
7397 * 0 since the bank setting serves as a multiplexor for the
7398 * cable detection logic. BRDDAT5 controls the bank switch.
7399 */
7400 write_brdctl(p, 0);
7401
7402 /*
7403 * Now we read the state of the internal 68 connector. BRDDAT6
7404 * is don't care, BRDDAT7 is internal 68. The cable is
7405 * present if the bit is 0
7406 */
7407 brdctl = read_brdctl(p);
7408 *int_68 = !(brdctl & BRDDAT7);
7409
7410 /*
7411 * Set the bank bit in brdctl and then read the external cable state
7412 * and the EEPROM status
7413 */
7414 write_brdctl(p, BRDDAT5);
7415 brdctl = read_brdctl(p);
7416
7417 *ext_68 = !(brdctl & BRDDAT6);
7418 *eeprom = !(brdctl & BRDDAT7);
7419
7420 /*
7421 * We're done, the calling function will release the SEEPROM for us
7422 */
7423}
7424
7425/*+F*************************************************************************
7426 * Function:
7427 * aic787x_cable_detect
7428 *
7429 * Description:
7430 * Detect the cables that are present on aic787x class controller chips
7431 *
7432 * NOTE: This function assumes the SEEPROM will have already been acquired
7433 * prior to invocation of this function.
7434 *-F*************************************************************************/
7435static void
7436aic787x_cable_detect(struct aic7xxx_host *p, int *int_50, int *int_68,
7437 int *ext_present, int *eeprom)
7438{
7439 unsigned char brdctl;
7440
7441 /*
7442 * First read the status of our cables. Set the rom bank to
7443 * 0 since the bank setting serves as a multiplexor for the
7444 * cable detection logic. BRDDAT5 controls the bank switch.
7445 */
7446 write_brdctl(p, 0);
7447
7448 /*
7449 * Now we read the state of the two internal connectors. BRDDAT6
7450 * is internal 50, BRDDAT7 is internal 68. For each, the cable is
7451 * present if the bit is 0
7452 */
7453 brdctl = read_brdctl(p);
7454 *int_50 = !(brdctl & BRDDAT6);
7455 *int_68 = !(brdctl & BRDDAT7);
7456
7457 /*
7458 * Set the bank bit in brdctl and then read the external cable state
7459 * and the EEPROM status
7460 */
7461 write_brdctl(p, BRDDAT5);
7462 brdctl = read_brdctl(p);
7463
7464 *ext_present = !(brdctl & BRDDAT6);
7465 *eeprom = !(brdctl & BRDDAT7);
7466
7467 /*
7468 * We're done, the calling function will release the SEEPROM for us
7469 */
7470}
7471
7472/*+F*************************************************************************
7473 * Function:
7474 * aic787x_ultra2_term_detect
7475 *
7476 * Description:
7477 * Detect the termination settings present on ultra2 class controllers
7478 *
7479 * NOTE: This function assumes the SEEPROM will have already been acquired
7480 * prior to invocation of this function.
7481 *-F*************************************************************************/
7482static void
7483aic7xxx_ultra2_term_detect(struct aic7xxx_host *p, int *enableSE_low,
7484 int *enableSE_high, int *enableLVD_low,
7485 int *enableLVD_high, int *eprom_present)
7486{
7487 unsigned char brdctl;
7488
7489 brdctl = read_brdctl(p);
7490
7491 *eprom_present = (brdctl & BRDDAT7);
7492 *enableSE_high = (brdctl & BRDDAT6);
7493 *enableSE_low = (brdctl & BRDDAT5);
7494 *enableLVD_high = (brdctl & BRDDAT4);
7495 *enableLVD_low = (brdctl & BRDDAT3);
7496}
7497
7498/*+F*************************************************************************
7499 * Function:
7500 * configure_termination
7501 *
7502 * Description:
7503 * Configures the termination settings on PCI adapters that have
7504 * SEEPROMs available.
7505 *-F*************************************************************************/
7506static void
7507configure_termination(struct aic7xxx_host *p)
7508{
7509 int internal50_present = 0;
7510 int internal68_present = 0;
7511 int external_present = 0;
7512 int eprom_present = 0;
7513 int enableSE_low = 0;
7514 int enableSE_high = 0;
7515 int enableLVD_low = 0;
7516 int enableLVD_high = 0;
7517 unsigned char brddat = 0;
7518 unsigned char max_target = 0;
7519 unsigned char sxfrctl1 = aic_inb(p, SXFRCTL1);
7520
7521 if (acquire_seeprom(p))
7522 {
7523 if (p->features & (AHC_WIDE|AHC_TWIN))
7524 max_target = 16;
7525 else
7526 max_target = 8;
7527 aic_outb(p, SEEMS | SEECS, SEECTL);
7528 sxfrctl1 &= ~STPWEN;
7529 /*
7530 * The termination/cable detection logic is split into three distinct
7531 * groups. Ultra2 and later controllers, 2940UW-Pro controllers, and
7532 * older 7850, 7860, 7870, 7880, and 7895 controllers. Each has its
7533 * own unique way of detecting their cables and writing the results
7534 * back to the card.
7535 */
7536 if (p->features & AHC_ULTRA2)
7537 {
7538 /*
7539 * As long as user hasn't overridden term settings, always check the
7540 * cable detection logic
7541 */
7542 if (aic7xxx_override_term == -1)
7543 {
7544 aic7xxx_ultra2_term_detect(p, &enableSE_low, &enableSE_high,
7545 &enableLVD_low, &enableLVD_high,
7546 &eprom_present);
7547 }
7548
7549 /*
7550 * If the user is overriding settings, then they have been preserved
7551 * to here as fake adapter_control entries. Parse them and allow
7552 * them to override the detected settings (if we even did detection).
7553 */
7554 if (!(p->adapter_control & CFSEAUTOTERM))
7555 {
7556 enableSE_low = (p->adapter_control & CFSTERM);
7557 enableSE_high = (p->adapter_control & CFWSTERM);
7558 }
7559 if (!(p->adapter_control & CFAUTOTERM))
7560 {
7561 enableLVD_low = enableLVD_high = (p->adapter_control & CFLVDSTERM);
7562 }
7563
7564 /*
7565 * Now take those settings that we have and translate them into the
7566 * values that must be written into the registers.
7567 *
7568 * Flash Enable = BRDDAT7
7569 * Secondary High Term Enable = BRDDAT6
7570 * Secondary Low Term Enable = BRDDAT5
7571 * LVD/Primary High Term Enable = BRDDAT4
7572 * LVD/Primary Low Term Enable = STPWEN bit in SXFRCTL1
7573 */
7574 if (enableLVD_low != 0)
7575 {
7576 sxfrctl1 |= STPWEN;
7577 p->flags |= AHC_TERM_ENB_LVD;
7578 if (aic7xxx_verbose & VERBOSE_PROBE2)
7579 printk(KERN_INFO "(scsi%d) LVD/Primary Low byte termination "
7580 "Enabled\n", p->host_no);
7581 }
7582
7583 if (enableLVD_high != 0)
7584 {
7585 brddat |= BRDDAT4;
7586 if (aic7xxx_verbose & VERBOSE_PROBE2)
7587 printk(KERN_INFO "(scsi%d) LVD/Primary High byte termination "
7588 "Enabled\n", p->host_no);
7589 }
7590
7591 if (enableSE_low != 0)
7592 {
7593 brddat |= BRDDAT5;
7594 if (aic7xxx_verbose & VERBOSE_PROBE2)
7595 printk(KERN_INFO "(scsi%d) Secondary Low byte termination "
7596 "Enabled\n", p->host_no);
7597 }
7598
7599 if (enableSE_high != 0)
7600 {
7601 brddat |= BRDDAT6;
7602 if (aic7xxx_verbose & VERBOSE_PROBE2)
7603 printk(KERN_INFO "(scsi%d) Secondary High byte termination "
7604 "Enabled\n", p->host_no);
7605 }
7606 }
7607 else if (p->features & AHC_NEW_AUTOTERM)
7608 {
7609 /*
7610 * The 50 pin connector termination is controlled by STPWEN in the
7611 * SXFRCTL1 register. Since the Adaptec docs typically say the
7612 * controller is not allowed to be in the middle of a cable and
7613 * this is the only connection on that stub of the bus, there is
7614 * no need to even check for narrow termination, it's simply
7615 * always on.
7616 */
7617 sxfrctl1 |= STPWEN;
7618 if (aic7xxx_verbose & VERBOSE_PROBE2)
7619 printk(KERN_INFO "(scsi%d) Narrow channel termination Enabled\n",
7620 p->host_no);
7621
7622 if (p->adapter_control & CFAUTOTERM)
7623 {
7624 aic2940_uwpro_wide_cable_detect(p, &internal68_present,
7625 &external_present,
7626 &eprom_present);
7627 printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Int-68 %s, "
7628 "Ext-68 %s)\n", p->host_no,
7629 "Don't Care",
7630 internal68_present ? "YES" : "NO",
7631 external_present ? "YES" : "NO");
7632 if (aic7xxx_verbose & VERBOSE_PROBE2)
7633 printk(KERN_INFO "(scsi%d) EEPROM %s present.\n", p->host_no,
7634 eprom_present ? "is" : "is not");
7635 if (internal68_present && external_present)
7636 {
7637 brddat = 0;
7638 p->flags &= ~AHC_TERM_ENB_SE_HIGH;
7639 if (aic7xxx_verbose & VERBOSE_PROBE2)
7640 printk(KERN_INFO "(scsi%d) Wide channel termination Disabled\n",
7641 p->host_no);
7642 }
7643 else
7644 {
7645 brddat = BRDDAT6;
7646 p->flags |= AHC_TERM_ENB_SE_HIGH;
7647 if (aic7xxx_verbose & VERBOSE_PROBE2)
7648 printk(KERN_INFO "(scsi%d) Wide channel termination Enabled\n",
7649 p->host_no);
7650 }
7651 }
7652 else
7653 {
7654 /*
7655 * The termination of the Wide channel is done more like normal
7656 * though, and the setting of this termination is done by writing
7657 * either a 0 or 1 to BRDDAT6 of the BRDDAT register
7658 */
7659 if (p->adapter_control & CFWSTERM)
7660 {
7661 brddat = BRDDAT6;
7662 p->flags |= AHC_TERM_ENB_SE_HIGH;
7663 if (aic7xxx_verbose & VERBOSE_PROBE2)
7664 printk(KERN_INFO "(scsi%d) Wide channel termination Enabled\n",
7665 p->host_no);
7666 }
7667 else
7668 {
7669 brddat = 0;
7670 }
7671 }
7672 }
7673 else
7674 {
7675 if (p->adapter_control & CFAUTOTERM)
7676 {
7677 if (p->flags & AHC_MOTHERBOARD)
7678 {
7679 printk(KERN_INFO "(scsi%d) Warning - detected auto-termination\n",
7680 p->host_no);
7681 printk(KERN_INFO "(scsi%d) Please verify driver detected settings "
7682 "are correct.\n", p->host_no);
7683 printk(KERN_INFO "(scsi%d) If not, then please properly set the "
7684 "device termination\n", p->host_no);
7685 printk(KERN_INFO "(scsi%d) in the Adaptec SCSI BIOS by hitting "
7686 "CTRL-A when prompted\n", p->host_no);
7687 printk(KERN_INFO "(scsi%d) during machine bootup.\n", p->host_no);
7688 }
7689 /* Configure auto termination. */
7690
7691 if ( (p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870 )
7692 {
7693 aic787x_cable_detect(p, &internal50_present, &internal68_present,
7694 &external_present, &eprom_present);
7695 }
7696 else
7697 {
7698 aic785x_cable_detect(p, &internal50_present, &external_present,
7699 &eprom_present);
7700 }
7701
7702 if (max_target <= 8)
7703 internal68_present = 0;
7704
7705 if (max_target > 8)
7706 {
7707 printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Int-68 %s, "
7708 "Ext-68 %s)\n", p->host_no,
7709 internal50_present ? "YES" : "NO",
7710 internal68_present ? "YES" : "NO",
7711 external_present ? "YES" : "NO");
7712 }
7713 else
7714 {
7715 printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Ext-50 %s)\n",
7716 p->host_no,
7717 internal50_present ? "YES" : "NO",
7718 external_present ? "YES" : "NO");
7719 }
7720 if (aic7xxx_verbose & VERBOSE_PROBE2)
7721 printk(KERN_INFO "(scsi%d) EEPROM %s present.\n", p->host_no,
7722 eprom_present ? "is" : "is not");
7723
7724 /*
7725 * Now set the termination based on what we found. BRDDAT6
7726 * controls wide termination enable.
7727 * Flash Enable = BRDDAT7
7728 * SE High Term Enable = BRDDAT6
7729 */
7730 if (internal50_present && internal68_present && external_present)
7731 {
7732 printk(KERN_INFO "(scsi%d) Illegal cable configuration!! Only two\n",
7733 p->host_no);
7734 printk(KERN_INFO "(scsi%d) connectors on the SCSI controller may be "
7735 "in use at a time!\n", p->host_no);
7736 /*
7737 * Force termination (low and high byte) on. This is safer than
7738 * leaving it completely off, especially since this message comes
7739 * most often from motherboard controllers that don't even have 3
7740 * connectors, but instead are failing the cable detection.
7741 */
7742 internal50_present = external_present = 0;
7743 enableSE_high = enableSE_low = 1;
7744 }
7745
7746 if ((max_target > 8) &&
7747 ((external_present == 0) || (internal68_present == 0)) )
7748 {
7749 brddat |= BRDDAT6;
7750 p->flags |= AHC_TERM_ENB_SE_HIGH;
7751 if (aic7xxx_verbose & VERBOSE_PROBE2)
7752 printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n",
7753 p->host_no);
7754 }
7755
7756 if ( ((internal50_present ? 1 : 0) +
7757 (internal68_present ? 1 : 0) +
7758 (external_present ? 1 : 0)) <= 1 )
7759 {
7760 sxfrctl1 |= STPWEN;
7761 p->flags |= AHC_TERM_ENB_SE_LOW;
7762 if (aic7xxx_verbose & VERBOSE_PROBE2)
7763 printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n",
7764 p->host_no);
7765 }
7766 }
7767 else /* p->adapter_control & CFAUTOTERM */
7768 {
7769 if (p->adapter_control & CFSTERM)
7770 {
7771 sxfrctl1 |= STPWEN;
7772 if (aic7xxx_verbose & VERBOSE_PROBE2)
7773 printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n",
7774 p->host_no);
7775 }
7776
7777 if (p->adapter_control & CFWSTERM)
7778 {
7779 brddat |= BRDDAT6;
7780 if (aic7xxx_verbose & VERBOSE_PROBE2)
7781 printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n",
7782 p->host_no);
7783 }
7784 }
7785 }
7786
7787 aic_outb(p, sxfrctl1, SXFRCTL1);
7788 write_brdctl(p, brddat);
7789 release_seeprom(p);
7790 }
7791}
7792
7793/*+F*************************************************************************
7794 * Function:
7795 * detect_maxscb
7796 *
7797 * Description:
7798 * Detects the maximum number of SCBs for the controller and returns
7799 * the count and a mask in p (p->maxscbs, p->qcntmask).
7800 *-F*************************************************************************/
7801static void
7802detect_maxscb(struct aic7xxx_host *p)
7803{
7804 int i;
7805
7806 /*
7807 * It's possible that we've already done this for multichannel
7808 * adapters.
7809 */
7810 if (p->scb_data->maxhscbs == 0)
7811 {
7812 /*
7813 * We haven't initialized the SCB settings yet. Walk the SCBs to
7814 * determince how many there are.
7815 */
7816 aic_outb(p, 0, FREE_SCBH);
7817
7818 for (i = 0; i < AIC7XXX_MAXSCB; i++)
7819 {
7820 aic_outb(p, i, SCBPTR);
7821 aic_outb(p, i, SCB_CONTROL);
7822 if (aic_inb(p, SCB_CONTROL) != i)
7823 break;
7824 aic_outb(p, 0, SCBPTR);
7825 if (aic_inb(p, SCB_CONTROL) != 0)
7826 break;
7827
7828 aic_outb(p, i, SCBPTR);
7829 aic_outb(p, 0, SCB_CONTROL); /* Clear the control byte. */
7830 aic_outb(p, i + 1, SCB_NEXT); /* Set the next pointer. */
7831 aic_outb(p, SCB_LIST_NULL, SCB_TAG); /* Make the tag invalid. */
7832 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS); /* no busy untagged */
7833 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+1);/* targets active yet */
7834 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+2);
7835 aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+3);
7836 }
7837
7838 /* Make sure the last SCB terminates the free list. */
7839 aic_outb(p, i - 1, SCBPTR);
7840 aic_outb(p, SCB_LIST_NULL, SCB_NEXT);
7841
7842 /* Ensure we clear the first (0) SCBs control byte. */
7843 aic_outb(p, 0, SCBPTR);
7844 aic_outb(p, 0, SCB_CONTROL);
7845
7846 p->scb_data->maxhscbs = i;
7847 /*
7848 * Use direct indexing instead for speed
7849 */
7850 if ( i == AIC7XXX_MAXSCB )
7851 p->flags &= ~AHC_PAGESCBS;
7852 }
7853
7854}
7855
7856/*+F*************************************************************************
7857 * Function:
7858 * aic7xxx_register
7859 *
7860 * Description:
7861 * Register a Adaptec aic7xxx chip SCSI controller with the kernel.
7862 *-F*************************************************************************/
7863static int
d0be4a7d 7864aic7xxx_register(struct scsi_host_template *template, struct aic7xxx_host *p,
1da177e4
LT
7865 int reset_delay)
7866{
7867 int i, result;
7868 int max_targets;
7869 int found = 1;
7870 unsigned char term, scsi_conf;
7871 struct Scsi_Host *host;
7872
7873 host = p->host;
7874
7875 p->scb_data->maxscbs = AIC7XXX_MAXSCB;
7876 host->can_queue = AIC7XXX_MAXSCB;
7877 host->cmd_per_lun = 3;
7878 host->sg_tablesize = AIC7XXX_MAX_SG;
7879 host->this_id = p->scsi_id;
7880 host->io_port = p->base;
7881 host->n_io_port = 0xFF;
7882 host->base = p->mbase;
7883 host->irq = p->irq;
7884 if (p->features & AHC_WIDE)
7885 {
7886 host->max_id = 16;
7887 }
7888 if (p->features & AHC_TWIN)
7889 {
7890 host->max_channel = 1;
7891 }
7892
7893 p->host = host;
7894 p->host_no = host->host_no;
7895 host->unique_id = p->instance;
7896 p->isr_count = 0;
7897 p->next = NULL;
7898 p->completeq.head = NULL;
7899 p->completeq.tail = NULL;
7900 scbq_init(&p->scb_data->free_scbs);
7901 scbq_init(&p->waiting_scbs);
7902 INIT_LIST_HEAD(&p->aic_devs);
7903
7904 /*
7905 * We currently have no commands of any type
7906 */
7907 p->qinfifonext = 0;
7908 p->qoutfifonext = 0;
7909
7910 printk(KERN_INFO "(scsi%d) <%s> found at ", p->host_no,
7911 board_names[p->board_name_index]);
7912 switch(p->chip)
7913 {
7914 case (AHC_AIC7770|AHC_EISA):
7915 printk("EISA slot %d\n", p->pci_device_fn);
7916 break;
7917 case (AHC_AIC7770|AHC_VL):
7918 printk("VLB slot %d\n", p->pci_device_fn);
7919 break;
7920 default:
7921 printk("PCI %d/%d/%d\n", p->pci_bus, PCI_SLOT(p->pci_device_fn),
7922 PCI_FUNC(p->pci_device_fn));
7923 break;
7924 }
7925 if (p->features & AHC_TWIN)
7926 {
7927 printk(KERN_INFO "(scsi%d) Twin Channel, A SCSI ID %d, B SCSI ID %d, ",
7928 p->host_no, p->scsi_id, p->scsi_id_b);
7929 }
7930 else
7931 {
7932 char *channel;
7933
7934 channel = "";
7935
7936 if ((p->flags & AHC_MULTI_CHANNEL) != 0)
7937 {
7938 channel = " A";
7939
7940 if ( (p->flags & (AHC_CHNLB|AHC_CHNLC)) != 0 )
7941 {
7942 channel = (p->flags & AHC_CHNLB) ? " B" : " C";
7943 }
7944 }
7945 if (p->features & AHC_WIDE)
7946 {
7947 printk(KERN_INFO "(scsi%d) Wide ", p->host_no);
7948 }
7949 else
7950 {
7951 printk(KERN_INFO "(scsi%d) Narrow ", p->host_no);
7952 }
7953 printk("Channel%s, SCSI ID=%d, ", channel, p->scsi_id);
7954 }
7955 aic_outb(p, 0, SEQ_FLAGS);
7956
7957 detect_maxscb(p);
7958
7959 printk("%d/%d SCBs\n", p->scb_data->maxhscbs, p->scb_data->maxscbs);
7960 if (aic7xxx_verbose & VERBOSE_PROBE2)
7961 {
7962 printk(KERN_INFO "(scsi%d) BIOS %sabled, IO Port 0x%lx, IRQ %d\n",
7963 p->host_no, (p->flags & AHC_BIOS_ENABLED) ? "en" : "dis",
7964 p->base, p->irq);
7965 printk(KERN_INFO "(scsi%d) IO Memory at 0x%lx, MMAP Memory at %p\n",
7966 p->host_no, p->mbase, p->maddr);
7967 }
7968
7969#ifdef CONFIG_PCI
7970 /*
7971 * Now that we know our instance number, we can set the flags we need to
7972 * force termination if need be.
7973 */
7974 if (aic7xxx_stpwlev != -1)
7975 {
7976 /*
7977 * This option only applies to PCI controllers.
7978 */
7979 if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI)
7980 {
7981 unsigned char devconfig;
7982
7983 pci_read_config_byte(p->pdev, DEVCONFIG, &devconfig);
7984 if ( (aic7xxx_stpwlev >> p->instance) & 0x01 )
7985 {
7986 devconfig |= STPWLEVEL;
7987 if (aic7xxx_verbose & VERBOSE_PROBE2)
7988 printk("(scsi%d) Force setting STPWLEVEL bit\n", p->host_no);
7989 }
7990 else
7991 {
7992 devconfig &= ~STPWLEVEL;
7993 if (aic7xxx_verbose & VERBOSE_PROBE2)
7994 printk("(scsi%d) Force clearing STPWLEVEL bit\n", p->host_no);
7995 }
7996 pci_write_config_byte(p->pdev, DEVCONFIG, devconfig);
7997 }
7998 }
7999#endif
8000
8001 /*
8002 * That took care of devconfig and stpwlev, now for the actual termination
8003 * settings.
8004 */
8005 if (aic7xxx_override_term != -1)
8006 {
8007 /*
8008 * Again, this only applies to PCI controllers. We don't have problems
8009 * with the termination on 274x controllers to the best of my knowledge.
8010 */
8011 if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI)
8012 {
8013 unsigned char term_override;
8014
8015 term_override = ( (aic7xxx_override_term >> (p->instance * 4)) & 0x0f);
8016 p->adapter_control &=
8017 ~(CFSTERM|CFWSTERM|CFLVDSTERM|CFAUTOTERM|CFSEAUTOTERM);
8018 if ( (p->features & AHC_ULTRA2) && (term_override & 0x0c) )
8019 {
8020 p->adapter_control |= CFLVDSTERM;
8021 }
8022 if (term_override & 0x02)
8023 {
8024 p->adapter_control |= CFWSTERM;
8025 }
8026 if (term_override & 0x01)
8027 {
8028 p->adapter_control |= CFSTERM;
8029 }
8030 }
8031 }
8032
8033 if ( (p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1) )
8034 {
8035 if (p->features & AHC_SPIOCAP)
8036 {
8037 if ( aic_inb(p, SPIOCAP) & SSPIOCPS )
8038 /*
8039 * Update the settings in sxfrctl1 to match the termination
8040 * settings.
8041 */
8042 configure_termination(p);
8043 }
8044 else if ((p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870)
8045 {
8046 configure_termination(p);
8047 }
8048 }
8049
8050 /*
8051 * Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels
8052 */
8053 if (p->features & AHC_TWIN)
8054 {
8055 /* Select channel B */
8056 aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL);
8057
8058 if ((p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1))
8059 term = (aic_inb(p, SXFRCTL1) & STPWEN);
8060 else
8061 term = ((p->flags & AHC_TERM_ENB_B) ? STPWEN : 0);
8062
8063 aic_outb(p, p->scsi_id_b, SCSIID);
8064 scsi_conf = aic_inb(p, SCSICONF + 1);
8065 aic_outb(p, DFON | SPIOEN, SXFRCTL0);
8066 aic_outb(p, (scsi_conf & ENSPCHK) | aic7xxx_seltime | term |
8067 ENSTIMER | ACTNEGEN, SXFRCTL1);
8068 aic_outb(p, 0, SIMODE0);
8069 aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1);
8070 aic_outb(p, 0, SCSIRATE);
8071
8072 /* Select channel A */
8073 aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL);
8074 }
8075
8076 if (p->features & AHC_ULTRA2)
8077 {
8078 aic_outb(p, p->scsi_id, SCSIID_ULTRA2);
8079 }
8080 else
8081 {
8082 aic_outb(p, p->scsi_id, SCSIID);
8083 }
8084 if ((p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1))
8085 term = (aic_inb(p, SXFRCTL1) & STPWEN);
8086 else
8087 term = ((p->flags & (AHC_TERM_ENB_A|AHC_TERM_ENB_LVD)) ? STPWEN : 0);
8088 scsi_conf = aic_inb(p, SCSICONF);
8089 aic_outb(p, DFON | SPIOEN, SXFRCTL0);
8090 aic_outb(p, (scsi_conf & ENSPCHK) | aic7xxx_seltime | term |
8091 ENSTIMER | ACTNEGEN, SXFRCTL1);
8092 aic_outb(p, 0, SIMODE0);
8093 /*
8094 * If we are a cardbus adapter then don't enable SCSI reset detection.
8095 * We shouldn't likely be sharing SCSI busses with someone else, and
8096 * if we don't have a cable currently plugged into the controller then
8097 * we won't have a power source for the SCSI termination, which means
8098 * we'll see infinite incoming bus resets.
8099 */
8100 if(p->flags & AHC_NO_STPWEN)
8101 aic_outb(p, ENSELTIMO | ENSCSIPERR, SIMODE1);
8102 else
8103 aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1);
8104 aic_outb(p, 0, SCSIRATE);
8105 if ( p->features & AHC_ULTRA2)
8106 aic_outb(p, 0, SCSIOFFSET);
8107
8108 /*
8109 * Look at the information that board initialization or the board
8110 * BIOS has left us. In the lower four bits of each target's
8111 * scratch space any value other than 0 indicates that we should
8112 * initiate synchronous transfers. If it's zero, the user or the
8113 * BIOS has decided to disable synchronous negotiation to that
8114 * target so we don't activate the needsdtr flag.
8115 */
8116 if ((p->features & (AHC_TWIN|AHC_WIDE)) == 0)
8117 {
8118 max_targets = 8;
8119 }
8120 else
8121 {
8122 max_targets = 16;
8123 }
8124
8125 if (!(aic7xxx_no_reset))
8126 {
8127 /*
8128 * If we reset the bus, then clear the transfer settings, else leave
8129 * them be.
8130 */
8131 aic_outb(p, 0, ULTRA_ENB);
8132 aic_outb(p, 0, ULTRA_ENB + 1);
8133 p->ultraenb = 0;
8134 }
8135
8136 /*
8137 * Allocate enough hardware scbs to handle the maximum number of
8138 * concurrent transactions we can have. We have to make sure that
8139 * the allocated memory is contiguous memory. The Linux kmalloc
8140 * routine should only allocate contiguous memory, but note that
8141 * this could be a problem if kmalloc() is changed.
8142 */
8143 {
8144 size_t array_size;
8145 unsigned int hscb_physaddr;
8146
8147 array_size = p->scb_data->maxscbs * sizeof(struct aic7xxx_hwscb);
8148 if (p->scb_data->hscbs == NULL)
8149 {
8150 /* pci_alloc_consistent enforces the alignment already and
8151 * clears the area as well.
8152 */
8153 p->scb_data->hscbs = pci_alloc_consistent(p->pdev, array_size,
8154 &p->scb_data->hscbs_dma);
8155 /* We have to use pci_free_consistent, not kfree */
8156 p->scb_data->hscb_kmalloc_ptr = NULL;
8157 p->scb_data->hscbs_dma_len = array_size;
8158 }
8159 if (p->scb_data->hscbs == NULL)
8160 {
8161 printk("(scsi%d) Unable to allocate hardware SCB array; "
8162 "failing detection.\n", p->host_no);
8163 aic_outb(p, 0, SIMODE1);
8164 p->irq = 0;
8165 return(0);
8166 }
8167
8168 hscb_physaddr = p->scb_data->hscbs_dma;
8169 aic_outb(p, hscb_physaddr & 0xFF, HSCB_ADDR);
8170 aic_outb(p, (hscb_physaddr >> 8) & 0xFF, HSCB_ADDR + 1);
8171 aic_outb(p, (hscb_physaddr >> 16) & 0xFF, HSCB_ADDR + 2);
8172 aic_outb(p, (hscb_physaddr >> 24) & 0xFF, HSCB_ADDR + 3);
8173
8174 /* Set up the fifo areas at the same time */
8175 p->untagged_scbs = pci_alloc_consistent(p->pdev, 3*256, &p->fifo_dma);
8176 if (p->untagged_scbs == NULL)
8177 {
8178 printk("(scsi%d) Unable to allocate hardware FIFO arrays; "
8179 "failing detection.\n", p->host_no);
8180 p->irq = 0;
8181 return(0);
8182 }
8183
8184 p->qoutfifo = p->untagged_scbs + 256;
8185 p->qinfifo = p->qoutfifo + 256;
8186 for (i = 0; i < 256; i++)
8187 {
8188 p->untagged_scbs[i] = SCB_LIST_NULL;
8189 p->qinfifo[i] = SCB_LIST_NULL;
8190 p->qoutfifo[i] = SCB_LIST_NULL;
8191 }
8192
8193 hscb_physaddr = p->fifo_dma;
8194 aic_outb(p, hscb_physaddr & 0xFF, SCBID_ADDR);
8195 aic_outb(p, (hscb_physaddr >> 8) & 0xFF, SCBID_ADDR + 1);
8196 aic_outb(p, (hscb_physaddr >> 16) & 0xFF, SCBID_ADDR + 2);
8197 aic_outb(p, (hscb_physaddr >> 24) & 0xFF, SCBID_ADDR + 3);
8198 }
8199
8200 /* The Q-FIFOs we just set up are all empty */
8201 aic_outb(p, 0, QINPOS);
8202 aic_outb(p, 0, KERNEL_QINPOS);
8203 aic_outb(p, 0, QOUTPOS);
8204
8205 if(p->features & AHC_QUEUE_REGS)
8206 {
8207 aic_outb(p, SCB_QSIZE_256, QOFF_CTLSTA);
8208 aic_outb(p, 0, SDSCB_QOFF);
8209 aic_outb(p, 0, SNSCB_QOFF);
8210 aic_outb(p, 0, HNSCB_QOFF);
8211 }
8212
8213 /*
8214 * We don't have any waiting selections or disconnected SCBs.
8215 */
8216 aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
8217 aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH);
8218
8219 /*
8220 * Message out buffer starts empty
8221 */
8222 aic_outb(p, MSG_NOOP, MSG_OUT);
8223 aic_outb(p, MSG_NOOP, LAST_MSG);
8224
8225 /*
8226 * Set all the other asundry items that haven't been set yet.
8227 * This includes just dumping init values to a lot of registers simply
8228 * to make sure they've been touched and are ready for use parity wise
8229 * speaking.
8230 */
8231 aic_outb(p, 0, TMODE_CMDADDR);
8232 aic_outb(p, 0, TMODE_CMDADDR + 1);
8233 aic_outb(p, 0, TMODE_CMDADDR + 2);
8234 aic_outb(p, 0, TMODE_CMDADDR + 3);
8235 aic_outb(p, 0, TMODE_CMDADDR_NEXT);
8236
8237 /*
8238 * Link us into the list of valid hosts
8239 */
8240 p->next = first_aic7xxx;
8241 first_aic7xxx = p;
8242
8243 /*
8244 * Allocate the first set of scbs for this controller. This is to stream-
8245 * line code elsewhere in the driver. If we have to check for the existence
8246 * of scbs in certain code sections, it slows things down. However, as
8247 * soon as we register the IRQ for this card, we could get an interrupt that
8248 * includes possibly the SCSI_RSTI interrupt. If we catch that interrupt
8249 * then we are likely to segfault if we don't have at least one chunk of
8250 * SCBs allocated or add checks all through the reset code to make sure
8251 * that the SCBs have been allocated which is an invalid running condition
8252 * and therefore I think it's preferable to simply pre-allocate the first
8253 * chunk of SCBs.
8254 */
8255 aic7xxx_allocate_scb(p);
8256
8257 /*
8258 * Load the sequencer program, then re-enable the board -
8259 * resetting the AIC-7770 disables it, leaving the lights
8260 * on with nobody home.
8261 */
8262 aic7xxx_loadseq(p);
8263
8264 /*
8265 * Make sure the AUTOFLUSHDIS bit is *not* set in the SBLKCTL register
8266 */
8267 aic_outb(p, aic_inb(p, SBLKCTL) & ~AUTOFLUSHDIS, SBLKCTL);
8268
8269 if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 )
8270 {
8271 aic_outb(p, ENABLE, BCTL); /* Enable the boards BUS drivers. */
8272 }
8273
8274 if ( !(aic7xxx_no_reset) )
8275 {
8276 if (p->features & AHC_TWIN)
8277 {
8278 if (aic7xxx_verbose & VERBOSE_PROBE2)
8279 printk(KERN_INFO "(scsi%d) Resetting channel B\n", p->host_no);
8280 aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL);
8281 aic7xxx_reset_current_bus(p);
8282 aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL);
8283 }
8284 /* Reset SCSI bus A. */
8285 if (aic7xxx_verbose & VERBOSE_PROBE2)
8286 { /* In case we are a 3940, 3985, or 7895, print the right channel */
8287 char *channel = "";
8288 if (p->flags & AHC_MULTI_CHANNEL)
8289 {
8290 channel = " A";
8291 if (p->flags & (AHC_CHNLB|AHC_CHNLC))
8292 channel = (p->flags & AHC_CHNLB) ? " B" : " C";
8293 }
8294 printk(KERN_INFO "(scsi%d) Resetting channel%s\n", p->host_no, channel);
8295 }
8296
8297 aic7xxx_reset_current_bus(p);
8298
8299 }
8300 else
8301 {
8302 if (!reset_delay)
8303 {
8304 printk(KERN_INFO "(scsi%d) Not resetting SCSI bus. Note: Don't use "
8305 "the no_reset\n", p->host_no);
8306 printk(KERN_INFO "(scsi%d) option unless you have a verifiable need "
8307 "for it.\n", p->host_no);
8308 }
8309 }
8310
8311 /*
8312 * Register IRQ with the kernel. Only allow sharing IRQs with
8313 * PCI devices.
8314 */
8315 if (!(p->chip & AHC_PCI))
8316 {
8317 result = (request_irq(p->irq, do_aic7xxx_isr, 0, "aic7xxx", p));
8318 }
8319 else
8320 {
1d6f359a 8321 result = (request_irq(p->irq, do_aic7xxx_isr, IRQF_SHARED,
1da177e4
LT
8322 "aic7xxx", p));
8323 if (result < 0)
8324 {
1d6f359a 8325 result = (request_irq(p->irq, do_aic7xxx_isr, IRQF_DISABLED | IRQF_SHARED,
1da177e4
LT
8326 "aic7xxx", p));
8327 }
8328 }
8329 if (result < 0)
8330 {
8331 printk(KERN_WARNING "(scsi%d) Couldn't register IRQ %d, ignoring "
8332 "controller.\n", p->host_no, p->irq);
8333 aic_outb(p, 0, SIMODE1);
8334 p->irq = 0;
8335 return (0);
8336 }
8337
8338 if(aic_inb(p, INTSTAT) & INT_PEND)
8339 printk(INFO_LEAD "spurious interrupt during configuration, cleared.\n",
8340 p->host_no, -1, -1 , -1);
8341 aic7xxx_clear_intstat(p);
8342
8343 unpause_sequencer(p, /* unpause_always */ TRUE);
8344
8345 return (found);
8346}
8347
8348/*+F*************************************************************************
8349 * Function:
8350 * aic7xxx_chip_reset
8351 *
8352 * Description:
8353 * Perform a chip reset on the aic7xxx SCSI controller. The controller
8354 * is paused upon return.
8355 *-F*************************************************************************/
8356static int
8357aic7xxx_chip_reset(struct aic7xxx_host *p)
8358{
8359 unsigned char sblkctl;
8360 int wait;
8361
8362 /*
8363 * For some 274x boards, we must clear the CHIPRST bit and pause
8364 * the sequencer. For some reason, this makes the driver work.
8365 */
8366 aic_outb(p, PAUSE | CHIPRST, HCNTRL);
8367
8368 /*
8369 * In the future, we may call this function as a last resort for
8370 * error handling. Let's be nice and not do any unnecessary delays.
8371 */
8372 wait = 1000; /* 1 msec (1000 * 1 msec) */
8373 while (--wait && !(aic_inb(p, HCNTRL) & CHIPRSTACK))
8374 {
8375 udelay(1); /* 1 usec */
8376 }
8377
8378 pause_sequencer(p);
8379
8380 sblkctl = aic_inb(p, SBLKCTL) & (SELBUSB|SELWIDE);
8381 if (p->chip & AHC_PCI)
8382 sblkctl &= ~SELBUSB;
8383 switch( sblkctl )
8384 {
8385 case 0: /* normal narrow card */
8386 break;
8387 case 2: /* Wide card */
8388 p->features |= AHC_WIDE;
8389 break;
8390 case 8: /* Twin card */
8391 p->features |= AHC_TWIN;
8392 p->flags |= AHC_MULTI_CHANNEL;
8393 break;
8394 default: /* hmmm...we don't know what this is */
8395 printk(KERN_WARNING "aic7xxx: Unsupported adapter type %d, ignoring.\n",
8396 aic_inb(p, SBLKCTL) & 0x0a);
8397 return(-1);
8398 }
8399 return(0);
8400}
8401
8402/*+F*************************************************************************
8403 * Function:
8404 * aic7xxx_alloc
8405 *
8406 * Description:
8407 * Allocate and initialize a host structure. Returns NULL upon error
8408 * and a pointer to a aic7xxx_host struct upon success.
8409 *-F*************************************************************************/
8410static struct aic7xxx_host *
d0be4a7d 8411aic7xxx_alloc(struct scsi_host_template *sht, struct aic7xxx_host *temp)
1da177e4
LT
8412{
8413 struct aic7xxx_host *p = NULL;
8414 struct Scsi_Host *host;
8415
8416 /*
8417 * Allocate a storage area by registering us with the mid-level
8418 * SCSI layer.
8419 */
8420 host = scsi_register(sht, sizeof(struct aic7xxx_host));
8421
8422 if (host != NULL)
8423 {
8424 p = (struct aic7xxx_host *) host->hostdata;
8425 memset(p, 0, sizeof(struct aic7xxx_host));
8426 *p = *temp;
8427 p->host = host;
8428
8429 p->scb_data = kmalloc(sizeof(scb_data_type), GFP_ATOMIC);
8430 if (p->scb_data != NULL)
8431 {
8432 memset(p->scb_data, 0, sizeof(scb_data_type));
8433 scbq_init (&p->scb_data->free_scbs);
8434 }
8435 else
8436 {
8437 /*
8438 * For some reason we don't have enough memory. Free the
8439 * allocated memory for the aic7xxx_host struct, and return NULL.
8440 */
8441 release_region(p->base, MAXREG - MINREG);
8442 scsi_unregister(host);
8443 return(NULL);
8444 }
8445 p->host_no = host->host_no;
8446 }
1da177e4
LT
8447 return (p);
8448}
8449
8450/*+F*************************************************************************
8451 * Function:
8452 * aic7xxx_free
8453 *
8454 * Description:
8455 * Frees and releases all resources associated with an instance of
8456 * the driver (struct aic7xxx_host *).
8457 *-F*************************************************************************/
8458static void
8459aic7xxx_free(struct aic7xxx_host *p)
8460{
8461 int i;
8462
8463 /*
8464 * Free the allocated hardware SCB space.
8465 */
8466 if (p->scb_data != NULL)
8467 {
8468 struct aic7xxx_scb_dma *scb_dma = NULL;
8469 if (p->scb_data->hscbs != NULL)
8470 {
8471 pci_free_consistent(p->pdev, p->scb_data->hscbs_dma_len,
8472 p->scb_data->hscbs, p->scb_data->hscbs_dma);
8473 p->scb_data->hscbs = p->scb_data->hscb_kmalloc_ptr = NULL;
8474 }
8475 /*
8476 * Free the driver SCBs. These were allocated on an as-need
8477 * basis. We allocated these in groups depending on how many
8478 * we could fit into a given amount of RAM. The tail SCB for
8479 * these allocations has a pointer to the alloced area.
8480 */
8481 for (i = 0; i < p->scb_data->numscbs; i++)
8482 {
8483 if (p->scb_data->scb_array[i]->scb_dma != scb_dma)
8484 {
8485 scb_dma = p->scb_data->scb_array[i]->scb_dma;
8486 pci_free_consistent(p->pdev, scb_dma->dma_len,
8487 (void *)((unsigned long)scb_dma->dma_address
8488 - scb_dma->dma_offset),
8489 scb_dma->dma_address);
8490 }
c9475cb0 8491 kfree(p->scb_data->scb_array[i]->kmalloc_ptr);
1da177e4
LT
8492 p->scb_data->scb_array[i] = NULL;
8493 }
8494
8495 /*
8496 * Free the SCB data area.
8497 */
8498 kfree(p->scb_data);
8499 }
8500
8501 pci_free_consistent(p->pdev, 3*256, (void *)p->untagged_scbs, p->fifo_dma);
8502}
8503
8504/*+F*************************************************************************
8505 * Function:
8506 * aic7xxx_load_seeprom
8507 *
8508 * Description:
8509 * Load the seeprom and configure adapter and target settings.
8510 * Returns 1 if the load was successful and 0 otherwise.
8511 *-F*************************************************************************/
8512static void
8513aic7xxx_load_seeprom(struct aic7xxx_host *p, unsigned char *sxfrctl1)
8514{
8515 int have_seeprom = 0;
8516 int i, max_targets, mask;
8517 unsigned char scsirate, scsi_conf;
8518 unsigned short scarray[128];
8519 struct seeprom_config *sc = (struct seeprom_config *) scarray;
8520
8521 if (aic7xxx_verbose & VERBOSE_PROBE2)
8522 {
8523 printk(KERN_INFO "aic7xxx: Loading serial EEPROM...");
8524 }
8525 switch (p->chip)
8526 {
8527 case (AHC_AIC7770|AHC_EISA): /* None of these adapters have seeproms. */
8528 if (aic_inb(p, SCSICONF) & TERM_ENB)
8529 p->flags |= AHC_TERM_ENB_A;
8530 if ( (p->features & AHC_TWIN) && (aic_inb(p, SCSICONF + 1) & TERM_ENB) )
8531 p->flags |= AHC_TERM_ENB_B;
8532 break;
8533
8534 case (AHC_AIC7770|AHC_VL):
8535 have_seeprom = read_284x_seeprom(p, (struct seeprom_config *) scarray);
8536 break;
8537
8538 default:
8539 have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8540 scarray, p->sc_size, p->sc_type);
8541 if (!have_seeprom)
8542 {
8543 if(p->sc_type == C46)
8544 have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8545 scarray, p->sc_size, C56_66);
8546 else
8547 have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)),
8548 scarray, p->sc_size, C46);
8549 }
8550 if (!have_seeprom)
8551 {
8552 p->sc_size = 128;
8553 have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8554 scarray, p->sc_size, p->sc_type);
8555 if (!have_seeprom)
8556 {
8557 if(p->sc_type == C46)
8558 have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8559 scarray, p->sc_size, C56_66);
8560 else
8561 have_seeprom = read_seeprom(p, 4*(p->flags & (AHC_CHNLB|AHC_CHNLC)),
8562 scarray, p->sc_size, C46);
8563 }
8564 }
8565 break;
8566 }
8567
8568 if (!have_seeprom)
8569 {
8570 if (aic7xxx_verbose & VERBOSE_PROBE2)
8571 {
8572 printk("\naic7xxx: No SEEPROM available.\n");
8573 }
8574 p->flags |= AHC_NEWEEPROM_FMT;
8575 if (aic_inb(p, SCSISEQ) == 0)
8576 {
8577 p->flags |= AHC_USEDEFAULTS;
8578 p->flags &= ~AHC_BIOS_ENABLED;
8579 p->scsi_id = p->scsi_id_b = 7;
8580 *sxfrctl1 |= STPWEN;
8581 if (aic7xxx_verbose & VERBOSE_PROBE2)
8582 {
8583 printk("aic7xxx: Using default values.\n");
8584 }
8585 }
8586 else if (aic7xxx_verbose & VERBOSE_PROBE2)
8587 {
8588 printk("aic7xxx: Using leftover BIOS values.\n");
8589 }
8590 if ( ((p->chip & ~AHC_CHIPID_MASK) == AHC_PCI) && (*sxfrctl1 & STPWEN) )
8591 {
8592 p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
8593 sc->adapter_control &= ~CFAUTOTERM;
8594 sc->adapter_control |= CFSTERM | CFWSTERM | CFLVDSTERM;
8595 }
8596 if (aic7xxx_extended)
8597 p->flags |= (AHC_EXTEND_TRANS_A | AHC_EXTEND_TRANS_B);
8598 else
8599 p->flags &= ~(AHC_EXTEND_TRANS_A | AHC_EXTEND_TRANS_B);
8600 }
8601 else
8602 {
8603 if (aic7xxx_verbose & VERBOSE_PROBE2)
8604 {
8605 printk("done\n");
8606 }
8607
8608 /*
8609 * Note things in our flags
8610 */
8611 p->flags |= AHC_SEEPROM_FOUND;
8612
8613 /*
8614 * Update the settings in sxfrctl1 to match the termination settings.
8615 */
8616 *sxfrctl1 = 0;
8617
8618 /*
8619 * Get our SCSI ID from the SEEPROM setting...
8620 */
8621 p->scsi_id = (sc->brtime_id & CFSCSIID);
8622
8623 /*
8624 * First process the settings that are different between the VLB
8625 * and PCI adapter seeproms.
8626 */
8627 if ((p->chip & AHC_CHIPID_MASK) == AHC_AIC7770)
8628 {
8629 /* VLB adapter seeproms */
8630 if (sc->bios_control & CF284XEXTEND)
8631 p->flags |= AHC_EXTEND_TRANS_A;
8632
8633 if (sc->adapter_control & CF284XSTERM)
8634 {
8635 *sxfrctl1 |= STPWEN;
8636 p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
8637 }
8638 }
8639 else
8640 {
8641 /* PCI adapter seeproms */
8642 if (sc->bios_control & CFEXTEND)
8643 p->flags |= AHC_EXTEND_TRANS_A;
8644 if (sc->bios_control & CFBIOSEN)
8645 p->flags |= AHC_BIOS_ENABLED;
8646 else
8647 p->flags &= ~AHC_BIOS_ENABLED;
8648
8649 if (sc->adapter_control & CFSTERM)
8650 {
8651 *sxfrctl1 |= STPWEN;
8652 p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH;
8653 }
8654 }
8655 memcpy(&p->sc, sc, sizeof(struct seeprom_config));
8656 }
8657
8658 p->discenable = 0;
8659
8660 /*
8661 * Limit to 16 targets just in case. The 2842 for one is known to
8662 * blow the max_targets setting, future cards might also.
8663 */
8664 max_targets = ((p->features & (AHC_TWIN | AHC_WIDE)) ? 16 : 8);
8665
8666 if (have_seeprom)
8667 {
8668 for (i = 0; i < max_targets; i++)
8669 {
8670 if( ((p->features & AHC_ULTRA) &&
8671 !(sc->adapter_control & CFULTRAEN) &&
8672 (sc->device_flags[i] & CFSYNCHISULTRA)) ||
8673 (sc->device_flags[i] & CFNEWULTRAFORMAT) )
8674 {
8675 p->flags |= AHC_NEWEEPROM_FMT;
8676 break;
8677 }
8678 }
8679 }
8680
8681 for (i = 0; i < max_targets; i++)
8682 {
8683 mask = (0x01 << i);
8684 if (!have_seeprom)
8685 {
8686 if (aic_inb(p, SCSISEQ) != 0)
8687 {
8688 /*
8689 * OK...the BIOS set things up and left behind the settings we need.
8690 * Just make our sc->device_flags[i] entry match what the card has
8691 * set for this device.
8692 */
8693 p->discenable =
8694 ~(aic_inb(p, DISC_DSB) | (aic_inb(p, DISC_DSB + 1) << 8) );
8695 p->ultraenb =
8696 (aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8) );
8697 sc->device_flags[i] = (p->discenable & mask) ? CFDISC : 0;
8698 if (aic_inb(p, TARG_SCSIRATE + i) & WIDEXFER)
8699 sc->device_flags[i] |= CFWIDEB;
8700 if (p->features & AHC_ULTRA2)
8701 {
8702 if (aic_inb(p, TARG_OFFSET + i))
8703 {
8704 sc->device_flags[i] |= CFSYNCH;
8705 sc->device_flags[i] |= (aic_inb(p, TARG_SCSIRATE + i) & 0x07);
8706 if ( (aic_inb(p, TARG_SCSIRATE + i) & 0x18) == 0x18 )
8707 sc->device_flags[i] |= CFSYNCHISULTRA;
8708 }
8709 }
8710 else
8711 {
8712 if (aic_inb(p, TARG_SCSIRATE + i) & ~WIDEXFER)
8713 {
8714 sc->device_flags[i] |= CFSYNCH;
8715 if (p->features & AHC_ULTRA)
8716 sc->device_flags[i] |= ((p->ultraenb & mask) ?
8717 CFSYNCHISULTRA : 0);
8718 }
8719 }
8720 }
8721 else
8722 {
8723 /*
8724 * Assume the BIOS has NOT been run on this card and nothing between
8725 * the card and the devices is configured yet.
8726 */
8727 sc->device_flags[i] = CFDISC;
8728 if (p->features & AHC_WIDE)
8729 sc->device_flags[i] |= CFWIDEB;
8730 if (p->features & AHC_ULTRA3)
8731 sc->device_flags[i] |= 2;
8732 else if (p->features & AHC_ULTRA2)
8733 sc->device_flags[i] |= 3;
8734 else if (p->features & AHC_ULTRA)
8735 sc->device_flags[i] |= CFSYNCHISULTRA;
8736 sc->device_flags[i] |= CFSYNCH;
8737 aic_outb(p, 0, TARG_SCSIRATE + i);
8738 if (p->features & AHC_ULTRA2)
8739 aic_outb(p, 0, TARG_OFFSET + i);
8740 }
8741 }
8742 if (sc->device_flags[i] & CFDISC)
8743 {
8744 p->discenable |= mask;
8745 }
8746 if (p->flags & AHC_NEWEEPROM_FMT)
8747 {
8748 if ( !(p->features & AHC_ULTRA2) )
8749 {
8750 /*
8751 * I know of two different Ultra BIOSes that do this differently.
8752 * One on the Gigabyte 6BXU mb that wants flags[i] & CFXFER to
8753 * be == to 0x03 and SYNCHISULTRA to be true to mean 40MByte/s
8754 * while on the IBM Netfinity 5000 they want the same thing
8755 * to be something else, while flags[i] & CFXFER == 0x03 and
8756 * SYNCHISULTRA false should be 40MByte/s. So, we set both to
8757 * 40MByte/s and the lower speeds be damned. People will have
8758 * to select around the conversely mapped lower speeds in order
8759 * to select lower speeds on these boards.
8760 */
8761 if ( (sc->device_flags[i] & CFNEWULTRAFORMAT) &&
8762 ((sc->device_flags[i] & CFXFER) == 0x03) )
8763 {
8764 sc->device_flags[i] &= ~CFXFER;
8765 sc->device_flags[i] |= CFSYNCHISULTRA;
8766 }
8767 if (sc->device_flags[i] & CFSYNCHISULTRA)
8768 {
8769 p->ultraenb |= mask;
8770 }
8771 }
8772 else if ( !(sc->device_flags[i] & CFNEWULTRAFORMAT) &&
8773 (p->features & AHC_ULTRA2) &&
8774 (sc->device_flags[i] & CFSYNCHISULTRA) )
8775 {
8776 p->ultraenb |= mask;
8777 }
8778 }
8779 else if (sc->adapter_control & CFULTRAEN)
8780 {
8781 p->ultraenb |= mask;
8782 }
8783 if ( (sc->device_flags[i] & CFSYNCH) == 0)
8784 {
8785 sc->device_flags[i] &= ~CFXFER;
8786 p->ultraenb &= ~mask;
8787 p->user[i].offset = 0;
8788 p->user[i].period = 0;
8789 p->user[i].options = 0;
8790 }
8791 else
8792 {
8793 if (p->features & AHC_ULTRA3)
8794 {
8795 p->user[i].offset = MAX_OFFSET_ULTRA2;
8796 if( (sc->device_flags[i] & CFXFER) < 0x03 )
8797 {
8798 scsirate = (sc->device_flags[i] & CFXFER);
8799 p->user[i].options = MSG_EXT_PPR_OPTION_DT_CRC;
8800 }
8801 else
8802 {
8803 scsirate = (sc->device_flags[i] & CFXFER) |
8804 ((p->ultraenb & mask) ? 0x18 : 0x10);
8805 p->user[i].options = 0;
8806 }
8807 p->user[i].period = aic7xxx_find_period(p, scsirate,
8808 AHC_SYNCRATE_ULTRA3);
8809 }
8810 else if (p->features & AHC_ULTRA2)
8811 {
8812 p->user[i].offset = MAX_OFFSET_ULTRA2;
8813 scsirate = (sc->device_flags[i] & CFXFER) |
8814 ((p->ultraenb & mask) ? 0x18 : 0x10);
8815 p->user[i].options = 0;
8816 p->user[i].period = aic7xxx_find_period(p, scsirate,
8817 AHC_SYNCRATE_ULTRA2);
8818 }
8819 else
8820 {
8821 scsirate = (sc->device_flags[i] & CFXFER) << 4;
8822 p->user[i].options = 0;
8823 p->user[i].offset = MAX_OFFSET_8BIT;
8824 if (p->features & AHC_ULTRA)
8825 {
8826 short ultraenb;
8827 ultraenb = aic_inb(p, ULTRA_ENB) |
8828 (aic_inb(p, ULTRA_ENB + 1) << 8);
8829 p->user[i].period = aic7xxx_find_period(p, scsirate,
8830 (p->ultraenb & mask) ?
8831 AHC_SYNCRATE_ULTRA :
8832 AHC_SYNCRATE_FAST);
8833 }
8834 else
8835 p->user[i].period = aic7xxx_find_period(p, scsirate,
8836 AHC_SYNCRATE_FAST);
8837 }
8838 }
8839 if ( (sc->device_flags[i] & CFWIDEB) && (p->features & AHC_WIDE) )
8840 {
8841 p->user[i].width = MSG_EXT_WDTR_BUS_16_BIT;
8842 }
8843 else
8844 {
8845 p->user[i].width = MSG_EXT_WDTR_BUS_8_BIT;
8846 }
8847 }
8848 aic_outb(p, ~(p->discenable & 0xFF), DISC_DSB);
8849 aic_outb(p, ~((p->discenable >> 8) & 0xFF), DISC_DSB + 1);
8850
8851 /*
8852 * We set the p->ultraenb from the SEEPROM to begin with, but now we make
8853 * it match what is already down in the card. If we are doing a reset
8854 * on the card then this will get put back to a default state anyway.
8855 * This allows us to not have to pre-emptively negotiate when using the
8856 * no_reset option.
8857 */
8858 if (p->features & AHC_ULTRA)
8859 p->ultraenb = aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8);
8860
8861
8862 scsi_conf = (p->scsi_id & HSCSIID);
8863
8864 if(have_seeprom)
8865 {
8866 p->adapter_control = sc->adapter_control;
8867 p->bios_control = sc->bios_control;
8868
8869 switch (p->chip & AHC_CHIPID_MASK)
8870 {
8871 case AHC_AIC7895:
8872 case AHC_AIC7896:
8873 case AHC_AIC7899:
8874 if (p->adapter_control & CFBPRIMARY)
8875 p->flags |= AHC_CHANNEL_B_PRIMARY;
8876 default:
8877 break;
8878 }
8879
8880 if (sc->adapter_control & CFSPARITY)
8881 scsi_conf |= ENSPCHK;
8882 }
8883 else
8884 {
8885 scsi_conf |= ENSPCHK | RESET_SCSI;
8886 }
8887
8888 /*
8889 * Only set the SCSICONF and SCSICONF + 1 registers if we are a PCI card.
8890 * The 2842 and 2742 cards already have these registers set and we don't
8891 * want to muck with them since we don't set all the bits they do.
8892 */
8893 if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI )
8894 {
8895 /* Set the host ID */
8896 aic_outb(p, scsi_conf, SCSICONF);
8897 /* In case we are a wide card */
8898 aic_outb(p, p->scsi_id, SCSICONF + 1);
8899 }
8900}
8901
8902/*+F*************************************************************************
8903 * Function:
8904 * aic7xxx_configure_bugs
8905 *
8906 * Description:
8907 * Take the card passed in and set the appropriate bug flags based upon
8908 * the card model. Also make any changes needed to device registers or
8909 * PCI registers while we are here.
8910 *-F*************************************************************************/
8911static void
8912aic7xxx_configure_bugs(struct aic7xxx_host *p)
8913{
8914 unsigned short tmp_word;
8915
8916 switch(p->chip & AHC_CHIPID_MASK)
8917 {
8918 case AHC_AIC7860:
8919 p->bugs |= AHC_BUG_PCI_2_1_RETRY;
8920 /* fall through */
8921 case AHC_AIC7850:
8922 case AHC_AIC7870:
8923 p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
8924 break;
8925 case AHC_AIC7880:
8926 p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_PCI_2_1_RETRY |
8927 AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
8928 break;
8929 case AHC_AIC7890:
8930 p->bugs |= AHC_BUG_AUTOFLUSH | AHC_BUG_CACHETHEN;
8931 break;
8932 case AHC_AIC7892:
8933 p->bugs |= AHC_BUG_SCBCHAN_UPLOAD;
8934 break;
8935 case AHC_AIC7895:
8936 p->bugs |= AHC_BUG_TMODE_WIDEODD | AHC_BUG_PCI_2_1_RETRY |
8937 AHC_BUG_CACHETHEN | AHC_BUG_PCI_MWI;
8938 break;
8939 case AHC_AIC7896:
8940 p->bugs |= AHC_BUG_CACHETHEN_DIS;
8941 break;
8942 case AHC_AIC7899:
8943 p->bugs |= AHC_BUG_SCBCHAN_UPLOAD;
8944 break;
8945 default:
8946 /* Nothing to do */
8947 break;
8948 }
8949
8950 /*
8951 * Now handle the bugs that require PCI register or card register tweaks
8952 */
8953 pci_read_config_word(p->pdev, PCI_COMMAND, &tmp_word);
8954 if(p->bugs & AHC_BUG_PCI_MWI)
8955 {
8956 tmp_word &= ~PCI_COMMAND_INVALIDATE;
8957 }
8958 else
8959 {
8960 tmp_word |= PCI_COMMAND_INVALIDATE;
8961 }
8962 pci_write_config_word(p->pdev, PCI_COMMAND, tmp_word);
8963
8964 if(p->bugs & AHC_BUG_CACHETHEN)
8965 {
8966 aic_outb(p, aic_inb(p, DSCOMMAND0) & ~CACHETHEN, DSCOMMAND0);
8967 }
8968 else if (p->bugs & AHC_BUG_CACHETHEN_DIS)
8969 {
8970 aic_outb(p, aic_inb(p, DSCOMMAND0) | CACHETHEN, DSCOMMAND0);
8971 }
8972
8973 return;
8974}
8975
8976
8977/*+F*************************************************************************
8978 * Function:
8979 * aic7xxx_detect
8980 *
8981 * Description:
8982 * Try to detect and register an Adaptec 7770 or 7870 SCSI controller.
8983 *
8984 * XXX - This should really be called aic7xxx_probe(). A sequence of
8985 * probe(), attach()/detach(), and init() makes more sense than
8986 * one do-it-all function. This may be useful when (and if) the
8987 * mid-level SCSI code is overhauled.
8988 *-F*************************************************************************/
8989static int
d0be4a7d 8990aic7xxx_detect(struct scsi_host_template *template)
1da177e4
LT
8991{
8992 struct aic7xxx_host *temp_p = NULL;
8993 struct aic7xxx_host *current_p = NULL;
8994 struct aic7xxx_host *list_p = NULL;
8995 int found = 0;
8996#if defined(__i386__) || defined(__alpha__)
8997 ahc_flag_type flags = 0;
8998 int type;
8999#endif
9000 unsigned char sxfrctl1;
9001#if defined(__i386__) || defined(__alpha__)
9002 unsigned char hcntrl, hostconf;
9003 unsigned int slot, base;
9004#endif
9005
9006#ifdef MODULE
9007 /*
9008 * If we are called as a module, the aic7xxx pointer may not be null
9009 * and it would point to our bootup string, just like on the lilo
9010 * command line. IF not NULL, then process this config string with
9011 * aic7xxx_setup
9012 */
9013 if(aic7xxx)
9014 aic7xxx_setup(aic7xxx);
9015#endif
9016
9017 template->proc_name = "aic7xxx";
9018 template->sg_tablesize = AIC7XXX_MAX_SG;
9019
9020
9021#ifdef CONFIG_PCI
9022 /*
9023 * PCI-bus probe.
9024 */
9025 {
9026 static struct
9027 {
9028 unsigned short vendor_id;
9029 unsigned short device_id;
9030 ahc_chip chip;
9031 ahc_flag_type flags;
9032 ahc_feature features;
9033 int board_name_index;
9034 unsigned short seeprom_size;
9035 unsigned short seeprom_type;
9036 } const aic_pdevs[] = {
9037 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7810, AHC_NONE,
9038 AHC_FNONE, AHC_FENONE, 1,
9039 32, C46 },
9040 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7850, AHC_AIC7850,
9041 AHC_PAGESCBS, AHC_AIC7850_FE, 5,
9042 32, C46 },
9043 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7855, AHC_AIC7850,
9044 AHC_PAGESCBS, AHC_AIC7850_FE, 6,
9045 32, C46 },
9046 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7821, AHC_AIC7860,
9047 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9048 AHC_AIC7860_FE, 7,
9049 32, C46 },
9050 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_3860, AHC_AIC7860,
9051 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9052 AHC_AIC7860_FE, 7,
9053 32, C46 },
9054 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_38602, AHC_AIC7860,
9055 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9056 AHC_AIC7860_FE, 7,
9057 32, C46 },
9058 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_38602, AHC_AIC7860,
9059 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9060 AHC_AIC7860_FE, 7,
9061 32, C46 },
9062 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7860, AHC_AIC7860,
9063 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
9064 AHC_AIC7860_FE, 7,
9065 32, C46 },
9066 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7861, AHC_AIC7860,
9067 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9068 AHC_AIC7860_FE, 8,
9069 32, C46 },
9070 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7870, AHC_AIC7870,
9071 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
9072 AHC_AIC7870_FE, 9,
9073 32, C46 },
9074 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7871, AHC_AIC7870,
9075 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7870_FE, 10,
9076 32, C46 },
9077 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7872, AHC_AIC7870,
9078 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9079 AHC_AIC7870_FE, 11,
9080 32, C56_66 },
9081 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7873, AHC_AIC7870,
9082 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9083 AHC_AIC7870_FE, 12,
9084 32, C56_66 },
9085 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7874, AHC_AIC7870,
9086 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7870_FE, 13,
9087 32, C46 },
9088 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7880, AHC_AIC7880,
9089 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MOTHERBOARD,
9090 AHC_AIC7880_FE, 14,
9091 32, C46 },
9092 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7881, AHC_AIC7880,
9093 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 15,
9094 32, C46 },
9095 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7882, AHC_AIC7880,
9096 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9097 AHC_AIC7880_FE, 16,
9098 32, C56_66 },
9099 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7883, AHC_AIC7880,
9100 AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9101 AHC_AIC7880_FE, 17,
9102 32, C56_66 },
9103 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7884, AHC_AIC7880,
9104 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9105 32, C46 },
9106 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7885, AHC_AIC7880,
9107 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9108 32, C46 },
9109 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7886, AHC_AIC7880,
9110 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9111 32, C46 },
9112 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7887, AHC_AIC7880,
9113 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE | AHC_NEW_AUTOTERM, 19,
9114 32, C46 },
9115 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7888, AHC_AIC7880,
9116 AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18,
9117 32, C46 },
9118 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7895, AHC_AIC7895,
9119 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9120 AHC_AIC7895_FE, 20,
9121 32, C56_66 },
9122 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7890, AHC_AIC7890,
9123 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9124 AHC_AIC7890_FE, 21,
9125 32, C46 },
9126 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7890B, AHC_AIC7890,
9127 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9128 AHC_AIC7890_FE, 21,
9129 32, C46 },
9130 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_2930U2, AHC_AIC7890,
9131 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9132 AHC_AIC7890_FE, 22,
9133 32, C46 },
9134 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_2940U2, AHC_AIC7890,
9135 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9136 AHC_AIC7890_FE, 23,
9137 32, C46 },
9138 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7896, AHC_AIC7896,
9139 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9140 AHC_AIC7896_FE, 24,
9141 32, C56_66 },
9142 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_3940U2, AHC_AIC7896,
9143 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9144 AHC_AIC7896_FE, 25,
9145 32, C56_66 },
9146 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_3950U2D, AHC_AIC7896,
9147 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9148 AHC_AIC7896_FE, 26,
9149 32, C56_66 },
9150 {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_1480A, AHC_AIC7860,
9151 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_NO_STPWEN,
9152 AHC_AIC7860_FE, 27,
9153 32, C46 },
9154 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892A, AHC_AIC7892,
9155 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9156 AHC_AIC7892_FE, 28,
9157 32, C46 },
9158 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892B, AHC_AIC7892,
9159 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9160 AHC_AIC7892_FE, 28,
9161 32, C46 },
9162 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892D, AHC_AIC7892,
9163 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9164 AHC_AIC7892_FE, 28,
9165 32, C46 },
9166 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892P, AHC_AIC7892,
9167 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED,
9168 AHC_AIC7892_FE, 28,
9169 32, C46 },
9170 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899A, AHC_AIC7899,
9171 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9172 AHC_AIC7899_FE, 29,
9173 32, C56_66 },
9174 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899B, AHC_AIC7899,
9175 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9176 AHC_AIC7899_FE, 29,
9177 32, C56_66 },
9178 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899D, AHC_AIC7899,
9179 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9180 AHC_AIC7899_FE, 29,
9181 32, C56_66 },
9182 {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899P, AHC_AIC7899,
9183 AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL,
9184 AHC_AIC7899_FE, 29,
9185 32, C56_66 },
9186 };
9187
9188 unsigned short command;
9189 unsigned int devconfig, i, oldverbose;
9190 struct pci_dev *pdev = NULL;
9191
9192 for (i = 0; i < ARRAY_SIZE(aic_pdevs); i++)
9193 {
9194 pdev = NULL;
a07f3537 9195 while ((pdev = pci_get_device(aic_pdevs[i].vendor_id,
1da177e4
LT
9196 aic_pdevs[i].device_id,
9197 pdev))) {
9198 if (pci_enable_device(pdev))
9199 continue;
9200 if ( i == 0 ) /* We found one, but it's the 7810 RAID cont. */
9201 {
9202 if (aic7xxx_verbose & (VERBOSE_PROBE|VERBOSE_PROBE2))
9203 {
9204 printk(KERN_INFO "aic7xxx: The 7810 RAID controller is not "
9205 "supported by\n");
9206 printk(KERN_INFO " this driver, we are ignoring it.\n");
9207 }
9208 }
9209 else if ( (temp_p = kmalloc(sizeof(struct aic7xxx_host),
9210 GFP_ATOMIC)) != NULL )
9211 {
9212 memset(temp_p, 0, sizeof(struct aic7xxx_host));
9213 temp_p->chip = aic_pdevs[i].chip | AHC_PCI;
9214 temp_p->flags = aic_pdevs[i].flags;
9215 temp_p->features = aic_pdevs[i].features;
9216 temp_p->board_name_index = aic_pdevs[i].board_name_index;
9217 temp_p->sc_size = aic_pdevs[i].seeprom_size;
9218 temp_p->sc_type = aic_pdevs[i].seeprom_type;
9219
9220 /*
9221 * Read sundry information from PCI BIOS.
9222 */
9223 temp_p->irq = pdev->irq;
9224 temp_p->pdev = pdev;
9225 temp_p->pci_bus = pdev->bus->number;
9226 temp_p->pci_device_fn = pdev->devfn;
9227 temp_p->base = pci_resource_start(pdev, 0);
9228 temp_p->mbase = pci_resource_start(pdev, 1);
9229 current_p = list_p;
9230 while(current_p && temp_p)
9231 {
9232 if ( ((current_p->pci_bus == temp_p->pci_bus) &&
9233 (current_p->pci_device_fn == temp_p->pci_device_fn)) ||
9234 (temp_p->base && (current_p->base == temp_p->base)) ||
9235 (temp_p->mbase && (current_p->mbase == temp_p->mbase)) )
9236 {
9237 /* duplicate PCI entry, skip it */
9238 kfree(temp_p);
9239 temp_p = NULL;
9240 continue;
9241 }
9242 current_p = current_p->next;
9243 }
9244 if(pci_request_regions(temp_p->pdev, "aic7xxx"))
9245 {
9246 printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
9247 board_names[aic_pdevs[i].board_name_index],
9248 temp_p->pci_bus,
9249 PCI_SLOT(temp_p->pci_device_fn),
9250 PCI_FUNC(temp_p->pci_device_fn));
9251 printk("aic7xxx: I/O ports already in use, ignoring.\n");
9252 kfree(temp_p);
9253 continue;
9254 }
9255
9256 if (aic7xxx_verbose & VERBOSE_PROBE2)
9257 printk("aic7xxx: <%s> at PCI %d/%d\n",
9258 board_names[aic_pdevs[i].board_name_index],
9259 PCI_SLOT(pdev->devfn),
9260 PCI_FUNC(pdev->devfn));
9261 pci_read_config_word(pdev, PCI_COMMAND, &command);
9262 if (aic7xxx_verbose & VERBOSE_PROBE2)
9263 {
9264 printk("aic7xxx: Initial PCI_COMMAND value was 0x%x\n",
9265 (int)command);
9266 }
9267#ifdef AIC7XXX_STRICT_PCI_SETUP
9268 command |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
9269 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
9270#else
9271 command |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
9272#endif
9273 command &= ~PCI_COMMAND_INVALIDATE;
9274 if (aic7xxx_pci_parity == 0)
9275 command &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
9276 pci_write_config_word(pdev, PCI_COMMAND, command);
9277#ifdef AIC7XXX_STRICT_PCI_SETUP
9278 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9279 if (aic7xxx_verbose & VERBOSE_PROBE2)
9280 {
9281 printk("aic7xxx: Initial DEVCONFIG value was 0x%x\n", devconfig);
9282 }
9283 devconfig |= 0x80000040;
9284 pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9285#endif /* AIC7XXX_STRICT_PCI_SETUP */
9286
9287 temp_p->unpause = INTEN;
9288 temp_p->pause = temp_p->unpause | PAUSE;
9289 if ( ((temp_p->base == 0) &&
9290 (temp_p->mbase == 0)) ||
9291 (temp_p->irq == 0) )
9292 {
9293 printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
9294 board_names[aic_pdevs[i].board_name_index],
9295 temp_p->pci_bus,
9296 PCI_SLOT(temp_p->pci_device_fn),
9297 PCI_FUNC(temp_p->pci_device_fn));
9298 printk("aic7xxx: Controller disabled by BIOS, ignoring.\n");
9299 goto skip_pci_controller;
9300 }
9301
9302#ifdef MMAPIO
9303 if ( !(temp_p->base) || !(temp_p->flags & AHC_MULTI_CHANNEL) ||
9304 ((temp_p->chip != (AHC_AIC7870 | AHC_PCI)) &&
9305 (temp_p->chip != (AHC_AIC7880 | AHC_PCI))) )
9306 {
9307 temp_p->maddr = ioremap_nocache(temp_p->mbase, 256);
9308 if(temp_p->maddr)
9309 {
9310 /*
9311 * We need to check the I/O with the MMAPed address. Some machines
9312 * simply fail to work with MMAPed I/O and certain controllers.
9313 */
9314 if(aic_inb(temp_p, HCNTRL) == 0xff)
9315 {
9316 /*
9317 * OK.....we failed our test....go back to programmed I/O
9318 */
9319 printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
9320 board_names[aic_pdevs[i].board_name_index],
9321 temp_p->pci_bus,
9322 PCI_SLOT(temp_p->pci_device_fn),
9323 PCI_FUNC(temp_p->pci_device_fn));
9324 printk(KERN_INFO "aic7xxx: MMAPed I/O failed, reverting to "
9325 "Programmed I/O.\n");
9326 iounmap(temp_p->maddr);
9327 temp_p->maddr = NULL;
9328 if(temp_p->base == 0)
9329 {
9330 printk("aic7xxx: <%s> at PCI %d/%d/%d\n",
9331 board_names[aic_pdevs[i].board_name_index],
9332 temp_p->pci_bus,
9333 PCI_SLOT(temp_p->pci_device_fn),
9334 PCI_FUNC(temp_p->pci_device_fn));
9335 printk("aic7xxx: Controller disabled by BIOS, ignoring.\n");
9336 goto skip_pci_controller;
9337 }
9338 }
9339 }
9340 }
9341#endif
9342
9343 /*
9344 * We HAVE to make sure the first pause_sequencer() and all other
9345 * subsequent I/O that isn't PCI config space I/O takes place
9346 * after the MMAPed I/O region is configured and tested. The
9347 * problem is the PowerPC architecture that doesn't support
9348 * programmed I/O at all, so we have to have the MMAP I/O set up
9349 * for this pause to even work on those machines.
9350 */
9351 pause_sequencer(temp_p);
9352
9353 /*
9354 * Clear out any pending PCI error status messages. Also set
9355 * verbose to 0 so that we don't emit strange PCI error messages
9356 * while cleaning out the current status bits.
9357 */
9358 oldverbose = aic7xxx_verbose;
9359 aic7xxx_verbose = 0;
9360 aic7xxx_pci_intr(temp_p);
9361 aic7xxx_verbose = oldverbose;
9362
9363 temp_p->bios_address = 0;
9364
9365 /*
9366 * Remember how the card was setup in case there is no seeprom.
9367 */
9368 if (temp_p->features & AHC_ULTRA2)
9369 temp_p->scsi_id = aic_inb(temp_p, SCSIID_ULTRA2) & OID;
9370 else
9371 temp_p->scsi_id = aic_inb(temp_p, SCSIID) & OID;
9372 /*
9373 * Get current termination setting
9374 */
9375 sxfrctl1 = aic_inb(temp_p, SXFRCTL1);
9376
9377 if (aic7xxx_chip_reset(temp_p) == -1)
9378 {
9379 goto skip_pci_controller;
9380 }
9381 /*
9382 * Very quickly put the term setting back into the register since
9383 * the chip reset may cause odd things to happen. This is to keep
9384 * LVD busses with lots of drives from draining the power out of
9385 * the diffsense line before we get around to running the
9386 * configure_termination() function. Also restore the STPWLEVEL
9387 * bit of DEVCONFIG
9388 */
9389 aic_outb(temp_p, sxfrctl1, SXFRCTL1);
9390 pci_write_config_dword(temp_p->pdev, DEVCONFIG, devconfig);
9391 sxfrctl1 &= STPWEN;
9392
9393 /*
9394 * We need to set the CHNL? assignments before loading the SEEPROM
9395 * The 3940 and 3985 cards (original stuff, not any of the later
9396 * stuff) are 7870 and 7880 class chips. The Ultra2 stuff falls
9397 * under 7896 and 7897. The 7895 is in a class by itself :)
9398 */
9399 switch (temp_p->chip & AHC_CHIPID_MASK)
9400 {
9401 case AHC_AIC7870: /* 3840 / 3985 */
9402 case AHC_AIC7880: /* 3840 UW / 3985 UW */
9403 if(temp_p->flags & AHC_MULTI_CHANNEL)
9404 {
9405 switch(PCI_SLOT(temp_p->pci_device_fn))
9406 {
9407 case 5:
9408 temp_p->flags |= AHC_CHNLB;
9409 break;
9410 case 8:
9411 temp_p->flags |= AHC_CHNLB;
9412 break;
9413 case 12:
9414 temp_p->flags |= AHC_CHNLC;
9415 break;
9416 default:
9417 break;
9418 }
9419 }
9420 break;
9421
9422 case AHC_AIC7895: /* 7895 */
9423 case AHC_AIC7896: /* 7896/7 */
9424 case AHC_AIC7899: /* 7899 */
9425 if (PCI_FUNC(pdev->devfn) != 0)
9426 {
9427 temp_p->flags |= AHC_CHNLB;
9428 }
9429 /*
9430 * The 7895 is the only chipset that sets the SCBSIZE32 param
9431 * in the DEVCONFIG register. The Ultra2 chipsets use
9432 * the DSCOMMAND0 register instead.
9433 */
9434 if ((temp_p->chip & AHC_CHIPID_MASK) == AHC_AIC7895)
9435 {
9436 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9437 devconfig |= SCBSIZE32;
9438 pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9439 }
9440 break;
9441 default:
9442 break;
9443 }
9444
9445 /*
9446 * Loading of the SEEPROM needs to come after we've set the flags
9447 * to indicate possible CHNLB and CHNLC assigments. Otherwise,
9448 * on 394x and 398x cards we'll end up reading the wrong settings
9449 * for channels B and C
9450 */
9451 switch (temp_p->chip & AHC_CHIPID_MASK)
9452 {
9453 case AHC_AIC7892:
9454 case AHC_AIC7899:
9455 aic_outb(temp_p, 0, SCAMCTL);
9456 /*
9457 * Switch to the alt mode of the chip...
9458 */
9459 aic_outb(temp_p, aic_inb(temp_p, SFUNCT) | ALT_MODE, SFUNCT);
9460 /*
9461 * Set our options...the last two items set our CRC after x byte
9462 * count in target mode...
9463 */
9464 aic_outb(temp_p, AUTO_MSGOUT_DE | DIS_MSGIN_DUALEDGE, OPTIONMODE);
9465 aic_outb(temp_p, 0x00, 0x0b);
9466 aic_outb(temp_p, 0x10, 0x0a);
9467 /*
9468 * switch back to normal mode...
9469 */
9470 aic_outb(temp_p, aic_inb(temp_p, SFUNCT) & ~ALT_MODE, SFUNCT);
9471 aic_outb(temp_p, CRCVALCHKEN | CRCENDCHKEN | CRCREQCHKEN |
9472 TARGCRCENDEN | TARGCRCCNTEN,
9473 CRCCONTROL1);
9474 aic_outb(temp_p, ((aic_inb(temp_p, DSCOMMAND0) | USCBSIZE32 |
9475 MPARCKEN | CIOPARCKEN | CACHETHEN) &
9476 ~DPARCKEN), DSCOMMAND0);
9477 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9478 break;
9479 case AHC_AIC7890:
9480 case AHC_AIC7896:
9481 aic_outb(temp_p, 0, SCAMCTL);
9482 aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9483 CACHETHEN | MPARCKEN | USCBSIZE32 |
9484 CIOPARCKEN) & ~DPARCKEN, DSCOMMAND0);
9485 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9486 break;
9487 case AHC_AIC7850:
9488 case AHC_AIC7860:
9489 /*
9490 * Set the DSCOMMAND0 register on these cards different from
9491 * on the 789x cards. Also, read the SEEPROM as well.
9492 */
9493 aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9494 CACHETHEN | MPARCKEN) & ~DPARCKEN,
9495 DSCOMMAND0);
9496 /* FALLTHROUGH */
9497 default:
9498 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9499 break;
9500 case AHC_AIC7880:
9501 /*
9502 * Check the rev of the chipset before we change DSCOMMAND0
9503 */
9504 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9505 if ((devconfig & 0xff) >= 1)
9506 {
9507 aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) |
9508 CACHETHEN | MPARCKEN) & ~DPARCKEN,
9509 DSCOMMAND0);
9510 }
9511 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9512 break;
9513 }
9514
9515
9516 /*
9517 * and then we need another switch based on the type in order to
9518 * make sure the channel B primary flag is set properly on 7895
9519 * controllers....Arrrgggghhh!!! We also have to catch the fact
9520 * that when you disable the BIOS on the 7895 on the Intel DK440LX
9521 * motherboard, and possibly others, it only sets the BIOS disabled
9522 * bit on the A channel...I think I'm starting to lean towards
9523 * going postal....
9524 */
9525 switch(temp_p->chip & AHC_CHIPID_MASK)
9526 {
9527 case AHC_AIC7895:
9528 case AHC_AIC7896:
9529 case AHC_AIC7899:
9530 current_p = list_p;
9531 while(current_p != NULL)
9532 {
9533 if ( (current_p->pci_bus == temp_p->pci_bus) &&
9534 (PCI_SLOT(current_p->pci_device_fn) ==
9535 PCI_SLOT(temp_p->pci_device_fn)) )
9536 {
9537 if ( PCI_FUNC(current_p->pci_device_fn) == 0 )
9538 {
9539 temp_p->flags |=
9540 (current_p->flags & AHC_CHANNEL_B_PRIMARY);
9541 temp_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS);
9542 temp_p->flags |=
9543 (current_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS));
9544 }
9545 else
9546 {
9547 current_p->flags |=
9548 (temp_p->flags & AHC_CHANNEL_B_PRIMARY);
9549 current_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS);
9550 current_p->flags |=
9551 (temp_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS));
9552 }
9553 }
9554 current_p = current_p->next;
9555 }
9556 break;
9557 default:
9558 break;
9559 }
9560
9561 /*
9562 * We only support external SCB RAM on the 7895/6/7 chipsets.
9563 * We could support it on the 7890/1 easy enough, but I don't
9564 * know of any 7890/1 based cards that have it. I do know
9565 * of 7895/6/7 cards that have it and they work properly.
9566 */
9567 switch(temp_p->chip & AHC_CHIPID_MASK)
9568 {
9569 default:
9570 break;
9571 case AHC_AIC7895:
9572 case AHC_AIC7896:
9573 case AHC_AIC7899:
9574 pci_read_config_dword(pdev, DEVCONFIG, &devconfig);
9575 if (temp_p->features & AHC_ULTRA2)
9576 {
9577 if ( (aic_inb(temp_p, DSCOMMAND0) & RAMPSM_ULTRA2) &&
9578 (aic7xxx_scbram) )
9579 {
9580 aic_outb(temp_p,
9581 aic_inb(temp_p, DSCOMMAND0) & ~SCBRAMSEL_ULTRA2,
9582 DSCOMMAND0);
9583 temp_p->flags |= AHC_EXTERNAL_SRAM;
9584 devconfig |= EXTSCBPEN;
9585 }
9586 else if (aic_inb(temp_p, DSCOMMAND0) & RAMPSM_ULTRA2)
9587 {
9588 printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
9589 board_names[aic_pdevs[i].board_name_index],
9590 temp_p->pci_bus,
9591 PCI_SLOT(temp_p->pci_device_fn),
9592 PCI_FUNC(temp_p->pci_device_fn));
9593 printk("aic7xxx: external SCB RAM detected, "
9594 "but not enabled\n");
9595 }
9596 }
9597 else
9598 {
9599 if ((devconfig & RAMPSM) && (aic7xxx_scbram))
9600 {
9601 devconfig &= ~SCBRAMSEL;
9602 devconfig |= EXTSCBPEN;
9603 temp_p->flags |= AHC_EXTERNAL_SRAM;
9604 }
9605 else if (devconfig & RAMPSM)
9606 {
9607 printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d/%d\n",
9608 board_names[aic_pdevs[i].board_name_index],
9609 temp_p->pci_bus,
9610 PCI_SLOT(temp_p->pci_device_fn),
9611 PCI_FUNC(temp_p->pci_device_fn));
9612 printk("aic7xxx: external SCB RAM detected, "
9613 "but not enabled\n");
9614 }
9615 }
9616 pci_write_config_dword(pdev, DEVCONFIG, devconfig);
9617 if ( (temp_p->flags & AHC_EXTERNAL_SRAM) &&
9618 (temp_p->flags & AHC_CHNLB) )
9619 aic_outb(temp_p, 1, CCSCBBADDR);
9620 break;
9621 }
9622
9623 /*
9624 * Take the LED out of diagnostic mode
9625 */
9626 aic_outb(temp_p,
9627 (aic_inb(temp_p, SBLKCTL) & ~(DIAGLEDEN | DIAGLEDON)),
9628 SBLKCTL);
9629
9630 /*
9631 * We don't know where this is set in the SEEPROM or by the
9632 * BIOS, so we default to 100%. On Ultra2 controllers, use 75%
9633 * instead.
9634 */
9635 if (temp_p->features & AHC_ULTRA2)
9636 {
9637 aic_outb(temp_p, RD_DFTHRSH_MAX | WR_DFTHRSH_MAX, DFF_THRSH);
9638 }
9639 else
9640 {
9641 aic_outb(temp_p, DFTHRSH_100, DSPCISTATUS);
9642 }
9643
9644 /*
9645 * Call our function to fixup any bugs that exist on this chipset.
9646 * This may muck with PCI settings and other device settings, so
9647 * make sure it's after all the other PCI and device register
9648 * tweaks so it can back out bad settings on specific broken cards.
9649 */
9650 aic7xxx_configure_bugs(temp_p);
9651
a07f3537
AC
9652 /* Hold a pci device reference */
9653 pci_dev_get(temp_p->pdev);
9654
1da177e4
LT
9655 if ( list_p == NULL )
9656 {
9657 list_p = current_p = temp_p;
9658 }
9659 else
9660 {
9661 current_p = list_p;
9662 while(current_p->next != NULL)
9663 current_p = current_p->next;
9664 current_p->next = temp_p;
9665 }
9666 temp_p->next = NULL;
9667 found++;
9668 continue;
9669skip_pci_controller:
9670#ifdef CONFIG_PCI
9671 pci_release_regions(temp_p->pdev);
9672#endif
9673 kfree(temp_p);
9674 } /* Found an Adaptec PCI device. */
9675 else /* Well, we found one, but we couldn't get any memory */
9676 {
9677 printk("aic7xxx: Found <%s>\n",
9678 board_names[aic_pdevs[i].board_name_index]);
9679 printk(KERN_INFO "aic7xxx: Unable to allocate device memory, "
9680 "skipping.\n");
9681 }
9682 } /* while(pdev=....) */
9683 } /* for PCI_DEVICES */
9684 }
9685#endif /* CONFIG_PCI */
9686
9687#if defined(__i386__) || defined(__alpha__)
9688 /*
9689 * EISA/VL-bus card signature probe.
9690 */
9691 slot = MINSLOT;
9692 while ( (slot <= MAXSLOT) &&
9693 !(aic7xxx_no_probe) )
9694 {
9695 base = SLOTBASE(slot) + MINREG;
9696
9697 if (!request_region(base, MAXREG - MINREG, "aic7xxx"))
9698 {
9699 /*
9700 * Some other driver has staked a
9701 * claim to this i/o region already.
9702 */
9703 slot++;
9704 continue; /* back to the beginning of the for loop */
9705 }
9706 flags = 0;
9707 type = aic7xxx_probe(slot, base + AHC_HID0, &flags);
9708 if (type == -1)
9709 {
9710 release_region(base, MAXREG - MINREG);
9711 slot++;
9712 continue;
9713 }
9714 temp_p = kmalloc(sizeof(struct aic7xxx_host), GFP_ATOMIC);
9715 if (temp_p == NULL)
9716 {
9717 printk(KERN_WARNING "aic7xxx: Unable to allocate device space.\n");
9718 release_region(base, MAXREG - MINREG);
9719 slot++;
9720 continue; /* back to the beginning of the while loop */
9721 }
9722
9723 /*
9724 * Pause the card preserving the IRQ type. Allow the operator
9725 * to override the IRQ trigger.
9726 */
9727 if (aic7xxx_irq_trigger == 1)
9728 hcntrl = IRQMS; /* Level */
9729 else if (aic7xxx_irq_trigger == 0)
9730 hcntrl = 0; /* Edge */
9731 else
9732 hcntrl = inb(base + HCNTRL) & IRQMS; /* Default */
9733 memset(temp_p, 0, sizeof(struct aic7xxx_host));
9734 temp_p->unpause = hcntrl | INTEN;
9735 temp_p->pause = hcntrl | PAUSE | INTEN;
9736 temp_p->base = base;
9737 temp_p->mbase = 0;
9738 temp_p->maddr = NULL;
9739 temp_p->pci_bus = 0;
9740 temp_p->pci_device_fn = slot;
9741 aic_outb(temp_p, hcntrl | PAUSE, HCNTRL);
9742 while( (aic_inb(temp_p, HCNTRL) & PAUSE) == 0 ) ;
9743 if (aic7xxx_chip_reset(temp_p) == -1)
9744 temp_p->irq = 0;
9745 else
9746 temp_p->irq = aic_inb(temp_p, INTDEF) & 0x0F;
9747 temp_p->flags |= AHC_PAGESCBS;
9748
9749 switch (temp_p->irq)
9750 {
9751 case 9:
9752 case 10:
9753 case 11:
9754 case 12:
9755 case 14:
9756 case 15:
9757 break;
9758
9759 default:
9760 printk(KERN_WARNING "aic7xxx: Host adapter uses unsupported IRQ "
9761 "level %d, ignoring.\n", temp_p->irq);
9762 kfree(temp_p);
9763 release_region(base, MAXREG - MINREG);
9764 slot++;
9765 continue; /* back to the beginning of the while loop */
9766 }
9767
9768 /*
9769 * We are commited now, everything has been checked and this card
9770 * has been found, now we just set it up
9771 */
9772
9773 /*
9774 * Insert our new struct into the list at the end
9775 */
9776 if (list_p == NULL)
9777 {
9778 list_p = current_p = temp_p;
9779 }
9780 else
9781 {
9782 current_p = list_p;
9783 while (current_p->next != NULL)
9784 current_p = current_p->next;
9785 current_p->next = temp_p;
9786 }
9787
9788 switch (type)
9789 {
9790 case 0:
9791 temp_p->board_name_index = 2;
9792 if (aic7xxx_verbose & VERBOSE_PROBE2)
9793 printk("aic7xxx: <%s> at EISA %d\n",
9794 board_names[2], slot);
9795 /* FALLTHROUGH */
9796 case 1:
9797 {
9798 temp_p->chip = AHC_AIC7770 | AHC_EISA;
9799 temp_p->features |= AHC_AIC7770_FE;
9800 temp_p->bios_control = aic_inb(temp_p, HA_274_BIOSCTRL);
9801
9802 /*
9803 * Get the primary channel information. Right now we don't
9804 * do anything with this, but someday we will be able to inform
9805 * the mid-level SCSI code which channel is primary.
9806 */
9807 if (temp_p->board_name_index == 0)
9808 {
9809 temp_p->board_name_index = 3;
9810 if (aic7xxx_verbose & VERBOSE_PROBE2)
9811 printk("aic7xxx: <%s> at EISA %d\n",
9812 board_names[3], slot);
9813 }
9814 if (temp_p->bios_control & CHANNEL_B_PRIMARY)
9815 {
9816 temp_p->flags |= AHC_CHANNEL_B_PRIMARY;
9817 }
9818
9819 if ((temp_p->bios_control & BIOSMODE) == BIOSDISABLED)
9820 {
9821 temp_p->flags &= ~AHC_BIOS_ENABLED;
9822 }
9823 else
9824 {
9825 temp_p->flags &= ~AHC_USEDEFAULTS;
9826 temp_p->flags |= AHC_BIOS_ENABLED;
9827 if ( (temp_p->bios_control & 0x20) == 0 )
9828 {
9829 temp_p->bios_address = 0xcc000;
9830 temp_p->bios_address += (0x4000 * (temp_p->bios_control & 0x07));
9831 }
9832 else
9833 {
9834 temp_p->bios_address = 0xd0000;
9835 temp_p->bios_address += (0x8000 * (temp_p->bios_control & 0x06));
9836 }
9837 }
9838 temp_p->adapter_control = aic_inb(temp_p, SCSICONF) << 8;
9839 temp_p->adapter_control |= aic_inb(temp_p, SCSICONF + 1);
9840 if (temp_p->features & AHC_WIDE)
9841 {
9842 temp_p->scsi_id = temp_p->adapter_control & HWSCSIID;
9843 temp_p->scsi_id_b = temp_p->scsi_id;
9844 }
9845 else
9846 {
9847 temp_p->scsi_id = (temp_p->adapter_control >> 8) & HSCSIID;
9848 temp_p->scsi_id_b = temp_p->adapter_control & HSCSIID;
9849 }
9850 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9851 break;
9852 }
9853
9854 case 2:
9855 case 3:
9856 temp_p->chip = AHC_AIC7770 | AHC_VL;
9857 temp_p->features |= AHC_AIC7770_FE;
9858 if (type == 2)
9859 temp_p->flags |= AHC_BIOS_ENABLED;
9860 else
9861 temp_p->flags &= ~AHC_BIOS_ENABLED;
9862 if (aic_inb(temp_p, SCSICONF) & TERM_ENB)
9863 sxfrctl1 = STPWEN;
9864 aic7xxx_load_seeprom(temp_p, &sxfrctl1);
9865 temp_p->board_name_index = 4;
9866 if (aic7xxx_verbose & VERBOSE_PROBE2)
9867 printk("aic7xxx: <%s> at VLB %d\n",
9868 board_names[2], slot);
9869 switch( aic_inb(temp_p, STATUS_2840) & BIOS_SEL )
9870 {
9871 case 0x00:
9872 temp_p->bios_address = 0xe0000;
9873 break;
9874 case 0x20:
9875 temp_p->bios_address = 0xc8000;
9876 break;
9877 case 0x40:
9878 temp_p->bios_address = 0xd0000;
9879 break;
9880 case 0x60:
9881 temp_p->bios_address = 0xd8000;
9882 break;
9883 default:
9884 break; /* can't get here */
9885 }
9886 break;
9887
9888 default: /* Won't get here. */
9889 break;
9890 }
9891 if (aic7xxx_verbose & VERBOSE_PROBE2)
9892 {
9893 printk(KERN_INFO "aic7xxx: BIOS %sabled, IO Port 0x%lx, IRQ %d (%s)\n",
9894 (temp_p->flags & AHC_USEDEFAULTS) ? "dis" : "en", temp_p->base,
9895 temp_p->irq,
9896 (temp_p->pause & IRQMS) ? "level sensitive" : "edge triggered");
9897 printk(KERN_INFO "aic7xxx: Extended translation %sabled.\n",
9898 (temp_p->flags & AHC_EXTEND_TRANS_A) ? "en" : "dis");
9899 }
9900
9901 /*
9902 * All the 7770 based chipsets have this bug
9903 */
9904 temp_p->bugs |= AHC_BUG_TMODE_WIDEODD;
9905
9906 /*
9907 * Set the FIFO threshold and the bus off time.
9908 */
9909 hostconf = aic_inb(temp_p, HOSTCONF);
9910 aic_outb(temp_p, hostconf & DFTHRSH, BUSSPD);
9911 aic_outb(temp_p, (hostconf << 2) & BOFF, BUSTIME);
9912 slot++;
9913 found++;
9914 }
9915
9916#endif /* defined(__i386__) || defined(__alpha__) */
9917
9918 /*
9919 * Now, we re-order the probed devices by BIOS address and BUS class.
9920 * In general, we follow this algorithm to make the adapters show up
9921 * in the same order under linux that the computer finds them.
9922 * 1: All VLB/EISA cards with BIOS_ENABLED first, according to BIOS
9923 * address, going from lowest to highest.
9924 * 2: All PCI controllers with BIOS_ENABLED next, according to BIOS
9925 * address, going from lowest to highest.
9926 * 3: Remaining VLB/EISA controllers going in slot order.
9927 * 4: Remaining PCI controllers, going in PCI device order (reversable)
9928 */
9929
9930 {
9931 struct aic7xxx_host *sort_list[4] = { NULL, NULL, NULL, NULL };
9932 struct aic7xxx_host *vlb, *pci;
9933 struct aic7xxx_host *prev_p;
9934 struct aic7xxx_host *p;
9935 unsigned char left;
9936
9937 prev_p = vlb = pci = NULL;
9938
9939 temp_p = list_p;
9940 while (temp_p != NULL)
9941 {
9942 switch(temp_p->chip & ~AHC_CHIPID_MASK)
9943 {
9944 case AHC_EISA:
9945 case AHC_VL:
9946 {
9947 p = temp_p;
9948 if (p->flags & AHC_BIOS_ENABLED)
9949 vlb = sort_list[0];
9950 else
9951 vlb = sort_list[2];
9952
9953 if (vlb == NULL)
9954 {
9955 vlb = temp_p;
9956 temp_p = temp_p->next;
9957 vlb->next = NULL;
9958 }
9959 else
9960 {
9961 current_p = vlb;
9962 prev_p = NULL;
9963 while ( (current_p != NULL) &&
9964 (current_p->bios_address < temp_p->bios_address))
9965 {
9966 prev_p = current_p;
9967 current_p = current_p->next;
9968 }
9969 if (prev_p != NULL)
9970 {
9971 prev_p->next = temp_p;
9972 temp_p = temp_p->next;
9973 prev_p->next->next = current_p;
9974 }
9975 else
9976 {
9977 vlb = temp_p;
9978 temp_p = temp_p->next;
9979 vlb->next = current_p;
9980 }
9981 }
9982
9983 if (p->flags & AHC_BIOS_ENABLED)
9984 sort_list[0] = vlb;
9985 else
9986 sort_list[2] = vlb;
9987
9988 break;
9989 }
9990 default: /* All PCI controllers fall through to default */
9991 {
9992
9993 p = temp_p;
9994 if (p->flags & AHC_BIOS_ENABLED)
9995 pci = sort_list[1];
9996 else
9997 pci = sort_list[3];
9998
9999 if (pci == NULL)
10000 {
10001 pci = temp_p;
10002 temp_p = temp_p->next;
10003 pci->next = NULL;
10004 }
10005 else
10006 {
10007 current_p = pci;
10008 prev_p = NULL;
10009 if (!aic7xxx_reverse_scan)
10010 {
10011 while ( (current_p != NULL) &&
10012 ( (PCI_SLOT(current_p->pci_device_fn) |
10013 (current_p->pci_bus << 8)) <
10014 (PCI_SLOT(temp_p->pci_device_fn) |
10015 (temp_p->pci_bus << 8)) ) )
10016 {
10017 prev_p = current_p;
10018 current_p = current_p->next;
10019 }
10020 }
10021 else
10022 {
10023 while ( (current_p != NULL) &&
10024 ( (PCI_SLOT(current_p->pci_device_fn) |
10025 (current_p->pci_bus << 8)) >
10026 (PCI_SLOT(temp_p->pci_device_fn) |
10027 (temp_p->pci_bus << 8)) ) )
10028 {
10029 prev_p = current_p;
10030 current_p = current_p->next;
10031 }
10032 }
10033 /*
10034 * Are we dealing with a 7895/6/7/9 where we need to sort the
10035 * channels as well, if so, the bios_address values should
10036 * be the same
10037 */
10038 if ( (current_p) && (temp_p->flags & AHC_MULTI_CHANNEL) &&
10039 (temp_p->pci_bus == current_p->pci_bus) &&
10040 (PCI_SLOT(temp_p->pci_device_fn) ==
10041 PCI_SLOT(current_p->pci_device_fn)) )
10042 {
10043 if (temp_p->flags & AHC_CHNLB)
10044 {
10045 if ( !(temp_p->flags & AHC_CHANNEL_B_PRIMARY) )
10046 {
10047 prev_p = current_p;
10048 current_p = current_p->next;
10049 }
10050 }
10051 else
10052 {
10053 if (temp_p->flags & AHC_CHANNEL_B_PRIMARY)
10054 {
10055 prev_p = current_p;
10056 current_p = current_p->next;
10057 }
10058 }
10059 }
10060 if (prev_p != NULL)
10061 {
10062 prev_p->next = temp_p;
10063 temp_p = temp_p->next;
10064 prev_p->next->next = current_p;
10065 }
10066 else
10067 {
10068 pci = temp_p;
10069 temp_p = temp_p->next;
10070 pci->next = current_p;
10071 }
10072 }
10073
10074 if (p->flags & AHC_BIOS_ENABLED)
10075 sort_list[1] = pci;
10076 else
10077 sort_list[3] = pci;
10078
10079 break;
10080 }
10081 } /* End of switch(temp_p->type) */
10082 } /* End of while (temp_p != NULL) */
10083 /*
10084 * At this point, the cards have been broken into 4 sorted lists, now
10085 * we run through the lists in order and register each controller
10086 */
10087 {
10088 int i;
10089
10090 left = found;
10091 for (i=0; i<ARRAY_SIZE(sort_list); i++)
10092 {
10093 temp_p = sort_list[i];
10094 while(temp_p != NULL)
10095 {
10096 template->name = board_names[temp_p->board_name_index];
10097 p = aic7xxx_alloc(template, temp_p);
10098 if (p != NULL)
10099 {
10100 p->instance = found - left;
10101 if (aic7xxx_register(template, p, (--left)) == 0)
10102 {
10103 found--;
10104 aic7xxx_release(p->host);
10105 scsi_unregister(p->host);
10106 }
10107 else if (aic7xxx_dump_card)
10108 {
10109 pause_sequencer(p);
10110 aic7xxx_print_card(p);
10111 aic7xxx_print_scratch_ram(p);
10112 unpause_sequencer(p, TRUE);
10113 }
10114 }
10115 current_p = temp_p;
10116 temp_p = (struct aic7xxx_host *)temp_p->next;
10117 kfree(current_p);
10118 }
10119 }
10120 }
10121 }
10122 return (found);
10123}
10124
10125/*+F*************************************************************************
10126 * Function:
10127 * aic7xxx_buildscb
10128 *
10129 * Description:
10130 * Build a SCB.
10131 *-F*************************************************************************/
c1278289
HK
10132static void aic7xxx_buildscb(struct aic7xxx_host *p, struct scsi_cmnd *cmd,
10133 struct aic7xxx_scb *scb)
1da177e4
LT
10134{
10135 unsigned short mask;
10136 struct aic7xxx_hwscb *hscb;
10137 struct aic_dev_data *aic_dev = cmd->device->hostdata;
10138 struct scsi_device *sdptr = cmd->device;
10139 unsigned char tindex = TARGET_INDEX(cmd);
10140 struct request *req = cmd->request;
10141
10142 mask = (0x01 << tindex);
10143 hscb = scb->hscb;
10144
10145 /*
10146 * Setup the control byte if we need negotiation and have not
10147 * already requested it.
10148 */
10149 hscb->control = 0;
10150 scb->tag_action = 0;
10151
10152 if (p->discenable & mask)
10153 {
10154 hscb->control |= DISCENB;
10155 /* We always force TEST_UNIT_READY to untagged */
10156 if (cmd->cmnd[0] != TEST_UNIT_READY && sdptr->simple_tags)
10157 {
4aff5e23 10158 if (req->cmd_flags & REQ_HARDBARRIER)
1da177e4
LT
10159 {
10160 if(sdptr->ordered_tags)
10161 {
10162 hscb->control |= MSG_ORDERED_Q_TAG;
10163 scb->tag_action = MSG_ORDERED_Q_TAG;
10164 }
10165 }
10166 else
10167 {
10168 hscb->control |= MSG_SIMPLE_Q_TAG;
10169 scb->tag_action = MSG_SIMPLE_Q_TAG;
10170 }
10171 }
10172 }
10173 if ( !(aic_dev->dtr_pending) &&
10174 (aic_dev->needppr || aic_dev->needwdtr || aic_dev->needsdtr) &&
10175 (aic_dev->flags & DEVICE_DTR_SCANNED) )
10176 {
10177 aic_dev->dtr_pending = 1;
10178 scb->tag_action = 0;
10179 hscb->control &= DISCENB;
10180 hscb->control |= MK_MESSAGE;
10181 if(aic_dev->needppr)
10182 {
10183 scb->flags |= SCB_MSGOUT_PPR;
10184 }
10185 else if(aic_dev->needwdtr)
10186 {
10187 scb->flags |= SCB_MSGOUT_WDTR;
10188 }
10189 else if(aic_dev->needsdtr)
10190 {
10191 scb->flags |= SCB_MSGOUT_SDTR;
10192 }
10193 scb->flags |= SCB_DTR_SCB;
10194 }
10195 hscb->target_channel_lun = ((cmd->device->id << 4) & 0xF0) |
10196 ((cmd->device->channel & 0x01) << 3) | (cmd->device->lun & 0x07);
10197
10198 /*
10199 * The interpretation of request_buffer and request_bufflen
10200 * changes depending on whether or not use_sg is zero; a
10201 * non-zero use_sg indicates the number of elements in the
10202 * scatter-gather array.
10203 */
10204
10205 /*
10206 * XXX - this relies on the host data being stored in a
10207 * little-endian format.
10208 */
10209 hscb->SCSI_cmd_length = cmd->cmd_len;
10210 memcpy(scb->cmnd, cmd->cmnd, cmd->cmd_len);
10211 hscb->SCSI_cmd_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, scb->cmnd));
10212
10213 if (cmd->use_sg)
10214 {
10215 struct scatterlist *sg; /* Must be mid-level SCSI code scatterlist */
10216
10217 /*
10218 * We must build an SG list in adapter format, as the kernel's SG list
10219 * cannot be used directly because of data field size (__alpha__)
10220 * differences and the kernel SG list uses virtual addresses where
10221 * we need physical addresses.
10222 */
10223 int i, use_sg;
10224
10225 sg = (struct scatterlist *)cmd->request_buffer;
10226 scb->sg_length = 0;
be7db055 10227 use_sg = pci_map_sg(p->pdev, sg, cmd->use_sg, cmd->sc_data_direction);
1da177e4
LT
10228 /*
10229 * Copy the segments into the SG array. NOTE!!! - We used to
10230 * have the first entry both in the data_pointer area and the first
10231 * SG element. That has changed somewhat. We still have the first
10232 * entry in both places, but now we download the address of
10233 * scb->sg_list[1] instead of 0 to the sg pointer in the hscb.
10234 */
10235 for (i = 0; i < use_sg; i++)
10236 {
10237 unsigned int len = sg_dma_len(sg+i);
10238 scb->sg_list[i].address = cpu_to_le32(sg_dma_address(sg+i));
10239 scb->sg_list[i].length = cpu_to_le32(len);
10240 scb->sg_length += len;
10241 }
10242 /* Copy the first SG into the data pointer area. */
10243 hscb->data_pointer = scb->sg_list[0].address;
10244 hscb->data_count = scb->sg_list[0].length;
10245 scb->sg_count = i;
10246 hscb->SG_segment_count = i;
10247 hscb->SG_list_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, &scb->sg_list[1]));
10248 }
10249 else
10250 {
10251 if (cmd->request_bufflen)
10252 {
10253 unsigned int address = pci_map_single(p->pdev, cmd->request_buffer,
10254 cmd->request_bufflen,
be7db055 10255 cmd->sc_data_direction);
1da177e4
LT
10256 aic7xxx_mapping(cmd) = address;
10257 scb->sg_list[0].address = cpu_to_le32(address);
10258 scb->sg_list[0].length = cpu_to_le32(cmd->request_bufflen);
10259 scb->sg_count = 1;
10260 scb->sg_length = cmd->request_bufflen;
10261 hscb->SG_segment_count = 1;
10262 hscb->SG_list_pointer = cpu_to_le32(SCB_DMA_ADDR(scb, &scb->sg_list[0]));
10263 hscb->data_count = scb->sg_list[0].length;
10264 hscb->data_pointer = scb->sg_list[0].address;
10265 }
10266 else
10267 {
10268 scb->sg_count = 0;
10269 scb->sg_length = 0;
10270 hscb->SG_segment_count = 0;
10271 hscb->SG_list_pointer = 0;
10272 hscb->data_count = 0;
10273 hscb->data_pointer = 0;
10274 }
10275 }
10276}
10277
10278/*+F*************************************************************************
10279 * Function:
10280 * aic7xxx_queue
10281 *
10282 * Description:
10283 * Queue a SCB to the controller.
10284 *-F*************************************************************************/
c1278289 10285static int aic7xxx_queue(struct scsi_cmnd *cmd, void (*fn)(struct scsi_cmnd *))
1da177e4
LT
10286{
10287 struct aic7xxx_host *p;
10288 struct aic7xxx_scb *scb;
10289 struct aic_dev_data *aic_dev;
10290
10291 p = (struct aic7xxx_host *) cmd->device->host->hostdata;
10292
10293 aic_dev = cmd->device->hostdata;
10294#ifdef AIC7XXX_VERBOSE_DEBUGGING
10295 if (aic_dev->active_cmds > aic_dev->max_q_depth)
10296 {
10297 printk(WARN_LEAD "Commands queued exceeds queue "
10298 "depth, active=%d\n",
10299 p->host_no, CTL_OF_CMD(cmd),
10300 aic_dev->active_cmds);
10301 }
10302#endif
10303
10304 scb = scbq_remove_head(&p->scb_data->free_scbs);
10305 if (scb == NULL)
10306 {
10307 aic7xxx_allocate_scb(p);
10308 scb = scbq_remove_head(&p->scb_data->free_scbs);
10309 if(scb == NULL)
10310 {
10311 printk(WARN_LEAD "Couldn't get a free SCB.\n", p->host_no,
10312 CTL_OF_CMD(cmd));
10313 return 1;
10314 }
10315 }
10316 scb->cmd = cmd;
10317
c1278289
HK
10318 /*
10319 * Make sure the scsi_cmnd pointer is saved, the struct it points to
10320 * is set up properly, and the parity error flag is reset, then send
10321 * the SCB to the sequencer and watch the fun begin.
10322 */
1da177e4
LT
10323 aic7xxx_position(cmd) = scb->hscb->tag;
10324 cmd->scsi_done = fn;
10325 cmd->result = DID_OK;
10326 memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
10327 aic7xxx_error(cmd) = DID_OK;
10328 aic7xxx_status(cmd) = 0;
10329 cmd->host_scribble = NULL;
10330
10331 /*
10332 * Construct the SCB beforehand, so the sequencer is
10333 * paused a minimal amount of time.
10334 */
10335 aic7xxx_buildscb(p, cmd, scb);
10336
10337 scb->flags |= SCB_ACTIVE | SCB_WAITINGQ;
10338
10339 scbq_insert_tail(&p->waiting_scbs, scb);
10340 aic7xxx_run_waiting_queues(p);
10341 return (0);
10342}
10343
10344/*+F*************************************************************************
10345 * Function:
10346 * aic7xxx_bus_device_reset
10347 *
10348 * Description:
10349 * Abort or reset the current SCSI command(s). If the scb has not
10350 * previously been aborted, then we attempt to send a BUS_DEVICE_RESET
10351 * message to the target. If the scb has previously been unsuccessfully
10352 * aborted, then we will reset the channel and have all devices renegotiate.
10353 * Returns an enumerated type that indicates the status of the operation.
10354 *-F*************************************************************************/
c1278289 10355static int __aic7xxx_bus_device_reset(struct scsi_cmnd *cmd)
1da177e4
LT
10356{
10357 struct aic7xxx_host *p;
10358 struct aic7xxx_scb *scb;
10359 struct aic7xxx_hwscb *hscb;
10360 int channel;
10361 unsigned char saved_scbptr, lastphase;
10362 unsigned char hscb_index;
10363 int disconnected;
10364 struct aic_dev_data *aic_dev;
10365
10366 if(cmd == NULL)
10367 {
10368 printk(KERN_ERR "aic7xxx_bus_device_reset: called with NULL cmd!\n");
10369 return FAILED;
10370 }
10371 p = (struct aic7xxx_host *)cmd->device->host->hostdata;
10372 aic_dev = AIC_DEV(cmd);
10373 if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10374 scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10375 else
10376 return FAILED;
10377
10378 hscb = scb->hscb;
10379
c7bec5ab 10380 aic7xxx_isr(p);
1da177e4
LT
10381 aic7xxx_done_cmds_complete(p);
10382 /* If the command was already complete or just completed, then we didn't
10383 * do a reset, return FAILED */
10384 if(!(scb->flags & SCB_ACTIVE))
10385 return FAILED;
10386
10387 pause_sequencer(p);
10388 lastphase = aic_inb(p, LASTPHASE);
10389 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10390 {
10391 printk(INFO_LEAD "Bus Device reset, scb flags 0x%x, ",
10392 p->host_no, CTL_OF_SCB(scb), scb->flags);
10393 switch (lastphase)
10394 {
10395 case P_DATAOUT:
10396 printk("Data-Out phase\n");
10397 break;
10398 case P_DATAIN:
10399 printk("Data-In phase\n");
10400 break;
10401 case P_COMMAND:
10402 printk("Command phase\n");
10403 break;
10404 case P_MESGOUT:
10405 printk("Message-Out phase\n");
10406 break;
10407 case P_STATUS:
10408 printk("Status phase\n");
10409 break;
10410 case P_MESGIN:
10411 printk("Message-In phase\n");
10412 break;
10413 default:
10414 /*
10415 * We're not in a valid phase, so assume we're idle.
10416 */
10417 printk("while idle, LASTPHASE = 0x%x\n", lastphase);
10418 break;
10419 }
10420 printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 "
10421 "0x%x\n", p->host_no, CTL_OF_SCB(scb),
10422 aic_inb(p, SCSISIGI),
10423 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
10424 aic_inb(p, SSTAT0), aic_inb(p, SSTAT1));
10425 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SSTAT2 0x%x, STCNT 0x%x\n", p->host_no,
10426 CTL_OF_SCB(scb),
10427 (p->features & AHC_ULTRA2) ? aic_inb(p, SG_CACHEPTR) : 0,
10428 aic_inb(p, SSTAT2),
10429 aic_inb(p, STCNT + 2) << 16 | aic_inb(p, STCNT + 1) << 8 |
10430 aic_inb(p, STCNT));
10431 }
10432
10433 channel = cmd->device->channel;
10434
10435 /*
10436 * Send a Device Reset Message:
10437 * The target that is holding up the bus may not be the same as
10438 * the one that triggered this timeout (different commands have
10439 * different timeout lengths). Our strategy here is to queue an
10440 * abort message to the timed out target if it is disconnected.
10441 * Otherwise, if we have an active target we stuff the message buffer
10442 * with an abort message and assert ATN in the hopes that the target
10443 * will let go of the bus and go to the mesgout phase. If this
10444 * fails, we'll get another timeout a few seconds later which will
10445 * attempt a bus reset.
10446 */
10447 saved_scbptr = aic_inb(p, SCBPTR);
10448 disconnected = FALSE;
10449
10450 if (lastphase != P_BUSFREE)
10451 {
10452 if (aic_inb(p, SCB_TAG) >= p->scb_data->numscbs)
10453 {
10454 printk(WARN_LEAD "Invalid SCB ID %d is active, "
10455 "SCB flags = 0x%x.\n", p->host_no,
10456 CTL_OF_CMD(cmd), scb->hscb->tag, scb->flags);
10457 unpause_sequencer(p, FALSE);
10458 return FAILED;
10459 }
10460 if (scb->hscb->tag == aic_inb(p, SCB_TAG))
10461 {
10462 if ( (lastphase == P_MESGOUT) || (lastphase == P_MESGIN) )
10463 {
10464 printk(WARN_LEAD "Device reset, Message buffer "
10465 "in use\n", p->host_no, CTL_OF_SCB(scb));
10466 unpause_sequencer(p, FALSE);
10467 return FAILED;
10468 }
10469
10470 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10471 printk(INFO_LEAD "Device reset message in "
10472 "message buffer\n", p->host_no, CTL_OF_SCB(scb));
10473 scb->flags |= SCB_RESET | SCB_DEVICE_RESET;
10474 aic7xxx_error(cmd) = DID_RESET;
10475 aic_dev->flags |= BUS_DEVICE_RESET_PENDING;
10476 /* Send the abort message to the active SCB. */
10477 aic_outb(p, HOST_MSG, MSG_OUT);
10478 aic_outb(p, lastphase | ATNO, SCSISIGO);
10479 unpause_sequencer(p, FALSE);
10480 spin_unlock_irq(p->host->host_lock);
10481 ssleep(1);
10482 spin_lock_irq(p->host->host_lock);
10483 if(aic_dev->flags & BUS_DEVICE_RESET_PENDING)
10484 return FAILED;
10485 else
10486 return SUCCESS;
10487 }
10488 } /* if (last_phase != P_BUSFREE).....indicates we are idle and can work */
10489 /*
10490 * Simply set the MK_MESSAGE flag and the SEQINT handler will do
10491 * the rest on a reconnect/connect.
10492 */
10493 scb->hscb->control |= MK_MESSAGE;
10494 scb->flags |= SCB_RESET | SCB_DEVICE_RESET;
10495 aic_dev->flags |= BUS_DEVICE_RESET_PENDING;
10496 /*
10497 * Check to see if the command is on the qinfifo. If it is, then we will
10498 * not need to queue the command again since the card should start it soon
10499 */
10500 if (aic7xxx_search_qinfifo(p, cmd->device->channel, cmd->device->id, cmd->device->lun, hscb->tag,
10501 0, TRUE, NULL) == 0)
10502 {
10503 disconnected = TRUE;
10504 if ((hscb_index = aic7xxx_find_scb(p, scb)) != SCB_LIST_NULL)
10505 {
10506 unsigned char scb_control;
10507
10508 aic_outb(p, hscb_index, SCBPTR);
10509 scb_control = aic_inb(p, SCB_CONTROL);
10510 /*
10511 * If the DISCONNECTED bit is not set in SCB_CONTROL, then we are
10512 * actually on the waiting list, not disconnected, and we don't
10513 * need to requeue the command.
10514 */
10515 disconnected = (scb_control & DISCONNECTED);
10516 aic_outb(p, scb_control | MK_MESSAGE, SCB_CONTROL);
10517 }
10518 if (disconnected)
10519 {
10520 /*
10521 * Actually requeue this SCB in case we can select the
10522 * device before it reconnects. This can result in the command
10523 * being on the qinfifo twice, but we don't care because it will
10524 * all get cleaned up if/when the reset takes place.
10525 */
10526 if (aic7xxx_verbose & VERBOSE_RESET_PROCESS)
10527 printk(INFO_LEAD "Queueing device reset command.\n", p->host_no,
10528 CTL_OF_SCB(scb));
10529 p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
10530 if (p->features & AHC_QUEUE_REGS)
10531 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
10532 else
10533 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
10534 scb->flags |= SCB_QUEUED_ABORT;
10535 }
10536 }
10537 aic_outb(p, saved_scbptr, SCBPTR);
10538 unpause_sequencer(p, FALSE);
10539 spin_unlock_irq(p->host->host_lock);
10540 msleep(1000/4);
10541 spin_lock_irq(p->host->host_lock);
10542 if(aic_dev->flags & BUS_DEVICE_RESET_PENDING)
10543 return FAILED;
10544 else
10545 return SUCCESS;
10546}
10547
c1278289 10548static int aic7xxx_bus_device_reset(struct scsi_cmnd *cmd)
94d0e7b8
JG
10549{
10550 int rc;
10551
10552 spin_lock_irq(cmd->device->host->host_lock);
10553 rc = __aic7xxx_bus_device_reset(cmd);
10554 spin_unlock_irq(cmd->device->host->host_lock);
10555
10556 return rc;
10557}
10558
1da177e4
LT
10559
10560/*+F*************************************************************************
10561 * Function:
10562 * aic7xxx_panic_abort
10563 *
10564 * Description:
10565 * Abort the current SCSI command(s).
10566 *-F*************************************************************************/
c1278289 10567static void aic7xxx_panic_abort(struct aic7xxx_host *p, struct scsi_cmnd *cmd)
1da177e4
LT
10568{
10569
10570 printk("aic7xxx driver version %s\n", AIC7XXX_C_VERSION);
10571 printk("Controller type:\n %s\n", board_names[p->board_name_index]);
10572 printk("p->flags=0x%lx, p->chip=0x%x, p->features=0x%x, "
10573 "sequencer %s paused\n",
10574 p->flags, p->chip, p->features,
10575 (aic_inb(p, HCNTRL) & PAUSE) ? "is" : "isn't" );
10576 pause_sequencer(p);
10577 disable_irq(p->irq);
10578 aic7xxx_print_card(p);
10579 aic7xxx_print_scratch_ram(p);
10580 spin_unlock_irq(p->host->host_lock);
10581 for(;;) barrier();
10582}
10583
10584/*+F*************************************************************************
10585 * Function:
10586 * aic7xxx_abort
10587 *
10588 * Description:
10589 * Abort the current SCSI command(s).
10590 *-F*************************************************************************/
c1278289 10591static int __aic7xxx_abort(struct scsi_cmnd *cmd)
1da177e4
LT
10592{
10593 struct aic7xxx_scb *scb = NULL;
10594 struct aic7xxx_host *p;
10595 int found=0, disconnected;
10596 unsigned char saved_hscbptr, hscbptr, scb_control;
10597 struct aic_dev_data *aic_dev;
10598
10599 if(cmd == NULL)
10600 {
10601 printk(KERN_ERR "aic7xxx_abort: called with NULL cmd!\n");
10602 return FAILED;
10603 }
10604 p = (struct aic7xxx_host *)cmd->device->host->hostdata;
10605 aic_dev = AIC_DEV(cmd);
10606 if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10607 scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10608 else
10609 return FAILED;
10610
c7bec5ab 10611 aic7xxx_isr(p);
1da177e4
LT
10612 aic7xxx_done_cmds_complete(p);
10613 /* If the command was already complete or just completed, then we didn't
10614 * do a reset, return FAILED */
10615 if(!(scb->flags & SCB_ACTIVE))
10616 return FAILED;
10617
10618 pause_sequencer(p);
10619
10620 /*
10621 * I added a new config option to the driver: "panic_on_abort" that will
10622 * cause the driver to panic and the machine to stop on the first abort
10623 * or reset call into the driver. At that point, it prints out a lot of
10624 * useful information for me which I can then use to try and debug the
10625 * problem. Simply enable the boot time prompt in order to activate this
10626 * code.
10627 */
10628 if (aic7xxx_panic_on_abort)
10629 aic7xxx_panic_abort(p, cmd);
10630
10631 if (aic7xxx_verbose & VERBOSE_ABORT)
10632 {
10633 printk(INFO_LEAD "Aborting scb %d, flags 0x%x, SEQADDR 0x%x, LASTPHASE "
10634 "0x%x\n",
10635 p->host_no, CTL_OF_SCB(scb), scb->hscb->tag, scb->flags,
10636 aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8),
10637 aic_inb(p, LASTPHASE));
10638 printk(INFO_LEAD "SG_CACHEPTR 0x%x, SG_COUNT %d, SCSISIGI 0x%x\n",
10639 p->host_no, CTL_OF_SCB(scb), (p->features & AHC_ULTRA2) ?
10640 aic_inb(p, SG_CACHEPTR) : 0, aic_inb(p, SG_COUNT),
10641 aic_inb(p, SCSISIGI));
10642 printk(INFO_LEAD "SSTAT0 0x%x, SSTAT1 0x%x, SSTAT2 0x%x\n",
10643 p->host_no, CTL_OF_SCB(scb), aic_inb(p, SSTAT0),
10644 aic_inb(p, SSTAT1), aic_inb(p, SSTAT2));
10645 }
10646
10647 if (scb->flags & SCB_WAITINGQ)
10648 {
10649 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10650 printk(INFO_LEAD "SCB found on waiting list and "
10651 "aborted.\n", p->host_no, CTL_OF_SCB(scb));
10652 scbq_remove(&p->waiting_scbs, scb);
10653 scbq_remove(&aic_dev->delayed_scbs, scb);
10654 aic_dev->active_cmds++;
10655 p->activescbs++;
10656 scb->flags &= ~(SCB_WAITINGQ | SCB_ACTIVE);
10657 scb->flags |= SCB_ABORT | SCB_QUEUED_FOR_DONE;
10658 goto success;
10659 }
10660
10661/*
10662 * We just checked the waiting_q, now for the QINFIFO
10663 */
10664 if ( ((found = aic7xxx_search_qinfifo(p, cmd->device->id, cmd->device->channel,
10665 cmd->device->lun, scb->hscb->tag, SCB_ABORT | SCB_QUEUED_FOR_DONE,
10666 FALSE, NULL)) != 0) &&
10667 (aic7xxx_verbose & VERBOSE_ABORT_PROCESS))
10668 {
10669 printk(INFO_LEAD "SCB found in QINFIFO and aborted.\n", p->host_no,
10670 CTL_OF_SCB(scb));
10671 goto success;
10672 }
10673
10674/*
10675 * QINFIFO, waitingq, completeq done. Next, check WAITING_SCB list in card
10676 */
10677
10678 saved_hscbptr = aic_inb(p, SCBPTR);
10679 if ((hscbptr = aic7xxx_find_scb(p, scb)) != SCB_LIST_NULL)
10680 {
10681 aic_outb(p, hscbptr, SCBPTR);
10682 scb_control = aic_inb(p, SCB_CONTROL);
10683 disconnected = scb_control & DISCONNECTED;
10684 /*
10685 * If the DISCONNECTED bit is not set in SCB_CONTROL, then we are
10686 * either currently active or on the waiting list.
10687 */
10688 if(!disconnected && aic_inb(p, LASTPHASE) == P_BUSFREE) {
10689 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10690 printk(INFO_LEAD "SCB found on hardware waiting"
10691 " list and aborted.\n", p->host_no, CTL_OF_SCB(scb));
10692 /* If we are the only waiting command, stop the selection engine */
10693 if (aic_inb(p, WAITING_SCBH) == hscbptr && aic_inb(p, SCB_NEXT) ==
10694 SCB_LIST_NULL)
10695 {
10696 aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ);
10697 aic_outb(p, CLRSELTIMEO, CLRSINT1);
10698 aic_outb(p, SCB_LIST_NULL, WAITING_SCBH);
10699 }
10700 else
10701 {
10702 unsigned char prev, next;
10703 prev = SCB_LIST_NULL;
10704 next = aic_inb(p, WAITING_SCBH);
10705 while(next != SCB_LIST_NULL)
10706 {
10707 aic_outb(p, next, SCBPTR);
10708 if (next == hscbptr)
10709 {
10710 next = aic_inb(p, SCB_NEXT);
10711 if (prev != SCB_LIST_NULL)
10712 {
10713 aic_outb(p, prev, SCBPTR);
10714 aic_outb(p, next, SCB_NEXT);
10715 }
10716 else
10717 aic_outb(p, next, WAITING_SCBH);
10718 aic_outb(p, hscbptr, SCBPTR);
10719 next = SCB_LIST_NULL;
10720 }
10721 else
10722 {
10723 prev = next;
10724 next = aic_inb(p, SCB_NEXT);
10725 }
10726 }
10727 }
10728 aic_outb(p, SCB_LIST_NULL, SCB_TAG);
10729 aic_outb(p, 0, SCB_CONTROL);
10730 aic7xxx_add_curscb_to_free_list(p);
10731 scb->flags = SCB_ABORT | SCB_QUEUED_FOR_DONE;
10732 goto success;
10733 }
10734 else if (!disconnected)
10735 {
10736 /*
10737 * We are the currently active command
10738 */
10739 if((aic_inb(p, LASTPHASE) == P_MESGIN) ||
10740 (aic_inb(p, LASTPHASE) == P_MESGOUT))
10741 {
10742 /*
10743 * Message buffer busy, unable to abort
10744 */
10745 printk(INFO_LEAD "message buffer busy, unable to abort.\n",
10746 p->host_no, CTL_OF_SCB(scb));
10747 unpause_sequencer(p, FALSE);
10748 return FAILED;
10749 }
10750 /* Fallthrough to below, set ATNO after we set SCB_CONTROL */
10751 }
10752 aic_outb(p, scb_control | MK_MESSAGE, SCB_CONTROL);
10753 if(!disconnected)
10754 {
10755 aic_outb(p, HOST_MSG, MSG_OUT);
10756 aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO);
10757 }
10758 aic_outb(p, saved_hscbptr, SCBPTR);
10759 }
10760 else
10761 {
10762 /*
10763 * The scb isn't in the card at all and it is active and it isn't in
10764 * any of the queues, so it must be disconnected and paged out. Fall
10765 * through to the code below.
10766 */
10767 disconnected = 1;
10768 }
10769
10770 p->flags |= AHC_ABORT_PENDING;
10771 scb->flags |= SCB_QUEUED_ABORT | SCB_ABORT | SCB_RECOVERY_SCB;
10772 scb->hscb->control |= MK_MESSAGE;
10773 if(disconnected)
10774 {
10775 if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)
10776 printk(INFO_LEAD "SCB disconnected. Queueing Abort"
10777 " SCB.\n", p->host_no, CTL_OF_SCB(scb));
10778 p->qinfifo[p->qinfifonext++] = scb->hscb->tag;
10779 if (p->features & AHC_QUEUE_REGS)
10780 aic_outb(p, p->qinfifonext, HNSCB_QOFF);
10781 else
10782 aic_outb(p, p->qinfifonext, KERNEL_QINPOS);
10783 }
10784 unpause_sequencer(p, FALSE);
10785 spin_unlock_irq(p->host->host_lock);
10786 msleep(1000/4);
10787 spin_lock_irq(p->host->host_lock);
10788 if (p->flags & AHC_ABORT_PENDING)
10789 {
10790 if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10791 printk(INFO_LEAD "Abort never delivered, returning FAILED\n", p->host_no,
10792 CTL_OF_CMD(cmd));
10793 p->flags &= ~AHC_ABORT_PENDING;
10794 return FAILED;
10795 }
10796 if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10797 printk(INFO_LEAD "Abort successful.\n", p->host_no, CTL_OF_CMD(cmd));
10798 return SUCCESS;
10799
10800success:
10801 if (aic7xxx_verbose & VERBOSE_ABORT_RETURN)
10802 printk(INFO_LEAD "Abort successful.\n", p->host_no, CTL_OF_CMD(cmd));
10803 aic7xxx_run_done_queue(p, TRUE);
10804 unpause_sequencer(p, FALSE);
10805 return SUCCESS;
10806}
10807
c1278289 10808static int aic7xxx_abort(struct scsi_cmnd *cmd)
8fa728a2
JG
10809{
10810 int rc;
10811
10812 spin_lock_irq(cmd->device->host->host_lock);
10813 rc = __aic7xxx_abort(cmd);
10814 spin_unlock_irq(cmd->device->host->host_lock);
10815
10816 return rc;
10817}
10818
10819
1da177e4
LT
10820/*+F*************************************************************************
10821 * Function:
10822 * aic7xxx_reset
10823 *
10824 * Description:
10825 * Resetting the bus always succeeds - is has to, otherwise the
10826 * kernel will panic! Try a surgical technique - sending a BUS
10827 * DEVICE RESET message - on the offending target before pulling
10828 * the SCSI bus reset line.
10829 *-F*************************************************************************/
c1278289 10830static int aic7xxx_reset(struct scsi_cmnd *cmd)
1da177e4
LT
10831{
10832 struct aic7xxx_scb *scb;
10833 struct aic7xxx_host *p;
10834 struct aic_dev_data *aic_dev;
10835
10836 p = (struct aic7xxx_host *) cmd->device->host->hostdata;
df0ae249
JG
10837 spin_lock_irq(p->host->host_lock);
10838
1da177e4
LT
10839 aic_dev = AIC_DEV(cmd);
10840 if(aic7xxx_position(cmd) < p->scb_data->numscbs)
10841 {
10842 scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]);
10843 if (scb->cmd != cmd)
10844 scb = NULL;
10845 }
10846 else
10847 {
10848 scb = NULL;
10849 }
10850
10851 /*
10852 * I added a new config option to the driver: "panic_on_abort" that will
10853 * cause the driver to panic and the machine to stop on the first abort
10854 * or reset call into the driver. At that point, it prints out a lot of
10855 * useful information for me which I can then use to try and debug the
10856 * problem. Simply enable the boot time prompt in order to activate this
10857 * code.
10858 */
10859 if (aic7xxx_panic_on_abort)
10860 aic7xxx_panic_abort(p, cmd);
10861
10862 pause_sequencer(p);
10863
10864 while((aic_inb(p, INTSTAT) & INT_PEND) && !(p->flags & AHC_IN_ISR))
10865 {
c7bec5ab 10866 aic7xxx_isr(p);
1da177e4
LT
10867 pause_sequencer(p);
10868 }
10869 aic7xxx_done_cmds_complete(p);
10870
10871 if(scb && (scb->cmd == NULL))
10872 {
10873 /*
10874 * We just completed the command when we ran the isr stuff, so we no
10875 * longer have it.
10876 */
10877 unpause_sequencer(p, FALSE);
df0ae249 10878 spin_unlock_irq(p->host->host_lock);
1da177e4
LT
10879 return SUCCESS;
10880 }
10881
10882/*
10883 * By this point, we want to already know what we are going to do and
10884 * only have the following code implement our course of action.
10885 */
10886 aic7xxx_reset_channel(p, cmd->device->channel, TRUE);
10887 if (p->features & AHC_TWIN)
10888 {
10889 aic7xxx_reset_channel(p, cmd->device->channel ^ 0x01, TRUE);
10890 restart_sequencer(p);
10891 }
10892 aic_outb(p, aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1);
10893 aic7xxx_clear_intstat(p);
10894 p->flags &= ~AHC_HANDLING_REQINITS;
10895 p->msg_type = MSG_TYPE_NONE;
10896 p->msg_index = 0;
10897 p->msg_len = 0;
10898 aic7xxx_run_done_queue(p, TRUE);
10899 unpause_sequencer(p, FALSE);
10900 spin_unlock_irq(p->host->host_lock);
10901 ssleep(2);
1da177e4
LT
10902 return SUCCESS;
10903}
10904
10905/*+F*************************************************************************
10906 * Function:
10907 * aic7xxx_biosparam
10908 *
10909 * Description:
10910 * Return the disk geometry for the given SCSI device.
10911 *
10912 * Note:
10913 * This function is broken for today's really large drives and needs
10914 * fixed.
10915 *-F*************************************************************************/
10916static int
10917aic7xxx_biosparam(struct scsi_device *sdev, struct block_device *bdev,
10918 sector_t capacity, int geom[])
10919{
10920 sector_t heads, sectors, cylinders;
10921 int ret;
10922 struct aic7xxx_host *p;
10923 unsigned char *buf;
10924
10925 p = (struct aic7xxx_host *) sdev->host->hostdata;
10926 buf = scsi_bios_ptable(bdev);
10927
10928 if ( buf )
10929 {
10930 ret = scsi_partsize(buf, capacity, &geom[2], &geom[0], &geom[1]);
10931 kfree(buf);
10932 if ( ret != -1 )
10933 return(ret);
10934 }
10935
10936 heads = 64;
10937 sectors = 32;
10938 cylinders = capacity >> 11;
10939
10940 if ((p->flags & AHC_EXTEND_TRANS_A) && (cylinders > 1024))
10941 {
10942 heads = 255;
10943 sectors = 63;
10944 cylinders = capacity >> 14;
10945 if(capacity > (65535 * heads * sectors))
10946 cylinders = 65535;
10947 else
10948 cylinders = ((unsigned int)capacity) / (unsigned int)(heads * sectors);
10949 }
10950
10951 geom[0] = (int)heads;
10952 geom[1] = (int)sectors;
10953 geom[2] = (int)cylinders;
10954
10955 return (0);
10956}
10957
10958/*+F*************************************************************************
10959 * Function:
10960 * aic7xxx_release
10961 *
10962 * Description:
10963 * Free the passed in Scsi_Host memory structures prior to unloading the
10964 * module.
10965 *-F*************************************************************************/
10966static int
10967aic7xxx_release(struct Scsi_Host *host)
10968{
10969 struct aic7xxx_host *p = (struct aic7xxx_host *) host->hostdata;
10970 struct aic7xxx_host *next, *prev;
10971
10972 if(p->irq)
10973 free_irq(p->irq, p);
10974#ifdef MMAPIO
10975 if(p->maddr)
10976 {
10977 iounmap(p->maddr);
10978 }
10979#endif /* MMAPIO */
10980 if(!p->pdev)
10981 release_region(p->base, MAXREG - MINREG);
10982#ifdef CONFIG_PCI
a07f3537 10983 else {
1da177e4 10984 pci_release_regions(p->pdev);
a07f3537
AC
10985 pci_dev_put(p->pdev);
10986 }
1da177e4
LT
10987#endif
10988 prev = NULL;
10989 next = first_aic7xxx;
10990 while(next != NULL)
10991 {
10992 if(next == p)
10993 {
10994 if(prev == NULL)
10995 first_aic7xxx = next->next;
10996 else
10997 prev->next = next->next;
10998 }
10999 else
11000 {
11001 prev = next;
11002 }
11003 next = next->next;
11004 }
11005 aic7xxx_free(p);
11006 return(0);
11007}
11008
11009/*+F*************************************************************************
11010 * Function:
11011 * aic7xxx_print_card
11012 *
11013 * Description:
11014 * Print out all of the control registers on the card
11015 *
11016 * NOTE: This function is not yet safe for use on the VLB and EISA
11017 * controllers, so it isn't used on those controllers at all.
11018 *-F*************************************************************************/
11019static void
11020aic7xxx_print_card(struct aic7xxx_host *p)
11021{
11022 int i, j, k, chip;
11023 static struct register_ranges {
11024 int num_ranges;
11025 int range_val[32];
11026 } cards_ds[] = {
11027 { 0, {0,} }, /* none */
11028 {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1f, 0x1f, 0x60, 0x60, /*7771*/
11029 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9b, 0x9f} },
11030 { 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7850*/
11031 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
11032 { 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7860*/
11033 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
11034 {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1c, 0x1f, 0x60, 0x60, /*7870*/
11035 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
11036 {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1a, 0x1c, 0x1f, 0x60, 0x60, /*7880*/
11037 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} },
11038 {16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7890*/
11039 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f,
11040 0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc,
11041 0xfe, 0xff} },
11042 {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1b, 0x1f, 0x60, 0x60, /*7895*/
11043 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a,
11044 0x9f, 0x9f, 0xe0, 0xf1} },
11045 {16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7896*/
11046 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f,
11047 0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc,
11048 0xfe, 0xff} },
11049 {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7892*/
11050 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9c, 0x9f,
11051 0xe0, 0xf1, 0xf4, 0xfc} },
11052 {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7899*/
11053 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9c, 0x9f,
11054 0xe0, 0xf1, 0xf4, 0xfc} },
11055 };
11056 chip = p->chip & AHC_CHIPID_MASK;
11057 printk("%s at ",
11058 board_names[p->board_name_index]);
11059 switch(p->chip & ~AHC_CHIPID_MASK)
11060 {
11061 case AHC_VL:
11062 printk("VLB Slot %d.\n", p->pci_device_fn);
11063 break;
11064 case AHC_EISA:
11065 printk("EISA Slot %d.\n", p->pci_device_fn);
11066 break;
11067 case AHC_PCI:
11068 default:
11069 printk("PCI %d/%d/%d.\n", p->pci_bus, PCI_SLOT(p->pci_device_fn),
11070 PCI_FUNC(p->pci_device_fn));
11071 break;
11072 }
11073
11074 /*
11075 * the registers on the card....
11076 */
11077 printk("Card Dump:\n");
11078 k = 0;
11079 for(i=0; i<cards_ds[chip].num_ranges; i++)
11080 {
11081 for(j = cards_ds[chip].range_val[ i * 2 ];
11082 j <= cards_ds[chip].range_val[ i * 2 + 1 ] ;
11083 j++)
11084 {
11085 printk("%02x:%02x ", j, aic_inb(p, j));
11086 if(++k == 13)
11087 {
11088 printk("\n");
11089 k=0;
11090 }
11091 }
11092 }
11093 if(k != 0)
11094 printk("\n");
11095
11096 /*
11097 * If this was an Ultra2 controller, then we just hosed the card in terms
11098 * of the QUEUE REGS. This function is only called at init time or by
11099 * the panic_abort function, so it's safe to assume a generic init time
11100 * setting here
11101 */
11102
11103 if(p->features & AHC_QUEUE_REGS)
11104 {
11105 aic_outb(p, 0, SDSCB_QOFF);
11106 aic_outb(p, 0, SNSCB_QOFF);
11107 aic_outb(p, 0, HNSCB_QOFF);
11108 }
11109
11110}
11111
11112/*+F*************************************************************************
11113 * Function:
11114 * aic7xxx_print_scratch_ram
11115 *
11116 * Description:
11117 * Print out the scratch RAM values on the card.
11118 *-F*************************************************************************/
11119static void
11120aic7xxx_print_scratch_ram(struct aic7xxx_host *p)
11121{
11122 int i, k;
11123
11124 k = 0;
11125 printk("Scratch RAM:\n");
11126 for(i = SRAM_BASE; i < SEQCTL; i++)
11127 {
11128 printk("%02x:%02x ", i, aic_inb(p, i));
11129 if(++k == 13)
11130 {
11131 printk("\n");
11132 k=0;
11133 }
11134 }
11135 if (p->features & AHC_MORE_SRAM)
11136 {
11137 for(i = TARG_OFFSET; i < 0x80; i++)
11138 {
11139 printk("%02x:%02x ", i, aic_inb(p, i));
11140 if(++k == 13)
11141 {
11142 printk("\n");
11143 k=0;
11144 }
11145 }
11146 }
11147 printk("\n");
11148}
11149
11150
11151#include "aic7xxx_old/aic7xxx_proc.c"
11152
11153MODULE_LICENSE("Dual BSD/GPL");
11154MODULE_VERSION(AIC7XXX_H_VERSION);
11155
11156
d0be4a7d 11157static struct scsi_host_template driver_template = {
1da177e4
LT
11158 .proc_info = aic7xxx_proc_info,
11159 .detect = aic7xxx_detect,
11160 .release = aic7xxx_release,
11161 .info = aic7xxx_info,
11162 .queuecommand = aic7xxx_queue,
11163 .slave_alloc = aic7xxx_slave_alloc,
11164 .slave_configure = aic7xxx_slave_configure,
11165 .slave_destroy = aic7xxx_slave_destroy,
11166 .bios_param = aic7xxx_biosparam,
11167 .eh_abort_handler = aic7xxx_abort,
11168 .eh_device_reset_handler = aic7xxx_bus_device_reset,
11169 .eh_host_reset_handler = aic7xxx_reset,
11170 .can_queue = 255,
11171 .this_id = -1,
11172 .max_sectors = 2048,
11173 .cmd_per_lun = 3,
11174 .use_clustering = ENABLE_CLUSTERING,
11175};
11176
11177#include "scsi_module.c"
11178
11179/*
11180 * Overrides for Emacs so that we almost follow Linus's tabbing style.
11181 * Emacs will notice this stuff at the end of the file and automatically
11182 * adjust the settings for this buffer only. This must remain at the end
11183 * of the file.
11184 * ---------------------------------------------------------------------------
11185 * Local variables:
11186 * c-indent-level: 2
11187 * c-brace-imaginary-offset: 0
11188 * c-brace-offset: -2
11189 * c-argdecl-indent: 2
11190 * c-label-offset: -2
11191 * c-continued-statement-offset: 2
11192 * c-continued-brace-offset: 0
11193 * indent-tabs-mode: nil
11194 * tab-width: 8
11195 * End:
11196 */