x86, intel_txt: Handle ACPI_SLEEP without X86_TRAMPOLINE
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / pci / intel-iommu.c
CommitLineData
ba395927
KA
1/*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
98bcef56 17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
5b6985ce 21 * Author: Fenghua Yu <fenghua.yu@intel.com>
ba395927
KA
22 */
23
24#include <linux/init.h>
25#include <linux/bitmap.h>
5e0d2a6f 26#include <linux/debugfs.h>
ba395927
KA
27#include <linux/slab.h>
28#include <linux/irq.h>
29#include <linux/interrupt.h>
ba395927
KA
30#include <linux/spinlock.h>
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/dma-mapping.h>
34#include <linux/mempool.h>
5e0d2a6f 35#include <linux/timer.h>
38717946 36#include <linux/iova.h>
5d450806 37#include <linux/iommu.h>
38717946 38#include <linux/intel-iommu.h>
f59c7b69 39#include <linux/sysdev.h>
ba395927 40#include <asm/cacheflush.h>
a59b50e9 41#include <asm/tboot.h>
46a7fa27 42#include <asm/iommu.h>
ba395927
KA
43#include "pci.h"
44
5b6985ce
FY
45#define ROOT_SIZE VTD_PAGE_SIZE
46#define CONTEXT_SIZE VTD_PAGE_SIZE
47
ba395927
KA
48#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
49#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
50
51#define IOAPIC_RANGE_START (0xfee00000)
52#define IOAPIC_RANGE_END (0xfeefffff)
53#define IOVA_START_ADDR (0x1000)
54
55#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
56
4ed0d3e6
FY
57#define MAX_AGAW_WIDTH 64
58
ba395927 59#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
595badf5 60#define DOMAIN_MAX_PFN(gaw) ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
ba395927 61
f27be03b 62#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
284901a9 63#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
6a35528a 64#define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
5e0d2a6f 65
fd18de50 66
dd4e8319
DW
67/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
68 are never going to work. */
69static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
70{
71 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
72}
73
74static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
75{
76 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
77}
78static inline unsigned long page_to_dma_pfn(struct page *pg)
79{
80 return mm_to_dma_pfn(page_to_pfn(pg));
81}
82static inline unsigned long virt_to_dma_pfn(void *p)
83{
84 return page_to_dma_pfn(virt_to_page(p));
85}
86
d9630fe9
WH
87/* global iommu list, set NULL for ignored DMAR units */
88static struct intel_iommu **g_iommus;
89
9af88143
DW
90static int rwbf_quirk;
91
46b08e1a
MM
92/*
93 * 0: Present
94 * 1-11: Reserved
95 * 12-63: Context Ptr (12 - (haw-1))
96 * 64-127: Reserved
97 */
98struct root_entry {
99 u64 val;
100 u64 rsvd1;
101};
102#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
103static inline bool root_present(struct root_entry *root)
104{
105 return (root->val & 1);
106}
107static inline void set_root_present(struct root_entry *root)
108{
109 root->val |= 1;
110}
111static inline void set_root_value(struct root_entry *root, unsigned long value)
112{
113 root->val |= value & VTD_PAGE_MASK;
114}
115
116static inline struct context_entry *
117get_context_addr_from_root(struct root_entry *root)
118{
119 return (struct context_entry *)
120 (root_present(root)?phys_to_virt(
121 root->val & VTD_PAGE_MASK) :
122 NULL);
123}
124
7a8fc25e
MM
125/*
126 * low 64 bits:
127 * 0: present
128 * 1: fault processing disable
129 * 2-3: translation type
130 * 12-63: address space root
131 * high 64 bits:
132 * 0-2: address width
133 * 3-6: aval
134 * 8-23: domain id
135 */
136struct context_entry {
137 u64 lo;
138 u64 hi;
139};
c07e7d21
MM
140
141static inline bool context_present(struct context_entry *context)
142{
143 return (context->lo & 1);
144}
145static inline void context_set_present(struct context_entry *context)
146{
147 context->lo |= 1;
148}
149
150static inline void context_set_fault_enable(struct context_entry *context)
151{
152 context->lo &= (((u64)-1) << 2) | 1;
153}
154
c07e7d21
MM
155static inline void context_set_translation_type(struct context_entry *context,
156 unsigned long value)
157{
158 context->lo &= (((u64)-1) << 4) | 3;
159 context->lo |= (value & 3) << 2;
160}
161
162static inline void context_set_address_root(struct context_entry *context,
163 unsigned long value)
164{
165 context->lo |= value & VTD_PAGE_MASK;
166}
167
168static inline void context_set_address_width(struct context_entry *context,
169 unsigned long value)
170{
171 context->hi |= value & 7;
172}
173
174static inline void context_set_domain_id(struct context_entry *context,
175 unsigned long value)
176{
177 context->hi |= (value & ((1 << 16) - 1)) << 8;
178}
179
180static inline void context_clear_entry(struct context_entry *context)
181{
182 context->lo = 0;
183 context->hi = 0;
184}
7a8fc25e 185
622ba12a
MM
186/*
187 * 0: readable
188 * 1: writable
189 * 2-6: reserved
190 * 7: super page
9cf06697
SY
191 * 8-10: available
192 * 11: snoop behavior
622ba12a
MM
193 * 12-63: Host physcial address
194 */
195struct dma_pte {
196 u64 val;
197};
622ba12a 198
19c239ce
MM
199static inline void dma_clear_pte(struct dma_pte *pte)
200{
201 pte->val = 0;
202}
203
204static inline void dma_set_pte_readable(struct dma_pte *pte)
205{
206 pte->val |= DMA_PTE_READ;
207}
208
209static inline void dma_set_pte_writable(struct dma_pte *pte)
210{
211 pte->val |= DMA_PTE_WRITE;
212}
213
9cf06697
SY
214static inline void dma_set_pte_snp(struct dma_pte *pte)
215{
216 pte->val |= DMA_PTE_SNP;
217}
218
19c239ce
MM
219static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
220{
221 pte->val = (pte->val & ~3) | (prot & 3);
222}
223
224static inline u64 dma_pte_addr(struct dma_pte *pte)
225{
c85994e4
DW
226#ifdef CONFIG_64BIT
227 return pte->val & VTD_PAGE_MASK;
228#else
229 /* Must have a full atomic 64-bit read */
230 return __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
231#endif
19c239ce
MM
232}
233
dd4e8319 234static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
19c239ce 235{
dd4e8319 236 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
19c239ce
MM
237}
238
239static inline bool dma_pte_present(struct dma_pte *pte)
240{
241 return (pte->val & 3) != 0;
242}
622ba12a 243
75e6bf96
DW
244static inline int first_pte_in_page(struct dma_pte *pte)
245{
246 return !((unsigned long)pte & ~VTD_PAGE_MASK);
247}
248
2c2e2c38
FY
249/*
250 * This domain is a statically identity mapping domain.
251 * 1. This domain creats a static 1:1 mapping to all usable memory.
252 * 2. It maps to each iommu if successful.
253 * 3. Each iommu mapps to this domain if successful.
254 */
255struct dmar_domain *si_domain;
256
3b5410e7 257/* devices under the same p2p bridge are owned in one domain */
cdc7b837 258#define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
3b5410e7 259
1ce28feb
WH
260/* domain represents a virtual machine, more than one devices
261 * across iommus may be owned in one domain, e.g. kvm guest.
262 */
263#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
264
2c2e2c38
FY
265/* si_domain contains mulitple devices */
266#define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
267
99126f7c
MM
268struct dmar_domain {
269 int id; /* domain id */
8c11e798 270 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
99126f7c
MM
271
272 struct list_head devices; /* all devices' list */
273 struct iova_domain iovad; /* iova's that belong to this domain */
274
275 struct dma_pte *pgd; /* virtual address */
99126f7c
MM
276 int gaw; /* max guest address width */
277
278 /* adjusted guest address width, 0 is level 2 30-bit */
279 int agaw;
280
3b5410e7 281 int flags; /* flags to find out type of domain */
8e604097
WH
282
283 int iommu_coherency;/* indicate coherency of iommu access */
58c610bd 284 int iommu_snooping; /* indicate snooping control feature*/
c7151a8d
WH
285 int iommu_count; /* reference count of iommu */
286 spinlock_t iommu_lock; /* protect iommu set in domain */
fe40f1e0 287 u64 max_addr; /* maximum mapped address */
99126f7c
MM
288};
289
a647dacb
MM
290/* PCI domain-device relationship */
291struct device_domain_info {
292 struct list_head link; /* link to domain siblings */
293 struct list_head global; /* link to global list */
276dbf99
DW
294 int segment; /* PCI domain */
295 u8 bus; /* PCI bus number */
a647dacb
MM
296 u8 devfn; /* PCI devfn number */
297 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
93a23a72 298 struct intel_iommu *iommu; /* IOMMU used by this device */
a647dacb
MM
299 struct dmar_domain *domain; /* pointer to domain */
300};
301
5e0d2a6f 302static void flush_unmaps_timeout(unsigned long data);
303
304DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
305
80b20dd8 306#define HIGH_WATER_MARK 250
307struct deferred_flush_tables {
308 int next;
309 struct iova *iova[HIGH_WATER_MARK];
310 struct dmar_domain *domain[HIGH_WATER_MARK];
311};
312
313static struct deferred_flush_tables *deferred_flush;
314
5e0d2a6f 315/* bitmap for indexing intel_iommus */
5e0d2a6f 316static int g_num_of_iommus;
317
318static DEFINE_SPINLOCK(async_umap_flush_lock);
319static LIST_HEAD(unmaps_to_do);
320
321static int timer_on;
322static long list_size;
5e0d2a6f 323
ba395927
KA
324static void domain_remove_dev_info(struct dmar_domain *domain);
325
0cd5c3c8
KM
326#ifdef CONFIG_DMAR_DEFAULT_ON
327int dmar_disabled = 0;
328#else
329int dmar_disabled = 1;
330#endif /*CONFIG_DMAR_DEFAULT_ON*/
331
ba395927 332static int __initdata dmar_map_gfx = 1;
7d3b03ce 333static int dmar_forcedac;
5e0d2a6f 334static int intel_iommu_strict;
ba395927
KA
335
336#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
337static DEFINE_SPINLOCK(device_domain_lock);
338static LIST_HEAD(device_domain_list);
339
a8bcbb0d
JR
340static struct iommu_ops intel_iommu_ops;
341
ba395927
KA
342static int __init intel_iommu_setup(char *str)
343{
344 if (!str)
345 return -EINVAL;
346 while (*str) {
0cd5c3c8
KM
347 if (!strncmp(str, "on", 2)) {
348 dmar_disabled = 0;
349 printk(KERN_INFO "Intel-IOMMU: enabled\n");
350 } else if (!strncmp(str, "off", 3)) {
ba395927 351 dmar_disabled = 1;
0cd5c3c8 352 printk(KERN_INFO "Intel-IOMMU: disabled\n");
ba395927
KA
353 } else if (!strncmp(str, "igfx_off", 8)) {
354 dmar_map_gfx = 0;
355 printk(KERN_INFO
356 "Intel-IOMMU: disable GFX device mapping\n");
7d3b03ce 357 } else if (!strncmp(str, "forcedac", 8)) {
5e0d2a6f 358 printk(KERN_INFO
7d3b03ce
KA
359 "Intel-IOMMU: Forcing DAC for PCI devices\n");
360 dmar_forcedac = 1;
5e0d2a6f 361 } else if (!strncmp(str, "strict", 6)) {
362 printk(KERN_INFO
363 "Intel-IOMMU: disable batched IOTLB flush\n");
364 intel_iommu_strict = 1;
ba395927
KA
365 }
366
367 str += strcspn(str, ",");
368 while (*str == ',')
369 str++;
370 }
371 return 0;
372}
373__setup("intel_iommu=", intel_iommu_setup);
374
375static struct kmem_cache *iommu_domain_cache;
376static struct kmem_cache *iommu_devinfo_cache;
377static struct kmem_cache *iommu_iova_cache;
378
eb3fa7cb
KA
379static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
380{
381 unsigned int flags;
382 void *vaddr;
383
384 /* trying to avoid low memory issues */
385 flags = current->flags & PF_MEMALLOC;
386 current->flags |= PF_MEMALLOC;
387 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
388 current->flags &= (~PF_MEMALLOC | flags);
389 return vaddr;
390}
391
392
ba395927
KA
393static inline void *alloc_pgtable_page(void)
394{
eb3fa7cb
KA
395 unsigned int flags;
396 void *vaddr;
397
398 /* trying to avoid low memory issues */
399 flags = current->flags & PF_MEMALLOC;
400 current->flags |= PF_MEMALLOC;
401 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
402 current->flags &= (~PF_MEMALLOC | flags);
403 return vaddr;
ba395927
KA
404}
405
406static inline void free_pgtable_page(void *vaddr)
407{
408 free_page((unsigned long)vaddr);
409}
410
411static inline void *alloc_domain_mem(void)
412{
eb3fa7cb 413 return iommu_kmem_cache_alloc(iommu_domain_cache);
ba395927
KA
414}
415
38717946 416static void free_domain_mem(void *vaddr)
ba395927
KA
417{
418 kmem_cache_free(iommu_domain_cache, vaddr);
419}
420
421static inline void * alloc_devinfo_mem(void)
422{
eb3fa7cb 423 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
ba395927
KA
424}
425
426static inline void free_devinfo_mem(void *vaddr)
427{
428 kmem_cache_free(iommu_devinfo_cache, vaddr);
429}
430
431struct iova *alloc_iova_mem(void)
432{
eb3fa7cb 433 return iommu_kmem_cache_alloc(iommu_iova_cache);
ba395927
KA
434}
435
436void free_iova_mem(struct iova *iova)
437{
438 kmem_cache_free(iommu_iova_cache, iova);
439}
440
1b573683
WH
441
442static inline int width_to_agaw(int width);
443
4ed0d3e6 444static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
1b573683
WH
445{
446 unsigned long sagaw;
447 int agaw = -1;
448
449 sagaw = cap_sagaw(iommu->cap);
4ed0d3e6 450 for (agaw = width_to_agaw(max_gaw);
1b573683
WH
451 agaw >= 0; agaw--) {
452 if (test_bit(agaw, &sagaw))
453 break;
454 }
455
456 return agaw;
457}
458
4ed0d3e6
FY
459/*
460 * Calculate max SAGAW for each iommu.
461 */
462int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
463{
464 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
465}
466
467/*
468 * calculate agaw for each iommu.
469 * "SAGAW" may be different across iommus, use a default agaw, and
470 * get a supported less agaw for iommus that don't support the default agaw.
471 */
472int iommu_calculate_agaw(struct intel_iommu *iommu)
473{
474 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
475}
476
2c2e2c38 477/* This functionin only returns single iommu in a domain */
8c11e798
WH
478static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
479{
480 int iommu_id;
481
2c2e2c38 482 /* si_domain and vm domain should not get here. */
1ce28feb 483 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
2c2e2c38 484 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
1ce28feb 485
8c11e798
WH
486 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
487 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
488 return NULL;
489
490 return g_iommus[iommu_id];
491}
492
8e604097
WH
493static void domain_update_iommu_coherency(struct dmar_domain *domain)
494{
495 int i;
496
497 domain->iommu_coherency = 1;
498
499 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
500 for (; i < g_num_of_iommus; ) {
501 if (!ecap_coherent(g_iommus[i]->ecap)) {
502 domain->iommu_coherency = 0;
503 break;
504 }
505 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
506 }
507}
508
58c610bd
SY
509static void domain_update_iommu_snooping(struct dmar_domain *domain)
510{
511 int i;
512
513 domain->iommu_snooping = 1;
514
515 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
516 for (; i < g_num_of_iommus; ) {
517 if (!ecap_sc_support(g_iommus[i]->ecap)) {
518 domain->iommu_snooping = 0;
519 break;
520 }
521 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
522 }
523}
524
525/* Some capabilities may be different across iommus */
526static void domain_update_iommu_cap(struct dmar_domain *domain)
527{
528 domain_update_iommu_coherency(domain);
529 domain_update_iommu_snooping(domain);
530}
531
276dbf99 532static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
c7151a8d
WH
533{
534 struct dmar_drhd_unit *drhd = NULL;
535 int i;
536
537 for_each_drhd_unit(drhd) {
538 if (drhd->ignored)
539 continue;
276dbf99
DW
540 if (segment != drhd->segment)
541 continue;
c7151a8d 542
924b6231 543 for (i = 0; i < drhd->devices_cnt; i++) {
288e4877
DH
544 if (drhd->devices[i] &&
545 drhd->devices[i]->bus->number == bus &&
c7151a8d
WH
546 drhd->devices[i]->devfn == devfn)
547 return drhd->iommu;
4958c5dc
DW
548 if (drhd->devices[i] &&
549 drhd->devices[i]->subordinate &&
924b6231
DW
550 drhd->devices[i]->subordinate->number <= bus &&
551 drhd->devices[i]->subordinate->subordinate >= bus)
552 return drhd->iommu;
553 }
c7151a8d
WH
554
555 if (drhd->include_all)
556 return drhd->iommu;
557 }
558
559 return NULL;
560}
561
5331fe6f
WH
562static void domain_flush_cache(struct dmar_domain *domain,
563 void *addr, int size)
564{
565 if (!domain->iommu_coherency)
566 clflush_cache_range(addr, size);
567}
568
ba395927
KA
569/* Gets context entry for a given bus and devfn */
570static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
571 u8 bus, u8 devfn)
572{
573 struct root_entry *root;
574 struct context_entry *context;
575 unsigned long phy_addr;
576 unsigned long flags;
577
578 spin_lock_irqsave(&iommu->lock, flags);
579 root = &iommu->root_entry[bus];
580 context = get_context_addr_from_root(root);
581 if (!context) {
582 context = (struct context_entry *)alloc_pgtable_page();
583 if (!context) {
584 spin_unlock_irqrestore(&iommu->lock, flags);
585 return NULL;
586 }
5b6985ce 587 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
ba395927
KA
588 phy_addr = virt_to_phys((void *)context);
589 set_root_value(root, phy_addr);
590 set_root_present(root);
591 __iommu_flush_cache(iommu, root, sizeof(*root));
592 }
593 spin_unlock_irqrestore(&iommu->lock, flags);
594 return &context[devfn];
595}
596
597static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
598{
599 struct root_entry *root;
600 struct context_entry *context;
601 int ret;
602 unsigned long flags;
603
604 spin_lock_irqsave(&iommu->lock, flags);
605 root = &iommu->root_entry[bus];
606 context = get_context_addr_from_root(root);
607 if (!context) {
608 ret = 0;
609 goto out;
610 }
c07e7d21 611 ret = context_present(&context[devfn]);
ba395927
KA
612out:
613 spin_unlock_irqrestore(&iommu->lock, flags);
614 return ret;
615}
616
617static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
618{
619 struct root_entry *root;
620 struct context_entry *context;
621 unsigned long flags;
622
623 spin_lock_irqsave(&iommu->lock, flags);
624 root = &iommu->root_entry[bus];
625 context = get_context_addr_from_root(root);
626 if (context) {
c07e7d21 627 context_clear_entry(&context[devfn]);
ba395927
KA
628 __iommu_flush_cache(iommu, &context[devfn], \
629 sizeof(*context));
630 }
631 spin_unlock_irqrestore(&iommu->lock, flags);
632}
633
634static void free_context_table(struct intel_iommu *iommu)
635{
636 struct root_entry *root;
637 int i;
638 unsigned long flags;
639 struct context_entry *context;
640
641 spin_lock_irqsave(&iommu->lock, flags);
642 if (!iommu->root_entry) {
643 goto out;
644 }
645 for (i = 0; i < ROOT_ENTRY_NR; i++) {
646 root = &iommu->root_entry[i];
647 context = get_context_addr_from_root(root);
648 if (context)
649 free_pgtable_page(context);
650 }
651 free_pgtable_page(iommu->root_entry);
652 iommu->root_entry = NULL;
653out:
654 spin_unlock_irqrestore(&iommu->lock, flags);
655}
656
657/* page table handling */
658#define LEVEL_STRIDE (9)
659#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
660
661static inline int agaw_to_level(int agaw)
662{
663 return agaw + 2;
664}
665
666static inline int agaw_to_width(int agaw)
667{
668 return 30 + agaw * LEVEL_STRIDE;
669
670}
671
672static inline int width_to_agaw(int width)
673{
674 return (width - 30) / LEVEL_STRIDE;
675}
676
677static inline unsigned int level_to_offset_bits(int level)
678{
6660c63a 679 return (level - 1) * LEVEL_STRIDE;
ba395927
KA
680}
681
77dfa56c 682static inline int pfn_level_offset(unsigned long pfn, int level)
ba395927 683{
6660c63a 684 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
ba395927
KA
685}
686
6660c63a 687static inline unsigned long level_mask(int level)
ba395927 688{
6660c63a 689 return -1UL << level_to_offset_bits(level);
ba395927
KA
690}
691
6660c63a 692static inline unsigned long level_size(int level)
ba395927 693{
6660c63a 694 return 1UL << level_to_offset_bits(level);
ba395927
KA
695}
696
6660c63a 697static inline unsigned long align_to_level(unsigned long pfn, int level)
ba395927 698{
6660c63a 699 return (pfn + level_size(level) - 1) & level_mask(level);
ba395927
KA
700}
701
b026fd28
DW
702static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
703 unsigned long pfn)
ba395927 704{
b026fd28 705 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
ba395927
KA
706 struct dma_pte *parent, *pte = NULL;
707 int level = agaw_to_level(domain->agaw);
708 int offset;
ba395927
KA
709
710 BUG_ON(!domain->pgd);
b026fd28 711 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
ba395927
KA
712 parent = domain->pgd;
713
ba395927
KA
714 while (level > 0) {
715 void *tmp_page;
716
b026fd28 717 offset = pfn_level_offset(pfn, level);
ba395927
KA
718 pte = &parent[offset];
719 if (level == 1)
720 break;
721
19c239ce 722 if (!dma_pte_present(pte)) {
c85994e4
DW
723 uint64_t pteval;
724
ba395927
KA
725 tmp_page = alloc_pgtable_page();
726
206a73c1 727 if (!tmp_page)
ba395927 728 return NULL;
206a73c1 729
c85994e4
DW
730 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
731 pteval = (virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
732 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
733 /* Someone else set it while we were thinking; use theirs. */
734 free_pgtable_page(tmp_page);
735 } else {
736 dma_pte_addr(pte);
737 domain_flush_cache(domain, pte, sizeof(*pte));
738 }
ba395927 739 }
19c239ce 740 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
741 level--;
742 }
743
ba395927
KA
744 return pte;
745}
746
747/* return address's pte at specific level */
90dcfb5e
DW
748static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
749 unsigned long pfn,
750 int level)
ba395927
KA
751{
752 struct dma_pte *parent, *pte = NULL;
753 int total = agaw_to_level(domain->agaw);
754 int offset;
755
756 parent = domain->pgd;
757 while (level <= total) {
90dcfb5e 758 offset = pfn_level_offset(pfn, total);
ba395927
KA
759 pte = &parent[offset];
760 if (level == total)
761 return pte;
762
19c239ce 763 if (!dma_pte_present(pte))
ba395927 764 break;
19c239ce 765 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
766 total--;
767 }
768 return NULL;
769}
770
ba395927 771/* clear last level pte, a tlb flush should be followed */
595badf5
DW
772static void dma_pte_clear_range(struct dmar_domain *domain,
773 unsigned long start_pfn,
774 unsigned long last_pfn)
ba395927 775{
04b18e65 776 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
310a5ab9 777 struct dma_pte *first_pte, *pte;
66eae846 778
04b18e65 779 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
595badf5 780 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
ba395927 781
04b18e65 782 /* we don't need lock here; nobody else touches the iova range */
595badf5 783 while (start_pfn <= last_pfn) {
310a5ab9
DW
784 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
785 if (!pte) {
786 start_pfn = align_to_level(start_pfn + 1, 2);
787 continue;
788 }
75e6bf96 789 do {
310a5ab9
DW
790 dma_clear_pte(pte);
791 start_pfn++;
792 pte++;
75e6bf96
DW
793 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
794
310a5ab9
DW
795 domain_flush_cache(domain, first_pte,
796 (void *)pte - (void *)first_pte);
ba395927
KA
797 }
798}
799
800/* free page table pages. last level pte should already be cleared */
801static void dma_pte_free_pagetable(struct dmar_domain *domain,
d794dc9b
DW
802 unsigned long start_pfn,
803 unsigned long last_pfn)
ba395927 804{
6660c63a 805 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
f3a0a52f 806 struct dma_pte *first_pte, *pte;
ba395927
KA
807 int total = agaw_to_level(domain->agaw);
808 int level;
6660c63a 809 unsigned long tmp;
ba395927 810
6660c63a
DW
811 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
812 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
ba395927 813
f3a0a52f 814 /* We don't need lock here; nobody else touches the iova range */
ba395927
KA
815 level = 2;
816 while (level <= total) {
6660c63a
DW
817 tmp = align_to_level(start_pfn, level);
818
f3a0a52f 819 /* If we can't even clear one PTE at this level, we're done */
6660c63a 820 if (tmp + level_size(level) - 1 > last_pfn)
ba395927
KA
821 return;
822
3d7b0e41 823 while (tmp + level_size(level) - 1 <= last_pfn) {
f3a0a52f
DW
824 first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
825 if (!pte) {
826 tmp = align_to_level(tmp + 1, level + 1);
827 continue;
828 }
75e6bf96 829 do {
6a43e574
DW
830 if (dma_pte_present(pte)) {
831 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
832 dma_clear_pte(pte);
833 }
f3a0a52f
DW
834 pte++;
835 tmp += level_size(level);
75e6bf96
DW
836 } while (!first_pte_in_page(pte) &&
837 tmp + level_size(level) - 1 <= last_pfn);
838
f3a0a52f
DW
839 domain_flush_cache(domain, first_pte,
840 (void *)pte - (void *)first_pte);
841
ba395927
KA
842 }
843 level++;
844 }
845 /* free pgd */
d794dc9b 846 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
ba395927
KA
847 free_pgtable_page(domain->pgd);
848 domain->pgd = NULL;
849 }
850}
851
852/* iommu handling */
853static int iommu_alloc_root_entry(struct intel_iommu *iommu)
854{
855 struct root_entry *root;
856 unsigned long flags;
857
858 root = (struct root_entry *)alloc_pgtable_page();
859 if (!root)
860 return -ENOMEM;
861
5b6985ce 862 __iommu_flush_cache(iommu, root, ROOT_SIZE);
ba395927
KA
863
864 spin_lock_irqsave(&iommu->lock, flags);
865 iommu->root_entry = root;
866 spin_unlock_irqrestore(&iommu->lock, flags);
867
868 return 0;
869}
870
ba395927
KA
871static void iommu_set_root_entry(struct intel_iommu *iommu)
872{
873 void *addr;
c416daa9 874 u32 sts;
ba395927
KA
875 unsigned long flag;
876
877 addr = iommu->root_entry;
878
879 spin_lock_irqsave(&iommu->register_lock, flag);
880 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
881
c416daa9 882 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
883
884 /* Make sure hardware complete it */
885 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 886 readl, (sts & DMA_GSTS_RTPS), sts);
ba395927
KA
887
888 spin_unlock_irqrestore(&iommu->register_lock, flag);
889}
890
891static void iommu_flush_write_buffer(struct intel_iommu *iommu)
892{
893 u32 val;
894 unsigned long flag;
895
9af88143 896 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
ba395927 897 return;
ba395927
KA
898
899 spin_lock_irqsave(&iommu->register_lock, flag);
462b60f6 900 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
901
902 /* Make sure hardware complete it */
903 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 904 readl, (!(val & DMA_GSTS_WBFS)), val);
ba395927
KA
905
906 spin_unlock_irqrestore(&iommu->register_lock, flag);
907}
908
909/* return value determine if we need a write buffer flush */
4c25a2c1
DW
910static void __iommu_flush_context(struct intel_iommu *iommu,
911 u16 did, u16 source_id, u8 function_mask,
912 u64 type)
ba395927
KA
913{
914 u64 val = 0;
915 unsigned long flag;
916
ba395927
KA
917 switch (type) {
918 case DMA_CCMD_GLOBAL_INVL:
919 val = DMA_CCMD_GLOBAL_INVL;
920 break;
921 case DMA_CCMD_DOMAIN_INVL:
922 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
923 break;
924 case DMA_CCMD_DEVICE_INVL:
925 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
926 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
927 break;
928 default:
929 BUG();
930 }
931 val |= DMA_CCMD_ICC;
932
933 spin_lock_irqsave(&iommu->register_lock, flag);
934 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
935
936 /* Make sure hardware complete it */
937 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
938 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
939
940 spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
941}
942
ba395927 943/* return value determine if we need a write buffer flush */
1f0ef2aa
DW
944static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
945 u64 addr, unsigned int size_order, u64 type)
ba395927
KA
946{
947 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
948 u64 val = 0, val_iva = 0;
949 unsigned long flag;
950
ba395927
KA
951 switch (type) {
952 case DMA_TLB_GLOBAL_FLUSH:
953 /* global flush doesn't need set IVA_REG */
954 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
955 break;
956 case DMA_TLB_DSI_FLUSH:
957 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
958 break;
959 case DMA_TLB_PSI_FLUSH:
960 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
961 /* Note: always flush non-leaf currently */
962 val_iva = size_order | addr;
963 break;
964 default:
965 BUG();
966 }
967 /* Note: set drain read/write */
968#if 0
969 /*
970 * This is probably to be super secure.. Looks like we can
971 * ignore it without any impact.
972 */
973 if (cap_read_drain(iommu->cap))
974 val |= DMA_TLB_READ_DRAIN;
975#endif
976 if (cap_write_drain(iommu->cap))
977 val |= DMA_TLB_WRITE_DRAIN;
978
979 spin_lock_irqsave(&iommu->register_lock, flag);
980 /* Note: Only uses first TLB reg currently */
981 if (val_iva)
982 dmar_writeq(iommu->reg + tlb_offset, val_iva);
983 dmar_writeq(iommu->reg + tlb_offset + 8, val);
984
985 /* Make sure hardware complete it */
986 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
987 dmar_readq, (!(val & DMA_TLB_IVT)), val);
988
989 spin_unlock_irqrestore(&iommu->register_lock, flag);
990
991 /* check IOTLB invalidation granularity */
992 if (DMA_TLB_IAIG(val) == 0)
993 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
994 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
995 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
5b6985ce
FY
996 (unsigned long long)DMA_TLB_IIRG(type),
997 (unsigned long long)DMA_TLB_IAIG(val));
ba395927
KA
998}
999
93a23a72
YZ
1000static struct device_domain_info *iommu_support_dev_iotlb(
1001 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1002{
1003 int found = 0;
1004 unsigned long flags;
1005 struct device_domain_info *info;
1006 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1007
1008 if (!ecap_dev_iotlb_support(iommu->ecap))
1009 return NULL;
1010
1011 if (!iommu->qi)
1012 return NULL;
1013
1014 spin_lock_irqsave(&device_domain_lock, flags);
1015 list_for_each_entry(info, &domain->devices, link)
1016 if (info->bus == bus && info->devfn == devfn) {
1017 found = 1;
1018 break;
1019 }
1020 spin_unlock_irqrestore(&device_domain_lock, flags);
1021
1022 if (!found || !info->dev)
1023 return NULL;
1024
1025 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1026 return NULL;
1027
1028 if (!dmar_find_matched_atsr_unit(info->dev))
1029 return NULL;
1030
1031 info->iommu = iommu;
1032
1033 return info;
1034}
1035
1036static void iommu_enable_dev_iotlb(struct device_domain_info *info)
ba395927 1037{
93a23a72
YZ
1038 if (!info)
1039 return;
1040
1041 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1042}
1043
1044static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1045{
1046 if (!info->dev || !pci_ats_enabled(info->dev))
1047 return;
1048
1049 pci_disable_ats(info->dev);
1050}
1051
1052static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1053 u64 addr, unsigned mask)
1054{
1055 u16 sid, qdep;
1056 unsigned long flags;
1057 struct device_domain_info *info;
1058
1059 spin_lock_irqsave(&device_domain_lock, flags);
1060 list_for_each_entry(info, &domain->devices, link) {
1061 if (!info->dev || !pci_ats_enabled(info->dev))
1062 continue;
1063
1064 sid = info->bus << 8 | info->devfn;
1065 qdep = pci_ats_queue_depth(info->dev);
1066 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1067 }
1068 spin_unlock_irqrestore(&device_domain_lock, flags);
1069}
1070
1f0ef2aa 1071static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
03d6a246 1072 unsigned long pfn, unsigned int pages)
ba395927 1073{
9dd2fe89 1074 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
03d6a246 1075 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
ba395927 1076
ba395927
KA
1077 BUG_ON(pages == 0);
1078
ba395927 1079 /*
9dd2fe89
YZ
1080 * Fallback to domain selective flush if no PSI support or the size is
1081 * too big.
ba395927
KA
1082 * PSI requires page size to be 2 ^ x, and the base address is naturally
1083 * aligned to the size
1084 */
9dd2fe89
YZ
1085 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1086 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1f0ef2aa 1087 DMA_TLB_DSI_FLUSH);
9dd2fe89
YZ
1088 else
1089 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1090 DMA_TLB_PSI_FLUSH);
bf92df30
YZ
1091
1092 /*
1093 * In caching mode, domain ID 0 is reserved for non-present to present
1094 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1095 */
1096 if (!cap_caching_mode(iommu->cap) || did)
93a23a72 1097 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
ba395927
KA
1098}
1099
f8bab735 1100static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1101{
1102 u32 pmen;
1103 unsigned long flags;
1104
1105 spin_lock_irqsave(&iommu->register_lock, flags);
1106 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1107 pmen &= ~DMA_PMEN_EPM;
1108 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1109
1110 /* wait for the protected region status bit to clear */
1111 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1112 readl, !(pmen & DMA_PMEN_PRS), pmen);
1113
1114 spin_unlock_irqrestore(&iommu->register_lock, flags);
1115}
1116
ba395927
KA
1117static int iommu_enable_translation(struct intel_iommu *iommu)
1118{
1119 u32 sts;
1120 unsigned long flags;
1121
1122 spin_lock_irqsave(&iommu->register_lock, flags);
c416daa9
DW
1123 iommu->gcmd |= DMA_GCMD_TE;
1124 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1125
1126 /* Make sure hardware complete it */
1127 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1128 readl, (sts & DMA_GSTS_TES), sts);
ba395927 1129
ba395927
KA
1130 spin_unlock_irqrestore(&iommu->register_lock, flags);
1131 return 0;
1132}
1133
1134static int iommu_disable_translation(struct intel_iommu *iommu)
1135{
1136 u32 sts;
1137 unsigned long flag;
1138
1139 spin_lock_irqsave(&iommu->register_lock, flag);
1140 iommu->gcmd &= ~DMA_GCMD_TE;
1141 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1142
1143 /* Make sure hardware complete it */
1144 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1145 readl, (!(sts & DMA_GSTS_TES)), sts);
ba395927
KA
1146
1147 spin_unlock_irqrestore(&iommu->register_lock, flag);
1148 return 0;
1149}
1150
3460a6d9 1151
ba395927
KA
1152static int iommu_init_domains(struct intel_iommu *iommu)
1153{
1154 unsigned long ndomains;
1155 unsigned long nlongs;
1156
1157 ndomains = cap_ndoms(iommu->cap);
1158 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1159 nlongs = BITS_TO_LONGS(ndomains);
1160
1161 /* TBD: there might be 64K domains,
1162 * consider other allocation for future chip
1163 */
1164 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1165 if (!iommu->domain_ids) {
1166 printk(KERN_ERR "Allocating domain id array failed\n");
1167 return -ENOMEM;
1168 }
1169 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1170 GFP_KERNEL);
1171 if (!iommu->domains) {
1172 printk(KERN_ERR "Allocating domain array failed\n");
1173 kfree(iommu->domain_ids);
1174 return -ENOMEM;
1175 }
1176
e61d98d8
SS
1177 spin_lock_init(&iommu->lock);
1178
ba395927
KA
1179 /*
1180 * if Caching mode is set, then invalid translations are tagged
1181 * with domainid 0. Hence we need to pre-allocate it.
1182 */
1183 if (cap_caching_mode(iommu->cap))
1184 set_bit(0, iommu->domain_ids);
1185 return 0;
1186}
ba395927 1187
ba395927
KA
1188
1189static void domain_exit(struct dmar_domain *domain);
5e98c4b1 1190static void vm_domain_exit(struct dmar_domain *domain);
e61d98d8
SS
1191
1192void free_dmar_iommu(struct intel_iommu *iommu)
ba395927
KA
1193{
1194 struct dmar_domain *domain;
1195 int i;
c7151a8d 1196 unsigned long flags;
ba395927 1197
ba395927
KA
1198 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1199 for (; i < cap_ndoms(iommu->cap); ) {
1200 domain = iommu->domains[i];
1201 clear_bit(i, iommu->domain_ids);
c7151a8d
WH
1202
1203 spin_lock_irqsave(&domain->iommu_lock, flags);
5e98c4b1
WH
1204 if (--domain->iommu_count == 0) {
1205 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1206 vm_domain_exit(domain);
1207 else
1208 domain_exit(domain);
1209 }
c7151a8d
WH
1210 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1211
ba395927
KA
1212 i = find_next_bit(iommu->domain_ids,
1213 cap_ndoms(iommu->cap), i+1);
1214 }
1215
1216 if (iommu->gcmd & DMA_GCMD_TE)
1217 iommu_disable_translation(iommu);
1218
1219 if (iommu->irq) {
1220 set_irq_data(iommu->irq, NULL);
1221 /* This will mask the irq */
1222 free_irq(iommu->irq, iommu);
1223 destroy_irq(iommu->irq);
1224 }
1225
1226 kfree(iommu->domains);
1227 kfree(iommu->domain_ids);
1228
d9630fe9
WH
1229 g_iommus[iommu->seq_id] = NULL;
1230
1231 /* if all iommus are freed, free g_iommus */
1232 for (i = 0; i < g_num_of_iommus; i++) {
1233 if (g_iommus[i])
1234 break;
1235 }
1236
1237 if (i == g_num_of_iommus)
1238 kfree(g_iommus);
1239
ba395927
KA
1240 /* free context mapping */
1241 free_context_table(iommu);
ba395927
KA
1242}
1243
2c2e2c38 1244static struct dmar_domain *alloc_domain(void)
ba395927 1245{
ba395927 1246 struct dmar_domain *domain;
ba395927
KA
1247
1248 domain = alloc_domain_mem();
1249 if (!domain)
1250 return NULL;
1251
2c2e2c38
FY
1252 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1253 domain->flags = 0;
1254
1255 return domain;
1256}
1257
1258static int iommu_attach_domain(struct dmar_domain *domain,
1259 struct intel_iommu *iommu)
1260{
1261 int num;
1262 unsigned long ndomains;
1263 unsigned long flags;
1264
ba395927
KA
1265 ndomains = cap_ndoms(iommu->cap);
1266
1267 spin_lock_irqsave(&iommu->lock, flags);
2c2e2c38 1268
ba395927
KA
1269 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1270 if (num >= ndomains) {
1271 spin_unlock_irqrestore(&iommu->lock, flags);
ba395927 1272 printk(KERN_ERR "IOMMU: no free domain ids\n");
2c2e2c38 1273 return -ENOMEM;
ba395927
KA
1274 }
1275
ba395927 1276 domain->id = num;
2c2e2c38 1277 set_bit(num, iommu->domain_ids);
8c11e798 1278 set_bit(iommu->seq_id, &domain->iommu_bmp);
ba395927
KA
1279 iommu->domains[num] = domain;
1280 spin_unlock_irqrestore(&iommu->lock, flags);
1281
2c2e2c38 1282 return 0;
ba395927
KA
1283}
1284
2c2e2c38
FY
1285static void iommu_detach_domain(struct dmar_domain *domain,
1286 struct intel_iommu *iommu)
ba395927
KA
1287{
1288 unsigned long flags;
2c2e2c38
FY
1289 int num, ndomains;
1290 int found = 0;
ba395927 1291
8c11e798 1292 spin_lock_irqsave(&iommu->lock, flags);
2c2e2c38
FY
1293 ndomains = cap_ndoms(iommu->cap);
1294 num = find_first_bit(iommu->domain_ids, ndomains);
1295 for (; num < ndomains; ) {
1296 if (iommu->domains[num] == domain) {
1297 found = 1;
1298 break;
1299 }
1300 num = find_next_bit(iommu->domain_ids,
1301 cap_ndoms(iommu->cap), num+1);
1302 }
1303
1304 if (found) {
1305 clear_bit(num, iommu->domain_ids);
1306 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1307 iommu->domains[num] = NULL;
1308 }
8c11e798 1309 spin_unlock_irqrestore(&iommu->lock, flags);
ba395927
KA
1310}
1311
1312static struct iova_domain reserved_iova_list;
8a443df4
MG
1313static struct lock_class_key reserved_alloc_key;
1314static struct lock_class_key reserved_rbtree_key;
ba395927
KA
1315
1316static void dmar_init_reserved_ranges(void)
1317{
1318 struct pci_dev *pdev = NULL;
1319 struct iova *iova;
1320 int i;
ba395927 1321
f661197e 1322 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
ba395927 1323
8a443df4
MG
1324 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1325 &reserved_alloc_key);
1326 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1327 &reserved_rbtree_key);
1328
ba395927
KA
1329 /* IOAPIC ranges shouldn't be accessed by DMA */
1330 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1331 IOVA_PFN(IOAPIC_RANGE_END));
1332 if (!iova)
1333 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1334
1335 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1336 for_each_pci_dev(pdev) {
1337 struct resource *r;
1338
1339 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1340 r = &pdev->resource[i];
1341 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1342 continue;
1a4a4551
DW
1343 iova = reserve_iova(&reserved_iova_list,
1344 IOVA_PFN(r->start),
1345 IOVA_PFN(r->end));
ba395927
KA
1346 if (!iova)
1347 printk(KERN_ERR "Reserve iova failed\n");
1348 }
1349 }
1350
1351}
1352
1353static void domain_reserve_special_ranges(struct dmar_domain *domain)
1354{
1355 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1356}
1357
1358static inline int guestwidth_to_adjustwidth(int gaw)
1359{
1360 int agaw;
1361 int r = (gaw - 12) % 9;
1362
1363 if (r == 0)
1364 agaw = gaw;
1365 else
1366 agaw = gaw + 9 - r;
1367 if (agaw > 64)
1368 agaw = 64;
1369 return agaw;
1370}
1371
1372static int domain_init(struct dmar_domain *domain, int guest_width)
1373{
1374 struct intel_iommu *iommu;
1375 int adjust_width, agaw;
1376 unsigned long sagaw;
1377
f661197e 1378 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
c7151a8d 1379 spin_lock_init(&domain->iommu_lock);
ba395927
KA
1380
1381 domain_reserve_special_ranges(domain);
1382
1383 /* calculate AGAW */
8c11e798 1384 iommu = domain_get_iommu(domain);
ba395927
KA
1385 if (guest_width > cap_mgaw(iommu->cap))
1386 guest_width = cap_mgaw(iommu->cap);
1387 domain->gaw = guest_width;
1388 adjust_width = guestwidth_to_adjustwidth(guest_width);
1389 agaw = width_to_agaw(adjust_width);
1390 sagaw = cap_sagaw(iommu->cap);
1391 if (!test_bit(agaw, &sagaw)) {
1392 /* hardware doesn't support it, choose a bigger one */
1393 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1394 agaw = find_next_bit(&sagaw, 5, agaw);
1395 if (agaw >= 5)
1396 return -ENODEV;
1397 }
1398 domain->agaw = agaw;
1399 INIT_LIST_HEAD(&domain->devices);
1400
8e604097
WH
1401 if (ecap_coherent(iommu->ecap))
1402 domain->iommu_coherency = 1;
1403 else
1404 domain->iommu_coherency = 0;
1405
58c610bd
SY
1406 if (ecap_sc_support(iommu->ecap))
1407 domain->iommu_snooping = 1;
1408 else
1409 domain->iommu_snooping = 0;
1410
c7151a8d
WH
1411 domain->iommu_count = 1;
1412
ba395927
KA
1413 /* always allocate the top pgd */
1414 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1415 if (!domain->pgd)
1416 return -ENOMEM;
5b6985ce 1417 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
ba395927
KA
1418 return 0;
1419}
1420
1421static void domain_exit(struct dmar_domain *domain)
1422{
2c2e2c38
FY
1423 struct dmar_drhd_unit *drhd;
1424 struct intel_iommu *iommu;
ba395927
KA
1425
1426 /* Domain 0 is reserved, so dont process it */
1427 if (!domain)
1428 return;
1429
1430 domain_remove_dev_info(domain);
1431 /* destroy iovas */
1432 put_iova_domain(&domain->iovad);
ba395927
KA
1433
1434 /* clear ptes */
595badf5 1435 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
ba395927
KA
1436
1437 /* free page tables */
d794dc9b 1438 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
ba395927 1439
2c2e2c38
FY
1440 for_each_active_iommu(iommu, drhd)
1441 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1442 iommu_detach_domain(domain, iommu);
1443
ba395927
KA
1444 free_domain_mem(domain);
1445}
1446
4ed0d3e6
FY
1447static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1448 u8 bus, u8 devfn, int translation)
ba395927
KA
1449{
1450 struct context_entry *context;
ba395927 1451 unsigned long flags;
5331fe6f 1452 struct intel_iommu *iommu;
ea6606b0
WH
1453 struct dma_pte *pgd;
1454 unsigned long num;
1455 unsigned long ndomains;
1456 int id;
1457 int agaw;
93a23a72 1458 struct device_domain_info *info = NULL;
ba395927
KA
1459
1460 pr_debug("Set context mapping for %02x:%02x.%d\n",
1461 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
4ed0d3e6 1462
ba395927 1463 BUG_ON(!domain->pgd);
4ed0d3e6
FY
1464 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1465 translation != CONTEXT_TT_MULTI_LEVEL);
5331fe6f 1466
276dbf99 1467 iommu = device_to_iommu(segment, bus, devfn);
5331fe6f
WH
1468 if (!iommu)
1469 return -ENODEV;
1470
ba395927
KA
1471 context = device_to_context_entry(iommu, bus, devfn);
1472 if (!context)
1473 return -ENOMEM;
1474 spin_lock_irqsave(&iommu->lock, flags);
c07e7d21 1475 if (context_present(context)) {
ba395927
KA
1476 spin_unlock_irqrestore(&iommu->lock, flags);
1477 return 0;
1478 }
1479
ea6606b0
WH
1480 id = domain->id;
1481 pgd = domain->pgd;
1482
2c2e2c38
FY
1483 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1484 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
ea6606b0
WH
1485 int found = 0;
1486
1487 /* find an available domain id for this device in iommu */
1488 ndomains = cap_ndoms(iommu->cap);
1489 num = find_first_bit(iommu->domain_ids, ndomains);
1490 for (; num < ndomains; ) {
1491 if (iommu->domains[num] == domain) {
1492 id = num;
1493 found = 1;
1494 break;
1495 }
1496 num = find_next_bit(iommu->domain_ids,
1497 cap_ndoms(iommu->cap), num+1);
1498 }
1499
1500 if (found == 0) {
1501 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1502 if (num >= ndomains) {
1503 spin_unlock_irqrestore(&iommu->lock, flags);
1504 printk(KERN_ERR "IOMMU: no free domain ids\n");
1505 return -EFAULT;
1506 }
1507
1508 set_bit(num, iommu->domain_ids);
2c2e2c38 1509 set_bit(iommu->seq_id, &domain->iommu_bmp);
ea6606b0
WH
1510 iommu->domains[num] = domain;
1511 id = num;
1512 }
1513
1514 /* Skip top levels of page tables for
1515 * iommu which has less agaw than default.
1516 */
1517 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1518 pgd = phys_to_virt(dma_pte_addr(pgd));
1519 if (!dma_pte_present(pgd)) {
1520 spin_unlock_irqrestore(&iommu->lock, flags);
1521 return -ENOMEM;
1522 }
1523 }
1524 }
1525
1526 context_set_domain_id(context, id);
4ed0d3e6 1527
93a23a72
YZ
1528 if (translation != CONTEXT_TT_PASS_THROUGH) {
1529 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1530 translation = info ? CONTEXT_TT_DEV_IOTLB :
1531 CONTEXT_TT_MULTI_LEVEL;
1532 }
4ed0d3e6
FY
1533 /*
1534 * In pass through mode, AW must be programmed to indicate the largest
1535 * AGAW value supported by hardware. And ASR is ignored by hardware.
1536 */
93a23a72 1537 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
4ed0d3e6 1538 context_set_address_width(context, iommu->msagaw);
93a23a72
YZ
1539 else {
1540 context_set_address_root(context, virt_to_phys(pgd));
1541 context_set_address_width(context, iommu->agaw);
1542 }
4ed0d3e6
FY
1543
1544 context_set_translation_type(context, translation);
c07e7d21
MM
1545 context_set_fault_enable(context);
1546 context_set_present(context);
5331fe6f 1547 domain_flush_cache(domain, context, sizeof(*context));
ba395927 1548
4c25a2c1
DW
1549 /*
1550 * It's a non-present to present mapping. If hardware doesn't cache
1551 * non-present entry we only need to flush the write-buffer. If the
1552 * _does_ cache non-present entries, then it does so in the special
1553 * domain #0, which we have to flush:
1554 */
1555 if (cap_caching_mode(iommu->cap)) {
1556 iommu->flush.flush_context(iommu, 0,
1557 (((u16)bus) << 8) | devfn,
1558 DMA_CCMD_MASK_NOBIT,
1559 DMA_CCMD_DEVICE_INVL);
1f0ef2aa 1560 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
4c25a2c1 1561 } else {
ba395927 1562 iommu_flush_write_buffer(iommu);
4c25a2c1 1563 }
93a23a72 1564 iommu_enable_dev_iotlb(info);
ba395927 1565 spin_unlock_irqrestore(&iommu->lock, flags);
c7151a8d
WH
1566
1567 spin_lock_irqsave(&domain->iommu_lock, flags);
1568 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1569 domain->iommu_count++;
58c610bd 1570 domain_update_iommu_cap(domain);
c7151a8d
WH
1571 }
1572 spin_unlock_irqrestore(&domain->iommu_lock, flags);
ba395927
KA
1573 return 0;
1574}
1575
1576static int
4ed0d3e6
FY
1577domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1578 int translation)
ba395927
KA
1579{
1580 int ret;
1581 struct pci_dev *tmp, *parent;
1582
276dbf99 1583 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
4ed0d3e6
FY
1584 pdev->bus->number, pdev->devfn,
1585 translation);
ba395927
KA
1586 if (ret)
1587 return ret;
1588
1589 /* dependent device mapping */
1590 tmp = pci_find_upstream_pcie_bridge(pdev);
1591 if (!tmp)
1592 return 0;
1593 /* Secondary interface's bus number and devfn 0 */
1594 parent = pdev->bus->self;
1595 while (parent != tmp) {
276dbf99
DW
1596 ret = domain_context_mapping_one(domain,
1597 pci_domain_nr(parent->bus),
1598 parent->bus->number,
4ed0d3e6 1599 parent->devfn, translation);
ba395927
KA
1600 if (ret)
1601 return ret;
1602 parent = parent->bus->self;
1603 }
1604 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1605 return domain_context_mapping_one(domain,
276dbf99 1606 pci_domain_nr(tmp->subordinate),
4ed0d3e6
FY
1607 tmp->subordinate->number, 0,
1608 translation);
ba395927
KA
1609 else /* this is a legacy PCI bridge */
1610 return domain_context_mapping_one(domain,
276dbf99
DW
1611 pci_domain_nr(tmp->bus),
1612 tmp->bus->number,
4ed0d3e6
FY
1613 tmp->devfn,
1614 translation);
ba395927
KA
1615}
1616
5331fe6f 1617static int domain_context_mapped(struct pci_dev *pdev)
ba395927
KA
1618{
1619 int ret;
1620 struct pci_dev *tmp, *parent;
5331fe6f
WH
1621 struct intel_iommu *iommu;
1622
276dbf99
DW
1623 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1624 pdev->devfn);
5331fe6f
WH
1625 if (!iommu)
1626 return -ENODEV;
ba395927 1627
276dbf99 1628 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
ba395927
KA
1629 if (!ret)
1630 return ret;
1631 /* dependent device mapping */
1632 tmp = pci_find_upstream_pcie_bridge(pdev);
1633 if (!tmp)
1634 return ret;
1635 /* Secondary interface's bus number and devfn 0 */
1636 parent = pdev->bus->self;
1637 while (parent != tmp) {
8c11e798 1638 ret = device_context_mapped(iommu, parent->bus->number,
276dbf99 1639 parent->devfn);
ba395927
KA
1640 if (!ret)
1641 return ret;
1642 parent = parent->bus->self;
1643 }
1644 if (tmp->is_pcie)
276dbf99
DW
1645 return device_context_mapped(iommu, tmp->subordinate->number,
1646 0);
ba395927 1647 else
276dbf99
DW
1648 return device_context_mapped(iommu, tmp->bus->number,
1649 tmp->devfn);
ba395927
KA
1650}
1651
9051aa02
DW
1652static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1653 struct scatterlist *sg, unsigned long phys_pfn,
1654 unsigned long nr_pages, int prot)
e1605495
DW
1655{
1656 struct dma_pte *first_pte = NULL, *pte = NULL;
9051aa02 1657 phys_addr_t uninitialized_var(pteval);
e1605495 1658 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
9051aa02 1659 unsigned long sg_res;
e1605495
DW
1660
1661 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1662
1663 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1664 return -EINVAL;
1665
1666 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1667
9051aa02
DW
1668 if (sg)
1669 sg_res = 0;
1670 else {
1671 sg_res = nr_pages + 1;
1672 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1673 }
1674
e1605495 1675 while (nr_pages--) {
c85994e4
DW
1676 uint64_t tmp;
1677
e1605495
DW
1678 if (!sg_res) {
1679 sg_res = (sg->offset + sg->length + VTD_PAGE_SIZE - 1) >> VTD_PAGE_SHIFT;
1680 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1681 sg->dma_length = sg->length;
1682 pteval = page_to_phys(sg_page(sg)) | prot;
1683 }
1684 if (!pte) {
1685 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1686 if (!pte)
1687 return -ENOMEM;
1688 }
1689 /* We don't need lock here, nobody else
1690 * touches the iova range
1691 */
7766a3fb 1692 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
c85994e4 1693 if (tmp) {
1bf20f0d 1694 static int dumps = 5;
c85994e4
DW
1695 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1696 iov_pfn, tmp, (unsigned long long)pteval);
1bf20f0d
DW
1697 if (dumps) {
1698 dumps--;
1699 debug_dma_dump_mappings(NULL);
1700 }
1701 WARN_ON(1);
1702 }
e1605495 1703 pte++;
75e6bf96 1704 if (!nr_pages || first_pte_in_page(pte)) {
e1605495
DW
1705 domain_flush_cache(domain, first_pte,
1706 (void *)pte - (void *)first_pte);
1707 pte = NULL;
1708 }
1709 iov_pfn++;
1710 pteval += VTD_PAGE_SIZE;
1711 sg_res--;
1712 if (!sg_res)
1713 sg = sg_next(sg);
1714 }
1715 return 0;
1716}
1717
9051aa02
DW
1718static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1719 struct scatterlist *sg, unsigned long nr_pages,
1720 int prot)
ba395927 1721{
9051aa02
DW
1722 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1723}
6f6a00e4 1724
9051aa02
DW
1725static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1726 unsigned long phys_pfn, unsigned long nr_pages,
1727 int prot)
1728{
1729 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
ba395927
KA
1730}
1731
c7151a8d 1732static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
ba395927 1733{
c7151a8d
WH
1734 if (!iommu)
1735 return;
8c11e798
WH
1736
1737 clear_context_table(iommu, bus, devfn);
1738 iommu->flush.flush_context(iommu, 0, 0, 0,
4c25a2c1 1739 DMA_CCMD_GLOBAL_INVL);
1f0ef2aa 1740 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
ba395927
KA
1741}
1742
1743static void domain_remove_dev_info(struct dmar_domain *domain)
1744{
1745 struct device_domain_info *info;
1746 unsigned long flags;
c7151a8d 1747 struct intel_iommu *iommu;
ba395927
KA
1748
1749 spin_lock_irqsave(&device_domain_lock, flags);
1750 while (!list_empty(&domain->devices)) {
1751 info = list_entry(domain->devices.next,
1752 struct device_domain_info, link);
1753 list_del(&info->link);
1754 list_del(&info->global);
1755 if (info->dev)
358dd8ac 1756 info->dev->dev.archdata.iommu = NULL;
ba395927
KA
1757 spin_unlock_irqrestore(&device_domain_lock, flags);
1758
93a23a72 1759 iommu_disable_dev_iotlb(info);
276dbf99 1760 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
c7151a8d 1761 iommu_detach_dev(iommu, info->bus, info->devfn);
ba395927
KA
1762 free_devinfo_mem(info);
1763
1764 spin_lock_irqsave(&device_domain_lock, flags);
1765 }
1766 spin_unlock_irqrestore(&device_domain_lock, flags);
1767}
1768
1769/*
1770 * find_domain
358dd8ac 1771 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
ba395927 1772 */
38717946 1773static struct dmar_domain *
ba395927
KA
1774find_domain(struct pci_dev *pdev)
1775{
1776 struct device_domain_info *info;
1777
1778 /* No lock here, assumes no domain exit in normal case */
358dd8ac 1779 info = pdev->dev.archdata.iommu;
ba395927
KA
1780 if (info)
1781 return info->domain;
1782 return NULL;
1783}
1784
ba395927
KA
1785/* domain is initialized */
1786static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1787{
1788 struct dmar_domain *domain, *found = NULL;
1789 struct intel_iommu *iommu;
1790 struct dmar_drhd_unit *drhd;
1791 struct device_domain_info *info, *tmp;
1792 struct pci_dev *dev_tmp;
1793 unsigned long flags;
1794 int bus = 0, devfn = 0;
276dbf99 1795 int segment;
2c2e2c38 1796 int ret;
ba395927
KA
1797
1798 domain = find_domain(pdev);
1799 if (domain)
1800 return domain;
1801
276dbf99
DW
1802 segment = pci_domain_nr(pdev->bus);
1803
ba395927
KA
1804 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1805 if (dev_tmp) {
1806 if (dev_tmp->is_pcie) {
1807 bus = dev_tmp->subordinate->number;
1808 devfn = 0;
1809 } else {
1810 bus = dev_tmp->bus->number;
1811 devfn = dev_tmp->devfn;
1812 }
1813 spin_lock_irqsave(&device_domain_lock, flags);
1814 list_for_each_entry(info, &device_domain_list, global) {
276dbf99
DW
1815 if (info->segment == segment &&
1816 info->bus == bus && info->devfn == devfn) {
ba395927
KA
1817 found = info->domain;
1818 break;
1819 }
1820 }
1821 spin_unlock_irqrestore(&device_domain_lock, flags);
1822 /* pcie-pci bridge already has a domain, uses it */
1823 if (found) {
1824 domain = found;
1825 goto found_domain;
1826 }
1827 }
1828
2c2e2c38
FY
1829 domain = alloc_domain();
1830 if (!domain)
1831 goto error;
1832
ba395927
KA
1833 /* Allocate new domain for the device */
1834 drhd = dmar_find_matched_drhd_unit(pdev);
1835 if (!drhd) {
1836 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1837 pci_name(pdev));
1838 return NULL;
1839 }
1840 iommu = drhd->iommu;
1841
2c2e2c38
FY
1842 ret = iommu_attach_domain(domain, iommu);
1843 if (ret) {
1844 domain_exit(domain);
ba395927 1845 goto error;
2c2e2c38 1846 }
ba395927
KA
1847
1848 if (domain_init(domain, gaw)) {
1849 domain_exit(domain);
1850 goto error;
1851 }
1852
1853 /* register pcie-to-pci device */
1854 if (dev_tmp) {
1855 info = alloc_devinfo_mem();
1856 if (!info) {
1857 domain_exit(domain);
1858 goto error;
1859 }
276dbf99 1860 info->segment = segment;
ba395927
KA
1861 info->bus = bus;
1862 info->devfn = devfn;
1863 info->dev = NULL;
1864 info->domain = domain;
1865 /* This domain is shared by devices under p2p bridge */
3b5410e7 1866 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
ba395927
KA
1867
1868 /* pcie-to-pci bridge already has a domain, uses it */
1869 found = NULL;
1870 spin_lock_irqsave(&device_domain_lock, flags);
1871 list_for_each_entry(tmp, &device_domain_list, global) {
276dbf99
DW
1872 if (tmp->segment == segment &&
1873 tmp->bus == bus && tmp->devfn == devfn) {
ba395927
KA
1874 found = tmp->domain;
1875 break;
1876 }
1877 }
1878 if (found) {
1879 free_devinfo_mem(info);
1880 domain_exit(domain);
1881 domain = found;
1882 } else {
1883 list_add(&info->link, &domain->devices);
1884 list_add(&info->global, &device_domain_list);
1885 }
1886 spin_unlock_irqrestore(&device_domain_lock, flags);
1887 }
1888
1889found_domain:
1890 info = alloc_devinfo_mem();
1891 if (!info)
1892 goto error;
276dbf99 1893 info->segment = segment;
ba395927
KA
1894 info->bus = pdev->bus->number;
1895 info->devfn = pdev->devfn;
1896 info->dev = pdev;
1897 info->domain = domain;
1898 spin_lock_irqsave(&device_domain_lock, flags);
1899 /* somebody is fast */
1900 found = find_domain(pdev);
1901 if (found != NULL) {
1902 spin_unlock_irqrestore(&device_domain_lock, flags);
1903 if (found != domain) {
1904 domain_exit(domain);
1905 domain = found;
1906 }
1907 free_devinfo_mem(info);
1908 return domain;
1909 }
1910 list_add(&info->link, &domain->devices);
1911 list_add(&info->global, &device_domain_list);
358dd8ac 1912 pdev->dev.archdata.iommu = info;
ba395927
KA
1913 spin_unlock_irqrestore(&device_domain_lock, flags);
1914 return domain;
1915error:
1916 /* recheck it here, maybe others set it */
1917 return find_domain(pdev);
1918}
1919
2c2e2c38
FY
1920static int iommu_identity_mapping;
1921
b213203e
DW
1922static int iommu_domain_identity_map(struct dmar_domain *domain,
1923 unsigned long long start,
1924 unsigned long long end)
ba395927 1925{
c5395d5c
DW
1926 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1927 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1928
1929 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1930 dma_to_mm_pfn(last_vpfn))) {
ba395927 1931 printk(KERN_ERR "IOMMU: reserve iova failed\n");
b213203e 1932 return -ENOMEM;
ba395927
KA
1933 }
1934
c5395d5c
DW
1935 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1936 start, end, domain->id);
ba395927
KA
1937 /*
1938 * RMRR range might have overlap with physical memory range,
1939 * clear it first
1940 */
c5395d5c 1941 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
ba395927 1942
c5395d5c
DW
1943 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1944 last_vpfn - first_vpfn + 1,
61df7443 1945 DMA_PTE_READ|DMA_PTE_WRITE);
b213203e
DW
1946}
1947
1948static int iommu_prepare_identity_map(struct pci_dev *pdev,
1949 unsigned long long start,
1950 unsigned long long end)
1951{
1952 struct dmar_domain *domain;
1953 int ret;
1954
1955 printk(KERN_INFO
1956 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1957 pci_name(pdev), start, end);
1958
c7ab48d2 1959 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
b213203e
DW
1960 if (!domain)
1961 return -ENOMEM;
1962
1963 ret = iommu_domain_identity_map(domain, start, end);
ba395927
KA
1964 if (ret)
1965 goto error;
1966
1967 /* context entry init */
4ed0d3e6 1968 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
b213203e
DW
1969 if (ret)
1970 goto error;
1971
1972 return 0;
1973
1974 error:
ba395927
KA
1975 domain_exit(domain);
1976 return ret;
ba395927
KA
1977}
1978
1979static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1980 struct pci_dev *pdev)
1981{
358dd8ac 1982 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927
KA
1983 return 0;
1984 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1985 rmrr->end_address + 1);
1986}
1987
49a0429e
KA
1988#ifdef CONFIG_DMAR_FLOPPY_WA
1989static inline void iommu_prepare_isa(void)
1990{
1991 struct pci_dev *pdev;
1992 int ret;
1993
1994 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1995 if (!pdev)
1996 return;
1997
c7ab48d2 1998 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
49a0429e
KA
1999 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2000
2001 if (ret)
c7ab48d2
DW
2002 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2003 "floppy might not work\n");
49a0429e
KA
2004
2005}
2006#else
2007static inline void iommu_prepare_isa(void)
2008{
2009 return;
2010}
2011#endif /* !CONFIG_DMAR_FLPY_WA */
2012
4ed0d3e6
FY
2013/* Initialize each context entry as pass through.*/
2014static int __init init_context_pass_through(void)
2015{
2016 struct pci_dev *pdev = NULL;
2017 struct dmar_domain *domain;
2018 int ret;
2019
2020 for_each_pci_dev(pdev) {
2021 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2022 ret = domain_context_mapping(domain, pdev,
2023 CONTEXT_TT_PASS_THROUGH);
2024 if (ret)
2025 return ret;
2026 }
2027 return 0;
2028}
2029
2c2e2c38 2030static int md_domain_init(struct dmar_domain *domain, int guest_width);
c7ab48d2
DW
2031
2032static int __init si_domain_work_fn(unsigned long start_pfn,
2033 unsigned long end_pfn, void *datax)
2034{
2035 int *ret = datax;
2036
2037 *ret = iommu_domain_identity_map(si_domain,
2038 (uint64_t)start_pfn << PAGE_SHIFT,
2039 (uint64_t)end_pfn << PAGE_SHIFT);
2040 return *ret;
2041
2042}
2043
2c2e2c38
FY
2044static int si_domain_init(void)
2045{
2046 struct dmar_drhd_unit *drhd;
2047 struct intel_iommu *iommu;
c7ab48d2 2048 int nid, ret = 0;
2c2e2c38
FY
2049
2050 si_domain = alloc_domain();
2051 if (!si_domain)
2052 return -EFAULT;
2053
c7ab48d2 2054 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2c2e2c38
FY
2055
2056 for_each_active_iommu(iommu, drhd) {
2057 ret = iommu_attach_domain(si_domain, iommu);
2058 if (ret) {
2059 domain_exit(si_domain);
2060 return -EFAULT;
2061 }
2062 }
2063
2064 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2065 domain_exit(si_domain);
2066 return -EFAULT;
2067 }
2068
2069 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2070
c7ab48d2
DW
2071 for_each_online_node(nid) {
2072 work_with_active_regions(nid, si_domain_work_fn, &ret);
2073 if (ret)
2074 return ret;
2075 }
2076
2c2e2c38
FY
2077 return 0;
2078}
2079
2080static void domain_remove_one_dev_info(struct dmar_domain *domain,
2081 struct pci_dev *pdev);
2082static int identity_mapping(struct pci_dev *pdev)
2083{
2084 struct device_domain_info *info;
2085
2086 if (likely(!iommu_identity_mapping))
2087 return 0;
2088
2089
2090 list_for_each_entry(info, &si_domain->devices, link)
2091 if (info->dev == pdev)
2092 return 1;
2093 return 0;
2094}
2095
2096static int domain_add_dev_info(struct dmar_domain *domain,
2097 struct pci_dev *pdev)
2098{
2099 struct device_domain_info *info;
2100 unsigned long flags;
2101
2102 info = alloc_devinfo_mem();
2103 if (!info)
2104 return -ENOMEM;
2105
2106 info->segment = pci_domain_nr(pdev->bus);
2107 info->bus = pdev->bus->number;
2108 info->devfn = pdev->devfn;
2109 info->dev = pdev;
2110 info->domain = domain;
2111
2112 spin_lock_irqsave(&device_domain_lock, flags);
2113 list_add(&info->link, &domain->devices);
2114 list_add(&info->global, &device_domain_list);
2115 pdev->dev.archdata.iommu = info;
2116 spin_unlock_irqrestore(&device_domain_lock, flags);
2117
2118 return 0;
2119}
2120
6941af28
DW
2121static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2122{
2123 if (iommu_identity_mapping == 2)
2124 return IS_GFX_DEVICE(pdev);
2125
3dfc813d
DW
2126 /*
2127 * We want to start off with all devices in the 1:1 domain, and
2128 * take them out later if we find they can't access all of memory.
2129 *
2130 * However, we can't do this for PCI devices behind bridges,
2131 * because all PCI devices behind the same bridge will end up
2132 * with the same source-id on their transactions.
2133 *
2134 * Practically speaking, we can't change things around for these
2135 * devices at run-time, because we can't be sure there'll be no
2136 * DMA transactions in flight for any of their siblings.
2137 *
2138 * So PCI devices (unless they're on the root bus) as well as
2139 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2140 * the 1:1 domain, just in _case_ one of their siblings turns out
2141 * not to be able to map all of memory.
2142 */
2143 if (!pdev->is_pcie) {
2144 if (!pci_is_root_bus(pdev->bus))
2145 return 0;
2146 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2147 return 0;
2148 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2149 return 0;
2150
2151 /*
2152 * At boot time, we don't yet know if devices will be 64-bit capable.
2153 * Assume that they will -- if they turn out not to be, then we can
2154 * take them out of the 1:1 domain later.
2155 */
6941af28
DW
2156 if (!startup)
2157 return pdev->dma_mask > DMA_BIT_MASK(32);
2158
2159 return 1;
2160}
2161
2c2e2c38
FY
2162static int iommu_prepare_static_identity_mapping(void)
2163{
2c2e2c38
FY
2164 struct pci_dev *pdev = NULL;
2165 int ret;
2166
2167 ret = si_domain_init();
2168 if (ret)
2169 return -EFAULT;
2170
2c2e2c38 2171 for_each_pci_dev(pdev) {
6941af28 2172 if (iommu_should_identity_map(pdev, 1)) {
62edf5dc
DW
2173 printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
2174 pci_name(pdev));
2175
2176 ret = domain_context_mapping(si_domain, pdev,
2177 CONTEXT_TT_MULTI_LEVEL);
2178 if (ret)
2179 return ret;
2180 ret = domain_add_dev_info(si_domain, pdev);
2181 if (ret)
2182 return ret;
2183 }
2c2e2c38
FY
2184 }
2185
2186 return 0;
2187}
2188
2189int __init init_dmars(void)
ba395927
KA
2190{
2191 struct dmar_drhd_unit *drhd;
2192 struct dmar_rmrr_unit *rmrr;
2193 struct pci_dev *pdev;
2194 struct intel_iommu *iommu;
9d783ba0 2195 int i, ret;
4ed0d3e6 2196 int pass_through = 1;
ba395927 2197
2c2e2c38
FY
2198 /*
2199 * In case pass through can not be enabled, iommu tries to use identity
2200 * mapping.
2201 */
2202 if (iommu_pass_through)
2203 iommu_identity_mapping = 1;
2204
ba395927
KA
2205 /*
2206 * for each drhd
2207 * allocate root
2208 * initialize and program root entry to not present
2209 * endfor
2210 */
2211 for_each_drhd_unit(drhd) {
5e0d2a6f 2212 g_num_of_iommus++;
2213 /*
2214 * lock not needed as this is only incremented in the single
2215 * threaded kernel __init code path all other access are read
2216 * only
2217 */
2218 }
2219
d9630fe9
WH
2220 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2221 GFP_KERNEL);
2222 if (!g_iommus) {
2223 printk(KERN_ERR "Allocating global iommu array failed\n");
2224 ret = -ENOMEM;
2225 goto error;
2226 }
2227
80b20dd8 2228 deferred_flush = kzalloc(g_num_of_iommus *
2229 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2230 if (!deferred_flush) {
d9630fe9 2231 kfree(g_iommus);
5e0d2a6f 2232 ret = -ENOMEM;
2233 goto error;
2234 }
2235
5e0d2a6f 2236 for_each_drhd_unit(drhd) {
2237 if (drhd->ignored)
2238 continue;
1886e8a9
SS
2239
2240 iommu = drhd->iommu;
d9630fe9 2241 g_iommus[iommu->seq_id] = iommu;
ba395927 2242
e61d98d8
SS
2243 ret = iommu_init_domains(iommu);
2244 if (ret)
2245 goto error;
2246
ba395927
KA
2247 /*
2248 * TBD:
2249 * we could share the same root & context tables
2250 * amoung all IOMMU's. Need to Split it later.
2251 */
2252 ret = iommu_alloc_root_entry(iommu);
2253 if (ret) {
2254 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2255 goto error;
2256 }
4ed0d3e6
FY
2257 if (!ecap_pass_through(iommu->ecap))
2258 pass_through = 0;
ba395927 2259 }
4ed0d3e6
FY
2260 if (iommu_pass_through)
2261 if (!pass_through) {
2262 printk(KERN_INFO
2263 "Pass Through is not supported by hardware.\n");
2264 iommu_pass_through = 0;
2265 }
ba395927 2266
1531a6a6
SS
2267 /*
2268 * Start from the sane iommu hardware state.
2269 */
a77b67d4
YS
2270 for_each_drhd_unit(drhd) {
2271 if (drhd->ignored)
2272 continue;
2273
2274 iommu = drhd->iommu;
1531a6a6
SS
2275
2276 /*
2277 * If the queued invalidation is already initialized by us
2278 * (for example, while enabling interrupt-remapping) then
2279 * we got the things already rolling from a sane state.
2280 */
2281 if (iommu->qi)
2282 continue;
2283
2284 /*
2285 * Clear any previous faults.
2286 */
2287 dmar_fault(-1, iommu);
2288 /*
2289 * Disable queued invalidation if supported and already enabled
2290 * before OS handover.
2291 */
2292 dmar_disable_qi(iommu);
2293 }
2294
2295 for_each_drhd_unit(drhd) {
2296 if (drhd->ignored)
2297 continue;
2298
2299 iommu = drhd->iommu;
2300
a77b67d4
YS
2301 if (dmar_enable_qi(iommu)) {
2302 /*
2303 * Queued Invalidate not enabled, use Register Based
2304 * Invalidate
2305 */
2306 iommu->flush.flush_context = __iommu_flush_context;
2307 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2308 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
b4e0f9eb
FT
2309 "invalidation\n",
2310 (unsigned long long)drhd->reg_base_addr);
a77b67d4
YS
2311 } else {
2312 iommu->flush.flush_context = qi_flush_context;
2313 iommu->flush.flush_iotlb = qi_flush_iotlb;
2314 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
b4e0f9eb
FT
2315 "invalidation\n",
2316 (unsigned long long)drhd->reg_base_addr);
a77b67d4
YS
2317 }
2318 }
2319
ba395927 2320 /*
4ed0d3e6
FY
2321 * If pass through is set and enabled, context entries of all pci
2322 * devices are intialized by pass through translation type.
ba395927 2323 */
4ed0d3e6
FY
2324 if (iommu_pass_through) {
2325 ret = init_context_pass_through();
2326 if (ret) {
2327 printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2328 iommu_pass_through = 0;
ba395927
KA
2329 }
2330 }
2331
ba395927 2332 /*
4ed0d3e6 2333 * If pass through is not set or not enabled, setup context entries for
2c2e2c38
FY
2334 * identity mappings for rmrr, gfx, and isa and may fall back to static
2335 * identity mapping if iommu_identity_mapping is set.
ba395927 2336 */
4ed0d3e6 2337 if (!iommu_pass_through) {
62edf5dc
DW
2338#ifdef CONFIG_DMAR_BROKEN_GFX_WA
2339 if (!iommu_identity_mapping)
2340 iommu_identity_mapping = 2;
2341#endif
2c2e2c38
FY
2342 if (iommu_identity_mapping)
2343 iommu_prepare_static_identity_mapping();
4ed0d3e6
FY
2344 /*
2345 * For each rmrr
2346 * for each dev attached to rmrr
2347 * do
2348 * locate drhd for dev, alloc domain for dev
2349 * allocate free domain
2350 * allocate page table entries for rmrr
2351 * if context not allocated for bus
2352 * allocate and init context
2353 * set present in root table for this bus
2354 * init context with domain, translation etc
2355 * endfor
2356 * endfor
2357 */
2c2e2c38 2358 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
4ed0d3e6
FY
2359 for_each_rmrr_units(rmrr) {
2360 for (i = 0; i < rmrr->devices_cnt; i++) {
2361 pdev = rmrr->devices[i];
2362 /*
2363 * some BIOS lists non-exist devices in DMAR
2364 * table.
2365 */
2366 if (!pdev)
2367 continue;
2368 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2369 if (ret)
2370 printk(KERN_ERR
ba395927 2371 "IOMMU: mapping reserved region failed\n");
4ed0d3e6 2372 }
ba395927 2373 }
ba395927 2374
4ed0d3e6
FY
2375 iommu_prepare_isa();
2376 }
49a0429e 2377
ba395927
KA
2378 /*
2379 * for each drhd
2380 * enable fault log
2381 * global invalidate context cache
2382 * global invalidate iotlb
2383 * enable translation
2384 */
2385 for_each_drhd_unit(drhd) {
2386 if (drhd->ignored)
2387 continue;
2388 iommu = drhd->iommu;
ba395927
KA
2389
2390 iommu_flush_write_buffer(iommu);
2391
3460a6d9
KA
2392 ret = dmar_set_interrupt(iommu);
2393 if (ret)
2394 goto error;
2395
ba395927
KA
2396 iommu_set_root_entry(iommu);
2397
4c25a2c1 2398 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
1f0ef2aa 2399 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
f8bab735 2400 iommu_disable_protect_mem_regions(iommu);
2401
ba395927
KA
2402 ret = iommu_enable_translation(iommu);
2403 if (ret)
2404 goto error;
2405 }
2406
2407 return 0;
2408error:
2409 for_each_drhd_unit(drhd) {
2410 if (drhd->ignored)
2411 continue;
2412 iommu = drhd->iommu;
2413 free_iommu(iommu);
2414 }
d9630fe9 2415 kfree(g_iommus);
ba395927
KA
2416 return ret;
2417}
2418
5a5e02a6 2419/* Returns a number of VTD pages, but aligned to MM page size */
88cb6a74
DW
2420static inline unsigned long aligned_nrpages(unsigned long host_addr,
2421 size_t size)
ba395927 2422{
88cb6a74 2423 host_addr &= ~PAGE_MASK;
5a5e02a6 2424 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
ba395927
KA
2425}
2426
5a5e02a6 2427/* This takes a number of _MM_ pages, not VTD pages */
875764de
DW
2428static struct iova *intel_alloc_iova(struct device *dev,
2429 struct dmar_domain *domain,
2430 unsigned long nrpages, uint64_t dma_mask)
ba395927 2431{
ba395927 2432 struct pci_dev *pdev = to_pci_dev(dev);
ba395927 2433 struct iova *iova = NULL;
ba395927 2434
875764de
DW
2435 /* Restrict dma_mask to the width that the iommu can handle */
2436 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2437
2438 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
ba395927
KA
2439 /*
2440 * First try to allocate an io virtual address in
284901a9 2441 * DMA_BIT_MASK(32) and if that fails then try allocating
3609801e 2442 * from higher range
ba395927 2443 */
875764de
DW
2444 iova = alloc_iova(&domain->iovad, nrpages,
2445 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2446 if (iova)
2447 return iova;
2448 }
2449 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2450 if (unlikely(!iova)) {
2451 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2452 nrpages, pci_name(pdev));
f76aec76
KA
2453 return NULL;
2454 }
2455
2456 return iova;
2457}
2458
2459static struct dmar_domain *
2460get_valid_domain_for_dev(struct pci_dev *pdev)
2461{
2462 struct dmar_domain *domain;
2463 int ret;
2464
2465 domain = get_domain_for_dev(pdev,
2466 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2467 if (!domain) {
2468 printk(KERN_ERR
2469 "Allocating domain for %s failed", pci_name(pdev));
4fe05bbc 2470 return NULL;
ba395927
KA
2471 }
2472
2473 /* make sure context mapping is ok */
5331fe6f 2474 if (unlikely(!domain_context_mapped(pdev))) {
4ed0d3e6
FY
2475 ret = domain_context_mapping(domain, pdev,
2476 CONTEXT_TT_MULTI_LEVEL);
f76aec76
KA
2477 if (ret) {
2478 printk(KERN_ERR
2479 "Domain context map for %s failed",
2480 pci_name(pdev));
4fe05bbc 2481 return NULL;
f76aec76 2482 }
ba395927
KA
2483 }
2484
f76aec76
KA
2485 return domain;
2486}
2487
2c2e2c38
FY
2488static int iommu_dummy(struct pci_dev *pdev)
2489{
2490 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2491}
2492
2493/* Check if the pdev needs to go through non-identity map and unmap process.*/
73676832 2494static int iommu_no_mapping(struct device *dev)
2c2e2c38 2495{
73676832 2496 struct pci_dev *pdev;
2c2e2c38
FY
2497 int found;
2498
73676832
DW
2499 if (unlikely(dev->bus != &pci_bus_type))
2500 return 1;
2501
2502 pdev = to_pci_dev(dev);
1e4c64c4
DW
2503 if (iommu_dummy(pdev))
2504 return 1;
2505
2c2e2c38 2506 if (!iommu_identity_mapping)
1e4c64c4 2507 return 0;
2c2e2c38
FY
2508
2509 found = identity_mapping(pdev);
2510 if (found) {
6941af28 2511 if (iommu_should_identity_map(pdev, 0))
2c2e2c38
FY
2512 return 1;
2513 else {
2514 /*
2515 * 32 bit DMA is removed from si_domain and fall back
2516 * to non-identity mapping.
2517 */
2518 domain_remove_one_dev_info(si_domain, pdev);
2519 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2520 pci_name(pdev));
2521 return 0;
2522 }
2523 } else {
2524 /*
2525 * In case of a detached 64 bit DMA device from vm, the device
2526 * is put into si_domain for identity mapping.
2527 */
6941af28 2528 if (iommu_should_identity_map(pdev, 0)) {
2c2e2c38
FY
2529 int ret;
2530 ret = domain_add_dev_info(si_domain, pdev);
1b7bc0a1
DW
2531 if (ret)
2532 return 0;
2533 ret = domain_context_mapping(si_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2c2e2c38
FY
2534 if (!ret) {
2535 printk(KERN_INFO "64bit %s uses identity mapping\n",
2536 pci_name(pdev));
2537 return 1;
2538 }
2539 }
2540 }
2541
1e4c64c4 2542 return 0;
2c2e2c38
FY
2543}
2544
bb9e6d65
FT
2545static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2546 size_t size, int dir, u64 dma_mask)
f76aec76
KA
2547{
2548 struct pci_dev *pdev = to_pci_dev(hwdev);
f76aec76 2549 struct dmar_domain *domain;
5b6985ce 2550 phys_addr_t start_paddr;
f76aec76
KA
2551 struct iova *iova;
2552 int prot = 0;
6865f0d1 2553 int ret;
8c11e798 2554 struct intel_iommu *iommu;
f76aec76
KA
2555
2556 BUG_ON(dir == DMA_NONE);
2c2e2c38 2557
73676832 2558 if (iommu_no_mapping(hwdev))
6865f0d1 2559 return paddr;
f76aec76
KA
2560
2561 domain = get_valid_domain_for_dev(pdev);
2562 if (!domain)
2563 return 0;
2564
8c11e798 2565 iommu = domain_get_iommu(domain);
88cb6a74 2566 size = aligned_nrpages(paddr, size);
f76aec76 2567
5a5e02a6
DW
2568 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2569 pdev->dma_mask);
f76aec76
KA
2570 if (!iova)
2571 goto error;
2572
ba395927
KA
2573 /*
2574 * Check if DMAR supports zero-length reads on write only
2575 * mappings..
2576 */
2577 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 2578 !cap_zlr(iommu->cap))
ba395927
KA
2579 prot |= DMA_PTE_READ;
2580 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2581 prot |= DMA_PTE_WRITE;
2582 /*
6865f0d1 2583 * paddr - (paddr + size) might be partial page, we should map the whole
ba395927 2584 * page. Note: if two part of one page are separately mapped, we
6865f0d1 2585 * might have two guest_addr mapping to the same host paddr, but this
ba395927
KA
2586 * is not a big problem
2587 */
0ab36de2
DW
2588 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2589 paddr >> VTD_PAGE_SHIFT, size, prot);
ba395927
KA
2590 if (ret)
2591 goto error;
2592
1f0ef2aa
DW
2593 /* it's a non-present to present mapping. Only flush if caching mode */
2594 if (cap_caching_mode(iommu->cap))
03d6a246 2595 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
1f0ef2aa 2596 else
8c11e798 2597 iommu_flush_write_buffer(iommu);
f76aec76 2598
03d6a246
DW
2599 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2600 start_paddr += paddr & ~PAGE_MASK;
2601 return start_paddr;
ba395927 2602
ba395927 2603error:
f76aec76
KA
2604 if (iova)
2605 __free_iova(&domain->iovad, iova);
4cf2e75d 2606 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
5b6985ce 2607 pci_name(pdev), size, (unsigned long long)paddr, dir);
ba395927
KA
2608 return 0;
2609}
2610
ffbbef5c
FT
2611static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2612 unsigned long offset, size_t size,
2613 enum dma_data_direction dir,
2614 struct dma_attrs *attrs)
bb9e6d65 2615{
ffbbef5c
FT
2616 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2617 dir, to_pci_dev(dev)->dma_mask);
bb9e6d65
FT
2618}
2619
5e0d2a6f 2620static void flush_unmaps(void)
2621{
80b20dd8 2622 int i, j;
5e0d2a6f 2623
5e0d2a6f 2624 timer_on = 0;
2625
2626 /* just flush them all */
2627 for (i = 0; i < g_num_of_iommus; i++) {
a2bb8459
WH
2628 struct intel_iommu *iommu = g_iommus[i];
2629 if (!iommu)
2630 continue;
c42d9f32 2631
9dd2fe89
YZ
2632 if (!deferred_flush[i].next)
2633 continue;
2634
2635 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
93a23a72 2636 DMA_TLB_GLOBAL_FLUSH);
9dd2fe89 2637 for (j = 0; j < deferred_flush[i].next; j++) {
93a23a72
YZ
2638 unsigned long mask;
2639 struct iova *iova = deferred_flush[i].iova[j];
2640
2641 mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2642 mask = ilog2(mask >> VTD_PAGE_SHIFT);
2643 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2644 iova->pfn_lo << PAGE_SHIFT, mask);
2645 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
80b20dd8 2646 }
9dd2fe89 2647 deferred_flush[i].next = 0;
5e0d2a6f 2648 }
2649
5e0d2a6f 2650 list_size = 0;
5e0d2a6f 2651}
2652
2653static void flush_unmaps_timeout(unsigned long data)
2654{
80b20dd8 2655 unsigned long flags;
2656
2657 spin_lock_irqsave(&async_umap_flush_lock, flags);
5e0d2a6f 2658 flush_unmaps();
80b20dd8 2659 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
5e0d2a6f 2660}
2661
2662static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2663{
2664 unsigned long flags;
80b20dd8 2665 int next, iommu_id;
8c11e798 2666 struct intel_iommu *iommu;
5e0d2a6f 2667
2668 spin_lock_irqsave(&async_umap_flush_lock, flags);
80b20dd8 2669 if (list_size == HIGH_WATER_MARK)
2670 flush_unmaps();
2671
8c11e798
WH
2672 iommu = domain_get_iommu(dom);
2673 iommu_id = iommu->seq_id;
c42d9f32 2674
80b20dd8 2675 next = deferred_flush[iommu_id].next;
2676 deferred_flush[iommu_id].domain[next] = dom;
2677 deferred_flush[iommu_id].iova[next] = iova;
2678 deferred_flush[iommu_id].next++;
5e0d2a6f 2679
2680 if (!timer_on) {
2681 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2682 timer_on = 1;
2683 }
2684 list_size++;
2685 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2686}
2687
ffbbef5c
FT
2688static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2689 size_t size, enum dma_data_direction dir,
2690 struct dma_attrs *attrs)
ba395927 2691{
ba395927 2692 struct pci_dev *pdev = to_pci_dev(dev);
f76aec76 2693 struct dmar_domain *domain;
d794dc9b 2694 unsigned long start_pfn, last_pfn;
ba395927 2695 struct iova *iova;
8c11e798 2696 struct intel_iommu *iommu;
ba395927 2697
73676832 2698 if (iommu_no_mapping(dev))
f76aec76 2699 return;
2c2e2c38 2700
ba395927
KA
2701 domain = find_domain(pdev);
2702 BUG_ON(!domain);
2703
8c11e798
WH
2704 iommu = domain_get_iommu(domain);
2705
ba395927 2706 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
85b98276
DW
2707 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2708 (unsigned long long)dev_addr))
ba395927 2709 return;
ba395927 2710
d794dc9b
DW
2711 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2712 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
ba395927 2713
d794dc9b
DW
2714 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2715 pci_name(pdev), start_pfn, last_pfn);
ba395927 2716
f76aec76 2717 /* clear the whole page */
d794dc9b
DW
2718 dma_pte_clear_range(domain, start_pfn, last_pfn);
2719
f76aec76 2720 /* free page tables */
d794dc9b
DW
2721 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2722
5e0d2a6f 2723 if (intel_iommu_strict) {
03d6a246 2724 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
d794dc9b 2725 last_pfn - start_pfn + 1);
5e0d2a6f 2726 /* free iova */
2727 __free_iova(&domain->iovad, iova);
2728 } else {
2729 add_unmap(domain, iova);
2730 /*
2731 * queue up the release of the unmap to save the 1/6th of the
2732 * cpu used up by the iotlb flush operation...
2733 */
5e0d2a6f 2734 }
ba395927
KA
2735}
2736
d7ab5c46
FT
2737static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2738 int dir)
ffbbef5c
FT
2739{
2740 intel_unmap_page(dev, dev_addr, size, dir, NULL);
2741}
2742
d7ab5c46
FT
2743static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2744 dma_addr_t *dma_handle, gfp_t flags)
ba395927
KA
2745{
2746 void *vaddr;
2747 int order;
2748
5b6985ce 2749 size = PAGE_ALIGN(size);
ba395927
KA
2750 order = get_order(size);
2751 flags &= ~(GFP_DMA | GFP_DMA32);
2752
2753 vaddr = (void *)__get_free_pages(flags, order);
2754 if (!vaddr)
2755 return NULL;
2756 memset(vaddr, 0, size);
2757
bb9e6d65
FT
2758 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2759 DMA_BIDIRECTIONAL,
2760 hwdev->coherent_dma_mask);
ba395927
KA
2761 if (*dma_handle)
2762 return vaddr;
2763 free_pages((unsigned long)vaddr, order);
2764 return NULL;
2765}
2766
d7ab5c46
FT
2767static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2768 dma_addr_t dma_handle)
ba395927
KA
2769{
2770 int order;
2771
5b6985ce 2772 size = PAGE_ALIGN(size);
ba395927
KA
2773 order = get_order(size);
2774
2775 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2776 free_pages((unsigned long)vaddr, order);
2777}
2778
d7ab5c46
FT
2779static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2780 int nelems, enum dma_data_direction dir,
2781 struct dma_attrs *attrs)
ba395927 2782{
ba395927
KA
2783 struct pci_dev *pdev = to_pci_dev(hwdev);
2784 struct dmar_domain *domain;
d794dc9b 2785 unsigned long start_pfn, last_pfn;
f76aec76 2786 struct iova *iova;
8c11e798 2787 struct intel_iommu *iommu;
ba395927 2788
73676832 2789 if (iommu_no_mapping(hwdev))
ba395927
KA
2790 return;
2791
2792 domain = find_domain(pdev);
8c11e798
WH
2793 BUG_ON(!domain);
2794
2795 iommu = domain_get_iommu(domain);
ba395927 2796
c03ab37c 2797 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
85b98276
DW
2798 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2799 (unsigned long long)sglist[0].dma_address))
f76aec76 2800 return;
f76aec76 2801
d794dc9b
DW
2802 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2803 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
f76aec76
KA
2804
2805 /* clear the whole page */
d794dc9b
DW
2806 dma_pte_clear_range(domain, start_pfn, last_pfn);
2807
f76aec76 2808 /* free page tables */
d794dc9b 2809 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
f76aec76 2810
03d6a246 2811 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
d794dc9b 2812 (last_pfn - start_pfn + 1));
f76aec76
KA
2813
2814 /* free iova */
2815 __free_iova(&domain->iovad, iova);
ba395927
KA
2816}
2817
ba395927 2818static int intel_nontranslate_map_sg(struct device *hddev,
c03ab37c 2819 struct scatterlist *sglist, int nelems, int dir)
ba395927
KA
2820{
2821 int i;
c03ab37c 2822 struct scatterlist *sg;
ba395927 2823
c03ab37c 2824 for_each_sg(sglist, sg, nelems, i) {
12d4d40e 2825 BUG_ON(!sg_page(sg));
4cf2e75d 2826 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
c03ab37c 2827 sg->dma_length = sg->length;
ba395927
KA
2828 }
2829 return nelems;
2830}
2831
d7ab5c46
FT
2832static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2833 enum dma_data_direction dir, struct dma_attrs *attrs)
ba395927 2834{
ba395927 2835 int i;
ba395927
KA
2836 struct pci_dev *pdev = to_pci_dev(hwdev);
2837 struct dmar_domain *domain;
f76aec76
KA
2838 size_t size = 0;
2839 int prot = 0;
b536d24d 2840 size_t offset_pfn = 0;
f76aec76
KA
2841 struct iova *iova = NULL;
2842 int ret;
c03ab37c 2843 struct scatterlist *sg;
b536d24d 2844 unsigned long start_vpfn;
8c11e798 2845 struct intel_iommu *iommu;
ba395927
KA
2846
2847 BUG_ON(dir == DMA_NONE);
73676832 2848 if (iommu_no_mapping(hwdev))
c03ab37c 2849 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
ba395927 2850
f76aec76
KA
2851 domain = get_valid_domain_for_dev(pdev);
2852 if (!domain)
2853 return 0;
2854
8c11e798
WH
2855 iommu = domain_get_iommu(domain);
2856
b536d24d 2857 for_each_sg(sglist, sg, nelems, i)
88cb6a74 2858 size += aligned_nrpages(sg->offset, sg->length);
f76aec76 2859
5a5e02a6
DW
2860 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2861 pdev->dma_mask);
f76aec76 2862 if (!iova) {
c03ab37c 2863 sglist->dma_length = 0;
f76aec76
KA
2864 return 0;
2865 }
2866
2867 /*
2868 * Check if DMAR supports zero-length reads on write only
2869 * mappings..
2870 */
2871 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 2872 !cap_zlr(iommu->cap))
f76aec76
KA
2873 prot |= DMA_PTE_READ;
2874 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2875 prot |= DMA_PTE_WRITE;
2876
b536d24d 2877 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
e1605495
DW
2878
2879 ret = domain_sg_mapping(domain, start_vpfn, sglist, mm_to_dma_pfn(size), prot);
2880 if (unlikely(ret)) {
2881 /* clear the page */
2882 dma_pte_clear_range(domain, start_vpfn,
2883 start_vpfn + size - 1);
2884 /* free page tables */
2885 dma_pte_free_pagetable(domain, start_vpfn,
2886 start_vpfn + size - 1);
2887 /* free iova */
2888 __free_iova(&domain->iovad, iova);
2889 return 0;
ba395927
KA
2890 }
2891
1f0ef2aa
DW
2892 /* it's a non-present to present mapping. Only flush if caching mode */
2893 if (cap_caching_mode(iommu->cap))
03d6a246 2894 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
1f0ef2aa 2895 else
8c11e798 2896 iommu_flush_write_buffer(iommu);
1f0ef2aa 2897
ba395927
KA
2898 return nelems;
2899}
2900
dfb805e8
FT
2901static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2902{
2903 return !dma_addr;
2904}
2905
160c1d8e 2906struct dma_map_ops intel_dma_ops = {
ba395927
KA
2907 .alloc_coherent = intel_alloc_coherent,
2908 .free_coherent = intel_free_coherent,
ba395927
KA
2909 .map_sg = intel_map_sg,
2910 .unmap_sg = intel_unmap_sg,
ffbbef5c
FT
2911 .map_page = intel_map_page,
2912 .unmap_page = intel_unmap_page,
dfb805e8 2913 .mapping_error = intel_mapping_error,
ba395927
KA
2914};
2915
2916static inline int iommu_domain_cache_init(void)
2917{
2918 int ret = 0;
2919
2920 iommu_domain_cache = kmem_cache_create("iommu_domain",
2921 sizeof(struct dmar_domain),
2922 0,
2923 SLAB_HWCACHE_ALIGN,
2924
2925 NULL);
2926 if (!iommu_domain_cache) {
2927 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2928 ret = -ENOMEM;
2929 }
2930
2931 return ret;
2932}
2933
2934static inline int iommu_devinfo_cache_init(void)
2935{
2936 int ret = 0;
2937
2938 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2939 sizeof(struct device_domain_info),
2940 0,
2941 SLAB_HWCACHE_ALIGN,
ba395927
KA
2942 NULL);
2943 if (!iommu_devinfo_cache) {
2944 printk(KERN_ERR "Couldn't create devinfo cache\n");
2945 ret = -ENOMEM;
2946 }
2947
2948 return ret;
2949}
2950
2951static inline int iommu_iova_cache_init(void)
2952{
2953 int ret = 0;
2954
2955 iommu_iova_cache = kmem_cache_create("iommu_iova",
2956 sizeof(struct iova),
2957 0,
2958 SLAB_HWCACHE_ALIGN,
ba395927
KA
2959 NULL);
2960 if (!iommu_iova_cache) {
2961 printk(KERN_ERR "Couldn't create iova cache\n");
2962 ret = -ENOMEM;
2963 }
2964
2965 return ret;
2966}
2967
2968static int __init iommu_init_mempool(void)
2969{
2970 int ret;
2971 ret = iommu_iova_cache_init();
2972 if (ret)
2973 return ret;
2974
2975 ret = iommu_domain_cache_init();
2976 if (ret)
2977 goto domain_error;
2978
2979 ret = iommu_devinfo_cache_init();
2980 if (!ret)
2981 return ret;
2982
2983 kmem_cache_destroy(iommu_domain_cache);
2984domain_error:
2985 kmem_cache_destroy(iommu_iova_cache);
2986
2987 return -ENOMEM;
2988}
2989
2990static void __init iommu_exit_mempool(void)
2991{
2992 kmem_cache_destroy(iommu_devinfo_cache);
2993 kmem_cache_destroy(iommu_domain_cache);
2994 kmem_cache_destroy(iommu_iova_cache);
2995
2996}
2997
ba395927
KA
2998static void __init init_no_remapping_devices(void)
2999{
3000 struct dmar_drhd_unit *drhd;
3001
3002 for_each_drhd_unit(drhd) {
3003 if (!drhd->include_all) {
3004 int i;
3005 for (i = 0; i < drhd->devices_cnt; i++)
3006 if (drhd->devices[i] != NULL)
3007 break;
3008 /* ignore DMAR unit if no pci devices exist */
3009 if (i == drhd->devices_cnt)
3010 drhd->ignored = 1;
3011 }
3012 }
3013
3014 if (dmar_map_gfx)
3015 return;
3016
3017 for_each_drhd_unit(drhd) {
3018 int i;
3019 if (drhd->ignored || drhd->include_all)
3020 continue;
3021
3022 for (i = 0; i < drhd->devices_cnt; i++)
3023 if (drhd->devices[i] &&
3024 !IS_GFX_DEVICE(drhd->devices[i]))
3025 break;
3026
3027 if (i < drhd->devices_cnt)
3028 continue;
3029
3030 /* bypass IOMMU if it is just for gfx devices */
3031 drhd->ignored = 1;
3032 for (i = 0; i < drhd->devices_cnt; i++) {
3033 if (!drhd->devices[i])
3034 continue;
358dd8ac 3035 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
ba395927
KA
3036 }
3037 }
3038}
3039
f59c7b69
FY
3040#ifdef CONFIG_SUSPEND
3041static int init_iommu_hw(void)
3042{
3043 struct dmar_drhd_unit *drhd;
3044 struct intel_iommu *iommu = NULL;
3045
3046 for_each_active_iommu(iommu, drhd)
3047 if (iommu->qi)
3048 dmar_reenable_qi(iommu);
3049
3050 for_each_active_iommu(iommu, drhd) {
3051 iommu_flush_write_buffer(iommu);
3052
3053 iommu_set_root_entry(iommu);
3054
3055 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 3056 DMA_CCMD_GLOBAL_INVL);
f59c7b69 3057 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1f0ef2aa 3058 DMA_TLB_GLOBAL_FLUSH);
f59c7b69
FY
3059 iommu_disable_protect_mem_regions(iommu);
3060 iommu_enable_translation(iommu);
3061 }
3062
3063 return 0;
3064}
3065
3066static void iommu_flush_all(void)
3067{
3068 struct dmar_drhd_unit *drhd;
3069 struct intel_iommu *iommu;
3070
3071 for_each_active_iommu(iommu, drhd) {
3072 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 3073 DMA_CCMD_GLOBAL_INVL);
f59c7b69 3074 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1f0ef2aa 3075 DMA_TLB_GLOBAL_FLUSH);
f59c7b69
FY
3076 }
3077}
3078
3079static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3080{
3081 struct dmar_drhd_unit *drhd;
3082 struct intel_iommu *iommu = NULL;
3083 unsigned long flag;
3084
3085 for_each_active_iommu(iommu, drhd) {
3086 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3087 GFP_ATOMIC);
3088 if (!iommu->iommu_state)
3089 goto nomem;
3090 }
3091
3092 iommu_flush_all();
3093
3094 for_each_active_iommu(iommu, drhd) {
3095 iommu_disable_translation(iommu);
3096
3097 spin_lock_irqsave(&iommu->register_lock, flag);
3098
3099 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3100 readl(iommu->reg + DMAR_FECTL_REG);
3101 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3102 readl(iommu->reg + DMAR_FEDATA_REG);
3103 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3104 readl(iommu->reg + DMAR_FEADDR_REG);
3105 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3106 readl(iommu->reg + DMAR_FEUADDR_REG);
3107
3108 spin_unlock_irqrestore(&iommu->register_lock, flag);
3109 }
3110 return 0;
3111
3112nomem:
3113 for_each_active_iommu(iommu, drhd)
3114 kfree(iommu->iommu_state);
3115
3116 return -ENOMEM;
3117}
3118
3119static int iommu_resume(struct sys_device *dev)
3120{
3121 struct dmar_drhd_unit *drhd;
3122 struct intel_iommu *iommu = NULL;
3123 unsigned long flag;
3124
3125 if (init_iommu_hw()) {
3126 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3127 return -EIO;
3128 }
3129
3130 for_each_active_iommu(iommu, drhd) {
3131
3132 spin_lock_irqsave(&iommu->register_lock, flag);
3133
3134 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3135 iommu->reg + DMAR_FECTL_REG);
3136 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3137 iommu->reg + DMAR_FEDATA_REG);
3138 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3139 iommu->reg + DMAR_FEADDR_REG);
3140 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3141 iommu->reg + DMAR_FEUADDR_REG);
3142
3143 spin_unlock_irqrestore(&iommu->register_lock, flag);
3144 }
3145
3146 for_each_active_iommu(iommu, drhd)
3147 kfree(iommu->iommu_state);
3148
3149 return 0;
3150}
3151
3152static struct sysdev_class iommu_sysclass = {
3153 .name = "iommu",
3154 .resume = iommu_resume,
3155 .suspend = iommu_suspend,
3156};
3157
3158static struct sys_device device_iommu = {
3159 .cls = &iommu_sysclass,
3160};
3161
3162static int __init init_iommu_sysfs(void)
3163{
3164 int error;
3165
3166 error = sysdev_class_register(&iommu_sysclass);
3167 if (error)
3168 return error;
3169
3170 error = sysdev_register(&device_iommu);
3171 if (error)
3172 sysdev_class_unregister(&iommu_sysclass);
3173
3174 return error;
3175}
3176
3177#else
3178static int __init init_iommu_sysfs(void)
3179{
3180 return 0;
3181}
3182#endif /* CONFIG_PM */
3183
ba395927
KA
3184int __init intel_iommu_init(void)
3185{
3186 int ret = 0;
a59b50e9 3187 int force_on = 0;
ba395927 3188
a59b50e9
JC
3189 /* VT-d is required for a TXT/tboot launch, so enforce that */
3190 force_on = tboot_force_iommu();
3191
3192 if (dmar_table_init()) {
3193 if (force_on)
3194 panic("tboot: Failed to initialize DMAR table\n");
ba395927 3195 return -ENODEV;
a59b50e9 3196 }
ba395927 3197
a59b50e9
JC
3198 if (dmar_dev_scope_init()) {
3199 if (force_on)
3200 panic("tboot: Failed to initialize DMAR device scope\n");
1886e8a9 3201 return -ENODEV;
a59b50e9 3202 }
1886e8a9 3203
2ae21010
SS
3204 /*
3205 * Check the need for DMA-remapping initialization now.
3206 * Above initialization will also be used by Interrupt-remapping.
3207 */
4ed0d3e6 3208 if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
2ae21010
SS
3209 return -ENODEV;
3210
ba395927
KA
3211 iommu_init_mempool();
3212 dmar_init_reserved_ranges();
3213
3214 init_no_remapping_devices();
3215
3216 ret = init_dmars();
3217 if (ret) {
a59b50e9
JC
3218 if (force_on)
3219 panic("tboot: Failed to initialize DMARs\n");
ba395927
KA
3220 printk(KERN_ERR "IOMMU: dmar init failed\n");
3221 put_iova_domain(&reserved_iova_list);
3222 iommu_exit_mempool();
3223 return ret;
3224 }
3225 printk(KERN_INFO
3226 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3227
5e0d2a6f 3228 init_timer(&unmap_timer);
ba395927 3229 force_iommu = 1;
4ed0d3e6
FY
3230
3231 if (!iommu_pass_through) {
3232 printk(KERN_INFO
3233 "Multi-level page-table translation for DMAR.\n");
3234 dma_ops = &intel_dma_ops;
3235 } else
3236 printk(KERN_INFO
3237 "DMAR: Pass through translation for DMAR.\n");
3238
f59c7b69 3239 init_iommu_sysfs();
a8bcbb0d
JR
3240
3241 register_iommu(&intel_iommu_ops);
3242
ba395927
KA
3243 return 0;
3244}
e820482c 3245
3199aa6b
HW
3246static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3247 struct pci_dev *pdev)
3248{
3249 struct pci_dev *tmp, *parent;
3250
3251 if (!iommu || !pdev)
3252 return;
3253
3254 /* dependent device detach */
3255 tmp = pci_find_upstream_pcie_bridge(pdev);
3256 /* Secondary interface's bus number and devfn 0 */
3257 if (tmp) {
3258 parent = pdev->bus->self;
3259 while (parent != tmp) {
3260 iommu_detach_dev(iommu, parent->bus->number,
276dbf99 3261 parent->devfn);
3199aa6b
HW
3262 parent = parent->bus->self;
3263 }
3264 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3265 iommu_detach_dev(iommu,
3266 tmp->subordinate->number, 0);
3267 else /* this is a legacy PCI bridge */
276dbf99
DW
3268 iommu_detach_dev(iommu, tmp->bus->number,
3269 tmp->devfn);
3199aa6b
HW
3270 }
3271}
3272
2c2e2c38 3273static void domain_remove_one_dev_info(struct dmar_domain *domain,
c7151a8d
WH
3274 struct pci_dev *pdev)
3275{
3276 struct device_domain_info *info;
3277 struct intel_iommu *iommu;
3278 unsigned long flags;
3279 int found = 0;
3280 struct list_head *entry, *tmp;
3281
276dbf99
DW
3282 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3283 pdev->devfn);
c7151a8d
WH
3284 if (!iommu)
3285 return;
3286
3287 spin_lock_irqsave(&device_domain_lock, flags);
3288 list_for_each_safe(entry, tmp, &domain->devices) {
3289 info = list_entry(entry, struct device_domain_info, link);
276dbf99 3290 /* No need to compare PCI domain; it has to be the same */
c7151a8d
WH
3291 if (info->bus == pdev->bus->number &&
3292 info->devfn == pdev->devfn) {
3293 list_del(&info->link);
3294 list_del(&info->global);
3295 if (info->dev)
3296 info->dev->dev.archdata.iommu = NULL;
3297 spin_unlock_irqrestore(&device_domain_lock, flags);
3298
93a23a72 3299 iommu_disable_dev_iotlb(info);
c7151a8d 3300 iommu_detach_dev(iommu, info->bus, info->devfn);
3199aa6b 3301 iommu_detach_dependent_devices(iommu, pdev);
c7151a8d
WH
3302 free_devinfo_mem(info);
3303
3304 spin_lock_irqsave(&device_domain_lock, flags);
3305
3306 if (found)
3307 break;
3308 else
3309 continue;
3310 }
3311
3312 /* if there is no other devices under the same iommu
3313 * owned by this domain, clear this iommu in iommu_bmp
3314 * update iommu count and coherency
3315 */
276dbf99
DW
3316 if (iommu == device_to_iommu(info->segment, info->bus,
3317 info->devfn))
c7151a8d
WH
3318 found = 1;
3319 }
3320
3321 if (found == 0) {
3322 unsigned long tmp_flags;
3323 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3324 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3325 domain->iommu_count--;
58c610bd 3326 domain_update_iommu_cap(domain);
c7151a8d
WH
3327 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3328 }
3329
3330 spin_unlock_irqrestore(&device_domain_lock, flags);
3331}
3332
3333static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3334{
3335 struct device_domain_info *info;
3336 struct intel_iommu *iommu;
3337 unsigned long flags1, flags2;
3338
3339 spin_lock_irqsave(&device_domain_lock, flags1);
3340 while (!list_empty(&domain->devices)) {
3341 info = list_entry(domain->devices.next,
3342 struct device_domain_info, link);
3343 list_del(&info->link);
3344 list_del(&info->global);
3345 if (info->dev)
3346 info->dev->dev.archdata.iommu = NULL;
3347
3348 spin_unlock_irqrestore(&device_domain_lock, flags1);
3349
93a23a72 3350 iommu_disable_dev_iotlb(info);
276dbf99 3351 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
c7151a8d 3352 iommu_detach_dev(iommu, info->bus, info->devfn);
3199aa6b 3353 iommu_detach_dependent_devices(iommu, info->dev);
c7151a8d
WH
3354
3355 /* clear this iommu in iommu_bmp, update iommu count
58c610bd 3356 * and capabilities
c7151a8d
WH
3357 */
3358 spin_lock_irqsave(&domain->iommu_lock, flags2);
3359 if (test_and_clear_bit(iommu->seq_id,
3360 &domain->iommu_bmp)) {
3361 domain->iommu_count--;
58c610bd 3362 domain_update_iommu_cap(domain);
c7151a8d
WH
3363 }
3364 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3365
3366 free_devinfo_mem(info);
3367 spin_lock_irqsave(&device_domain_lock, flags1);
3368 }
3369 spin_unlock_irqrestore(&device_domain_lock, flags1);
3370}
3371
5e98c4b1
WH
3372/* domain id for virtual machine, it won't be set in context */
3373static unsigned long vm_domid;
3374
fe40f1e0
WH
3375static int vm_domain_min_agaw(struct dmar_domain *domain)
3376{
3377 int i;
3378 int min_agaw = domain->agaw;
3379
3380 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3381 for (; i < g_num_of_iommus; ) {
3382 if (min_agaw > g_iommus[i]->agaw)
3383 min_agaw = g_iommus[i]->agaw;
3384
3385 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3386 }
3387
3388 return min_agaw;
3389}
3390
5e98c4b1
WH
3391static struct dmar_domain *iommu_alloc_vm_domain(void)
3392{
3393 struct dmar_domain *domain;
3394
3395 domain = alloc_domain_mem();
3396 if (!domain)
3397 return NULL;
3398
3399 domain->id = vm_domid++;
3400 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3401 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3402
3403 return domain;
3404}
3405
2c2e2c38 3406static int md_domain_init(struct dmar_domain *domain, int guest_width)
5e98c4b1
WH
3407{
3408 int adjust_width;
3409
3410 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
5e98c4b1
WH
3411 spin_lock_init(&domain->iommu_lock);
3412
3413 domain_reserve_special_ranges(domain);
3414
3415 /* calculate AGAW */
3416 domain->gaw = guest_width;
3417 adjust_width = guestwidth_to_adjustwidth(guest_width);
3418 domain->agaw = width_to_agaw(adjust_width);
3419
3420 INIT_LIST_HEAD(&domain->devices);
3421
3422 domain->iommu_count = 0;
3423 domain->iommu_coherency = 0;
fe40f1e0 3424 domain->max_addr = 0;
5e98c4b1
WH
3425
3426 /* always allocate the top pgd */
3427 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3428 if (!domain->pgd)
3429 return -ENOMEM;
3430 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3431 return 0;
3432}
3433
3434static void iommu_free_vm_domain(struct dmar_domain *domain)
3435{
3436 unsigned long flags;
3437 struct dmar_drhd_unit *drhd;
3438 struct intel_iommu *iommu;
3439 unsigned long i;
3440 unsigned long ndomains;
3441
3442 for_each_drhd_unit(drhd) {
3443 if (drhd->ignored)
3444 continue;
3445 iommu = drhd->iommu;
3446
3447 ndomains = cap_ndoms(iommu->cap);
3448 i = find_first_bit(iommu->domain_ids, ndomains);
3449 for (; i < ndomains; ) {
3450 if (iommu->domains[i] == domain) {
3451 spin_lock_irqsave(&iommu->lock, flags);
3452 clear_bit(i, iommu->domain_ids);
3453 iommu->domains[i] = NULL;
3454 spin_unlock_irqrestore(&iommu->lock, flags);
3455 break;
3456 }
3457 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3458 }
3459 }
3460}
3461
3462static void vm_domain_exit(struct dmar_domain *domain)
3463{
5e98c4b1
WH
3464 /* Domain 0 is reserved, so dont process it */
3465 if (!domain)
3466 return;
3467
3468 vm_domain_remove_all_dev_info(domain);
3469 /* destroy iovas */
3470 put_iova_domain(&domain->iovad);
5e98c4b1
WH
3471
3472 /* clear ptes */
595badf5 3473 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
5e98c4b1
WH
3474
3475 /* free page tables */
d794dc9b 3476 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
5e98c4b1
WH
3477
3478 iommu_free_vm_domain(domain);
3479 free_domain_mem(domain);
3480}
3481
5d450806 3482static int intel_iommu_domain_init(struct iommu_domain *domain)
38717946 3483{
5d450806 3484 struct dmar_domain *dmar_domain;
38717946 3485
5d450806
JR
3486 dmar_domain = iommu_alloc_vm_domain();
3487 if (!dmar_domain) {
38717946 3488 printk(KERN_ERR
5d450806
JR
3489 "intel_iommu_domain_init: dmar_domain == NULL\n");
3490 return -ENOMEM;
38717946 3491 }
2c2e2c38 3492 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
38717946 3493 printk(KERN_ERR
5d450806
JR
3494 "intel_iommu_domain_init() failed\n");
3495 vm_domain_exit(dmar_domain);
3496 return -ENOMEM;
38717946 3497 }
5d450806 3498 domain->priv = dmar_domain;
faa3d6f5 3499
5d450806 3500 return 0;
38717946 3501}
38717946 3502
5d450806 3503static void intel_iommu_domain_destroy(struct iommu_domain *domain)
38717946 3504{
5d450806
JR
3505 struct dmar_domain *dmar_domain = domain->priv;
3506
3507 domain->priv = NULL;
3508 vm_domain_exit(dmar_domain);
38717946 3509}
38717946 3510
4c5478c9
JR
3511static int intel_iommu_attach_device(struct iommu_domain *domain,
3512 struct device *dev)
38717946 3513{
4c5478c9
JR
3514 struct dmar_domain *dmar_domain = domain->priv;
3515 struct pci_dev *pdev = to_pci_dev(dev);
fe40f1e0
WH
3516 struct intel_iommu *iommu;
3517 int addr_width;
3518 u64 end;
faa3d6f5
WH
3519 int ret;
3520
3521 /* normally pdev is not mapped */
3522 if (unlikely(domain_context_mapped(pdev))) {
3523 struct dmar_domain *old_domain;
3524
3525 old_domain = find_domain(pdev);
3526 if (old_domain) {
2c2e2c38
FY
3527 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3528 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3529 domain_remove_one_dev_info(old_domain, pdev);
faa3d6f5
WH
3530 else
3531 domain_remove_dev_info(old_domain);
3532 }
3533 }
3534
276dbf99
DW
3535 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3536 pdev->devfn);
fe40f1e0
WH
3537 if (!iommu)
3538 return -ENODEV;
3539
3540 /* check if this iommu agaw is sufficient for max mapped address */
3541 addr_width = agaw_to_width(iommu->agaw);
3542 end = DOMAIN_MAX_ADDR(addr_width);
3543 end = end & VTD_PAGE_MASK;
4c5478c9 3544 if (end < dmar_domain->max_addr) {
fe40f1e0
WH
3545 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3546 "sufficient for the mapped address (%llx)\n",
4c5478c9 3547 __func__, iommu->agaw, dmar_domain->max_addr);
fe40f1e0
WH
3548 return -EFAULT;
3549 }
3550
2c2e2c38 3551 ret = domain_add_dev_info(dmar_domain, pdev);
faa3d6f5
WH
3552 if (ret)
3553 return ret;
3554
93a23a72 3555 ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
faa3d6f5 3556 return ret;
38717946 3557}
38717946 3558
4c5478c9
JR
3559static void intel_iommu_detach_device(struct iommu_domain *domain,
3560 struct device *dev)
38717946 3561{
4c5478c9
JR
3562 struct dmar_domain *dmar_domain = domain->priv;
3563 struct pci_dev *pdev = to_pci_dev(dev);
3564
2c2e2c38 3565 domain_remove_one_dev_info(dmar_domain, pdev);
faa3d6f5 3566}
c7151a8d 3567
dde57a21
JR
3568static int intel_iommu_map_range(struct iommu_domain *domain,
3569 unsigned long iova, phys_addr_t hpa,
3570 size_t size, int iommu_prot)
faa3d6f5 3571{
dde57a21 3572 struct dmar_domain *dmar_domain = domain->priv;
fe40f1e0
WH
3573 u64 max_addr;
3574 int addr_width;
dde57a21 3575 int prot = 0;
faa3d6f5 3576 int ret;
fe40f1e0 3577
dde57a21
JR
3578 if (iommu_prot & IOMMU_READ)
3579 prot |= DMA_PTE_READ;
3580 if (iommu_prot & IOMMU_WRITE)
3581 prot |= DMA_PTE_WRITE;
9cf06697
SY
3582 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3583 prot |= DMA_PTE_SNP;
dde57a21 3584
163cc52c 3585 max_addr = iova + size;
dde57a21 3586 if (dmar_domain->max_addr < max_addr) {
fe40f1e0
WH
3587 int min_agaw;
3588 u64 end;
3589
3590 /* check if minimum agaw is sufficient for mapped address */
dde57a21 3591 min_agaw = vm_domain_min_agaw(dmar_domain);
fe40f1e0
WH
3592 addr_width = agaw_to_width(min_agaw);
3593 end = DOMAIN_MAX_ADDR(addr_width);
3594 end = end & VTD_PAGE_MASK;
3595 if (end < max_addr) {
3596 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3597 "sufficient for the mapped address (%llx)\n",
3598 __func__, min_agaw, max_addr);
3599 return -EFAULT;
3600 }
dde57a21 3601 dmar_domain->max_addr = max_addr;
fe40f1e0 3602 }
ad051221
DW
3603 /* Round up size to next multiple of PAGE_SIZE, if it and
3604 the low bits of hpa would take us onto the next page */
88cb6a74 3605 size = aligned_nrpages(hpa, size);
ad051221
DW
3606 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3607 hpa >> VTD_PAGE_SHIFT, size, prot);
faa3d6f5 3608 return ret;
38717946 3609}
38717946 3610
dde57a21
JR
3611static void intel_iommu_unmap_range(struct iommu_domain *domain,
3612 unsigned long iova, size_t size)
38717946 3613{
dde57a21 3614 struct dmar_domain *dmar_domain = domain->priv;
faa3d6f5 3615
4b99d352
SY
3616 if (!size)
3617 return;
3618
163cc52c
DW
3619 dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3620 (iova + size - 1) >> VTD_PAGE_SHIFT);
fe40f1e0 3621
163cc52c
DW
3622 if (dmar_domain->max_addr == iova + size)
3623 dmar_domain->max_addr = iova;
38717946 3624}
38717946 3625
d14d6577
JR
3626static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3627 unsigned long iova)
38717946 3628{
d14d6577 3629 struct dmar_domain *dmar_domain = domain->priv;
38717946 3630 struct dma_pte *pte;
faa3d6f5 3631 u64 phys = 0;
38717946 3632
b026fd28 3633 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
38717946 3634 if (pte)
faa3d6f5 3635 phys = dma_pte_addr(pte);
38717946 3636
faa3d6f5 3637 return phys;
38717946 3638}
a8bcbb0d 3639
dbb9fd86
SY
3640static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3641 unsigned long cap)
3642{
3643 struct dmar_domain *dmar_domain = domain->priv;
3644
3645 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3646 return dmar_domain->iommu_snooping;
3647
3648 return 0;
3649}
3650
a8bcbb0d
JR
3651static struct iommu_ops intel_iommu_ops = {
3652 .domain_init = intel_iommu_domain_init,
3653 .domain_destroy = intel_iommu_domain_destroy,
3654 .attach_dev = intel_iommu_attach_device,
3655 .detach_dev = intel_iommu_detach_device,
3656 .map = intel_iommu_map_range,
3657 .unmap = intel_iommu_unmap_range,
3658 .iova_to_phys = intel_iommu_iova_to_phys,
dbb9fd86 3659 .domain_has_cap = intel_iommu_domain_has_cap,
a8bcbb0d 3660};
9af88143
DW
3661
3662static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3663{
3664 /*
3665 * Mobile 4 Series Chipset neglects to set RWBF capability,
3666 * but needs it:
3667 */
3668 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3669 rwbf_quirk = 1;
3670}
3671
3672DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);