[PATCH] irq-flags: drivers/net: Use the new IRQF_ constants
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / via-rhine.c
CommitLineData
1da177e4
LT
1/* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2/*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28
29
30 Linux kernel version history:
31
32 LK1.1.0:
33 - Jeff Garzik: softnet 'n stuff
34
35 LK1.1.1:
36 - Justin Guyett: softnet and locking fixes
37 - Jeff Garzik: use PCI interface
38
39 LK1.1.2:
40 - Urban Widmark: minor cleanups, merges from Becker 1.03a/1.04 versions
41
42 LK1.1.3:
43 - Urban Widmark: use PCI DMA interface (with thanks to the eepro100.c
44 code) update "Theory of Operation" with
45 softnet/locking changes
46 - Dave Miller: PCI DMA and endian fixups
47 - Jeff Garzik: MOD_xxx race fixes, updated PCI resource allocation
48
49 LK1.1.4:
50 - Urban Widmark: fix gcc 2.95.2 problem and
51 remove writel's to fixed address 0x7c
52
53 LK1.1.5:
54 - Urban Widmark: mdio locking, bounce buffer changes
55 merges from Beckers 1.05 version
56 added netif_running_on/off support
57
58 LK1.1.6:
59 - Urban Widmark: merges from Beckers 1.08b version (VT6102 + mdio)
60 set netif_running_on/off on startup, del_timer_sync
61
62 LK1.1.7:
63 - Manfred Spraul: added reset into tx_timeout
64
65 LK1.1.9:
66 - Urban Widmark: merges from Beckers 1.10 version
67 (media selection + eeprom reload)
68 - David Vrabel: merges from D-Link "1.11" version
69 (disable WOL and PME on startup)
70
71 LK1.1.10:
72 - Manfred Spraul: use "singlecopy" for unaligned buffers
73 don't allocate bounce buffers for !ReqTxAlign cards
74
75 LK1.1.11:
76 - David Woodhouse: Set dev->base_addr before the first time we call
77 wait_for_reset(). It's a lot happier that way.
78 Free np->tx_bufs only if we actually allocated it.
79
80 LK1.1.12:
81 - Martin Eriksson: Allow Memory-Mapped IO to be enabled.
82
83 LK1.1.13 (jgarzik):
84 - Add ethtool support
85 - Replace some MII-related magic numbers with constants
86
87 LK1.1.14 (Ivan G.):
88 - fixes comments for Rhine-III
89 - removes W_MAX_TIMEOUT (unused)
90 - adds HasDavicomPhy for Rhine-I (basis: linuxfet driver; my card
91 is R-I and has Davicom chip, flag is referenced in kernel driver)
92 - sends chip_id as a parameter to wait_for_reset since np is not
93 initialized on first call
94 - changes mmio "else if (chip_id==VT6102)" to "else" so it will work
95 for Rhine-III's (documentation says same bit is correct)
96 - transmit frame queue message is off by one - fixed
97 - adds IntrNormalSummary to "Something Wicked" exclusion list
98 so normal interrupts will not trigger the message (src: Donald Becker)
99 (Roger Luethi)
100 - show confused chip where to continue after Tx error
101 - location of collision counter is chip specific
102 - allow selecting backoff algorithm (module parameter)
103
104 LK1.1.15 (jgarzik):
105 - Use new MII lib helper generic_mii_ioctl
106
107 LK1.1.16 (Roger Luethi)
108 - Etherleak fix
109 - Handle Tx buffer underrun
110 - Fix bugs in full duplex handling
111 - New reset code uses "force reset" cmd on Rhine-II
112 - Various clean ups
113
114 LK1.1.17 (Roger Luethi)
115 - Fix race in via_rhine_start_tx()
116 - On errors, wait for Tx engine to turn off before scavenging
117 - Handle Tx descriptor write-back race on Rhine-II
118 - Force flushing for PCI posted writes
119 - More reset code changes
120
121 LK1.1.18 (Roger Luethi)
122 - No filtering multicast in promisc mode (Edward Peng)
123 - Fix for Rhine-I Tx timeouts
124
125 LK1.1.19 (Roger Luethi)
126 - Increase Tx threshold for unspecified errors
127
128 LK1.2.0-2.6 (Roger Luethi)
129 - Massive clean-up
130 - Rewrite PHY, media handling (remove options, full_duplex, backoff)
131 - Fix Tx engine race for good
3e0d167a 132 - Craig Brind: Zero padded aligned buffers for short packets.
1da177e4
LT
133
134*/
135
136#define DRV_NAME "via-rhine"
137#define DRV_VERSION "1.2.0-2.6"
138#define DRV_RELDATE "June-10-2004"
139
140
141/* A few user-configurable values.
142 These may be modified when a driver module is loaded. */
143
144static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
145static int max_interrupt_work = 20;
146
147/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
148 Setting to > 1518 effectively disables this feature. */
149static int rx_copybreak;
150
151/*
152 * In case you are looking for 'options[]' or 'full_duplex[]', they
153 * are gone. Use ethtool(8) instead.
154 */
155
156/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
157 The Rhine has a 64 element 8390-like hash table. */
158static const int multicast_filter_limit = 32;
159
160
161/* Operational parameters that are set at compile time. */
162
163/* Keep the ring sizes a power of two for compile efficiency.
164 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
165 Making the Tx ring too large decreases the effectiveness of channel
166 bonding and packet priority.
167 There are no ill effects from too-large receive rings. */
168#define TX_RING_SIZE 16
169#define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
170#define RX_RING_SIZE 16
171
172
173/* Operational parameters that usually are not changed. */
174
175/* Time in jiffies before concluding the transmitter is hung. */
176#define TX_TIMEOUT (2*HZ)
177
178#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
179
180#include <linux/module.h>
181#include <linux/moduleparam.h>
182#include <linux/kernel.h>
183#include <linux/string.h>
184#include <linux/timer.h>
185#include <linux/errno.h>
186#include <linux/ioport.h>
187#include <linux/slab.h>
188#include <linux/interrupt.h>
189#include <linux/pci.h>
1e7f0bd8 190#include <linux/dma-mapping.h>
1da177e4
LT
191#include <linux/netdevice.h>
192#include <linux/etherdevice.h>
193#include <linux/skbuff.h>
194#include <linux/init.h>
195#include <linux/delay.h>
196#include <linux/mii.h>
197#include <linux/ethtool.h>
198#include <linux/crc32.h>
199#include <linux/bitops.h>
200#include <asm/processor.h> /* Processor type for cache alignment. */
201#include <asm/io.h>
202#include <asm/irq.h>
203#include <asm/uaccess.h>
204
205/* These identify the driver base version and may not be removed. */
206static char version[] __devinitdata =
207KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
208
209/* This driver was written to use PCI memory space. Some early versions
210 of the Rhine may only work correctly with I/O space accesses. */
211#ifdef CONFIG_VIA_RHINE_MMIO
212#define USE_MMIO
213#else
214#endif
215
216MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
217MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
218MODULE_LICENSE("GPL");
219
220module_param(max_interrupt_work, int, 0);
221module_param(debug, int, 0);
222module_param(rx_copybreak, int, 0);
223MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
224MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
225MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
226
227/*
228 Theory of Operation
229
230I. Board Compatibility
231
232This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
233controller.
234
235II. Board-specific settings
236
237Boards with this chip are functional only in a bus-master PCI slot.
238
239Many operational settings are loaded from the EEPROM to the Config word at
240offset 0x78. For most of these settings, this driver assumes that they are
241correct.
242If this driver is compiled to use PCI memory space operations the EEPROM
243must be configured to enable memory ops.
244
245III. Driver operation
246
247IIIa. Ring buffers
248
249This driver uses two statically allocated fixed-size descriptor lists
250formed into rings by a branch from the final descriptor to the beginning of
251the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
252
253IIIb/c. Transmit/Receive Structure
254
255This driver attempts to use a zero-copy receive and transmit scheme.
256
257Alas, all data buffers are required to start on a 32 bit boundary, so
258the driver must often copy transmit packets into bounce buffers.
259
260The driver allocates full frame size skbuffs for the Rx ring buffers at
261open() time and passes the skb->data field to the chip as receive data
262buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
263a fresh skbuff is allocated and the frame is copied to the new skbuff.
264When the incoming frame is larger, the skbuff is passed directly up the
265protocol stack. Buffers consumed this way are replaced by newly allocated
266skbuffs in the last phase of rhine_rx().
267
268The RX_COPYBREAK value is chosen to trade-off the memory wasted by
269using a full-sized skbuff for small frames vs. the copying costs of larger
270frames. New boards are typically used in generously configured machines
271and the underfilled buffers have negligible impact compared to the benefit of
272a single allocation size, so the default value of zero results in never
273copying packets. When copying is done, the cost is usually mitigated by using
274a combined copy/checksum routine. Copying also preloads the cache, which is
275most useful with small frames.
276
277Since the VIA chips are only able to transfer data to buffers on 32 bit
278boundaries, the IP header at offset 14 in an ethernet frame isn't
279longword aligned for further processing. Copying these unaligned buffers
280has the beneficial effect of 16-byte aligning the IP header.
281
282IIId. Synchronization
283
284The driver runs as two independent, single-threaded flows of control. One
285is the send-packet routine, which enforces single-threaded use by the
286dev->priv->lock spinlock. The other thread is the interrupt handler, which
287is single threaded by the hardware and interrupt handling software.
288
289The send packet thread has partial control over the Tx ring. It locks the
290dev->priv->lock whenever it's queuing a Tx packet. If the next slot in the ring
291is not available it stops the transmit queue by calling netif_stop_queue.
292
293The interrupt handler has exclusive control over the Rx ring and records stats
294from the Tx ring. After reaping the stats, it marks the Tx queue entry as
295empty by incrementing the dirty_tx mark. If at least half of the entries in
296the Rx ring are available the transmit queue is woken up if it was stopped.
297
298IV. Notes
299
300IVb. References
301
302Preliminary VT86C100A manual from http://www.via.com.tw/
303http://www.scyld.com/expert/100mbps.html
304http://www.scyld.com/expert/NWay.html
305ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
306ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
307
308
309IVc. Errata
310
311The VT86C100A manual is not reliable information.
312The 3043 chip does not handle unaligned transmit or receive buffers, resulting
313in significant performance degradation for bounce buffer copies on transmit
314and unaligned IP headers on receive.
315The chip does not pad to minimum transmit length.
316
317*/
318
319
320/* This table drives the PCI probe routines. It's mostly boilerplate in all
321 of the drivers, and will likely be provided by some future kernel.
322 Note the matching code -- the first table entry matchs all 56** cards but
323 second only the 1234 card.
324*/
325
326enum rhine_revs {
327 VT86C100A = 0x00,
328 VTunknown0 = 0x20,
329 VT6102 = 0x40,
330 VT8231 = 0x50, /* Integrated MAC */
331 VT8233 = 0x60, /* Integrated MAC */
332 VT8235 = 0x74, /* Integrated MAC */
333 VT8237 = 0x78, /* Integrated MAC */
334 VTunknown1 = 0x7C,
335 VT6105 = 0x80,
336 VT6105_B0 = 0x83,
337 VT6105L = 0x8A,
338 VT6107 = 0x8C,
339 VTunknown2 = 0x8E,
340 VT6105M = 0x90, /* Management adapter */
341};
342
343enum rhine_quirks {
344 rqWOL = 0x0001, /* Wake-On-LAN support */
345 rqForceReset = 0x0002,
346 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
347 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
348 rqRhineI = 0x0100, /* See comment below */
349};
350/*
351 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
352 * MMIO as well as for the collision counter and the Tx FIFO underflow
353 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
354 */
355
356/* Beware of PCI posted writes */
357#define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
358
359static struct pci_device_id rhine_pci_tbl[] =
360{
361 {0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* VT86C100A */
362 {0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* VT6102 */
363 {0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* 6105{,L,LOM} */
364 {0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, /* VT6105M */
365 { } /* terminate list */
366};
367MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
368
369
370/* Offsets to the device registers. */
371enum register_offsets {
372 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
373 ChipCmd1=0x09,
374 IntrStatus=0x0C, IntrEnable=0x0E,
375 MulticastFilter0=0x10, MulticastFilter1=0x14,
376 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
377 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
378 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
379 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
380 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
381 StickyHW=0x83, IntrStatus2=0x84,
382 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
383 WOLcrClr1=0xA6, WOLcgClr=0xA7,
384 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
385};
386
387/* Bits in ConfigD */
388enum backoff_bits {
389 BackOptional=0x01, BackModify=0x02,
390 BackCaptureEffect=0x04, BackRandom=0x08
391};
392
393#ifdef USE_MMIO
394/* Registers we check that mmio and reg are the same. */
395static const int mmio_verify_registers[] = {
396 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
397 0
398};
399#endif
400
401/* Bits in the interrupt status/mask registers. */
402enum intr_status_bits {
403 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
404 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
405 IntrPCIErr=0x0040,
406 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
407 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
408 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
409 IntrRxWakeUp=0x8000,
410 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
411 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
412 IntrTxErrSummary=0x082218,
413};
414
415/* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
416enum wol_bits {
417 WOLucast = 0x10,
418 WOLmagic = 0x20,
419 WOLbmcast = 0x30,
420 WOLlnkon = 0x40,
421 WOLlnkoff = 0x80,
422};
423
424/* The Rx and Tx buffer descriptors. */
425struct rx_desc {
426 s32 rx_status;
427 u32 desc_length; /* Chain flag, Buffer/frame length */
428 u32 addr;
429 u32 next_desc;
430};
431struct tx_desc {
432 s32 tx_status;
433 u32 desc_length; /* Chain flag, Tx Config, Frame length */
434 u32 addr;
435 u32 next_desc;
436};
437
438/* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
439#define TXDESC 0x00e08000
440
441enum rx_status_bits {
442 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
443};
444
445/* Bits in *_desc.*_status */
446enum desc_status_bits {
447 DescOwn=0x80000000
448};
449
450/* Bits in ChipCmd. */
451enum chip_cmd_bits {
452 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
453 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
454 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
455 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
456};
457
458struct rhine_private {
459 /* Descriptor rings */
460 struct rx_desc *rx_ring;
461 struct tx_desc *tx_ring;
462 dma_addr_t rx_ring_dma;
463 dma_addr_t tx_ring_dma;
464
465 /* The addresses of receive-in-place skbuffs. */
466 struct sk_buff *rx_skbuff[RX_RING_SIZE];
467 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
468
469 /* The saved address of a sent-in-place packet/buffer, for later free(). */
470 struct sk_buff *tx_skbuff[TX_RING_SIZE];
471 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
472
4be5de25 473 /* Tx bounce buffers (Rhine-I only) */
1da177e4
LT
474 unsigned char *tx_buf[TX_RING_SIZE];
475 unsigned char *tx_bufs;
476 dma_addr_t tx_bufs_dma;
477
478 struct pci_dev *pdev;
479 long pioaddr;
480 struct net_device_stats stats;
481 spinlock_t lock;
482
483 /* Frequently used values: keep some adjacent for cache effect. */
484 u32 quirks;
485 struct rx_desc *rx_head_desc;
486 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
487 unsigned int cur_tx, dirty_tx;
488 unsigned int rx_buf_sz; /* Based on MTU+slack. */
489 u8 wolopts;
490
491 u8 tx_thresh, rx_thresh;
492
493 struct mii_if_info mii_if;
494 void __iomem *base;
495};
496
497static int mdio_read(struct net_device *dev, int phy_id, int location);
498static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
499static int rhine_open(struct net_device *dev);
500static void rhine_tx_timeout(struct net_device *dev);
501static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
502static irqreturn_t rhine_interrupt(int irq, void *dev_instance, struct pt_regs *regs);
503static void rhine_tx(struct net_device *dev);
504static void rhine_rx(struct net_device *dev);
505static void rhine_error(struct net_device *dev, int intr_status);
506static void rhine_set_rx_mode(struct net_device *dev);
507static struct net_device_stats *rhine_get_stats(struct net_device *dev);
508static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
509static struct ethtool_ops netdev_ethtool_ops;
510static int rhine_close(struct net_device *dev);
d18c3db5 511static void rhine_shutdown (struct pci_dev *pdev);
1da177e4
LT
512
513#define RHINE_WAIT_FOR(condition) do { \
514 int i=1024; \
515 while (!(condition) && --i) \
516 ; \
517 if (debug > 1 && i < 512) \
518 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
519 DRV_NAME, 1024-i, __func__, __LINE__); \
520} while(0)
521
522static inline u32 get_intr_status(struct net_device *dev)
523{
524 struct rhine_private *rp = netdev_priv(dev);
525 void __iomem *ioaddr = rp->base;
526 u32 intr_status;
527
528 intr_status = ioread16(ioaddr + IntrStatus);
529 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
530 if (rp->quirks & rqStatusWBRace)
531 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
532 return intr_status;
533}
534
535/*
536 * Get power related registers into sane state.
537 * Notify user about past WOL event.
538 */
539static void rhine_power_init(struct net_device *dev)
540{
541 struct rhine_private *rp = netdev_priv(dev);
542 void __iomem *ioaddr = rp->base;
543 u16 wolstat;
544
545 if (rp->quirks & rqWOL) {
546 /* Make sure chip is in power state D0 */
547 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
548
549 /* Disable "force PME-enable" */
550 iowrite8(0x80, ioaddr + WOLcgClr);
551
552 /* Clear power-event config bits (WOL) */
553 iowrite8(0xFF, ioaddr + WOLcrClr);
554 /* More recent cards can manage two additional patterns */
555 if (rp->quirks & rq6patterns)
556 iowrite8(0x03, ioaddr + WOLcrClr1);
557
558 /* Save power-event status bits */
559 wolstat = ioread8(ioaddr + PwrcsrSet);
560 if (rp->quirks & rq6patterns)
561 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
562
563 /* Clear power-event status bits */
564 iowrite8(0xFF, ioaddr + PwrcsrClr);
565 if (rp->quirks & rq6patterns)
566 iowrite8(0x03, ioaddr + PwrcsrClr1);
567
568 if (wolstat) {
569 char *reason;
570 switch (wolstat) {
571 case WOLmagic:
572 reason = "Magic packet";
573 break;
574 case WOLlnkon:
575 reason = "Link went up";
576 break;
577 case WOLlnkoff:
578 reason = "Link went down";
579 break;
580 case WOLucast:
581 reason = "Unicast packet";
582 break;
583 case WOLbmcast:
584 reason = "Multicast/broadcast packet";
585 break;
586 default:
587 reason = "Unknown";
588 }
589 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
590 DRV_NAME, reason);
591 }
592 }
593}
594
595static void rhine_chip_reset(struct net_device *dev)
596{
597 struct rhine_private *rp = netdev_priv(dev);
598 void __iomem *ioaddr = rp->base;
599
600 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
601 IOSYNC;
602
603 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
604 printk(KERN_INFO "%s: Reset not complete yet. "
605 "Trying harder.\n", DRV_NAME);
606
607 /* Force reset */
608 if (rp->quirks & rqForceReset)
609 iowrite8(0x40, ioaddr + MiscCmd);
610
611 /* Reset can take somewhat longer (rare) */
612 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
613 }
614
615 if (debug > 1)
616 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
617 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
618 "failed" : "succeeded");
619}
620
621#ifdef USE_MMIO
622static void enable_mmio(long pioaddr, u32 quirks)
623{
624 int n;
625 if (quirks & rqRhineI) {
626 /* More recent docs say that this bit is reserved ... */
627 n = inb(pioaddr + ConfigA) | 0x20;
628 outb(n, pioaddr + ConfigA);
629 } else {
630 n = inb(pioaddr + ConfigD) | 0x80;
631 outb(n, pioaddr + ConfigD);
632 }
633}
634#endif
635
636/*
637 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
638 * (plus 0x6C for Rhine-I/II)
639 */
640static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
641{
642 struct rhine_private *rp = netdev_priv(dev);
643 void __iomem *ioaddr = rp->base;
644
645 outb(0x20, pioaddr + MACRegEEcsr);
646 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
647
648#ifdef USE_MMIO
649 /*
650 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
651 * MMIO. If reloading EEPROM was done first this could be avoided, but
652 * it is not known if that still works with the "win98-reboot" problem.
653 */
654 enable_mmio(pioaddr, rp->quirks);
655#endif
656
657 /* Turn off EEPROM-controlled wake-up (magic packet) */
658 if (rp->quirks & rqWOL)
659 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
660
661}
662
663#ifdef CONFIG_NET_POLL_CONTROLLER
664static void rhine_poll(struct net_device *dev)
665{
666 disable_irq(dev->irq);
667 rhine_interrupt(dev->irq, (void *)dev, NULL);
668 enable_irq(dev->irq);
669}
670#endif
671
672static void rhine_hw_init(struct net_device *dev, long pioaddr)
673{
674 struct rhine_private *rp = netdev_priv(dev);
675
676 /* Reset the chip to erase previous misconfiguration. */
677 rhine_chip_reset(dev);
678
679 /* Rhine-I needs extra time to recuperate before EEPROM reload */
680 if (rp->quirks & rqRhineI)
681 msleep(5);
682
683 /* Reload EEPROM controlled bytes cleared by soft reset */
684 rhine_reload_eeprom(pioaddr, dev);
685}
686
687static int __devinit rhine_init_one(struct pci_dev *pdev,
688 const struct pci_device_id *ent)
689{
690 struct net_device *dev;
691 struct rhine_private *rp;
692 int i, rc;
693 u8 pci_rev;
694 u32 quirks;
695 long pioaddr;
696 long memaddr;
697 void __iomem *ioaddr;
698 int io_size, phy_id;
699 const char *name;
700#ifdef USE_MMIO
701 int bar = 1;
702#else
703 int bar = 0;
704#endif
705
706/* when built into the kernel, we only print version if device is found */
707#ifndef MODULE
708 static int printed_version;
709 if (!printed_version++)
710 printk(version);
711#endif
712
713 pci_read_config_byte(pdev, PCI_REVISION_ID, &pci_rev);
714
715 io_size = 256;
716 phy_id = 0;
717 quirks = 0;
718 name = "Rhine";
719 if (pci_rev < VTunknown0) {
720 quirks = rqRhineI;
721 io_size = 128;
722 }
723 else if (pci_rev >= VT6102) {
724 quirks = rqWOL | rqForceReset;
725 if (pci_rev < VT6105) {
726 name = "Rhine II";
727 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
728 }
729 else {
730 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
731 if (pci_rev >= VT6105_B0)
732 quirks |= rq6patterns;
733 if (pci_rev < VT6105M)
734 name = "Rhine III";
735 else
736 name = "Rhine III (Management Adapter)";
737 }
738 }
739
740 rc = pci_enable_device(pdev);
741 if (rc)
742 goto err_out;
743
744 /* this should always be supported */
1e7f0bd8 745 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1da177e4
LT
746 if (rc) {
747 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
748 "the card!?\n");
749 goto err_out;
750 }
751
752 /* sanity check */
753 if ((pci_resource_len(pdev, 0) < io_size) ||
754 (pci_resource_len(pdev, 1) < io_size)) {
755 rc = -EIO;
756 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
757 goto err_out;
758 }
759
760 pioaddr = pci_resource_start(pdev, 0);
761 memaddr = pci_resource_start(pdev, 1);
762
763 pci_set_master(pdev);
764
765 dev = alloc_etherdev(sizeof(struct rhine_private));
766 if (!dev) {
767 rc = -ENOMEM;
768 printk(KERN_ERR "alloc_etherdev failed\n");
769 goto err_out;
770 }
771 SET_MODULE_OWNER(dev);
772 SET_NETDEV_DEV(dev, &pdev->dev);
773
774 rp = netdev_priv(dev);
775 rp->quirks = quirks;
776 rp->pioaddr = pioaddr;
777 rp->pdev = pdev;
778
779 rc = pci_request_regions(pdev, DRV_NAME);
780 if (rc)
781 goto err_out_free_netdev;
782
783 ioaddr = pci_iomap(pdev, bar, io_size);
784 if (!ioaddr) {
785 rc = -EIO;
786 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
787 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
788 goto err_out_free_res;
789 }
790
791#ifdef USE_MMIO
792 enable_mmio(pioaddr, quirks);
793
794 /* Check that selected MMIO registers match the PIO ones */
795 i = 0;
796 while (mmio_verify_registers[i]) {
797 int reg = mmio_verify_registers[i++];
798 unsigned char a = inb(pioaddr+reg);
799 unsigned char b = readb(ioaddr+reg);
800 if (a != b) {
801 rc = -EIO;
802 printk(KERN_ERR "MMIO do not match PIO [%02x] "
803 "(%02x != %02x)\n", reg, a, b);
804 goto err_out_unmap;
805 }
806 }
807#endif /* USE_MMIO */
808
809 dev->base_addr = (unsigned long)ioaddr;
810 rp->base = ioaddr;
811
812 /* Get chip registers into a sane state */
813 rhine_power_init(dev);
814 rhine_hw_init(dev, pioaddr);
815
816 for (i = 0; i < 6; i++)
817 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
b81e8e1f 818 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1da177e4 819
b81e8e1f 820 if (!is_valid_ether_addr(dev->perm_addr)) {
1da177e4
LT
821 rc = -EIO;
822 printk(KERN_ERR "Invalid MAC address\n");
823 goto err_out_unmap;
824 }
825
826 /* For Rhine-I/II, phy_id is loaded from EEPROM */
827 if (!phy_id)
828 phy_id = ioread8(ioaddr + 0x6C);
829
830 dev->irq = pdev->irq;
831
832 spin_lock_init(&rp->lock);
833 rp->mii_if.dev = dev;
834 rp->mii_if.mdio_read = mdio_read;
835 rp->mii_if.mdio_write = mdio_write;
836 rp->mii_if.phy_id_mask = 0x1f;
837 rp->mii_if.reg_num_mask = 0x1f;
838
839 /* The chip-specific entries in the device structure. */
840 dev->open = rhine_open;
841 dev->hard_start_xmit = rhine_start_tx;
842 dev->stop = rhine_close;
843 dev->get_stats = rhine_get_stats;
844 dev->set_multicast_list = rhine_set_rx_mode;
845 dev->do_ioctl = netdev_ioctl;
846 dev->ethtool_ops = &netdev_ethtool_ops;
847 dev->tx_timeout = rhine_tx_timeout;
848 dev->watchdog_timeo = TX_TIMEOUT;
849#ifdef CONFIG_NET_POLL_CONTROLLER
850 dev->poll_controller = rhine_poll;
851#endif
852 if (rp->quirks & rqRhineI)
853 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
854
855 /* dev->name not defined before register_netdev()! */
856 rc = register_netdev(dev);
857 if (rc)
858 goto err_out_unmap;
859
860 printk(KERN_INFO "%s: VIA %s at 0x%lx, ",
861 dev->name, name,
862#ifdef USE_MMIO
863 memaddr
864#else
865 (long)ioaddr
866#endif
867 );
868
869 for (i = 0; i < 5; i++)
870 printk("%2.2x:", dev->dev_addr[i]);
871 printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], pdev->irq);
872
873 pci_set_drvdata(pdev, dev);
874
875 {
876 u16 mii_cmd;
877 int mii_status = mdio_read(dev, phy_id, 1);
878 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
879 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
880 if (mii_status != 0xffff && mii_status != 0x0000) {
881 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
882 printk(KERN_INFO "%s: MII PHY found at address "
883 "%d, status 0x%4.4x advertising %4.4x "
884 "Link %4.4x.\n", dev->name, phy_id,
885 mii_status, rp->mii_if.advertising,
886 mdio_read(dev, phy_id, 5));
887
888 /* set IFF_RUNNING */
889 if (mii_status & BMSR_LSTATUS)
890 netif_carrier_on(dev);
891 else
892 netif_carrier_off(dev);
893
894 }
895 }
896 rp->mii_if.phy_id = phy_id;
897
898 return 0;
899
900err_out_unmap:
901 pci_iounmap(pdev, ioaddr);
902err_out_free_res:
903 pci_release_regions(pdev);
904err_out_free_netdev:
905 free_netdev(dev);
906err_out:
907 return rc;
908}
909
910static int alloc_ring(struct net_device* dev)
911{
912 struct rhine_private *rp = netdev_priv(dev);
913 void *ring;
914 dma_addr_t ring_dma;
915
916 ring = pci_alloc_consistent(rp->pdev,
917 RX_RING_SIZE * sizeof(struct rx_desc) +
918 TX_RING_SIZE * sizeof(struct tx_desc),
919 &ring_dma);
920 if (!ring) {
921 printk(KERN_ERR "Could not allocate DMA memory.\n");
922 return -ENOMEM;
923 }
924 if (rp->quirks & rqRhineI) {
925 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
926 PKT_BUF_SZ * TX_RING_SIZE,
927 &rp->tx_bufs_dma);
928 if (rp->tx_bufs == NULL) {
929 pci_free_consistent(rp->pdev,
930 RX_RING_SIZE * sizeof(struct rx_desc) +
931 TX_RING_SIZE * sizeof(struct tx_desc),
932 ring, ring_dma);
933 return -ENOMEM;
934 }
935 }
936
937 rp->rx_ring = ring;
938 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
939 rp->rx_ring_dma = ring_dma;
940 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
941
942 return 0;
943}
944
945static void free_ring(struct net_device* dev)
946{
947 struct rhine_private *rp = netdev_priv(dev);
948
949 pci_free_consistent(rp->pdev,
950 RX_RING_SIZE * sizeof(struct rx_desc) +
951 TX_RING_SIZE * sizeof(struct tx_desc),
952 rp->rx_ring, rp->rx_ring_dma);
953 rp->tx_ring = NULL;
954
955 if (rp->tx_bufs)
956 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
957 rp->tx_bufs, rp->tx_bufs_dma);
958
959 rp->tx_bufs = NULL;
960
961}
962
963static void alloc_rbufs(struct net_device *dev)
964{
965 struct rhine_private *rp = netdev_priv(dev);
966 dma_addr_t next;
967 int i;
968
969 rp->dirty_rx = rp->cur_rx = 0;
970
971 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
972 rp->rx_head_desc = &rp->rx_ring[0];
973 next = rp->rx_ring_dma;
974
975 /* Init the ring entries */
976 for (i = 0; i < RX_RING_SIZE; i++) {
977 rp->rx_ring[i].rx_status = 0;
978 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
979 next += sizeof(struct rx_desc);
980 rp->rx_ring[i].next_desc = cpu_to_le32(next);
981 rp->rx_skbuff[i] = NULL;
982 }
983 /* Mark the last entry as wrapping the ring. */
984 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
985
986 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
987 for (i = 0; i < RX_RING_SIZE; i++) {
988 struct sk_buff *skb = dev_alloc_skb(rp->rx_buf_sz);
989 rp->rx_skbuff[i] = skb;
990 if (skb == NULL)
991 break;
992 skb->dev = dev; /* Mark as being used by this device. */
993
994 rp->rx_skbuff_dma[i] =
689be439 995 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1da177e4
LT
996 PCI_DMA_FROMDEVICE);
997
998 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
999 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1000 }
1001 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1002}
1003
1004static void free_rbufs(struct net_device* dev)
1005{
1006 struct rhine_private *rp = netdev_priv(dev);
1007 int i;
1008
1009 /* Free all the skbuffs in the Rx queue. */
1010 for (i = 0; i < RX_RING_SIZE; i++) {
1011 rp->rx_ring[i].rx_status = 0;
1012 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1013 if (rp->rx_skbuff[i]) {
1014 pci_unmap_single(rp->pdev,
1015 rp->rx_skbuff_dma[i],
1016 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1017 dev_kfree_skb(rp->rx_skbuff[i]);
1018 }
1019 rp->rx_skbuff[i] = NULL;
1020 }
1021}
1022
1023static void alloc_tbufs(struct net_device* dev)
1024{
1025 struct rhine_private *rp = netdev_priv(dev);
1026 dma_addr_t next;
1027 int i;
1028
1029 rp->dirty_tx = rp->cur_tx = 0;
1030 next = rp->tx_ring_dma;
1031 for (i = 0; i < TX_RING_SIZE; i++) {
1032 rp->tx_skbuff[i] = NULL;
1033 rp->tx_ring[i].tx_status = 0;
1034 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1035 next += sizeof(struct tx_desc);
1036 rp->tx_ring[i].next_desc = cpu_to_le32(next);
4be5de25
RL
1037 if (rp->quirks & rqRhineI)
1038 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1da177e4
LT
1039 }
1040 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1041
1042}
1043
1044static void free_tbufs(struct net_device* dev)
1045{
1046 struct rhine_private *rp = netdev_priv(dev);
1047 int i;
1048
1049 for (i = 0; i < TX_RING_SIZE; i++) {
1050 rp->tx_ring[i].tx_status = 0;
1051 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1052 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1053 if (rp->tx_skbuff[i]) {
1054 if (rp->tx_skbuff_dma[i]) {
1055 pci_unmap_single(rp->pdev,
1056 rp->tx_skbuff_dma[i],
1057 rp->tx_skbuff[i]->len,
1058 PCI_DMA_TODEVICE);
1059 }
1060 dev_kfree_skb(rp->tx_skbuff[i]);
1061 }
1062 rp->tx_skbuff[i] = NULL;
1063 rp->tx_buf[i] = NULL;
1064 }
1065}
1066
1067static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1068{
1069 struct rhine_private *rp = netdev_priv(dev);
1070 void __iomem *ioaddr = rp->base;
1071
1072 mii_check_media(&rp->mii_if, debug, init_media);
1073
1074 if (rp->mii_if.full_duplex)
1075 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1076 ioaddr + ChipCmd1);
1077 else
1078 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1079 ioaddr + ChipCmd1);
00b428c2
RL
1080 if (debug > 1)
1081 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1082 rp->mii_if.force_media, netif_carrier_ok(dev));
1083}
1084
1085/* Called after status of force_media possibly changed */
0761be4f 1086static void rhine_set_carrier(struct mii_if_info *mii)
00b428c2
RL
1087{
1088 if (mii->force_media) {
1089 /* autoneg is off: Link is always assumed to be up */
1090 if (!netif_carrier_ok(mii->dev))
1091 netif_carrier_on(mii->dev);
1092 }
1093 else /* Let MMI library update carrier status */
1094 rhine_check_media(mii->dev, 0);
1095 if (debug > 1)
1096 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1097 mii->dev->name, mii->force_media,
1098 netif_carrier_ok(mii->dev));
1da177e4
LT
1099}
1100
1101static void init_registers(struct net_device *dev)
1102{
1103 struct rhine_private *rp = netdev_priv(dev);
1104 void __iomem *ioaddr = rp->base;
1105 int i;
1106
1107 for (i = 0; i < 6; i++)
1108 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1109
1110 /* Initialize other registers. */
1111 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1112 /* Configure initial FIFO thresholds. */
1113 iowrite8(0x20, ioaddr + TxConfig);
1114 rp->tx_thresh = 0x20;
1115 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1116
1117 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1118 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1119
1120 rhine_set_rx_mode(dev);
1121
1122 /* Enable interrupts by setting the interrupt mask. */
1123 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1124 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1125 IntrTxDone | IntrTxError | IntrTxUnderrun |
1126 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1127 ioaddr + IntrEnable);
1128
1129 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1130 ioaddr + ChipCmd);
1131 rhine_check_media(dev, 1);
1132}
1133
1134/* Enable MII link status auto-polling (required for IntrLinkChange) */
1135static void rhine_enable_linkmon(void __iomem *ioaddr)
1136{
1137 iowrite8(0, ioaddr + MIICmd);
1138 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1139 iowrite8(0x80, ioaddr + MIICmd);
1140
1141 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1142
1143 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1144}
1145
1146/* Disable MII link status auto-polling (required for MDIO access) */
1147static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1148{
1149 iowrite8(0, ioaddr + MIICmd);
1150
1151 if (quirks & rqRhineI) {
1152 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1153
38bb6b28
JL
1154 /* Can be called from ISR. Evil. */
1155 mdelay(1);
1da177e4
LT
1156
1157 /* 0x80 must be set immediately before turning it off */
1158 iowrite8(0x80, ioaddr + MIICmd);
1159
1160 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1161
1162 /* Heh. Now clear 0x80 again. */
1163 iowrite8(0, ioaddr + MIICmd);
1164 }
1165 else
1166 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1167}
1168
1169/* Read and write over the MII Management Data I/O (MDIO) interface. */
1170
1171static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1172{
1173 struct rhine_private *rp = netdev_priv(dev);
1174 void __iomem *ioaddr = rp->base;
1175 int result;
1176
1177 rhine_disable_linkmon(ioaddr, rp->quirks);
1178
1179 /* rhine_disable_linkmon already cleared MIICmd */
1180 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1181 iowrite8(regnum, ioaddr + MIIRegAddr);
1182 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1183 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1184 result = ioread16(ioaddr + MIIData);
1185
1186 rhine_enable_linkmon(ioaddr);
1187 return result;
1188}
1189
1190static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1191{
1192 struct rhine_private *rp = netdev_priv(dev);
1193 void __iomem *ioaddr = rp->base;
1194
1195 rhine_disable_linkmon(ioaddr, rp->quirks);
1196
1197 /* rhine_disable_linkmon already cleared MIICmd */
1198 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1199 iowrite8(regnum, ioaddr + MIIRegAddr);
1200 iowrite16(value, ioaddr + MIIData);
1201 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1202 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1203
1204 rhine_enable_linkmon(ioaddr);
1205}
1206
1207static int rhine_open(struct net_device *dev)
1208{
1209 struct rhine_private *rp = netdev_priv(dev);
1210 void __iomem *ioaddr = rp->base;
1211 int rc;
1212
1fb9df5d 1213 rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1da177e4
LT
1214 dev);
1215 if (rc)
1216 return rc;
1217
1218 if (debug > 1)
1219 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1220 dev->name, rp->pdev->irq);
1221
1222 rc = alloc_ring(dev);
1223 if (rc) {
1224 free_irq(rp->pdev->irq, dev);
1225 return rc;
1226 }
1227 alloc_rbufs(dev);
1228 alloc_tbufs(dev);
1229 rhine_chip_reset(dev);
1230 init_registers(dev);
1231 if (debug > 2)
1232 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1233 "MII status: %4.4x.\n",
1234 dev->name, ioread16(ioaddr + ChipCmd),
1235 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1236
1237 netif_start_queue(dev);
1238
1239 return 0;
1240}
1241
1242static void rhine_tx_timeout(struct net_device *dev)
1243{
1244 struct rhine_private *rp = netdev_priv(dev);
1245 void __iomem *ioaddr = rp->base;
1246
1247 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1248 "%4.4x, resetting...\n",
1249 dev->name, ioread16(ioaddr + IntrStatus),
1250 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1251
1252 /* protect against concurrent rx interrupts */
1253 disable_irq(rp->pdev->irq);
1254
1255 spin_lock(&rp->lock);
1256
1257 /* clear all descriptors */
1258 free_tbufs(dev);
1259 free_rbufs(dev);
1260 alloc_tbufs(dev);
1261 alloc_rbufs(dev);
1262
1263 /* Reinitialize the hardware. */
1264 rhine_chip_reset(dev);
1265 init_registers(dev);
1266
1267 spin_unlock(&rp->lock);
1268 enable_irq(rp->pdev->irq);
1269
1270 dev->trans_start = jiffies;
1271 rp->stats.tx_errors++;
1272 netif_wake_queue(dev);
1273}
1274
1275static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1276{
1277 struct rhine_private *rp = netdev_priv(dev);
1278 void __iomem *ioaddr = rp->base;
1279 unsigned entry;
1280
1281 /* Caution: the write order is important here, set the field
1282 with the "ownership" bits last. */
1283
1284 /* Calculate the next Tx descriptor entry. */
1285 entry = rp->cur_tx % TX_RING_SIZE;
1286
5b057c6b
HX
1287 if (skb_padto(skb, ETH_ZLEN))
1288 return 0;
1da177e4
LT
1289
1290 rp->tx_skbuff[entry] = skb;
1291
1292 if ((rp->quirks & rqRhineI) &&
1293 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_HW)) {
1294 /* Must use alignment buffer. */
1295 if (skb->len > PKT_BUF_SZ) {
1296 /* packet too long, drop it */
1297 dev_kfree_skb(skb);
1298 rp->tx_skbuff[entry] = NULL;
1299 rp->stats.tx_dropped++;
1300 return 0;
1301 }
3e0d167a
CB
1302
1303 /* Padding is not copied and so must be redone. */
1da177e4 1304 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
3e0d167a
CB
1305 if (skb->len < ETH_ZLEN)
1306 memset(rp->tx_buf[entry] + skb->len, 0,
1307 ETH_ZLEN - skb->len);
1da177e4
LT
1308 rp->tx_skbuff_dma[entry] = 0;
1309 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1310 (rp->tx_buf[entry] -
1311 rp->tx_bufs));
1312 } else {
1313 rp->tx_skbuff_dma[entry] =
1314 pci_map_single(rp->pdev, skb->data, skb->len,
1315 PCI_DMA_TODEVICE);
1316 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1317 }
1318
1319 rp->tx_ring[entry].desc_length =
1320 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1321
1322 /* lock eth irq */
1323 spin_lock_irq(&rp->lock);
1324 wmb();
1325 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1326 wmb();
1327
1328 rp->cur_tx++;
1329
1330 /* Non-x86 Todo: explicitly flush cache lines here. */
1331
1332 /* Wake the potentially-idle transmit channel */
1333 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1334 ioaddr + ChipCmd1);
1335 IOSYNC;
1336
1337 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1338 netif_stop_queue(dev);
1339
1340 dev->trans_start = jiffies;
1341
1342 spin_unlock_irq(&rp->lock);
1343
1344 if (debug > 4) {
1345 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1346 dev->name, rp->cur_tx-1, entry);
1347 }
1348 return 0;
1349}
1350
1351/* The interrupt handler does all of the Rx thread work and cleans up
1352 after the Tx thread. */
1353static irqreturn_t rhine_interrupt(int irq, void *dev_instance, struct pt_regs *rgs)
1354{
1355 struct net_device *dev = dev_instance;
1356 struct rhine_private *rp = netdev_priv(dev);
1357 void __iomem *ioaddr = rp->base;
1358 u32 intr_status;
1359 int boguscnt = max_interrupt_work;
1360 int handled = 0;
1361
1362 while ((intr_status = get_intr_status(dev))) {
1363 handled = 1;
1364
1365 /* Acknowledge all of the current interrupt sources ASAP. */
1366 if (intr_status & IntrTxDescRace)
1367 iowrite8(0x08, ioaddr + IntrStatus2);
1368 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1369 IOSYNC;
1370
1371 if (debug > 4)
1372 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1373 dev->name, intr_status);
1374
1375 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1376 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf))
1377 rhine_rx(dev);
1378
1379 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1380 if (intr_status & IntrTxErrSummary) {
1381 /* Avoid scavenging before Tx engine turned off */
1382 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1383 if (debug > 2 &&
1384 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1385 printk(KERN_WARNING "%s: "
1386 "rhine_interrupt() Tx engine"
1387 "still on.\n", dev->name);
1388 }
1389 rhine_tx(dev);
1390 }
1391
1392 /* Abnormal error summary/uncommon events handlers. */
1393 if (intr_status & (IntrPCIErr | IntrLinkChange |
1394 IntrStatsMax | IntrTxError | IntrTxAborted |
1395 IntrTxUnderrun | IntrTxDescRace))
1396 rhine_error(dev, intr_status);
1397
1398 if (--boguscnt < 0) {
1399 printk(KERN_WARNING "%s: Too much work at interrupt, "
1400 "status=%#8.8x.\n",
1401 dev->name, intr_status);
1402 break;
1403 }
1404 }
1405
1406 if (debug > 3)
1407 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1408 dev->name, ioread16(ioaddr + IntrStatus));
1409 return IRQ_RETVAL(handled);
1410}
1411
1412/* This routine is logically part of the interrupt handler, but isolated
1413 for clarity. */
1414static void rhine_tx(struct net_device *dev)
1415{
1416 struct rhine_private *rp = netdev_priv(dev);
1417 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1418
1419 spin_lock(&rp->lock);
1420
1421 /* find and cleanup dirty tx descriptors */
1422 while (rp->dirty_tx != rp->cur_tx) {
1423 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1424 if (debug > 6)
ed4030d1 1425 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1da177e4
LT
1426 entry, txstatus);
1427 if (txstatus & DescOwn)
1428 break;
1429 if (txstatus & 0x8000) {
1430 if (debug > 1)
1431 printk(KERN_DEBUG "%s: Transmit error, "
1432 "Tx status %8.8x.\n",
1433 dev->name, txstatus);
1434 rp->stats.tx_errors++;
1435 if (txstatus & 0x0400) rp->stats.tx_carrier_errors++;
1436 if (txstatus & 0x0200) rp->stats.tx_window_errors++;
1437 if (txstatus & 0x0100) rp->stats.tx_aborted_errors++;
1438 if (txstatus & 0x0080) rp->stats.tx_heartbeat_errors++;
1439 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1440 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1441 rp->stats.tx_fifo_errors++;
1442 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1443 break; /* Keep the skb - we try again */
1444 }
1445 /* Transmitter restarted in 'abnormal' handler. */
1446 } else {
1447 if (rp->quirks & rqRhineI)
1448 rp->stats.collisions += (txstatus >> 3) & 0x0F;
1449 else
1450 rp->stats.collisions += txstatus & 0x0F;
1451 if (debug > 6)
1452 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1453 (txstatus >> 3) & 0xF,
1454 txstatus & 0xF);
1455 rp->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1456 rp->stats.tx_packets++;
1457 }
1458 /* Free the original skb. */
1459 if (rp->tx_skbuff_dma[entry]) {
1460 pci_unmap_single(rp->pdev,
1461 rp->tx_skbuff_dma[entry],
1462 rp->tx_skbuff[entry]->len,
1463 PCI_DMA_TODEVICE);
1464 }
1465 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1466 rp->tx_skbuff[entry] = NULL;
1467 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1468 }
1469 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1470 netif_wake_queue(dev);
1471
1472 spin_unlock(&rp->lock);
1473}
1474
1475/* This routine is logically part of the interrupt handler, but isolated
1476 for clarity and better register allocation. */
1477static void rhine_rx(struct net_device *dev)
1478{
1479 struct rhine_private *rp = netdev_priv(dev);
1480 int entry = rp->cur_rx % RX_RING_SIZE;
1481 int boguscnt = rp->dirty_rx + RX_RING_SIZE - rp->cur_rx;
1482
1483 if (debug > 4) {
1484 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1485 dev->name, entry,
1486 le32_to_cpu(rp->rx_head_desc->rx_status));
1487 }
1488
1489 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1490 while (!(rp->rx_head_desc->rx_status & cpu_to_le32(DescOwn))) {
1491 struct rx_desc *desc = rp->rx_head_desc;
1492 u32 desc_status = le32_to_cpu(desc->rx_status);
1493 int data_size = desc_status >> 16;
1494
1495 if (debug > 4)
ed4030d1 1496 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1da177e4
LT
1497 desc_status);
1498 if (--boguscnt < 0)
1499 break;
1500 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1501 if ((desc_status & RxWholePkt) != RxWholePkt) {
1502 printk(KERN_WARNING "%s: Oversized Ethernet "
1503 "frame spanned multiple buffers, entry "
1504 "%#x length %d status %8.8x!\n",
1505 dev->name, entry, data_size,
1506 desc_status);
1507 printk(KERN_WARNING "%s: Oversized Ethernet "
1508 "frame %p vs %p.\n", dev->name,
1509 rp->rx_head_desc, &rp->rx_ring[entry]);
1510 rp->stats.rx_length_errors++;
1511 } else if (desc_status & RxErr) {
1512 /* There was a error. */
1513 if (debug > 2)
ed4030d1 1514 printk(KERN_DEBUG "rhine_rx() Rx "
1da177e4
LT
1515 "error was %8.8x.\n",
1516 desc_status);
1517 rp->stats.rx_errors++;
1518 if (desc_status & 0x0030) rp->stats.rx_length_errors++;
1519 if (desc_status & 0x0048) rp->stats.rx_fifo_errors++;
1520 if (desc_status & 0x0004) rp->stats.rx_frame_errors++;
1521 if (desc_status & 0x0002) {
1522 /* this can also be updated outside the interrupt handler */
1523 spin_lock(&rp->lock);
1524 rp->stats.rx_crc_errors++;
1525 spin_unlock(&rp->lock);
1526 }
1527 }
1528 } else {
1529 struct sk_buff *skb;
1530 /* Length should omit the CRC */
1531 int pkt_len = data_size - 4;
1532
1533 /* Check if the packet is long enough to accept without
1534 copying to a minimally-sized skbuff. */
1535 if (pkt_len < rx_copybreak &&
1536 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1537 skb->dev = dev;
1538 skb_reserve(skb, 2); /* 16 byte align the IP header */
1539 pci_dma_sync_single_for_cpu(rp->pdev,
1540 rp->rx_skbuff_dma[entry],
1541 rp->rx_buf_sz,
1542 PCI_DMA_FROMDEVICE);
1543
1544 eth_copy_and_sum(skb,
689be439 1545 rp->rx_skbuff[entry]->data,
1da177e4
LT
1546 pkt_len, 0);
1547 skb_put(skb, pkt_len);
1548 pci_dma_sync_single_for_device(rp->pdev,
1549 rp->rx_skbuff_dma[entry],
1550 rp->rx_buf_sz,
1551 PCI_DMA_FROMDEVICE);
1552 } else {
1553 skb = rp->rx_skbuff[entry];
1554 if (skb == NULL) {
1555 printk(KERN_ERR "%s: Inconsistent Rx "
1556 "descriptor chain.\n",
1557 dev->name);
1558 break;
1559 }
1560 rp->rx_skbuff[entry] = NULL;
1561 skb_put(skb, pkt_len);
1562 pci_unmap_single(rp->pdev,
1563 rp->rx_skbuff_dma[entry],
1564 rp->rx_buf_sz,
1565 PCI_DMA_FROMDEVICE);
1566 }
1567 skb->protocol = eth_type_trans(skb, dev);
1568 netif_rx(skb);
1569 dev->last_rx = jiffies;
1570 rp->stats.rx_bytes += pkt_len;
1571 rp->stats.rx_packets++;
1572 }
1573 entry = (++rp->cur_rx) % RX_RING_SIZE;
1574 rp->rx_head_desc = &rp->rx_ring[entry];
1575 }
1576
1577 /* Refill the Rx ring buffers. */
1578 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1579 struct sk_buff *skb;
1580 entry = rp->dirty_rx % RX_RING_SIZE;
1581 if (rp->rx_skbuff[entry] == NULL) {
1582 skb = dev_alloc_skb(rp->rx_buf_sz);
1583 rp->rx_skbuff[entry] = skb;
1584 if (skb == NULL)
1585 break; /* Better luck next round. */
1586 skb->dev = dev; /* Mark as being used by this device. */
1587 rp->rx_skbuff_dma[entry] =
689be439 1588 pci_map_single(rp->pdev, skb->data,
1da177e4
LT
1589 rp->rx_buf_sz,
1590 PCI_DMA_FROMDEVICE);
1591 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1592 }
1593 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1594 }
1595}
1596
1597/*
1598 * Clears the "tally counters" for CRC errors and missed frames(?).
1599 * It has been reported that some chips need a write of 0 to clear
1600 * these, for others the counters are set to 1 when written to and
1601 * instead cleared when read. So we clear them both ways ...
1602 */
1603static inline void clear_tally_counters(void __iomem *ioaddr)
1604{
1605 iowrite32(0, ioaddr + RxMissed);
1606 ioread16(ioaddr + RxCRCErrs);
1607 ioread16(ioaddr + RxMissed);
1608}
1609
1610static void rhine_restart_tx(struct net_device *dev) {
1611 struct rhine_private *rp = netdev_priv(dev);
1612 void __iomem *ioaddr = rp->base;
1613 int entry = rp->dirty_tx % TX_RING_SIZE;
1614 u32 intr_status;
1615
1616 /*
1617 * If new errors occured, we need to sort them out before doing Tx.
1618 * In that case the ISR will be back here RSN anyway.
1619 */
1620 intr_status = get_intr_status(dev);
1621
1622 if ((intr_status & IntrTxErrSummary) == 0) {
1623
1624 /* We know better than the chip where it should continue. */
1625 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1626 ioaddr + TxRingPtr);
1627
1628 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1629 ioaddr + ChipCmd);
1630 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1631 ioaddr + ChipCmd1);
1632 IOSYNC;
1633 }
1634 else {
1635 /* This should never happen */
1636 if (debug > 1)
1637 printk(KERN_WARNING "%s: rhine_restart_tx() "
1638 "Another error occured %8.8x.\n",
1639 dev->name, intr_status);
1640 }
1641
1642}
1643
1644static void rhine_error(struct net_device *dev, int intr_status)
1645{
1646 struct rhine_private *rp = netdev_priv(dev);
1647 void __iomem *ioaddr = rp->base;
1648
1649 spin_lock(&rp->lock);
1650
1651 if (intr_status & IntrLinkChange)
38bb6b28 1652 rhine_check_media(dev, 0);
1da177e4
LT
1653 if (intr_status & IntrStatsMax) {
1654 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1655 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1656 clear_tally_counters(ioaddr);
1657 }
1658 if (intr_status & IntrTxAborted) {
1659 if (debug > 1)
1660 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1661 dev->name, intr_status);
1662 }
1663 if (intr_status & IntrTxUnderrun) {
1664 if (rp->tx_thresh < 0xE0)
1665 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1666 if (debug > 1)
1667 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1668 "threshold now %2.2x.\n",
1669 dev->name, rp->tx_thresh);
1670 }
1671 if (intr_status & IntrTxDescRace) {
1672 if (debug > 2)
1673 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1674 dev->name);
1675 }
1676 if ((intr_status & IntrTxError) &&
1677 (intr_status & (IntrTxAborted |
1678 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1679 if (rp->tx_thresh < 0xE0) {
1680 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1681 }
1682 if (debug > 1)
1683 printk(KERN_INFO "%s: Unspecified error. Tx "
1684 "threshold now %2.2x.\n",
1685 dev->name, rp->tx_thresh);
1686 }
1687 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1688 IntrTxError))
1689 rhine_restart_tx(dev);
1690
1691 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1692 IntrTxError | IntrTxAborted | IntrNormalSummary |
1693 IntrTxDescRace)) {
1694 if (debug > 1)
1695 printk(KERN_ERR "%s: Something Wicked happened! "
1696 "%8.8x.\n", dev->name, intr_status);
1697 }
1698
1699 spin_unlock(&rp->lock);
1700}
1701
1702static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1703{
1704 struct rhine_private *rp = netdev_priv(dev);
1705 void __iomem *ioaddr = rp->base;
1706 unsigned long flags;
1707
1708 spin_lock_irqsave(&rp->lock, flags);
1709 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1710 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1711 clear_tally_counters(ioaddr);
1712 spin_unlock_irqrestore(&rp->lock, flags);
1713
1714 return &rp->stats;
1715}
1716
1717static void rhine_set_rx_mode(struct net_device *dev)
1718{
1719 struct rhine_private *rp = netdev_priv(dev);
1720 void __iomem *ioaddr = rp->base;
1721 u32 mc_filter[2]; /* Multicast hash filter */
1722 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1723
1724 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1725 /* Unconditionally log net taps. */
1726 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n",
1727 dev->name);
1728 rx_mode = 0x1C;
1729 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1730 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1731 } else if ((dev->mc_count > multicast_filter_limit)
1732 || (dev->flags & IFF_ALLMULTI)) {
1733 /* Too many to match, or accept all multicasts. */
1734 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1735 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1736 rx_mode = 0x0C;
1737 } else {
1738 struct dev_mc_list *mclist;
1739 int i;
1740 memset(mc_filter, 0, sizeof(mc_filter));
1741 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1742 i++, mclist = mclist->next) {
1743 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1744
1745 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1746 }
1747 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1748 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1749 rx_mode = 0x0C;
1750 }
1751 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1752}
1753
1754static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1755{
1756 struct rhine_private *rp = netdev_priv(dev);
1757
1758 strcpy(info->driver, DRV_NAME);
1759 strcpy(info->version, DRV_VERSION);
1760 strcpy(info->bus_info, pci_name(rp->pdev));
1761}
1762
1763static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1764{
1765 struct rhine_private *rp = netdev_priv(dev);
1766 int rc;
1767
1768 spin_lock_irq(&rp->lock);
1769 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1770 spin_unlock_irq(&rp->lock);
1771
1772 return rc;
1773}
1774
1775static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1776{
1777 struct rhine_private *rp = netdev_priv(dev);
1778 int rc;
1779
1780 spin_lock_irq(&rp->lock);
1781 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1782 spin_unlock_irq(&rp->lock);
00b428c2 1783 rhine_set_carrier(&rp->mii_if);
1da177e4
LT
1784
1785 return rc;
1786}
1787
1788static int netdev_nway_reset(struct net_device *dev)
1789{
1790 struct rhine_private *rp = netdev_priv(dev);
1791
1792 return mii_nway_restart(&rp->mii_if);
1793}
1794
1795static u32 netdev_get_link(struct net_device *dev)
1796{
1797 struct rhine_private *rp = netdev_priv(dev);
1798
1799 return mii_link_ok(&rp->mii_if);
1800}
1801
1802static u32 netdev_get_msglevel(struct net_device *dev)
1803{
1804 return debug;
1805}
1806
1807static void netdev_set_msglevel(struct net_device *dev, u32 value)
1808{
1809 debug = value;
1810}
1811
1812static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1813{
1814 struct rhine_private *rp = netdev_priv(dev);
1815
1816 if (!(rp->quirks & rqWOL))
1817 return;
1818
1819 spin_lock_irq(&rp->lock);
1820 wol->supported = WAKE_PHY | WAKE_MAGIC |
1821 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1822 wol->wolopts = rp->wolopts;
1823 spin_unlock_irq(&rp->lock);
1824}
1825
1826static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1827{
1828 struct rhine_private *rp = netdev_priv(dev);
1829 u32 support = WAKE_PHY | WAKE_MAGIC |
1830 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1831
1832 if (!(rp->quirks & rqWOL))
1833 return -EINVAL;
1834
1835 if (wol->wolopts & ~support)
1836 return -EINVAL;
1837
1838 spin_lock_irq(&rp->lock);
1839 rp->wolopts = wol->wolopts;
1840 spin_unlock_irq(&rp->lock);
1841
1842 return 0;
1843}
1844
1845static struct ethtool_ops netdev_ethtool_ops = {
1846 .get_drvinfo = netdev_get_drvinfo,
1847 .get_settings = netdev_get_settings,
1848 .set_settings = netdev_set_settings,
1849 .nway_reset = netdev_nway_reset,
1850 .get_link = netdev_get_link,
1851 .get_msglevel = netdev_get_msglevel,
1852 .set_msglevel = netdev_set_msglevel,
1853 .get_wol = rhine_get_wol,
1854 .set_wol = rhine_set_wol,
1855 .get_sg = ethtool_op_get_sg,
1856 .get_tx_csum = ethtool_op_get_tx_csum,
b81e8e1f 1857 .get_perm_addr = ethtool_op_get_perm_addr,
1da177e4
LT
1858};
1859
1860static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1861{
1862 struct rhine_private *rp = netdev_priv(dev);
1863 int rc;
1864
1865 if (!netif_running(dev))
1866 return -EINVAL;
1867
1868 spin_lock_irq(&rp->lock);
1869 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1870 spin_unlock_irq(&rp->lock);
00b428c2 1871 rhine_set_carrier(&rp->mii_if);
1da177e4
LT
1872
1873 return rc;
1874}
1875
1876static int rhine_close(struct net_device *dev)
1877{
1878 struct rhine_private *rp = netdev_priv(dev);
1879 void __iomem *ioaddr = rp->base;
1880
1881 spin_lock_irq(&rp->lock);
1882
1883 netif_stop_queue(dev);
1884
1885 if (debug > 1)
1886 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1887 "status was %4.4x.\n",
1888 dev->name, ioread16(ioaddr + ChipCmd));
1889
1890 /* Switch to loopback mode to avoid hardware races. */
1891 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1892
1893 /* Disable interrupts by clearing the interrupt mask. */
1894 iowrite16(0x0000, ioaddr + IntrEnable);
1895
1896 /* Stop the chip's Tx and Rx processes. */
1897 iowrite16(CmdStop, ioaddr + ChipCmd);
1898
1899 spin_unlock_irq(&rp->lock);
1900
1901 free_irq(rp->pdev->irq, dev);
1902 free_rbufs(dev);
1903 free_tbufs(dev);
1904 free_ring(dev);
1905
1906 return 0;
1907}
1908
1909
1910static void __devexit rhine_remove_one(struct pci_dev *pdev)
1911{
1912 struct net_device *dev = pci_get_drvdata(pdev);
1913 struct rhine_private *rp = netdev_priv(dev);
1914
1915 unregister_netdev(dev);
1916
1917 pci_iounmap(pdev, rp->base);
1918 pci_release_regions(pdev);
1919
1920 free_netdev(dev);
1921 pci_disable_device(pdev);
1922 pci_set_drvdata(pdev, NULL);
1923}
1924
d18c3db5 1925static void rhine_shutdown (struct pci_dev *pdev)
1da177e4 1926{
1da177e4
LT
1927 struct net_device *dev = pci_get_drvdata(pdev);
1928 struct rhine_private *rp = netdev_priv(dev);
1929 void __iomem *ioaddr = rp->base;
1930
1931 if (!(rp->quirks & rqWOL))
1932 return; /* Nothing to do for non-WOL adapters */
1933
1934 rhine_power_init(dev);
1935
1936 /* Make sure we use pattern 0, 1 and not 4, 5 */
1937 if (rp->quirks & rq6patterns)
1938 iowrite8(0x04, ioaddr + 0xA7);
1939
1940 if (rp->wolopts & WAKE_MAGIC) {
1941 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1942 /*
1943 * Turn EEPROM-controlled wake-up back on -- some hardware may
1944 * not cooperate otherwise.
1945 */
1946 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1947 }
1948
1949 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1950 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1951
1952 if (rp->wolopts & WAKE_PHY)
1953 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1954
1955 if (rp->wolopts & WAKE_UCAST)
1956 iowrite8(WOLucast, ioaddr + WOLcrSet);
1957
1958 if (rp->wolopts) {
1959 /* Enable legacy WOL (for old motherboards) */
1960 iowrite8(0x01, ioaddr + PwcfgSet);
1961 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1962 }
1963
1964 /* Hit power state D3 (sleep) */
1965 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1966
1967 /* TODO: Check use of pci_enable_wake() */
1968
1969}
1970
1971#ifdef CONFIG_PM
1972static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1973{
1974 struct net_device *dev = pci_get_drvdata(pdev);
1975 struct rhine_private *rp = netdev_priv(dev);
1976 unsigned long flags;
1977
1978 if (!netif_running(dev))
1979 return 0;
1980
1981 netif_device_detach(dev);
1982 pci_save_state(pdev);
1983
1984 spin_lock_irqsave(&rp->lock, flags);
d18c3db5 1985 rhine_shutdown(pdev);
1da177e4
LT
1986 spin_unlock_irqrestore(&rp->lock, flags);
1987
1988 free_irq(dev->irq, dev);
1989 return 0;
1990}
1991
1992static int rhine_resume(struct pci_dev *pdev)
1993{
1994 struct net_device *dev = pci_get_drvdata(pdev);
1995 struct rhine_private *rp = netdev_priv(dev);
1996 unsigned long flags;
1997 int ret;
1998
1999 if (!netif_running(dev))
2000 return 0;
2001
1fb9df5d 2002 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1da177e4
LT
2003 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
2004
2005 ret = pci_set_power_state(pdev, PCI_D0);
2006 if (debug > 1)
2007 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
2008 dev->name, ret ? "failed" : "succeeded", ret);
2009
2010 pci_restore_state(pdev);
2011
2012 spin_lock_irqsave(&rp->lock, flags);
2013#ifdef USE_MMIO
2014 enable_mmio(rp->pioaddr, rp->quirks);
2015#endif
2016 rhine_power_init(dev);
2017 free_tbufs(dev);
2018 free_rbufs(dev);
2019 alloc_tbufs(dev);
2020 alloc_rbufs(dev);
2021 init_registers(dev);
2022 spin_unlock_irqrestore(&rp->lock, flags);
2023
2024 netif_device_attach(dev);
2025
2026 return 0;
2027}
2028#endif /* CONFIG_PM */
2029
2030static struct pci_driver rhine_driver = {
2031 .name = DRV_NAME,
2032 .id_table = rhine_pci_tbl,
2033 .probe = rhine_init_one,
2034 .remove = __devexit_p(rhine_remove_one),
2035#ifdef CONFIG_PM
2036 .suspend = rhine_suspend,
2037 .resume = rhine_resume,
2038#endif /* CONFIG_PM */
d18c3db5 2039 .shutdown = rhine_shutdown,
1da177e4
LT
2040};
2041
2042
2043static int __init rhine_init(void)
2044{
2045/* when a module, this is printed whether or not devices are found in probe */
2046#ifdef MODULE
2047 printk(version);
2048#endif
2049 return pci_module_init(&rhine_driver);
2050}
2051
2052
2053static void __exit rhine_cleanup(void)
2054{
2055 pci_unregister_driver(&rhine_driver);
2056}
2057
2058
2059module_init(rhine_init);
2060module_exit(rhine_cleanup);