[RT2x00]: add driver for Ralink wireless hardware
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
CommitLineData
95ea3627
ID
1/*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt2x00lib
23 Abstract: rt2x00 generic device routines.
24 */
25
26/*
27 * Set enviroment defines for rt2x00.h
28 */
29#define DRV_NAME "rt2x00lib"
30
31#include <linux/kernel.h>
32#include <linux/module.h>
33
34#include "rt2x00.h"
35#include "rt2x00lib.h"
36
37/*
38 * Ring handler.
39 */
40struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev,
41 const unsigned int queue)
42{
43 int beacon = test_bit(REQUIRE_BEACON_RING, &rt2x00dev->flags);
44
45 /*
46 * Check if we are requesting a reqular TX ring,
47 * or if we are requesting a Beacon or Atim ring.
48 * For Atim rings, we should check if it is supported.
49 */
50 if (queue < rt2x00dev->hw->queues && rt2x00dev->tx)
51 return &rt2x00dev->tx[queue];
52
53 if (!rt2x00dev->bcn || !beacon)
54 return NULL;
55
56 if (queue == IEEE80211_TX_QUEUE_BEACON)
57 return &rt2x00dev->bcn[0];
58 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
59 return &rt2x00dev->bcn[1];
60
61 return NULL;
62}
63EXPORT_SYMBOL_GPL(rt2x00lib_get_ring);
64
65/*
66 * Link tuning handlers
67 */
68static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
69{
70 rt2x00_clear_link(&rt2x00dev->link);
71
72 /*
73 * Reset the link tuner.
74 */
75 rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
76
77 queue_delayed_work(rt2x00dev->hw->workqueue,
78 &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79}
80
81static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82{
83 if (delayed_work_pending(&rt2x00dev->link.work))
84 cancel_rearming_delayed_work(&rt2x00dev->link.work);
85}
86
87void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
88{
89 rt2x00lib_stop_link_tuner(rt2x00dev);
90 rt2x00lib_start_link_tuner(rt2x00dev);
91}
92
93/*
94 * Radio control handlers.
95 */
96int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
97{
98 int status;
99
100 /*
101 * Don't enable the radio twice.
102 * And check if the hardware button has been disabled.
103 */
104 if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
105 (test_bit(DEVICE_SUPPORT_HW_BUTTON, &rt2x00dev->flags) &&
106 !test_bit(DEVICE_ENABLED_RADIO_HW, &rt2x00dev->flags)))
107 return 0;
108
109 /*
110 * Enable radio.
111 */
112 status = rt2x00dev->ops->lib->set_device_state(rt2x00dev,
113 STATE_RADIO_ON);
114 if (status)
115 return status;
116
117 __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
118
119 /*
120 * Enable RX.
121 */
122 rt2x00lib_toggle_rx(rt2x00dev, 1);
123
124 /*
125 * Start the TX queues.
126 */
127 ieee80211_start_queues(rt2x00dev->hw);
128
129 return 0;
130}
131
132void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
133{
134 if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
135 return;
136
137 /*
138 * Stop beacon generation.
139 */
140 if (work_pending(&rt2x00dev->beacon_work))
141 cancel_work_sync(&rt2x00dev->beacon_work);
142
143 /*
144 * Stop the TX queues.
145 */
146 ieee80211_stop_queues(rt2x00dev->hw);
147
148 /*
149 * Disable RX.
150 */
151 rt2x00lib_toggle_rx(rt2x00dev, 0);
152
153 /*
154 * Disable radio.
155 */
156 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
157}
158
159void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, int enable)
160{
161 enum dev_state state = enable ? STATE_RADIO_RX_ON : STATE_RADIO_RX_OFF;
162
163 /*
164 * When we are disabling the RX, we should also stop the link tuner.
165 */
166 if (!enable)
167 rt2x00lib_stop_link_tuner(rt2x00dev);
168
169 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
170
171 /*
172 * When we are enabling the RX, we should also start the link tuner.
173 */
174 if (enable && is_interface_present(&rt2x00dev->interface))
175 rt2x00lib_start_link_tuner(rt2x00dev);
176}
177
178static void rt2x00lib_precalculate_link_signal(struct link *link)
179{
180 if (link->rx_failed || link->rx_success)
181 link->rx_percentage =
182 (link->rx_success * 100) /
183 (link->rx_failed + link->rx_success);
184 else
185 link->rx_percentage = 50;
186
187 if (link->tx_failed || link->tx_success)
188 link->tx_percentage =
189 (link->tx_success * 100) /
190 (link->tx_failed + link->tx_success);
191 else
192 link->tx_percentage = 50;
193
194 link->rx_success = 0;
195 link->rx_failed = 0;
196 link->tx_success = 0;
197 link->tx_failed = 0;
198}
199
200static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
201 int rssi)
202{
203 int rssi_percentage = 0;
204 int signal;
205
206 /*
207 * We need a positive value for the RSSI.
208 */
209 if (rssi < 0)
210 rssi += rt2x00dev->rssi_offset;
211
212 /*
213 * Calculate the different percentages,
214 * which will be used for the signal.
215 */
216 if (rt2x00dev->rssi_offset)
217 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
218
219 /*
220 * Add the individual percentages and use the WEIGHT
221 * defines to calculate the current link signal.
222 */
223 signal = ((WEIGHT_RSSI * rssi_percentage) +
224 (WEIGHT_TX * rt2x00dev->link.tx_percentage) +
225 (WEIGHT_RX * rt2x00dev->link.rx_percentage)) / 100;
226
227 return (signal > 100) ? 100 : signal;
228}
229
230static void rt2x00lib_link_tuner(struct work_struct *work)
231{
232 struct rt2x00_dev *rt2x00dev =
233 container_of(work, struct rt2x00_dev, link.work.work);
234
235 /*
236 * Update statistics.
237 */
238 rt2x00dev->ops->lib->link_stats(rt2x00dev);
239
240 rt2x00dev->low_level_stats.dot11FCSErrorCount +=
241 rt2x00dev->link.rx_failed;
242
243 rt2x00lib_precalculate_link_signal(&rt2x00dev->link);
244
245 /*
246 * Only perform the link tuning when Link tuning
247 * has been enabled (This could have been disabled from the EEPROM).
248 */
249 if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
250 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
251
252 /*
253 * Increase tuner counter, and reschedule the next link tuner run.
254 */
255 rt2x00dev->link.count++;
256 queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
257 LINK_TUNE_INTERVAL);
258}
259
260/*
261 * Interrupt context handlers.
262 */
263static void rt2x00lib_beacondone_scheduled(struct work_struct *work)
264{
265 struct rt2x00_dev *rt2x00dev =
266 container_of(work, struct rt2x00_dev, beacon_work);
267 struct data_ring *ring =
268 rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
269 struct data_entry *entry = rt2x00_get_data_entry(ring);
270 struct sk_buff *skb;
271
272 skb = ieee80211_beacon_get(rt2x00dev->hw,
273 rt2x00dev->interface.id,
274 &entry->tx_status.control);
275 if (!skb)
276 return;
277
278 rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
279 &entry->tx_status.control);
280
281 dev_kfree_skb(skb);
282}
283
284void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
285{
286 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
287 return;
288
289 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work);
290}
291EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
292
293void rt2x00lib_txdone(struct data_entry *entry,
294 const int status, const int retry)
295{
296 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
297 struct ieee80211_tx_status *tx_status = &entry->tx_status;
298 struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats;
299 int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY);
300 int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID ||
301 status == TX_FAIL_OTHER);
302
303 /*
304 * Update TX statistics.
305 */
306 tx_status->flags = 0;
307 tx_status->ack_signal = 0;
308 tx_status->excessive_retries = (status == TX_FAIL_RETRY);
309 tx_status->retry_count = retry;
310 rt2x00dev->link.tx_success += success;
311 rt2x00dev->link.tx_failed += retry + fail;
312
313 if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) {
314 if (success)
315 tx_status->flags |= IEEE80211_TX_STATUS_ACK;
316 else
317 stats->dot11ACKFailureCount++;
318 }
319
320 tx_status->queue_length = entry->ring->stats.limit;
321 tx_status->queue_number = tx_status->control.queue;
322
323 if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
324 if (success)
325 stats->dot11RTSSuccessCount++;
326 else
327 stats->dot11RTSFailureCount++;
328 }
329
330 /*
331 * Send the tx_status to mac80211,
332 * that method also cleans up the skb structure.
333 */
334 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status);
335 entry->skb = NULL;
336}
337EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
338
339void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb,
340 const int signal, const int rssi, const int ofdm)
341{
342 struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev;
343 struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
344 struct ieee80211_hw_mode *mode;
345 struct ieee80211_rate *rate;
346 unsigned int i;
347 int val = 0;
348
349 /*
350 * Update RX statistics.
351 */
352 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
353 for (i = 0; i < mode->num_rates; i++) {
354 rate = &mode->rates[i];
355
356 /*
357 * When frame was received with an OFDM bitrate,
358 * the signal is the PLCP value. If it was received with
359 * a CCK bitrate the signal is the rate in 0.5kbit/s.
360 */
361 if (!ofdm)
362 val = DEVICE_GET_RATE_FIELD(rate->val, RATE);
363 else
364 val = DEVICE_GET_RATE_FIELD(rate->val, PLCP);
365
366 if (val == signal) {
367 val = rate->val;
368 break;
369 }
370 }
371
372 rt2x00_update_link_rssi(&rt2x00dev->link, rssi);
373 rt2x00dev->link.rx_success++;
374 rx_status->rate = val;
375 rx_status->signal = rt2x00lib_calculate_link_signal(rt2x00dev, rssi);
376 rx_status->ssi = rssi;
377
378 /*
379 * Send frame to mac80211
380 */
381 ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status);
382}
383EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
384
385/*
386 * TX descriptor initializer
387 */
388void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
389 struct data_desc *txd,
390 struct ieee80211_hdr *ieee80211hdr,
391 unsigned int length,
392 struct ieee80211_tx_control *control)
393{
394 struct data_entry_desc desc;
395 struct data_ring *ring;
396 int tx_rate;
397 int bitrate;
398 int duration;
399 int residual;
400 u16 frame_control;
401 u16 seq_ctrl;
402
403 /*
404 * Make sure the descriptor is properly cleared.
405 */
406 memset(&desc, 0x00, sizeof(desc));
407
408 /*
409 * Get ring pointer, if we fail to obtain the
410 * correct ring, then use the first TX ring.
411 */
412 ring = rt2x00lib_get_ring(rt2x00dev, control->queue);
413 if (!ring)
414 ring = rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
415
416 desc.cw_min = ring->tx_params.cw_min;
417 desc.cw_max = ring->tx_params.cw_max;
418 desc.aifs = ring->tx_params.aifs;
419
420 /*
421 * Identify queue
422 */
423 if (control->queue < rt2x00dev->hw->queues)
424 desc.queue = control->queue;
425 else if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
426 control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
427 desc.queue = QUEUE_MGMT;
428 else
429 desc.queue = QUEUE_OTHER;
430
431 /*
432 * Read required fields from ieee80211 header.
433 */
434 frame_control = le16_to_cpu(ieee80211hdr->frame_control);
435 seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl);
436
437 tx_rate = control->tx_rate;
438
439 /*
440 * Check if this is a RTS/CTS frame
441 */
442 if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
443 __set_bit(ENTRY_TXD_BURST, &desc.flags);
444 if (is_rts_frame(frame_control))
445 __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags);
446 if (control->rts_cts_rate)
447 tx_rate = control->rts_cts_rate;
448 }
449
450 /*
451 * Check for OFDM
452 */
453 if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK)
454 __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags);
455
456 /*
457 * Check if more fragments are pending
458 */
459 if (ieee80211_get_morefrag(ieee80211hdr)) {
460 __set_bit(ENTRY_TXD_BURST, &desc.flags);
461 __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags);
462 }
463
464 /*
465 * Beacons and probe responses require the tsf timestamp
466 * to be inserted into the frame.
467 */
468 if (control->queue == IEEE80211_TX_QUEUE_BEACON ||
469 is_probe_resp(frame_control))
470 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags);
471
472 /*
473 * Determine with what IFS priority this frame should be send.
474 * Set ifs to IFS_SIFS when the this is not the first fragment,
475 * or this fragment came after RTS/CTS.
476 */
477 if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
478 test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags))
479 desc.ifs = IFS_SIFS;
480 else
481 desc.ifs = IFS_BACKOFF;
482
483 /*
484 * PLCP setup
485 * Length calculation depends on OFDM/CCK rate.
486 */
487 desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP);
488 desc.service = 0x04;
489
490 if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) {
491 desc.length_high = ((length + FCS_LEN) >> 6) & 0x3f;
492 desc.length_low = ((length + FCS_LEN) & 0x3f);
493 } else {
494 bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE);
495
496 /*
497 * Convert length to microseconds.
498 */
499 residual = get_duration_res(length + FCS_LEN, bitrate);
500 duration = get_duration(length + FCS_LEN, bitrate);
501
502 if (residual != 0) {
503 duration++;
504
505 /*
506 * Check if we need to set the Length Extension
507 */
508 if (bitrate == 110 && residual <= 3)
509 desc.service |= 0x80;
510 }
511
512 desc.length_high = (duration >> 8) & 0xff;
513 desc.length_low = duration & 0xff;
514
515 /*
516 * When preamble is enabled we should set the
517 * preamble bit for the signal.
518 */
519 if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE))
520 desc.signal |= 0x08;
521 }
522
523 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, txd, &desc,
524 ieee80211hdr, length, control);
525}
526EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
527
528/*
529 * Driver initialization handlers.
530 */
531static void rt2x00lib_channel(struct ieee80211_channel *entry,
532 const int channel, const int tx_power,
533 const int value)
534{
535 entry->chan = channel;
536 if (channel <= 14)
537 entry->freq = 2407 + (5 * channel);
538 else
539 entry->freq = 5000 + (5 * channel);
540 entry->val = value;
541 entry->flag =
542 IEEE80211_CHAN_W_IBSS |
543 IEEE80211_CHAN_W_ACTIVE_SCAN |
544 IEEE80211_CHAN_W_SCAN;
545 entry->power_level = tx_power;
546 entry->antenna_max = 0xff;
547}
548
549static void rt2x00lib_rate(struct ieee80211_rate *entry,
550 const int rate, const int mask,
551 const int plcp, const int flags)
552{
553 entry->rate = rate;
554 entry->val =
555 DEVICE_SET_RATE_FIELD(rate, RATE) |
556 DEVICE_SET_RATE_FIELD(mask, RATEMASK) |
557 DEVICE_SET_RATE_FIELD(plcp, PLCP);
558 entry->flags = flags;
559 entry->val2 = entry->val;
560 if (entry->flags & IEEE80211_RATE_PREAMBLE2)
561 entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE);
562 entry->min_rssi_ack = 0;
563 entry->min_rssi_ack_delta = 0;
564}
565
566static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
567 struct hw_mode_spec *spec)
568{
569 struct ieee80211_hw *hw = rt2x00dev->hw;
570 struct ieee80211_hw_mode *hwmodes;
571 struct ieee80211_channel *channels;
572 struct ieee80211_rate *rates;
573 unsigned int i;
574 unsigned char tx_power;
575
576 hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL);
577 if (!hwmodes)
578 goto exit;
579
580 channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
581 if (!channels)
582 goto exit_free_modes;
583
584 rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL);
585 if (!rates)
586 goto exit_free_channels;
587
588 /*
589 * Initialize Rate list.
590 */
591 rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB,
592 0x00, IEEE80211_RATE_CCK);
593 rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB,
594 0x01, IEEE80211_RATE_CCK_2);
595 rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB,
596 0x02, IEEE80211_RATE_CCK_2);
597 rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB,
598 0x03, IEEE80211_RATE_CCK_2);
599
600 if (spec->num_rates > 4) {
601 rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB,
602 0x0b, IEEE80211_RATE_OFDM);
603 rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB,
604 0x0f, IEEE80211_RATE_OFDM);
605 rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB,
606 0x0a, IEEE80211_RATE_OFDM);
607 rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB,
608 0x0e, IEEE80211_RATE_OFDM);
609 rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB,
610 0x09, IEEE80211_RATE_OFDM);
611 rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB,
612 0x0d, IEEE80211_RATE_OFDM);
613 rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB,
614 0x08, IEEE80211_RATE_OFDM);
615 rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB,
616 0x0c, IEEE80211_RATE_OFDM);
617 }
618
619 /*
620 * Initialize Channel list.
621 */
622 for (i = 0; i < spec->num_channels; i++) {
623 if (spec->channels[i].channel <= 14)
624 tx_power = spec->tx_power_bg[i];
625 else if (spec->tx_power_a)
626 tx_power = spec->tx_power_a[i];
627 else
628 tx_power = spec->tx_power_default;
629
630 rt2x00lib_channel(&channels[i],
631 spec->channels[i].channel, tx_power, i);
632 }
633
634 /*
635 * Intitialize 802.11b
636 * Rates: CCK.
637 * Channels: OFDM.
638 */
639 if (spec->num_modes > HWMODE_B) {
640 hwmodes[HWMODE_B].mode = MODE_IEEE80211B;
641 hwmodes[HWMODE_B].num_channels = 14;
642 hwmodes[HWMODE_B].num_rates = 4;
643 hwmodes[HWMODE_B].channels = channels;
644 hwmodes[HWMODE_B].rates = rates;
645 }
646
647 /*
648 * Intitialize 802.11g
649 * Rates: CCK, OFDM.
650 * Channels: OFDM.
651 */
652 if (spec->num_modes > HWMODE_G) {
653 hwmodes[HWMODE_G].mode = MODE_IEEE80211G;
654 hwmodes[HWMODE_G].num_channels = 14;
655 hwmodes[HWMODE_G].num_rates = spec->num_rates;
656 hwmodes[HWMODE_G].channels = channels;
657 hwmodes[HWMODE_G].rates = rates;
658 }
659
660 /*
661 * Intitialize 802.11a
662 * Rates: OFDM.
663 * Channels: OFDM, UNII, HiperLAN2.
664 */
665 if (spec->num_modes > HWMODE_A) {
666 hwmodes[HWMODE_A].mode = MODE_IEEE80211A;
667 hwmodes[HWMODE_A].num_channels = spec->num_channels - 14;
668 hwmodes[HWMODE_A].num_rates = spec->num_rates - 4;
669 hwmodes[HWMODE_A].channels = &channels[14];
670 hwmodes[HWMODE_A].rates = &rates[4];
671 }
672
673 if (spec->num_modes > HWMODE_G &&
674 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G]))
675 goto exit_free_rates;
676
677 if (spec->num_modes > HWMODE_B &&
678 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B]))
679 goto exit_free_rates;
680
681 if (spec->num_modes > HWMODE_A &&
682 ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A]))
683 goto exit_free_rates;
684
685 rt2x00dev->hwmodes = hwmodes;
686
687 return 0;
688
689exit_free_rates:
690 kfree(rates);
691
692exit_free_channels:
693 kfree(channels);
694
695exit_free_modes:
696 kfree(hwmodes);
697
698exit:
699 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
700 return -ENOMEM;
701}
702
703static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
704{
705 if (test_bit(DEVICE_INITIALIZED_HW, &rt2x00dev->flags))
706 ieee80211_unregister_hw(rt2x00dev->hw);
707
708 if (likely(rt2x00dev->hwmodes)) {
709 kfree(rt2x00dev->hwmodes->channels);
710 kfree(rt2x00dev->hwmodes->rates);
711 kfree(rt2x00dev->hwmodes);
712 rt2x00dev->hwmodes = NULL;
713 }
714}
715
716static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
717{
718 struct hw_mode_spec *spec = &rt2x00dev->spec;
719 int status;
720
721 /*
722 * Initialize HW modes.
723 */
724 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
725 if (status)
726 return status;
727
728 /*
729 * Register HW.
730 */
731 status = ieee80211_register_hw(rt2x00dev->hw);
732 if (status) {
733 rt2x00lib_remove_hw(rt2x00dev);
734 return status;
735 }
736
737 __set_bit(DEVICE_INITIALIZED_HW, &rt2x00dev->flags);
738
739 return 0;
740}
741
742/*
743 * Initialization/uninitialization handlers.
744 */
745static int rt2x00lib_alloc_entries(struct data_ring *ring,
746 const u16 max_entries, const u16 data_size,
747 const u16 desc_size)
748{
749 struct data_entry *entry;
750 unsigned int i;
751
752 ring->stats.limit = max_entries;
753 ring->data_size = data_size;
754 ring->desc_size = desc_size;
755
756 /*
757 * Allocate all ring entries.
758 */
759 entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL);
760 if (!entry)
761 return -ENOMEM;
762
763 for (i = 0; i < ring->stats.limit; i++) {
764 entry[i].flags = 0;
765 entry[i].ring = ring;
766 entry[i].skb = NULL;
767 }
768
769 ring->entry = entry;
770
771 return 0;
772}
773
774static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev)
775{
776 struct data_ring *ring;
777
778 /*
779 * Allocate the RX ring.
780 */
781 if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE,
782 rt2x00dev->ops->rxd_size))
783 return -ENOMEM;
784
785 /*
786 * First allocate the TX rings.
787 */
788 txring_for_each(rt2x00dev, ring) {
789 if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE,
790 rt2x00dev->ops->txd_size))
791 return -ENOMEM;
792 }
793
794 if (!test_bit(REQUIRE_BEACON_RING, &rt2x00dev->flags))
795 return 0;
796
797 /*
798 * Allocate the BEACON ring.
799 */
800 if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES,
801 MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size))
802 return -ENOMEM;
803
804 /*
805 * Allocate the Atim ring.
806 */
807 if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES,
808 DATA_FRAME_SIZE, rt2x00dev->ops->txd_size))
809 return -ENOMEM;
810
811 return 0;
812}
813
814static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev)
815{
816 struct data_ring *ring;
817
818 ring_for_each(rt2x00dev, ring) {
819 kfree(ring->entry);
820 ring->entry = NULL;
821 }
822}
823
824void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
825{
826 if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
827 return;
828
829 /*
830 * Unregister rfkill.
831 */
832 rt2x00rfkill_unregister(rt2x00dev);
833
834 /*
835 * Allow the HW to uninitialize.
836 */
837 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
838
839 /*
840 * Free allocated ring entries.
841 */
842 rt2x00lib_free_ring_entries(rt2x00dev);
843}
844
845int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
846{
847 int status;
848
849 if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
850 return 0;
851
852 /*
853 * Allocate all ring entries.
854 */
855 status = rt2x00lib_alloc_ring_entries(rt2x00dev);
856 if (status) {
857 ERROR(rt2x00dev, "Ring entries allocation failed.\n");
858 return status;
859 }
860
861 /*
862 * Initialize the device.
863 */
864 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
865 if (status)
866 goto exit;
867
868 __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
869
870 /*
871 * Register the rfkill handler.
872 */
873 status = rt2x00rfkill_register(rt2x00dev);
874 if (status)
875 goto exit_unitialize;
876
877 return 0;
878
879exit_unitialize:
880 rt2x00lib_uninitialize(rt2x00dev);
881
882exit:
883 rt2x00lib_free_ring_entries(rt2x00dev);
884
885 return status;
886}
887
888/*
889 * driver allocation handlers.
890 */
891static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev)
892{
893 struct data_ring *ring;
894
895 /*
896 * We need the following rings:
897 * RX: 1
898 * TX: hw->queues
899 * Beacon: 1 (if required)
900 * Atim: 1 (if required)
901 */
902 rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues +
903 (2 * test_bit(REQUIRE_BEACON_RING, &rt2x00dev->flags));
904
905 ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL);
906 if (!ring) {
907 ERROR(rt2x00dev, "Ring allocation failed.\n");
908 return -ENOMEM;
909 }
910
911 /*
912 * Initialize pointers
913 */
914 rt2x00dev->rx = ring;
915 rt2x00dev->tx = &rt2x00dev->rx[1];
916 if (test_bit(REQUIRE_BEACON_RING, &rt2x00dev->flags))
917 rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues];
918
919 /*
920 * Initialize ring parameters.
921 * cw_min: 2^5 = 32.
922 * cw_max: 2^10 = 1024.
923 */
924 ring_for_each(rt2x00dev, ring) {
925 ring->rt2x00dev = rt2x00dev;
926 ring->tx_params.aifs = 2;
927 ring->tx_params.cw_min = 5;
928 ring->tx_params.cw_max = 10;
929 }
930
931 return 0;
932}
933
934static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev)
935{
936 kfree(rt2x00dev->rx);
937 rt2x00dev->rx = NULL;
938 rt2x00dev->tx = NULL;
939 rt2x00dev->bcn = NULL;
940}
941
942int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
943{
944 int retval = -ENOMEM;
945
946 /*
947 * Let the driver probe the device to detect the capabilities.
948 */
949 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
950 if (retval) {
951 ERROR(rt2x00dev, "Failed to allocate device.\n");
952 goto exit;
953 }
954
955 /*
956 * Initialize configuration work.
957 */
958 INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled);
959 INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
960
961 /*
962 * Reset current working type.
963 */
964 rt2x00dev->interface.type = INVALID_INTERFACE;
965
966 /*
967 * Allocate ring array.
968 */
969 retval = rt2x00lib_alloc_rings(rt2x00dev);
970 if (retval)
971 goto exit;
972
973 /*
974 * Initialize ieee80211 structure.
975 */
976 retval = rt2x00lib_probe_hw(rt2x00dev);
977 if (retval) {
978 ERROR(rt2x00dev, "Failed to initialize hw.\n");
979 goto exit;
980 }
981
982 /*
983 * Allocatie rfkill.
984 */
985 retval = rt2x00rfkill_allocate(rt2x00dev);
986 if (retval)
987 goto exit;
988
989 /*
990 * Open the debugfs entry.
991 */
992 rt2x00debug_register(rt2x00dev);
993
994 return 0;
995
996exit:
997 rt2x00lib_remove_dev(rt2x00dev);
998
999 return retval;
1000}
1001EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1002
1003void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1004{
1005 /*
1006 * Disable radio.
1007 */
1008 rt2x00lib_disable_radio(rt2x00dev);
1009
1010 /*
1011 * Uninitialize device.
1012 */
1013 rt2x00lib_uninitialize(rt2x00dev);
1014
1015 /*
1016 * Close debugfs entry.
1017 */
1018 rt2x00debug_deregister(rt2x00dev);
1019
1020 /*
1021 * Free rfkill
1022 */
1023 rt2x00rfkill_free(rt2x00dev);
1024
1025 /*
1026 * Free ieee80211_hw memory.
1027 */
1028 rt2x00lib_remove_hw(rt2x00dev);
1029
1030 /*
1031 * Free firmware image.
1032 */
1033 rt2x00lib_free_firmware(rt2x00dev);
1034
1035 /*
1036 * Free ring structures.
1037 */
1038 rt2x00lib_free_rings(rt2x00dev);
1039}
1040EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1041
1042/*
1043 * Device state handlers
1044 */
1045#ifdef CONFIG_PM
1046int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1047{
1048 int retval;
1049
1050 NOTICE(rt2x00dev, "Going to sleep.\n");
1051
1052 /*
1053 * Disable radio and unitialize all items
1054 * that must be recreated on resume.
1055 */
1056 rt2x00lib_disable_radio(rt2x00dev);
1057 rt2x00lib_uninitialize(rt2x00dev);
1058 rt2x00debug_deregister(rt2x00dev);
1059
1060 /*
1061 * Set device mode to sleep for power management.
1062 */
1063 retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1064 if (retval)
1065 return retval;
1066
1067 return 0;
1068}
1069EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1070
1071int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1072{
1073 struct interface *intf = &rt2x00dev->interface;
1074 int retval;
1075
1076 NOTICE(rt2x00dev, "Waking up.\n");
1077 __set_bit(INTERFACE_RESUME, &rt2x00dev->flags);
1078
1079 /*
1080 * Open the debugfs entry.
1081 */
1082 rt2x00debug_register(rt2x00dev);
1083
1084 /*
1085 * Reinitialize device and all active interfaces.
1086 */
1087 retval = rt2x00mac_start(rt2x00dev->hw);
1088 if (retval)
1089 goto exit;
1090
1091 /*
1092 * Reconfigure device.
1093 */
1094 retval = rt2x00mac_config(rt2x00dev->hw, &rt2x00dev->hw->conf);
1095 if (retval)
1096 goto exit;
1097
1098 rt2x00lib_config_mac_addr(rt2x00dev, intf->mac);
1099 rt2x00lib_config_bssid(rt2x00dev, intf->bssid);
1100 rt2x00lib_config_type(rt2x00dev, intf->type);
1101 rt2x00lib_config_packet_filter(rt2x00dev, intf->filter);
1102
1103 /*
1104 * When in Master or Ad-hoc mode,
1105 * restart Beacon transmitting by faking a beacondone event.
1106 */
1107 if (intf->type == IEEE80211_IF_TYPE_AP ||
1108 intf->type == IEEE80211_IF_TYPE_IBSS)
1109 rt2x00lib_beacondone(rt2x00dev);
1110
1111 __clear_bit(INTERFACE_RESUME, &rt2x00dev->flags);
1112
1113 return 0;
1114
1115exit:
1116 rt2x00lib_disable_radio(rt2x00dev);
1117 rt2x00lib_uninitialize(rt2x00dev);
1118 rt2x00debug_deregister(rt2x00dev);
1119
1120 __clear_bit(INTERFACE_RESUME, &rt2x00dev->flags);
1121
1122 return retval;
1123}
1124EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1125#endif /* CONFIG_PM */
1126
1127/*
1128 * rt2x00lib module information.
1129 */
1130MODULE_AUTHOR(DRV_PROJECT);
1131MODULE_VERSION(DRV_VERSION);
1132MODULE_DESCRIPTION("rt2x00 library");
1133MODULE_LICENSE("GPL");