ab8500_bm: Recharge condition not optimal for battery
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / power / ab8500_fg.c
CommitLineData
13151631
AM
1/*
2 * Copyright (C) ST-Ericsson AB 2012
3 *
4 * Main and Back-up battery management driver.
5 *
6 * Note: Backup battery management is required in case of Li-Ion battery and not
7 * for capacitive battery. HREF boards have capacitive battery and hence backup
8 * battery management is not used and the supported code is available in this
9 * driver.
10 *
11 * License Terms: GNU General Public License v2
12 * Author:
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
16 */
17
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/device.h>
21#include <linux/interrupt.h>
22#include <linux/platform_device.h>
23#include <linux/power_supply.h>
24#include <linux/kobject.h>
13151631 25#include <linux/slab.h>
13151631 26#include <linux/delay.h>
13151631 27#include <linux/time.h>
e0f1abeb 28#include <linux/of.h>
13151631 29#include <linux/completion.h>
e0f1abeb
R
30#include <linux/mfd/core.h>
31#include <linux/mfd/abx500.h>
32#include <linux/mfd/abx500/ab8500.h>
33#include <linux/mfd/abx500/ab8500-bm.h>
34#include <linux/mfd/abx500/ab8500-gpadc.h>
13151631
AM
35
36#define MILLI_TO_MICRO 1000
37#define FG_LSB_IN_MA 1627
38#define QLSB_NANO_AMP_HOURS_X10 1129
39#define INS_CURR_TIMEOUT (3 * HZ)
40
41#define SEC_TO_SAMPLE(S) (S * 4)
42
43#define NBR_AVG_SAMPLES 20
44
45#define LOW_BAT_CHECK_INTERVAL (2 * HZ)
46
47#define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
48#define BATT_OK_MIN 2360 /* mV */
49#define BATT_OK_INCREMENT 50 /* mV */
50#define BATT_OK_MAX_NR_INCREMENTS 0xE
51
52/* FG constants */
53#define BATT_OVV 0x01
54
55#define interpolate(x, x1, y1, x2, y2) \
56 ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
57
58#define to_ab8500_fg_device_info(x) container_of((x), \
59 struct ab8500_fg, fg_psy);
60
61/**
62 * struct ab8500_fg_interrupts - ab8500 fg interupts
63 * @name: name of the interrupt
64 * @isr function pointer to the isr
65 */
66struct ab8500_fg_interrupts {
67 char *name;
68 irqreturn_t (*isr)(int irq, void *data);
69};
70
71enum ab8500_fg_discharge_state {
72 AB8500_FG_DISCHARGE_INIT,
73 AB8500_FG_DISCHARGE_INITMEASURING,
74 AB8500_FG_DISCHARGE_INIT_RECOVERY,
75 AB8500_FG_DISCHARGE_RECOVERY,
76 AB8500_FG_DISCHARGE_READOUT_INIT,
77 AB8500_FG_DISCHARGE_READOUT,
78 AB8500_FG_DISCHARGE_WAKEUP,
79};
80
81static char *discharge_state[] = {
82 "DISCHARGE_INIT",
83 "DISCHARGE_INITMEASURING",
84 "DISCHARGE_INIT_RECOVERY",
85 "DISCHARGE_RECOVERY",
86 "DISCHARGE_READOUT_INIT",
87 "DISCHARGE_READOUT",
88 "DISCHARGE_WAKEUP",
89};
90
91enum ab8500_fg_charge_state {
92 AB8500_FG_CHARGE_INIT,
93 AB8500_FG_CHARGE_READOUT,
94};
95
96static char *charge_state[] = {
97 "CHARGE_INIT",
98 "CHARGE_READOUT",
99};
100
101enum ab8500_fg_calibration_state {
102 AB8500_FG_CALIB_INIT,
103 AB8500_FG_CALIB_WAIT,
104 AB8500_FG_CALIB_END,
105};
106
107struct ab8500_fg_avg_cap {
108 int avg;
109 int samples[NBR_AVG_SAMPLES];
110 __kernel_time_t time_stamps[NBR_AVG_SAMPLES];
111 int pos;
112 int nbr_samples;
113 int sum;
114};
115
ea402401
MC
116struct ab8500_fg_cap_scaling {
117 bool enable;
118 int cap_to_scale[2];
119 int disable_cap_level;
120 int scaled_cap;
121};
122
13151631
AM
123struct ab8500_fg_battery_capacity {
124 int max_mah_design;
125 int max_mah;
126 int mah;
127 int permille;
128 int level;
129 int prev_mah;
130 int prev_percent;
131 int prev_level;
132 int user_mah;
ea402401 133 struct ab8500_fg_cap_scaling cap_scale;
13151631
AM
134};
135
136struct ab8500_fg_flags {
137 bool fg_enabled;
138 bool conv_done;
139 bool charging;
140 bool fully_charged;
141 bool force_full;
142 bool low_bat_delay;
143 bool low_bat;
144 bool bat_ovv;
145 bool batt_unknown;
146 bool calibrate;
147 bool user_cap;
148 bool batt_id_received;
149};
150
151struct inst_curr_result_list {
152 struct list_head list;
153 int *result;
154};
155
156/**
157 * struct ab8500_fg - ab8500 FG device information
158 * @dev: Pointer to the structure device
159 * @node: a list of AB8500 FGs, hence prepared for reentrance
160 * @irq holds the CCEOC interrupt number
161 * @vbat: Battery voltage in mV
162 * @vbat_nom: Nominal battery voltage in mV
163 * @inst_curr: Instantenous battery current in mA
164 * @avg_curr: Average battery current in mA
165 * @bat_temp battery temperature
166 * @fg_samples: Number of samples used in the FG accumulation
167 * @accu_charge: Accumulated charge from the last conversion
168 * @recovery_cnt: Counter for recovery mode
169 * @high_curr_cnt: Counter for high current mode
170 * @init_cnt: Counter for init mode
3988a4df 171 * @nbr_cceoc_irq_cnt Counter for number of CCEOC irqs received since enabled
13151631
AM
172 * @recovery_needed: Indicate if recovery is needed
173 * @high_curr_mode: Indicate if we're in high current mode
174 * @init_capacity: Indicate if initial capacity measuring should be done
175 * @turn_off_fg: True if fg was off before current measurement
176 * @calib_state State during offset calibration
177 * @discharge_state: Current discharge state
178 * @charge_state: Current charge state
3988a4df 179 * @ab8500_fg_started Completion struct used for the instant current start
13151631
AM
180 * @ab8500_fg_complete Completion struct used for the instant current reading
181 * @flags: Structure for information about events triggered
182 * @bat_cap: Structure for battery capacity specific parameters
183 * @avg_cap: Average capacity filter
184 * @parent: Pointer to the struct ab8500
185 * @gpadc: Pointer to the struct gpadc
b0284de0 186 * @bm: Platform specific battery management information
13151631
AM
187 * @fg_psy: Structure that holds the FG specific battery properties
188 * @fg_wq: Work queue for running the FG algorithm
189 * @fg_periodic_work: Work to run the FG algorithm periodically
190 * @fg_low_bat_work: Work to check low bat condition
191 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
192 * @fg_work: Work to run the FG algorithm instantly
193 * @fg_acc_cur_work: Work to read the FG accumulator
194 * @fg_check_hw_failure_work: Work for checking HW state
195 * @cc_lock: Mutex for locking the CC
196 * @fg_kobject: Structure of type kobject
197 */
198struct ab8500_fg {
199 struct device *dev;
200 struct list_head node;
201 int irq;
202 int vbat;
203 int vbat_nom;
204 int inst_curr;
205 int avg_curr;
206 int bat_temp;
207 int fg_samples;
208 int accu_charge;
209 int recovery_cnt;
210 int high_curr_cnt;
211 int init_cnt;
3988a4df 212 int nbr_cceoc_irq_cnt;
13151631
AM
213 bool recovery_needed;
214 bool high_curr_mode;
215 bool init_capacity;
216 bool turn_off_fg;
217 enum ab8500_fg_calibration_state calib_state;
218 enum ab8500_fg_discharge_state discharge_state;
219 enum ab8500_fg_charge_state charge_state;
3988a4df 220 struct completion ab8500_fg_started;
13151631
AM
221 struct completion ab8500_fg_complete;
222 struct ab8500_fg_flags flags;
223 struct ab8500_fg_battery_capacity bat_cap;
224 struct ab8500_fg_avg_cap avg_cap;
225 struct ab8500 *parent;
226 struct ab8500_gpadc *gpadc;
b0284de0 227 struct abx500_bm_data *bm;
13151631
AM
228 struct power_supply fg_psy;
229 struct workqueue_struct *fg_wq;
230 struct delayed_work fg_periodic_work;
231 struct delayed_work fg_low_bat_work;
232 struct delayed_work fg_reinit_work;
233 struct work_struct fg_work;
234 struct work_struct fg_acc_cur_work;
235 struct delayed_work fg_check_hw_failure_work;
236 struct mutex cc_lock;
237 struct kobject fg_kobject;
238};
239static LIST_HEAD(ab8500_fg_list);
240
241/**
242 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
243 * (i.e. the first fuel gauge in the instance list)
244 */
245struct ab8500_fg *ab8500_fg_get(void)
246{
247 struct ab8500_fg *fg;
248
249 if (list_empty(&ab8500_fg_list))
250 return NULL;
251
252 fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
253 return fg;
254}
255
256/* Main battery properties */
257static enum power_supply_property ab8500_fg_props[] = {
258 POWER_SUPPLY_PROP_VOLTAGE_NOW,
259 POWER_SUPPLY_PROP_CURRENT_NOW,
260 POWER_SUPPLY_PROP_CURRENT_AVG,
261 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
262 POWER_SUPPLY_PROP_ENERGY_FULL,
263 POWER_SUPPLY_PROP_ENERGY_NOW,
264 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
265 POWER_SUPPLY_PROP_CHARGE_FULL,
266 POWER_SUPPLY_PROP_CHARGE_NOW,
267 POWER_SUPPLY_PROP_CAPACITY,
268 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
269};
270
271/*
272 * This array maps the raw hex value to lowbat voltage used by the AB8500
273 * Values taken from the UM0836
274 */
275static int ab8500_fg_lowbat_voltage_map[] = {
276 2300 ,
277 2325 ,
278 2350 ,
279 2375 ,
280 2400 ,
281 2425 ,
282 2450 ,
283 2475 ,
284 2500 ,
285 2525 ,
286 2550 ,
287 2575 ,
288 2600 ,
289 2625 ,
290 2650 ,
291 2675 ,
292 2700 ,
293 2725 ,
294 2750 ,
295 2775 ,
296 2800 ,
297 2825 ,
298 2850 ,
299 2875 ,
300 2900 ,
301 2925 ,
302 2950 ,
303 2975 ,
304 3000 ,
305 3025 ,
306 3050 ,
307 3075 ,
308 3100 ,
309 3125 ,
310 3150 ,
311 3175 ,
312 3200 ,
313 3225 ,
314 3250 ,
315 3275 ,
316 3300 ,
317 3325 ,
318 3350 ,
319 3375 ,
320 3400 ,
321 3425 ,
322 3450 ,
323 3475 ,
324 3500 ,
325 3525 ,
326 3550 ,
327 3575 ,
328 3600 ,
329 3625 ,
330 3650 ,
331 3675 ,
332 3700 ,
333 3725 ,
334 3750 ,
335 3775 ,
336 3800 ,
337 3825 ,
338 3850 ,
339 3850 ,
340};
341
342static u8 ab8500_volt_to_regval(int voltage)
343{
344 int i;
345
346 if (voltage < ab8500_fg_lowbat_voltage_map[0])
347 return 0;
348
349 for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
350 if (voltage < ab8500_fg_lowbat_voltage_map[i])
351 return (u8) i - 1;
352 }
353
354 /* If not captured above, return index of last element */
355 return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
356}
357
358/**
359 * ab8500_fg_is_low_curr() - Low or high current mode
360 * @di: pointer to the ab8500_fg structure
361 * @curr: the current to base or our decision on
362 *
363 * Low current mode if the current consumption is below a certain threshold
364 */
365static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
366{
367 /*
368 * We want to know if we're in low current mode
369 */
b0284de0 370 if (curr > -di->bm->fg_params->high_curr_threshold)
13151631
AM
371 return true;
372 else
373 return false;
374}
375
376/**
377 * ab8500_fg_add_cap_sample() - Add capacity to average filter
378 * @di: pointer to the ab8500_fg structure
379 * @sample: the capacity in mAh to add to the filter
380 *
381 * A capacity is added to the filter and a new mean capacity is calculated and
382 * returned
383 */
384static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
385{
386 struct timespec ts;
387 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
388
389 getnstimeofday(&ts);
390
391 do {
392 avg->sum += sample - avg->samples[avg->pos];
393 avg->samples[avg->pos] = sample;
394 avg->time_stamps[avg->pos] = ts.tv_sec;
395 avg->pos++;
396
397 if (avg->pos == NBR_AVG_SAMPLES)
398 avg->pos = 0;
399
400 if (avg->nbr_samples < NBR_AVG_SAMPLES)
401 avg->nbr_samples++;
402
403 /*
404 * Check the time stamp for each sample. If too old,
405 * replace with latest sample
406 */
407 } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
408
409 avg->avg = avg->sum / avg->nbr_samples;
410
411 return avg->avg;
412}
413
414/**
415 * ab8500_fg_clear_cap_samples() - Clear average filter
416 * @di: pointer to the ab8500_fg structure
417 *
418 * The capacity filter is is reset to zero.
419 */
420static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
421{
422 int i;
423 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
424
425 avg->pos = 0;
426 avg->nbr_samples = 0;
427 avg->sum = 0;
428 avg->avg = 0;
429
430 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
431 avg->samples[i] = 0;
432 avg->time_stamps[i] = 0;
433 }
434}
435
436/**
437 * ab8500_fg_fill_cap_sample() - Fill average filter
438 * @di: pointer to the ab8500_fg structure
439 * @sample: the capacity in mAh to fill the filter with
440 *
441 * The capacity filter is filled with a capacity in mAh
442 */
443static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
444{
445 int i;
446 struct timespec ts;
447 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
448
449 getnstimeofday(&ts);
450
451 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
452 avg->samples[i] = sample;
453 avg->time_stamps[i] = ts.tv_sec;
454 }
455
456 avg->pos = 0;
457 avg->nbr_samples = NBR_AVG_SAMPLES;
458 avg->sum = sample * NBR_AVG_SAMPLES;
459 avg->avg = sample;
460}
461
462/**
463 * ab8500_fg_coulomb_counter() - enable coulomb counter
464 * @di: pointer to the ab8500_fg structure
465 * @enable: enable/disable
466 *
467 * Enable/Disable coulomb counter.
468 * On failure returns negative value.
469 */
470static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
471{
472 int ret = 0;
473 mutex_lock(&di->cc_lock);
474 if (enable) {
475 /* To be able to reprogram the number of samples, we have to
476 * first stop the CC and then enable it again */
477 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
478 AB8500_RTC_CC_CONF_REG, 0x00);
479 if (ret)
480 goto cc_err;
481
482 /* Program the samples */
483 ret = abx500_set_register_interruptible(di->dev,
484 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
485 di->fg_samples);
486 if (ret)
487 goto cc_err;
488
489 /* Start the CC */
490 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
491 AB8500_RTC_CC_CONF_REG,
492 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
493 if (ret)
494 goto cc_err;
495
496 di->flags.fg_enabled = true;
497 } else {
498 /* Clear any pending read requests */
e32ad07c
KK
499 ret = abx500_mask_and_set_register_interruptible(di->dev,
500 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
501 (RESET_ACCU | READ_REQ), 0);
13151631
AM
502 if (ret)
503 goto cc_err;
504
505 ret = abx500_set_register_interruptible(di->dev,
506 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
507 if (ret)
508 goto cc_err;
509
510 /* Stop the CC */
511 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
512 AB8500_RTC_CC_CONF_REG, 0);
513 if (ret)
514 goto cc_err;
515
516 di->flags.fg_enabled = false;
517
518 }
519 dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
520 enable, di->fg_samples);
521
522 mutex_unlock(&di->cc_lock);
523
524 return ret;
525cc_err:
526 dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
527 mutex_unlock(&di->cc_lock);
528 return ret;
529}
530
531/**
532 * ab8500_fg_inst_curr_start() - start battery instantaneous current
533 * @di: pointer to the ab8500_fg structure
534 *
535 * Returns 0 or error code
536 * Note: This is part "one" and has to be called before
537 * ab8500_fg_inst_curr_finalize()
538 */
3988a4df 539int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
13151631
AM
540{
541 u8 reg_val;
542 int ret;
543
544 mutex_lock(&di->cc_lock);
545
3988a4df 546 di->nbr_cceoc_irq_cnt = 0;
13151631
AM
547 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
548 AB8500_RTC_CC_CONF_REG, &reg_val);
549 if (ret < 0)
550 goto fail;
551
552 if (!(reg_val & CC_PWR_UP_ENA)) {
553 dev_dbg(di->dev, "%s Enable FG\n", __func__);
554 di->turn_off_fg = true;
555
556 /* Program the samples */
557 ret = abx500_set_register_interruptible(di->dev,
558 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
559 SEC_TO_SAMPLE(10));
560 if (ret)
561 goto fail;
562
563 /* Start the CC */
564 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
565 AB8500_RTC_CC_CONF_REG,
566 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
567 if (ret)
568 goto fail;
569 } else {
570 di->turn_off_fg = false;
571 }
572
573 /* Return and WFI */
3988a4df 574 INIT_COMPLETION(di->ab8500_fg_started);
13151631
AM
575 INIT_COMPLETION(di->ab8500_fg_complete);
576 enable_irq(di->irq);
577
578 /* Note: cc_lock is still locked */
579 return 0;
580fail:
581 mutex_unlock(&di->cc_lock);
582 return ret;
583}
584
3988a4df
JB
585/**
586 * ab8500_fg_inst_curr_started() - check if fg conversion has started
587 * @di: pointer to the ab8500_fg structure
588 *
589 * Returns 1 if conversion started, 0 if still waiting
590 */
591int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
592{
593 return completion_done(&di->ab8500_fg_started);
594}
595
13151631
AM
596/**
597 * ab8500_fg_inst_curr_done() - check if fg conversion is done
598 * @di: pointer to the ab8500_fg structure
599 *
600 * Returns 1 if conversion done, 0 if still waiting
601 */
602int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
603{
604 return completion_done(&di->ab8500_fg_complete);
605}
606
607/**
608 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
609 * @di: pointer to the ab8500_fg structure
610 * @res: battery instantenous current(on success)
611 *
612 * Returns 0 or an error code
613 * Note: This is part "two" and has to be called at earliest 250 ms
614 * after ab8500_fg_inst_curr_start()
615 */
616int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
617{
618 u8 low, high;
619 int val;
620 int ret;
621 int timeout;
622
623 if (!completion_done(&di->ab8500_fg_complete)) {
3988a4df
JB
624 timeout = wait_for_completion_timeout(
625 &di->ab8500_fg_complete,
13151631
AM
626 INS_CURR_TIMEOUT);
627 dev_dbg(di->dev, "Finalize time: %d ms\n",
628 ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
629 if (!timeout) {
630 ret = -ETIME;
631 disable_irq(di->irq);
3988a4df 632 di->nbr_cceoc_irq_cnt = 0;
13151631
AM
633 dev_err(di->dev, "completion timed out [%d]\n",
634 __LINE__);
635 goto fail;
636 }
637 }
638
639 disable_irq(di->irq);
3988a4df 640 di->nbr_cceoc_irq_cnt = 0;
13151631
AM
641
642 ret = abx500_mask_and_set_register_interruptible(di->dev,
643 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
644 READ_REQ, READ_REQ);
645
646 /* 100uS between read request and read is needed */
647 usleep_range(100, 100);
648
649 /* Read CC Sample conversion value Low and high */
650 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
651 AB8500_GASG_CC_SMPL_CNVL_REG, &low);
652 if (ret < 0)
653 goto fail;
654
655 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
656 AB8500_GASG_CC_SMPL_CNVH_REG, &high);
657 if (ret < 0)
658 goto fail;
659
660 /*
661 * negative value for Discharging
662 * convert 2's compliment into decimal
663 */
664 if (high & 0x10)
665 val = (low | (high << 8) | 0xFFFFE000);
666 else
667 val = (low | (high << 8));
668
669 /*
670 * Convert to unit value in mA
671 * Full scale input voltage is
672 * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
673 * Given a 250ms conversion cycle time the LSB corresponds
674 * to 112.9 nAh. Convert to current by dividing by the conversion
675 * time in hours (250ms = 1 / (3600 * 4)h)
676 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
677 */
678 val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
b0284de0 679 (1000 * di->bm->fg_res);
13151631
AM
680
681 if (di->turn_off_fg) {
682 dev_dbg(di->dev, "%s Disable FG\n", __func__);
683
684 /* Clear any pending read requests */
685 ret = abx500_set_register_interruptible(di->dev,
686 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
687 if (ret)
688 goto fail;
689
690 /* Stop the CC */
691 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
692 AB8500_RTC_CC_CONF_REG, 0);
693 if (ret)
694 goto fail;
695 }
696 mutex_unlock(&di->cc_lock);
697 (*res) = val;
698
699 return 0;
700fail:
701 mutex_unlock(&di->cc_lock);
702 return ret;
703}
704
705/**
706 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
707 * @di: pointer to the ab8500_fg structure
708 * @res: battery instantenous current(on success)
709 *
710 * Returns 0 else error code
711 */
712int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
713{
714 int ret;
3988a4df 715 int timeout;
13151631
AM
716 int res = 0;
717
718 ret = ab8500_fg_inst_curr_start(di);
719 if (ret) {
720 dev_err(di->dev, "Failed to initialize fg_inst\n");
721 return 0;
722 }
723
3988a4df
JB
724 /* Wait for CC to actually start */
725 if (!completion_done(&di->ab8500_fg_started)) {
726 timeout = wait_for_completion_timeout(
727 &di->ab8500_fg_started,
728 INS_CURR_TIMEOUT);
729 dev_dbg(di->dev, "Start time: %d ms\n",
730 ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
731 if (!timeout) {
732 ret = -ETIME;
733 dev_err(di->dev, "completion timed out [%d]\n",
734 __LINE__);
735 goto fail;
736 }
737 }
738
13151631
AM
739 ret = ab8500_fg_inst_curr_finalize(di, &res);
740 if (ret) {
741 dev_err(di->dev, "Failed to finalize fg_inst\n");
742 return 0;
743 }
744
3988a4df 745 dev_dbg(di->dev, "%s instant current: %d", __func__, res);
13151631 746 return res;
3988a4df
JB
747fail:
748 mutex_unlock(&di->cc_lock);
749 return ret;
13151631
AM
750}
751
752/**
753 * ab8500_fg_acc_cur_work() - average battery current
754 * @work: pointer to the work_struct structure
755 *
756 * Updated the average battery current obtained from the
757 * coulomb counter.
758 */
759static void ab8500_fg_acc_cur_work(struct work_struct *work)
760{
761 int val;
762 int ret;
763 u8 low, med, high;
764
765 struct ab8500_fg *di = container_of(work,
766 struct ab8500_fg, fg_acc_cur_work);
767
768 mutex_lock(&di->cc_lock);
769 ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
770 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
771 if (ret)
772 goto exit;
773
774 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
775 AB8500_GASG_CC_NCOV_ACCU_LOW, &low);
776 if (ret < 0)
777 goto exit;
778
779 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
780 AB8500_GASG_CC_NCOV_ACCU_MED, &med);
781 if (ret < 0)
782 goto exit;
783
784 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
785 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
786 if (ret < 0)
787 goto exit;
788
789 /* Check for sign bit in case of negative value, 2's compliment */
790 if (high & 0x10)
791 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
792 else
793 val = (low | (med << 8) | (high << 16));
794
795 /*
796 * Convert to uAh
797 * Given a 250ms conversion cycle time the LSB corresponds
798 * to 112.9 nAh.
799 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
800 */
801 di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
b0284de0 802 (100 * di->bm->fg_res);
13151631
AM
803
804 /*
805 * Convert to unit value in mA
806 * Full scale input voltage is
807 * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
808 * Given a 250ms conversion cycle time the LSB corresponds
809 * to 112.9 nAh. Convert to current by dividing by the conversion
810 * time in hours (= samples / (3600 * 4)h)
811 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
812 */
813 di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
b0284de0 814 (1000 * di->bm->fg_res * (di->fg_samples / 4));
13151631
AM
815
816 di->flags.conv_done = true;
817
818 mutex_unlock(&di->cc_lock);
819
820 queue_work(di->fg_wq, &di->fg_work);
821
822 return;
823exit:
824 dev_err(di->dev,
825 "Failed to read or write gas gauge registers\n");
826 mutex_unlock(&di->cc_lock);
827 queue_work(di->fg_wq, &di->fg_work);
828}
829
830/**
831 * ab8500_fg_bat_voltage() - get battery voltage
832 * @di: pointer to the ab8500_fg structure
833 *
834 * Returns battery voltage(on success) else error code
835 */
836static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
837{
838 int vbat;
839 static int prev;
840
841 vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
842 if (vbat < 0) {
843 dev_err(di->dev,
844 "%s gpadc conversion failed, using previous value\n",
845 __func__);
846 return prev;
847 }
848
849 prev = vbat;
850 return vbat;
851}
852
853/**
854 * ab8500_fg_volt_to_capacity() - Voltage based capacity
855 * @di: pointer to the ab8500_fg structure
856 * @voltage: The voltage to convert to a capacity
857 *
858 * Returns battery capacity in per mille based on voltage
859 */
860static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
861{
862 int i, tbl_size;
450ceb2b 863 struct abx500_v_to_cap *tbl;
13151631
AM
864 int cap = 0;
865
b0284de0
LJ
866 tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
867 tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
13151631
AM
868
869 for (i = 0; i < tbl_size; ++i) {
870 if (voltage > tbl[i].voltage)
871 break;
872 }
873
874 if ((i > 0) && (i < tbl_size)) {
875 cap = interpolate(voltage,
876 tbl[i].voltage,
877 tbl[i].capacity * 10,
878 tbl[i-1].voltage,
879 tbl[i-1].capacity * 10);
880 } else if (i == 0) {
881 cap = 1000;
882 } else {
883 cap = 0;
884 }
885
886 dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
887 __func__, voltage, cap);
888
889 return cap;
890}
891
892/**
893 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
894 * @di: pointer to the ab8500_fg structure
895 *
896 * Returns battery capacity based on battery voltage that is not compensated
897 * for the voltage drop due to the load
898 */
899static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
900{
901 di->vbat = ab8500_fg_bat_voltage(di);
902 return ab8500_fg_volt_to_capacity(di, di->vbat);
903}
904
905/**
906 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
907 * @di: pointer to the ab8500_fg structure
908 *
909 * Returns battery inner resistance added with the fuel gauge resistor value
910 * to get the total resistance in the whole link from gnd to bat+ node.
911 */
912static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
913{
914 int i, tbl_size;
915 struct batres_vs_temp *tbl;
916 int resist = 0;
917
b0284de0
LJ
918 tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
919 tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
13151631
AM
920
921 for (i = 0; i < tbl_size; ++i) {
922 if (di->bat_temp / 10 > tbl[i].temp)
923 break;
924 }
925
926 if ((i > 0) && (i < tbl_size)) {
927 resist = interpolate(di->bat_temp / 10,
928 tbl[i].temp,
929 tbl[i].resist,
930 tbl[i-1].temp,
931 tbl[i-1].resist);
932 } else if (i == 0) {
933 resist = tbl[0].resist;
934 } else {
935 resist = tbl[tbl_size - 1].resist;
936 }
937
938 dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
939 " fg resistance %d, total: %d (mOhm)\n",
b0284de0
LJ
940 __func__, di->bat_temp, resist, di->bm->fg_res / 10,
941 (di->bm->fg_res / 10) + resist);
13151631
AM
942
943 /* fg_res variable is in 0.1mOhm */
b0284de0 944 resist += di->bm->fg_res / 10;
13151631
AM
945
946 return resist;
947}
948
949/**
950 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
951 * @di: pointer to the ab8500_fg structure
952 *
953 * Returns battery capacity based on battery voltage that is load compensated
954 * for the voltage drop
955 */
956static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
957{
958 int vbat_comp, res;
959 int i = 0;
960 int vbat = 0;
961
962 ab8500_fg_inst_curr_start(di);
963
964 do {
965 vbat += ab8500_fg_bat_voltage(di);
966 i++;
9a0bd070 967 usleep_range(5000, 6000);
13151631
AM
968 } while (!ab8500_fg_inst_curr_done(di));
969
970 ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
971
972 di->vbat = vbat / i;
973 res = ab8500_fg_battery_resistance(di);
974
975 /* Use Ohms law to get the load compensated voltage */
976 vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
977
978 dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
979 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
980 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
981
982 return ab8500_fg_volt_to_capacity(di, vbat_comp);
983}
984
985/**
986 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
987 * @di: pointer to the ab8500_fg structure
988 * @cap_mah: capacity in mAh
989 *
990 * Converts capacity in mAh to capacity in permille
991 */
992static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
993{
994 return (cap_mah * 1000) / di->bat_cap.max_mah_design;
995}
996
997/**
998 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
999 * @di: pointer to the ab8500_fg structure
1000 * @cap_pm: capacity in permille
1001 *
1002 * Converts capacity in permille to capacity in mAh
1003 */
1004static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1005{
1006 return cap_pm * di->bat_cap.max_mah_design / 1000;
1007}
1008
1009/**
1010 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1011 * @di: pointer to the ab8500_fg structure
1012 * @cap_mah: capacity in mAh
1013 *
1014 * Converts capacity in mAh to capacity in uWh
1015 */
1016static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1017{
1018 u64 div_res;
1019 u32 div_rem;
1020
1021 div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1022 div_rem = do_div(div_res, 1000);
1023
1024 /* Make sure to round upwards if necessary */
1025 if (div_rem >= 1000 / 2)
1026 div_res++;
1027
1028 return (int) div_res;
1029}
1030
1031/**
1032 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1033 * @di: pointer to the ab8500_fg structure
1034 *
1035 * Return the capacity in mAh based on previous calculated capcity and the FG
1036 * accumulator register value. The filter is filled with this capacity
1037 */
1038static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1039{
1040 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1041 __func__,
1042 di->bat_cap.mah,
1043 di->accu_charge);
1044
1045 /* Capacity should not be less than 0 */
1046 if (di->bat_cap.mah + di->accu_charge > 0)
1047 di->bat_cap.mah += di->accu_charge;
1048 else
1049 di->bat_cap.mah = 0;
1050 /*
1051 * We force capacity to 100% once when the algorithm
1052 * reports that it's full.
1053 */
1054 if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1055 di->flags.force_full) {
1056 di->bat_cap.mah = di->bat_cap.max_mah_design;
1057 }
1058
1059 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1060 di->bat_cap.permille =
1061 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1062
1063 /* We need to update battery voltage and inst current when charging */
1064 di->vbat = ab8500_fg_bat_voltage(di);
1065 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1066
1067 return di->bat_cap.mah;
1068}
1069
1070/**
1071 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1072 * @di: pointer to the ab8500_fg structure
1073 * @comp: if voltage should be load compensated before capacity calc
1074 *
1075 * Return the capacity in mAh based on the battery voltage. The voltage can
1076 * either be load compensated or not. This value is added to the filter and a
1077 * new mean value is calculated and returned.
1078 */
1079static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1080{
1081 int permille, mah;
1082
1083 if (comp)
1084 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1085 else
1086 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1087
1088 mah = ab8500_fg_convert_permille_to_mah(di, permille);
1089
1090 di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1091 di->bat_cap.permille =
1092 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1093
1094 return di->bat_cap.mah;
1095}
1096
1097/**
1098 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1099 * @di: pointer to the ab8500_fg structure
1100 *
1101 * Return the capacity in mAh based on previous calculated capcity and the FG
1102 * accumulator register value. This value is added to the filter and a
1103 * new mean value is calculated and returned.
1104 */
1105static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1106{
1107 int permille_volt, permille;
1108
1109 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1110 __func__,
1111 di->bat_cap.mah,
1112 di->accu_charge);
1113
1114 /* Capacity should not be less than 0 */
1115 if (di->bat_cap.mah + di->accu_charge > 0)
1116 di->bat_cap.mah += di->accu_charge;
1117 else
1118 di->bat_cap.mah = 0;
1119
1120 if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1121 di->bat_cap.mah = di->bat_cap.max_mah_design;
1122
1123 /*
1124 * Check against voltage based capacity. It can not be lower
1125 * than what the uncompensated voltage says
1126 */
1127 permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1128 permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1129
1130 if (permille < permille_volt) {
1131 di->bat_cap.permille = permille_volt;
1132 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1133 di->bat_cap.permille);
1134
1135 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1136 __func__,
1137 permille,
1138 permille_volt);
1139
1140 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1141 } else {
1142 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1143 di->bat_cap.permille =
1144 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1145 }
1146
1147 return di->bat_cap.mah;
1148}
1149
1150/**
1151 * ab8500_fg_capacity_level() - Get the battery capacity level
1152 * @di: pointer to the ab8500_fg structure
1153 *
1154 * Get the battery capacity level based on the capacity in percent
1155 */
1156static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1157{
1158 int ret, percent;
1159
1160 percent = di->bat_cap.permille / 10;
1161
b0284de0 1162 if (percent <= di->bm->cap_levels->critical ||
13151631
AM
1163 di->flags.low_bat)
1164 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
b0284de0 1165 else if (percent <= di->bm->cap_levels->low)
13151631 1166 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
b0284de0 1167 else if (percent <= di->bm->cap_levels->normal)
13151631 1168 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
b0284de0 1169 else if (percent <= di->bm->cap_levels->high)
13151631
AM
1170 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1171 else
1172 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1173
1174 return ret;
1175}
1176
ea402401
MC
1177/**
1178 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1179 * @di: pointer to the ab8500_fg structure
1180 *
1181 * Calculates the capacity to be shown to upper layers. Scales the capacity
1182 * to have 100% as a reference from the actual capacity upon removal of charger
1183 * when charging is in maintenance mode.
1184 */
1185static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1186{
1187 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1188 int capacity = di->bat_cap.prev_percent;
1189
1190 if (!cs->enable)
1191 return capacity;
1192
1193 /*
1194 * As long as we are in fully charge mode scale the capacity
1195 * to show 100%.
1196 */
1197 if (di->flags.fully_charged) {
1198 cs->cap_to_scale[0] = 100;
1199 cs->cap_to_scale[1] =
1200 max(capacity, di->bm->fg_params->maint_thres);
1201 dev_dbg(di->dev, "Scale cap with %d/%d\n",
1202 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1203 }
1204
1205 /* Calculates the scaled capacity. */
1206 if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1207 && (cs->cap_to_scale[1] > 0))
1208 capacity = min(100,
1209 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1210 cs->cap_to_scale[0],
1211 cs->cap_to_scale[1]));
1212
1213 if (di->flags.charging) {
1214 if (capacity < cs->disable_cap_level) {
1215 cs->disable_cap_level = capacity;
1216 dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1217 cs->disable_cap_level);
1218 } else if (!di->flags.fully_charged) {
1219 if (di->bat_cap.prev_percent >=
1220 cs->disable_cap_level) {
1221 dev_dbg(di->dev, "Disabling scaled capacity\n");
1222 cs->enable = false;
1223 capacity = di->bat_cap.prev_percent;
1224 } else {
1225 dev_dbg(di->dev,
1226 "Waiting in cap to level %d%%\n",
1227 cs->disable_cap_level);
1228 capacity = cs->disable_cap_level;
1229 }
1230 }
1231 }
1232
1233 return capacity;
1234}
1235
1236/**
1237 * ab8500_fg_update_cap_scalers() - Capacity scaling
1238 * @di: pointer to the ab8500_fg structure
1239 *
1240 * To be called when state change from charge<->discharge to update
1241 * the capacity scalers.
1242 */
1243static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1244{
1245 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1246
1247 if (!cs->enable)
1248 return;
1249 if (di->flags.charging) {
1250 di->bat_cap.cap_scale.disable_cap_level =
1251 di->bat_cap.cap_scale.scaled_cap;
1252 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1253 di->bat_cap.cap_scale.disable_cap_level);
1254 } else {
1255 if (cs->scaled_cap != 100) {
1256 cs->cap_to_scale[0] = cs->scaled_cap;
1257 cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1258 } else {
1259 cs->cap_to_scale[0] = 100;
1260 cs->cap_to_scale[1] =
1261 max(di->bat_cap.prev_percent,
1262 di->bm->fg_params->maint_thres);
1263 }
1264
1265 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1266 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1267 }
1268}
1269
13151631
AM
1270/**
1271 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1272 * @di: pointer to the ab8500_fg structure
1273 * @init: capacity is allowed to go up in init mode
1274 *
1275 * Check if capacity or capacity limit has changed and notify the system
1276 * about it using the power_supply framework
1277 */
1278static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1279{
1280 bool changed = false;
1281
1282 di->bat_cap.level = ab8500_fg_capacity_level(di);
1283
1284 if (di->bat_cap.level != di->bat_cap.prev_level) {
1285 /*
1286 * We do not allow reported capacity level to go up
1287 * unless we're charging or if we're in init
1288 */
1289 if (!(!di->flags.charging && di->bat_cap.level >
1290 di->bat_cap.prev_level) || init) {
1291 dev_dbg(di->dev, "level changed from %d to %d\n",
1292 di->bat_cap.prev_level,
1293 di->bat_cap.level);
1294 di->bat_cap.prev_level = di->bat_cap.level;
1295 changed = true;
1296 } else {
1297 dev_dbg(di->dev, "level not allowed to go up "
1298 "since no charger is connected: %d to %d\n",
1299 di->bat_cap.prev_level,
1300 di->bat_cap.level);
1301 }
1302 }
1303
1304 /*
1305 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1306 * shutdown
1307 */
1308 if (di->flags.low_bat) {
1309 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1310 di->bat_cap.prev_percent = 0;
1311 di->bat_cap.permille = 0;
1312 di->bat_cap.prev_mah = 0;
1313 di->bat_cap.mah = 0;
1314 changed = true;
1315 } else if (di->flags.fully_charged) {
1316 /*
1317 * We report 100% if algorithm reported fully charged
ea402401 1318 * and show 100% during maintenance charging (scaling).
13151631
AM
1319 */
1320 if (di->flags.force_full) {
1321 di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1322 di->bat_cap.prev_mah = di->bat_cap.mah;
ea402401
MC
1323
1324 changed = true;
1325
1326 if (!di->bat_cap.cap_scale.enable &&
1327 di->bm->capacity_scaling) {
1328 di->bat_cap.cap_scale.enable = true;
1329 di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1330 di->bat_cap.cap_scale.cap_to_scale[1] =
1331 di->bat_cap.prev_percent;
1332 di->bat_cap.cap_scale.disable_cap_level = 100;
1333 }
1334 } else if ( di->bat_cap.prev_percent !=
1335 (di->bat_cap.permille) / 10) {
13151631
AM
1336 dev_dbg(di->dev,
1337 "battery reported full "
1338 "but capacity dropping: %d\n",
1339 di->bat_cap.permille / 10);
1340 di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1341 di->bat_cap.prev_mah = di->bat_cap.mah;
1342
1343 changed = true;
1344 }
1345 } else if (di->bat_cap.prev_percent != di->bat_cap.permille / 10) {
1346 if (di->bat_cap.permille / 10 == 0) {
1347 /*
1348 * We will not report 0% unless we've got
1349 * the LOW_BAT IRQ, no matter what the FG
1350 * algorithm says.
1351 */
1352 di->bat_cap.prev_percent = 1;
1353 di->bat_cap.permille = 1;
1354 di->bat_cap.prev_mah = 1;
1355 di->bat_cap.mah = 1;
1356
1357 changed = true;
1358 } else if (!(!di->flags.charging &&
1359 (di->bat_cap.permille / 10) >
1360 di->bat_cap.prev_percent) || init) {
1361 /*
1362 * We do not allow reported capacity to go up
1363 * unless we're charging or if we're in init
1364 */
1365 dev_dbg(di->dev,
1366 "capacity changed from %d to %d (%d)\n",
1367 di->bat_cap.prev_percent,
1368 di->bat_cap.permille / 10,
1369 di->bat_cap.permille);
1370 di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1371 di->bat_cap.prev_mah = di->bat_cap.mah;
1372
1373 changed = true;
1374 } else {
1375 dev_dbg(di->dev, "capacity not allowed to go up since "
1376 "no charger is connected: %d to %d (%d)\n",
1377 di->bat_cap.prev_percent,
1378 di->bat_cap.permille / 10,
1379 di->bat_cap.permille);
1380 }
1381 }
1382
1383 if (changed) {
ea402401
MC
1384 if (di->bm->capacity_scaling) {
1385 di->bat_cap.cap_scale.scaled_cap =
1386 ab8500_fg_calculate_scaled_capacity(di);
1387
1388 dev_info(di->dev, "capacity=%d (%d)\n",
1389 di->bat_cap.prev_percent,
1390 di->bat_cap.cap_scale.scaled_cap);
1391 }
13151631
AM
1392 power_supply_changed(&di->fg_psy);
1393 if (di->flags.fully_charged && di->flags.force_full) {
1394 dev_dbg(di->dev, "Battery full, notifying.\n");
1395 di->flags.force_full = false;
1396 sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1397 }
1398 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1399 }
1400}
1401
1402static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1403 enum ab8500_fg_charge_state new_state)
1404{
1405 dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1406 di->charge_state,
1407 charge_state[di->charge_state],
1408 new_state,
1409 charge_state[new_state]);
1410
1411 di->charge_state = new_state;
1412}
1413
1414static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
0fff22ee 1415 enum ab8500_fg_discharge_state new_state)
13151631
AM
1416{
1417 dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1418 di->discharge_state,
1419 discharge_state[di->discharge_state],
1420 new_state,
1421 discharge_state[new_state]);
1422
1423 di->discharge_state = new_state;
1424}
1425
1426/**
1427 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1428 * @di: pointer to the ab8500_fg structure
1429 *
1430 * Battery capacity calculation state machine for when we're charging
1431 */
1432static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1433{
1434 /*
1435 * If we change to discharge mode
1436 * we should start with recovery
1437 */
1438 if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1439 ab8500_fg_discharge_state_to(di,
1440 AB8500_FG_DISCHARGE_INIT_RECOVERY);
1441
1442 switch (di->charge_state) {
1443 case AB8500_FG_CHARGE_INIT:
1444 di->fg_samples = SEC_TO_SAMPLE(
b0284de0 1445 di->bm->fg_params->accu_charging);
13151631
AM
1446
1447 ab8500_fg_coulomb_counter(di, true);
1448 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1449
1450 break;
1451
1452 case AB8500_FG_CHARGE_READOUT:
1453 /*
1454 * Read the FG and calculate the new capacity
1455 */
1456 mutex_lock(&di->cc_lock);
ea402401 1457 if (!di->flags.conv_done && !di->flags.force_full) {
13151631
AM
1458 /* Wasn't the CC IRQ that got us here */
1459 mutex_unlock(&di->cc_lock);
1460 dev_dbg(di->dev, "%s CC conv not done\n",
1461 __func__);
1462
1463 break;
1464 }
1465 di->flags.conv_done = false;
1466 mutex_unlock(&di->cc_lock);
1467
1468 ab8500_fg_calc_cap_charging(di);
1469
1470 break;
1471
1472 default:
1473 break;
1474 }
1475
1476 /* Check capacity limits */
1477 ab8500_fg_check_capacity_limits(di, false);
1478}
1479
1480static void force_capacity(struct ab8500_fg *di)
1481{
1482 int cap;
1483
1484 ab8500_fg_clear_cap_samples(di);
1485 cap = di->bat_cap.user_mah;
1486 if (cap > di->bat_cap.max_mah_design) {
1487 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1488 " %d\n", cap, di->bat_cap.max_mah_design);
1489 cap = di->bat_cap.max_mah_design;
1490 }
1491 ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1492 di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1493 di->bat_cap.mah = cap;
1494 ab8500_fg_check_capacity_limits(di, true);
1495}
1496
1497static bool check_sysfs_capacity(struct ab8500_fg *di)
1498{
1499 int cap, lower, upper;
1500 int cap_permille;
1501
1502 cap = di->bat_cap.user_mah;
1503
1504 cap_permille = ab8500_fg_convert_mah_to_permille(di,
1505 di->bat_cap.user_mah);
1506
b0284de0
LJ
1507 lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1508 upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
13151631
AM
1509
1510 if (lower < 0)
1511 lower = 0;
1512 /* 1000 is permille, -> 100 percent */
1513 if (upper > 1000)
1514 upper = 1000;
1515
1516 dev_dbg(di->dev, "Capacity limits:"
1517 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1518 lower, cap_permille, upper, cap, di->bat_cap.mah);
1519
1520 /* If within limits, use the saved capacity and exit estimation...*/
1521 if (cap_permille > lower && cap_permille < upper) {
1522 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1523 force_capacity(di);
1524 return true;
1525 }
1526 dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1527 return false;
1528}
1529
1530/**
1531 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1532 * @di: pointer to the ab8500_fg structure
1533 *
1534 * Battery capacity calculation state machine for when we're discharging
1535 */
1536static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1537{
1538 int sleep_time;
1539
1540 /* If we change to charge mode we should start with init */
1541 if (di->charge_state != AB8500_FG_CHARGE_INIT)
1542 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1543
1544 switch (di->discharge_state) {
1545 case AB8500_FG_DISCHARGE_INIT:
1546 /* We use the FG IRQ to work on */
1547 di->init_cnt = 0;
b0284de0 1548 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
13151631
AM
1549 ab8500_fg_coulomb_counter(di, true);
1550 ab8500_fg_discharge_state_to(di,
1551 AB8500_FG_DISCHARGE_INITMEASURING);
1552
1553 /* Intentional fallthrough */
1554 case AB8500_FG_DISCHARGE_INITMEASURING:
1555 /*
1556 * Discard a number of samples during startup.
1557 * After that, use compensated voltage for a few
1558 * samples to get an initial capacity.
1559 * Then go to READOUT
1560 */
b0284de0 1561 sleep_time = di->bm->fg_params->init_timer;
13151631
AM
1562
1563 /* Discard the first [x] seconds */
b0284de0 1564 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
13151631
AM
1565 ab8500_fg_calc_cap_discharge_voltage(di, true);
1566
1567 ab8500_fg_check_capacity_limits(di, true);
1568 }
1569
1570 di->init_cnt += sleep_time;
b0284de0 1571 if (di->init_cnt > di->bm->fg_params->init_total_time)
13151631
AM
1572 ab8500_fg_discharge_state_to(di,
1573 AB8500_FG_DISCHARGE_READOUT_INIT);
1574
1575 break;
1576
1577 case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1578 di->recovery_cnt = 0;
1579 di->recovery_needed = true;
1580 ab8500_fg_discharge_state_to(di,
1581 AB8500_FG_DISCHARGE_RECOVERY);
1582
1583 /* Intentional fallthrough */
1584
1585 case AB8500_FG_DISCHARGE_RECOVERY:
b0284de0 1586 sleep_time = di->bm->fg_params->recovery_sleep_timer;
13151631
AM
1587
1588 /*
1589 * We should check the power consumption
1590 * If low, go to READOUT (after x min) or
1591 * RECOVERY_SLEEP if time left.
1592 * If high, go to READOUT
1593 */
1594 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1595
1596 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1597 if (di->recovery_cnt >
b0284de0 1598 di->bm->fg_params->recovery_total_time) {
13151631 1599 di->fg_samples = SEC_TO_SAMPLE(
b0284de0 1600 di->bm->fg_params->accu_high_curr);
13151631
AM
1601 ab8500_fg_coulomb_counter(di, true);
1602 ab8500_fg_discharge_state_to(di,
1603 AB8500_FG_DISCHARGE_READOUT);
1604 di->recovery_needed = false;
1605 } else {
1606 queue_delayed_work(di->fg_wq,
1607 &di->fg_periodic_work,
1608 sleep_time * HZ);
1609 }
1610 di->recovery_cnt += sleep_time;
1611 } else {
1612 di->fg_samples = SEC_TO_SAMPLE(
b0284de0 1613 di->bm->fg_params->accu_high_curr);
13151631
AM
1614 ab8500_fg_coulomb_counter(di, true);
1615 ab8500_fg_discharge_state_to(di,
1616 AB8500_FG_DISCHARGE_READOUT);
1617 }
1618 break;
1619
1620 case AB8500_FG_DISCHARGE_READOUT_INIT:
1621 di->fg_samples = SEC_TO_SAMPLE(
b0284de0 1622 di->bm->fg_params->accu_high_curr);
13151631
AM
1623 ab8500_fg_coulomb_counter(di, true);
1624 ab8500_fg_discharge_state_to(di,
1625 AB8500_FG_DISCHARGE_READOUT);
1626 break;
1627
1628 case AB8500_FG_DISCHARGE_READOUT:
1629 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1630
1631 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1632 /* Detect mode change */
1633 if (di->high_curr_mode) {
1634 di->high_curr_mode = false;
1635 di->high_curr_cnt = 0;
1636 }
1637
1638 if (di->recovery_needed) {
1639 ab8500_fg_discharge_state_to(di,
1640 AB8500_FG_DISCHARGE_RECOVERY);
1641
1642 queue_delayed_work(di->fg_wq,
1643 &di->fg_periodic_work, 0);
1644
1645 break;
1646 }
1647
1648 ab8500_fg_calc_cap_discharge_voltage(di, true);
1649 } else {
1650 mutex_lock(&di->cc_lock);
1651 if (!di->flags.conv_done) {
1652 /* Wasn't the CC IRQ that got us here */
1653 mutex_unlock(&di->cc_lock);
1654 dev_dbg(di->dev, "%s CC conv not done\n",
1655 __func__);
1656
1657 break;
1658 }
1659 di->flags.conv_done = false;
1660 mutex_unlock(&di->cc_lock);
1661
1662 /* Detect mode change */
1663 if (!di->high_curr_mode) {
1664 di->high_curr_mode = true;
1665 di->high_curr_cnt = 0;
1666 }
1667
1668 di->high_curr_cnt +=
b0284de0 1669 di->bm->fg_params->accu_high_curr;
13151631 1670 if (di->high_curr_cnt >
b0284de0 1671 di->bm->fg_params->high_curr_time)
13151631
AM
1672 di->recovery_needed = true;
1673
1674 ab8500_fg_calc_cap_discharge_fg(di);
1675 }
1676
1677 ab8500_fg_check_capacity_limits(di, false);
1678
1679 break;
1680
1681 case AB8500_FG_DISCHARGE_WAKEUP:
1682 ab8500_fg_coulomb_counter(di, true);
13151631
AM
1683 ab8500_fg_calc_cap_discharge_voltage(di, true);
1684
1685 di->fg_samples = SEC_TO_SAMPLE(
b0284de0 1686 di->bm->fg_params->accu_high_curr);
13151631
AM
1687 ab8500_fg_coulomb_counter(di, true);
1688 ab8500_fg_discharge_state_to(di,
1689 AB8500_FG_DISCHARGE_READOUT);
1690
1691 ab8500_fg_check_capacity_limits(di, false);
1692
1693 break;
1694
1695 default:
1696 break;
1697 }
1698}
1699
1700/**
1701 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1702 * @di: pointer to the ab8500_fg structure
1703 *
1704 */
1705static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1706{
1707 int ret;
1708
1709 switch (di->calib_state) {
1710 case AB8500_FG_CALIB_INIT:
1711 dev_dbg(di->dev, "Calibration ongoing...\n");
1712
1713 ret = abx500_mask_and_set_register_interruptible(di->dev,
1714 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1715 CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1716 if (ret < 0)
1717 goto err;
1718
1719 ret = abx500_mask_and_set_register_interruptible(di->dev,
1720 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1721 CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1722 if (ret < 0)
1723 goto err;
1724 di->calib_state = AB8500_FG_CALIB_WAIT;
1725 break;
1726 case AB8500_FG_CALIB_END:
1727 ret = abx500_mask_and_set_register_interruptible(di->dev,
1728 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1729 CC_MUXOFFSET, CC_MUXOFFSET);
1730 if (ret < 0)
1731 goto err;
1732 di->flags.calibrate = false;
1733 dev_dbg(di->dev, "Calibration done...\n");
1734 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1735 break;
1736 case AB8500_FG_CALIB_WAIT:
1737 dev_dbg(di->dev, "Calibration WFI\n");
1738 default:
1739 break;
1740 }
1741 return;
1742err:
1743 /* Something went wrong, don't calibrate then */
1744 dev_err(di->dev, "failed to calibrate the CC\n");
1745 di->flags.calibrate = false;
1746 di->calib_state = AB8500_FG_CALIB_INIT;
1747 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1748}
1749
1750/**
1751 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1752 * @di: pointer to the ab8500_fg structure
1753 *
1754 * Entry point for the battery capacity calculation state machine
1755 */
1756static void ab8500_fg_algorithm(struct ab8500_fg *di)
1757{
1758 if (di->flags.calibrate)
1759 ab8500_fg_algorithm_calibrate(di);
1760 else {
1761 if (di->flags.charging)
1762 ab8500_fg_algorithm_charging(di);
1763 else
1764 ab8500_fg_algorithm_discharging(di);
1765 }
1766
1767 dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
1768 "%d %d %d %d %d %d %d\n",
1769 di->bat_cap.max_mah_design,
1770 di->bat_cap.mah,
1771 di->bat_cap.permille,
1772 di->bat_cap.level,
1773 di->bat_cap.prev_mah,
1774 di->bat_cap.prev_percent,
1775 di->bat_cap.prev_level,
1776 di->vbat,
1777 di->inst_curr,
1778 di->avg_curr,
1779 di->accu_charge,
1780 di->flags.charging,
1781 di->charge_state,
1782 di->discharge_state,
1783 di->high_curr_mode,
1784 di->recovery_needed);
1785}
1786
1787/**
1788 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1789 * @work: pointer to the work_struct structure
1790 *
1791 * Work queue function for periodic work
1792 */
1793static void ab8500_fg_periodic_work(struct work_struct *work)
1794{
1795 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1796 fg_periodic_work.work);
1797
1798 if (di->init_capacity) {
13151631
AM
1799 /* Get an initial capacity calculation */
1800 ab8500_fg_calc_cap_discharge_voltage(di, true);
1801 ab8500_fg_check_capacity_limits(di, true);
1802 di->init_capacity = false;
1803
1804 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1805 } else if (di->flags.user_cap) {
1806 if (check_sysfs_capacity(di)) {
1807 ab8500_fg_check_capacity_limits(di, true);
1808 if (di->flags.charging)
1809 ab8500_fg_charge_state_to(di,
1810 AB8500_FG_CHARGE_INIT);
1811 else
1812 ab8500_fg_discharge_state_to(di,
1813 AB8500_FG_DISCHARGE_READOUT_INIT);
1814 }
1815 di->flags.user_cap = false;
1816 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1817 } else
1818 ab8500_fg_algorithm(di);
1819
1820}
1821
1822/**
1823 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1824 * @work: pointer to the work_struct structure
1825 *
1826 * Work queue function for checking the OVV_BAT condition
1827 */
1828static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1829{
1830 int ret;
1831 u8 reg_value;
1832
1833 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1834 fg_check_hw_failure_work.work);
1835
1836 /*
1837 * If we have had a battery over-voltage situation,
1838 * check ovv-bit to see if it should be reset.
1839 */
1840 if (di->flags.bat_ovv) {
1841 ret = abx500_get_register_interruptible(di->dev,
1842 AB8500_CHARGER, AB8500_CH_STAT_REG,
1843 &reg_value);
1844 if (ret < 0) {
1845 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1846 return;
1847 }
1848 if ((reg_value & BATT_OVV) != BATT_OVV) {
1849 dev_dbg(di->dev, "Battery recovered from OVV\n");
1850 di->flags.bat_ovv = false;
1851 power_supply_changed(&di->fg_psy);
1852 return;
1853 }
1854
1855 /* Not yet recovered from ovv, reschedule this test */
1856 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1857 round_jiffies(HZ));
1858 }
1859}
1860
1861/**
1862 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1863 * @work: pointer to the work_struct structure
1864 *
1865 * Work queue function for checking the LOW_BAT condition
1866 */
1867static void ab8500_fg_low_bat_work(struct work_struct *work)
1868{
1869 int vbat;
1870
1871 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1872 fg_low_bat_work.work);
1873
1874 vbat = ab8500_fg_bat_voltage(di);
1875
1876 /* Check if LOW_BAT still fulfilled */
b0284de0 1877 if (vbat < di->bm->fg_params->lowbat_threshold) {
13151631
AM
1878 di->flags.low_bat = true;
1879 dev_warn(di->dev, "Battery voltage still LOW\n");
1880
1881 /*
1882 * We need to re-schedule this check to be able to detect
1883 * if the voltage increases again during charging
1884 */
1885 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1886 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1887 } else {
1888 di->flags.low_bat = false;
1889 dev_warn(di->dev, "Battery voltage OK again\n");
1890 }
1891
1892 /* This is needed to dispatch LOW_BAT */
1893 ab8500_fg_check_capacity_limits(di, false);
1894
1895 /* Set this flag to check if LOW_BAT IRQ still occurs */
1896 di->flags.low_bat_delay = false;
1897}
1898
1899/**
1900 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1901 * to the target voltage.
1902 * @di: pointer to the ab8500_fg structure
1903 * @target target voltage
1904 *
1905 * Returns bit pattern closest to the target voltage
1906 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1907 */
1908
1909static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1910{
1911 if (target > BATT_OK_MIN +
1912 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1913 return BATT_OK_MAX_NR_INCREMENTS;
1914 if (target < BATT_OK_MIN)
1915 return 0;
1916 return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1917}
1918
1919/**
1920 * ab8500_fg_battok_init_hw_register - init battok levels
1921 * @di: pointer to the ab8500_fg structure
1922 *
1923 */
1924
1925static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1926{
1927 int selected;
1928 int sel0;
1929 int sel1;
1930 int cbp_sel0;
1931 int cbp_sel1;
1932 int ret;
1933 int new_val;
1934
b0284de0
LJ
1935 sel0 = di->bm->fg_params->battok_falling_th_sel0;
1936 sel1 = di->bm->fg_params->battok_raising_th_sel1;
13151631
AM
1937
1938 cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1939 cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1940
1941 selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1942
1943 if (selected != sel0)
1944 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1945 sel0, selected, cbp_sel0);
1946
1947 selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1948
1949 if (selected != sel1)
1950 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1951 sel1, selected, cbp_sel1);
1952
1953 new_val = cbp_sel0 | (cbp_sel1 << 4);
1954
1955 dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1956 ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1957 AB8500_BATT_OK_REG, new_val);
1958 return ret;
1959}
1960
1961/**
1962 * ab8500_fg_instant_work() - Run the FG state machine instantly
1963 * @work: pointer to the work_struct structure
1964 *
1965 * Work queue function for instant work
1966 */
1967static void ab8500_fg_instant_work(struct work_struct *work)
1968{
1969 struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1970
1971 ab8500_fg_algorithm(di);
1972}
1973
1974/**
1975 * ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
1976 * @irq: interrupt number
1977 * @_di: pointer to the ab8500_fg structure
1978 *
1979 * Returns IRQ status(IRQ_HANDLED)
1980 */
1981static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1982{
1983 struct ab8500_fg *di = _di;
3988a4df
JB
1984 if (!di->nbr_cceoc_irq_cnt) {
1985 di->nbr_cceoc_irq_cnt++;
1986 complete(&di->ab8500_fg_started);
1987 } else {
1988 di->nbr_cceoc_irq_cnt = 0;
1989 complete(&di->ab8500_fg_complete);
1990 }
13151631
AM
1991 return IRQ_HANDLED;
1992}
1993
1994/**
1995 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1996 * @irq: interrupt number
1997 * @_di: pointer to the ab8500_fg structure
1998 *
1999 * Returns IRQ status(IRQ_HANDLED)
2000 */
2001static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2002{
2003 struct ab8500_fg *di = _di;
2004 di->calib_state = AB8500_FG_CALIB_END;
2005 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2006 return IRQ_HANDLED;
2007}
2008
2009/**
2010 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2011 * @irq: interrupt number
2012 * @_di: pointer to the ab8500_fg structure
2013 *
2014 * Returns IRQ status(IRQ_HANDLED)
2015 */
2016static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2017{
2018 struct ab8500_fg *di = _di;
2019
2020 queue_work(di->fg_wq, &di->fg_acc_cur_work);
2021
2022 return IRQ_HANDLED;
2023}
2024
2025/**
2026 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2027 * @irq: interrupt number
2028 * @_di: pointer to the ab8500_fg structure
2029 *
2030 * Returns IRQ status(IRQ_HANDLED)
2031 */
2032static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2033{
2034 struct ab8500_fg *di = _di;
2035
2036 dev_dbg(di->dev, "Battery OVV\n");
2037 di->flags.bat_ovv = true;
2038 power_supply_changed(&di->fg_psy);
2039
2040 /* Schedule a new HW failure check */
2041 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2042
2043 return IRQ_HANDLED;
2044}
2045
2046/**
2047 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2048 * @irq: interrupt number
2049 * @_di: pointer to the ab8500_fg structure
2050 *
2051 * Returns IRQ status(IRQ_HANDLED)
2052 */
2053static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2054{
2055 struct ab8500_fg *di = _di;
2056
2057 if (!di->flags.low_bat_delay) {
2058 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2059 di->flags.low_bat_delay = true;
2060 /*
2061 * Start a timer to check LOW_BAT again after some time
2062 * This is done to avoid shutdown on single voltage dips
2063 */
2064 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2065 round_jiffies(LOW_BAT_CHECK_INTERVAL));
2066 }
2067 return IRQ_HANDLED;
2068}
2069
2070/**
2071 * ab8500_fg_get_property() - get the fg properties
2072 * @psy: pointer to the power_supply structure
2073 * @psp: pointer to the power_supply_property structure
2074 * @val: pointer to the power_supply_propval union
2075 *
2076 * This function gets called when an application tries to get the
2077 * fg properties by reading the sysfs files.
2078 * voltage_now: battery voltage
2079 * current_now: battery instant current
2080 * current_avg: battery average current
2081 * charge_full_design: capacity where battery is considered full
2082 * charge_now: battery capacity in nAh
2083 * capacity: capacity in percent
2084 * capacity_level: capacity level
2085 *
2086 * Returns error code in case of failure else 0 on success
2087 */
2088static int ab8500_fg_get_property(struct power_supply *psy,
2089 enum power_supply_property psp,
2090 union power_supply_propval *val)
2091{
2092 struct ab8500_fg *di;
2093
2094 di = to_ab8500_fg_device_info(psy);
2095
2096 /*
2097 * If battery is identified as unknown and charging of unknown
2098 * batteries is disabled, we always report 100% capacity and
2099 * capacity level UNKNOWN, since we can't calculate
2100 * remaining capacity
2101 */
2102
2103 switch (psp) {
2104 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2105 if (di->flags.bat_ovv)
2106 val->intval = BATT_OVV_VALUE * 1000;
2107 else
2108 val->intval = di->vbat * 1000;
2109 break;
2110 case POWER_SUPPLY_PROP_CURRENT_NOW:
2111 val->intval = di->inst_curr * 1000;
2112 break;
2113 case POWER_SUPPLY_PROP_CURRENT_AVG:
2114 val->intval = di->avg_curr * 1000;
2115 break;
2116 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2117 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2118 di->bat_cap.max_mah_design);
2119 break;
2120 case POWER_SUPPLY_PROP_ENERGY_FULL:
2121 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2122 di->bat_cap.max_mah);
2123 break;
2124 case POWER_SUPPLY_PROP_ENERGY_NOW:
b0284de0 2125 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
13151631
AM
2126 di->flags.batt_id_received)
2127 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2128 di->bat_cap.max_mah);
2129 else
2130 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2131 di->bat_cap.prev_mah);
2132 break;
2133 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2134 val->intval = di->bat_cap.max_mah_design;
2135 break;
2136 case POWER_SUPPLY_PROP_CHARGE_FULL:
2137 val->intval = di->bat_cap.max_mah;
2138 break;
2139 case POWER_SUPPLY_PROP_CHARGE_NOW:
b0284de0 2140 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
13151631
AM
2141 di->flags.batt_id_received)
2142 val->intval = di->bat_cap.max_mah;
2143 else
2144 val->intval = di->bat_cap.prev_mah;
2145 break;
2146 case POWER_SUPPLY_PROP_CAPACITY:
ea402401
MC
2147 if (di->bm->capacity_scaling)
2148 val->intval = di->bat_cap.cap_scale.scaled_cap;
2149 else if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
13151631
AM
2150 di->flags.batt_id_received)
2151 val->intval = 100;
2152 else
2153 val->intval = di->bat_cap.prev_percent;
2154 break;
2155 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
b0284de0 2156 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
13151631
AM
2157 di->flags.batt_id_received)
2158 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2159 else
2160 val->intval = di->bat_cap.prev_level;
2161 break;
2162 default:
2163 return -EINVAL;
2164 }
2165 return 0;
2166}
2167
2168static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2169{
2170 struct power_supply *psy;
2171 struct power_supply *ext;
2172 struct ab8500_fg *di;
2173 union power_supply_propval ret;
2174 int i, j;
2175 bool psy_found = false;
2176
2177 psy = (struct power_supply *)data;
2178 ext = dev_get_drvdata(dev);
2179 di = to_ab8500_fg_device_info(psy);
2180
2181 /*
2182 * For all psy where the name of your driver
2183 * appears in any supplied_to
2184 */
2185 for (i = 0; i < ext->num_supplicants; i++) {
2186 if (!strcmp(ext->supplied_to[i], psy->name))
2187 psy_found = true;
2188 }
2189
2190 if (!psy_found)
2191 return 0;
2192
2193 /* Go through all properties for the psy */
2194 for (j = 0; j < ext->num_properties; j++) {
2195 enum power_supply_property prop;
2196 prop = ext->properties[j];
2197
2198 if (ext->get_property(ext, prop, &ret))
2199 continue;
2200
2201 switch (prop) {
2202 case POWER_SUPPLY_PROP_STATUS:
2203 switch (ext->type) {
2204 case POWER_SUPPLY_TYPE_BATTERY:
2205 switch (ret.intval) {
2206 case POWER_SUPPLY_STATUS_UNKNOWN:
2207 case POWER_SUPPLY_STATUS_DISCHARGING:
2208 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2209 if (!di->flags.charging)
2210 break;
2211 di->flags.charging = false;
2212 di->flags.fully_charged = false;
ea402401
MC
2213 if (di->bm->capacity_scaling)
2214 ab8500_fg_update_cap_scalers(di);
13151631
AM
2215 queue_work(di->fg_wq, &di->fg_work);
2216 break;
2217 case POWER_SUPPLY_STATUS_FULL:
2218 if (di->flags.fully_charged)
2219 break;
2220 di->flags.fully_charged = true;
2221 di->flags.force_full = true;
2222 /* Save current capacity as maximum */
2223 di->bat_cap.max_mah = di->bat_cap.mah;
2224 queue_work(di->fg_wq, &di->fg_work);
2225 break;
2226 case POWER_SUPPLY_STATUS_CHARGING:
ea402401
MC
2227 if (di->flags.charging &&
2228 !di->flags.fully_charged)
13151631
AM
2229 break;
2230 di->flags.charging = true;
2231 di->flags.fully_charged = false;
ea402401
MC
2232 if (di->bm->capacity_scaling)
2233 ab8500_fg_update_cap_scalers(di);
13151631
AM
2234 queue_work(di->fg_wq, &di->fg_work);
2235 break;
2236 };
2237 default:
2238 break;
2239 };
2240 break;
2241 case POWER_SUPPLY_PROP_TECHNOLOGY:
2242 switch (ext->type) {
2243 case POWER_SUPPLY_TYPE_BATTERY:
2244 if (!di->flags.batt_id_received) {
c34a61b4
AV
2245 const struct abx500_battery_type *b;
2246
b0284de0 2247 b = &(di->bm->bat_type[di->bm->batt_id]);
13151631
AM
2248
2249 di->flags.batt_id_received = true;
2250
2251 di->bat_cap.max_mah_design =
2252 MILLI_TO_MICRO *
2253 b->charge_full_design;
2254
2255 di->bat_cap.max_mah =
2256 di->bat_cap.max_mah_design;
2257
2258 di->vbat_nom = b->nominal_voltage;
2259 }
2260
2261 if (ret.intval)
2262 di->flags.batt_unknown = false;
2263 else
2264 di->flags.batt_unknown = true;
2265 break;
2266 default:
2267 break;
2268 }
2269 break;
2270 case POWER_SUPPLY_PROP_TEMP:
2271 switch (ext->type) {
2272 case POWER_SUPPLY_TYPE_BATTERY:
ea402401
MC
2273 if (di->flags.batt_id_received)
2274 di->bat_temp = ret.intval;
13151631
AM
2275 break;
2276 default:
2277 break;
2278 }
2279 break;
2280 default:
2281 break;
2282 }
2283 }
2284 return 0;
2285}
2286
2287/**
2288 * ab8500_fg_init_hw_registers() - Set up FG related registers
2289 * @di: pointer to the ab8500_fg structure
2290 *
2291 * Set up battery OVV, low battery voltage registers
2292 */
2293static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2294{
2295 int ret;
2296
2297 /* Set VBAT OVV threshold */
2298 ret = abx500_mask_and_set_register_interruptible(di->dev,
2299 AB8500_CHARGER,
2300 AB8500_BATT_OVV,
2301 BATT_OVV_TH_4P75,
2302 BATT_OVV_TH_4P75);
2303 if (ret) {
2304 dev_err(di->dev, "failed to set BATT_OVV\n");
2305 goto out;
2306 }
2307
2308 /* Enable VBAT OVV detection */
2309 ret = abx500_mask_and_set_register_interruptible(di->dev,
2310 AB8500_CHARGER,
2311 AB8500_BATT_OVV,
2312 BATT_OVV_ENA,
2313 BATT_OVV_ENA);
2314 if (ret) {
2315 dev_err(di->dev, "failed to enable BATT_OVV\n");
2316 goto out;
2317 }
2318
2319 /* Low Battery Voltage */
2320 ret = abx500_set_register_interruptible(di->dev,
2321 AB8500_SYS_CTRL2_BLOCK,
2322 AB8500_LOW_BAT_REG,
2323 ab8500_volt_to_regval(
b0284de0 2324 di->bm->fg_params->lowbat_threshold) << 1 |
13151631
AM
2325 LOW_BAT_ENABLE);
2326 if (ret) {
2327 dev_err(di->dev, "%s write failed\n", __func__);
2328 goto out;
2329 }
2330
2331 /* Battery OK threshold */
2332 ret = ab8500_fg_battok_init_hw_register(di);
2333 if (ret) {
2334 dev_err(di->dev, "BattOk init write failed.\n");
2335 goto out;
2336 }
2337out:
2338 return ret;
2339}
2340
2341/**
2342 * ab8500_fg_external_power_changed() - callback for power supply changes
2343 * @psy: pointer to the structure power_supply
2344 *
2345 * This function is the entry point of the pointer external_power_changed
2346 * of the structure power_supply.
2347 * This function gets executed when there is a change in any external power
2348 * supply that this driver needs to be notified of.
2349 */
2350static void ab8500_fg_external_power_changed(struct power_supply *psy)
2351{
2352 struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
2353
2354 class_for_each_device(power_supply_class, NULL,
2355 &di->fg_psy, ab8500_fg_get_ext_psy_data);
2356}
2357
2358/**
2359 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2360 * @work: pointer to the work_struct structure
2361 *
2362 * Used to reset the current battery capacity to be able to
2363 * retrigger a new voltage base capacity calculation. For
2364 * test and verification purpose.
2365 */
2366static void ab8500_fg_reinit_work(struct work_struct *work)
2367{
2368 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2369 fg_reinit_work.work);
2370
2371 if (di->flags.calibrate == false) {
2372 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2373 ab8500_fg_clear_cap_samples(di);
2374 ab8500_fg_calc_cap_discharge_voltage(di, true);
2375 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2376 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2377 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2378
2379 } else {
2380 dev_err(di->dev, "Residual offset calibration ongoing "
2381 "retrying..\n");
2382 /* Wait one second until next try*/
2383 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2384 round_jiffies(1));
2385 }
2386}
2387
2388/**
2389 * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2390 *
2391 * This function can be used to force the FG algorithm to recalculate a new
2392 * voltage based battery capacity.
2393 */
2394void ab8500_fg_reinit(void)
2395{
2396 struct ab8500_fg *di = ab8500_fg_get();
2397 /* User won't be notified if a null pointer returned. */
2398 if (di != NULL)
2399 queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
2400}
2401
2402/* Exposure to the sysfs interface */
2403
2404struct ab8500_fg_sysfs_entry {
2405 struct attribute attr;
2406 ssize_t (*show)(struct ab8500_fg *, char *);
2407 ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2408};
2409
2410static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2411{
2412 return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2413}
2414
2415static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2416 size_t count)
2417{
2418 unsigned long charge_full;
2419 ssize_t ret = -EINVAL;
2420
2421 ret = strict_strtoul(buf, 10, &charge_full);
2422
5ae2b822 2423 dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
13151631
AM
2424
2425 if (!ret) {
2426 di->bat_cap.max_mah = (int) charge_full;
2427 ret = count;
2428 }
2429 return ret;
2430}
2431
2432static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2433{
2434 return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2435}
2436
2437static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2438 size_t count)
2439{
2440 unsigned long charge_now;
2441 ssize_t ret;
2442
2443 ret = strict_strtoul(buf, 10, &charge_now);
2444
5ae2b822 2445 dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
13151631
AM
2446 ret, charge_now, di->bat_cap.prev_mah);
2447
2448 if (!ret) {
2449 di->bat_cap.user_mah = (int) charge_now;
2450 di->flags.user_cap = true;
2451 ret = count;
2452 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2453 }
2454 return ret;
2455}
2456
2457static struct ab8500_fg_sysfs_entry charge_full_attr =
2458 __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2459
2460static struct ab8500_fg_sysfs_entry charge_now_attr =
2461 __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2462
2463static ssize_t
2464ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2465{
2466 struct ab8500_fg_sysfs_entry *entry;
2467 struct ab8500_fg *di;
2468
2469 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2470 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2471
2472 if (!entry->show)
2473 return -EIO;
2474
2475 return entry->show(di, buf);
2476}
2477static ssize_t
2478ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2479 size_t count)
2480{
2481 struct ab8500_fg_sysfs_entry *entry;
2482 struct ab8500_fg *di;
2483
2484 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2485 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2486
2487 if (!entry->store)
2488 return -EIO;
2489
2490 return entry->store(di, buf, count);
2491}
2492
64eb9b02 2493static const struct sysfs_ops ab8500_fg_sysfs_ops = {
13151631
AM
2494 .show = ab8500_fg_show,
2495 .store = ab8500_fg_store,
2496};
2497
2498static struct attribute *ab8500_fg_attrs[] = {
2499 &charge_full_attr.attr,
2500 &charge_now_attr.attr,
2501 NULL,
2502};
2503
2504static struct kobj_type ab8500_fg_ktype = {
2505 .sysfs_ops = &ab8500_fg_sysfs_ops,
2506 .default_attrs = ab8500_fg_attrs,
2507};
2508
2509/**
2510 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2511 * @di: pointer to the struct ab8500_chargalg
2512 *
2513 * This function removes the entry in sysfs.
2514 */
2515static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2516{
2517 kobject_del(&di->fg_kobject);
2518}
2519
2520/**
2521 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2522 * @di: pointer to the struct ab8500_chargalg
2523 *
2524 * This function adds an entry in sysfs.
2525 * Returns error code in case of failure else 0(on success)
2526 */
2527static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2528{
2529 int ret = 0;
2530
2531 ret = kobject_init_and_add(&di->fg_kobject,
2532 &ab8500_fg_ktype,
2533 NULL, "battery");
2534 if (ret < 0)
2535 dev_err(di->dev, "failed to create sysfs entry\n");
2536
2537 return ret;
2538}
2539/* Exposure to the sysfs interface <<END>> */
2540
2541#if defined(CONFIG_PM)
2542static int ab8500_fg_resume(struct platform_device *pdev)
2543{
2544 struct ab8500_fg *di = platform_get_drvdata(pdev);
2545
2546 /*
2547 * Change state if we're not charging. If we're charging we will wake
2548 * up on the FG IRQ
2549 */
2550 if (!di->flags.charging) {
2551 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2552 queue_work(di->fg_wq, &di->fg_work);
2553 }
2554
2555 return 0;
2556}
2557
2558static int ab8500_fg_suspend(struct platform_device *pdev,
2559 pm_message_t state)
2560{
2561 struct ab8500_fg *di = platform_get_drvdata(pdev);
2562
2563 flush_delayed_work(&di->fg_periodic_work);
2564
2565 /*
2566 * If the FG is enabled we will disable it before going to suspend
2567 * only if we're not charging
2568 */
2569 if (di->flags.fg_enabled && !di->flags.charging)
2570 ab8500_fg_coulomb_counter(di, false);
2571
2572 return 0;
2573}
2574#else
2575#define ab8500_fg_suspend NULL
2576#define ab8500_fg_resume NULL
2577#endif
2578
415ec69f 2579static int ab8500_fg_remove(struct platform_device *pdev)
13151631
AM
2580{
2581 int ret = 0;
2582 struct ab8500_fg *di = platform_get_drvdata(pdev);
2583
2584 list_del(&di->node);
2585
2586 /* Disable coulomb counter */
2587 ret = ab8500_fg_coulomb_counter(di, false);
2588 if (ret)
2589 dev_err(di->dev, "failed to disable coulomb counter\n");
2590
2591 destroy_workqueue(di->fg_wq);
2592 ab8500_fg_sysfs_exit(di);
2593
2594 flush_scheduled_work();
2595 power_supply_unregister(&di->fg_psy);
2596 platform_set_drvdata(pdev, NULL);
13151631
AM
2597 return ret;
2598}
2599
2600/* ab8500 fg driver interrupts and their respective isr */
2601static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2602 {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2603 {"BATT_OVV", ab8500_fg_batt_ovv_handler},
2604 {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2605 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2606 {"CCEOC", ab8500_fg_cc_data_end_handler},
2607};
2608
e0f1abeb
R
2609static char *supply_interface[] = {
2610 "ab8500_chargalg",
2611 "ab8500_usb",
2612};
2613
c8afa640 2614static int ab8500_fg_probe(struct platform_device *pdev)
13151631 2615{
e0f1abeb 2616 struct device_node *np = pdev->dev.of_node;
195c1c66 2617 struct abx500_bm_data *plat = pdev->dev.platform_data;
e0f1abeb 2618 struct ab8500_fg *di;
13151631
AM
2619 int i, irq;
2620 int ret = 0;
13151631 2621
e0f1abeb
R
2622 di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
2623 if (!di) {
2624 dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
13151631 2625 return -ENOMEM;
e0f1abeb 2626 }
195c1c66
LJ
2627
2628 if (!plat) {
2629 dev_err(&pdev->dev, "no battery management data supplied\n");
2630 return -EINVAL;
2631 }
2632 di->bm = plat;
2633
2634 if (np) {
2635 ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
2636 if (ret) {
2637 dev_err(&pdev->dev, "failed to get battery information\n");
2638 return ret;
e0f1abeb 2639 }
e0f1abeb 2640 }
13151631
AM
2641
2642 mutex_init(&di->cc_lock);
2643
2644 /* get parent data */
2645 di->dev = &pdev->dev;
2646 di->parent = dev_get_drvdata(pdev->dev.parent);
2647 di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
2648
13151631
AM
2649 di->fg_psy.name = "ab8500_fg";
2650 di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
2651 di->fg_psy.properties = ab8500_fg_props;
2652 di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
2653 di->fg_psy.get_property = ab8500_fg_get_property;
e0f1abeb
R
2654 di->fg_psy.supplied_to = supply_interface;
2655 di->fg_psy.num_supplicants = ARRAY_SIZE(supply_interface),
13151631
AM
2656 di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
2657
2658 di->bat_cap.max_mah_design = MILLI_TO_MICRO *
b0284de0 2659 di->bm->bat_type[di->bm->batt_id].charge_full_design;
13151631
AM
2660
2661 di->bat_cap.max_mah = di->bat_cap.max_mah_design;
2662
b0284de0 2663 di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
13151631
AM
2664
2665 di->init_capacity = true;
2666
2667 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2668 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2669
2670 /* Create a work queue for running the FG algorithm */
2671 di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
2672 if (di->fg_wq == NULL) {
2673 dev_err(di->dev, "failed to create work queue\n");
e0f1abeb 2674 return -ENOMEM;
13151631
AM
2675 }
2676
2677 /* Init work for running the fg algorithm instantly */
2678 INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
2679
2680 /* Init work for getting the battery accumulated current */
2681 INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
2682
2683 /* Init work for reinitialising the fg algorithm */
203b42f7 2684 INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
13151631
AM
2685 ab8500_fg_reinit_work);
2686
2687 /* Work delayed Queue to run the state machine */
203b42f7 2688 INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
13151631
AM
2689 ab8500_fg_periodic_work);
2690
2691 /* Work to check low battery condition */
203b42f7 2692 INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
13151631
AM
2693 ab8500_fg_low_bat_work);
2694
2695 /* Init work for HW failure check */
203b42f7 2696 INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
13151631
AM
2697 ab8500_fg_check_hw_failure_work);
2698
2699 /* Initialize OVV, and other registers */
2700 ret = ab8500_fg_init_hw_registers(di);
2701 if (ret) {
2702 dev_err(di->dev, "failed to initialize registers\n");
2703 goto free_inst_curr_wq;
2704 }
2705
2706 /* Consider battery unknown until we're informed otherwise */
2707 di->flags.batt_unknown = true;
2708 di->flags.batt_id_received = false;
2709
2710 /* Register FG power supply class */
2711 ret = power_supply_register(di->dev, &di->fg_psy);
2712 if (ret) {
2713 dev_err(di->dev, "failed to register FG psy\n");
2714 goto free_inst_curr_wq;
2715 }
2716
b0284de0 2717 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
13151631
AM
2718 ab8500_fg_coulomb_counter(di, true);
2719
3988a4df
JB
2720 /*
2721 * Initialize completion used to notify completion and start
2722 * of inst current
2723 */
2724 init_completion(&di->ab8500_fg_started);
13151631
AM
2725 init_completion(&di->ab8500_fg_complete);
2726
2727 /* Register interrupts */
2728 for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
2729 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2730 ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
2731 IRQF_SHARED | IRQF_NO_SUSPEND,
2732 ab8500_fg_irq[i].name, di);
2733
2734 if (ret != 0) {
2735 dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
2736 , ab8500_fg_irq[i].name, irq, ret);
2737 goto free_irq;
2738 }
2739 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
2740 ab8500_fg_irq[i].name, irq, ret);
2741 }
2742 di->irq = platform_get_irq_byname(pdev, "CCEOC");
2743 disable_irq(di->irq);
3988a4df 2744 di->nbr_cceoc_irq_cnt = 0;
13151631
AM
2745
2746 platform_set_drvdata(pdev, di);
2747
2748 ret = ab8500_fg_sysfs_init(di);
2749 if (ret) {
2750 dev_err(di->dev, "failed to create sysfs entry\n");
2751 goto free_irq;
2752 }
2753
2754 /* Calibrate the fg first time */
2755 di->flags.calibrate = true;
2756 di->calib_state = AB8500_FG_CALIB_INIT;
2757
2758 /* Use room temp as default value until we get an update from driver. */
2759 di->bat_temp = 210;
2760
2761 /* Run the FG algorithm */
2762 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2763
2764 list_add_tail(&di->node, &ab8500_fg_list);
2765
2766 return ret;
2767
2768free_irq:
2769 power_supply_unregister(&di->fg_psy);
2770
2771 /* We also have to free all successfully registered irqs */
2772 for (i = i - 1; i >= 0; i--) {
2773 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2774 free_irq(irq, di);
2775 }
2776free_inst_curr_wq:
2777 destroy_workqueue(di->fg_wq);
13151631
AM
2778 return ret;
2779}
2780
e0f1abeb
R
2781static const struct of_device_id ab8500_fg_match[] = {
2782 { .compatible = "stericsson,ab8500-fg", },
2783 { },
2784};
2785
13151631
AM
2786static struct platform_driver ab8500_fg_driver = {
2787 .probe = ab8500_fg_probe,
28ea73f4 2788 .remove = ab8500_fg_remove,
13151631
AM
2789 .suspend = ab8500_fg_suspend,
2790 .resume = ab8500_fg_resume,
2791 .driver = {
2792 .name = "ab8500-fg",
2793 .owner = THIS_MODULE,
e0f1abeb 2794 .of_match_table = ab8500_fg_match,
13151631
AM
2795 },
2796};
2797
2798static int __init ab8500_fg_init(void)
2799{
2800 return platform_driver_register(&ab8500_fg_driver);
2801}
2802
2803static void __exit ab8500_fg_exit(void)
2804{
2805 platform_driver_unregister(&ab8500_fg_driver);
2806}
2807
2808subsys_initcall_sync(ab8500_fg_init);
2809module_exit(ab8500_fg_exit);
2810
2811MODULE_LICENSE("GPL v2");
2812MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
2813MODULE_ALIAS("platform:ab8500-fg");
2814MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");