intel-iommu: Cope with broken HP DC7900 BIOS
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / pci / intel-iommu.c
CommitLineData
ba395927
KA
1/*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
98bcef56 17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
5b6985ce 21 * Author: Fenghua Yu <fenghua.yu@intel.com>
ba395927
KA
22 */
23
24#include <linux/init.h>
25#include <linux/bitmap.h>
5e0d2a6f 26#include <linux/debugfs.h>
ba395927
KA
27#include <linux/slab.h>
28#include <linux/irq.h>
29#include <linux/interrupt.h>
ba395927
KA
30#include <linux/spinlock.h>
31#include <linux/pci.h>
32#include <linux/dmar.h>
33#include <linux/dma-mapping.h>
34#include <linux/mempool.h>
5e0d2a6f 35#include <linux/timer.h>
38717946 36#include <linux/iova.h>
5d450806 37#include <linux/iommu.h>
38717946 38#include <linux/intel-iommu.h>
f59c7b69 39#include <linux/sysdev.h>
ba395927 40#include <asm/cacheflush.h>
46a7fa27 41#include <asm/iommu.h>
ba395927
KA
42#include "pci.h"
43
5b6985ce
FY
44#define ROOT_SIZE VTD_PAGE_SIZE
45#define CONTEXT_SIZE VTD_PAGE_SIZE
46
ba395927
KA
47#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
49
50#define IOAPIC_RANGE_START (0xfee00000)
51#define IOAPIC_RANGE_END (0xfeefffff)
52#define IOVA_START_ADDR (0x1000)
53
54#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
55
4ed0d3e6
FY
56#define MAX_AGAW_WIDTH 64
57
ba395927 58#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
595badf5 59#define DOMAIN_MAX_PFN(gaw) ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
ba395927 60
f27be03b 61#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
284901a9 62#define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
6a35528a 63#define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
5e0d2a6f 64
fd18de50 65
dd4e8319
DW
66/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
67 are never going to work. */
68static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
69{
70 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
71}
72
73static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
74{
75 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
76}
77static inline unsigned long page_to_dma_pfn(struct page *pg)
78{
79 return mm_to_dma_pfn(page_to_pfn(pg));
80}
81static inline unsigned long virt_to_dma_pfn(void *p)
82{
83 return page_to_dma_pfn(virt_to_page(p));
84}
85
d9630fe9
WH
86/* global iommu list, set NULL for ignored DMAR units */
87static struct intel_iommu **g_iommus;
88
9af88143
DW
89static int rwbf_quirk;
90
46b08e1a
MM
91/*
92 * 0: Present
93 * 1-11: Reserved
94 * 12-63: Context Ptr (12 - (haw-1))
95 * 64-127: Reserved
96 */
97struct root_entry {
98 u64 val;
99 u64 rsvd1;
100};
101#define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
102static inline bool root_present(struct root_entry *root)
103{
104 return (root->val & 1);
105}
106static inline void set_root_present(struct root_entry *root)
107{
108 root->val |= 1;
109}
110static inline void set_root_value(struct root_entry *root, unsigned long value)
111{
112 root->val |= value & VTD_PAGE_MASK;
113}
114
115static inline struct context_entry *
116get_context_addr_from_root(struct root_entry *root)
117{
118 return (struct context_entry *)
119 (root_present(root)?phys_to_virt(
120 root->val & VTD_PAGE_MASK) :
121 NULL);
122}
123
7a8fc25e
MM
124/*
125 * low 64 bits:
126 * 0: present
127 * 1: fault processing disable
128 * 2-3: translation type
129 * 12-63: address space root
130 * high 64 bits:
131 * 0-2: address width
132 * 3-6: aval
133 * 8-23: domain id
134 */
135struct context_entry {
136 u64 lo;
137 u64 hi;
138};
c07e7d21
MM
139
140static inline bool context_present(struct context_entry *context)
141{
142 return (context->lo & 1);
143}
144static inline void context_set_present(struct context_entry *context)
145{
146 context->lo |= 1;
147}
148
149static inline void context_set_fault_enable(struct context_entry *context)
150{
151 context->lo &= (((u64)-1) << 2) | 1;
152}
153
c07e7d21
MM
154static inline void context_set_translation_type(struct context_entry *context,
155 unsigned long value)
156{
157 context->lo &= (((u64)-1) << 4) | 3;
158 context->lo |= (value & 3) << 2;
159}
160
161static inline void context_set_address_root(struct context_entry *context,
162 unsigned long value)
163{
164 context->lo |= value & VTD_PAGE_MASK;
165}
166
167static inline void context_set_address_width(struct context_entry *context,
168 unsigned long value)
169{
170 context->hi |= value & 7;
171}
172
173static inline void context_set_domain_id(struct context_entry *context,
174 unsigned long value)
175{
176 context->hi |= (value & ((1 << 16) - 1)) << 8;
177}
178
179static inline void context_clear_entry(struct context_entry *context)
180{
181 context->lo = 0;
182 context->hi = 0;
183}
7a8fc25e 184
622ba12a
MM
185/*
186 * 0: readable
187 * 1: writable
188 * 2-6: reserved
189 * 7: super page
9cf06697
SY
190 * 8-10: available
191 * 11: snoop behavior
622ba12a
MM
192 * 12-63: Host physcial address
193 */
194struct dma_pte {
195 u64 val;
196};
622ba12a 197
19c239ce
MM
198static inline void dma_clear_pte(struct dma_pte *pte)
199{
200 pte->val = 0;
201}
202
203static inline void dma_set_pte_readable(struct dma_pte *pte)
204{
205 pte->val |= DMA_PTE_READ;
206}
207
208static inline void dma_set_pte_writable(struct dma_pte *pte)
209{
210 pte->val |= DMA_PTE_WRITE;
211}
212
9cf06697
SY
213static inline void dma_set_pte_snp(struct dma_pte *pte)
214{
215 pte->val |= DMA_PTE_SNP;
216}
217
19c239ce
MM
218static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
219{
220 pte->val = (pte->val & ~3) | (prot & 3);
221}
222
223static inline u64 dma_pte_addr(struct dma_pte *pte)
224{
c85994e4
DW
225#ifdef CONFIG_64BIT
226 return pte->val & VTD_PAGE_MASK;
227#else
228 /* Must have a full atomic 64-bit read */
229 return __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
230#endif
19c239ce
MM
231}
232
dd4e8319 233static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
19c239ce 234{
dd4e8319 235 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
19c239ce
MM
236}
237
238static inline bool dma_pte_present(struct dma_pte *pte)
239{
240 return (pte->val & 3) != 0;
241}
622ba12a 242
75e6bf96
DW
243static inline int first_pte_in_page(struct dma_pte *pte)
244{
245 return !((unsigned long)pte & ~VTD_PAGE_MASK);
246}
247
2c2e2c38
FY
248/*
249 * This domain is a statically identity mapping domain.
250 * 1. This domain creats a static 1:1 mapping to all usable memory.
251 * 2. It maps to each iommu if successful.
252 * 3. Each iommu mapps to this domain if successful.
253 */
254struct dmar_domain *si_domain;
255
3b5410e7 256/* devices under the same p2p bridge are owned in one domain */
cdc7b837 257#define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
3b5410e7 258
1ce28feb
WH
259/* domain represents a virtual machine, more than one devices
260 * across iommus may be owned in one domain, e.g. kvm guest.
261 */
262#define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
263
2c2e2c38
FY
264/* si_domain contains mulitple devices */
265#define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
266
99126f7c
MM
267struct dmar_domain {
268 int id; /* domain id */
8c11e798 269 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
99126f7c
MM
270
271 struct list_head devices; /* all devices' list */
272 struct iova_domain iovad; /* iova's that belong to this domain */
273
274 struct dma_pte *pgd; /* virtual address */
99126f7c
MM
275 int gaw; /* max guest address width */
276
277 /* adjusted guest address width, 0 is level 2 30-bit */
278 int agaw;
279
3b5410e7 280 int flags; /* flags to find out type of domain */
8e604097
WH
281
282 int iommu_coherency;/* indicate coherency of iommu access */
58c610bd 283 int iommu_snooping; /* indicate snooping control feature*/
c7151a8d
WH
284 int iommu_count; /* reference count of iommu */
285 spinlock_t iommu_lock; /* protect iommu set in domain */
fe40f1e0 286 u64 max_addr; /* maximum mapped address */
99126f7c
MM
287};
288
a647dacb
MM
289/* PCI domain-device relationship */
290struct device_domain_info {
291 struct list_head link; /* link to domain siblings */
292 struct list_head global; /* link to global list */
276dbf99
DW
293 int segment; /* PCI domain */
294 u8 bus; /* PCI bus number */
a647dacb
MM
295 u8 devfn; /* PCI devfn number */
296 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
93a23a72 297 struct intel_iommu *iommu; /* IOMMU used by this device */
a647dacb
MM
298 struct dmar_domain *domain; /* pointer to domain */
299};
300
5e0d2a6f 301static void flush_unmaps_timeout(unsigned long data);
302
303DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
304
80b20dd8 305#define HIGH_WATER_MARK 250
306struct deferred_flush_tables {
307 int next;
308 struct iova *iova[HIGH_WATER_MARK];
309 struct dmar_domain *domain[HIGH_WATER_MARK];
310};
311
312static struct deferred_flush_tables *deferred_flush;
313
5e0d2a6f 314/* bitmap for indexing intel_iommus */
5e0d2a6f 315static int g_num_of_iommus;
316
317static DEFINE_SPINLOCK(async_umap_flush_lock);
318static LIST_HEAD(unmaps_to_do);
319
320static int timer_on;
321static long list_size;
5e0d2a6f 322
ba395927
KA
323static void domain_remove_dev_info(struct dmar_domain *domain);
324
0cd5c3c8
KM
325#ifdef CONFIG_DMAR_DEFAULT_ON
326int dmar_disabled = 0;
327#else
328int dmar_disabled = 1;
329#endif /*CONFIG_DMAR_DEFAULT_ON*/
330
ba395927 331static int __initdata dmar_map_gfx = 1;
7d3b03ce 332static int dmar_forcedac;
5e0d2a6f 333static int intel_iommu_strict;
ba395927
KA
334
335#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
336static DEFINE_SPINLOCK(device_domain_lock);
337static LIST_HEAD(device_domain_list);
338
a8bcbb0d
JR
339static struct iommu_ops intel_iommu_ops;
340
ba395927
KA
341static int __init intel_iommu_setup(char *str)
342{
343 if (!str)
344 return -EINVAL;
345 while (*str) {
0cd5c3c8
KM
346 if (!strncmp(str, "on", 2)) {
347 dmar_disabled = 0;
348 printk(KERN_INFO "Intel-IOMMU: enabled\n");
349 } else if (!strncmp(str, "off", 3)) {
ba395927 350 dmar_disabled = 1;
0cd5c3c8 351 printk(KERN_INFO "Intel-IOMMU: disabled\n");
ba395927
KA
352 } else if (!strncmp(str, "igfx_off", 8)) {
353 dmar_map_gfx = 0;
354 printk(KERN_INFO
355 "Intel-IOMMU: disable GFX device mapping\n");
7d3b03ce 356 } else if (!strncmp(str, "forcedac", 8)) {
5e0d2a6f 357 printk(KERN_INFO
7d3b03ce
KA
358 "Intel-IOMMU: Forcing DAC for PCI devices\n");
359 dmar_forcedac = 1;
5e0d2a6f 360 } else if (!strncmp(str, "strict", 6)) {
361 printk(KERN_INFO
362 "Intel-IOMMU: disable batched IOTLB flush\n");
363 intel_iommu_strict = 1;
ba395927
KA
364 }
365
366 str += strcspn(str, ",");
367 while (*str == ',')
368 str++;
369 }
370 return 0;
371}
372__setup("intel_iommu=", intel_iommu_setup);
373
374static struct kmem_cache *iommu_domain_cache;
375static struct kmem_cache *iommu_devinfo_cache;
376static struct kmem_cache *iommu_iova_cache;
377
eb3fa7cb
KA
378static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
379{
380 unsigned int flags;
381 void *vaddr;
382
383 /* trying to avoid low memory issues */
384 flags = current->flags & PF_MEMALLOC;
385 current->flags |= PF_MEMALLOC;
386 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
387 current->flags &= (~PF_MEMALLOC | flags);
388 return vaddr;
389}
390
391
ba395927
KA
392static inline void *alloc_pgtable_page(void)
393{
eb3fa7cb
KA
394 unsigned int flags;
395 void *vaddr;
396
397 /* trying to avoid low memory issues */
398 flags = current->flags & PF_MEMALLOC;
399 current->flags |= PF_MEMALLOC;
400 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
401 current->flags &= (~PF_MEMALLOC | flags);
402 return vaddr;
ba395927
KA
403}
404
405static inline void free_pgtable_page(void *vaddr)
406{
407 free_page((unsigned long)vaddr);
408}
409
410static inline void *alloc_domain_mem(void)
411{
eb3fa7cb 412 return iommu_kmem_cache_alloc(iommu_domain_cache);
ba395927
KA
413}
414
38717946 415static void free_domain_mem(void *vaddr)
ba395927
KA
416{
417 kmem_cache_free(iommu_domain_cache, vaddr);
418}
419
420static inline void * alloc_devinfo_mem(void)
421{
eb3fa7cb 422 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
ba395927
KA
423}
424
425static inline void free_devinfo_mem(void *vaddr)
426{
427 kmem_cache_free(iommu_devinfo_cache, vaddr);
428}
429
430struct iova *alloc_iova_mem(void)
431{
eb3fa7cb 432 return iommu_kmem_cache_alloc(iommu_iova_cache);
ba395927
KA
433}
434
435void free_iova_mem(struct iova *iova)
436{
437 kmem_cache_free(iommu_iova_cache, iova);
438}
439
1b573683
WH
440
441static inline int width_to_agaw(int width);
442
4ed0d3e6 443static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
1b573683
WH
444{
445 unsigned long sagaw;
446 int agaw = -1;
447
448 sagaw = cap_sagaw(iommu->cap);
4ed0d3e6 449 for (agaw = width_to_agaw(max_gaw);
1b573683
WH
450 agaw >= 0; agaw--) {
451 if (test_bit(agaw, &sagaw))
452 break;
453 }
454
455 return agaw;
456}
457
4ed0d3e6
FY
458/*
459 * Calculate max SAGAW for each iommu.
460 */
461int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
462{
463 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
464}
465
466/*
467 * calculate agaw for each iommu.
468 * "SAGAW" may be different across iommus, use a default agaw, and
469 * get a supported less agaw for iommus that don't support the default agaw.
470 */
471int iommu_calculate_agaw(struct intel_iommu *iommu)
472{
473 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
474}
475
2c2e2c38 476/* This functionin only returns single iommu in a domain */
8c11e798
WH
477static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
478{
479 int iommu_id;
480
2c2e2c38 481 /* si_domain and vm domain should not get here. */
1ce28feb 482 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
2c2e2c38 483 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
1ce28feb 484
8c11e798
WH
485 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
486 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
487 return NULL;
488
489 return g_iommus[iommu_id];
490}
491
8e604097
WH
492static void domain_update_iommu_coherency(struct dmar_domain *domain)
493{
494 int i;
495
496 domain->iommu_coherency = 1;
497
498 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
499 for (; i < g_num_of_iommus; ) {
500 if (!ecap_coherent(g_iommus[i]->ecap)) {
501 domain->iommu_coherency = 0;
502 break;
503 }
504 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
505 }
506}
507
58c610bd
SY
508static void domain_update_iommu_snooping(struct dmar_domain *domain)
509{
510 int i;
511
512 domain->iommu_snooping = 1;
513
514 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
515 for (; i < g_num_of_iommus; ) {
516 if (!ecap_sc_support(g_iommus[i]->ecap)) {
517 domain->iommu_snooping = 0;
518 break;
519 }
520 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
521 }
522}
523
524/* Some capabilities may be different across iommus */
525static void domain_update_iommu_cap(struct dmar_domain *domain)
526{
527 domain_update_iommu_coherency(domain);
528 domain_update_iommu_snooping(domain);
529}
530
276dbf99 531static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
c7151a8d
WH
532{
533 struct dmar_drhd_unit *drhd = NULL;
534 int i;
535
536 for_each_drhd_unit(drhd) {
537 if (drhd->ignored)
538 continue;
276dbf99
DW
539 if (segment != drhd->segment)
540 continue;
c7151a8d 541
924b6231 542 for (i = 0; i < drhd->devices_cnt; i++) {
288e4877
DH
543 if (drhd->devices[i] &&
544 drhd->devices[i]->bus->number == bus &&
c7151a8d
WH
545 drhd->devices[i]->devfn == devfn)
546 return drhd->iommu;
4958c5dc
DW
547 if (drhd->devices[i] &&
548 drhd->devices[i]->subordinate &&
924b6231
DW
549 drhd->devices[i]->subordinate->number <= bus &&
550 drhd->devices[i]->subordinate->subordinate >= bus)
551 return drhd->iommu;
552 }
c7151a8d
WH
553
554 if (drhd->include_all)
555 return drhd->iommu;
556 }
557
558 return NULL;
559}
560
5331fe6f
WH
561static void domain_flush_cache(struct dmar_domain *domain,
562 void *addr, int size)
563{
564 if (!domain->iommu_coherency)
565 clflush_cache_range(addr, size);
566}
567
ba395927
KA
568/* Gets context entry for a given bus and devfn */
569static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
570 u8 bus, u8 devfn)
571{
572 struct root_entry *root;
573 struct context_entry *context;
574 unsigned long phy_addr;
575 unsigned long flags;
576
577 spin_lock_irqsave(&iommu->lock, flags);
578 root = &iommu->root_entry[bus];
579 context = get_context_addr_from_root(root);
580 if (!context) {
581 context = (struct context_entry *)alloc_pgtable_page();
582 if (!context) {
583 spin_unlock_irqrestore(&iommu->lock, flags);
584 return NULL;
585 }
5b6985ce 586 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
ba395927
KA
587 phy_addr = virt_to_phys((void *)context);
588 set_root_value(root, phy_addr);
589 set_root_present(root);
590 __iommu_flush_cache(iommu, root, sizeof(*root));
591 }
592 spin_unlock_irqrestore(&iommu->lock, flags);
593 return &context[devfn];
594}
595
596static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
597{
598 struct root_entry *root;
599 struct context_entry *context;
600 int ret;
601 unsigned long flags;
602
603 spin_lock_irqsave(&iommu->lock, flags);
604 root = &iommu->root_entry[bus];
605 context = get_context_addr_from_root(root);
606 if (!context) {
607 ret = 0;
608 goto out;
609 }
c07e7d21 610 ret = context_present(&context[devfn]);
ba395927
KA
611out:
612 spin_unlock_irqrestore(&iommu->lock, flags);
613 return ret;
614}
615
616static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
617{
618 struct root_entry *root;
619 struct context_entry *context;
620 unsigned long flags;
621
622 spin_lock_irqsave(&iommu->lock, flags);
623 root = &iommu->root_entry[bus];
624 context = get_context_addr_from_root(root);
625 if (context) {
c07e7d21 626 context_clear_entry(&context[devfn]);
ba395927
KA
627 __iommu_flush_cache(iommu, &context[devfn], \
628 sizeof(*context));
629 }
630 spin_unlock_irqrestore(&iommu->lock, flags);
631}
632
633static void free_context_table(struct intel_iommu *iommu)
634{
635 struct root_entry *root;
636 int i;
637 unsigned long flags;
638 struct context_entry *context;
639
640 spin_lock_irqsave(&iommu->lock, flags);
641 if (!iommu->root_entry) {
642 goto out;
643 }
644 for (i = 0; i < ROOT_ENTRY_NR; i++) {
645 root = &iommu->root_entry[i];
646 context = get_context_addr_from_root(root);
647 if (context)
648 free_pgtable_page(context);
649 }
650 free_pgtable_page(iommu->root_entry);
651 iommu->root_entry = NULL;
652out:
653 spin_unlock_irqrestore(&iommu->lock, flags);
654}
655
656/* page table handling */
657#define LEVEL_STRIDE (9)
658#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
659
660static inline int agaw_to_level(int agaw)
661{
662 return agaw + 2;
663}
664
665static inline int agaw_to_width(int agaw)
666{
667 return 30 + agaw * LEVEL_STRIDE;
668
669}
670
671static inline int width_to_agaw(int width)
672{
673 return (width - 30) / LEVEL_STRIDE;
674}
675
676static inline unsigned int level_to_offset_bits(int level)
677{
6660c63a 678 return (level - 1) * LEVEL_STRIDE;
ba395927
KA
679}
680
77dfa56c 681static inline int pfn_level_offset(unsigned long pfn, int level)
ba395927 682{
6660c63a 683 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
ba395927
KA
684}
685
6660c63a 686static inline unsigned long level_mask(int level)
ba395927 687{
6660c63a 688 return -1UL << level_to_offset_bits(level);
ba395927
KA
689}
690
6660c63a 691static inline unsigned long level_size(int level)
ba395927 692{
6660c63a 693 return 1UL << level_to_offset_bits(level);
ba395927
KA
694}
695
6660c63a 696static inline unsigned long align_to_level(unsigned long pfn, int level)
ba395927 697{
6660c63a 698 return (pfn + level_size(level) - 1) & level_mask(level);
ba395927
KA
699}
700
b026fd28
DW
701static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
702 unsigned long pfn)
ba395927 703{
b026fd28 704 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
ba395927
KA
705 struct dma_pte *parent, *pte = NULL;
706 int level = agaw_to_level(domain->agaw);
707 int offset;
ba395927
KA
708
709 BUG_ON(!domain->pgd);
b026fd28 710 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
ba395927
KA
711 parent = domain->pgd;
712
ba395927
KA
713 while (level > 0) {
714 void *tmp_page;
715
b026fd28 716 offset = pfn_level_offset(pfn, level);
ba395927
KA
717 pte = &parent[offset];
718 if (level == 1)
719 break;
720
19c239ce 721 if (!dma_pte_present(pte)) {
c85994e4
DW
722 uint64_t pteval;
723
ba395927
KA
724 tmp_page = alloc_pgtable_page();
725
206a73c1 726 if (!tmp_page)
ba395927 727 return NULL;
206a73c1 728
c85994e4
DW
729 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
730 pteval = (virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
731 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
732 /* Someone else set it while we were thinking; use theirs. */
733 free_pgtable_page(tmp_page);
734 } else {
735 dma_pte_addr(pte);
736 domain_flush_cache(domain, pte, sizeof(*pte));
737 }
ba395927 738 }
19c239ce 739 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
740 level--;
741 }
742
ba395927
KA
743 return pte;
744}
745
746/* return address's pte at specific level */
90dcfb5e
DW
747static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
748 unsigned long pfn,
749 int level)
ba395927
KA
750{
751 struct dma_pte *parent, *pte = NULL;
752 int total = agaw_to_level(domain->agaw);
753 int offset;
754
755 parent = domain->pgd;
756 while (level <= total) {
90dcfb5e 757 offset = pfn_level_offset(pfn, total);
ba395927
KA
758 pte = &parent[offset];
759 if (level == total)
760 return pte;
761
19c239ce 762 if (!dma_pte_present(pte))
ba395927 763 break;
19c239ce 764 parent = phys_to_virt(dma_pte_addr(pte));
ba395927
KA
765 total--;
766 }
767 return NULL;
768}
769
ba395927 770/* clear last level pte, a tlb flush should be followed */
595badf5
DW
771static void dma_pte_clear_range(struct dmar_domain *domain,
772 unsigned long start_pfn,
773 unsigned long last_pfn)
ba395927 774{
04b18e65 775 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
310a5ab9 776 struct dma_pte *first_pte, *pte;
66eae846 777
04b18e65 778 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
595badf5 779 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
ba395927 780
04b18e65 781 /* we don't need lock here; nobody else touches the iova range */
595badf5 782 while (start_pfn <= last_pfn) {
310a5ab9
DW
783 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
784 if (!pte) {
785 start_pfn = align_to_level(start_pfn + 1, 2);
786 continue;
787 }
75e6bf96 788 do {
310a5ab9
DW
789 dma_clear_pte(pte);
790 start_pfn++;
791 pte++;
75e6bf96
DW
792 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
793
310a5ab9
DW
794 domain_flush_cache(domain, first_pte,
795 (void *)pte - (void *)first_pte);
ba395927
KA
796 }
797}
798
799/* free page table pages. last level pte should already be cleared */
800static void dma_pte_free_pagetable(struct dmar_domain *domain,
d794dc9b
DW
801 unsigned long start_pfn,
802 unsigned long last_pfn)
ba395927 803{
6660c63a 804 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
f3a0a52f 805 struct dma_pte *first_pte, *pte;
ba395927
KA
806 int total = agaw_to_level(domain->agaw);
807 int level;
6660c63a 808 unsigned long tmp;
ba395927 809
6660c63a
DW
810 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
811 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
ba395927 812
f3a0a52f 813 /* We don't need lock here; nobody else touches the iova range */
ba395927
KA
814 level = 2;
815 while (level <= total) {
6660c63a
DW
816 tmp = align_to_level(start_pfn, level);
817
f3a0a52f 818 /* If we can't even clear one PTE at this level, we're done */
6660c63a 819 if (tmp + level_size(level) - 1 > last_pfn)
ba395927
KA
820 return;
821
3d7b0e41 822 while (tmp + level_size(level) - 1 <= last_pfn) {
f3a0a52f
DW
823 first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
824 if (!pte) {
825 tmp = align_to_level(tmp + 1, level + 1);
826 continue;
827 }
75e6bf96 828 do {
6a43e574
DW
829 if (dma_pte_present(pte)) {
830 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
831 dma_clear_pte(pte);
832 }
f3a0a52f
DW
833 pte++;
834 tmp += level_size(level);
75e6bf96
DW
835 } while (!first_pte_in_page(pte) &&
836 tmp + level_size(level) - 1 <= last_pfn);
837
f3a0a52f
DW
838 domain_flush_cache(domain, first_pte,
839 (void *)pte - (void *)first_pte);
840
ba395927
KA
841 }
842 level++;
843 }
844 /* free pgd */
d794dc9b 845 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
ba395927
KA
846 free_pgtable_page(domain->pgd);
847 domain->pgd = NULL;
848 }
849}
850
851/* iommu handling */
852static int iommu_alloc_root_entry(struct intel_iommu *iommu)
853{
854 struct root_entry *root;
855 unsigned long flags;
856
857 root = (struct root_entry *)alloc_pgtable_page();
858 if (!root)
859 return -ENOMEM;
860
5b6985ce 861 __iommu_flush_cache(iommu, root, ROOT_SIZE);
ba395927
KA
862
863 spin_lock_irqsave(&iommu->lock, flags);
864 iommu->root_entry = root;
865 spin_unlock_irqrestore(&iommu->lock, flags);
866
867 return 0;
868}
869
ba395927
KA
870static void iommu_set_root_entry(struct intel_iommu *iommu)
871{
872 void *addr;
c416daa9 873 u32 sts;
ba395927
KA
874 unsigned long flag;
875
876 addr = iommu->root_entry;
877
878 spin_lock_irqsave(&iommu->register_lock, flag);
879 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
880
c416daa9 881 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
882
883 /* Make sure hardware complete it */
884 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 885 readl, (sts & DMA_GSTS_RTPS), sts);
ba395927
KA
886
887 spin_unlock_irqrestore(&iommu->register_lock, flag);
888}
889
890static void iommu_flush_write_buffer(struct intel_iommu *iommu)
891{
892 u32 val;
893 unsigned long flag;
894
9af88143 895 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
ba395927 896 return;
ba395927
KA
897
898 spin_lock_irqsave(&iommu->register_lock, flag);
462b60f6 899 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
900
901 /* Make sure hardware complete it */
902 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 903 readl, (!(val & DMA_GSTS_WBFS)), val);
ba395927
KA
904
905 spin_unlock_irqrestore(&iommu->register_lock, flag);
906}
907
908/* return value determine if we need a write buffer flush */
4c25a2c1
DW
909static void __iommu_flush_context(struct intel_iommu *iommu,
910 u16 did, u16 source_id, u8 function_mask,
911 u64 type)
ba395927
KA
912{
913 u64 val = 0;
914 unsigned long flag;
915
ba395927
KA
916 switch (type) {
917 case DMA_CCMD_GLOBAL_INVL:
918 val = DMA_CCMD_GLOBAL_INVL;
919 break;
920 case DMA_CCMD_DOMAIN_INVL:
921 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
922 break;
923 case DMA_CCMD_DEVICE_INVL:
924 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
925 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
926 break;
927 default:
928 BUG();
929 }
930 val |= DMA_CCMD_ICC;
931
932 spin_lock_irqsave(&iommu->register_lock, flag);
933 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
934
935 /* Make sure hardware complete it */
936 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
937 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
938
939 spin_unlock_irqrestore(&iommu->register_lock, flag);
ba395927
KA
940}
941
ba395927 942/* return value determine if we need a write buffer flush */
1f0ef2aa
DW
943static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
944 u64 addr, unsigned int size_order, u64 type)
ba395927
KA
945{
946 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
947 u64 val = 0, val_iva = 0;
948 unsigned long flag;
949
ba395927
KA
950 switch (type) {
951 case DMA_TLB_GLOBAL_FLUSH:
952 /* global flush doesn't need set IVA_REG */
953 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
954 break;
955 case DMA_TLB_DSI_FLUSH:
956 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
957 break;
958 case DMA_TLB_PSI_FLUSH:
959 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
960 /* Note: always flush non-leaf currently */
961 val_iva = size_order | addr;
962 break;
963 default:
964 BUG();
965 }
966 /* Note: set drain read/write */
967#if 0
968 /*
969 * This is probably to be super secure.. Looks like we can
970 * ignore it without any impact.
971 */
972 if (cap_read_drain(iommu->cap))
973 val |= DMA_TLB_READ_DRAIN;
974#endif
975 if (cap_write_drain(iommu->cap))
976 val |= DMA_TLB_WRITE_DRAIN;
977
978 spin_lock_irqsave(&iommu->register_lock, flag);
979 /* Note: Only uses first TLB reg currently */
980 if (val_iva)
981 dmar_writeq(iommu->reg + tlb_offset, val_iva);
982 dmar_writeq(iommu->reg + tlb_offset + 8, val);
983
984 /* Make sure hardware complete it */
985 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
986 dmar_readq, (!(val & DMA_TLB_IVT)), val);
987
988 spin_unlock_irqrestore(&iommu->register_lock, flag);
989
990 /* check IOTLB invalidation granularity */
991 if (DMA_TLB_IAIG(val) == 0)
992 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
993 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
994 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
5b6985ce
FY
995 (unsigned long long)DMA_TLB_IIRG(type),
996 (unsigned long long)DMA_TLB_IAIG(val));
ba395927
KA
997}
998
93a23a72
YZ
999static struct device_domain_info *iommu_support_dev_iotlb(
1000 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1001{
1002 int found = 0;
1003 unsigned long flags;
1004 struct device_domain_info *info;
1005 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1006
1007 if (!ecap_dev_iotlb_support(iommu->ecap))
1008 return NULL;
1009
1010 if (!iommu->qi)
1011 return NULL;
1012
1013 spin_lock_irqsave(&device_domain_lock, flags);
1014 list_for_each_entry(info, &domain->devices, link)
1015 if (info->bus == bus && info->devfn == devfn) {
1016 found = 1;
1017 break;
1018 }
1019 spin_unlock_irqrestore(&device_domain_lock, flags);
1020
1021 if (!found || !info->dev)
1022 return NULL;
1023
1024 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1025 return NULL;
1026
1027 if (!dmar_find_matched_atsr_unit(info->dev))
1028 return NULL;
1029
1030 info->iommu = iommu;
1031
1032 return info;
1033}
1034
1035static void iommu_enable_dev_iotlb(struct device_domain_info *info)
ba395927 1036{
93a23a72
YZ
1037 if (!info)
1038 return;
1039
1040 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1041}
1042
1043static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1044{
1045 if (!info->dev || !pci_ats_enabled(info->dev))
1046 return;
1047
1048 pci_disable_ats(info->dev);
1049}
1050
1051static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1052 u64 addr, unsigned mask)
1053{
1054 u16 sid, qdep;
1055 unsigned long flags;
1056 struct device_domain_info *info;
1057
1058 spin_lock_irqsave(&device_domain_lock, flags);
1059 list_for_each_entry(info, &domain->devices, link) {
1060 if (!info->dev || !pci_ats_enabled(info->dev))
1061 continue;
1062
1063 sid = info->bus << 8 | info->devfn;
1064 qdep = pci_ats_queue_depth(info->dev);
1065 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1066 }
1067 spin_unlock_irqrestore(&device_domain_lock, flags);
1068}
1069
1f0ef2aa 1070static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
03d6a246 1071 unsigned long pfn, unsigned int pages)
ba395927 1072{
9dd2fe89 1073 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
03d6a246 1074 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
ba395927 1075
ba395927
KA
1076 BUG_ON(pages == 0);
1077
ba395927 1078 /*
9dd2fe89
YZ
1079 * Fallback to domain selective flush if no PSI support or the size is
1080 * too big.
ba395927
KA
1081 * PSI requires page size to be 2 ^ x, and the base address is naturally
1082 * aligned to the size
1083 */
9dd2fe89
YZ
1084 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1085 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1f0ef2aa 1086 DMA_TLB_DSI_FLUSH);
9dd2fe89
YZ
1087 else
1088 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1089 DMA_TLB_PSI_FLUSH);
bf92df30
YZ
1090
1091 /*
1092 * In caching mode, domain ID 0 is reserved for non-present to present
1093 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1094 */
1095 if (!cap_caching_mode(iommu->cap) || did)
93a23a72 1096 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
ba395927
KA
1097}
1098
f8bab735 1099static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1100{
1101 u32 pmen;
1102 unsigned long flags;
1103
1104 spin_lock_irqsave(&iommu->register_lock, flags);
1105 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1106 pmen &= ~DMA_PMEN_EPM;
1107 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1108
1109 /* wait for the protected region status bit to clear */
1110 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1111 readl, !(pmen & DMA_PMEN_PRS), pmen);
1112
1113 spin_unlock_irqrestore(&iommu->register_lock, flags);
1114}
1115
ba395927
KA
1116static int iommu_enable_translation(struct intel_iommu *iommu)
1117{
1118 u32 sts;
1119 unsigned long flags;
1120
1121 spin_lock_irqsave(&iommu->register_lock, flags);
c416daa9
DW
1122 iommu->gcmd |= DMA_GCMD_TE;
1123 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
ba395927
KA
1124
1125 /* Make sure hardware complete it */
1126 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1127 readl, (sts & DMA_GSTS_TES), sts);
ba395927 1128
ba395927
KA
1129 spin_unlock_irqrestore(&iommu->register_lock, flags);
1130 return 0;
1131}
1132
1133static int iommu_disable_translation(struct intel_iommu *iommu)
1134{
1135 u32 sts;
1136 unsigned long flag;
1137
1138 spin_lock_irqsave(&iommu->register_lock, flag);
1139 iommu->gcmd &= ~DMA_GCMD_TE;
1140 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1141
1142 /* Make sure hardware complete it */
1143 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
c416daa9 1144 readl, (!(sts & DMA_GSTS_TES)), sts);
ba395927
KA
1145
1146 spin_unlock_irqrestore(&iommu->register_lock, flag);
1147 return 0;
1148}
1149
3460a6d9 1150
ba395927
KA
1151static int iommu_init_domains(struct intel_iommu *iommu)
1152{
1153 unsigned long ndomains;
1154 unsigned long nlongs;
1155
1156 ndomains = cap_ndoms(iommu->cap);
1157 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1158 nlongs = BITS_TO_LONGS(ndomains);
1159
1160 /* TBD: there might be 64K domains,
1161 * consider other allocation for future chip
1162 */
1163 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1164 if (!iommu->domain_ids) {
1165 printk(KERN_ERR "Allocating domain id array failed\n");
1166 return -ENOMEM;
1167 }
1168 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1169 GFP_KERNEL);
1170 if (!iommu->domains) {
1171 printk(KERN_ERR "Allocating domain array failed\n");
1172 kfree(iommu->domain_ids);
1173 return -ENOMEM;
1174 }
1175
e61d98d8
SS
1176 spin_lock_init(&iommu->lock);
1177
ba395927
KA
1178 /*
1179 * if Caching mode is set, then invalid translations are tagged
1180 * with domainid 0. Hence we need to pre-allocate it.
1181 */
1182 if (cap_caching_mode(iommu->cap))
1183 set_bit(0, iommu->domain_ids);
1184 return 0;
1185}
ba395927 1186
ba395927
KA
1187
1188static void domain_exit(struct dmar_domain *domain);
5e98c4b1 1189static void vm_domain_exit(struct dmar_domain *domain);
e61d98d8
SS
1190
1191void free_dmar_iommu(struct intel_iommu *iommu)
ba395927
KA
1192{
1193 struct dmar_domain *domain;
1194 int i;
c7151a8d 1195 unsigned long flags;
ba395927 1196
ba395927
KA
1197 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1198 for (; i < cap_ndoms(iommu->cap); ) {
1199 domain = iommu->domains[i];
1200 clear_bit(i, iommu->domain_ids);
c7151a8d
WH
1201
1202 spin_lock_irqsave(&domain->iommu_lock, flags);
5e98c4b1
WH
1203 if (--domain->iommu_count == 0) {
1204 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1205 vm_domain_exit(domain);
1206 else
1207 domain_exit(domain);
1208 }
c7151a8d
WH
1209 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1210
ba395927
KA
1211 i = find_next_bit(iommu->domain_ids,
1212 cap_ndoms(iommu->cap), i+1);
1213 }
1214
1215 if (iommu->gcmd & DMA_GCMD_TE)
1216 iommu_disable_translation(iommu);
1217
1218 if (iommu->irq) {
1219 set_irq_data(iommu->irq, NULL);
1220 /* This will mask the irq */
1221 free_irq(iommu->irq, iommu);
1222 destroy_irq(iommu->irq);
1223 }
1224
1225 kfree(iommu->domains);
1226 kfree(iommu->domain_ids);
1227
d9630fe9
WH
1228 g_iommus[iommu->seq_id] = NULL;
1229
1230 /* if all iommus are freed, free g_iommus */
1231 for (i = 0; i < g_num_of_iommus; i++) {
1232 if (g_iommus[i])
1233 break;
1234 }
1235
1236 if (i == g_num_of_iommus)
1237 kfree(g_iommus);
1238
ba395927
KA
1239 /* free context mapping */
1240 free_context_table(iommu);
ba395927
KA
1241}
1242
2c2e2c38 1243static struct dmar_domain *alloc_domain(void)
ba395927 1244{
ba395927 1245 struct dmar_domain *domain;
ba395927
KA
1246
1247 domain = alloc_domain_mem();
1248 if (!domain)
1249 return NULL;
1250
2c2e2c38
FY
1251 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1252 domain->flags = 0;
1253
1254 return domain;
1255}
1256
1257static int iommu_attach_domain(struct dmar_domain *domain,
1258 struct intel_iommu *iommu)
1259{
1260 int num;
1261 unsigned long ndomains;
1262 unsigned long flags;
1263
ba395927
KA
1264 ndomains = cap_ndoms(iommu->cap);
1265
1266 spin_lock_irqsave(&iommu->lock, flags);
2c2e2c38 1267
ba395927
KA
1268 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1269 if (num >= ndomains) {
1270 spin_unlock_irqrestore(&iommu->lock, flags);
ba395927 1271 printk(KERN_ERR "IOMMU: no free domain ids\n");
2c2e2c38 1272 return -ENOMEM;
ba395927
KA
1273 }
1274
ba395927 1275 domain->id = num;
2c2e2c38 1276 set_bit(num, iommu->domain_ids);
8c11e798 1277 set_bit(iommu->seq_id, &domain->iommu_bmp);
ba395927
KA
1278 iommu->domains[num] = domain;
1279 spin_unlock_irqrestore(&iommu->lock, flags);
1280
2c2e2c38 1281 return 0;
ba395927
KA
1282}
1283
2c2e2c38
FY
1284static void iommu_detach_domain(struct dmar_domain *domain,
1285 struct intel_iommu *iommu)
ba395927
KA
1286{
1287 unsigned long flags;
2c2e2c38
FY
1288 int num, ndomains;
1289 int found = 0;
ba395927 1290
8c11e798 1291 spin_lock_irqsave(&iommu->lock, flags);
2c2e2c38
FY
1292 ndomains = cap_ndoms(iommu->cap);
1293 num = find_first_bit(iommu->domain_ids, ndomains);
1294 for (; num < ndomains; ) {
1295 if (iommu->domains[num] == domain) {
1296 found = 1;
1297 break;
1298 }
1299 num = find_next_bit(iommu->domain_ids,
1300 cap_ndoms(iommu->cap), num+1);
1301 }
1302
1303 if (found) {
1304 clear_bit(num, iommu->domain_ids);
1305 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1306 iommu->domains[num] = NULL;
1307 }
8c11e798 1308 spin_unlock_irqrestore(&iommu->lock, flags);
ba395927
KA
1309}
1310
1311static struct iova_domain reserved_iova_list;
8a443df4 1312static struct lock_class_key reserved_rbtree_key;
ba395927
KA
1313
1314static void dmar_init_reserved_ranges(void)
1315{
1316 struct pci_dev *pdev = NULL;
1317 struct iova *iova;
1318 int i;
ba395927 1319
f661197e 1320 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
ba395927 1321
8a443df4
MG
1322 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1323 &reserved_rbtree_key);
1324
ba395927
KA
1325 /* IOAPIC ranges shouldn't be accessed by DMA */
1326 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1327 IOVA_PFN(IOAPIC_RANGE_END));
1328 if (!iova)
1329 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1330
1331 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1332 for_each_pci_dev(pdev) {
1333 struct resource *r;
1334
1335 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1336 r = &pdev->resource[i];
1337 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1338 continue;
1a4a4551
DW
1339 iova = reserve_iova(&reserved_iova_list,
1340 IOVA_PFN(r->start),
1341 IOVA_PFN(r->end));
ba395927
KA
1342 if (!iova)
1343 printk(KERN_ERR "Reserve iova failed\n");
1344 }
1345 }
1346
1347}
1348
1349static void domain_reserve_special_ranges(struct dmar_domain *domain)
1350{
1351 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1352}
1353
1354static inline int guestwidth_to_adjustwidth(int gaw)
1355{
1356 int agaw;
1357 int r = (gaw - 12) % 9;
1358
1359 if (r == 0)
1360 agaw = gaw;
1361 else
1362 agaw = gaw + 9 - r;
1363 if (agaw > 64)
1364 agaw = 64;
1365 return agaw;
1366}
1367
1368static int domain_init(struct dmar_domain *domain, int guest_width)
1369{
1370 struct intel_iommu *iommu;
1371 int adjust_width, agaw;
1372 unsigned long sagaw;
1373
f661197e 1374 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
c7151a8d 1375 spin_lock_init(&domain->iommu_lock);
ba395927
KA
1376
1377 domain_reserve_special_ranges(domain);
1378
1379 /* calculate AGAW */
8c11e798 1380 iommu = domain_get_iommu(domain);
ba395927
KA
1381 if (guest_width > cap_mgaw(iommu->cap))
1382 guest_width = cap_mgaw(iommu->cap);
1383 domain->gaw = guest_width;
1384 adjust_width = guestwidth_to_adjustwidth(guest_width);
1385 agaw = width_to_agaw(adjust_width);
1386 sagaw = cap_sagaw(iommu->cap);
1387 if (!test_bit(agaw, &sagaw)) {
1388 /* hardware doesn't support it, choose a bigger one */
1389 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1390 agaw = find_next_bit(&sagaw, 5, agaw);
1391 if (agaw >= 5)
1392 return -ENODEV;
1393 }
1394 domain->agaw = agaw;
1395 INIT_LIST_HEAD(&domain->devices);
1396
8e604097
WH
1397 if (ecap_coherent(iommu->ecap))
1398 domain->iommu_coherency = 1;
1399 else
1400 domain->iommu_coherency = 0;
1401
58c610bd
SY
1402 if (ecap_sc_support(iommu->ecap))
1403 domain->iommu_snooping = 1;
1404 else
1405 domain->iommu_snooping = 0;
1406
c7151a8d
WH
1407 domain->iommu_count = 1;
1408
ba395927
KA
1409 /* always allocate the top pgd */
1410 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1411 if (!domain->pgd)
1412 return -ENOMEM;
5b6985ce 1413 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
ba395927
KA
1414 return 0;
1415}
1416
1417static void domain_exit(struct dmar_domain *domain)
1418{
2c2e2c38
FY
1419 struct dmar_drhd_unit *drhd;
1420 struct intel_iommu *iommu;
ba395927
KA
1421
1422 /* Domain 0 is reserved, so dont process it */
1423 if (!domain)
1424 return;
1425
1426 domain_remove_dev_info(domain);
1427 /* destroy iovas */
1428 put_iova_domain(&domain->iovad);
ba395927
KA
1429
1430 /* clear ptes */
595badf5 1431 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
ba395927
KA
1432
1433 /* free page tables */
d794dc9b 1434 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
ba395927 1435
2c2e2c38
FY
1436 for_each_active_iommu(iommu, drhd)
1437 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1438 iommu_detach_domain(domain, iommu);
1439
ba395927
KA
1440 free_domain_mem(domain);
1441}
1442
4ed0d3e6
FY
1443static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1444 u8 bus, u8 devfn, int translation)
ba395927
KA
1445{
1446 struct context_entry *context;
ba395927 1447 unsigned long flags;
5331fe6f 1448 struct intel_iommu *iommu;
ea6606b0
WH
1449 struct dma_pte *pgd;
1450 unsigned long num;
1451 unsigned long ndomains;
1452 int id;
1453 int agaw;
93a23a72 1454 struct device_domain_info *info = NULL;
ba395927
KA
1455
1456 pr_debug("Set context mapping for %02x:%02x.%d\n",
1457 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
4ed0d3e6 1458
ba395927 1459 BUG_ON(!domain->pgd);
4ed0d3e6
FY
1460 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1461 translation != CONTEXT_TT_MULTI_LEVEL);
5331fe6f 1462
276dbf99 1463 iommu = device_to_iommu(segment, bus, devfn);
5331fe6f
WH
1464 if (!iommu)
1465 return -ENODEV;
1466
ba395927
KA
1467 context = device_to_context_entry(iommu, bus, devfn);
1468 if (!context)
1469 return -ENOMEM;
1470 spin_lock_irqsave(&iommu->lock, flags);
c07e7d21 1471 if (context_present(context)) {
ba395927
KA
1472 spin_unlock_irqrestore(&iommu->lock, flags);
1473 return 0;
1474 }
1475
ea6606b0
WH
1476 id = domain->id;
1477 pgd = domain->pgd;
1478
2c2e2c38
FY
1479 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1480 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
ea6606b0
WH
1481 int found = 0;
1482
1483 /* find an available domain id for this device in iommu */
1484 ndomains = cap_ndoms(iommu->cap);
1485 num = find_first_bit(iommu->domain_ids, ndomains);
1486 for (; num < ndomains; ) {
1487 if (iommu->domains[num] == domain) {
1488 id = num;
1489 found = 1;
1490 break;
1491 }
1492 num = find_next_bit(iommu->domain_ids,
1493 cap_ndoms(iommu->cap), num+1);
1494 }
1495
1496 if (found == 0) {
1497 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1498 if (num >= ndomains) {
1499 spin_unlock_irqrestore(&iommu->lock, flags);
1500 printk(KERN_ERR "IOMMU: no free domain ids\n");
1501 return -EFAULT;
1502 }
1503
1504 set_bit(num, iommu->domain_ids);
2c2e2c38 1505 set_bit(iommu->seq_id, &domain->iommu_bmp);
ea6606b0
WH
1506 iommu->domains[num] = domain;
1507 id = num;
1508 }
1509
1510 /* Skip top levels of page tables for
1511 * iommu which has less agaw than default.
1512 */
1513 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1514 pgd = phys_to_virt(dma_pte_addr(pgd));
1515 if (!dma_pte_present(pgd)) {
1516 spin_unlock_irqrestore(&iommu->lock, flags);
1517 return -ENOMEM;
1518 }
1519 }
1520 }
1521
1522 context_set_domain_id(context, id);
4ed0d3e6 1523
93a23a72
YZ
1524 if (translation != CONTEXT_TT_PASS_THROUGH) {
1525 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1526 translation = info ? CONTEXT_TT_DEV_IOTLB :
1527 CONTEXT_TT_MULTI_LEVEL;
1528 }
4ed0d3e6
FY
1529 /*
1530 * In pass through mode, AW must be programmed to indicate the largest
1531 * AGAW value supported by hardware. And ASR is ignored by hardware.
1532 */
93a23a72 1533 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
4ed0d3e6 1534 context_set_address_width(context, iommu->msagaw);
93a23a72
YZ
1535 else {
1536 context_set_address_root(context, virt_to_phys(pgd));
1537 context_set_address_width(context, iommu->agaw);
1538 }
4ed0d3e6
FY
1539
1540 context_set_translation_type(context, translation);
c07e7d21
MM
1541 context_set_fault_enable(context);
1542 context_set_present(context);
5331fe6f 1543 domain_flush_cache(domain, context, sizeof(*context));
ba395927 1544
4c25a2c1
DW
1545 /*
1546 * It's a non-present to present mapping. If hardware doesn't cache
1547 * non-present entry we only need to flush the write-buffer. If the
1548 * _does_ cache non-present entries, then it does so in the special
1549 * domain #0, which we have to flush:
1550 */
1551 if (cap_caching_mode(iommu->cap)) {
1552 iommu->flush.flush_context(iommu, 0,
1553 (((u16)bus) << 8) | devfn,
1554 DMA_CCMD_MASK_NOBIT,
1555 DMA_CCMD_DEVICE_INVL);
1f0ef2aa 1556 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
4c25a2c1 1557 } else {
ba395927 1558 iommu_flush_write_buffer(iommu);
4c25a2c1 1559 }
93a23a72 1560 iommu_enable_dev_iotlb(info);
ba395927 1561 spin_unlock_irqrestore(&iommu->lock, flags);
c7151a8d
WH
1562
1563 spin_lock_irqsave(&domain->iommu_lock, flags);
1564 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1565 domain->iommu_count++;
58c610bd 1566 domain_update_iommu_cap(domain);
c7151a8d
WH
1567 }
1568 spin_unlock_irqrestore(&domain->iommu_lock, flags);
ba395927
KA
1569 return 0;
1570}
1571
1572static int
4ed0d3e6
FY
1573domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1574 int translation)
ba395927
KA
1575{
1576 int ret;
1577 struct pci_dev *tmp, *parent;
1578
276dbf99 1579 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
4ed0d3e6
FY
1580 pdev->bus->number, pdev->devfn,
1581 translation);
ba395927
KA
1582 if (ret)
1583 return ret;
1584
1585 /* dependent device mapping */
1586 tmp = pci_find_upstream_pcie_bridge(pdev);
1587 if (!tmp)
1588 return 0;
1589 /* Secondary interface's bus number and devfn 0 */
1590 parent = pdev->bus->self;
1591 while (parent != tmp) {
276dbf99
DW
1592 ret = domain_context_mapping_one(domain,
1593 pci_domain_nr(parent->bus),
1594 parent->bus->number,
4ed0d3e6 1595 parent->devfn, translation);
ba395927
KA
1596 if (ret)
1597 return ret;
1598 parent = parent->bus->self;
1599 }
1600 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1601 return domain_context_mapping_one(domain,
276dbf99 1602 pci_domain_nr(tmp->subordinate),
4ed0d3e6
FY
1603 tmp->subordinate->number, 0,
1604 translation);
ba395927
KA
1605 else /* this is a legacy PCI bridge */
1606 return domain_context_mapping_one(domain,
276dbf99
DW
1607 pci_domain_nr(tmp->bus),
1608 tmp->bus->number,
4ed0d3e6
FY
1609 tmp->devfn,
1610 translation);
ba395927
KA
1611}
1612
5331fe6f 1613static int domain_context_mapped(struct pci_dev *pdev)
ba395927
KA
1614{
1615 int ret;
1616 struct pci_dev *tmp, *parent;
5331fe6f
WH
1617 struct intel_iommu *iommu;
1618
276dbf99
DW
1619 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1620 pdev->devfn);
5331fe6f
WH
1621 if (!iommu)
1622 return -ENODEV;
ba395927 1623
276dbf99 1624 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
ba395927
KA
1625 if (!ret)
1626 return ret;
1627 /* dependent device mapping */
1628 tmp = pci_find_upstream_pcie_bridge(pdev);
1629 if (!tmp)
1630 return ret;
1631 /* Secondary interface's bus number and devfn 0 */
1632 parent = pdev->bus->self;
1633 while (parent != tmp) {
8c11e798 1634 ret = device_context_mapped(iommu, parent->bus->number,
276dbf99 1635 parent->devfn);
ba395927
KA
1636 if (!ret)
1637 return ret;
1638 parent = parent->bus->self;
1639 }
1640 if (tmp->is_pcie)
276dbf99
DW
1641 return device_context_mapped(iommu, tmp->subordinate->number,
1642 0);
ba395927 1643 else
276dbf99
DW
1644 return device_context_mapped(iommu, tmp->bus->number,
1645 tmp->devfn);
ba395927
KA
1646}
1647
9051aa02
DW
1648static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1649 struct scatterlist *sg, unsigned long phys_pfn,
1650 unsigned long nr_pages, int prot)
e1605495
DW
1651{
1652 struct dma_pte *first_pte = NULL, *pte = NULL;
9051aa02 1653 phys_addr_t uninitialized_var(pteval);
e1605495 1654 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
9051aa02 1655 unsigned long sg_res;
e1605495
DW
1656
1657 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1658
1659 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1660 return -EINVAL;
1661
1662 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1663
9051aa02
DW
1664 if (sg)
1665 sg_res = 0;
1666 else {
1667 sg_res = nr_pages + 1;
1668 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1669 }
1670
e1605495 1671 while (nr_pages--) {
c85994e4
DW
1672 uint64_t tmp;
1673
e1605495
DW
1674 if (!sg_res) {
1675 sg_res = (sg->offset + sg->length + VTD_PAGE_SIZE - 1) >> VTD_PAGE_SHIFT;
1676 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1677 sg->dma_length = sg->length;
1678 pteval = page_to_phys(sg_page(sg)) | prot;
1679 }
1680 if (!pte) {
1681 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1682 if (!pte)
1683 return -ENOMEM;
1684 }
1685 /* We don't need lock here, nobody else
1686 * touches the iova range
1687 */
7766a3fb 1688 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
c85994e4 1689 if (tmp) {
1bf20f0d 1690 static int dumps = 5;
c85994e4
DW
1691 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1692 iov_pfn, tmp, (unsigned long long)pteval);
1bf20f0d
DW
1693 if (dumps) {
1694 dumps--;
1695 debug_dma_dump_mappings(NULL);
1696 }
1697 WARN_ON(1);
1698 }
e1605495 1699 pte++;
75e6bf96 1700 if (!nr_pages || first_pte_in_page(pte)) {
e1605495
DW
1701 domain_flush_cache(domain, first_pte,
1702 (void *)pte - (void *)first_pte);
1703 pte = NULL;
1704 }
1705 iov_pfn++;
1706 pteval += VTD_PAGE_SIZE;
1707 sg_res--;
1708 if (!sg_res)
1709 sg = sg_next(sg);
1710 }
1711 return 0;
1712}
1713
9051aa02
DW
1714static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1715 struct scatterlist *sg, unsigned long nr_pages,
1716 int prot)
ba395927 1717{
9051aa02
DW
1718 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1719}
6f6a00e4 1720
9051aa02
DW
1721static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1722 unsigned long phys_pfn, unsigned long nr_pages,
1723 int prot)
1724{
1725 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
ba395927
KA
1726}
1727
c7151a8d 1728static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
ba395927 1729{
c7151a8d
WH
1730 if (!iommu)
1731 return;
8c11e798
WH
1732
1733 clear_context_table(iommu, bus, devfn);
1734 iommu->flush.flush_context(iommu, 0, 0, 0,
4c25a2c1 1735 DMA_CCMD_GLOBAL_INVL);
1f0ef2aa 1736 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
ba395927
KA
1737}
1738
1739static void domain_remove_dev_info(struct dmar_domain *domain)
1740{
1741 struct device_domain_info *info;
1742 unsigned long flags;
c7151a8d 1743 struct intel_iommu *iommu;
ba395927
KA
1744
1745 spin_lock_irqsave(&device_domain_lock, flags);
1746 while (!list_empty(&domain->devices)) {
1747 info = list_entry(domain->devices.next,
1748 struct device_domain_info, link);
1749 list_del(&info->link);
1750 list_del(&info->global);
1751 if (info->dev)
358dd8ac 1752 info->dev->dev.archdata.iommu = NULL;
ba395927
KA
1753 spin_unlock_irqrestore(&device_domain_lock, flags);
1754
93a23a72 1755 iommu_disable_dev_iotlb(info);
276dbf99 1756 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
c7151a8d 1757 iommu_detach_dev(iommu, info->bus, info->devfn);
ba395927
KA
1758 free_devinfo_mem(info);
1759
1760 spin_lock_irqsave(&device_domain_lock, flags);
1761 }
1762 spin_unlock_irqrestore(&device_domain_lock, flags);
1763}
1764
1765/*
1766 * find_domain
358dd8ac 1767 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
ba395927 1768 */
38717946 1769static struct dmar_domain *
ba395927
KA
1770find_domain(struct pci_dev *pdev)
1771{
1772 struct device_domain_info *info;
1773
1774 /* No lock here, assumes no domain exit in normal case */
358dd8ac 1775 info = pdev->dev.archdata.iommu;
ba395927
KA
1776 if (info)
1777 return info->domain;
1778 return NULL;
1779}
1780
ba395927
KA
1781/* domain is initialized */
1782static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1783{
1784 struct dmar_domain *domain, *found = NULL;
1785 struct intel_iommu *iommu;
1786 struct dmar_drhd_unit *drhd;
1787 struct device_domain_info *info, *tmp;
1788 struct pci_dev *dev_tmp;
1789 unsigned long flags;
1790 int bus = 0, devfn = 0;
276dbf99 1791 int segment;
2c2e2c38 1792 int ret;
ba395927
KA
1793
1794 domain = find_domain(pdev);
1795 if (domain)
1796 return domain;
1797
276dbf99
DW
1798 segment = pci_domain_nr(pdev->bus);
1799
ba395927
KA
1800 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1801 if (dev_tmp) {
1802 if (dev_tmp->is_pcie) {
1803 bus = dev_tmp->subordinate->number;
1804 devfn = 0;
1805 } else {
1806 bus = dev_tmp->bus->number;
1807 devfn = dev_tmp->devfn;
1808 }
1809 spin_lock_irqsave(&device_domain_lock, flags);
1810 list_for_each_entry(info, &device_domain_list, global) {
276dbf99
DW
1811 if (info->segment == segment &&
1812 info->bus == bus && info->devfn == devfn) {
ba395927
KA
1813 found = info->domain;
1814 break;
1815 }
1816 }
1817 spin_unlock_irqrestore(&device_domain_lock, flags);
1818 /* pcie-pci bridge already has a domain, uses it */
1819 if (found) {
1820 domain = found;
1821 goto found_domain;
1822 }
1823 }
1824
2c2e2c38
FY
1825 domain = alloc_domain();
1826 if (!domain)
1827 goto error;
1828
ba395927
KA
1829 /* Allocate new domain for the device */
1830 drhd = dmar_find_matched_drhd_unit(pdev);
1831 if (!drhd) {
1832 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1833 pci_name(pdev));
1834 return NULL;
1835 }
1836 iommu = drhd->iommu;
1837
2c2e2c38
FY
1838 ret = iommu_attach_domain(domain, iommu);
1839 if (ret) {
1840 domain_exit(domain);
ba395927 1841 goto error;
2c2e2c38 1842 }
ba395927
KA
1843
1844 if (domain_init(domain, gaw)) {
1845 domain_exit(domain);
1846 goto error;
1847 }
1848
1849 /* register pcie-to-pci device */
1850 if (dev_tmp) {
1851 info = alloc_devinfo_mem();
1852 if (!info) {
1853 domain_exit(domain);
1854 goto error;
1855 }
276dbf99 1856 info->segment = segment;
ba395927
KA
1857 info->bus = bus;
1858 info->devfn = devfn;
1859 info->dev = NULL;
1860 info->domain = domain;
1861 /* This domain is shared by devices under p2p bridge */
3b5410e7 1862 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
ba395927
KA
1863
1864 /* pcie-to-pci bridge already has a domain, uses it */
1865 found = NULL;
1866 spin_lock_irqsave(&device_domain_lock, flags);
1867 list_for_each_entry(tmp, &device_domain_list, global) {
276dbf99
DW
1868 if (tmp->segment == segment &&
1869 tmp->bus == bus && tmp->devfn == devfn) {
ba395927
KA
1870 found = tmp->domain;
1871 break;
1872 }
1873 }
1874 if (found) {
1875 free_devinfo_mem(info);
1876 domain_exit(domain);
1877 domain = found;
1878 } else {
1879 list_add(&info->link, &domain->devices);
1880 list_add(&info->global, &device_domain_list);
1881 }
1882 spin_unlock_irqrestore(&device_domain_lock, flags);
1883 }
1884
1885found_domain:
1886 info = alloc_devinfo_mem();
1887 if (!info)
1888 goto error;
276dbf99 1889 info->segment = segment;
ba395927
KA
1890 info->bus = pdev->bus->number;
1891 info->devfn = pdev->devfn;
1892 info->dev = pdev;
1893 info->domain = domain;
1894 spin_lock_irqsave(&device_domain_lock, flags);
1895 /* somebody is fast */
1896 found = find_domain(pdev);
1897 if (found != NULL) {
1898 spin_unlock_irqrestore(&device_domain_lock, flags);
1899 if (found != domain) {
1900 domain_exit(domain);
1901 domain = found;
1902 }
1903 free_devinfo_mem(info);
1904 return domain;
1905 }
1906 list_add(&info->link, &domain->devices);
1907 list_add(&info->global, &device_domain_list);
358dd8ac 1908 pdev->dev.archdata.iommu = info;
ba395927
KA
1909 spin_unlock_irqrestore(&device_domain_lock, flags);
1910 return domain;
1911error:
1912 /* recheck it here, maybe others set it */
1913 return find_domain(pdev);
1914}
1915
2c2e2c38
FY
1916static int iommu_identity_mapping;
1917
b213203e
DW
1918static int iommu_domain_identity_map(struct dmar_domain *domain,
1919 unsigned long long start,
1920 unsigned long long end)
ba395927 1921{
c5395d5c
DW
1922 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1923 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1924
1925 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1926 dma_to_mm_pfn(last_vpfn))) {
ba395927 1927 printk(KERN_ERR "IOMMU: reserve iova failed\n");
b213203e 1928 return -ENOMEM;
ba395927
KA
1929 }
1930
c5395d5c
DW
1931 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1932 start, end, domain->id);
ba395927
KA
1933 /*
1934 * RMRR range might have overlap with physical memory range,
1935 * clear it first
1936 */
c5395d5c 1937 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
ba395927 1938
c5395d5c
DW
1939 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1940 last_vpfn - first_vpfn + 1,
61df7443 1941 DMA_PTE_READ|DMA_PTE_WRITE);
b213203e
DW
1942}
1943
1944static int iommu_prepare_identity_map(struct pci_dev *pdev,
1945 unsigned long long start,
1946 unsigned long long end)
1947{
1948 struct dmar_domain *domain;
1949 int ret;
1950
1951 printk(KERN_INFO
1952 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1953 pci_name(pdev), start, end);
1954
c7ab48d2 1955 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
b213203e
DW
1956 if (!domain)
1957 return -ENOMEM;
1958
1959 ret = iommu_domain_identity_map(domain, start, end);
ba395927
KA
1960 if (ret)
1961 goto error;
1962
1963 /* context entry init */
4ed0d3e6 1964 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
b213203e
DW
1965 if (ret)
1966 goto error;
1967
1968 return 0;
1969
1970 error:
ba395927
KA
1971 domain_exit(domain);
1972 return ret;
ba395927
KA
1973}
1974
1975static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1976 struct pci_dev *pdev)
1977{
358dd8ac 1978 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
ba395927
KA
1979 return 0;
1980 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1981 rmrr->end_address + 1);
1982}
1983
49a0429e
KA
1984#ifdef CONFIG_DMAR_FLOPPY_WA
1985static inline void iommu_prepare_isa(void)
1986{
1987 struct pci_dev *pdev;
1988 int ret;
1989
1990 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1991 if (!pdev)
1992 return;
1993
c7ab48d2 1994 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
49a0429e
KA
1995 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1996
1997 if (ret)
c7ab48d2
DW
1998 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
1999 "floppy might not work\n");
49a0429e
KA
2000
2001}
2002#else
2003static inline void iommu_prepare_isa(void)
2004{
2005 return;
2006}
2007#endif /* !CONFIG_DMAR_FLPY_WA */
2008
4ed0d3e6
FY
2009/* Initialize each context entry as pass through.*/
2010static int __init init_context_pass_through(void)
2011{
2012 struct pci_dev *pdev = NULL;
2013 struct dmar_domain *domain;
2014 int ret;
2015
2016 for_each_pci_dev(pdev) {
2017 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2018 ret = domain_context_mapping(domain, pdev,
2019 CONTEXT_TT_PASS_THROUGH);
2020 if (ret)
2021 return ret;
2022 }
2023 return 0;
2024}
2025
2c2e2c38 2026static int md_domain_init(struct dmar_domain *domain, int guest_width);
c7ab48d2
DW
2027
2028static int __init si_domain_work_fn(unsigned long start_pfn,
2029 unsigned long end_pfn, void *datax)
2030{
2031 int *ret = datax;
2032
2033 *ret = iommu_domain_identity_map(si_domain,
2034 (uint64_t)start_pfn << PAGE_SHIFT,
2035 (uint64_t)end_pfn << PAGE_SHIFT);
2036 return *ret;
2037
2038}
2039
2c2e2c38
FY
2040static int si_domain_init(void)
2041{
2042 struct dmar_drhd_unit *drhd;
2043 struct intel_iommu *iommu;
c7ab48d2 2044 int nid, ret = 0;
2c2e2c38
FY
2045
2046 si_domain = alloc_domain();
2047 if (!si_domain)
2048 return -EFAULT;
2049
c7ab48d2 2050 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2c2e2c38
FY
2051
2052 for_each_active_iommu(iommu, drhd) {
2053 ret = iommu_attach_domain(si_domain, iommu);
2054 if (ret) {
2055 domain_exit(si_domain);
2056 return -EFAULT;
2057 }
2058 }
2059
2060 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2061 domain_exit(si_domain);
2062 return -EFAULT;
2063 }
2064
2065 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2066
c7ab48d2
DW
2067 for_each_online_node(nid) {
2068 work_with_active_regions(nid, si_domain_work_fn, &ret);
2069 if (ret)
2070 return ret;
2071 }
2072
2c2e2c38
FY
2073 return 0;
2074}
2075
2076static void domain_remove_one_dev_info(struct dmar_domain *domain,
2077 struct pci_dev *pdev);
2078static int identity_mapping(struct pci_dev *pdev)
2079{
2080 struct device_domain_info *info;
2081
2082 if (likely(!iommu_identity_mapping))
2083 return 0;
2084
2085
2086 list_for_each_entry(info, &si_domain->devices, link)
2087 if (info->dev == pdev)
2088 return 1;
2089 return 0;
2090}
2091
2092static int domain_add_dev_info(struct dmar_domain *domain,
2093 struct pci_dev *pdev)
2094{
2095 struct device_domain_info *info;
2096 unsigned long flags;
2097
2098 info = alloc_devinfo_mem();
2099 if (!info)
2100 return -ENOMEM;
2101
2102 info->segment = pci_domain_nr(pdev->bus);
2103 info->bus = pdev->bus->number;
2104 info->devfn = pdev->devfn;
2105 info->dev = pdev;
2106 info->domain = domain;
2107
2108 spin_lock_irqsave(&device_domain_lock, flags);
2109 list_add(&info->link, &domain->devices);
2110 list_add(&info->global, &device_domain_list);
2111 pdev->dev.archdata.iommu = info;
2112 spin_unlock_irqrestore(&device_domain_lock, flags);
2113
2114 return 0;
2115}
2116
6941af28
DW
2117static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2118{
2119 if (iommu_identity_mapping == 2)
2120 return IS_GFX_DEVICE(pdev);
2121
3dfc813d
DW
2122 /*
2123 * We want to start off with all devices in the 1:1 domain, and
2124 * take them out later if we find they can't access all of memory.
2125 *
2126 * However, we can't do this for PCI devices behind bridges,
2127 * because all PCI devices behind the same bridge will end up
2128 * with the same source-id on their transactions.
2129 *
2130 * Practically speaking, we can't change things around for these
2131 * devices at run-time, because we can't be sure there'll be no
2132 * DMA transactions in flight for any of their siblings.
2133 *
2134 * So PCI devices (unless they're on the root bus) as well as
2135 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2136 * the 1:1 domain, just in _case_ one of their siblings turns out
2137 * not to be able to map all of memory.
2138 */
2139 if (!pdev->is_pcie) {
2140 if (!pci_is_root_bus(pdev->bus))
2141 return 0;
2142 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2143 return 0;
2144 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2145 return 0;
2146
2147 /*
2148 * At boot time, we don't yet know if devices will be 64-bit capable.
2149 * Assume that they will -- if they turn out not to be, then we can
2150 * take them out of the 1:1 domain later.
2151 */
6941af28
DW
2152 if (!startup)
2153 return pdev->dma_mask > DMA_BIT_MASK(32);
2154
2155 return 1;
2156}
2157
2c2e2c38
FY
2158static int iommu_prepare_static_identity_mapping(void)
2159{
2c2e2c38
FY
2160 struct pci_dev *pdev = NULL;
2161 int ret;
2162
2163 ret = si_domain_init();
2164 if (ret)
2165 return -EFAULT;
2166
2c2e2c38 2167 for_each_pci_dev(pdev) {
6941af28 2168 if (iommu_should_identity_map(pdev, 1)) {
62edf5dc
DW
2169 printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
2170 pci_name(pdev));
2171
2172 ret = domain_context_mapping(si_domain, pdev,
2173 CONTEXT_TT_MULTI_LEVEL);
2174 if (ret)
2175 return ret;
2176 ret = domain_add_dev_info(si_domain, pdev);
2177 if (ret)
2178 return ret;
2179 }
2c2e2c38
FY
2180 }
2181
2182 return 0;
2183}
2184
2185int __init init_dmars(void)
ba395927
KA
2186{
2187 struct dmar_drhd_unit *drhd;
2188 struct dmar_rmrr_unit *rmrr;
2189 struct pci_dev *pdev;
2190 struct intel_iommu *iommu;
9d783ba0 2191 int i, ret;
4ed0d3e6 2192 int pass_through = 1;
ba395927 2193
2c2e2c38
FY
2194 /*
2195 * In case pass through can not be enabled, iommu tries to use identity
2196 * mapping.
2197 */
2198 if (iommu_pass_through)
2199 iommu_identity_mapping = 1;
2200
ba395927
KA
2201 /*
2202 * for each drhd
2203 * allocate root
2204 * initialize and program root entry to not present
2205 * endfor
2206 */
2207 for_each_drhd_unit(drhd) {
5e0d2a6f 2208 g_num_of_iommus++;
2209 /*
2210 * lock not needed as this is only incremented in the single
2211 * threaded kernel __init code path all other access are read
2212 * only
2213 */
2214 }
2215
d9630fe9
WH
2216 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2217 GFP_KERNEL);
2218 if (!g_iommus) {
2219 printk(KERN_ERR "Allocating global iommu array failed\n");
2220 ret = -ENOMEM;
2221 goto error;
2222 }
2223
80b20dd8 2224 deferred_flush = kzalloc(g_num_of_iommus *
2225 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2226 if (!deferred_flush) {
5e0d2a6f 2227 ret = -ENOMEM;
2228 goto error;
2229 }
2230
5e0d2a6f 2231 for_each_drhd_unit(drhd) {
2232 if (drhd->ignored)
2233 continue;
1886e8a9
SS
2234
2235 iommu = drhd->iommu;
d9630fe9 2236 g_iommus[iommu->seq_id] = iommu;
ba395927 2237
e61d98d8
SS
2238 ret = iommu_init_domains(iommu);
2239 if (ret)
2240 goto error;
2241
ba395927
KA
2242 /*
2243 * TBD:
2244 * we could share the same root & context tables
2245 * amoung all IOMMU's. Need to Split it later.
2246 */
2247 ret = iommu_alloc_root_entry(iommu);
2248 if (ret) {
2249 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2250 goto error;
2251 }
4ed0d3e6
FY
2252 if (!ecap_pass_through(iommu->ecap))
2253 pass_through = 0;
ba395927 2254 }
4ed0d3e6
FY
2255 if (iommu_pass_through)
2256 if (!pass_through) {
2257 printk(KERN_INFO
2258 "Pass Through is not supported by hardware.\n");
2259 iommu_pass_through = 0;
2260 }
ba395927 2261
1531a6a6
SS
2262 /*
2263 * Start from the sane iommu hardware state.
2264 */
a77b67d4
YS
2265 for_each_drhd_unit(drhd) {
2266 if (drhd->ignored)
2267 continue;
2268
2269 iommu = drhd->iommu;
1531a6a6
SS
2270
2271 /*
2272 * If the queued invalidation is already initialized by us
2273 * (for example, while enabling interrupt-remapping) then
2274 * we got the things already rolling from a sane state.
2275 */
2276 if (iommu->qi)
2277 continue;
2278
2279 /*
2280 * Clear any previous faults.
2281 */
2282 dmar_fault(-1, iommu);
2283 /*
2284 * Disable queued invalidation if supported and already enabled
2285 * before OS handover.
2286 */
2287 dmar_disable_qi(iommu);
2288 }
2289
2290 for_each_drhd_unit(drhd) {
2291 if (drhd->ignored)
2292 continue;
2293
2294 iommu = drhd->iommu;
2295
a77b67d4
YS
2296 if (dmar_enable_qi(iommu)) {
2297 /*
2298 * Queued Invalidate not enabled, use Register Based
2299 * Invalidate
2300 */
2301 iommu->flush.flush_context = __iommu_flush_context;
2302 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2303 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
b4e0f9eb
FT
2304 "invalidation\n",
2305 (unsigned long long)drhd->reg_base_addr);
a77b67d4
YS
2306 } else {
2307 iommu->flush.flush_context = qi_flush_context;
2308 iommu->flush.flush_iotlb = qi_flush_iotlb;
2309 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
b4e0f9eb
FT
2310 "invalidation\n",
2311 (unsigned long long)drhd->reg_base_addr);
a77b67d4
YS
2312 }
2313 }
2314
ba395927 2315 /*
4ed0d3e6
FY
2316 * If pass through is set and enabled, context entries of all pci
2317 * devices are intialized by pass through translation type.
ba395927 2318 */
4ed0d3e6
FY
2319 if (iommu_pass_through) {
2320 ret = init_context_pass_through();
2321 if (ret) {
2322 printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2323 iommu_pass_through = 0;
ba395927
KA
2324 }
2325 }
2326
ba395927 2327 /*
4ed0d3e6 2328 * If pass through is not set or not enabled, setup context entries for
2c2e2c38
FY
2329 * identity mappings for rmrr, gfx, and isa and may fall back to static
2330 * identity mapping if iommu_identity_mapping is set.
ba395927 2331 */
4ed0d3e6 2332 if (!iommu_pass_through) {
62edf5dc
DW
2333#ifdef CONFIG_DMAR_BROKEN_GFX_WA
2334 if (!iommu_identity_mapping)
2335 iommu_identity_mapping = 2;
2336#endif
2c2e2c38
FY
2337 if (iommu_identity_mapping)
2338 iommu_prepare_static_identity_mapping();
4ed0d3e6
FY
2339 /*
2340 * For each rmrr
2341 * for each dev attached to rmrr
2342 * do
2343 * locate drhd for dev, alloc domain for dev
2344 * allocate free domain
2345 * allocate page table entries for rmrr
2346 * if context not allocated for bus
2347 * allocate and init context
2348 * set present in root table for this bus
2349 * init context with domain, translation etc
2350 * endfor
2351 * endfor
2352 */
2c2e2c38 2353 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
4ed0d3e6
FY
2354 for_each_rmrr_units(rmrr) {
2355 for (i = 0; i < rmrr->devices_cnt; i++) {
2356 pdev = rmrr->devices[i];
2357 /*
2358 * some BIOS lists non-exist devices in DMAR
2359 * table.
2360 */
2361 if (!pdev)
2362 continue;
2363 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2364 if (ret)
2365 printk(KERN_ERR
ba395927 2366 "IOMMU: mapping reserved region failed\n");
4ed0d3e6 2367 }
ba395927 2368 }
ba395927 2369
4ed0d3e6
FY
2370 iommu_prepare_isa();
2371 }
49a0429e 2372
ba395927
KA
2373 /*
2374 * for each drhd
2375 * enable fault log
2376 * global invalidate context cache
2377 * global invalidate iotlb
2378 * enable translation
2379 */
2380 for_each_drhd_unit(drhd) {
2381 if (drhd->ignored)
2382 continue;
2383 iommu = drhd->iommu;
ba395927
KA
2384
2385 iommu_flush_write_buffer(iommu);
2386
3460a6d9
KA
2387 ret = dmar_set_interrupt(iommu);
2388 if (ret)
2389 goto error;
2390
ba395927
KA
2391 iommu_set_root_entry(iommu);
2392
4c25a2c1 2393 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
1f0ef2aa 2394 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
f8bab735 2395 iommu_disable_protect_mem_regions(iommu);
2396
ba395927
KA
2397 ret = iommu_enable_translation(iommu);
2398 if (ret)
2399 goto error;
2400 }
2401
2402 return 0;
2403error:
2404 for_each_drhd_unit(drhd) {
2405 if (drhd->ignored)
2406 continue;
2407 iommu = drhd->iommu;
2408 free_iommu(iommu);
2409 }
d9630fe9 2410 kfree(g_iommus);
ba395927
KA
2411 return ret;
2412}
2413
5a5e02a6 2414/* Returns a number of VTD pages, but aligned to MM page size */
88cb6a74
DW
2415static inline unsigned long aligned_nrpages(unsigned long host_addr,
2416 size_t size)
ba395927 2417{
88cb6a74 2418 host_addr &= ~PAGE_MASK;
5a5e02a6 2419 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
ba395927
KA
2420}
2421
5a5e02a6 2422/* This takes a number of _MM_ pages, not VTD pages */
875764de
DW
2423static struct iova *intel_alloc_iova(struct device *dev,
2424 struct dmar_domain *domain,
2425 unsigned long nrpages, uint64_t dma_mask)
ba395927 2426{
ba395927 2427 struct pci_dev *pdev = to_pci_dev(dev);
ba395927 2428 struct iova *iova = NULL;
ba395927 2429
875764de
DW
2430 /* Restrict dma_mask to the width that the iommu can handle */
2431 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2432
2433 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
ba395927
KA
2434 /*
2435 * First try to allocate an io virtual address in
284901a9 2436 * DMA_BIT_MASK(32) and if that fails then try allocating
3609801e 2437 * from higher range
ba395927 2438 */
875764de
DW
2439 iova = alloc_iova(&domain->iovad, nrpages,
2440 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2441 if (iova)
2442 return iova;
2443 }
2444 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2445 if (unlikely(!iova)) {
2446 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2447 nrpages, pci_name(pdev));
f76aec76
KA
2448 return NULL;
2449 }
2450
2451 return iova;
2452}
2453
147202aa 2454static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
f76aec76
KA
2455{
2456 struct dmar_domain *domain;
2457 int ret;
2458
2459 domain = get_domain_for_dev(pdev,
2460 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2461 if (!domain) {
2462 printk(KERN_ERR
2463 "Allocating domain for %s failed", pci_name(pdev));
4fe05bbc 2464 return NULL;
ba395927
KA
2465 }
2466
2467 /* make sure context mapping is ok */
5331fe6f 2468 if (unlikely(!domain_context_mapped(pdev))) {
4ed0d3e6
FY
2469 ret = domain_context_mapping(domain, pdev,
2470 CONTEXT_TT_MULTI_LEVEL);
f76aec76
KA
2471 if (ret) {
2472 printk(KERN_ERR
2473 "Domain context map for %s failed",
2474 pci_name(pdev));
4fe05bbc 2475 return NULL;
f76aec76 2476 }
ba395927
KA
2477 }
2478
f76aec76
KA
2479 return domain;
2480}
2481
147202aa
DW
2482static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2483{
2484 struct device_domain_info *info;
2485
2486 /* No lock here, assumes no domain exit in normal case */
2487 info = dev->dev.archdata.iommu;
2488 if (likely(info))
2489 return info->domain;
2490
2491 return __get_valid_domain_for_dev(dev);
2492}
2493
2c2e2c38
FY
2494static int iommu_dummy(struct pci_dev *pdev)
2495{
2496 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2497}
2498
2499/* Check if the pdev needs to go through non-identity map and unmap process.*/
73676832 2500static int iommu_no_mapping(struct device *dev)
2c2e2c38 2501{
73676832 2502 struct pci_dev *pdev;
2c2e2c38
FY
2503 int found;
2504
73676832
DW
2505 if (unlikely(dev->bus != &pci_bus_type))
2506 return 1;
2507
2508 pdev = to_pci_dev(dev);
1e4c64c4
DW
2509 if (iommu_dummy(pdev))
2510 return 1;
2511
2c2e2c38 2512 if (!iommu_identity_mapping)
1e4c64c4 2513 return 0;
2c2e2c38
FY
2514
2515 found = identity_mapping(pdev);
2516 if (found) {
6941af28 2517 if (iommu_should_identity_map(pdev, 0))
2c2e2c38
FY
2518 return 1;
2519 else {
2520 /*
2521 * 32 bit DMA is removed from si_domain and fall back
2522 * to non-identity mapping.
2523 */
2524 domain_remove_one_dev_info(si_domain, pdev);
2525 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2526 pci_name(pdev));
2527 return 0;
2528 }
2529 } else {
2530 /*
2531 * In case of a detached 64 bit DMA device from vm, the device
2532 * is put into si_domain for identity mapping.
2533 */
6941af28 2534 if (iommu_should_identity_map(pdev, 0)) {
2c2e2c38
FY
2535 int ret;
2536 ret = domain_add_dev_info(si_domain, pdev);
1b7bc0a1
DW
2537 if (ret)
2538 return 0;
2539 ret = domain_context_mapping(si_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2c2e2c38
FY
2540 if (!ret) {
2541 printk(KERN_INFO "64bit %s uses identity mapping\n",
2542 pci_name(pdev));
2543 return 1;
2544 }
2545 }
2546 }
2547
1e4c64c4 2548 return 0;
2c2e2c38
FY
2549}
2550
bb9e6d65
FT
2551static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2552 size_t size, int dir, u64 dma_mask)
f76aec76
KA
2553{
2554 struct pci_dev *pdev = to_pci_dev(hwdev);
f76aec76 2555 struct dmar_domain *domain;
5b6985ce 2556 phys_addr_t start_paddr;
f76aec76
KA
2557 struct iova *iova;
2558 int prot = 0;
6865f0d1 2559 int ret;
8c11e798 2560 struct intel_iommu *iommu;
f76aec76
KA
2561
2562 BUG_ON(dir == DMA_NONE);
2c2e2c38 2563
73676832 2564 if (iommu_no_mapping(hwdev))
6865f0d1 2565 return paddr;
f76aec76
KA
2566
2567 domain = get_valid_domain_for_dev(pdev);
2568 if (!domain)
2569 return 0;
2570
8c11e798 2571 iommu = domain_get_iommu(domain);
88cb6a74 2572 size = aligned_nrpages(paddr, size);
f76aec76 2573
5a5e02a6
DW
2574 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2575 pdev->dma_mask);
f76aec76
KA
2576 if (!iova)
2577 goto error;
2578
ba395927
KA
2579 /*
2580 * Check if DMAR supports zero-length reads on write only
2581 * mappings..
2582 */
2583 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 2584 !cap_zlr(iommu->cap))
ba395927
KA
2585 prot |= DMA_PTE_READ;
2586 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2587 prot |= DMA_PTE_WRITE;
2588 /*
6865f0d1 2589 * paddr - (paddr + size) might be partial page, we should map the whole
ba395927 2590 * page. Note: if two part of one page are separately mapped, we
6865f0d1 2591 * might have two guest_addr mapping to the same host paddr, but this
ba395927
KA
2592 * is not a big problem
2593 */
0ab36de2
DW
2594 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2595 paddr >> VTD_PAGE_SHIFT, size, prot);
ba395927
KA
2596 if (ret)
2597 goto error;
2598
1f0ef2aa
DW
2599 /* it's a non-present to present mapping. Only flush if caching mode */
2600 if (cap_caching_mode(iommu->cap))
03d6a246 2601 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
1f0ef2aa 2602 else
8c11e798 2603 iommu_flush_write_buffer(iommu);
f76aec76 2604
03d6a246
DW
2605 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2606 start_paddr += paddr & ~PAGE_MASK;
2607 return start_paddr;
ba395927 2608
ba395927 2609error:
f76aec76
KA
2610 if (iova)
2611 __free_iova(&domain->iovad, iova);
4cf2e75d 2612 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
5b6985ce 2613 pci_name(pdev), size, (unsigned long long)paddr, dir);
ba395927
KA
2614 return 0;
2615}
2616
ffbbef5c
FT
2617static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2618 unsigned long offset, size_t size,
2619 enum dma_data_direction dir,
2620 struct dma_attrs *attrs)
bb9e6d65 2621{
ffbbef5c
FT
2622 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2623 dir, to_pci_dev(dev)->dma_mask);
bb9e6d65
FT
2624}
2625
5e0d2a6f 2626static void flush_unmaps(void)
2627{
80b20dd8 2628 int i, j;
5e0d2a6f 2629
5e0d2a6f 2630 timer_on = 0;
2631
2632 /* just flush them all */
2633 for (i = 0; i < g_num_of_iommus; i++) {
a2bb8459
WH
2634 struct intel_iommu *iommu = g_iommus[i];
2635 if (!iommu)
2636 continue;
c42d9f32 2637
9dd2fe89
YZ
2638 if (!deferred_flush[i].next)
2639 continue;
2640
2641 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
93a23a72 2642 DMA_TLB_GLOBAL_FLUSH);
9dd2fe89 2643 for (j = 0; j < deferred_flush[i].next; j++) {
93a23a72
YZ
2644 unsigned long mask;
2645 struct iova *iova = deferred_flush[i].iova[j];
2646
2647 mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2648 mask = ilog2(mask >> VTD_PAGE_SHIFT);
2649 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2650 iova->pfn_lo << PAGE_SHIFT, mask);
2651 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
80b20dd8 2652 }
9dd2fe89 2653 deferred_flush[i].next = 0;
5e0d2a6f 2654 }
2655
5e0d2a6f 2656 list_size = 0;
5e0d2a6f 2657}
2658
2659static void flush_unmaps_timeout(unsigned long data)
2660{
80b20dd8 2661 unsigned long flags;
2662
2663 spin_lock_irqsave(&async_umap_flush_lock, flags);
5e0d2a6f 2664 flush_unmaps();
80b20dd8 2665 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
5e0d2a6f 2666}
2667
2668static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2669{
2670 unsigned long flags;
80b20dd8 2671 int next, iommu_id;
8c11e798 2672 struct intel_iommu *iommu;
5e0d2a6f 2673
2674 spin_lock_irqsave(&async_umap_flush_lock, flags);
80b20dd8 2675 if (list_size == HIGH_WATER_MARK)
2676 flush_unmaps();
2677
8c11e798
WH
2678 iommu = domain_get_iommu(dom);
2679 iommu_id = iommu->seq_id;
c42d9f32 2680
80b20dd8 2681 next = deferred_flush[iommu_id].next;
2682 deferred_flush[iommu_id].domain[next] = dom;
2683 deferred_flush[iommu_id].iova[next] = iova;
2684 deferred_flush[iommu_id].next++;
5e0d2a6f 2685
2686 if (!timer_on) {
2687 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2688 timer_on = 1;
2689 }
2690 list_size++;
2691 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2692}
2693
ffbbef5c
FT
2694static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2695 size_t size, enum dma_data_direction dir,
2696 struct dma_attrs *attrs)
ba395927 2697{
ba395927 2698 struct pci_dev *pdev = to_pci_dev(dev);
f76aec76 2699 struct dmar_domain *domain;
d794dc9b 2700 unsigned long start_pfn, last_pfn;
ba395927 2701 struct iova *iova;
8c11e798 2702 struct intel_iommu *iommu;
ba395927 2703
73676832 2704 if (iommu_no_mapping(dev))
f76aec76 2705 return;
2c2e2c38 2706
ba395927
KA
2707 domain = find_domain(pdev);
2708 BUG_ON(!domain);
2709
8c11e798
WH
2710 iommu = domain_get_iommu(domain);
2711
ba395927 2712 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
85b98276
DW
2713 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2714 (unsigned long long)dev_addr))
ba395927 2715 return;
ba395927 2716
d794dc9b
DW
2717 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2718 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
ba395927 2719
d794dc9b
DW
2720 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2721 pci_name(pdev), start_pfn, last_pfn);
ba395927 2722
f76aec76 2723 /* clear the whole page */
d794dc9b
DW
2724 dma_pte_clear_range(domain, start_pfn, last_pfn);
2725
f76aec76 2726 /* free page tables */
d794dc9b
DW
2727 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2728
5e0d2a6f 2729 if (intel_iommu_strict) {
03d6a246 2730 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
d794dc9b 2731 last_pfn - start_pfn + 1);
5e0d2a6f 2732 /* free iova */
2733 __free_iova(&domain->iovad, iova);
2734 } else {
2735 add_unmap(domain, iova);
2736 /*
2737 * queue up the release of the unmap to save the 1/6th of the
2738 * cpu used up by the iotlb flush operation...
2739 */
5e0d2a6f 2740 }
ba395927
KA
2741}
2742
d7ab5c46
FT
2743static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2744 dma_addr_t *dma_handle, gfp_t flags)
ba395927
KA
2745{
2746 void *vaddr;
2747 int order;
2748
5b6985ce 2749 size = PAGE_ALIGN(size);
ba395927
KA
2750 order = get_order(size);
2751 flags &= ~(GFP_DMA | GFP_DMA32);
2752
2753 vaddr = (void *)__get_free_pages(flags, order);
2754 if (!vaddr)
2755 return NULL;
2756 memset(vaddr, 0, size);
2757
bb9e6d65
FT
2758 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2759 DMA_BIDIRECTIONAL,
2760 hwdev->coherent_dma_mask);
ba395927
KA
2761 if (*dma_handle)
2762 return vaddr;
2763 free_pages((unsigned long)vaddr, order);
2764 return NULL;
2765}
2766
d7ab5c46
FT
2767static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2768 dma_addr_t dma_handle)
ba395927
KA
2769{
2770 int order;
2771
5b6985ce 2772 size = PAGE_ALIGN(size);
ba395927
KA
2773 order = get_order(size);
2774
0db9b7ae 2775 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
ba395927
KA
2776 free_pages((unsigned long)vaddr, order);
2777}
2778
d7ab5c46
FT
2779static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2780 int nelems, enum dma_data_direction dir,
2781 struct dma_attrs *attrs)
ba395927 2782{
ba395927
KA
2783 struct pci_dev *pdev = to_pci_dev(hwdev);
2784 struct dmar_domain *domain;
d794dc9b 2785 unsigned long start_pfn, last_pfn;
f76aec76 2786 struct iova *iova;
8c11e798 2787 struct intel_iommu *iommu;
ba395927 2788
73676832 2789 if (iommu_no_mapping(hwdev))
ba395927
KA
2790 return;
2791
2792 domain = find_domain(pdev);
8c11e798
WH
2793 BUG_ON(!domain);
2794
2795 iommu = domain_get_iommu(domain);
ba395927 2796
c03ab37c 2797 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
85b98276
DW
2798 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2799 (unsigned long long)sglist[0].dma_address))
f76aec76 2800 return;
f76aec76 2801
d794dc9b
DW
2802 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2803 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
f76aec76
KA
2804
2805 /* clear the whole page */
d794dc9b
DW
2806 dma_pte_clear_range(domain, start_pfn, last_pfn);
2807
f76aec76 2808 /* free page tables */
d794dc9b 2809 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
f76aec76 2810
acea0018
DW
2811 if (intel_iommu_strict) {
2812 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2813 last_pfn - start_pfn + 1);
2814 /* free iova */
2815 __free_iova(&domain->iovad, iova);
2816 } else {
2817 add_unmap(domain, iova);
2818 /*
2819 * queue up the release of the unmap to save the 1/6th of the
2820 * cpu used up by the iotlb flush operation...
2821 */
2822 }
ba395927
KA
2823}
2824
ba395927 2825static int intel_nontranslate_map_sg(struct device *hddev,
c03ab37c 2826 struct scatterlist *sglist, int nelems, int dir)
ba395927
KA
2827{
2828 int i;
c03ab37c 2829 struct scatterlist *sg;
ba395927 2830
c03ab37c 2831 for_each_sg(sglist, sg, nelems, i) {
12d4d40e 2832 BUG_ON(!sg_page(sg));
4cf2e75d 2833 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
c03ab37c 2834 sg->dma_length = sg->length;
ba395927
KA
2835 }
2836 return nelems;
2837}
2838
d7ab5c46
FT
2839static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2840 enum dma_data_direction dir, struct dma_attrs *attrs)
ba395927 2841{
ba395927 2842 int i;
ba395927
KA
2843 struct pci_dev *pdev = to_pci_dev(hwdev);
2844 struct dmar_domain *domain;
f76aec76
KA
2845 size_t size = 0;
2846 int prot = 0;
b536d24d 2847 size_t offset_pfn = 0;
f76aec76
KA
2848 struct iova *iova = NULL;
2849 int ret;
c03ab37c 2850 struct scatterlist *sg;
b536d24d 2851 unsigned long start_vpfn;
8c11e798 2852 struct intel_iommu *iommu;
ba395927
KA
2853
2854 BUG_ON(dir == DMA_NONE);
73676832 2855 if (iommu_no_mapping(hwdev))
c03ab37c 2856 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
ba395927 2857
f76aec76
KA
2858 domain = get_valid_domain_for_dev(pdev);
2859 if (!domain)
2860 return 0;
2861
8c11e798
WH
2862 iommu = domain_get_iommu(domain);
2863
b536d24d 2864 for_each_sg(sglist, sg, nelems, i)
88cb6a74 2865 size += aligned_nrpages(sg->offset, sg->length);
f76aec76 2866
5a5e02a6
DW
2867 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2868 pdev->dma_mask);
f76aec76 2869 if (!iova) {
c03ab37c 2870 sglist->dma_length = 0;
f76aec76
KA
2871 return 0;
2872 }
2873
2874 /*
2875 * Check if DMAR supports zero-length reads on write only
2876 * mappings..
2877 */
2878 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
8c11e798 2879 !cap_zlr(iommu->cap))
f76aec76
KA
2880 prot |= DMA_PTE_READ;
2881 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2882 prot |= DMA_PTE_WRITE;
2883
b536d24d 2884 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
e1605495
DW
2885
2886 ret = domain_sg_mapping(domain, start_vpfn, sglist, mm_to_dma_pfn(size), prot);
2887 if (unlikely(ret)) {
2888 /* clear the page */
2889 dma_pte_clear_range(domain, start_vpfn,
2890 start_vpfn + size - 1);
2891 /* free page tables */
2892 dma_pte_free_pagetable(domain, start_vpfn,
2893 start_vpfn + size - 1);
2894 /* free iova */
2895 __free_iova(&domain->iovad, iova);
2896 return 0;
ba395927
KA
2897 }
2898
1f0ef2aa
DW
2899 /* it's a non-present to present mapping. Only flush if caching mode */
2900 if (cap_caching_mode(iommu->cap))
03d6a246 2901 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
1f0ef2aa 2902 else
8c11e798 2903 iommu_flush_write_buffer(iommu);
1f0ef2aa 2904
ba395927
KA
2905 return nelems;
2906}
2907
dfb805e8
FT
2908static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2909{
2910 return !dma_addr;
2911}
2912
160c1d8e 2913struct dma_map_ops intel_dma_ops = {
ba395927
KA
2914 .alloc_coherent = intel_alloc_coherent,
2915 .free_coherent = intel_free_coherent,
ba395927
KA
2916 .map_sg = intel_map_sg,
2917 .unmap_sg = intel_unmap_sg,
ffbbef5c
FT
2918 .map_page = intel_map_page,
2919 .unmap_page = intel_unmap_page,
dfb805e8 2920 .mapping_error = intel_mapping_error,
ba395927
KA
2921};
2922
2923static inline int iommu_domain_cache_init(void)
2924{
2925 int ret = 0;
2926
2927 iommu_domain_cache = kmem_cache_create("iommu_domain",
2928 sizeof(struct dmar_domain),
2929 0,
2930 SLAB_HWCACHE_ALIGN,
2931
2932 NULL);
2933 if (!iommu_domain_cache) {
2934 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2935 ret = -ENOMEM;
2936 }
2937
2938 return ret;
2939}
2940
2941static inline int iommu_devinfo_cache_init(void)
2942{
2943 int ret = 0;
2944
2945 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2946 sizeof(struct device_domain_info),
2947 0,
2948 SLAB_HWCACHE_ALIGN,
ba395927
KA
2949 NULL);
2950 if (!iommu_devinfo_cache) {
2951 printk(KERN_ERR "Couldn't create devinfo cache\n");
2952 ret = -ENOMEM;
2953 }
2954
2955 return ret;
2956}
2957
2958static inline int iommu_iova_cache_init(void)
2959{
2960 int ret = 0;
2961
2962 iommu_iova_cache = kmem_cache_create("iommu_iova",
2963 sizeof(struct iova),
2964 0,
2965 SLAB_HWCACHE_ALIGN,
ba395927
KA
2966 NULL);
2967 if (!iommu_iova_cache) {
2968 printk(KERN_ERR "Couldn't create iova cache\n");
2969 ret = -ENOMEM;
2970 }
2971
2972 return ret;
2973}
2974
2975static int __init iommu_init_mempool(void)
2976{
2977 int ret;
2978 ret = iommu_iova_cache_init();
2979 if (ret)
2980 return ret;
2981
2982 ret = iommu_domain_cache_init();
2983 if (ret)
2984 goto domain_error;
2985
2986 ret = iommu_devinfo_cache_init();
2987 if (!ret)
2988 return ret;
2989
2990 kmem_cache_destroy(iommu_domain_cache);
2991domain_error:
2992 kmem_cache_destroy(iommu_iova_cache);
2993
2994 return -ENOMEM;
2995}
2996
2997static void __init iommu_exit_mempool(void)
2998{
2999 kmem_cache_destroy(iommu_devinfo_cache);
3000 kmem_cache_destroy(iommu_domain_cache);
3001 kmem_cache_destroy(iommu_iova_cache);
3002
3003}
3004
ba395927
KA
3005static void __init init_no_remapping_devices(void)
3006{
3007 struct dmar_drhd_unit *drhd;
3008
3009 for_each_drhd_unit(drhd) {
3010 if (!drhd->include_all) {
3011 int i;
3012 for (i = 0; i < drhd->devices_cnt; i++)
3013 if (drhd->devices[i] != NULL)
3014 break;
3015 /* ignore DMAR unit if no pci devices exist */
3016 if (i == drhd->devices_cnt)
3017 drhd->ignored = 1;
3018 }
3019 }
3020
3021 if (dmar_map_gfx)
3022 return;
3023
3024 for_each_drhd_unit(drhd) {
3025 int i;
3026 if (drhd->ignored || drhd->include_all)
3027 continue;
3028
3029 for (i = 0; i < drhd->devices_cnt; i++)
3030 if (drhd->devices[i] &&
3031 !IS_GFX_DEVICE(drhd->devices[i]))
3032 break;
3033
3034 if (i < drhd->devices_cnt)
3035 continue;
3036
3037 /* bypass IOMMU if it is just for gfx devices */
3038 drhd->ignored = 1;
3039 for (i = 0; i < drhd->devices_cnt; i++) {
3040 if (!drhd->devices[i])
3041 continue;
358dd8ac 3042 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
ba395927
KA
3043 }
3044 }
3045}
3046
f59c7b69
FY
3047#ifdef CONFIG_SUSPEND
3048static int init_iommu_hw(void)
3049{
3050 struct dmar_drhd_unit *drhd;
3051 struct intel_iommu *iommu = NULL;
3052
3053 for_each_active_iommu(iommu, drhd)
3054 if (iommu->qi)
3055 dmar_reenable_qi(iommu);
3056
3057 for_each_active_iommu(iommu, drhd) {
3058 iommu_flush_write_buffer(iommu);
3059
3060 iommu_set_root_entry(iommu);
3061
3062 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 3063 DMA_CCMD_GLOBAL_INVL);
f59c7b69 3064 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1f0ef2aa 3065 DMA_TLB_GLOBAL_FLUSH);
f59c7b69
FY
3066 iommu_disable_protect_mem_regions(iommu);
3067 iommu_enable_translation(iommu);
3068 }
3069
3070 return 0;
3071}
3072
3073static void iommu_flush_all(void)
3074{
3075 struct dmar_drhd_unit *drhd;
3076 struct intel_iommu *iommu;
3077
3078 for_each_active_iommu(iommu, drhd) {
3079 iommu->flush.flush_context(iommu, 0, 0, 0,
1f0ef2aa 3080 DMA_CCMD_GLOBAL_INVL);
f59c7b69 3081 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1f0ef2aa 3082 DMA_TLB_GLOBAL_FLUSH);
f59c7b69
FY
3083 }
3084}
3085
3086static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3087{
3088 struct dmar_drhd_unit *drhd;
3089 struct intel_iommu *iommu = NULL;
3090 unsigned long flag;
3091
3092 for_each_active_iommu(iommu, drhd) {
3093 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3094 GFP_ATOMIC);
3095 if (!iommu->iommu_state)
3096 goto nomem;
3097 }
3098
3099 iommu_flush_all();
3100
3101 for_each_active_iommu(iommu, drhd) {
3102 iommu_disable_translation(iommu);
3103
3104 spin_lock_irqsave(&iommu->register_lock, flag);
3105
3106 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3107 readl(iommu->reg + DMAR_FECTL_REG);
3108 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3109 readl(iommu->reg + DMAR_FEDATA_REG);
3110 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3111 readl(iommu->reg + DMAR_FEADDR_REG);
3112 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3113 readl(iommu->reg + DMAR_FEUADDR_REG);
3114
3115 spin_unlock_irqrestore(&iommu->register_lock, flag);
3116 }
3117 return 0;
3118
3119nomem:
3120 for_each_active_iommu(iommu, drhd)
3121 kfree(iommu->iommu_state);
3122
3123 return -ENOMEM;
3124}
3125
3126static int iommu_resume(struct sys_device *dev)
3127{
3128 struct dmar_drhd_unit *drhd;
3129 struct intel_iommu *iommu = NULL;
3130 unsigned long flag;
3131
3132 if (init_iommu_hw()) {
3133 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3134 return -EIO;
3135 }
3136
3137 for_each_active_iommu(iommu, drhd) {
3138
3139 spin_lock_irqsave(&iommu->register_lock, flag);
3140
3141 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3142 iommu->reg + DMAR_FECTL_REG);
3143 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3144 iommu->reg + DMAR_FEDATA_REG);
3145 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3146 iommu->reg + DMAR_FEADDR_REG);
3147 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3148 iommu->reg + DMAR_FEUADDR_REG);
3149
3150 spin_unlock_irqrestore(&iommu->register_lock, flag);
3151 }
3152
3153 for_each_active_iommu(iommu, drhd)
3154 kfree(iommu->iommu_state);
3155
3156 return 0;
3157}
3158
3159static struct sysdev_class iommu_sysclass = {
3160 .name = "iommu",
3161 .resume = iommu_resume,
3162 .suspend = iommu_suspend,
3163};
3164
3165static struct sys_device device_iommu = {
3166 .cls = &iommu_sysclass,
3167};
3168
3169static int __init init_iommu_sysfs(void)
3170{
3171 int error;
3172
3173 error = sysdev_class_register(&iommu_sysclass);
3174 if (error)
3175 return error;
3176
3177 error = sysdev_register(&device_iommu);
3178 if (error)
3179 sysdev_class_unregister(&iommu_sysclass);
3180
3181 return error;
3182}
3183
3184#else
3185static int __init init_iommu_sysfs(void)
3186{
3187 return 0;
3188}
3189#endif /* CONFIG_PM */
3190
ba395927
KA
3191int __init intel_iommu_init(void)
3192{
3193 int ret = 0;
3194
ba395927
KA
3195 if (dmar_table_init())
3196 return -ENODEV;
3197
1886e8a9
SS
3198 if (dmar_dev_scope_init())
3199 return -ENODEV;
3200
2ae21010
SS
3201 /*
3202 * Check the need for DMA-remapping initialization now.
3203 * Above initialization will also be used by Interrupt-remapping.
3204 */
4ed0d3e6 3205 if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
2ae21010
SS
3206 return -ENODEV;
3207
ba395927
KA
3208 iommu_init_mempool();
3209 dmar_init_reserved_ranges();
3210
3211 init_no_remapping_devices();
3212
3213 ret = init_dmars();
3214 if (ret) {
3215 printk(KERN_ERR "IOMMU: dmar init failed\n");
3216 put_iova_domain(&reserved_iova_list);
3217 iommu_exit_mempool();
3218 return ret;
3219 }
3220 printk(KERN_INFO
3221 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3222
5e0d2a6f 3223 init_timer(&unmap_timer);
ba395927 3224 force_iommu = 1;
4ed0d3e6
FY
3225
3226 if (!iommu_pass_through) {
3227 printk(KERN_INFO
3228 "Multi-level page-table translation for DMAR.\n");
3229 dma_ops = &intel_dma_ops;
3230 } else
3231 printk(KERN_INFO
3232 "DMAR: Pass through translation for DMAR.\n");
3233
f59c7b69 3234 init_iommu_sysfs();
a8bcbb0d
JR
3235
3236 register_iommu(&intel_iommu_ops);
3237
ba395927
KA
3238 return 0;
3239}
e820482c 3240
3199aa6b
HW
3241static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3242 struct pci_dev *pdev)
3243{
3244 struct pci_dev *tmp, *parent;
3245
3246 if (!iommu || !pdev)
3247 return;
3248
3249 /* dependent device detach */
3250 tmp = pci_find_upstream_pcie_bridge(pdev);
3251 /* Secondary interface's bus number and devfn 0 */
3252 if (tmp) {
3253 parent = pdev->bus->self;
3254 while (parent != tmp) {
3255 iommu_detach_dev(iommu, parent->bus->number,
276dbf99 3256 parent->devfn);
3199aa6b
HW
3257 parent = parent->bus->self;
3258 }
3259 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3260 iommu_detach_dev(iommu,
3261 tmp->subordinate->number, 0);
3262 else /* this is a legacy PCI bridge */
276dbf99
DW
3263 iommu_detach_dev(iommu, tmp->bus->number,
3264 tmp->devfn);
3199aa6b
HW
3265 }
3266}
3267
2c2e2c38 3268static void domain_remove_one_dev_info(struct dmar_domain *domain,
c7151a8d
WH
3269 struct pci_dev *pdev)
3270{
3271 struct device_domain_info *info;
3272 struct intel_iommu *iommu;
3273 unsigned long flags;
3274 int found = 0;
3275 struct list_head *entry, *tmp;
3276
276dbf99
DW
3277 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3278 pdev->devfn);
c7151a8d
WH
3279 if (!iommu)
3280 return;
3281
3282 spin_lock_irqsave(&device_domain_lock, flags);
3283 list_for_each_safe(entry, tmp, &domain->devices) {
3284 info = list_entry(entry, struct device_domain_info, link);
276dbf99 3285 /* No need to compare PCI domain; it has to be the same */
c7151a8d
WH
3286 if (info->bus == pdev->bus->number &&
3287 info->devfn == pdev->devfn) {
3288 list_del(&info->link);
3289 list_del(&info->global);
3290 if (info->dev)
3291 info->dev->dev.archdata.iommu = NULL;
3292 spin_unlock_irqrestore(&device_domain_lock, flags);
3293
93a23a72 3294 iommu_disable_dev_iotlb(info);
c7151a8d 3295 iommu_detach_dev(iommu, info->bus, info->devfn);
3199aa6b 3296 iommu_detach_dependent_devices(iommu, pdev);
c7151a8d
WH
3297 free_devinfo_mem(info);
3298
3299 spin_lock_irqsave(&device_domain_lock, flags);
3300
3301 if (found)
3302 break;
3303 else
3304 continue;
3305 }
3306
3307 /* if there is no other devices under the same iommu
3308 * owned by this domain, clear this iommu in iommu_bmp
3309 * update iommu count and coherency
3310 */
276dbf99
DW
3311 if (iommu == device_to_iommu(info->segment, info->bus,
3312 info->devfn))
c7151a8d
WH
3313 found = 1;
3314 }
3315
3316 if (found == 0) {
3317 unsigned long tmp_flags;
3318 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3319 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3320 domain->iommu_count--;
58c610bd 3321 domain_update_iommu_cap(domain);
c7151a8d
WH
3322 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3323 }
3324
3325 spin_unlock_irqrestore(&device_domain_lock, flags);
3326}
3327
3328static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3329{
3330 struct device_domain_info *info;
3331 struct intel_iommu *iommu;
3332 unsigned long flags1, flags2;
3333
3334 spin_lock_irqsave(&device_domain_lock, flags1);
3335 while (!list_empty(&domain->devices)) {
3336 info = list_entry(domain->devices.next,
3337 struct device_domain_info, link);
3338 list_del(&info->link);
3339 list_del(&info->global);
3340 if (info->dev)
3341 info->dev->dev.archdata.iommu = NULL;
3342
3343 spin_unlock_irqrestore(&device_domain_lock, flags1);
3344
93a23a72 3345 iommu_disable_dev_iotlb(info);
276dbf99 3346 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
c7151a8d 3347 iommu_detach_dev(iommu, info->bus, info->devfn);
3199aa6b 3348 iommu_detach_dependent_devices(iommu, info->dev);
c7151a8d
WH
3349
3350 /* clear this iommu in iommu_bmp, update iommu count
58c610bd 3351 * and capabilities
c7151a8d
WH
3352 */
3353 spin_lock_irqsave(&domain->iommu_lock, flags2);
3354 if (test_and_clear_bit(iommu->seq_id,
3355 &domain->iommu_bmp)) {
3356 domain->iommu_count--;
58c610bd 3357 domain_update_iommu_cap(domain);
c7151a8d
WH
3358 }
3359 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3360
3361 free_devinfo_mem(info);
3362 spin_lock_irqsave(&device_domain_lock, flags1);
3363 }
3364 spin_unlock_irqrestore(&device_domain_lock, flags1);
3365}
3366
5e98c4b1
WH
3367/* domain id for virtual machine, it won't be set in context */
3368static unsigned long vm_domid;
3369
fe40f1e0
WH
3370static int vm_domain_min_agaw(struct dmar_domain *domain)
3371{
3372 int i;
3373 int min_agaw = domain->agaw;
3374
3375 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3376 for (; i < g_num_of_iommus; ) {
3377 if (min_agaw > g_iommus[i]->agaw)
3378 min_agaw = g_iommus[i]->agaw;
3379
3380 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3381 }
3382
3383 return min_agaw;
3384}
3385
5e98c4b1
WH
3386static struct dmar_domain *iommu_alloc_vm_domain(void)
3387{
3388 struct dmar_domain *domain;
3389
3390 domain = alloc_domain_mem();
3391 if (!domain)
3392 return NULL;
3393
3394 domain->id = vm_domid++;
3395 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3396 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3397
3398 return domain;
3399}
3400
2c2e2c38 3401static int md_domain_init(struct dmar_domain *domain, int guest_width)
5e98c4b1
WH
3402{
3403 int adjust_width;
3404
3405 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
5e98c4b1
WH
3406 spin_lock_init(&domain->iommu_lock);
3407
3408 domain_reserve_special_ranges(domain);
3409
3410 /* calculate AGAW */
3411 domain->gaw = guest_width;
3412 adjust_width = guestwidth_to_adjustwidth(guest_width);
3413 domain->agaw = width_to_agaw(adjust_width);
3414
3415 INIT_LIST_HEAD(&domain->devices);
3416
3417 domain->iommu_count = 0;
3418 domain->iommu_coherency = 0;
fe40f1e0 3419 domain->max_addr = 0;
5e98c4b1
WH
3420
3421 /* always allocate the top pgd */
3422 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3423 if (!domain->pgd)
3424 return -ENOMEM;
3425 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3426 return 0;
3427}
3428
3429static void iommu_free_vm_domain(struct dmar_domain *domain)
3430{
3431 unsigned long flags;
3432 struct dmar_drhd_unit *drhd;
3433 struct intel_iommu *iommu;
3434 unsigned long i;
3435 unsigned long ndomains;
3436
3437 for_each_drhd_unit(drhd) {
3438 if (drhd->ignored)
3439 continue;
3440 iommu = drhd->iommu;
3441
3442 ndomains = cap_ndoms(iommu->cap);
3443 i = find_first_bit(iommu->domain_ids, ndomains);
3444 for (; i < ndomains; ) {
3445 if (iommu->domains[i] == domain) {
3446 spin_lock_irqsave(&iommu->lock, flags);
3447 clear_bit(i, iommu->domain_ids);
3448 iommu->domains[i] = NULL;
3449 spin_unlock_irqrestore(&iommu->lock, flags);
3450 break;
3451 }
3452 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3453 }
3454 }
3455}
3456
3457static void vm_domain_exit(struct dmar_domain *domain)
3458{
5e98c4b1
WH
3459 /* Domain 0 is reserved, so dont process it */
3460 if (!domain)
3461 return;
3462
3463 vm_domain_remove_all_dev_info(domain);
3464 /* destroy iovas */
3465 put_iova_domain(&domain->iovad);
5e98c4b1
WH
3466
3467 /* clear ptes */
595badf5 3468 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
5e98c4b1
WH
3469
3470 /* free page tables */
d794dc9b 3471 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
5e98c4b1
WH
3472
3473 iommu_free_vm_domain(domain);
3474 free_domain_mem(domain);
3475}
3476
5d450806 3477static int intel_iommu_domain_init(struct iommu_domain *domain)
38717946 3478{
5d450806 3479 struct dmar_domain *dmar_domain;
38717946 3480
5d450806
JR
3481 dmar_domain = iommu_alloc_vm_domain();
3482 if (!dmar_domain) {
38717946 3483 printk(KERN_ERR
5d450806
JR
3484 "intel_iommu_domain_init: dmar_domain == NULL\n");
3485 return -ENOMEM;
38717946 3486 }
2c2e2c38 3487 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
38717946 3488 printk(KERN_ERR
5d450806
JR
3489 "intel_iommu_domain_init() failed\n");
3490 vm_domain_exit(dmar_domain);
3491 return -ENOMEM;
38717946 3492 }
5d450806 3493 domain->priv = dmar_domain;
faa3d6f5 3494
5d450806 3495 return 0;
38717946 3496}
38717946 3497
5d450806 3498static void intel_iommu_domain_destroy(struct iommu_domain *domain)
38717946 3499{
5d450806
JR
3500 struct dmar_domain *dmar_domain = domain->priv;
3501
3502 domain->priv = NULL;
3503 vm_domain_exit(dmar_domain);
38717946 3504}
38717946 3505
4c5478c9
JR
3506static int intel_iommu_attach_device(struct iommu_domain *domain,
3507 struct device *dev)
38717946 3508{
4c5478c9
JR
3509 struct dmar_domain *dmar_domain = domain->priv;
3510 struct pci_dev *pdev = to_pci_dev(dev);
fe40f1e0
WH
3511 struct intel_iommu *iommu;
3512 int addr_width;
3513 u64 end;
faa3d6f5
WH
3514 int ret;
3515
3516 /* normally pdev is not mapped */
3517 if (unlikely(domain_context_mapped(pdev))) {
3518 struct dmar_domain *old_domain;
3519
3520 old_domain = find_domain(pdev);
3521 if (old_domain) {
2c2e2c38
FY
3522 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3523 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3524 domain_remove_one_dev_info(old_domain, pdev);
faa3d6f5
WH
3525 else
3526 domain_remove_dev_info(old_domain);
3527 }
3528 }
3529
276dbf99
DW
3530 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3531 pdev->devfn);
fe40f1e0
WH
3532 if (!iommu)
3533 return -ENODEV;
3534
3535 /* check if this iommu agaw is sufficient for max mapped address */
3536 addr_width = agaw_to_width(iommu->agaw);
3537 end = DOMAIN_MAX_ADDR(addr_width);
3538 end = end & VTD_PAGE_MASK;
4c5478c9 3539 if (end < dmar_domain->max_addr) {
fe40f1e0
WH
3540 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3541 "sufficient for the mapped address (%llx)\n",
4c5478c9 3542 __func__, iommu->agaw, dmar_domain->max_addr);
fe40f1e0
WH
3543 return -EFAULT;
3544 }
3545
2c2e2c38 3546 ret = domain_add_dev_info(dmar_domain, pdev);
faa3d6f5
WH
3547 if (ret)
3548 return ret;
3549
93a23a72 3550 ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
faa3d6f5 3551 return ret;
38717946 3552}
38717946 3553
4c5478c9
JR
3554static void intel_iommu_detach_device(struct iommu_domain *domain,
3555 struct device *dev)
38717946 3556{
4c5478c9
JR
3557 struct dmar_domain *dmar_domain = domain->priv;
3558 struct pci_dev *pdev = to_pci_dev(dev);
3559
2c2e2c38 3560 domain_remove_one_dev_info(dmar_domain, pdev);
faa3d6f5 3561}
c7151a8d 3562
dde57a21
JR
3563static int intel_iommu_map_range(struct iommu_domain *domain,
3564 unsigned long iova, phys_addr_t hpa,
3565 size_t size, int iommu_prot)
faa3d6f5 3566{
dde57a21 3567 struct dmar_domain *dmar_domain = domain->priv;
fe40f1e0
WH
3568 u64 max_addr;
3569 int addr_width;
dde57a21 3570 int prot = 0;
faa3d6f5 3571 int ret;
fe40f1e0 3572
dde57a21
JR
3573 if (iommu_prot & IOMMU_READ)
3574 prot |= DMA_PTE_READ;
3575 if (iommu_prot & IOMMU_WRITE)
3576 prot |= DMA_PTE_WRITE;
9cf06697
SY
3577 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3578 prot |= DMA_PTE_SNP;
dde57a21 3579
163cc52c 3580 max_addr = iova + size;
dde57a21 3581 if (dmar_domain->max_addr < max_addr) {
fe40f1e0
WH
3582 int min_agaw;
3583 u64 end;
3584
3585 /* check if minimum agaw is sufficient for mapped address */
dde57a21 3586 min_agaw = vm_domain_min_agaw(dmar_domain);
fe40f1e0
WH
3587 addr_width = agaw_to_width(min_agaw);
3588 end = DOMAIN_MAX_ADDR(addr_width);
3589 end = end & VTD_PAGE_MASK;
3590 if (end < max_addr) {
3591 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3592 "sufficient for the mapped address (%llx)\n",
3593 __func__, min_agaw, max_addr);
3594 return -EFAULT;
3595 }
dde57a21 3596 dmar_domain->max_addr = max_addr;
fe40f1e0 3597 }
ad051221
DW
3598 /* Round up size to next multiple of PAGE_SIZE, if it and
3599 the low bits of hpa would take us onto the next page */
88cb6a74 3600 size = aligned_nrpages(hpa, size);
ad051221
DW
3601 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3602 hpa >> VTD_PAGE_SHIFT, size, prot);
faa3d6f5 3603 return ret;
38717946 3604}
38717946 3605
dde57a21
JR
3606static void intel_iommu_unmap_range(struct iommu_domain *domain,
3607 unsigned long iova, size_t size)
38717946 3608{
dde57a21 3609 struct dmar_domain *dmar_domain = domain->priv;
faa3d6f5 3610
163cc52c
DW
3611 dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3612 (iova + size - 1) >> VTD_PAGE_SHIFT);
fe40f1e0 3613
163cc52c
DW
3614 if (dmar_domain->max_addr == iova + size)
3615 dmar_domain->max_addr = iova;
38717946 3616}
38717946 3617
d14d6577
JR
3618static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3619 unsigned long iova)
38717946 3620{
d14d6577 3621 struct dmar_domain *dmar_domain = domain->priv;
38717946 3622 struct dma_pte *pte;
faa3d6f5 3623 u64 phys = 0;
38717946 3624
b026fd28 3625 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
38717946 3626 if (pte)
faa3d6f5 3627 phys = dma_pte_addr(pte);
38717946 3628
faa3d6f5 3629 return phys;
38717946 3630}
a8bcbb0d 3631
dbb9fd86
SY
3632static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3633 unsigned long cap)
3634{
3635 struct dmar_domain *dmar_domain = domain->priv;
3636
3637 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3638 return dmar_domain->iommu_snooping;
3639
3640 return 0;
3641}
3642
a8bcbb0d
JR
3643static struct iommu_ops intel_iommu_ops = {
3644 .domain_init = intel_iommu_domain_init,
3645 .domain_destroy = intel_iommu_domain_destroy,
3646 .attach_dev = intel_iommu_attach_device,
3647 .detach_dev = intel_iommu_detach_device,
3648 .map = intel_iommu_map_range,
3649 .unmap = intel_iommu_unmap_range,
3650 .iova_to_phys = intel_iommu_iova_to_phys,
dbb9fd86 3651 .domain_has_cap = intel_iommu_domain_has_cap,
a8bcbb0d 3652};
9af88143
DW
3653
3654static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3655{
3656 /*
3657 * Mobile 4 Series Chipset neglects to set RWBF capability,
3658 * but needs it:
3659 */
3660 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3661 rwbf_quirk = 1;
3662}
3663
3664DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);