intel-iommu: Make dma_pte_clear_range() take pfns as argument
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / pci / intel-iommu.c
CommitLineData
ba395927
KA
1/*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
98bcef56 17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
5b6985ce 21 * Author: Fenghua Yu <fenghua.yu@intel.com>
ba395927
KA
22 */
23
24#include <linux/init.h>
25#include <linux/bitmap.h>
5e0d2a6f 26#include <linux/debugfs.h>
ba395927
KA
27#include <linux/slab.h>
28#include <linux/irq.h>
29#include <linux/interrupt.h>
ba395927
KA
30#include <linux/spinlock.h>
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/dma-mapping.h>
34#include <linux/mempool.h>
5e0d2a6f 35#include <linux/timer.h>
38717946 36#include <linux/iova.h>
5d450806 37#include <linux/iommu.h>
38717946 38#include <linux/intel-iommu.h>
f59c7b69 39#include <linux/sysdev.h>
ba395927 40#include <asm/cacheflush.h>
46a7fa27 41#include <asm/iommu.h>
ba395927
KA
42#include "pci.h"
43
5b6985ce
FY
44#define ROOT_SIZE VTD_PAGE_SIZE
45#define CONTEXT_SIZE VTD_PAGE_SIZE
46
ba395927
KA
47#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
49
50#define IOAPIC_RANGE_START (0xfee00000)
51#define IOAPIC_RANGE_END (0xfeefffff)
52#define IOVA_START_ADDR (0x1000)
53
54#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
55
4ed0d3e6
FY
56#define MAX_AGAW_WIDTH 64
57
ba395927 58#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
595badf5 59#define DOMAIN_MAX_PFN(gaw) ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
ba395927 60
f27be03b 61#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
284901a9 62#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
6a35528a 63#define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
5e0d2a6f 64
fd18de50
DW
65#ifndef PHYSICAL_PAGE_MASK
66#define PHYSICAL_PAGE_MASK PAGE_MASK
67#endif
68
dd4e8319
DW
69/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
70 are never going to work. */
71static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
72{
73 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
74}
75
76static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
77{
78 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
79}
80static inline unsigned long page_to_dma_pfn(struct page *pg)
81{
82 return mm_to_dma_pfn(page_to_pfn(pg));
83}
84static inline unsigned long virt_to_dma_pfn(void *p)
85{
86 return page_to_dma_pfn(virt_to_page(p));
87}
88
d9630fe9
WH
89/* global iommu list, set NULL for ignored DMAR units */
90static struct intel_iommu **g_iommus;
91
9af88143
DW
92static int rwbf_quirk;
93
46b08e1a
MM
94/*
95 * 0: Present
96 * 1-11: Reserved
97 * 12-63: Context Ptr (12 - (haw-1))
98 * 64-127: Reserved
99 */
100struct root_entry {
101 u64 val;
102 u64 rsvd1;
103};
104#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
105static inline bool root_present(struct root_entry *root)
106{
107 return (root->val & 1);
108}
109static inline void set_root_present(struct root_entry *root)
110{
111 root->val |= 1;
112}
113static inline void set_root_value(struct root_entry *root, unsigned long value)
114{
115 root->val |= value & VTD_PAGE_MASK;
116}
117
118static inline struct context_entry *
119get_context_addr_from_root(struct root_entry *root)
120{
121 return (struct context_entry *)
122 (root_present(root)?phys_to_virt(
123 root->val & VTD_PAGE_MASK) :
124 NULL);
125}
126
7a8fc25e
MM
127/*
128 * low 64 bits:
129 * 0: present
130 * 1: fault processing disable
131 * 2-3: translation type
132 * 12-63: address space root
133 * high 64 bits:
134 * 0-2: address width
135 * 3-6: aval
136 * 8-23: domain id
137 */
138struct context_entry {
139 u64 lo;
140 u64 hi;
141};
c07e7d21
MM
142
143static inline bool context_present(struct context_entry *context)
144{
145 return (context->lo & 1);
146}
147static inline void context_set_present(struct context_entry *context)
148{
149 context->lo |= 1;
150}
151
152static inline void context_set_fault_enable(struct context_entry *context)
153{
154 context->lo &= (((u64)-1) << 2) | 1;
155}
156
c07e7d21
MM
157static inline void context_set_translation_type(struct context_entry *context,
158 unsigned long value)
159{
160 context->lo &= (((u64)-1) << 4) | 3;
161 context->lo |= (value & 3) << 2;
162}
163
164static inline void context_set_address_root(struct context_entry *context,
165 unsigned long value)
166{
167 context->lo |= value & VTD_PAGE_MASK;
168}
169
170static inline void context_set_address_width(struct context_entry *context,
171 unsigned long value)
172{
173 context->hi |= value & 7;
174}
175
176static inline void context_set_domain_id(struct context_entry *context,
177 unsigned long value)
178{
179 context->hi |= (value & ((1 << 16) - 1)) << 8;
180}
181
182static inline void context_clear_entry(struct context_entry *context)
183{
184 context->lo = 0;
185 context->hi = 0;
186}
7a8fc25e 187
622ba12a
MM
188/*
189 * 0: readable
190 * 1: writable
191 * 2-6: reserved
192 * 7: super page
9cf06697
SY
193 * 8-10: available
194 * 11: snoop behavior
622ba12a
MM
195 * 12-63: Host physcial address
196 */
197struct dma_pte {
198 u64 val;
199};
622ba12a 200
19c239ce
MM
201static inline void dma_clear_pte(struct dma_pte *pte)
202{
203 pte->val = 0;
204}
205
206static inline void dma_set_pte_readable(struct dma_pte *pte)
207{
208 pte->val |= DMA_PTE_READ;
209}
210
211static inline void dma_set_pte_writable(struct dma_pte *pte)
212{
213 pte->val |= DMA_PTE_WRITE;
214}
215
9cf06697
SY
216static inline void dma_set_pte_snp(struct dma_pte *pte)
217{
218 pte->val |= DMA_PTE_SNP;
219}
220
19c239ce
MM
221static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
222{
223 pte->val = (pte->val & ~3) | (prot & 3);
224}
225
226static inline u64 dma_pte_addr(struct dma_pte *pte)
227{
228 return (pte->val & VTD_PAGE_MASK);
229}
230
dd4e8319 231static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
19c239ce 232{
dd4e8319 233 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
19c239ce
MM
234}
235
236static inline bool dma_pte_present(struct dma_pte *pte)
237{
238 return (pte->val & 3) != 0;
239}
622ba12a 240
2c2e2c38
FY
241/*
242 * This domain is a statically identity mapping domain.
243 * 1. This domain creats a static 1:1 mapping to all usable memory.
244 * 2. It maps to each iommu if successful.
245 * 3. Each iommu mapps to this domain if successful.
246 */
247struct dmar_domain *si_domain;
248
3b5410e7 249/* devices under the same p2p bridge are owned in one domain */
cdc7b837 250#define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
3b5410e7 251
1ce28feb
WH
252/* domain represents a virtual machine, more than one devices
253 * across iommus may be owned in one domain, e.g. kvm guest.
254 */
255#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
256
2c2e2c38
FY
257/* si_domain contains mulitple devices */
258#define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
259
99126f7c
MM
260struct dmar_domain {
261 int id; /* domain id */
8c11e798 262 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
99126f7c
MM
263
264 struct list_head devices; /* all devices' list */
265 struct iova_domain iovad; /* iova's that belong to this domain */
266
267 struct dma_pte *pgd; /* virtual address */
268 spinlock_t mapping_lock; /* page table lock */
269 int gaw; /* max guest address width */
270
271 /* adjusted guest address width, 0 is level 2 30-bit */
272 int agaw;
273
3b5410e7 274 int flags; /* flags to find out type of domain */
8e604097
WH
275
276 int iommu_coherency;/* indicate coherency of iommu access */
58c610bd 277 int iommu_snooping; /* indicate snooping control feature*/
c7151a8d
WH
278 int iommu_count; /* reference count of iommu */
279 spinlock_t iommu_lock; /* protect iommu set in domain */
fe40f1e0 280 u64 max_addr; /* maximum mapped address */
99126f7c
MM
281};
282
a647dacb
MM
283/* PCI domain-device relationship */
284struct device_domain_info {
285 struct list_head link; /* link to domain siblings */
286 struct list_head global; /* link to global list */
276dbf99
DW
287 int segment; /* PCI domain */
288 u8 bus; /* PCI bus number */
a647dacb
MM
289 u8 devfn; /* PCI devfn number */
290 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
93a23a72 291 struct intel_iommu *iommu; /* IOMMU used by this device */
a647dacb
MM
292 struct dmar_domain *domain; /* pointer to domain */
293};
294
5e0d2a6f 295static void flush_unmaps_timeout(unsigned long data);
296
297DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
298
80b20dd8 299#define HIGH_WATER_MARK 250
300struct deferred_flush_tables {
301 int next;
302 struct iova *iova[HIGH_WATER_MARK];
303 struct dmar_domain *domain[HIGH_WATER_MARK];
304};
305
306static struct deferred_flush_tables *deferred_flush;
307
5e0d2a6f 308/* bitmap for indexing intel_iommus */
5e0d2a6f 309static int g_num_of_iommus;
310
311static DEFINE_SPINLOCK(async_umap_flush_lock);
312static LIST_HEAD(unmaps_to_do);
313
314static int timer_on;
315static long list_size;
5e0d2a6f 316
ba395927
KA
317static void domain_remove_dev_info(struct dmar_domain *domain);
318
0cd5c3c8
KM
319#ifdef CONFIG_DMAR_DEFAULT_ON
320int dmar_disabled = 0;
321#else
322int dmar_disabled = 1;
323#endif /*CONFIG_DMAR_DEFAULT_ON*/
324
ba395927 325static int __initdata dmar_map_gfx = 1;
7d3b03ce 326static int dmar_forcedac;
5e0d2a6f 327static int intel_iommu_strict;
ba395927
KA
328
329#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
330static DEFINE_SPINLOCK(device_domain_lock);
331static LIST_HEAD(device_domain_list);
332
a8bcbb0d
JR
333static struct iommu_ops intel_iommu_ops;
334
ba395927
KA
335static int __init intel_iommu_setup(char *str)
336{
337 if (!str)
338 return -EINVAL;
339 while (*str) {
0cd5c3c8
KM
340 if (!strncmp(str, "on", 2)) {
341 dmar_disabled = 0;
342 printk(KERN_INFO "Intel-IOMMU: enabled\n");
343 } else if (!strncmp(str, "off", 3)) {
ba395927 344 dmar_disabled = 1;
0cd5c3c8 345 printk(KERN_INFO "Intel-IOMMU: disabled\n");
ba395927
KA
346 } else if (!strncmp(str, "igfx_off", 8)) {
347 dmar_map_gfx = 0;
348 printk(KERN_INFO
349 "Intel-IOMMU: disable GFX device mapping\n");
7d3b03ce 350 } else if (!strncmp(str, "forcedac", 8)) {
5e0d2a6f 351 printk(KERN_INFO
7d3b03ce
KA
352 "Intel-IOMMU: Forcing DAC for PCI devices\n");
353 dmar_forcedac = 1;
5e0d2a6f 354 } else if (!strncmp(str, "strict", 6)) {
355 printk(KERN_INFO
356 "Intel-IOMMU: disable batched IOTLB flush\n");
357 intel_iommu_strict = 1;
ba395927
KA
358 }
359
360 str += strcspn(str, ",");
361 while (*str == ',')
362 str++;
363 }
364 return 0;
365}
366__setup("intel_iommu=", intel_iommu_setup);
367
368static struct kmem_cache *iommu_domain_cache;
369static struct kmem_cache *iommu_devinfo_cache;
370static struct kmem_cache *iommu_iova_cache;
371
eb3fa7cb
KA
372static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
373{
374 unsigned int flags;
375 void *vaddr;
376
377 /* trying to avoid low memory issues */
378 flags = current->flags & PF_MEMALLOC;
379 current->flags |= PF_MEMALLOC;
380 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
381 current->flags &= (~PF_MEMALLOC | flags);
382 return vaddr;
383}
384
385
ba395927
KA
386static inline void *alloc_pgtable_page(void)
387{
eb3fa7cb
KA
388 unsigned int flags;
389 void *vaddr;
390
391 /* trying to avoid low memory issues */
392 flags = current->flags & PF_MEMALLOC;
393 current->flags |= PF_MEMALLOC;
394 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
395 current->flags &= (~PF_MEMALLOC | flags);
396 return vaddr;
ba395927
KA
397}
398
399static inline void free_pgtable_page(void *vaddr)
400{
401 free_page((unsigned long)vaddr);
402}
403
404static inline void *alloc_domain_mem(void)
405{
eb3fa7cb 406 return iommu_kmem_cache_alloc(iommu_domain_cache);
ba395927
KA
407}
408
38717946 409static void free_domain_mem(void *vaddr)
ba395927
KA
410{
411 kmem_cache_free(iommu_domain_cache, vaddr);
412}
413
414static inline void * alloc_devinfo_mem(void)
415{
eb3fa7cb 416 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
ba395927
KA
417}
418
419static inline void free_devinfo_mem(void *vaddr)
420{
421 kmem_cache_free(iommu_devinfo_cache, vaddr);
422}
423
424struct iova *alloc_iova_mem(void)
425{
eb3fa7cb 426 return iommu_kmem_cache_alloc(iommu_iova_cache);
ba395927
KA
427}
428
429void free_iova_mem(struct iova *iova)
430{
431 kmem_cache_free(iommu_iova_cache, iova);
432}
433
1b573683
WH
434
435static inline int width_to_agaw(int width);
436
4ed0d3e6 437static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
1b573683
WH
438{
439 unsigned long sagaw;
440 int agaw = -1;
441
442 sagaw = cap_sagaw(iommu->cap);
4ed0d3e6 443 for (agaw = width_to_agaw(max_gaw);
1b573683
WH
444 agaw >= 0; agaw--) {
445 if (test_bit(agaw, &sagaw))
446 break;
447 }
448
449 return agaw;
450}
451
4ed0d3e6
FY
452/*
453 * Calculate max SAGAW for each iommu.
454 */
455int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
456{
457 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
458}
459
460/*
461 * calculate agaw for each iommu.
462 * "SAGAW" may be different across iommus, use a default agaw, and
463 * get a supported less agaw for iommus that don't support the default agaw.
464 */
465int iommu_calculate_agaw(struct intel_iommu *iommu)
466{
467 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
468}
469
2c2e2c38 470/* This functionin only returns single iommu in a domain */
8c11e798
WH
471static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
472{
473 int iommu_id;
474
2c2e2c38 475 /* si_domain and vm domain should not get here. */
1ce28feb 476 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
2c2e2c38 477 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
1ce28feb 478
8c11e798
WH
479 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
480 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
481 return NULL;
482
483 return g_iommus[iommu_id];
484}
485
8e604097
WH
486static void domain_update_iommu_coherency(struct dmar_domain *domain)
487{
488 int i;
489
490 domain->iommu_coherency = 1;
491
492 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
493 for (; i < g_num_of_iommus; ) {
494 if (!ecap_coherent(g_iommus[i]->ecap)) {
495 domain->iommu_coherency = 0;
496 break;
497 }
498 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
499 }
500}
501
58c610bd
SY
502static void domain_update_iommu_snooping(struct dmar_domain *domain)
503{
504 int i;
505
506 domain->iommu_snooping = 1;
507
508 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
509 for (; i < g_num_of_iommus; ) {
510 if (!ecap_sc_support(g_iommus[i]->ecap)) {
511 domain->iommu_snooping = 0;
512 break;
513 }
514 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
515 }
516}
517
518/* Some capabilities may be different across iommus */
519static void domain_update_iommu_cap(struct dmar_domain *domain)
520{
521 domain_update_iommu_coherency(domain);
522 domain_update_iommu_snooping(domain);
523}
524
276dbf99 525static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
c7151a8d
WH
526{
527 struct dmar_drhd_unit *drhd = NULL;
528 int i;
529
530 for_each_drhd_unit(drhd) {
531 if (drhd->ignored)
532 continue;
276dbf99
DW
533 if (segment != drhd->segment)
534 continue;
c7151a8d 535
924b6231 536 for (i = 0; i < drhd->devices_cnt; i++) {
288e4877
DH
537 if (drhd->devices[i] &&
538 drhd->devices[i]->bus->number == bus &&
c7151a8d
WH
539 drhd->devices[i]->devfn == devfn)
540 return drhd->iommu;
4958c5dc
DW
541 if (drhd->devices[i] &&
542 drhd->devices[i]->subordinate &&
924b6231
DW
543 drhd->devices[i]->subordinate->number <= bus &&
544 drhd->devices[i]->subordinate->subordinate >= bus)
545 return drhd->iommu;
546 }
c7151a8d
WH
547
548 if (drhd->include_all)
549 return drhd->iommu;
550 }
551
552 return NULL;
553}
554
5331fe6f
WH
555static void domain_flush_cache(struct dmar_domain *domain,
556 void *addr, int size)
557{
558 if (!domain->iommu_coherency)
559 clflush_cache_range(addr, size);
560}
561
ba395927
KA
562/* Gets context entry for a given bus and devfn */
563static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
564 u8 bus, u8 devfn)
565{
566 struct root_entry *root;
567 struct context_entry *context;
568 unsigned long phy_addr;
569 unsigned long flags;
570
571 spin_lock_irqsave(&iommu->lock, flags);
572 root = &iommu->root_entry[bus];
573 context = get_context_addr_from_root(root);
574 if (!context) {
575 context = (struct context_entry *)alloc_pgtable_page();
576 if (!context) {
577 spin_unlock_irqrestore(&iommu->lock, flags);
578 return NULL;
579 }
5b6985ce 580 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
ba395927
KA
581 phy_addr = virt_to_phys((void *)context);
582 set_root_value(root, phy_addr);
583 set_root_present(root);
584 __iommu_flush_cache(iommu, root, sizeof(*root));
585 }
586 spin_unlock_irqrestore(&iommu->lock, flags);
587 return &context[devfn];
588}
589
590static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
591{
592 struct root_entry *root;
593 struct context_entry *context;
594 int ret;
595 unsigned long flags;
596
597 spin_lock_irqsave(&iommu->lock, flags);
598 root = &iommu->root_entry[bus];
599 context = get_context_addr_from_root(root);
600 if (!context) {
601 ret = 0;
602 goto out;
603 }
c07e7d21 604 ret = context_present(&context[devfn]);
ba395927
KA
605out:
606 spin_unlock_irqrestore(&iommu->lock, flags);
607 return ret;
608}
609
610static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
611{
612 struct root_entry *root;
613 struct context_entry *context;
614 unsigned long flags;
615
616 spin_lock_irqsave(&iommu->lock, flags);
617 root = &iommu->root_entry[bus];
618 context = get_context_addr_from_root(root);
619 if (context) {
c07e7d21 620 context_clear_entry(&context[devfn]);
ba395927
KA
621 __iommu_flush_cache(iommu, &context[devfn], \
622 sizeof(*context));
623 }
624 spin_unlock_irqrestore(&iommu->lock, flags);
625}
626
627static void free_context_table(struct intel_iommu *iommu)
628{
629 struct root_entry *root;
630 int i;
631 unsigned long flags;
632 struct context_entry *context;
633
634 spin_lock_irqsave(&iommu->lock, flags);
635 if (!iommu->root_entry) {
636 goto out;
637 }
638 for (i = 0; i < ROOT_ENTRY_NR; i++) {
639 root = &iommu->root_entry[i];
640 context = get_context_addr_from_root(root);
641 if (context)
642 free_pgtable_page(context);
643 }
644 free_pgtable_page(iommu->root_entry);
645 iommu->root_entry = NULL;
646out:
647 spin_unlock_irqrestore(&iommu->lock, flags);
648}
649
650/* page table handling */
651#define LEVEL_STRIDE (9)
652#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
653
654static inline int agaw_to_level(int agaw)
655{
656 return agaw + 2;
657}
658
659static inline int agaw_to_width(int agaw)
660{
661 return 30 + agaw * LEVEL_STRIDE;
662
663}
664
665static inline int width_to_agaw(int width)
666{
667 return (width - 30) / LEVEL_STRIDE;
668}
669
670static inline unsigned int level_to_offset_bits(int level)
671{
672 return (12 + (level - 1) * LEVEL_STRIDE);
673}
674
77dfa56c 675static inline int pfn_level_offset(unsigned long pfn, int level)
ba395927 676{
77dfa56c 677 return (pfn >> (level_to_offset_bits(level) - 12)) & LEVEL_MASK;
ba395927
KA
678}
679
680static inline u64 level_mask(int level)
681{
682 return ((u64)-1 << level_to_offset_bits(level));
683}
684
685static inline u64 level_size(int level)
686{
687 return ((u64)1 << level_to_offset_bits(level));
688}
689
690static inline u64 align_to_level(u64 addr, int level)
691{
692 return ((addr + level_size(level) - 1) & level_mask(level));
693}
694
695static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
696{
697 int addr_width = agaw_to_width(domain->agaw);
698 struct dma_pte *parent, *pte = NULL;
699 int level = agaw_to_level(domain->agaw);
700 int offset;
701 unsigned long flags;
702
703 BUG_ON(!domain->pgd);
66eae846 704 BUG_ON(addr >> addr_width);
ba395927
KA
705 parent = domain->pgd;
706
707 spin_lock_irqsave(&domain->mapping_lock, flags);
708 while (level > 0) {
709 void *tmp_page;
710
77dfa56c 711 offset = pfn_level_offset(addr >> VTD_PAGE_SHIFT, level);
ba395927
KA
712 pte = &parent[offset];
713 if (level == 1)
714 break;
715
19c239ce 716 if (!dma_pte_present(pte)) {
ba395927
KA
717 tmp_page = alloc_pgtable_page();
718
719 if (!tmp_page) {
720 spin_unlock_irqrestore(&domain->mapping_lock,
721 flags);
722 return NULL;
723 }
5331fe6f 724 domain_flush_cache(domain, tmp_page, PAGE_SIZE);
dd4e8319 725 dma_set_pte_pfn(pte, virt_to_dma_pfn(tmp_page));
ba395927
KA
726 /*
727 * high level table always sets r/w, last level page
728 * table control read/write
729 */
19c239ce
MM
730 dma_set_pte_readable(pte);
731 dma_set_pte_writable(pte);
5331fe6f 732 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927 733 }
19c239ce 734 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
735 level--;
736 }
737
738 spin_unlock_irqrestore(&domain->mapping_lock, flags);
739 return pte;
740}
741
742/* return address's pte at specific level */
90dcfb5e
DW
743static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
744 unsigned long pfn,
745 int level)
ba395927
KA
746{
747 struct dma_pte *parent, *pte = NULL;
748 int total = agaw_to_level(domain->agaw);
749 int offset;
750
751 parent = domain->pgd;
752 while (level <= total) {
90dcfb5e 753 offset = pfn_level_offset(pfn, total);
ba395927
KA
754 pte = &parent[offset];
755 if (level == total)
756 return pte;
757
19c239ce 758 if (!dma_pte_present(pte))
ba395927 759 break;
19c239ce 760 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
761 total--;
762 }
763 return NULL;
764}
765
766/* clear one page's page table */
a75f7cf9 767static void dma_pte_clear_one(struct dmar_domain *domain, unsigned long pfn)
ba395927
KA
768{
769 struct dma_pte *pte = NULL;
770
771 /* get last level pte */
a75f7cf9 772 pte = dma_pfn_level_pte(domain, pfn, 1);
ba395927
KA
773
774 if (pte) {
19c239ce 775 dma_clear_pte(pte);
5331fe6f 776 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927
KA
777 }
778}
779
780/* clear last level pte, a tlb flush should be followed */
595badf5
DW
781static void dma_pte_clear_range(struct dmar_domain *domain,
782 unsigned long start_pfn,
783 unsigned long last_pfn)
ba395927 784{
04b18e65 785 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
66eae846 786
04b18e65 787 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
595badf5 788 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
ba395927 789
04b18e65 790 /* we don't need lock here; nobody else touches the iova range */
595badf5 791 while (start_pfn <= last_pfn) {
04b18e65
DW
792 dma_pte_clear_one(domain, start_pfn);
793 start_pfn++;
ba395927
KA
794 }
795}
796
797/* free page table pages. last level pte should already be cleared */
798static void dma_pte_free_pagetable(struct dmar_domain *domain,
799 u64 start, u64 end)
800{
801 int addr_width = agaw_to_width(domain->agaw);
802 struct dma_pte *pte;
803 int total = agaw_to_level(domain->agaw);
804 int level;
805 u64 tmp;
806
66eae846
DW
807 BUG_ON(start >> addr_width);
808 BUG_ON(end >> addr_width);
ba395927
KA
809
810 /* we don't need lock here, nobody else touches the iova range */
811 level = 2;
812 while (level <= total) {
813 tmp = align_to_level(start, level);
814 if (tmp >= end || (tmp + level_size(level) > end))
815 return;
816
817 while (tmp < end) {
90dcfb5e
DW
818 pte = dma_pfn_level_pte(domain, tmp >> VTD_PAGE_SHIFT,
819 level);
ba395927
KA
820 if (pte) {
821 free_pgtable_page(
19c239ce
MM
822 phys_to_virt(dma_pte_addr(pte)));
823 dma_clear_pte(pte);
5331fe6f 824 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927
KA
825 }
826 tmp += level_size(level);
827 }
828 level++;
829 }
830 /* free pgd */
831 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
832 free_pgtable_page(domain->pgd);
833 domain->pgd = NULL;
834 }
835}
836
837/* iommu handling */
838static int iommu_alloc_root_entry(struct intel_iommu *iommu)
839{
840 struct root_entry *root;
841 unsigned long flags;
842
843 root = (struct root_entry *)alloc_pgtable_page();
844 if (!root)
845 return -ENOMEM;
846
5b6985ce 847 __iommu_flush_cache(iommu, root, ROOT_SIZE);
ba395927
KA
848
849 spin_lock_irqsave(&iommu->lock, flags);
850 iommu->root_entry = root;
851 spin_unlock_irqrestore(&iommu->lock, flags);
852
853 return 0;
854}
855
ba395927
KA
856static void iommu_set_root_entry(struct intel_iommu *iommu)
857{
858 void *addr;
c416daa9 859 u32 sts;
ba395927
KA
860 unsigned long flag;
861
862 addr = iommu->root_entry;
863
864 spin_lock_irqsave(&iommu->register_lock, flag);
865 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
866
c416daa9 867 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
868
869 /* Make sure hardware complete it */
870 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 871 readl, (sts & DMA_GSTS_RTPS), sts);
ba395927
KA
872
873 spin_unlock_irqrestore(&iommu->register_lock, flag);
874}
875
876static void iommu_flush_write_buffer(struct intel_iommu *iommu)
877{
878 u32 val;
879 unsigned long flag;
880
9af88143 881 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
ba395927 882 return;
ba395927
KA
883
884 spin_lock_irqsave(&iommu->register_lock, flag);
462b60f6 885 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
886
887 /* Make sure hardware complete it */
888 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 889 readl, (!(val & DMA_GSTS_WBFS)), val);
ba395927
KA
890
891 spin_unlock_irqrestore(&iommu->register_lock, flag);
892}
893
894/* return value determine if we need a write buffer flush */
4c25a2c1
DW
895static void __iommu_flush_context(struct intel_iommu *iommu,
896 u16 did, u16 source_id, u8 function_mask,
897 u64 type)
ba395927
KA
898{
899 u64 val = 0;
900 unsigned long flag;
901
ba395927
KA
902 switch (type) {
903 case DMA_CCMD_GLOBAL_INVL:
904 val = DMA_CCMD_GLOBAL_INVL;
905 break;
906 case DMA_CCMD_DOMAIN_INVL:
907 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
908 break;
909 case DMA_CCMD_DEVICE_INVL:
910 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
911 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
912 break;
913 default:
914 BUG();
915 }
916 val |= DMA_CCMD_ICC;
917
918 spin_lock_irqsave(&iommu->register_lock, flag);
919 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
920
921 /* Make sure hardware complete it */
922 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
923 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
924
925 spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
926}
927
ba395927 928/* return value determine if we need a write buffer flush */
1f0ef2aa
DW
929static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
930 u64 addr, unsigned int size_order, u64 type)
ba395927
KA
931{
932 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
933 u64 val = 0, val_iva = 0;
934 unsigned long flag;
935
ba395927
KA
936 switch (type) {
937 case DMA_TLB_GLOBAL_FLUSH:
938 /* global flush doesn't need set IVA_REG */
939 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
940 break;
941 case DMA_TLB_DSI_FLUSH:
942 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
943 break;
944 case DMA_TLB_PSI_FLUSH:
945 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
946 /* Note: always flush non-leaf currently */
947 val_iva = size_order | addr;
948 break;
949 default:
950 BUG();
951 }
952 /* Note: set drain read/write */
953#if 0
954 /*
955 * This is probably to be super secure.. Looks like we can
956 * ignore it without any impact.
957 */
958 if (cap_read_drain(iommu->cap))
959 val |= DMA_TLB_READ_DRAIN;
960#endif
961 if (cap_write_drain(iommu->cap))
962 val |= DMA_TLB_WRITE_DRAIN;
963
964 spin_lock_irqsave(&iommu->register_lock, flag);
965 /* Note: Only uses first TLB reg currently */
966 if (val_iva)
967 dmar_writeq(iommu->reg + tlb_offset, val_iva);
968 dmar_writeq(iommu->reg + tlb_offset + 8, val);
969
970 /* Make sure hardware complete it */
971 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
972 dmar_readq, (!(val & DMA_TLB_IVT)), val);
973
974 spin_unlock_irqrestore(&iommu->register_lock, flag);
975
976 /* check IOTLB invalidation granularity */
977 if (DMA_TLB_IAIG(val) == 0)
978 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
979 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
980 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
5b6985ce
FY
981 (unsigned long long)DMA_TLB_IIRG(type),
982 (unsigned long long)DMA_TLB_IAIG(val));
ba395927
KA
983}
984
93a23a72
YZ
985static struct device_domain_info *iommu_support_dev_iotlb(
986 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
987{
988 int found = 0;
989 unsigned long flags;
990 struct device_domain_info *info;
991 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
992
993 if (!ecap_dev_iotlb_support(iommu->ecap))
994 return NULL;
995
996 if (!iommu->qi)
997 return NULL;
998
999 spin_lock_irqsave(&device_domain_lock, flags);
1000 list_for_each_entry(info, &domain->devices, link)
1001 if (info->bus == bus && info->devfn == devfn) {
1002 found = 1;
1003 break;
1004 }
1005 spin_unlock_irqrestore(&device_domain_lock, flags);
1006
1007 if (!found || !info->dev)
1008 return NULL;
1009
1010 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1011 return NULL;
1012
1013 if (!dmar_find_matched_atsr_unit(info->dev))
1014 return NULL;
1015
1016 info->iommu = iommu;
1017
1018 return info;
1019}
1020
1021static void iommu_enable_dev_iotlb(struct device_domain_info *info)
ba395927 1022{
93a23a72
YZ
1023 if (!info)
1024 return;
1025
1026 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1027}
1028
1029static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1030{
1031 if (!info->dev || !pci_ats_enabled(info->dev))
1032 return;
1033
1034 pci_disable_ats(info->dev);
1035}
1036
1037static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1038 u64 addr, unsigned mask)
1039{
1040 u16 sid, qdep;
1041 unsigned long flags;
1042 struct device_domain_info *info;
1043
1044 spin_lock_irqsave(&device_domain_lock, flags);
1045 list_for_each_entry(info, &domain->devices, link) {
1046 if (!info->dev || !pci_ats_enabled(info->dev))
1047 continue;
1048
1049 sid = info->bus << 8 | info->devfn;
1050 qdep = pci_ats_queue_depth(info->dev);
1051 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1052 }
1053 spin_unlock_irqrestore(&device_domain_lock, flags);
1054}
1055
1f0ef2aa
DW
1056static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1057 u64 addr, unsigned int pages)
ba395927 1058{
9dd2fe89 1059 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
ba395927 1060
5b6985ce 1061 BUG_ON(addr & (~VTD_PAGE_MASK));
ba395927
KA
1062 BUG_ON(pages == 0);
1063
ba395927 1064 /*
9dd2fe89
YZ
1065 * Fallback to domain selective flush if no PSI support or the size is
1066 * too big.
ba395927
KA
1067 * PSI requires page size to be 2 ^ x, and the base address is naturally
1068 * aligned to the size
1069 */
9dd2fe89
YZ
1070 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1071 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1f0ef2aa 1072 DMA_TLB_DSI_FLUSH);
9dd2fe89
YZ
1073 else
1074 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1075 DMA_TLB_PSI_FLUSH);
bf92df30
YZ
1076
1077 /*
1078 * In caching mode, domain ID 0 is reserved for non-present to present
1079 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1080 */
1081 if (!cap_caching_mode(iommu->cap) || did)
93a23a72 1082 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
ba395927
KA
1083}
1084
f8bab735 1085static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1086{
1087 u32 pmen;
1088 unsigned long flags;
1089
1090 spin_lock_irqsave(&iommu->register_lock, flags);
1091 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1092 pmen &= ~DMA_PMEN_EPM;
1093 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1094
1095 /* wait for the protected region status bit to clear */
1096 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1097 readl, !(pmen & DMA_PMEN_PRS), pmen);
1098
1099 spin_unlock_irqrestore(&iommu->register_lock, flags);
1100}
1101
ba395927
KA
1102static int iommu_enable_translation(struct intel_iommu *iommu)
1103{
1104 u32 sts;
1105 unsigned long flags;
1106
1107 spin_lock_irqsave(&iommu->register_lock, flags);
c416daa9
DW
1108 iommu->gcmd |= DMA_GCMD_TE;
1109 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1110
1111 /* Make sure hardware complete it */
1112 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1113 readl, (sts & DMA_GSTS_TES), sts);
ba395927 1114
ba395927
KA
1115 spin_unlock_irqrestore(&iommu->register_lock, flags);
1116 return 0;
1117}
1118
1119static int iommu_disable_translation(struct intel_iommu *iommu)
1120{
1121 u32 sts;
1122 unsigned long flag;
1123
1124 spin_lock_irqsave(&iommu->register_lock, flag);
1125 iommu->gcmd &= ~DMA_GCMD_TE;
1126 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1127
1128 /* Make sure hardware complete it */
1129 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1130 readl, (!(sts & DMA_GSTS_TES)), sts);
ba395927
KA
1131
1132 spin_unlock_irqrestore(&iommu->register_lock, flag);
1133 return 0;
1134}
1135
3460a6d9 1136
ba395927
KA
1137static int iommu_init_domains(struct intel_iommu *iommu)
1138{
1139 unsigned long ndomains;
1140 unsigned long nlongs;
1141
1142 ndomains = cap_ndoms(iommu->cap);
1143 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1144 nlongs = BITS_TO_LONGS(ndomains);
1145
1146 /* TBD: there might be 64K domains,
1147 * consider other allocation for future chip
1148 */
1149 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1150 if (!iommu->domain_ids) {
1151 printk(KERN_ERR "Allocating domain id array failed\n");
1152 return -ENOMEM;
1153 }
1154 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1155 GFP_KERNEL);
1156 if (!iommu->domains) {
1157 printk(KERN_ERR "Allocating domain array failed\n");
1158 kfree(iommu->domain_ids);
1159 return -ENOMEM;
1160 }
1161
e61d98d8
SS
1162 spin_lock_init(&iommu->lock);
1163
ba395927
KA
1164 /*
1165 * if Caching mode is set, then invalid translations are tagged
1166 * with domainid 0. Hence we need to pre-allocate it.
1167 */
1168 if (cap_caching_mode(iommu->cap))
1169 set_bit(0, iommu->domain_ids);
1170 return 0;
1171}
ba395927 1172
ba395927
KA
1173
1174static void domain_exit(struct dmar_domain *domain);
5e98c4b1 1175static void vm_domain_exit(struct dmar_domain *domain);
e61d98d8
SS
1176
1177void free_dmar_iommu(struct intel_iommu *iommu)
ba395927
KA
1178{
1179 struct dmar_domain *domain;
1180 int i;
c7151a8d 1181 unsigned long flags;
ba395927 1182
ba395927
KA
1183 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1184 for (; i < cap_ndoms(iommu->cap); ) {
1185 domain = iommu->domains[i];
1186 clear_bit(i, iommu->domain_ids);
c7151a8d
WH
1187
1188 spin_lock_irqsave(&domain->iommu_lock, flags);
5e98c4b1
WH
1189 if (--domain->iommu_count == 0) {
1190 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1191 vm_domain_exit(domain);
1192 else
1193 domain_exit(domain);
1194 }
c7151a8d
WH
1195 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1196
ba395927
KA
1197 i = find_next_bit(iommu->domain_ids,
1198 cap_ndoms(iommu->cap), i+1);
1199 }
1200
1201 if (iommu->gcmd & DMA_GCMD_TE)
1202 iommu_disable_translation(iommu);
1203
1204 if (iommu->irq) {
1205 set_irq_data(iommu->irq, NULL);
1206 /* This will mask the irq */
1207 free_irq(iommu->irq, iommu);
1208 destroy_irq(iommu->irq);
1209 }
1210
1211 kfree(iommu->domains);
1212 kfree(iommu->domain_ids);
1213
d9630fe9
WH
1214 g_iommus[iommu->seq_id] = NULL;
1215
1216 /* if all iommus are freed, free g_iommus */
1217 for (i = 0; i < g_num_of_iommus; i++) {
1218 if (g_iommus[i])
1219 break;
1220 }
1221
1222 if (i == g_num_of_iommus)
1223 kfree(g_iommus);
1224
ba395927
KA
1225 /* free context mapping */
1226 free_context_table(iommu);
ba395927
KA
1227}
1228
2c2e2c38 1229static struct dmar_domain *alloc_domain(void)
ba395927 1230{
ba395927 1231 struct dmar_domain *domain;
ba395927
KA
1232
1233 domain = alloc_domain_mem();
1234 if (!domain)
1235 return NULL;
1236
2c2e2c38
FY
1237 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1238 domain->flags = 0;
1239
1240 return domain;
1241}
1242
1243static int iommu_attach_domain(struct dmar_domain *domain,
1244 struct intel_iommu *iommu)
1245{
1246 int num;
1247 unsigned long ndomains;
1248 unsigned long flags;
1249
ba395927
KA
1250 ndomains = cap_ndoms(iommu->cap);
1251
1252 spin_lock_irqsave(&iommu->lock, flags);
2c2e2c38 1253
ba395927
KA
1254 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1255 if (num >= ndomains) {
1256 spin_unlock_irqrestore(&iommu->lock, flags);
ba395927 1257 printk(KERN_ERR "IOMMU: no free domain ids\n");
2c2e2c38 1258 return -ENOMEM;
ba395927
KA
1259 }
1260
ba395927 1261 domain->id = num;
2c2e2c38 1262 set_bit(num, iommu->domain_ids);
8c11e798 1263 set_bit(iommu->seq_id, &domain->iommu_bmp);
ba395927
KA
1264 iommu->domains[num] = domain;
1265 spin_unlock_irqrestore(&iommu->lock, flags);
1266
2c2e2c38 1267 return 0;
ba395927
KA
1268}
1269
2c2e2c38
FY
1270static void iommu_detach_domain(struct dmar_domain *domain,
1271 struct intel_iommu *iommu)
ba395927
KA
1272{
1273 unsigned long flags;
2c2e2c38
FY
1274 int num, ndomains;
1275 int found = 0;
ba395927 1276
8c11e798 1277 spin_lock_irqsave(&iommu->lock, flags);
2c2e2c38
FY
1278 ndomains = cap_ndoms(iommu->cap);
1279 num = find_first_bit(iommu->domain_ids, ndomains);
1280 for (; num < ndomains; ) {
1281 if (iommu->domains[num] == domain) {
1282 found = 1;
1283 break;
1284 }
1285 num = find_next_bit(iommu->domain_ids,
1286 cap_ndoms(iommu->cap), num+1);
1287 }
1288
1289 if (found) {
1290 clear_bit(num, iommu->domain_ids);
1291 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1292 iommu->domains[num] = NULL;
1293 }
8c11e798 1294 spin_unlock_irqrestore(&iommu->lock, flags);
ba395927
KA
1295}
1296
1297static struct iova_domain reserved_iova_list;
8a443df4
MG
1298static struct lock_class_key reserved_alloc_key;
1299static struct lock_class_key reserved_rbtree_key;
ba395927
KA
1300
1301static void dmar_init_reserved_ranges(void)
1302{
1303 struct pci_dev *pdev = NULL;
1304 struct iova *iova;
1305 int i;
1306 u64 addr, size;
1307
f661197e 1308 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
ba395927 1309
8a443df4
MG
1310 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1311 &reserved_alloc_key);
1312 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1313 &reserved_rbtree_key);
1314
ba395927
KA
1315 /* IOAPIC ranges shouldn't be accessed by DMA */
1316 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1317 IOVA_PFN(IOAPIC_RANGE_END));
1318 if (!iova)
1319 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1320
1321 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1322 for_each_pci_dev(pdev) {
1323 struct resource *r;
1324
1325 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1326 r = &pdev->resource[i];
1327 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1328 continue;
1329 addr = r->start;
fd18de50 1330 addr &= PHYSICAL_PAGE_MASK;
ba395927 1331 size = r->end - addr;
5b6985ce 1332 size = PAGE_ALIGN(size);
ba395927
KA
1333 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1334 IOVA_PFN(size + addr) - 1);
1335 if (!iova)
1336 printk(KERN_ERR "Reserve iova failed\n");
1337 }
1338 }
1339
1340}
1341
1342static void domain_reserve_special_ranges(struct dmar_domain *domain)
1343{
1344 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1345}
1346
1347static inline int guestwidth_to_adjustwidth(int gaw)
1348{
1349 int agaw;
1350 int r = (gaw - 12) % 9;
1351
1352 if (r == 0)
1353 agaw = gaw;
1354 else
1355 agaw = gaw + 9 - r;
1356 if (agaw > 64)
1357 agaw = 64;
1358 return agaw;
1359}
1360
1361static int domain_init(struct dmar_domain *domain, int guest_width)
1362{
1363 struct intel_iommu *iommu;
1364 int adjust_width, agaw;
1365 unsigned long sagaw;
1366
f661197e 1367 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
ba395927 1368 spin_lock_init(&domain->mapping_lock);
c7151a8d 1369 spin_lock_init(&domain->iommu_lock);
ba395927
KA
1370
1371 domain_reserve_special_ranges(domain);
1372
1373 /* calculate AGAW */
8c11e798 1374 iommu = domain_get_iommu(domain);
ba395927
KA
1375 if (guest_width > cap_mgaw(iommu->cap))
1376 guest_width = cap_mgaw(iommu->cap);
1377 domain->gaw = guest_width;
1378 adjust_width = guestwidth_to_adjustwidth(guest_width);
1379 agaw = width_to_agaw(adjust_width);
1380 sagaw = cap_sagaw(iommu->cap);
1381 if (!test_bit(agaw, &sagaw)) {
1382 /* hardware doesn't support it, choose a bigger one */
1383 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1384 agaw = find_next_bit(&sagaw, 5, agaw);
1385 if (agaw >= 5)
1386 return -ENODEV;
1387 }
1388 domain->agaw = agaw;
1389 INIT_LIST_HEAD(&domain->devices);
1390
8e604097
WH
1391 if (ecap_coherent(iommu->ecap))
1392 domain->iommu_coherency = 1;
1393 else
1394 domain->iommu_coherency = 0;
1395
58c610bd
SY
1396 if (ecap_sc_support(iommu->ecap))
1397 domain->iommu_snooping = 1;
1398 else
1399 domain->iommu_snooping = 0;
1400
c7151a8d
WH
1401 domain->iommu_count = 1;
1402
ba395927
KA
1403 /* always allocate the top pgd */
1404 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1405 if (!domain->pgd)
1406 return -ENOMEM;
5b6985ce 1407 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
ba395927
KA
1408 return 0;
1409}
1410
1411static void domain_exit(struct dmar_domain *domain)
1412{
2c2e2c38
FY
1413 struct dmar_drhd_unit *drhd;
1414 struct intel_iommu *iommu;
ba395927
KA
1415 u64 end;
1416
1417 /* Domain 0 is reserved, so dont process it */
1418 if (!domain)
1419 return;
1420
1421 domain_remove_dev_info(domain);
1422 /* destroy iovas */
1423 put_iova_domain(&domain->iovad);
1424 end = DOMAIN_MAX_ADDR(domain->gaw);
5b6985ce 1425 end = end & (~PAGE_MASK);
ba395927
KA
1426
1427 /* clear ptes */
595badf5 1428 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
ba395927
KA
1429
1430 /* free page tables */
1431 dma_pte_free_pagetable(domain, 0, end);
1432
2c2e2c38
FY
1433 for_each_active_iommu(iommu, drhd)
1434 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1435 iommu_detach_domain(domain, iommu);
1436
ba395927
KA
1437 free_domain_mem(domain);
1438}
1439
4ed0d3e6
FY
1440static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1441 u8 bus, u8 devfn, int translation)
ba395927
KA
1442{
1443 struct context_entry *context;
ba395927 1444 unsigned long flags;
5331fe6f 1445 struct intel_iommu *iommu;
ea6606b0
WH
1446 struct dma_pte *pgd;
1447 unsigned long num;
1448 unsigned long ndomains;
1449 int id;
1450 int agaw;
93a23a72 1451 struct device_domain_info *info = NULL;
ba395927
KA
1452
1453 pr_debug("Set context mapping for %02x:%02x.%d\n",
1454 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
4ed0d3e6 1455
ba395927 1456 BUG_ON(!domain->pgd);
4ed0d3e6
FY
1457 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1458 translation != CONTEXT_TT_MULTI_LEVEL);
5331fe6f 1459
276dbf99 1460 iommu = device_to_iommu(segment, bus, devfn);
5331fe6f
WH
1461 if (!iommu)
1462 return -ENODEV;
1463
ba395927
KA
1464 context = device_to_context_entry(iommu, bus, devfn);
1465 if (!context)
1466 return -ENOMEM;
1467 spin_lock_irqsave(&iommu->lock, flags);
c07e7d21 1468 if (context_present(context)) {
ba395927
KA
1469 spin_unlock_irqrestore(&iommu->lock, flags);
1470 return 0;
1471 }
1472
ea6606b0
WH
1473 id = domain->id;
1474 pgd = domain->pgd;
1475
2c2e2c38
FY
1476 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1477 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
ea6606b0
WH
1478 int found = 0;
1479
1480 /* find an available domain id for this device in iommu */
1481 ndomains = cap_ndoms(iommu->cap);
1482 num = find_first_bit(iommu->domain_ids, ndomains);
1483 for (; num < ndomains; ) {
1484 if (iommu->domains[num] == domain) {
1485 id = num;
1486 found = 1;
1487 break;
1488 }
1489 num = find_next_bit(iommu->domain_ids,
1490 cap_ndoms(iommu->cap), num+1);
1491 }
1492
1493 if (found == 0) {
1494 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1495 if (num >= ndomains) {
1496 spin_unlock_irqrestore(&iommu->lock, flags);
1497 printk(KERN_ERR "IOMMU: no free domain ids\n");
1498 return -EFAULT;
1499 }
1500
1501 set_bit(num, iommu->domain_ids);
2c2e2c38 1502 set_bit(iommu->seq_id, &domain->iommu_bmp);
ea6606b0
WH
1503 iommu->domains[num] = domain;
1504 id = num;
1505 }
1506
1507 /* Skip top levels of page tables for
1508 * iommu which has less agaw than default.
1509 */
1510 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1511 pgd = phys_to_virt(dma_pte_addr(pgd));
1512 if (!dma_pte_present(pgd)) {
1513 spin_unlock_irqrestore(&iommu->lock, flags);
1514 return -ENOMEM;
1515 }
1516 }
1517 }
1518
1519 context_set_domain_id(context, id);
4ed0d3e6 1520
93a23a72
YZ
1521 if (translation != CONTEXT_TT_PASS_THROUGH) {
1522 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1523 translation = info ? CONTEXT_TT_DEV_IOTLB :
1524 CONTEXT_TT_MULTI_LEVEL;
1525 }
4ed0d3e6
FY
1526 /*
1527 * In pass through mode, AW must be programmed to indicate the largest
1528 * AGAW value supported by hardware. And ASR is ignored by hardware.
1529 */
93a23a72 1530 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
4ed0d3e6 1531 context_set_address_width(context, iommu->msagaw);
93a23a72
YZ
1532 else {
1533 context_set_address_root(context, virt_to_phys(pgd));
1534 context_set_address_width(context, iommu->agaw);
1535 }
4ed0d3e6
FY
1536
1537 context_set_translation_type(context, translation);
c07e7d21
MM
1538 context_set_fault_enable(context);
1539 context_set_present(context);
5331fe6f 1540 domain_flush_cache(domain, context, sizeof(*context));
ba395927 1541
4c25a2c1
DW
1542 /*
1543 * It's a non-present to present mapping. If hardware doesn't cache
1544 * non-present entry we only need to flush the write-buffer. If the
1545 * _does_ cache non-present entries, then it does so in the special
1546 * domain #0, which we have to flush:
1547 */
1548 if (cap_caching_mode(iommu->cap)) {
1549 iommu->flush.flush_context(iommu, 0,
1550 (((u16)bus) << 8) | devfn,
1551 DMA_CCMD_MASK_NOBIT,
1552 DMA_CCMD_DEVICE_INVL);
1f0ef2aa 1553 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
4c25a2c1 1554 } else {
ba395927 1555 iommu_flush_write_buffer(iommu);
4c25a2c1 1556 }
93a23a72 1557 iommu_enable_dev_iotlb(info);
ba395927 1558 spin_unlock_irqrestore(&iommu->lock, flags);
c7151a8d
WH
1559
1560 spin_lock_irqsave(&domain->iommu_lock, flags);
1561 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1562 domain->iommu_count++;
58c610bd 1563 domain_update_iommu_cap(domain);
c7151a8d
WH
1564 }
1565 spin_unlock_irqrestore(&domain->iommu_lock, flags);
ba395927
KA
1566 return 0;
1567}
1568
1569static int
4ed0d3e6
FY
1570domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1571 int translation)
ba395927
KA
1572{
1573 int ret;
1574 struct pci_dev *tmp, *parent;
1575
276dbf99 1576 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
4ed0d3e6
FY
1577 pdev->bus->number, pdev->devfn,
1578 translation);
ba395927
KA
1579 if (ret)
1580 return ret;
1581
1582 /* dependent device mapping */
1583 tmp = pci_find_upstream_pcie_bridge(pdev);
1584 if (!tmp)
1585 return 0;
1586 /* Secondary interface's bus number and devfn 0 */
1587 parent = pdev->bus->self;
1588 while (parent != tmp) {
276dbf99
DW
1589 ret = domain_context_mapping_one(domain,
1590 pci_domain_nr(parent->bus),
1591 parent->bus->number,
4ed0d3e6 1592 parent->devfn, translation);
ba395927
KA
1593 if (ret)
1594 return ret;
1595 parent = parent->bus->self;
1596 }
1597 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1598 return domain_context_mapping_one(domain,
276dbf99 1599 pci_domain_nr(tmp->subordinate),
4ed0d3e6
FY
1600 tmp->subordinate->number, 0,
1601 translation);
ba395927
KA
1602 else /* this is a legacy PCI bridge */
1603 return domain_context_mapping_one(domain,
276dbf99
DW
1604 pci_domain_nr(tmp->bus),
1605 tmp->bus->number,
4ed0d3e6
FY
1606 tmp->devfn,
1607 translation);
ba395927
KA
1608}
1609
5331fe6f 1610static int domain_context_mapped(struct pci_dev *pdev)
ba395927
KA
1611{
1612 int ret;
1613 struct pci_dev *tmp, *parent;
5331fe6f
WH
1614 struct intel_iommu *iommu;
1615
276dbf99
DW
1616 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1617 pdev->devfn);
5331fe6f
WH
1618 if (!iommu)
1619 return -ENODEV;
ba395927 1620
276dbf99 1621 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
ba395927
KA
1622 if (!ret)
1623 return ret;
1624 /* dependent device mapping */
1625 tmp = pci_find_upstream_pcie_bridge(pdev);
1626 if (!tmp)
1627 return ret;
1628 /* Secondary interface's bus number and devfn 0 */
1629 parent = pdev->bus->self;
1630 while (parent != tmp) {
8c11e798 1631 ret = device_context_mapped(iommu, parent->bus->number,
276dbf99 1632 parent->devfn);
ba395927
KA
1633 if (!ret)
1634 return ret;
1635 parent = parent->bus->self;
1636 }
1637 if (tmp->is_pcie)
276dbf99
DW
1638 return device_context_mapped(iommu, tmp->subordinate->number,
1639 0);
ba395927 1640 else
276dbf99
DW
1641 return device_context_mapped(iommu, tmp->bus->number,
1642 tmp->devfn);
ba395927
KA
1643}
1644
1645static int
1646domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1647 u64 hpa, size_t size, int prot)
1648{
1649 u64 start_pfn, end_pfn;
1650 struct dma_pte *pte;
1651 int index;
5b6985ce
FY
1652 int addr_width = agaw_to_width(domain->agaw);
1653
66eae846 1654 BUG_ON(hpa >> addr_width);
ba395927
KA
1655
1656 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1657 return -EINVAL;
5b6985ce
FY
1658 iova &= PAGE_MASK;
1659 start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1660 end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
ba395927
KA
1661 index = 0;
1662 while (start_pfn < end_pfn) {
5b6985ce 1663 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
ba395927
KA
1664 if (!pte)
1665 return -ENOMEM;
1666 /* We don't need lock here, nobody else
1667 * touches the iova range
1668 */
19c239ce 1669 BUG_ON(dma_pte_addr(pte));
dd4e8319 1670 dma_set_pte_pfn(pte, start_pfn);
19c239ce 1671 dma_set_pte_prot(pte, prot);
9cf06697
SY
1672 if (prot & DMA_PTE_SNP)
1673 dma_set_pte_snp(pte);
5331fe6f 1674 domain_flush_cache(domain, pte, sizeof(*pte));
ba395927
KA
1675 start_pfn++;
1676 index++;
1677 }
1678 return 0;
1679}
1680
c7151a8d 1681static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
ba395927 1682{
c7151a8d
WH
1683 if (!iommu)
1684 return;
8c11e798
WH
1685
1686 clear_context_table(iommu, bus, devfn);
1687 iommu->flush.flush_context(iommu, 0, 0, 0,
4c25a2c1 1688 DMA_CCMD_GLOBAL_INVL);
1f0ef2aa 1689 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
ba395927
KA
1690}
1691
1692static void domain_remove_dev_info(struct dmar_domain *domain)
1693{
1694 struct device_domain_info *info;
1695 unsigned long flags;
c7151a8d 1696 struct intel_iommu *iommu;
ba395927
KA
1697
1698 spin_lock_irqsave(&device_domain_lock, flags);
1699 while (!list_empty(&domain->devices)) {
1700 info = list_entry(domain->devices.next,
1701 struct device_domain_info, link);
1702 list_del(&info->link);
1703 list_del(&info->global);
1704 if (info->dev)
358dd8ac 1705 info->dev->dev.archdata.iommu = NULL;
ba395927
KA
1706 spin_unlock_irqrestore(&device_domain_lock, flags);
1707
93a23a72 1708 iommu_disable_dev_iotlb(info);
276dbf99 1709 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
c7151a8d 1710 iommu_detach_dev(iommu, info->bus, info->devfn);
ba395927
KA
1711 free_devinfo_mem(info);
1712
1713 spin_lock_irqsave(&device_domain_lock, flags);
1714 }
1715 spin_unlock_irqrestore(&device_domain_lock, flags);
1716}
1717
1718/*
1719 * find_domain
358dd8ac 1720 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
ba395927 1721 */
38717946 1722static struct dmar_domain *
ba395927
KA
1723find_domain(struct pci_dev *pdev)
1724{
1725 struct device_domain_info *info;
1726
1727 /* No lock here, assumes no domain exit in normal case */
358dd8ac 1728 info = pdev->dev.archdata.iommu;
ba395927
KA
1729 if (info)
1730 return info->domain;
1731 return NULL;
1732}
1733
ba395927
KA
1734/* domain is initialized */
1735static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1736{
1737 struct dmar_domain *domain, *found = NULL;
1738 struct intel_iommu *iommu;
1739 struct dmar_drhd_unit *drhd;
1740 struct device_domain_info *info, *tmp;
1741 struct pci_dev *dev_tmp;
1742 unsigned long flags;
1743 int bus = 0, devfn = 0;
276dbf99 1744 int segment;
2c2e2c38 1745 int ret;
ba395927
KA
1746
1747 domain = find_domain(pdev);
1748 if (domain)
1749 return domain;
1750
276dbf99
DW
1751 segment = pci_domain_nr(pdev->bus);
1752
ba395927
KA
1753 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1754 if (dev_tmp) {
1755 if (dev_tmp->is_pcie) {
1756 bus = dev_tmp->subordinate->number;
1757 devfn = 0;
1758 } else {
1759 bus = dev_tmp->bus->number;
1760 devfn = dev_tmp->devfn;
1761 }
1762 spin_lock_irqsave(&device_domain_lock, flags);
1763 list_for_each_entry(info, &device_domain_list, global) {
276dbf99
DW
1764 if (info->segment == segment &&
1765 info->bus == bus && info->devfn == devfn) {
ba395927
KA
1766 found = info->domain;
1767 break;
1768 }
1769 }
1770 spin_unlock_irqrestore(&device_domain_lock, flags);
1771 /* pcie-pci bridge already has a domain, uses it */
1772 if (found) {
1773 domain = found;
1774 goto found_domain;
1775 }
1776 }
1777
2c2e2c38
FY
1778 domain = alloc_domain();
1779 if (!domain)
1780 goto error;
1781
ba395927
KA
1782 /* Allocate new domain for the device */
1783 drhd = dmar_find_matched_drhd_unit(pdev);
1784 if (!drhd) {
1785 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1786 pci_name(pdev));
1787 return NULL;
1788 }
1789 iommu = drhd->iommu;
1790
2c2e2c38
FY
1791 ret = iommu_attach_domain(domain, iommu);
1792 if (ret) {
1793 domain_exit(domain);
ba395927 1794 goto error;
2c2e2c38 1795 }
ba395927
KA
1796
1797 if (domain_init(domain, gaw)) {
1798 domain_exit(domain);
1799 goto error;
1800 }
1801
1802 /* register pcie-to-pci device */
1803 if (dev_tmp) {
1804 info = alloc_devinfo_mem();
1805 if (!info) {
1806 domain_exit(domain);
1807 goto error;
1808 }
276dbf99 1809 info->segment = segment;
ba395927
KA
1810 info->bus = bus;
1811 info->devfn = devfn;
1812 info->dev = NULL;
1813 info->domain = domain;
1814 /* This domain is shared by devices under p2p bridge */
3b5410e7 1815 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
ba395927
KA
1816
1817 /* pcie-to-pci bridge already has a domain, uses it */
1818 found = NULL;
1819 spin_lock_irqsave(&device_domain_lock, flags);
1820 list_for_each_entry(tmp, &device_domain_list, global) {
276dbf99
DW
1821 if (tmp->segment == segment &&
1822 tmp->bus == bus && tmp->devfn == devfn) {
ba395927
KA
1823 found = tmp->domain;
1824 break;
1825 }
1826 }
1827 if (found) {
1828 free_devinfo_mem(info);
1829 domain_exit(domain);
1830 domain = found;
1831 } else {
1832 list_add(&info->link, &domain->devices);
1833 list_add(&info->global, &device_domain_list);
1834 }
1835 spin_unlock_irqrestore(&device_domain_lock, flags);
1836 }
1837
1838found_domain:
1839 info = alloc_devinfo_mem();
1840 if (!info)
1841 goto error;
276dbf99 1842 info->segment = segment;
ba395927
KA
1843 info->bus = pdev->bus->number;
1844 info->devfn = pdev->devfn;
1845 info->dev = pdev;
1846 info->domain = domain;
1847 spin_lock_irqsave(&device_domain_lock, flags);
1848 /* somebody is fast */
1849 found = find_domain(pdev);
1850 if (found != NULL) {
1851 spin_unlock_irqrestore(&device_domain_lock, flags);
1852 if (found != domain) {
1853 domain_exit(domain);
1854 domain = found;
1855 }
1856 free_devinfo_mem(info);
1857 return domain;
1858 }
1859 list_add(&info->link, &domain->devices);
1860 list_add(&info->global, &device_domain_list);
358dd8ac 1861 pdev->dev.archdata.iommu = info;
ba395927
KA
1862 spin_unlock_irqrestore(&device_domain_lock, flags);
1863 return domain;
1864error:
1865 /* recheck it here, maybe others set it */
1866 return find_domain(pdev);
1867}
1868
2c2e2c38
FY
1869static int iommu_identity_mapping;
1870
b213203e
DW
1871static int iommu_domain_identity_map(struct dmar_domain *domain,
1872 unsigned long long start,
1873 unsigned long long end)
ba395927 1874{
ba395927 1875 unsigned long size;
5b6985ce 1876 unsigned long long base;
ba395927
KA
1877
1878 /* The address might not be aligned */
5b6985ce 1879 base = start & PAGE_MASK;
ba395927 1880 size = end - base;
5b6985ce 1881 size = PAGE_ALIGN(size);
ba395927
KA
1882 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1883 IOVA_PFN(base + size) - 1)) {
1884 printk(KERN_ERR "IOMMU: reserve iova failed\n");
b213203e 1885 return -ENOMEM;
ba395927
KA
1886 }
1887
b213203e
DW
1888 pr_debug("Mapping reserved region %lx@%llx for domain %d\n",
1889 size, base, domain->id);
ba395927
KA
1890 /*
1891 * RMRR range might have overlap with physical memory range,
1892 * clear it first
1893 */
595badf5
DW
1894 dma_pte_clear_range(domain, base >> VTD_PAGE_SHIFT,
1895 (base + size - 1) >> VTD_PAGE_SHIFT);
ba395927 1896
b213203e
DW
1897 return domain_page_mapping(domain, base, base, size,
1898 DMA_PTE_READ|DMA_PTE_WRITE);
1899}
1900
1901static int iommu_prepare_identity_map(struct pci_dev *pdev,
1902 unsigned long long start,
1903 unsigned long long end)
1904{
1905 struct dmar_domain *domain;
1906 int ret;
1907
1908 printk(KERN_INFO
1909 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1910 pci_name(pdev), start, end);
1911
c7ab48d2 1912 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
b213203e
DW
1913 if (!domain)
1914 return -ENOMEM;
1915
1916 ret = iommu_domain_identity_map(domain, start, end);
ba395927
KA
1917 if (ret)
1918 goto error;
1919
1920 /* context entry init */
4ed0d3e6 1921 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
b213203e
DW
1922 if (ret)
1923 goto error;
1924
1925 return 0;
1926
1927 error:
ba395927
KA
1928 domain_exit(domain);
1929 return ret;
ba395927
KA
1930}
1931
1932static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1933 struct pci_dev *pdev)
1934{
358dd8ac 1935 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927
KA
1936 return 0;
1937 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1938 rmrr->end_address + 1);
1939}
1940
49a0429e
KA
1941#ifdef CONFIG_DMAR_FLOPPY_WA
1942static inline void iommu_prepare_isa(void)
1943{
1944 struct pci_dev *pdev;
1945 int ret;
1946
1947 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1948 if (!pdev)
1949 return;
1950
c7ab48d2 1951 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
49a0429e
KA
1952 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1953
1954 if (ret)
c7ab48d2
DW
1955 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
1956 "floppy might not work\n");
49a0429e
KA
1957
1958}
1959#else
1960static inline void iommu_prepare_isa(void)
1961{
1962 return;
1963}
1964#endif /* !CONFIG_DMAR_FLPY_WA */
1965
4ed0d3e6
FY
1966/* Initialize each context entry as pass through.*/
1967static int __init init_context_pass_through(void)
1968{
1969 struct pci_dev *pdev = NULL;
1970 struct dmar_domain *domain;
1971 int ret;
1972
1973 for_each_pci_dev(pdev) {
1974 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1975 ret = domain_context_mapping(domain, pdev,
1976 CONTEXT_TT_PASS_THROUGH);
1977 if (ret)
1978 return ret;
1979 }
1980 return 0;
1981}
1982
2c2e2c38 1983static int md_domain_init(struct dmar_domain *domain, int guest_width);
c7ab48d2
DW
1984
1985static int __init si_domain_work_fn(unsigned long start_pfn,
1986 unsigned long end_pfn, void *datax)
1987{
1988 int *ret = datax;
1989
1990 *ret = iommu_domain_identity_map(si_domain,
1991 (uint64_t)start_pfn << PAGE_SHIFT,
1992 (uint64_t)end_pfn << PAGE_SHIFT);
1993 return *ret;
1994
1995}
1996
2c2e2c38
FY
1997static int si_domain_init(void)
1998{
1999 struct dmar_drhd_unit *drhd;
2000 struct intel_iommu *iommu;
c7ab48d2 2001 int nid, ret = 0;
2c2e2c38
FY
2002
2003 si_domain = alloc_domain();
2004 if (!si_domain)
2005 return -EFAULT;
2006
c7ab48d2 2007 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2c2e2c38
FY
2008
2009 for_each_active_iommu(iommu, drhd) {
2010 ret = iommu_attach_domain(si_domain, iommu);
2011 if (ret) {
2012 domain_exit(si_domain);
2013 return -EFAULT;
2014 }
2015 }
2016
2017 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2018 domain_exit(si_domain);
2019 return -EFAULT;
2020 }
2021
2022 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2023
c7ab48d2
DW
2024 for_each_online_node(nid) {
2025 work_with_active_regions(nid, si_domain_work_fn, &ret);
2026 if (ret)
2027 return ret;
2028 }
2029
2c2e2c38
FY
2030 return 0;
2031}
2032
2033static void domain_remove_one_dev_info(struct dmar_domain *domain,
2034 struct pci_dev *pdev);
2035static int identity_mapping(struct pci_dev *pdev)
2036{
2037 struct device_domain_info *info;
2038
2039 if (likely(!iommu_identity_mapping))
2040 return 0;
2041
2042
2043 list_for_each_entry(info, &si_domain->devices, link)
2044 if (info->dev == pdev)
2045 return 1;
2046 return 0;
2047}
2048
2049static int domain_add_dev_info(struct dmar_domain *domain,
2050 struct pci_dev *pdev)
2051{
2052 struct device_domain_info *info;
2053 unsigned long flags;
2054
2055 info = alloc_devinfo_mem();
2056 if (!info)
2057 return -ENOMEM;
2058
2059 info->segment = pci_domain_nr(pdev->bus);
2060 info->bus = pdev->bus->number;
2061 info->devfn = pdev->devfn;
2062 info->dev = pdev;
2063 info->domain = domain;
2064
2065 spin_lock_irqsave(&device_domain_lock, flags);
2066 list_add(&info->link, &domain->devices);
2067 list_add(&info->global, &device_domain_list);
2068 pdev->dev.archdata.iommu = info;
2069 spin_unlock_irqrestore(&device_domain_lock, flags);
2070
2071 return 0;
2072}
2073
2074static int iommu_prepare_static_identity_mapping(void)
2075{
2c2e2c38
FY
2076 struct pci_dev *pdev = NULL;
2077 int ret;
2078
2079 ret = si_domain_init();
2080 if (ret)
2081 return -EFAULT;
2082
2c2e2c38 2083 for_each_pci_dev(pdev) {
c7ab48d2
DW
2084 printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
2085 pci_name(pdev));
2086
2087 ret = domain_context_mapping(si_domain, pdev,
2088 CONTEXT_TT_MULTI_LEVEL);
2089 if (ret)
2090 return ret;
2c2e2c38
FY
2091 ret = domain_add_dev_info(si_domain, pdev);
2092 if (ret)
2093 return ret;
2094 }
2095
2096 return 0;
2097}
2098
2099int __init init_dmars(void)
ba395927
KA
2100{
2101 struct dmar_drhd_unit *drhd;
2102 struct dmar_rmrr_unit *rmrr;
2103 struct pci_dev *pdev;
2104 struct intel_iommu *iommu;
9d783ba0 2105 int i, ret;
4ed0d3e6 2106 int pass_through = 1;
ba395927 2107
2c2e2c38
FY
2108 /*
2109 * In case pass through can not be enabled, iommu tries to use identity
2110 * mapping.
2111 */
2112 if (iommu_pass_through)
2113 iommu_identity_mapping = 1;
2114
ba395927
KA
2115 /*
2116 * for each drhd
2117 * allocate root
2118 * initialize and program root entry to not present
2119 * endfor
2120 */
2121 for_each_drhd_unit(drhd) {
5e0d2a6f 2122 g_num_of_iommus++;
2123 /*
2124 * lock not needed as this is only incremented in the single
2125 * threaded kernel __init code path all other access are read
2126 * only
2127 */
2128 }
2129
d9630fe9
WH
2130 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2131 GFP_KERNEL);
2132 if (!g_iommus) {
2133 printk(KERN_ERR "Allocating global iommu array failed\n");
2134 ret = -ENOMEM;
2135 goto error;
2136 }
2137
80b20dd8 2138 deferred_flush = kzalloc(g_num_of_iommus *
2139 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2140 if (!deferred_flush) {
d9630fe9 2141 kfree(g_iommus);
5e0d2a6f 2142 ret = -ENOMEM;
2143 goto error;
2144 }
2145
5e0d2a6f 2146 for_each_drhd_unit(drhd) {
2147 if (drhd->ignored)
2148 continue;
1886e8a9
SS
2149
2150 iommu = drhd->iommu;
d9630fe9 2151 g_iommus[iommu->seq_id] = iommu;
ba395927 2152
e61d98d8
SS
2153 ret = iommu_init_domains(iommu);
2154 if (ret)
2155 goto error;
2156
ba395927
KA
2157 /*
2158 * TBD:
2159 * we could share the same root & context tables
2160 * amoung all IOMMU's. Need to Split it later.
2161 */
2162 ret = iommu_alloc_root_entry(iommu);
2163 if (ret) {
2164 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2165 goto error;
2166 }
4ed0d3e6
FY
2167 if (!ecap_pass_through(iommu->ecap))
2168 pass_through = 0;
ba395927 2169 }
4ed0d3e6
FY
2170 if (iommu_pass_through)
2171 if (!pass_through) {
2172 printk(KERN_INFO
2173 "Pass Through is not supported by hardware.\n");
2174 iommu_pass_through = 0;
2175 }
ba395927 2176
1531a6a6
SS
2177 /*
2178 * Start from the sane iommu hardware state.
2179 */
a77b67d4
YS
2180 for_each_drhd_unit(drhd) {
2181 if (drhd->ignored)
2182 continue;
2183
2184 iommu = drhd->iommu;
1531a6a6
SS
2185
2186 /*
2187 * If the queued invalidation is already initialized by us
2188 * (for example, while enabling interrupt-remapping) then
2189 * we got the things already rolling from a sane state.
2190 */
2191 if (iommu->qi)
2192 continue;
2193
2194 /*
2195 * Clear any previous faults.
2196 */
2197 dmar_fault(-1, iommu);
2198 /*
2199 * Disable queued invalidation if supported and already enabled
2200 * before OS handover.
2201 */
2202 dmar_disable_qi(iommu);
2203 }
2204
2205 for_each_drhd_unit(drhd) {
2206 if (drhd->ignored)
2207 continue;
2208
2209 iommu = drhd->iommu;
2210
a77b67d4
YS
2211 if (dmar_enable_qi(iommu)) {
2212 /*
2213 * Queued Invalidate not enabled, use Register Based
2214 * Invalidate
2215 */
2216 iommu->flush.flush_context = __iommu_flush_context;
2217 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2218 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
b4e0f9eb
FT
2219 "invalidation\n",
2220 (unsigned long long)drhd->reg_base_addr);
a77b67d4
YS
2221 } else {
2222 iommu->flush.flush_context = qi_flush_context;
2223 iommu->flush.flush_iotlb = qi_flush_iotlb;
2224 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
b4e0f9eb
FT
2225 "invalidation\n",
2226 (unsigned long long)drhd->reg_base_addr);
a77b67d4
YS
2227 }
2228 }
2229
ba395927 2230 /*
4ed0d3e6
FY
2231 * If pass through is set and enabled, context entries of all pci
2232 * devices are intialized by pass through translation type.
ba395927 2233 */
4ed0d3e6
FY
2234 if (iommu_pass_through) {
2235 ret = init_context_pass_through();
2236 if (ret) {
2237 printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2238 iommu_pass_through = 0;
ba395927
KA
2239 }
2240 }
2241
ba395927 2242 /*
4ed0d3e6 2243 * If pass through is not set or not enabled, setup context entries for
2c2e2c38
FY
2244 * identity mappings for rmrr, gfx, and isa and may fall back to static
2245 * identity mapping if iommu_identity_mapping is set.
ba395927 2246 */
4ed0d3e6 2247 if (!iommu_pass_through) {
2c2e2c38
FY
2248 if (iommu_identity_mapping)
2249 iommu_prepare_static_identity_mapping();
4ed0d3e6
FY
2250 /*
2251 * For each rmrr
2252 * for each dev attached to rmrr
2253 * do
2254 * locate drhd for dev, alloc domain for dev
2255 * allocate free domain
2256 * allocate page table entries for rmrr
2257 * if context not allocated for bus
2258 * allocate and init context
2259 * set present in root table for this bus
2260 * init context with domain, translation etc
2261 * endfor
2262 * endfor
2263 */
2c2e2c38 2264 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
4ed0d3e6
FY
2265 for_each_rmrr_units(rmrr) {
2266 for (i = 0; i < rmrr->devices_cnt; i++) {
2267 pdev = rmrr->devices[i];
2268 /*
2269 * some BIOS lists non-exist devices in DMAR
2270 * table.
2271 */
2272 if (!pdev)
2273 continue;
2274 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2275 if (ret)
2276 printk(KERN_ERR
ba395927 2277 "IOMMU: mapping reserved region failed\n");
4ed0d3e6 2278 }
ba395927 2279 }
ba395927 2280
4ed0d3e6
FY
2281 iommu_prepare_isa();
2282 }
49a0429e 2283
ba395927
KA
2284 /*
2285 * for each drhd
2286 * enable fault log
2287 * global invalidate context cache
2288 * global invalidate iotlb
2289 * enable translation
2290 */
2291 for_each_drhd_unit(drhd) {
2292 if (drhd->ignored)
2293 continue;
2294 iommu = drhd->iommu;
ba395927
KA
2295
2296 iommu_flush_write_buffer(iommu);
2297
3460a6d9
KA
2298 ret = dmar_set_interrupt(iommu);
2299 if (ret)
2300 goto error;
2301
ba395927
KA
2302 iommu_set_root_entry(iommu);
2303
4c25a2c1 2304 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
1f0ef2aa 2305 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
f8bab735 2306 iommu_disable_protect_mem_regions(iommu);
2307
ba395927
KA
2308 ret = iommu_enable_translation(iommu);
2309 if (ret)
2310 goto error;
2311 }
2312
2313 return 0;
2314error:
2315 for_each_drhd_unit(drhd) {
2316 if (drhd->ignored)
2317 continue;
2318 iommu = drhd->iommu;
2319 free_iommu(iommu);
2320 }
d9630fe9 2321 kfree(g_iommus);
ba395927
KA
2322 return ret;
2323}
2324
2325static inline u64 aligned_size(u64 host_addr, size_t size)
2326{
2327 u64 addr;
5b6985ce
FY
2328 addr = (host_addr & (~PAGE_MASK)) + size;
2329 return PAGE_ALIGN(addr);
ba395927
KA
2330}
2331
2332struct iova *
f76aec76 2333iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
ba395927 2334{
ba395927
KA
2335 struct iova *piova;
2336
2337 /* Make sure it's in range */
ba395927 2338 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
f76aec76 2339 if (!size || (IOVA_START_ADDR + size > end))
ba395927
KA
2340 return NULL;
2341
2342 piova = alloc_iova(&domain->iovad,
5b6985ce 2343 size >> PAGE_SHIFT, IOVA_PFN(end), 1);
ba395927
KA
2344 return piova;
2345}
2346
f76aec76
KA
2347static struct iova *
2348__intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
bb9e6d65 2349 size_t size, u64 dma_mask)
ba395927 2350{
ba395927 2351 struct pci_dev *pdev = to_pci_dev(dev);
ba395927 2352 struct iova *iova = NULL;
ba395927 2353
284901a9 2354 if (dma_mask <= DMA_BIT_MASK(32) || dmar_forcedac)
bb9e6d65
FT
2355 iova = iommu_alloc_iova(domain, size, dma_mask);
2356 else {
ba395927
KA
2357 /*
2358 * First try to allocate an io virtual address in
284901a9 2359 * DMA_BIT_MASK(32) and if that fails then try allocating
3609801e 2360 * from higher range
ba395927 2361 */
284901a9 2362 iova = iommu_alloc_iova(domain, size, DMA_BIT_MASK(32));
ba395927 2363 if (!iova)
bb9e6d65 2364 iova = iommu_alloc_iova(domain, size, dma_mask);
ba395927
KA
2365 }
2366
2367 if (!iova) {
2368 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
f76aec76
KA
2369 return NULL;
2370 }
2371
2372 return iova;
2373}
2374
2375static struct dmar_domain *
2376get_valid_domain_for_dev(struct pci_dev *pdev)
2377{
2378 struct dmar_domain *domain;
2379 int ret;
2380
2381 domain = get_domain_for_dev(pdev,
2382 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2383 if (!domain) {
2384 printk(KERN_ERR
2385 "Allocating domain for %s failed", pci_name(pdev));
4fe05bbc 2386 return NULL;
ba395927
KA
2387 }
2388
2389 /* make sure context mapping is ok */
5331fe6f 2390 if (unlikely(!domain_context_mapped(pdev))) {
4ed0d3e6
FY
2391 ret = domain_context_mapping(domain, pdev,
2392 CONTEXT_TT_MULTI_LEVEL);
f76aec76
KA
2393 if (ret) {
2394 printk(KERN_ERR
2395 "Domain context map for %s failed",
2396 pci_name(pdev));
4fe05bbc 2397 return NULL;
f76aec76 2398 }
ba395927
KA
2399 }
2400
f76aec76
KA
2401 return domain;
2402}
2403
2c2e2c38
FY
2404static int iommu_dummy(struct pci_dev *pdev)
2405{
2406 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2407}
2408
2409/* Check if the pdev needs to go through non-identity map and unmap process.*/
2410static int iommu_no_mapping(struct pci_dev *pdev)
2411{
2412 int found;
2413
2414 if (!iommu_identity_mapping)
2415 return iommu_dummy(pdev);
2416
2417 found = identity_mapping(pdev);
2418 if (found) {
2419 if (pdev->dma_mask > DMA_BIT_MASK(32))
2420 return 1;
2421 else {
2422 /*
2423 * 32 bit DMA is removed from si_domain and fall back
2424 * to non-identity mapping.
2425 */
2426 domain_remove_one_dev_info(si_domain, pdev);
2427 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2428 pci_name(pdev));
2429 return 0;
2430 }
2431 } else {
2432 /*
2433 * In case of a detached 64 bit DMA device from vm, the device
2434 * is put into si_domain for identity mapping.
2435 */
2436 if (pdev->dma_mask > DMA_BIT_MASK(32)) {
2437 int ret;
2438 ret = domain_add_dev_info(si_domain, pdev);
2439 if (!ret) {
2440 printk(KERN_INFO "64bit %s uses identity mapping\n",
2441 pci_name(pdev));
2442 return 1;
2443 }
2444 }
2445 }
2446
2447 return iommu_dummy(pdev);
2448}
2449
bb9e6d65
FT
2450static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2451 size_t size, int dir, u64 dma_mask)
f76aec76
KA
2452{
2453 struct pci_dev *pdev = to_pci_dev(hwdev);
f76aec76 2454 struct dmar_domain *domain;
5b6985ce 2455 phys_addr_t start_paddr;
f76aec76
KA
2456 struct iova *iova;
2457 int prot = 0;
6865f0d1 2458 int ret;
8c11e798 2459 struct intel_iommu *iommu;
f76aec76
KA
2460
2461 BUG_ON(dir == DMA_NONE);
2c2e2c38
FY
2462
2463 if (iommu_no_mapping(pdev))
6865f0d1 2464 return paddr;
f76aec76
KA
2465
2466 domain = get_valid_domain_for_dev(pdev);
2467 if (!domain)
2468 return 0;
2469
8c11e798 2470 iommu = domain_get_iommu(domain);
6865f0d1 2471 size = aligned_size((u64)paddr, size);
f76aec76 2472
bb9e6d65 2473 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
f76aec76
KA
2474 if (!iova)
2475 goto error;
2476
5b6985ce 2477 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
f76aec76 2478
ba395927
KA
2479 /*
2480 * Check if DMAR supports zero-length reads on write only
2481 * mappings..
2482 */
2483 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 2484 !cap_zlr(iommu->cap))
ba395927
KA
2485 prot |= DMA_PTE_READ;
2486 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2487 prot |= DMA_PTE_WRITE;
2488 /*
6865f0d1 2489 * paddr - (paddr + size) might be partial page, we should map the whole
ba395927 2490 * page. Note: if two part of one page are separately mapped, we
6865f0d1 2491 * might have two guest_addr mapping to the same host paddr, but this
ba395927
KA
2492 * is not a big problem
2493 */
6865f0d1 2494 ret = domain_page_mapping(domain, start_paddr,
fd18de50
DW
2495 ((u64)paddr) & PHYSICAL_PAGE_MASK,
2496 size, prot);
ba395927
KA
2497 if (ret)
2498 goto error;
2499
1f0ef2aa
DW
2500 /* it's a non-present to present mapping. Only flush if caching mode */
2501 if (cap_caching_mode(iommu->cap))
2502 iommu_flush_iotlb_psi(iommu, 0, start_paddr,
2503 size >> VTD_PAGE_SHIFT);
2504 else
8c11e798 2505 iommu_flush_write_buffer(iommu);
f76aec76 2506
5b6985ce 2507 return start_paddr + ((u64)paddr & (~PAGE_MASK));
ba395927 2508
ba395927 2509error:
f76aec76
KA
2510 if (iova)
2511 __free_iova(&domain->iovad, iova);
4cf2e75d 2512 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
5b6985ce 2513 pci_name(pdev), size, (unsigned long long)paddr, dir);
ba395927
KA
2514 return 0;
2515}
2516
ffbbef5c
FT
2517static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2518 unsigned long offset, size_t size,
2519 enum dma_data_direction dir,
2520 struct dma_attrs *attrs)
bb9e6d65 2521{
ffbbef5c
FT
2522 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2523 dir, to_pci_dev(dev)->dma_mask);
bb9e6d65
FT
2524}
2525
5e0d2a6f 2526static void flush_unmaps(void)
2527{
80b20dd8 2528 int i, j;
5e0d2a6f 2529
5e0d2a6f 2530 timer_on = 0;
2531
2532 /* just flush them all */
2533 for (i = 0; i < g_num_of_iommus; i++) {
a2bb8459
WH
2534 struct intel_iommu *iommu = g_iommus[i];
2535 if (!iommu)
2536 continue;
c42d9f32 2537
9dd2fe89
YZ
2538 if (!deferred_flush[i].next)
2539 continue;
2540
2541 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
93a23a72 2542 DMA_TLB_GLOBAL_FLUSH);
9dd2fe89 2543 for (j = 0; j < deferred_flush[i].next; j++) {
93a23a72
YZ
2544 unsigned long mask;
2545 struct iova *iova = deferred_flush[i].iova[j];
2546
2547 mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2548 mask = ilog2(mask >> VTD_PAGE_SHIFT);
2549 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2550 iova->pfn_lo << PAGE_SHIFT, mask);
2551 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
80b20dd8 2552 }
9dd2fe89 2553 deferred_flush[i].next = 0;
5e0d2a6f 2554 }
2555
5e0d2a6f 2556 list_size = 0;
5e0d2a6f 2557}
2558
2559static void flush_unmaps_timeout(unsigned long data)
2560{
80b20dd8 2561 unsigned long flags;
2562
2563 spin_lock_irqsave(&async_umap_flush_lock, flags);
5e0d2a6f 2564 flush_unmaps();
80b20dd8 2565 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
5e0d2a6f 2566}
2567
2568static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2569{
2570 unsigned long flags;
80b20dd8 2571 int next, iommu_id;
8c11e798 2572 struct intel_iommu *iommu;
5e0d2a6f 2573
2574 spin_lock_irqsave(&async_umap_flush_lock, flags);
80b20dd8 2575 if (list_size == HIGH_WATER_MARK)
2576 flush_unmaps();
2577
8c11e798
WH
2578 iommu = domain_get_iommu(dom);
2579 iommu_id = iommu->seq_id;
c42d9f32 2580
80b20dd8 2581 next = deferred_flush[iommu_id].next;
2582 deferred_flush[iommu_id].domain[next] = dom;
2583 deferred_flush[iommu_id].iova[next] = iova;
2584 deferred_flush[iommu_id].next++;
5e0d2a6f 2585
2586 if (!timer_on) {
2587 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2588 timer_on = 1;
2589 }
2590 list_size++;
2591 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2592}
2593
ffbbef5c
FT
2594static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2595 size_t size, enum dma_data_direction dir,
2596 struct dma_attrs *attrs)
ba395927 2597{
ba395927 2598 struct pci_dev *pdev = to_pci_dev(dev);
f76aec76
KA
2599 struct dmar_domain *domain;
2600 unsigned long start_addr;
ba395927 2601 struct iova *iova;
8c11e798 2602 struct intel_iommu *iommu;
ba395927 2603
2c2e2c38 2604 if (iommu_no_mapping(pdev))
f76aec76 2605 return;
2c2e2c38 2606
ba395927
KA
2607 domain = find_domain(pdev);
2608 BUG_ON(!domain);
2609
8c11e798
WH
2610 iommu = domain_get_iommu(domain);
2611
ba395927 2612 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
f76aec76 2613 if (!iova)
ba395927 2614 return;
ba395927 2615
5b6985ce 2616 start_addr = iova->pfn_lo << PAGE_SHIFT;
f76aec76 2617 size = aligned_size((u64)dev_addr, size);
ba395927 2618
4cf2e75d 2619 pr_debug("Device %s unmapping: %zx@%llx\n",
5b6985ce 2620 pci_name(pdev), size, (unsigned long long)start_addr);
ba395927 2621
f76aec76 2622 /* clear the whole page */
595badf5
DW
2623 dma_pte_clear_range(domain, start_addr >> VTD_PAGE_SHIFT,
2624 (start_addr + size - 1) >> VTD_PAGE_SHIFT);
f76aec76
KA
2625 /* free page tables */
2626 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
5e0d2a6f 2627 if (intel_iommu_strict) {
1f0ef2aa
DW
2628 iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2629 size >> VTD_PAGE_SHIFT);
5e0d2a6f 2630 /* free iova */
2631 __free_iova(&domain->iovad, iova);
2632 } else {
2633 add_unmap(domain, iova);
2634 /*
2635 * queue up the release of the unmap to save the 1/6th of the
2636 * cpu used up by the iotlb flush operation...
2637 */
5e0d2a6f 2638 }
ba395927
KA
2639}
2640
d7ab5c46
FT
2641static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2642 int dir)
ffbbef5c
FT
2643{
2644 intel_unmap_page(dev, dev_addr, size, dir, NULL);
2645}
2646
d7ab5c46
FT
2647static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2648 dma_addr_t *dma_handle, gfp_t flags)
ba395927
KA
2649{
2650 void *vaddr;
2651 int order;
2652
5b6985ce 2653 size = PAGE_ALIGN(size);
ba395927
KA
2654 order = get_order(size);
2655 flags &= ~(GFP_DMA | GFP_DMA32);
2656
2657 vaddr = (void *)__get_free_pages(flags, order);
2658 if (!vaddr)
2659 return NULL;
2660 memset(vaddr, 0, size);
2661
bb9e6d65
FT
2662 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2663 DMA_BIDIRECTIONAL,
2664 hwdev->coherent_dma_mask);
ba395927
KA
2665 if (*dma_handle)
2666 return vaddr;
2667 free_pages((unsigned long)vaddr, order);
2668 return NULL;
2669}
2670
d7ab5c46
FT
2671static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2672 dma_addr_t dma_handle)
ba395927
KA
2673{
2674 int order;
2675
5b6985ce 2676 size = PAGE_ALIGN(size);
ba395927
KA
2677 order = get_order(size);
2678
2679 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2680 free_pages((unsigned long)vaddr, order);
2681}
2682
d7ab5c46
FT
2683static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2684 int nelems, enum dma_data_direction dir,
2685 struct dma_attrs *attrs)
ba395927
KA
2686{
2687 int i;
2688 struct pci_dev *pdev = to_pci_dev(hwdev);
2689 struct dmar_domain *domain;
f76aec76
KA
2690 unsigned long start_addr;
2691 struct iova *iova;
2692 size_t size = 0;
4cf2e75d 2693 phys_addr_t addr;
c03ab37c 2694 struct scatterlist *sg;
8c11e798 2695 struct intel_iommu *iommu;
ba395927 2696
2c2e2c38 2697 if (iommu_no_mapping(pdev))
ba395927
KA
2698 return;
2699
2700 domain = find_domain(pdev);
8c11e798
WH
2701 BUG_ON(!domain);
2702
2703 iommu = domain_get_iommu(domain);
ba395927 2704
c03ab37c 2705 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
f76aec76
KA
2706 if (!iova)
2707 return;
c03ab37c 2708 for_each_sg(sglist, sg, nelems, i) {
4cf2e75d 2709 addr = page_to_phys(sg_page(sg)) + sg->offset;
f76aec76
KA
2710 size += aligned_size((u64)addr, sg->length);
2711 }
2712
5b6985ce 2713 start_addr = iova->pfn_lo << PAGE_SHIFT;
f76aec76
KA
2714
2715 /* clear the whole page */
595badf5
DW
2716 dma_pte_clear_range(domain, start_addr >> VTD_PAGE_SHIFT,
2717 (start_addr + size - 1) >> VTD_PAGE_SHIFT);
f76aec76
KA
2718 /* free page tables */
2719 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2720
1f0ef2aa
DW
2721 iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2722 size >> VTD_PAGE_SHIFT);
f76aec76
KA
2723
2724 /* free iova */
2725 __free_iova(&domain->iovad, iova);
ba395927
KA
2726}
2727
ba395927 2728static int intel_nontranslate_map_sg(struct device *hddev,
c03ab37c 2729 struct scatterlist *sglist, int nelems, int dir)
ba395927
KA
2730{
2731 int i;
c03ab37c 2732 struct scatterlist *sg;
ba395927 2733
c03ab37c 2734 for_each_sg(sglist, sg, nelems, i) {
12d4d40e 2735 BUG_ON(!sg_page(sg));
4cf2e75d 2736 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
c03ab37c 2737 sg->dma_length = sg->length;
ba395927
KA
2738 }
2739 return nelems;
2740}
2741
d7ab5c46
FT
2742static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2743 enum dma_data_direction dir, struct dma_attrs *attrs)
ba395927 2744{
4cf2e75d 2745 phys_addr_t addr;
ba395927 2746 int i;
ba395927
KA
2747 struct pci_dev *pdev = to_pci_dev(hwdev);
2748 struct dmar_domain *domain;
f76aec76
KA
2749 size_t size = 0;
2750 int prot = 0;
2751 size_t offset = 0;
2752 struct iova *iova = NULL;
2753 int ret;
c03ab37c 2754 struct scatterlist *sg;
f76aec76 2755 unsigned long start_addr;
8c11e798 2756 struct intel_iommu *iommu;
ba395927
KA
2757
2758 BUG_ON(dir == DMA_NONE);
2c2e2c38 2759 if (iommu_no_mapping(pdev))
c03ab37c 2760 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
ba395927 2761
f76aec76
KA
2762 domain = get_valid_domain_for_dev(pdev);
2763 if (!domain)
2764 return 0;
2765
8c11e798
WH
2766 iommu = domain_get_iommu(domain);
2767
c03ab37c 2768 for_each_sg(sglist, sg, nelems, i) {
4cf2e75d 2769 addr = page_to_phys(sg_page(sg)) + sg->offset;
f76aec76
KA
2770 size += aligned_size((u64)addr, sg->length);
2771 }
2772
bb9e6d65 2773 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
f76aec76 2774 if (!iova) {
c03ab37c 2775 sglist->dma_length = 0;
f76aec76
KA
2776 return 0;
2777 }
2778
2779 /*
2780 * Check if DMAR supports zero-length reads on write only
2781 * mappings..
2782 */
2783 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 2784 !cap_zlr(iommu->cap))
f76aec76
KA
2785 prot |= DMA_PTE_READ;
2786 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2787 prot |= DMA_PTE_WRITE;
2788
5b6985ce 2789 start_addr = iova->pfn_lo << PAGE_SHIFT;
f76aec76 2790 offset = 0;
c03ab37c 2791 for_each_sg(sglist, sg, nelems, i) {
4cf2e75d 2792 addr = page_to_phys(sg_page(sg)) + sg->offset;
f76aec76
KA
2793 size = aligned_size((u64)addr, sg->length);
2794 ret = domain_page_mapping(domain, start_addr + offset,
fd18de50
DW
2795 ((u64)addr) & PHYSICAL_PAGE_MASK,
2796 size, prot);
f76aec76
KA
2797 if (ret) {
2798 /* clear the page */
595badf5
DW
2799 dma_pte_clear_range(domain,
2800 start_addr >> VTD_PAGE_SHIFT,
2801 (start_addr + offset - 1) >> VTD_PAGE_SHIFT);
f76aec76
KA
2802 /* free page tables */
2803 dma_pte_free_pagetable(domain, start_addr,
2804 start_addr + offset);
2805 /* free iova */
2806 __free_iova(&domain->iovad, iova);
ba395927
KA
2807 return 0;
2808 }
f76aec76 2809 sg->dma_address = start_addr + offset +
5b6985ce 2810 ((u64)addr & (~PAGE_MASK));
ba395927 2811 sg->dma_length = sg->length;
f76aec76 2812 offset += size;
ba395927
KA
2813 }
2814
1f0ef2aa
DW
2815 /* it's a non-present to present mapping. Only flush if caching mode */
2816 if (cap_caching_mode(iommu->cap))
2817 iommu_flush_iotlb_psi(iommu, 0, start_addr,
2818 offset >> VTD_PAGE_SHIFT);
2819 else
8c11e798 2820 iommu_flush_write_buffer(iommu);
1f0ef2aa 2821
ba395927
KA
2822 return nelems;
2823}
2824
dfb805e8
FT
2825static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2826{
2827 return !dma_addr;
2828}
2829
160c1d8e 2830struct dma_map_ops intel_dma_ops = {
ba395927
KA
2831 .alloc_coherent = intel_alloc_coherent,
2832 .free_coherent = intel_free_coherent,
ba395927
KA
2833 .map_sg = intel_map_sg,
2834 .unmap_sg = intel_unmap_sg,
ffbbef5c
FT
2835 .map_page = intel_map_page,
2836 .unmap_page = intel_unmap_page,
dfb805e8 2837 .mapping_error = intel_mapping_error,
ba395927
KA
2838};
2839
2840static inline int iommu_domain_cache_init(void)
2841{
2842 int ret = 0;
2843
2844 iommu_domain_cache = kmem_cache_create("iommu_domain",
2845 sizeof(struct dmar_domain),
2846 0,
2847 SLAB_HWCACHE_ALIGN,
2848
2849 NULL);
2850 if (!iommu_domain_cache) {
2851 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2852 ret = -ENOMEM;
2853 }
2854
2855 return ret;
2856}
2857
2858static inline int iommu_devinfo_cache_init(void)
2859{
2860 int ret = 0;
2861
2862 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2863 sizeof(struct device_domain_info),
2864 0,
2865 SLAB_HWCACHE_ALIGN,
ba395927
KA
2866 NULL);
2867 if (!iommu_devinfo_cache) {
2868 printk(KERN_ERR "Couldn't create devinfo cache\n");
2869 ret = -ENOMEM;
2870 }
2871
2872 return ret;
2873}
2874
2875static inline int iommu_iova_cache_init(void)
2876{
2877 int ret = 0;
2878
2879 iommu_iova_cache = kmem_cache_create("iommu_iova",
2880 sizeof(struct iova),
2881 0,
2882 SLAB_HWCACHE_ALIGN,
ba395927
KA
2883 NULL);
2884 if (!iommu_iova_cache) {
2885 printk(KERN_ERR "Couldn't create iova cache\n");
2886 ret = -ENOMEM;
2887 }
2888
2889 return ret;
2890}
2891
2892static int __init iommu_init_mempool(void)
2893{
2894 int ret;
2895 ret = iommu_iova_cache_init();
2896 if (ret)
2897 return ret;
2898
2899 ret = iommu_domain_cache_init();
2900 if (ret)
2901 goto domain_error;
2902
2903 ret = iommu_devinfo_cache_init();
2904 if (!ret)
2905 return ret;
2906
2907 kmem_cache_destroy(iommu_domain_cache);
2908domain_error:
2909 kmem_cache_destroy(iommu_iova_cache);
2910
2911 return -ENOMEM;
2912}
2913
2914static void __init iommu_exit_mempool(void)
2915{
2916 kmem_cache_destroy(iommu_devinfo_cache);
2917 kmem_cache_destroy(iommu_domain_cache);
2918 kmem_cache_destroy(iommu_iova_cache);
2919
2920}
2921
ba395927
KA
2922static void __init init_no_remapping_devices(void)
2923{
2924 struct dmar_drhd_unit *drhd;
2925
2926 for_each_drhd_unit(drhd) {
2927 if (!drhd->include_all) {
2928 int i;
2929 for (i = 0; i < drhd->devices_cnt; i++)
2930 if (drhd->devices[i] != NULL)
2931 break;
2932 /* ignore DMAR unit if no pci devices exist */
2933 if (i == drhd->devices_cnt)
2934 drhd->ignored = 1;
2935 }
2936 }
2937
2938 if (dmar_map_gfx)
2939 return;
2940
2941 for_each_drhd_unit(drhd) {
2942 int i;
2943 if (drhd->ignored || drhd->include_all)
2944 continue;
2945
2946 for (i = 0; i < drhd->devices_cnt; i++)
2947 if (drhd->devices[i] &&
2948 !IS_GFX_DEVICE(drhd->devices[i]))
2949 break;
2950
2951 if (i < drhd->devices_cnt)
2952 continue;
2953
2954 /* bypass IOMMU if it is just for gfx devices */
2955 drhd->ignored = 1;
2956 for (i = 0; i < drhd->devices_cnt; i++) {
2957 if (!drhd->devices[i])
2958 continue;
358dd8ac 2959 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
ba395927
KA
2960 }
2961 }
2962}
2963
f59c7b69
FY
2964#ifdef CONFIG_SUSPEND
2965static int init_iommu_hw(void)
2966{
2967 struct dmar_drhd_unit *drhd;
2968 struct intel_iommu *iommu = NULL;
2969
2970 for_each_active_iommu(iommu, drhd)
2971 if (iommu->qi)
2972 dmar_reenable_qi(iommu);
2973
2974 for_each_active_iommu(iommu, drhd) {
2975 iommu_flush_write_buffer(iommu);
2976
2977 iommu_set_root_entry(iommu);
2978
2979 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 2980 DMA_CCMD_GLOBAL_INVL);
f59c7b69 2981 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1f0ef2aa 2982 DMA_TLB_GLOBAL_FLUSH);
f59c7b69
FY
2983 iommu_disable_protect_mem_regions(iommu);
2984 iommu_enable_translation(iommu);
2985 }
2986
2987 return 0;
2988}
2989
2990static void iommu_flush_all(void)
2991{
2992 struct dmar_drhd_unit *drhd;
2993 struct intel_iommu *iommu;
2994
2995 for_each_active_iommu(iommu, drhd) {
2996 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 2997 DMA_CCMD_GLOBAL_INVL);
f59c7b69 2998 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1f0ef2aa 2999 DMA_TLB_GLOBAL_FLUSH);
f59c7b69
FY
3000 }
3001}
3002
3003static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3004{
3005 struct dmar_drhd_unit *drhd;
3006 struct intel_iommu *iommu = NULL;
3007 unsigned long flag;
3008
3009 for_each_active_iommu(iommu, drhd) {
3010 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3011 GFP_ATOMIC);
3012 if (!iommu->iommu_state)
3013 goto nomem;
3014 }
3015
3016 iommu_flush_all();
3017
3018 for_each_active_iommu(iommu, drhd) {
3019 iommu_disable_translation(iommu);
3020
3021 spin_lock_irqsave(&iommu->register_lock, flag);
3022
3023 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3024 readl(iommu->reg + DMAR_FECTL_REG);
3025 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3026 readl(iommu->reg + DMAR_FEDATA_REG);
3027 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3028 readl(iommu->reg + DMAR_FEADDR_REG);
3029 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3030 readl(iommu->reg + DMAR_FEUADDR_REG);
3031
3032 spin_unlock_irqrestore(&iommu->register_lock, flag);
3033 }
3034 return 0;
3035
3036nomem:
3037 for_each_active_iommu(iommu, drhd)
3038 kfree(iommu->iommu_state);
3039
3040 return -ENOMEM;
3041}
3042
3043static int iommu_resume(struct sys_device *dev)
3044{
3045 struct dmar_drhd_unit *drhd;
3046 struct intel_iommu *iommu = NULL;
3047 unsigned long flag;
3048
3049 if (init_iommu_hw()) {
3050 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3051 return -EIO;
3052 }
3053
3054 for_each_active_iommu(iommu, drhd) {
3055
3056 spin_lock_irqsave(&iommu->register_lock, flag);
3057
3058 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3059 iommu->reg + DMAR_FECTL_REG);
3060 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3061 iommu->reg + DMAR_FEDATA_REG);
3062 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3063 iommu->reg + DMAR_FEADDR_REG);
3064 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3065 iommu->reg + DMAR_FEUADDR_REG);
3066
3067 spin_unlock_irqrestore(&iommu->register_lock, flag);
3068 }
3069
3070 for_each_active_iommu(iommu, drhd)
3071 kfree(iommu->iommu_state);
3072
3073 return 0;
3074}
3075
3076static struct sysdev_class iommu_sysclass = {
3077 .name = "iommu",
3078 .resume = iommu_resume,
3079 .suspend = iommu_suspend,
3080};
3081
3082static struct sys_device device_iommu = {
3083 .cls = &iommu_sysclass,
3084};
3085
3086static int __init init_iommu_sysfs(void)
3087{
3088 int error;
3089
3090 error = sysdev_class_register(&iommu_sysclass);
3091 if (error)
3092 return error;
3093
3094 error = sysdev_register(&device_iommu);
3095 if (error)
3096 sysdev_class_unregister(&iommu_sysclass);
3097
3098 return error;
3099}
3100
3101#else
3102static int __init init_iommu_sysfs(void)
3103{
3104 return 0;
3105}
3106#endif /* CONFIG_PM */
3107
ba395927
KA
3108int __init intel_iommu_init(void)
3109{
3110 int ret = 0;
3111
ba395927
KA
3112 if (dmar_table_init())
3113 return -ENODEV;
3114
1886e8a9
SS
3115 if (dmar_dev_scope_init())
3116 return -ENODEV;
3117
2ae21010
SS
3118 /*
3119 * Check the need for DMA-remapping initialization now.
3120 * Above initialization will also be used by Interrupt-remapping.
3121 */
4ed0d3e6 3122 if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
2ae21010
SS
3123 return -ENODEV;
3124
ba395927
KA
3125 iommu_init_mempool();
3126 dmar_init_reserved_ranges();
3127
3128 init_no_remapping_devices();
3129
3130 ret = init_dmars();
3131 if (ret) {
3132 printk(KERN_ERR "IOMMU: dmar init failed\n");
3133 put_iova_domain(&reserved_iova_list);
3134 iommu_exit_mempool();
3135 return ret;
3136 }
3137 printk(KERN_INFO
3138 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3139
5e0d2a6f 3140 init_timer(&unmap_timer);
ba395927 3141 force_iommu = 1;
4ed0d3e6
FY
3142
3143 if (!iommu_pass_through) {
3144 printk(KERN_INFO
3145 "Multi-level page-table translation for DMAR.\n");
3146 dma_ops = &intel_dma_ops;
3147 } else
3148 printk(KERN_INFO
3149 "DMAR: Pass through translation for DMAR.\n");
3150
f59c7b69 3151 init_iommu_sysfs();
a8bcbb0d
JR
3152
3153 register_iommu(&intel_iommu_ops);
3154
ba395927
KA
3155 return 0;
3156}
e820482c 3157
3199aa6b
HW
3158static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3159 struct pci_dev *pdev)
3160{
3161 struct pci_dev *tmp, *parent;
3162
3163 if (!iommu || !pdev)
3164 return;
3165
3166 /* dependent device detach */
3167 tmp = pci_find_upstream_pcie_bridge(pdev);
3168 /* Secondary interface's bus number and devfn 0 */
3169 if (tmp) {
3170 parent = pdev->bus->self;
3171 while (parent != tmp) {
3172 iommu_detach_dev(iommu, parent->bus->number,
276dbf99 3173 parent->devfn);
3199aa6b
HW
3174 parent = parent->bus->self;
3175 }
3176 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3177 iommu_detach_dev(iommu,
3178 tmp->subordinate->number, 0);
3179 else /* this is a legacy PCI bridge */
276dbf99
DW
3180 iommu_detach_dev(iommu, tmp->bus->number,
3181 tmp->devfn);
3199aa6b
HW
3182 }
3183}
3184
2c2e2c38 3185static void domain_remove_one_dev_info(struct dmar_domain *domain,
c7151a8d
WH
3186 struct pci_dev *pdev)
3187{
3188 struct device_domain_info *info;
3189 struct intel_iommu *iommu;
3190 unsigned long flags;
3191 int found = 0;
3192 struct list_head *entry, *tmp;
3193
276dbf99
DW
3194 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3195 pdev->devfn);
c7151a8d
WH
3196 if (!iommu)
3197 return;
3198
3199 spin_lock_irqsave(&device_domain_lock, flags);
3200 list_for_each_safe(entry, tmp, &domain->devices) {
3201 info = list_entry(entry, struct device_domain_info, link);
276dbf99 3202 /* No need to compare PCI domain; it has to be the same */
c7151a8d
WH
3203 if (info->bus == pdev->bus->number &&
3204 info->devfn == pdev->devfn) {
3205 list_del(&info->link);
3206 list_del(&info->global);
3207 if (info->dev)
3208 info->dev->dev.archdata.iommu = NULL;
3209 spin_unlock_irqrestore(&device_domain_lock, flags);
3210
93a23a72 3211 iommu_disable_dev_iotlb(info);
c7151a8d 3212 iommu_detach_dev(iommu, info->bus, info->devfn);
3199aa6b 3213 iommu_detach_dependent_devices(iommu, pdev);
c7151a8d
WH
3214 free_devinfo_mem(info);
3215
3216 spin_lock_irqsave(&device_domain_lock, flags);
3217
3218 if (found)
3219 break;
3220 else
3221 continue;
3222 }
3223
3224 /* if there is no other devices under the same iommu
3225 * owned by this domain, clear this iommu in iommu_bmp
3226 * update iommu count and coherency
3227 */
276dbf99
DW
3228 if (iommu == device_to_iommu(info->segment, info->bus,
3229 info->devfn))
c7151a8d
WH
3230 found = 1;
3231 }
3232
3233 if (found == 0) {
3234 unsigned long tmp_flags;
3235 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3236 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3237 domain->iommu_count--;
58c610bd 3238 domain_update_iommu_cap(domain);
c7151a8d
WH
3239 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3240 }
3241
3242 spin_unlock_irqrestore(&device_domain_lock, flags);
3243}
3244
3245static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3246{
3247 struct device_domain_info *info;
3248 struct intel_iommu *iommu;
3249 unsigned long flags1, flags2;
3250
3251 spin_lock_irqsave(&device_domain_lock, flags1);
3252 while (!list_empty(&domain->devices)) {
3253 info = list_entry(domain->devices.next,
3254 struct device_domain_info, link);
3255 list_del(&info->link);
3256 list_del(&info->global);
3257 if (info->dev)
3258 info->dev->dev.archdata.iommu = NULL;
3259
3260 spin_unlock_irqrestore(&device_domain_lock, flags1);
3261
93a23a72 3262 iommu_disable_dev_iotlb(info);
276dbf99 3263 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
c7151a8d 3264 iommu_detach_dev(iommu, info->bus, info->devfn);
3199aa6b 3265 iommu_detach_dependent_devices(iommu, info->dev);
c7151a8d
WH
3266
3267 /* clear this iommu in iommu_bmp, update iommu count
58c610bd 3268 * and capabilities
c7151a8d
WH
3269 */
3270 spin_lock_irqsave(&domain->iommu_lock, flags2);
3271 if (test_and_clear_bit(iommu->seq_id,
3272 &domain->iommu_bmp)) {
3273 domain->iommu_count--;
58c610bd 3274 domain_update_iommu_cap(domain);
c7151a8d
WH
3275 }
3276 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3277
3278 free_devinfo_mem(info);
3279 spin_lock_irqsave(&device_domain_lock, flags1);
3280 }
3281 spin_unlock_irqrestore(&device_domain_lock, flags1);
3282}
3283
5e98c4b1
WH
3284/* domain id for virtual machine, it won't be set in context */
3285static unsigned long vm_domid;
3286
fe40f1e0
WH
3287static int vm_domain_min_agaw(struct dmar_domain *domain)
3288{
3289 int i;
3290 int min_agaw = domain->agaw;
3291
3292 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3293 for (; i < g_num_of_iommus; ) {
3294 if (min_agaw > g_iommus[i]->agaw)
3295 min_agaw = g_iommus[i]->agaw;
3296
3297 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3298 }
3299
3300 return min_agaw;
3301}
3302
5e98c4b1
WH
3303static struct dmar_domain *iommu_alloc_vm_domain(void)
3304{
3305 struct dmar_domain *domain;
3306
3307 domain = alloc_domain_mem();
3308 if (!domain)
3309 return NULL;
3310
3311 domain->id = vm_domid++;
3312 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3313 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3314
3315 return domain;
3316}
3317
2c2e2c38 3318static int md_domain_init(struct dmar_domain *domain, int guest_width)
5e98c4b1
WH
3319{
3320 int adjust_width;
3321
3322 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3323 spin_lock_init(&domain->mapping_lock);
3324 spin_lock_init(&domain->iommu_lock);
3325
3326 domain_reserve_special_ranges(domain);
3327
3328 /* calculate AGAW */
3329 domain->gaw = guest_width;
3330 adjust_width = guestwidth_to_adjustwidth(guest_width);
3331 domain->agaw = width_to_agaw(adjust_width);
3332
3333 INIT_LIST_HEAD(&domain->devices);
3334
3335 domain->iommu_count = 0;
3336 domain->iommu_coherency = 0;
fe40f1e0 3337 domain->max_addr = 0;
5e98c4b1
WH
3338
3339 /* always allocate the top pgd */
3340 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3341 if (!domain->pgd)
3342 return -ENOMEM;
3343 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3344 return 0;
3345}
3346
3347static void iommu_free_vm_domain(struct dmar_domain *domain)
3348{
3349 unsigned long flags;
3350 struct dmar_drhd_unit *drhd;
3351 struct intel_iommu *iommu;
3352 unsigned long i;
3353 unsigned long ndomains;
3354
3355 for_each_drhd_unit(drhd) {
3356 if (drhd->ignored)
3357 continue;
3358 iommu = drhd->iommu;
3359
3360 ndomains = cap_ndoms(iommu->cap);
3361 i = find_first_bit(iommu->domain_ids, ndomains);
3362 for (; i < ndomains; ) {
3363 if (iommu->domains[i] == domain) {
3364 spin_lock_irqsave(&iommu->lock, flags);
3365 clear_bit(i, iommu->domain_ids);
3366 iommu->domains[i] = NULL;
3367 spin_unlock_irqrestore(&iommu->lock, flags);
3368 break;
3369 }
3370 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3371 }
3372 }
3373}
3374
3375static void vm_domain_exit(struct dmar_domain *domain)
3376{
3377 u64 end;
3378
3379 /* Domain 0 is reserved, so dont process it */
3380 if (!domain)
3381 return;
3382
3383 vm_domain_remove_all_dev_info(domain);
3384 /* destroy iovas */
3385 put_iova_domain(&domain->iovad);
3386 end = DOMAIN_MAX_ADDR(domain->gaw);
3387 end = end & (~VTD_PAGE_MASK);
3388
3389 /* clear ptes */
595badf5 3390 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
5e98c4b1
WH
3391
3392 /* free page tables */
3393 dma_pte_free_pagetable(domain, 0, end);
3394
3395 iommu_free_vm_domain(domain);
3396 free_domain_mem(domain);
3397}
3398
5d450806 3399static int intel_iommu_domain_init(struct iommu_domain *domain)
38717946 3400{
5d450806 3401 struct dmar_domain *dmar_domain;
38717946 3402
5d450806
JR
3403 dmar_domain = iommu_alloc_vm_domain();
3404 if (!dmar_domain) {
38717946 3405 printk(KERN_ERR
5d450806
JR
3406 "intel_iommu_domain_init: dmar_domain == NULL\n");
3407 return -ENOMEM;
38717946 3408 }
2c2e2c38 3409 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
38717946 3410 printk(KERN_ERR
5d450806
JR
3411 "intel_iommu_domain_init() failed\n");
3412 vm_domain_exit(dmar_domain);
3413 return -ENOMEM;
38717946 3414 }
5d450806 3415 domain->priv = dmar_domain;
faa3d6f5 3416
5d450806 3417 return 0;
38717946 3418}
38717946 3419
5d450806 3420static void intel_iommu_domain_destroy(struct iommu_domain *domain)
38717946 3421{
5d450806
JR
3422 struct dmar_domain *dmar_domain = domain->priv;
3423
3424 domain->priv = NULL;
3425 vm_domain_exit(dmar_domain);
38717946 3426}
38717946 3427
4c5478c9
JR
3428static int intel_iommu_attach_device(struct iommu_domain *domain,
3429 struct device *dev)
38717946 3430{
4c5478c9
JR
3431 struct dmar_domain *dmar_domain = domain->priv;
3432 struct pci_dev *pdev = to_pci_dev(dev);
fe40f1e0
WH
3433 struct intel_iommu *iommu;
3434 int addr_width;
3435 u64 end;
faa3d6f5
WH
3436 int ret;
3437
3438 /* normally pdev is not mapped */
3439 if (unlikely(domain_context_mapped(pdev))) {
3440 struct dmar_domain *old_domain;
3441
3442 old_domain = find_domain(pdev);
3443 if (old_domain) {
2c2e2c38
FY
3444 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3445 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3446 domain_remove_one_dev_info(old_domain, pdev);
faa3d6f5
WH
3447 else
3448 domain_remove_dev_info(old_domain);
3449 }
3450 }
3451
276dbf99
DW
3452 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3453 pdev->devfn);
fe40f1e0
WH
3454 if (!iommu)
3455 return -ENODEV;
3456
3457 /* check if this iommu agaw is sufficient for max mapped address */
3458 addr_width = agaw_to_width(iommu->agaw);
3459 end = DOMAIN_MAX_ADDR(addr_width);
3460 end = end & VTD_PAGE_MASK;
4c5478c9 3461 if (end < dmar_domain->max_addr) {
fe40f1e0
WH
3462 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3463 "sufficient for the mapped address (%llx)\n",
4c5478c9 3464 __func__, iommu->agaw, dmar_domain->max_addr);
fe40f1e0
WH
3465 return -EFAULT;
3466 }
3467
2c2e2c38 3468 ret = domain_add_dev_info(dmar_domain, pdev);
faa3d6f5
WH
3469 if (ret)
3470 return ret;
3471
93a23a72 3472 ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
faa3d6f5 3473 return ret;
38717946 3474}
38717946 3475
4c5478c9
JR
3476static void intel_iommu_detach_device(struct iommu_domain *domain,
3477 struct device *dev)
38717946 3478{
4c5478c9
JR
3479 struct dmar_domain *dmar_domain = domain->priv;
3480 struct pci_dev *pdev = to_pci_dev(dev);
3481
2c2e2c38 3482 domain_remove_one_dev_info(dmar_domain, pdev);
faa3d6f5 3483}
c7151a8d 3484
dde57a21
JR
3485static int intel_iommu_map_range(struct iommu_domain *domain,
3486 unsigned long iova, phys_addr_t hpa,
3487 size_t size, int iommu_prot)
faa3d6f5 3488{
dde57a21 3489 struct dmar_domain *dmar_domain = domain->priv;
fe40f1e0
WH
3490 u64 max_addr;
3491 int addr_width;
dde57a21 3492 int prot = 0;
faa3d6f5 3493 int ret;
fe40f1e0 3494
dde57a21
JR
3495 if (iommu_prot & IOMMU_READ)
3496 prot |= DMA_PTE_READ;
3497 if (iommu_prot & IOMMU_WRITE)
3498 prot |= DMA_PTE_WRITE;
9cf06697
SY
3499 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3500 prot |= DMA_PTE_SNP;
dde57a21 3501
fe40f1e0 3502 max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
dde57a21 3503 if (dmar_domain->max_addr < max_addr) {
fe40f1e0
WH
3504 int min_agaw;
3505 u64 end;
3506
3507 /* check if minimum agaw is sufficient for mapped address */
dde57a21 3508 min_agaw = vm_domain_min_agaw(dmar_domain);
fe40f1e0
WH
3509 addr_width = agaw_to_width(min_agaw);
3510 end = DOMAIN_MAX_ADDR(addr_width);
3511 end = end & VTD_PAGE_MASK;
3512 if (end < max_addr) {
3513 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3514 "sufficient for the mapped address (%llx)\n",
3515 __func__, min_agaw, max_addr);
3516 return -EFAULT;
3517 }
dde57a21 3518 dmar_domain->max_addr = max_addr;
fe40f1e0
WH
3519 }
3520
dde57a21 3521 ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
faa3d6f5 3522 return ret;
38717946 3523}
38717946 3524
dde57a21
JR
3525static void intel_iommu_unmap_range(struct iommu_domain *domain,
3526 unsigned long iova, size_t size)
38717946 3527{
dde57a21 3528 struct dmar_domain *dmar_domain = domain->priv;
faa3d6f5
WH
3529 dma_addr_t base;
3530
3531 /* The address might not be aligned */
3532 base = iova & VTD_PAGE_MASK;
3533 size = VTD_PAGE_ALIGN(size);
595badf5
DW
3534 dma_pte_clear_range(dmar_domain, base >> VTD_PAGE_SHIFT,
3535 (base + size - 1) >> VTD_PAGE_SHIFT);
fe40f1e0 3536
dde57a21
JR
3537 if (dmar_domain->max_addr == base + size)
3538 dmar_domain->max_addr = base;
38717946 3539}
38717946 3540
d14d6577
JR
3541static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3542 unsigned long iova)
38717946 3543{
d14d6577 3544 struct dmar_domain *dmar_domain = domain->priv;
38717946 3545 struct dma_pte *pte;
faa3d6f5 3546 u64 phys = 0;
38717946 3547
d14d6577 3548 pte = addr_to_dma_pte(dmar_domain, iova);
38717946 3549 if (pte)
faa3d6f5 3550 phys = dma_pte_addr(pte);
38717946 3551
faa3d6f5 3552 return phys;
38717946 3553}
a8bcbb0d 3554
dbb9fd86
SY
3555static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3556 unsigned long cap)
3557{
3558 struct dmar_domain *dmar_domain = domain->priv;
3559
3560 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3561 return dmar_domain->iommu_snooping;
3562
3563 return 0;
3564}
3565
a8bcbb0d
JR
3566static struct iommu_ops intel_iommu_ops = {
3567 .domain_init = intel_iommu_domain_init,
3568 .domain_destroy = intel_iommu_domain_destroy,
3569 .attach_dev = intel_iommu_attach_device,
3570 .detach_dev = intel_iommu_detach_device,
3571 .map = intel_iommu_map_range,
3572 .unmap = intel_iommu_unmap_range,
3573 .iova_to_phys = intel_iommu_iova_to_phys,
dbb9fd86 3574 .domain_has_cap = intel_iommu_domain_has_cap,
a8bcbb0d 3575};
9af88143
DW
3576
3577static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3578{
3579 /*
3580 * Mobile 4 Series Chipset neglects to set RWBF capability,
3581 * but needs it:
3582 */
3583 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3584 rwbf_quirk = 1;
3585}
3586
3587DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);