drivers/net: Kill now superfluous ->last_rx stores.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / via-rhine.c
CommitLineData
1da177e4
LT
1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2/*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
03a8c661 28 [link no longer provides useful info -jgarzik]
1da177e4
LT
29
30*/
31
32#define DRV_NAME "via-rhine"
e84df485
RL
33#define DRV_VERSION "1.4.3"
34#define DRV_RELDATE "2007-03-06"
1da177e4
LT
35
36
37/* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
39
40static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41static int max_interrupt_work = 20;
42
43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
b47157f0
DM
45#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
46 || defined(CONFIG_SPARC) || defined(__ia64__) \
47 || defined(__sh__) || defined(__mips__)
48static int rx_copybreak = 1518;
49#else
1da177e4 50static int rx_copybreak;
b47157f0 51#endif
1da177e4 52
b933b4d9
RL
53/* Work-around for broken BIOSes: they are unable to get the chip back out of
54 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
55static int avoid_D3;
56
1da177e4
LT
57/*
58 * In case you are looking for 'options[]' or 'full_duplex[]', they
59 * are gone. Use ethtool(8) instead.
60 */
61
62/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63 The Rhine has a 64 element 8390-like hash table. */
64static const int multicast_filter_limit = 32;
65
66
67/* Operational parameters that are set at compile time. */
68
69/* Keep the ring sizes a power of two for compile efficiency.
70 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71 Making the Tx ring too large decreases the effectiveness of channel
72 bonding and packet priority.
73 There are no ill effects from too-large receive rings. */
74#define TX_RING_SIZE 16
75#define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
633949a1 76#define RX_RING_SIZE 64
1da177e4
LT
77
78/* Operational parameters that usually are not changed. */
79
80/* Time in jiffies before concluding the transmitter is hung. */
81#define TX_TIMEOUT (2*HZ)
82
83#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85#include <linux/module.h>
86#include <linux/moduleparam.h>
87#include <linux/kernel.h>
88#include <linux/string.h>
89#include <linux/timer.h>
90#include <linux/errno.h>
91#include <linux/ioport.h>
92#include <linux/slab.h>
93#include <linux/interrupt.h>
94#include <linux/pci.h>
1e7f0bd8 95#include <linux/dma-mapping.h>
1da177e4
LT
96#include <linux/netdevice.h>
97#include <linux/etherdevice.h>
98#include <linux/skbuff.h>
99#include <linux/init.h>
100#include <linux/delay.h>
101#include <linux/mii.h>
102#include <linux/ethtool.h>
103#include <linux/crc32.h>
104#include <linux/bitops.h>
105#include <asm/processor.h> /* Processor type for cache alignment. */
106#include <asm/io.h>
107#include <asm/irq.h>
108#include <asm/uaccess.h>
e84df485 109#include <linux/dmi.h>
1da177e4
LT
110
111/* These identify the driver base version and may not be removed. */
112static char version[] __devinitdata =
113KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
114
115/* This driver was written to use PCI memory space. Some early versions
116 of the Rhine may only work correctly with I/O space accesses. */
117#ifdef CONFIG_VIA_RHINE_MMIO
118#define USE_MMIO
119#else
120#endif
121
122MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
123MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
124MODULE_LICENSE("GPL");
125
126module_param(max_interrupt_work, int, 0);
127module_param(debug, int, 0);
128module_param(rx_copybreak, int, 0);
b933b4d9 129module_param(avoid_D3, bool, 0);
1da177e4
LT
130MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
131MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
132MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
b933b4d9 133MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
1da177e4
LT
134
135/*
136 Theory of Operation
137
138I. Board Compatibility
139
140This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
141controller.
142
143II. Board-specific settings
144
145Boards with this chip are functional only in a bus-master PCI slot.
146
147Many operational settings are loaded from the EEPROM to the Config word at
148offset 0x78. For most of these settings, this driver assumes that they are
149correct.
150If this driver is compiled to use PCI memory space operations the EEPROM
151must be configured to enable memory ops.
152
153III. Driver operation
154
155IIIa. Ring buffers
156
157This driver uses two statically allocated fixed-size descriptor lists
158formed into rings by a branch from the final descriptor to the beginning of
159the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
160
161IIIb/c. Transmit/Receive Structure
162
163This driver attempts to use a zero-copy receive and transmit scheme.
164
165Alas, all data buffers are required to start on a 32 bit boundary, so
166the driver must often copy transmit packets into bounce buffers.
167
168The driver allocates full frame size skbuffs for the Rx ring buffers at
169open() time and passes the skb->data field to the chip as receive data
170buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
171a fresh skbuff is allocated and the frame is copied to the new skbuff.
172When the incoming frame is larger, the skbuff is passed directly up the
173protocol stack. Buffers consumed this way are replaced by newly allocated
174skbuffs in the last phase of rhine_rx().
175
176The RX_COPYBREAK value is chosen to trade-off the memory wasted by
177using a full-sized skbuff for small frames vs. the copying costs of larger
178frames. New boards are typically used in generously configured machines
179and the underfilled buffers have negligible impact compared to the benefit of
180a single allocation size, so the default value of zero results in never
181copying packets. When copying is done, the cost is usually mitigated by using
182a combined copy/checksum routine. Copying also preloads the cache, which is
183most useful with small frames.
184
185Since the VIA chips are only able to transfer data to buffers on 32 bit
186boundaries, the IP header at offset 14 in an ethernet frame isn't
187longword aligned for further processing. Copying these unaligned buffers
188has the beneficial effect of 16-byte aligning the IP header.
189
190IIId. Synchronization
191
192The driver runs as two independent, single-threaded flows of control. One
193is the send-packet routine, which enforces single-threaded use by the
194dev->priv->lock spinlock. The other thread is the interrupt handler, which
195is single threaded by the hardware and interrupt handling software.
196
197The send packet thread has partial control over the Tx ring. It locks the
198dev->priv->lock whenever it's queuing a Tx packet. If the next slot in the ring
199is not available it stops the transmit queue by calling netif_stop_queue.
200
201The interrupt handler has exclusive control over the Rx ring and records stats
202from the Tx ring. After reaping the stats, it marks the Tx queue entry as
203empty by incrementing the dirty_tx mark. If at least half of the entries in
204the Rx ring are available the transmit queue is woken up if it was stopped.
205
206IV. Notes
207
208IVb. References
209
210Preliminary VT86C100A manual from http://www.via.com.tw/
211http://www.scyld.com/expert/100mbps.html
212http://www.scyld.com/expert/NWay.html
213ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
214ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
215
216
217IVc. Errata
218
219The VT86C100A manual is not reliable information.
220The 3043 chip does not handle unaligned transmit or receive buffers, resulting
221in significant performance degradation for bounce buffer copies on transmit
222and unaligned IP headers on receive.
223The chip does not pad to minimum transmit length.
224
225*/
226
227
228/* This table drives the PCI probe routines. It's mostly boilerplate in all
229 of the drivers, and will likely be provided by some future kernel.
230 Note the matching code -- the first table entry matchs all 56** cards but
231 second only the 1234 card.
232*/
233
234enum rhine_revs {
235 VT86C100A = 0x00,
236 VTunknown0 = 0x20,
237 VT6102 = 0x40,
238 VT8231 = 0x50, /* Integrated MAC */
239 VT8233 = 0x60, /* Integrated MAC */
240 VT8235 = 0x74, /* Integrated MAC */
241 VT8237 = 0x78, /* Integrated MAC */
242 VTunknown1 = 0x7C,
243 VT6105 = 0x80,
244 VT6105_B0 = 0x83,
245 VT6105L = 0x8A,
246 VT6107 = 0x8C,
247 VTunknown2 = 0x8E,
248 VT6105M = 0x90, /* Management adapter */
249};
250
251enum rhine_quirks {
252 rqWOL = 0x0001, /* Wake-On-LAN support */
253 rqForceReset = 0x0002,
254 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
255 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
256 rqRhineI = 0x0100, /* See comment below */
257};
258/*
259 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
260 * MMIO as well as for the collision counter and the Tx FIFO underflow
261 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
262 */
263
264/* Beware of PCI posted writes */
265#define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
266
46009c8b
JG
267static const struct pci_device_id rhine_pci_tbl[] = {
268 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
269 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
270 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
271 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
1da177e4
LT
272 { } /* terminate list */
273};
274MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
275
276
277/* Offsets to the device registers. */
278enum register_offsets {
279 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
280 ChipCmd1=0x09,
281 IntrStatus=0x0C, IntrEnable=0x0E,
282 MulticastFilter0=0x10, MulticastFilter1=0x14,
283 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
284 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
285 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
286 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
287 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
288 StickyHW=0x83, IntrStatus2=0x84,
289 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
290 WOLcrClr1=0xA6, WOLcgClr=0xA7,
291 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
292};
293
294/* Bits in ConfigD */
295enum backoff_bits {
296 BackOptional=0x01, BackModify=0x02,
297 BackCaptureEffect=0x04, BackRandom=0x08
298};
299
300#ifdef USE_MMIO
301/* Registers we check that mmio and reg are the same. */
302static const int mmio_verify_registers[] = {
303 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
304 0
305};
306#endif
307
308/* Bits in the interrupt status/mask registers. */
309enum intr_status_bits {
310 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
311 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
312 IntrPCIErr=0x0040,
313 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
314 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
315 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
316 IntrRxWakeUp=0x8000,
317 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
318 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
319 IntrTxErrSummary=0x082218,
320};
321
322/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
323enum wol_bits {
324 WOLucast = 0x10,
325 WOLmagic = 0x20,
326 WOLbmcast = 0x30,
327 WOLlnkon = 0x40,
328 WOLlnkoff = 0x80,
329};
330
331/* The Rx and Tx buffer descriptors. */
332struct rx_desc {
53c03f5c
AV
333 __le32 rx_status;
334 __le32 desc_length; /* Chain flag, Buffer/frame length */
335 __le32 addr;
336 __le32 next_desc;
1da177e4
LT
337};
338struct tx_desc {
53c03f5c
AV
339 __le32 tx_status;
340 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
341 __le32 addr;
342 __le32 next_desc;
1da177e4
LT
343};
344
345/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
346#define TXDESC 0x00e08000
347
348enum rx_status_bits {
349 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
350};
351
352/* Bits in *_desc.*_status */
353enum desc_status_bits {
354 DescOwn=0x80000000
355};
356
357/* Bits in ChipCmd. */
358enum chip_cmd_bits {
359 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
360 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
361 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
362 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
363};
364
365struct rhine_private {
366 /* Descriptor rings */
367 struct rx_desc *rx_ring;
368 struct tx_desc *tx_ring;
369 dma_addr_t rx_ring_dma;
370 dma_addr_t tx_ring_dma;
371
372 /* The addresses of receive-in-place skbuffs. */
373 struct sk_buff *rx_skbuff[RX_RING_SIZE];
374 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
375
376 /* The saved address of a sent-in-place packet/buffer, for later free(). */
377 struct sk_buff *tx_skbuff[TX_RING_SIZE];
378 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
379
4be5de25 380 /* Tx bounce buffers (Rhine-I only) */
1da177e4
LT
381 unsigned char *tx_buf[TX_RING_SIZE];
382 unsigned char *tx_bufs;
383 dma_addr_t tx_bufs_dma;
384
385 struct pci_dev *pdev;
386 long pioaddr;
bea3348e
SH
387 struct net_device *dev;
388 struct napi_struct napi;
1da177e4
LT
389 struct net_device_stats stats;
390 spinlock_t lock;
391
392 /* Frequently used values: keep some adjacent for cache effect. */
393 u32 quirks;
394 struct rx_desc *rx_head_desc;
395 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
396 unsigned int cur_tx, dirty_tx;
397 unsigned int rx_buf_sz; /* Based on MTU+slack. */
398 u8 wolopts;
399
400 u8 tx_thresh, rx_thresh;
401
402 struct mii_if_info mii_if;
403 void __iomem *base;
404};
405
406static int mdio_read(struct net_device *dev, int phy_id, int location);
407static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
408static int rhine_open(struct net_device *dev);
409static void rhine_tx_timeout(struct net_device *dev);
410static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
7d12e780 411static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
1da177e4 412static void rhine_tx(struct net_device *dev);
633949a1 413static int rhine_rx(struct net_device *dev, int limit);
1da177e4
LT
414static void rhine_error(struct net_device *dev, int intr_status);
415static void rhine_set_rx_mode(struct net_device *dev);
416static struct net_device_stats *rhine_get_stats(struct net_device *dev);
417static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
7282d491 418static const struct ethtool_ops netdev_ethtool_ops;
1da177e4 419static int rhine_close(struct net_device *dev);
d18c3db5 420static void rhine_shutdown (struct pci_dev *pdev);
1da177e4
LT
421
422#define RHINE_WAIT_FOR(condition) do { \
423 int i=1024; \
424 while (!(condition) && --i) \
425 ; \
426 if (debug > 1 && i < 512) \
427 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
428 DRV_NAME, 1024-i, __func__, __LINE__); \
429} while(0)
430
431static inline u32 get_intr_status(struct net_device *dev)
432{
433 struct rhine_private *rp = netdev_priv(dev);
434 void __iomem *ioaddr = rp->base;
435 u32 intr_status;
436
437 intr_status = ioread16(ioaddr + IntrStatus);
438 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
439 if (rp->quirks & rqStatusWBRace)
440 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
441 return intr_status;
442}
443
444/*
445 * Get power related registers into sane state.
446 * Notify user about past WOL event.
447 */
448static void rhine_power_init(struct net_device *dev)
449{
450 struct rhine_private *rp = netdev_priv(dev);
451 void __iomem *ioaddr = rp->base;
452 u16 wolstat;
453
454 if (rp->quirks & rqWOL) {
455 /* Make sure chip is in power state D0 */
456 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
457
458 /* Disable "force PME-enable" */
459 iowrite8(0x80, ioaddr + WOLcgClr);
460
461 /* Clear power-event config bits (WOL) */
462 iowrite8(0xFF, ioaddr + WOLcrClr);
463 /* More recent cards can manage two additional patterns */
464 if (rp->quirks & rq6patterns)
465 iowrite8(0x03, ioaddr + WOLcrClr1);
466
467 /* Save power-event status bits */
468 wolstat = ioread8(ioaddr + PwrcsrSet);
469 if (rp->quirks & rq6patterns)
470 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
471
472 /* Clear power-event status bits */
473 iowrite8(0xFF, ioaddr + PwrcsrClr);
474 if (rp->quirks & rq6patterns)
475 iowrite8(0x03, ioaddr + PwrcsrClr1);
476
477 if (wolstat) {
478 char *reason;
479 switch (wolstat) {
480 case WOLmagic:
481 reason = "Magic packet";
482 break;
483 case WOLlnkon:
484 reason = "Link went up";
485 break;
486 case WOLlnkoff:
487 reason = "Link went down";
488 break;
489 case WOLucast:
490 reason = "Unicast packet";
491 break;
492 case WOLbmcast:
493 reason = "Multicast/broadcast packet";
494 break;
495 default:
496 reason = "Unknown";
497 }
498 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
499 DRV_NAME, reason);
500 }
501 }
502}
503
504static void rhine_chip_reset(struct net_device *dev)
505{
506 struct rhine_private *rp = netdev_priv(dev);
507 void __iomem *ioaddr = rp->base;
508
509 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
510 IOSYNC;
511
512 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
513 printk(KERN_INFO "%s: Reset not complete yet. "
514 "Trying harder.\n", DRV_NAME);
515
516 /* Force reset */
517 if (rp->quirks & rqForceReset)
518 iowrite8(0x40, ioaddr + MiscCmd);
519
520 /* Reset can take somewhat longer (rare) */
521 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
522 }
523
524 if (debug > 1)
525 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
526 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
527 "failed" : "succeeded");
528}
529
530#ifdef USE_MMIO
531static void enable_mmio(long pioaddr, u32 quirks)
532{
533 int n;
534 if (quirks & rqRhineI) {
535 /* More recent docs say that this bit is reserved ... */
536 n = inb(pioaddr + ConfigA) | 0x20;
537 outb(n, pioaddr + ConfigA);
538 } else {
539 n = inb(pioaddr + ConfigD) | 0x80;
540 outb(n, pioaddr + ConfigD);
541 }
542}
543#endif
544
545/*
546 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
547 * (plus 0x6C for Rhine-I/II)
548 */
549static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
550{
551 struct rhine_private *rp = netdev_priv(dev);
552 void __iomem *ioaddr = rp->base;
553
554 outb(0x20, pioaddr + MACRegEEcsr);
555 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
556
557#ifdef USE_MMIO
558 /*
559 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
560 * MMIO. If reloading EEPROM was done first this could be avoided, but
561 * it is not known if that still works with the "win98-reboot" problem.
562 */
563 enable_mmio(pioaddr, rp->quirks);
564#endif
565
566 /* Turn off EEPROM-controlled wake-up (magic packet) */
567 if (rp->quirks & rqWOL)
568 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
569
570}
571
572#ifdef CONFIG_NET_POLL_CONTROLLER
573static void rhine_poll(struct net_device *dev)
574{
575 disable_irq(dev->irq);
7d12e780 576 rhine_interrupt(dev->irq, (void *)dev);
1da177e4
LT
577 enable_irq(dev->irq);
578}
579#endif
580
bea3348e 581static int rhine_napipoll(struct napi_struct *napi, int budget)
633949a1 582{
bea3348e
SH
583 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
584 struct net_device *dev = rp->dev;
633949a1 585 void __iomem *ioaddr = rp->base;
bea3348e 586 int work_done;
633949a1 587
bea3348e 588 work_done = rhine_rx(dev, budget);
633949a1 589
bea3348e
SH
590 if (work_done < budget) {
591 netif_rx_complete(dev, napi);
633949a1
RL
592
593 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
594 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
595 IntrTxDone | IntrTxError | IntrTxUnderrun |
596 IntrPCIErr | IntrStatsMax | IntrLinkChange,
597 ioaddr + IntrEnable);
633949a1 598 }
bea3348e 599 return work_done;
633949a1 600}
633949a1 601
de4e7c88 602static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
1da177e4
LT
603{
604 struct rhine_private *rp = netdev_priv(dev);
605
606 /* Reset the chip to erase previous misconfiguration. */
607 rhine_chip_reset(dev);
608
609 /* Rhine-I needs extra time to recuperate before EEPROM reload */
610 if (rp->quirks & rqRhineI)
611 msleep(5);
612
613 /* Reload EEPROM controlled bytes cleared by soft reset */
614 rhine_reload_eeprom(pioaddr, dev);
615}
616
617static int __devinit rhine_init_one(struct pci_dev *pdev,
618 const struct pci_device_id *ent)
619{
620 struct net_device *dev;
621 struct rhine_private *rp;
622 int i, rc;
1da177e4
LT
623 u32 quirks;
624 long pioaddr;
625 long memaddr;
626 void __iomem *ioaddr;
627 int io_size, phy_id;
628 const char *name;
629#ifdef USE_MMIO
630 int bar = 1;
631#else
632 int bar = 0;
633#endif
634
635/* when built into the kernel, we only print version if device is found */
636#ifndef MODULE
637 static int printed_version;
638 if (!printed_version++)
639 printk(version);
640#endif
641
1da177e4
LT
642 io_size = 256;
643 phy_id = 0;
644 quirks = 0;
645 name = "Rhine";
44c10138 646 if (pdev->revision < VTunknown0) {
1da177e4
LT
647 quirks = rqRhineI;
648 io_size = 128;
649 }
44c10138 650 else if (pdev->revision >= VT6102) {
1da177e4 651 quirks = rqWOL | rqForceReset;
44c10138 652 if (pdev->revision < VT6105) {
1da177e4
LT
653 name = "Rhine II";
654 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
655 }
656 else {
657 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
44c10138 658 if (pdev->revision >= VT6105_B0)
1da177e4 659 quirks |= rq6patterns;
44c10138 660 if (pdev->revision < VT6105M)
1da177e4
LT
661 name = "Rhine III";
662 else
663 name = "Rhine III (Management Adapter)";
664 }
665 }
666
667 rc = pci_enable_device(pdev);
668 if (rc)
669 goto err_out;
670
671 /* this should always be supported */
1e7f0bd8 672 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1da177e4
LT
673 if (rc) {
674 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
675 "the card!?\n");
676 goto err_out;
677 }
678
679 /* sanity check */
680 if ((pci_resource_len(pdev, 0) < io_size) ||
681 (pci_resource_len(pdev, 1) < io_size)) {
682 rc = -EIO;
683 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
684 goto err_out;
685 }
686
687 pioaddr = pci_resource_start(pdev, 0);
688 memaddr = pci_resource_start(pdev, 1);
689
690 pci_set_master(pdev);
691
692 dev = alloc_etherdev(sizeof(struct rhine_private));
693 if (!dev) {
694 rc = -ENOMEM;
695 printk(KERN_ERR "alloc_etherdev failed\n");
696 goto err_out;
697 }
1da177e4
LT
698 SET_NETDEV_DEV(dev, &pdev->dev);
699
700 rp = netdev_priv(dev);
bea3348e 701 rp->dev = dev;
1da177e4
LT
702 rp->quirks = quirks;
703 rp->pioaddr = pioaddr;
704 rp->pdev = pdev;
705
706 rc = pci_request_regions(pdev, DRV_NAME);
707 if (rc)
708 goto err_out_free_netdev;
709
710 ioaddr = pci_iomap(pdev, bar, io_size);
711 if (!ioaddr) {
712 rc = -EIO;
713 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
714 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
715 goto err_out_free_res;
716 }
717
718#ifdef USE_MMIO
719 enable_mmio(pioaddr, quirks);
720
721 /* Check that selected MMIO registers match the PIO ones */
722 i = 0;
723 while (mmio_verify_registers[i]) {
724 int reg = mmio_verify_registers[i++];
725 unsigned char a = inb(pioaddr+reg);
726 unsigned char b = readb(ioaddr+reg);
727 if (a != b) {
728 rc = -EIO;
729 printk(KERN_ERR "MMIO do not match PIO [%02x] "
730 "(%02x != %02x)\n", reg, a, b);
731 goto err_out_unmap;
732 }
733 }
734#endif /* USE_MMIO */
735
736 dev->base_addr = (unsigned long)ioaddr;
737 rp->base = ioaddr;
738
739 /* Get chip registers into a sane state */
740 rhine_power_init(dev);
741 rhine_hw_init(dev, pioaddr);
742
743 for (i = 0; i < 6; i++)
744 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
b81e8e1f 745 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1da177e4 746
b81e8e1f 747 if (!is_valid_ether_addr(dev->perm_addr)) {
1da177e4
LT
748 rc = -EIO;
749 printk(KERN_ERR "Invalid MAC address\n");
750 goto err_out_unmap;
751 }
752
753 /* For Rhine-I/II, phy_id is loaded from EEPROM */
754 if (!phy_id)
755 phy_id = ioread8(ioaddr + 0x6C);
756
757 dev->irq = pdev->irq;
758
759 spin_lock_init(&rp->lock);
760 rp->mii_if.dev = dev;
761 rp->mii_if.mdio_read = mdio_read;
762 rp->mii_if.mdio_write = mdio_write;
763 rp->mii_if.phy_id_mask = 0x1f;
764 rp->mii_if.reg_num_mask = 0x1f;
765
766 /* The chip-specific entries in the device structure. */
767 dev->open = rhine_open;
768 dev->hard_start_xmit = rhine_start_tx;
769 dev->stop = rhine_close;
770 dev->get_stats = rhine_get_stats;
771 dev->set_multicast_list = rhine_set_rx_mode;
772 dev->do_ioctl = netdev_ioctl;
773 dev->ethtool_ops = &netdev_ethtool_ops;
774 dev->tx_timeout = rhine_tx_timeout;
775 dev->watchdog_timeo = TX_TIMEOUT;
776#ifdef CONFIG_NET_POLL_CONTROLLER
777 dev->poll_controller = rhine_poll;
633949a1 778#endif
bea3348e 779 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
32b0f53e 780
1da177e4
LT
781 if (rp->quirks & rqRhineI)
782 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
783
784 /* dev->name not defined before register_netdev()! */
785 rc = register_netdev(dev);
786 if (rc)
787 goto err_out_unmap;
788
e174961c 789 printk(KERN_INFO "%s: VIA %s at 0x%lx, %pM, IRQ %d.\n",
1da177e4
LT
790 dev->name, name,
791#ifdef USE_MMIO
0795af57 792 memaddr,
1da177e4 793#else
0795af57 794 (long)ioaddr,
1da177e4 795#endif
e174961c 796 dev->dev_addr, pdev->irq);
1da177e4
LT
797
798 pci_set_drvdata(pdev, dev);
799
800 {
801 u16 mii_cmd;
802 int mii_status = mdio_read(dev, phy_id, 1);
803 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
804 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
805 if (mii_status != 0xffff && mii_status != 0x0000) {
806 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
807 printk(KERN_INFO "%s: MII PHY found at address "
808 "%d, status 0x%4.4x advertising %4.4x "
809 "Link %4.4x.\n", dev->name, phy_id,
810 mii_status, rp->mii_if.advertising,
811 mdio_read(dev, phy_id, 5));
812
813 /* set IFF_RUNNING */
814 if (mii_status & BMSR_LSTATUS)
815 netif_carrier_on(dev);
816 else
817 netif_carrier_off(dev);
818
819 }
820 }
821 rp->mii_if.phy_id = phy_id;
b933b4d9
RL
822 if (debug > 1 && avoid_D3)
823 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
824 dev->name);
1da177e4
LT
825
826 return 0;
827
828err_out_unmap:
829 pci_iounmap(pdev, ioaddr);
830err_out_free_res:
831 pci_release_regions(pdev);
832err_out_free_netdev:
833 free_netdev(dev);
834err_out:
835 return rc;
836}
837
838static int alloc_ring(struct net_device* dev)
839{
840 struct rhine_private *rp = netdev_priv(dev);
841 void *ring;
842 dma_addr_t ring_dma;
843
844 ring = pci_alloc_consistent(rp->pdev,
845 RX_RING_SIZE * sizeof(struct rx_desc) +
846 TX_RING_SIZE * sizeof(struct tx_desc),
847 &ring_dma);
848 if (!ring) {
849 printk(KERN_ERR "Could not allocate DMA memory.\n");
850 return -ENOMEM;
851 }
852 if (rp->quirks & rqRhineI) {
853 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
854 PKT_BUF_SZ * TX_RING_SIZE,
855 &rp->tx_bufs_dma);
856 if (rp->tx_bufs == NULL) {
857 pci_free_consistent(rp->pdev,
858 RX_RING_SIZE * sizeof(struct rx_desc) +
859 TX_RING_SIZE * sizeof(struct tx_desc),
860 ring, ring_dma);
861 return -ENOMEM;
862 }
863 }
864
865 rp->rx_ring = ring;
866 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
867 rp->rx_ring_dma = ring_dma;
868 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
869
870 return 0;
871}
872
873static void free_ring(struct net_device* dev)
874{
875 struct rhine_private *rp = netdev_priv(dev);
876
877 pci_free_consistent(rp->pdev,
878 RX_RING_SIZE * sizeof(struct rx_desc) +
879 TX_RING_SIZE * sizeof(struct tx_desc),
880 rp->rx_ring, rp->rx_ring_dma);
881 rp->tx_ring = NULL;
882
883 if (rp->tx_bufs)
884 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
885 rp->tx_bufs, rp->tx_bufs_dma);
886
887 rp->tx_bufs = NULL;
888
889}
890
891static void alloc_rbufs(struct net_device *dev)
892{
893 struct rhine_private *rp = netdev_priv(dev);
894 dma_addr_t next;
895 int i;
896
897 rp->dirty_rx = rp->cur_rx = 0;
898
899 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
900 rp->rx_head_desc = &rp->rx_ring[0];
901 next = rp->rx_ring_dma;
902
903 /* Init the ring entries */
904 for (i = 0; i < RX_RING_SIZE; i++) {
905 rp->rx_ring[i].rx_status = 0;
906 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
907 next += sizeof(struct rx_desc);
908 rp->rx_ring[i].next_desc = cpu_to_le32(next);
909 rp->rx_skbuff[i] = NULL;
910 }
911 /* Mark the last entry as wrapping the ring. */
912 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
913
914 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
915 for (i = 0; i < RX_RING_SIZE; i++) {
b26b555a 916 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
917 rp->rx_skbuff[i] = skb;
918 if (skb == NULL)
919 break;
920 skb->dev = dev; /* Mark as being used by this device. */
921
922 rp->rx_skbuff_dma[i] =
689be439 923 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1da177e4
LT
924 PCI_DMA_FROMDEVICE);
925
926 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
927 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
928 }
929 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
930}
931
932static void free_rbufs(struct net_device* dev)
933{
934 struct rhine_private *rp = netdev_priv(dev);
935 int i;
936
937 /* Free all the skbuffs in the Rx queue. */
938 for (i = 0; i < RX_RING_SIZE; i++) {
939 rp->rx_ring[i].rx_status = 0;
940 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
941 if (rp->rx_skbuff[i]) {
942 pci_unmap_single(rp->pdev,
943 rp->rx_skbuff_dma[i],
944 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
945 dev_kfree_skb(rp->rx_skbuff[i]);
946 }
947 rp->rx_skbuff[i] = NULL;
948 }
949}
950
951static void alloc_tbufs(struct net_device* dev)
952{
953 struct rhine_private *rp = netdev_priv(dev);
954 dma_addr_t next;
955 int i;
956
957 rp->dirty_tx = rp->cur_tx = 0;
958 next = rp->tx_ring_dma;
959 for (i = 0; i < TX_RING_SIZE; i++) {
960 rp->tx_skbuff[i] = NULL;
961 rp->tx_ring[i].tx_status = 0;
962 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
963 next += sizeof(struct tx_desc);
964 rp->tx_ring[i].next_desc = cpu_to_le32(next);
4be5de25
RL
965 if (rp->quirks & rqRhineI)
966 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1da177e4
LT
967 }
968 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
969
970}
971
972static void free_tbufs(struct net_device* dev)
973{
974 struct rhine_private *rp = netdev_priv(dev);
975 int i;
976
977 for (i = 0; i < TX_RING_SIZE; i++) {
978 rp->tx_ring[i].tx_status = 0;
979 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
980 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
981 if (rp->tx_skbuff[i]) {
982 if (rp->tx_skbuff_dma[i]) {
983 pci_unmap_single(rp->pdev,
984 rp->tx_skbuff_dma[i],
985 rp->tx_skbuff[i]->len,
986 PCI_DMA_TODEVICE);
987 }
988 dev_kfree_skb(rp->tx_skbuff[i]);
989 }
990 rp->tx_skbuff[i] = NULL;
991 rp->tx_buf[i] = NULL;
992 }
993}
994
995static void rhine_check_media(struct net_device *dev, unsigned int init_media)
996{
997 struct rhine_private *rp = netdev_priv(dev);
998 void __iomem *ioaddr = rp->base;
999
1000 mii_check_media(&rp->mii_if, debug, init_media);
1001
1002 if (rp->mii_if.full_duplex)
1003 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1004 ioaddr + ChipCmd1);
1005 else
1006 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1007 ioaddr + ChipCmd1);
00b428c2
RL
1008 if (debug > 1)
1009 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1010 rp->mii_if.force_media, netif_carrier_ok(dev));
1011}
1012
1013/* Called after status of force_media possibly changed */
0761be4f 1014static void rhine_set_carrier(struct mii_if_info *mii)
00b428c2
RL
1015{
1016 if (mii->force_media) {
1017 /* autoneg is off: Link is always assumed to be up */
1018 if (!netif_carrier_ok(mii->dev))
1019 netif_carrier_on(mii->dev);
1020 }
1021 else /* Let MMI library update carrier status */
1022 rhine_check_media(mii->dev, 0);
1023 if (debug > 1)
1024 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1025 mii->dev->name, mii->force_media,
1026 netif_carrier_ok(mii->dev));
1da177e4
LT
1027}
1028
1029static void init_registers(struct net_device *dev)
1030{
1031 struct rhine_private *rp = netdev_priv(dev);
1032 void __iomem *ioaddr = rp->base;
1033 int i;
1034
1035 for (i = 0; i < 6; i++)
1036 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1037
1038 /* Initialize other registers. */
1039 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1040 /* Configure initial FIFO thresholds. */
1041 iowrite8(0x20, ioaddr + TxConfig);
1042 rp->tx_thresh = 0x20;
1043 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1044
1045 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1046 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1047
1048 rhine_set_rx_mode(dev);
1049
bea3348e 1050 napi_enable(&rp->napi);
ab197668 1051
1da177e4
LT
1052 /* Enable interrupts by setting the interrupt mask. */
1053 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1054 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1055 IntrTxDone | IntrTxError | IntrTxUnderrun |
1056 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1057 ioaddr + IntrEnable);
1058
1059 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1060 ioaddr + ChipCmd);
1061 rhine_check_media(dev, 1);
1062}
1063
1064/* Enable MII link status auto-polling (required for IntrLinkChange) */
1065static void rhine_enable_linkmon(void __iomem *ioaddr)
1066{
1067 iowrite8(0, ioaddr + MIICmd);
1068 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1069 iowrite8(0x80, ioaddr + MIICmd);
1070
1071 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1072
1073 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1074}
1075
1076/* Disable MII link status auto-polling (required for MDIO access) */
1077static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1078{
1079 iowrite8(0, ioaddr + MIICmd);
1080
1081 if (quirks & rqRhineI) {
1082 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1083
38bb6b28
JL
1084 /* Can be called from ISR. Evil. */
1085 mdelay(1);
1da177e4
LT
1086
1087 /* 0x80 must be set immediately before turning it off */
1088 iowrite8(0x80, ioaddr + MIICmd);
1089
1090 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1091
1092 /* Heh. Now clear 0x80 again. */
1093 iowrite8(0, ioaddr + MIICmd);
1094 }
1095 else
1096 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1097}
1098
1099/* Read and write over the MII Management Data I/O (MDIO) interface. */
1100
1101static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1102{
1103 struct rhine_private *rp = netdev_priv(dev);
1104 void __iomem *ioaddr = rp->base;
1105 int result;
1106
1107 rhine_disable_linkmon(ioaddr, rp->quirks);
1108
1109 /* rhine_disable_linkmon already cleared MIICmd */
1110 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1111 iowrite8(regnum, ioaddr + MIIRegAddr);
1112 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1113 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1114 result = ioread16(ioaddr + MIIData);
1115
1116 rhine_enable_linkmon(ioaddr);
1117 return result;
1118}
1119
1120static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1121{
1122 struct rhine_private *rp = netdev_priv(dev);
1123 void __iomem *ioaddr = rp->base;
1124
1125 rhine_disable_linkmon(ioaddr, rp->quirks);
1126
1127 /* rhine_disable_linkmon already cleared MIICmd */
1128 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1129 iowrite8(regnum, ioaddr + MIIRegAddr);
1130 iowrite16(value, ioaddr + MIIData);
1131 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1132 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1133
1134 rhine_enable_linkmon(ioaddr);
1135}
1136
1137static int rhine_open(struct net_device *dev)
1138{
1139 struct rhine_private *rp = netdev_priv(dev);
1140 void __iomem *ioaddr = rp->base;
1141 int rc;
1142
1fb9df5d 1143 rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1da177e4
LT
1144 dev);
1145 if (rc)
1146 return rc;
1147
1148 if (debug > 1)
1149 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1150 dev->name, rp->pdev->irq);
1151
1152 rc = alloc_ring(dev);
1153 if (rc) {
1154 free_irq(rp->pdev->irq, dev);
1155 return rc;
1156 }
1157 alloc_rbufs(dev);
1158 alloc_tbufs(dev);
1159 rhine_chip_reset(dev);
1160 init_registers(dev);
1161 if (debug > 2)
1162 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1163 "MII status: %4.4x.\n",
1164 dev->name, ioread16(ioaddr + ChipCmd),
1165 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1166
1167 netif_start_queue(dev);
1168
1169 return 0;
1170}
1171
1172static void rhine_tx_timeout(struct net_device *dev)
1173{
1174 struct rhine_private *rp = netdev_priv(dev);
1175 void __iomem *ioaddr = rp->base;
1176
1177 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1178 "%4.4x, resetting...\n",
1179 dev->name, ioread16(ioaddr + IntrStatus),
1180 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1181
1182 /* protect against concurrent rx interrupts */
1183 disable_irq(rp->pdev->irq);
1184
bea3348e 1185 napi_disable(&rp->napi);
bea3348e 1186
1da177e4
LT
1187 spin_lock(&rp->lock);
1188
1189 /* clear all descriptors */
1190 free_tbufs(dev);
1191 free_rbufs(dev);
1192 alloc_tbufs(dev);
1193 alloc_rbufs(dev);
1194
1195 /* Reinitialize the hardware. */
1196 rhine_chip_reset(dev);
1197 init_registers(dev);
1198
1199 spin_unlock(&rp->lock);
1200 enable_irq(rp->pdev->irq);
1201
1202 dev->trans_start = jiffies;
1203 rp->stats.tx_errors++;
1204 netif_wake_queue(dev);
1205}
1206
1207static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1208{
1209 struct rhine_private *rp = netdev_priv(dev);
1210 void __iomem *ioaddr = rp->base;
1211 unsigned entry;
1212
1213 /* Caution: the write order is important here, set the field
1214 with the "ownership" bits last. */
1215
1216 /* Calculate the next Tx descriptor entry. */
1217 entry = rp->cur_tx % TX_RING_SIZE;
1218
5b057c6b
HX
1219 if (skb_padto(skb, ETH_ZLEN))
1220 return 0;
1da177e4
LT
1221
1222 rp->tx_skbuff[entry] = skb;
1223
1224 if ((rp->quirks & rqRhineI) &&
84fa7933 1225 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1da177e4
LT
1226 /* Must use alignment buffer. */
1227 if (skb->len > PKT_BUF_SZ) {
1228 /* packet too long, drop it */
1229 dev_kfree_skb(skb);
1230 rp->tx_skbuff[entry] = NULL;
1231 rp->stats.tx_dropped++;
1232 return 0;
1233 }
3e0d167a
CB
1234
1235 /* Padding is not copied and so must be redone. */
1da177e4 1236 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
3e0d167a
CB
1237 if (skb->len < ETH_ZLEN)
1238 memset(rp->tx_buf[entry] + skb->len, 0,
1239 ETH_ZLEN - skb->len);
1da177e4
LT
1240 rp->tx_skbuff_dma[entry] = 0;
1241 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1242 (rp->tx_buf[entry] -
1243 rp->tx_bufs));
1244 } else {
1245 rp->tx_skbuff_dma[entry] =
1246 pci_map_single(rp->pdev, skb->data, skb->len,
1247 PCI_DMA_TODEVICE);
1248 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1249 }
1250
1251 rp->tx_ring[entry].desc_length =
1252 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1253
1254 /* lock eth irq */
1255 spin_lock_irq(&rp->lock);
1256 wmb();
1257 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1258 wmb();
1259
1260 rp->cur_tx++;
1261
1262 /* Non-x86 Todo: explicitly flush cache lines here. */
1263
1264 /* Wake the potentially-idle transmit channel */
1265 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1266 ioaddr + ChipCmd1);
1267 IOSYNC;
1268
1269 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1270 netif_stop_queue(dev);
1271
1272 dev->trans_start = jiffies;
1273
1274 spin_unlock_irq(&rp->lock);
1275
1276 if (debug > 4) {
1277 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1278 dev->name, rp->cur_tx-1, entry);
1279 }
1280 return 0;
1281}
1282
1283/* The interrupt handler does all of the Rx thread work and cleans up
1284 after the Tx thread. */
7d12e780 1285static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1da177e4
LT
1286{
1287 struct net_device *dev = dev_instance;
1288 struct rhine_private *rp = netdev_priv(dev);
1289 void __iomem *ioaddr = rp->base;
1290 u32 intr_status;
1291 int boguscnt = max_interrupt_work;
1292 int handled = 0;
1293
1294 while ((intr_status = get_intr_status(dev))) {
1295 handled = 1;
1296
1297 /* Acknowledge all of the current interrupt sources ASAP. */
1298 if (intr_status & IntrTxDescRace)
1299 iowrite8(0x08, ioaddr + IntrStatus2);
1300 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1301 IOSYNC;
1302
1303 if (debug > 4)
1304 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1305 dev->name, intr_status);
1306
1307 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
633949a1 1308 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
633949a1
RL
1309 iowrite16(IntrTxAborted |
1310 IntrTxDone | IntrTxError | IntrTxUnderrun |
1311 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1312 ioaddr + IntrEnable);
1313
bea3348e 1314 netif_rx_schedule(dev, &rp->napi);
633949a1 1315 }
1da177e4
LT
1316
1317 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1318 if (intr_status & IntrTxErrSummary) {
1319 /* Avoid scavenging before Tx engine turned off */
1320 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1321 if (debug > 2 &&
1322 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1323 printk(KERN_WARNING "%s: "
2450022a 1324 "rhine_interrupt() Tx engine "
1da177e4
LT
1325 "still on.\n", dev->name);
1326 }
1327 rhine_tx(dev);
1328 }
1329
1330 /* Abnormal error summary/uncommon events handlers. */
1331 if (intr_status & (IntrPCIErr | IntrLinkChange |
1332 IntrStatsMax | IntrTxError | IntrTxAborted |
1333 IntrTxUnderrun | IntrTxDescRace))
1334 rhine_error(dev, intr_status);
1335
1336 if (--boguscnt < 0) {
1337 printk(KERN_WARNING "%s: Too much work at interrupt, "
1338 "status=%#8.8x.\n",
1339 dev->name, intr_status);
1340 break;
1341 }
1342 }
1343
1344 if (debug > 3)
1345 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1346 dev->name, ioread16(ioaddr + IntrStatus));
1347 return IRQ_RETVAL(handled);
1348}
1349
1350/* This routine is logically part of the interrupt handler, but isolated
1351 for clarity. */
1352static void rhine_tx(struct net_device *dev)
1353{
1354 struct rhine_private *rp = netdev_priv(dev);
1355 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1356
1357 spin_lock(&rp->lock);
1358
1359 /* find and cleanup dirty tx descriptors */
1360 while (rp->dirty_tx != rp->cur_tx) {
1361 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1362 if (debug > 6)
ed4030d1 1363 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1da177e4
LT
1364 entry, txstatus);
1365 if (txstatus & DescOwn)
1366 break;
1367 if (txstatus & 0x8000) {
1368 if (debug > 1)
1369 printk(KERN_DEBUG "%s: Transmit error, "
1370 "Tx status %8.8x.\n",
1371 dev->name, txstatus);
1372 rp->stats.tx_errors++;
1373 if (txstatus & 0x0400) rp->stats.tx_carrier_errors++;
1374 if (txstatus & 0x0200) rp->stats.tx_window_errors++;
1375 if (txstatus & 0x0100) rp->stats.tx_aborted_errors++;
1376 if (txstatus & 0x0080) rp->stats.tx_heartbeat_errors++;
1377 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1378 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1379 rp->stats.tx_fifo_errors++;
1380 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1381 break; /* Keep the skb - we try again */
1382 }
1383 /* Transmitter restarted in 'abnormal' handler. */
1384 } else {
1385 if (rp->quirks & rqRhineI)
1386 rp->stats.collisions += (txstatus >> 3) & 0x0F;
1387 else
1388 rp->stats.collisions += txstatus & 0x0F;
1389 if (debug > 6)
1390 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1391 (txstatus >> 3) & 0xF,
1392 txstatus & 0xF);
1393 rp->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1394 rp->stats.tx_packets++;
1395 }
1396 /* Free the original skb. */
1397 if (rp->tx_skbuff_dma[entry]) {
1398 pci_unmap_single(rp->pdev,
1399 rp->tx_skbuff_dma[entry],
1400 rp->tx_skbuff[entry]->len,
1401 PCI_DMA_TODEVICE);
1402 }
1403 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1404 rp->tx_skbuff[entry] = NULL;
1405 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1406 }
1407 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1408 netif_wake_queue(dev);
1409
1410 spin_unlock(&rp->lock);
1411}
1412
633949a1
RL
1413/* Process up to limit frames from receive ring */
1414static int rhine_rx(struct net_device *dev, int limit)
1da177e4
LT
1415{
1416 struct rhine_private *rp = netdev_priv(dev);
633949a1 1417 int count;
1da177e4 1418 int entry = rp->cur_rx % RX_RING_SIZE;
1da177e4
LT
1419
1420 if (debug > 4) {
1421 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1422 dev->name, entry,
1423 le32_to_cpu(rp->rx_head_desc->rx_status));
1424 }
1425
1426 /* If EOP is set on the next entry, it's a new packet. Send it up. */
633949a1 1427 for (count = 0; count < limit; ++count) {
1da177e4
LT
1428 struct rx_desc *desc = rp->rx_head_desc;
1429 u32 desc_status = le32_to_cpu(desc->rx_status);
1430 int data_size = desc_status >> 16;
1431
633949a1
RL
1432 if (desc_status & DescOwn)
1433 break;
1434
1da177e4 1435 if (debug > 4)
ed4030d1 1436 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1da177e4 1437 desc_status);
633949a1 1438
1da177e4
LT
1439 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1440 if ((desc_status & RxWholePkt) != RxWholePkt) {
1441 printk(KERN_WARNING "%s: Oversized Ethernet "
1442 "frame spanned multiple buffers, entry "
1443 "%#x length %d status %8.8x!\n",
1444 dev->name, entry, data_size,
1445 desc_status);
1446 printk(KERN_WARNING "%s: Oversized Ethernet "
1447 "frame %p vs %p.\n", dev->name,
1448 rp->rx_head_desc, &rp->rx_ring[entry]);
1449 rp->stats.rx_length_errors++;
1450 } else if (desc_status & RxErr) {
1451 /* There was a error. */
1452 if (debug > 2)
ed4030d1 1453 printk(KERN_DEBUG "rhine_rx() Rx "
1da177e4
LT
1454 "error was %8.8x.\n",
1455 desc_status);
1456 rp->stats.rx_errors++;
1457 if (desc_status & 0x0030) rp->stats.rx_length_errors++;
1458 if (desc_status & 0x0048) rp->stats.rx_fifo_errors++;
1459 if (desc_status & 0x0004) rp->stats.rx_frame_errors++;
1460 if (desc_status & 0x0002) {
1461 /* this can also be updated outside the interrupt handler */
1462 spin_lock(&rp->lock);
1463 rp->stats.rx_crc_errors++;
1464 spin_unlock(&rp->lock);
1465 }
1466 }
1467 } else {
1468 struct sk_buff *skb;
1469 /* Length should omit the CRC */
1470 int pkt_len = data_size - 4;
1471
1472 /* Check if the packet is long enough to accept without
1473 copying to a minimally-sized skbuff. */
1474 if (pkt_len < rx_copybreak &&
b26b555a
KL
1475 (skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN)) != NULL) {
1476 skb_reserve(skb, NET_IP_ALIGN); /* 16 byte align the IP header */
1da177e4
LT
1477 pci_dma_sync_single_for_cpu(rp->pdev,
1478 rp->rx_skbuff_dma[entry],
1479 rp->rx_buf_sz,
1480 PCI_DMA_FROMDEVICE);
1481
8c7b7faa 1482 skb_copy_to_linear_data(skb,
689be439 1483 rp->rx_skbuff[entry]->data,
8c7b7faa 1484 pkt_len);
1da177e4
LT
1485 skb_put(skb, pkt_len);
1486 pci_dma_sync_single_for_device(rp->pdev,
1487 rp->rx_skbuff_dma[entry],
1488 rp->rx_buf_sz,
1489 PCI_DMA_FROMDEVICE);
1490 } else {
1491 skb = rp->rx_skbuff[entry];
1492 if (skb == NULL) {
1493 printk(KERN_ERR "%s: Inconsistent Rx "
1494 "descriptor chain.\n",
1495 dev->name);
1496 break;
1497 }
1498 rp->rx_skbuff[entry] = NULL;
1499 skb_put(skb, pkt_len);
1500 pci_unmap_single(rp->pdev,
1501 rp->rx_skbuff_dma[entry],
1502 rp->rx_buf_sz,
1503 PCI_DMA_FROMDEVICE);
1504 }
1505 skb->protocol = eth_type_trans(skb, dev);
633949a1 1506 netif_receive_skb(skb);
1da177e4
LT
1507 rp->stats.rx_bytes += pkt_len;
1508 rp->stats.rx_packets++;
1509 }
1510 entry = (++rp->cur_rx) % RX_RING_SIZE;
1511 rp->rx_head_desc = &rp->rx_ring[entry];
1512 }
1513
1514 /* Refill the Rx ring buffers. */
1515 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1516 struct sk_buff *skb;
1517 entry = rp->dirty_rx % RX_RING_SIZE;
1518 if (rp->rx_skbuff[entry] == NULL) {
b26b555a 1519 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1da177e4
LT
1520 rp->rx_skbuff[entry] = skb;
1521 if (skb == NULL)
1522 break; /* Better luck next round. */
1523 skb->dev = dev; /* Mark as being used by this device. */
1524 rp->rx_skbuff_dma[entry] =
689be439 1525 pci_map_single(rp->pdev, skb->data,
1da177e4
LT
1526 rp->rx_buf_sz,
1527 PCI_DMA_FROMDEVICE);
1528 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1529 }
1530 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1531 }
633949a1
RL
1532
1533 return count;
1da177e4
LT
1534}
1535
1536/*
1537 * Clears the "tally counters" for CRC errors and missed frames(?).
1538 * It has been reported that some chips need a write of 0 to clear
1539 * these, for others the counters are set to 1 when written to and
1540 * instead cleared when read. So we clear them both ways ...
1541 */
1542static inline void clear_tally_counters(void __iomem *ioaddr)
1543{
1544 iowrite32(0, ioaddr + RxMissed);
1545 ioread16(ioaddr + RxCRCErrs);
1546 ioread16(ioaddr + RxMissed);
1547}
1548
1549static void rhine_restart_tx(struct net_device *dev) {
1550 struct rhine_private *rp = netdev_priv(dev);
1551 void __iomem *ioaddr = rp->base;
1552 int entry = rp->dirty_tx % TX_RING_SIZE;
1553 u32 intr_status;
1554
1555 /*
1556 * If new errors occured, we need to sort them out before doing Tx.
1557 * In that case the ISR will be back here RSN anyway.
1558 */
1559 intr_status = get_intr_status(dev);
1560
1561 if ((intr_status & IntrTxErrSummary) == 0) {
1562
1563 /* We know better than the chip where it should continue. */
1564 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1565 ioaddr + TxRingPtr);
1566
1567 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1568 ioaddr + ChipCmd);
1569 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1570 ioaddr + ChipCmd1);
1571 IOSYNC;
1572 }
1573 else {
1574 /* This should never happen */
1575 if (debug > 1)
1576 printk(KERN_WARNING "%s: rhine_restart_tx() "
1577 "Another error occured %8.8x.\n",
1578 dev->name, intr_status);
1579 }
1580
1581}
1582
1583static void rhine_error(struct net_device *dev, int intr_status)
1584{
1585 struct rhine_private *rp = netdev_priv(dev);
1586 void __iomem *ioaddr = rp->base;
1587
1588 spin_lock(&rp->lock);
1589
1590 if (intr_status & IntrLinkChange)
38bb6b28 1591 rhine_check_media(dev, 0);
1da177e4
LT
1592 if (intr_status & IntrStatsMax) {
1593 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1594 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1595 clear_tally_counters(ioaddr);
1596 }
1597 if (intr_status & IntrTxAborted) {
1598 if (debug > 1)
1599 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1600 dev->name, intr_status);
1601 }
1602 if (intr_status & IntrTxUnderrun) {
1603 if (rp->tx_thresh < 0xE0)
1604 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1605 if (debug > 1)
1606 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1607 "threshold now %2.2x.\n",
1608 dev->name, rp->tx_thresh);
1609 }
1610 if (intr_status & IntrTxDescRace) {
1611 if (debug > 2)
1612 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1613 dev->name);
1614 }
1615 if ((intr_status & IntrTxError) &&
1616 (intr_status & (IntrTxAborted |
1617 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1618 if (rp->tx_thresh < 0xE0) {
1619 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1620 }
1621 if (debug > 1)
1622 printk(KERN_INFO "%s: Unspecified error. Tx "
1623 "threshold now %2.2x.\n",
1624 dev->name, rp->tx_thresh);
1625 }
1626 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1627 IntrTxError))
1628 rhine_restart_tx(dev);
1629
1630 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1631 IntrTxError | IntrTxAborted | IntrNormalSummary |
1632 IntrTxDescRace)) {
1633 if (debug > 1)
1634 printk(KERN_ERR "%s: Something Wicked happened! "
1635 "%8.8x.\n", dev->name, intr_status);
1636 }
1637
1638 spin_unlock(&rp->lock);
1639}
1640
1641static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1642{
1643 struct rhine_private *rp = netdev_priv(dev);
1644 void __iomem *ioaddr = rp->base;
1645 unsigned long flags;
1646
1647 spin_lock_irqsave(&rp->lock, flags);
1648 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1649 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1650 clear_tally_counters(ioaddr);
1651 spin_unlock_irqrestore(&rp->lock, flags);
1652
1653 return &rp->stats;
1654}
1655
1656static void rhine_set_rx_mode(struct net_device *dev)
1657{
1658 struct rhine_private *rp = netdev_priv(dev);
1659 void __iomem *ioaddr = rp->base;
1660 u32 mc_filter[2]; /* Multicast hash filter */
1661 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1662
1663 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
1664 rx_mode = 0x1C;
1665 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1666 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1667 } else if ((dev->mc_count > multicast_filter_limit)
1668 || (dev->flags & IFF_ALLMULTI)) {
1669 /* Too many to match, or accept all multicasts. */
1670 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1671 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1672 rx_mode = 0x0C;
1673 } else {
1674 struct dev_mc_list *mclist;
1675 int i;
1676 memset(mc_filter, 0, sizeof(mc_filter));
1677 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1678 i++, mclist = mclist->next) {
1679 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1680
1681 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1682 }
1683 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1684 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1685 rx_mode = 0x0C;
1686 }
1687 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1688}
1689
1690static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1691{
1692 struct rhine_private *rp = netdev_priv(dev);
1693
1694 strcpy(info->driver, DRV_NAME);
1695 strcpy(info->version, DRV_VERSION);
1696 strcpy(info->bus_info, pci_name(rp->pdev));
1697}
1698
1699static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1700{
1701 struct rhine_private *rp = netdev_priv(dev);
1702 int rc;
1703
1704 spin_lock_irq(&rp->lock);
1705 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1706 spin_unlock_irq(&rp->lock);
1707
1708 return rc;
1709}
1710
1711static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1712{
1713 struct rhine_private *rp = netdev_priv(dev);
1714 int rc;
1715
1716 spin_lock_irq(&rp->lock);
1717 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1718 spin_unlock_irq(&rp->lock);
00b428c2 1719 rhine_set_carrier(&rp->mii_if);
1da177e4
LT
1720
1721 return rc;
1722}
1723
1724static int netdev_nway_reset(struct net_device *dev)
1725{
1726 struct rhine_private *rp = netdev_priv(dev);
1727
1728 return mii_nway_restart(&rp->mii_if);
1729}
1730
1731static u32 netdev_get_link(struct net_device *dev)
1732{
1733 struct rhine_private *rp = netdev_priv(dev);
1734
1735 return mii_link_ok(&rp->mii_if);
1736}
1737
1738static u32 netdev_get_msglevel(struct net_device *dev)
1739{
1740 return debug;
1741}
1742
1743static void netdev_set_msglevel(struct net_device *dev, u32 value)
1744{
1745 debug = value;
1746}
1747
1748static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1749{
1750 struct rhine_private *rp = netdev_priv(dev);
1751
1752 if (!(rp->quirks & rqWOL))
1753 return;
1754
1755 spin_lock_irq(&rp->lock);
1756 wol->supported = WAKE_PHY | WAKE_MAGIC |
1757 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1758 wol->wolopts = rp->wolopts;
1759 spin_unlock_irq(&rp->lock);
1760}
1761
1762static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1763{
1764 struct rhine_private *rp = netdev_priv(dev);
1765 u32 support = WAKE_PHY | WAKE_MAGIC |
1766 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1767
1768 if (!(rp->quirks & rqWOL))
1769 return -EINVAL;
1770
1771 if (wol->wolopts & ~support)
1772 return -EINVAL;
1773
1774 spin_lock_irq(&rp->lock);
1775 rp->wolopts = wol->wolopts;
1776 spin_unlock_irq(&rp->lock);
1777
1778 return 0;
1779}
1780
7282d491 1781static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
1782 .get_drvinfo = netdev_get_drvinfo,
1783 .get_settings = netdev_get_settings,
1784 .set_settings = netdev_set_settings,
1785 .nway_reset = netdev_nway_reset,
1786 .get_link = netdev_get_link,
1787 .get_msglevel = netdev_get_msglevel,
1788 .set_msglevel = netdev_set_msglevel,
1789 .get_wol = rhine_get_wol,
1790 .set_wol = rhine_set_wol,
1da177e4
LT
1791};
1792
1793static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1794{
1795 struct rhine_private *rp = netdev_priv(dev);
1796 int rc;
1797
1798 if (!netif_running(dev))
1799 return -EINVAL;
1800
1801 spin_lock_irq(&rp->lock);
1802 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1803 spin_unlock_irq(&rp->lock);
00b428c2 1804 rhine_set_carrier(&rp->mii_if);
1da177e4
LT
1805
1806 return rc;
1807}
1808
1809static int rhine_close(struct net_device *dev)
1810{
1811 struct rhine_private *rp = netdev_priv(dev);
1812 void __iomem *ioaddr = rp->base;
1813
1814 spin_lock_irq(&rp->lock);
1815
1816 netif_stop_queue(dev);
bea3348e 1817 napi_disable(&rp->napi);
1da177e4
LT
1818
1819 if (debug > 1)
1820 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1821 "status was %4.4x.\n",
1822 dev->name, ioread16(ioaddr + ChipCmd));
1823
1824 /* Switch to loopback mode to avoid hardware races. */
1825 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1826
1827 /* Disable interrupts by clearing the interrupt mask. */
1828 iowrite16(0x0000, ioaddr + IntrEnable);
1829
1830 /* Stop the chip's Tx and Rx processes. */
1831 iowrite16(CmdStop, ioaddr + ChipCmd);
1832
1833 spin_unlock_irq(&rp->lock);
1834
1835 free_irq(rp->pdev->irq, dev);
1836 free_rbufs(dev);
1837 free_tbufs(dev);
1838 free_ring(dev);
1839
1840 return 0;
1841}
1842
1843
1844static void __devexit rhine_remove_one(struct pci_dev *pdev)
1845{
1846 struct net_device *dev = pci_get_drvdata(pdev);
1847 struct rhine_private *rp = netdev_priv(dev);
1848
1849 unregister_netdev(dev);
1850
1851 pci_iounmap(pdev, rp->base);
1852 pci_release_regions(pdev);
1853
1854 free_netdev(dev);
1855 pci_disable_device(pdev);
1856 pci_set_drvdata(pdev, NULL);
1857}
1858
d18c3db5 1859static void rhine_shutdown (struct pci_dev *pdev)
1da177e4 1860{
1da177e4
LT
1861 struct net_device *dev = pci_get_drvdata(pdev);
1862 struct rhine_private *rp = netdev_priv(dev);
1863 void __iomem *ioaddr = rp->base;
1864
1865 if (!(rp->quirks & rqWOL))
1866 return; /* Nothing to do for non-WOL adapters */
1867
1868 rhine_power_init(dev);
1869
1870 /* Make sure we use pattern 0, 1 and not 4, 5 */
1871 if (rp->quirks & rq6patterns)
f11cf25e 1872 iowrite8(0x04, ioaddr + WOLcgClr);
1da177e4
LT
1873
1874 if (rp->wolopts & WAKE_MAGIC) {
1875 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1876 /*
1877 * Turn EEPROM-controlled wake-up back on -- some hardware may
1878 * not cooperate otherwise.
1879 */
1880 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1881 }
1882
1883 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1884 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1885
1886 if (rp->wolopts & WAKE_PHY)
1887 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1888
1889 if (rp->wolopts & WAKE_UCAST)
1890 iowrite8(WOLucast, ioaddr + WOLcrSet);
1891
1892 if (rp->wolopts) {
1893 /* Enable legacy WOL (for old motherboards) */
1894 iowrite8(0x01, ioaddr + PwcfgSet);
1895 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1896 }
1897
1898 /* Hit power state D3 (sleep) */
b933b4d9
RL
1899 if (!avoid_D3)
1900 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1da177e4
LT
1901
1902 /* TODO: Check use of pci_enable_wake() */
1903
1904}
1905
1906#ifdef CONFIG_PM
1907static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1908{
1909 struct net_device *dev = pci_get_drvdata(pdev);
1910 struct rhine_private *rp = netdev_priv(dev);
1911 unsigned long flags;
1912
1913 if (!netif_running(dev))
1914 return 0;
1915
bea3348e 1916 napi_disable(&rp->napi);
32b0f53e 1917
1da177e4
LT
1918 netif_device_detach(dev);
1919 pci_save_state(pdev);
1920
1921 spin_lock_irqsave(&rp->lock, flags);
d18c3db5 1922 rhine_shutdown(pdev);
1da177e4
LT
1923 spin_unlock_irqrestore(&rp->lock, flags);
1924
1925 free_irq(dev->irq, dev);
1926 return 0;
1927}
1928
1929static int rhine_resume(struct pci_dev *pdev)
1930{
1931 struct net_device *dev = pci_get_drvdata(pdev);
1932 struct rhine_private *rp = netdev_priv(dev);
1933 unsigned long flags;
1934 int ret;
1935
1936 if (!netif_running(dev))
1937 return 0;
1938
1fb9df5d 1939 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1da177e4
LT
1940 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1941
1942 ret = pci_set_power_state(pdev, PCI_D0);
1943 if (debug > 1)
1944 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1945 dev->name, ret ? "failed" : "succeeded", ret);
1946
1947 pci_restore_state(pdev);
1948
1949 spin_lock_irqsave(&rp->lock, flags);
1950#ifdef USE_MMIO
1951 enable_mmio(rp->pioaddr, rp->quirks);
1952#endif
1953 rhine_power_init(dev);
1954 free_tbufs(dev);
1955 free_rbufs(dev);
1956 alloc_tbufs(dev);
1957 alloc_rbufs(dev);
1958 init_registers(dev);
1959 spin_unlock_irqrestore(&rp->lock, flags);
1960
1961 netif_device_attach(dev);
1962
1963 return 0;
1964}
1965#endif /* CONFIG_PM */
1966
1967static struct pci_driver rhine_driver = {
1968 .name = DRV_NAME,
1969 .id_table = rhine_pci_tbl,
1970 .probe = rhine_init_one,
1971 .remove = __devexit_p(rhine_remove_one),
1972#ifdef CONFIG_PM
1973 .suspend = rhine_suspend,
1974 .resume = rhine_resume,
1975#endif /* CONFIG_PM */
d18c3db5 1976 .shutdown = rhine_shutdown,
1da177e4
LT
1977};
1978
e84df485
RL
1979static struct dmi_system_id __initdata rhine_dmi_table[] = {
1980 {
1981 .ident = "EPIA-M",
1982 .matches = {
1983 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
1984 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
1985 },
1986 },
1987 {
1988 .ident = "KV7",
1989 .matches = {
1990 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
1991 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
1992 },
1993 },
1994 { NULL }
1995};
1da177e4
LT
1996
1997static int __init rhine_init(void)
1998{
1999/* when a module, this is printed whether or not devices are found in probe */
2000#ifdef MODULE
2001 printk(version);
2002#endif
e84df485
RL
2003 if (dmi_check_system(rhine_dmi_table)) {
2004 /* these BIOSes fail at PXE boot if chip is in D3 */
2005 avoid_D3 = 1;
2006 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2007 "enabled.\n",
2008 DRV_NAME);
2009 }
2010 else if (avoid_D3)
2011 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2012
29917620 2013 return pci_register_driver(&rhine_driver);
1da177e4
LT
2014}
2015
2016
2017static void __exit rhine_cleanup(void)
2018{
2019 pci_unregister_driver(&rhine_driver);
2020}
2021
2022
2023module_init(rhine_init);
2024module_exit(rhine_cleanup);