IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / skfp / skfddi.c
CommitLineData
1da177e4
LT
1/*
2 * File Name:
3 * skfddi.c
4 *
5 * Copyright Information:
6 * Copyright SysKonnect 1998,1999.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * The information in this file is provided "AS IS" without warranty.
14 *
15 * Abstract:
16 * A Linux device driver supporting the SysKonnect FDDI PCI controller
17 * familie.
18 *
19 * Maintainers:
20 * CG Christoph Goos (cgoos@syskonnect.de)
21 *
22 * Contributors:
23 * DM David S. Miller
24 *
25 * Address all question to:
26 * linux@syskonnect.de
27 *
28 * The technical manual for the adapters is available from SysKonnect's
29 * web pages: www.syskonnect.com
30 * Goto "Support" and search Knowledge Base for "manual".
31 *
32 * Driver Architecture:
33 * The driver architecture is based on the DEC FDDI driver by
34 * Lawrence V. Stefani and several ethernet drivers.
35 * I also used an existing Windows NT miniport driver.
36 * All hardware dependent fuctions are handled by the SysKonnect
37 * Hardware Module.
38 * The only headerfiles that are directly related to this source
39 * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40 * The others belong to the SysKonnect FDDI Hardware Module and
41 * should better not be changed.
42 *
43 * Modification History:
44 * Date Name Description
45 * 02-Mar-98 CG Created.
46 *
47 * 10-Mar-99 CG Support for 2.2.x added.
48 * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC)
49 * 26-Oct-99 CG Fixed compilation error on 2.2.13
50 * 12-Nov-99 CG Source code release
51 * 22-Nov-99 CG Included in kernel source.
52 * 07-May-00 DM 64 bit fixes, new dma interface
53 * 31-Jul-03 DB Audit copy_*_user in skfp_ioctl
54 * Daniele Bellucci <bellucda@tiscali.it>
55 * 03-Dec-03 SH Convert to PCI device model
56 *
57 * Compilation options (-Dxxx):
58 * DRIVERDEBUG print lots of messages to log file
59 * DUMPPACKETS print received/transmitted packets to logfile
60 *
61 * Tested cpu architectures:
62 * - i386
63 * - sparc64
64 */
65
66/* Version information string - should be updated prior to */
67/* each new release!!! */
68#define VERSION "2.07"
69
f71e1309 70static const char * const boot_msg =
1da177e4
LT
71 "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
72 " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
73
74/* Include files */
75
76#include <linux/module.h>
77#include <linux/kernel.h>
78#include <linux/errno.h>
79#include <linux/ioport.h>
80#include <linux/slab.h>
81#include <linux/interrupt.h>
82#include <linux/pci.h>
83#include <linux/netdevice.h>
84#include <linux/fddidevice.h>
85#include <linux/skbuff.h>
86#include <linux/bitops.h>
87
88#include <asm/byteorder.h>
89#include <asm/io.h>
90#include <asm/uaccess.h>
91
92#include "h/types.h"
93#undef ADDR // undo Linux definition
94#include "h/skfbi.h"
95#include "h/fddi.h"
96#include "h/smc.h"
97#include "h/smtstate.h"
98
99
100// Define module-wide (static) routines
101static int skfp_driver_init(struct net_device *dev);
102static int skfp_open(struct net_device *dev);
103static int skfp_close(struct net_device *dev);
7d12e780 104static irqreturn_t skfp_interrupt(int irq, void *dev_id);
1da177e4
LT
105static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
106static void skfp_ctl_set_multicast_list(struct net_device *dev);
107static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
108static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
109static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
110static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev);
111static void send_queued_packets(struct s_smc *smc);
112static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
113static void ResetAdapter(struct s_smc *smc);
114
115
116// Functions needed by the hardware module
117void *mac_drv_get_space(struct s_smc *smc, u_int size);
118void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
119unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
120unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
121void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
122 int flag);
123void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
124void llc_restart_tx(struct s_smc *smc);
125void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
126 int frag_count, int len);
127void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128 int frag_count);
129void mac_drv_fill_rxd(struct s_smc *smc);
130void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
131 int frag_count);
132int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
133 int la_len);
134void dump_data(unsigned char *Data, int length);
135
136// External functions from the hardware module
137extern u_int mac_drv_check_space(void);
138extern void read_address(struct s_smc *smc, u_char * mac_addr);
139extern void card_stop(struct s_smc *smc);
140extern int mac_drv_init(struct s_smc *smc);
141extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
142 int len, int frame_status);
143extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
144 int frame_len, int frame_status);
145extern int init_smt(struct s_smc *smc, u_char * mac_addr);
146extern void fddi_isr(struct s_smc *smc);
147extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
148 int len, int frame_status);
149extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
150extern void mac_drv_clear_rx_queue(struct s_smc *smc);
151extern void enable_tx_irq(struct s_smc *smc, u_short queue);
1da177e4
LT
152
153static struct pci_device_id skfddi_pci_tbl[] = {
154 { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
155 { } /* Terminating entry */
156};
157MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
158MODULE_LICENSE("GPL");
159MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
160
161// Define module-wide (static) variables
162
163static int num_boards; /* total number of adapters configured */
164
165#ifdef DRIVERDEBUG
166#define PRINTK(s, args...) printk(s, ## args)
167#else
168#define PRINTK(s, args...)
169#endif // DRIVERDEBUG
170
171/*
172 * =================
173 * = skfp_init_one =
174 * =================
175 *
176 * Overview:
177 * Probes for supported FDDI PCI controllers
178 *
179 * Returns:
180 * Condition code
181 *
182 * Arguments:
183 * pdev - pointer to PCI device information
184 *
185 * Functional Description:
186 * This is now called by PCI driver registration process
187 * for each board found.
188 *
189 * Return Codes:
190 * 0 - This device (fddi0, fddi1, etc) configured successfully
191 * -ENODEV - No devices present, or no SysKonnect FDDI PCI device
192 * present for this device name
193 *
194 *
195 * Side Effects:
196 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
197 * initialized and the board resources are read and stored in
198 * the device structure.
199 */
200static int skfp_init_one(struct pci_dev *pdev,
201 const struct pci_device_id *ent)
202{
203 struct net_device *dev;
204 struct s_smc *smc; /* board pointer */
205 void __iomem *mem;
206 int err;
207
208 PRINTK(KERN_INFO "entering skfp_init_one\n");
209
210 if (num_boards == 0)
211 printk("%s\n", boot_msg);
212
213 err = pci_enable_device(pdev);
214 if (err)
215 return err;
216
217 err = pci_request_regions(pdev, "skfddi");
218 if (err)
219 goto err_out1;
220
221 pci_set_master(pdev);
222
223#ifdef MEM_MAPPED_IO
224 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
225 printk(KERN_ERR "skfp: region is not an MMIO resource\n");
226 err = -EIO;
227 goto err_out2;
228 }
229
230 mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
231#else
232 if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
233 printk(KERN_ERR "skfp: region is not PIO resource\n");
234 err = -EIO;
235 goto err_out2;
236 }
237
238 mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
239#endif
240 if (!mem) {
241 printk(KERN_ERR "skfp: Unable to map register, "
242 "FDDI adapter will be disabled.\n");
243 err = -EIO;
244 goto err_out2;
245 }
246
247 dev = alloc_fddidev(sizeof(struct s_smc));
248 if (!dev) {
249 printk(KERN_ERR "skfp: Unable to allocate fddi device, "
250 "FDDI adapter will be disabled.\n");
251 err = -ENOMEM;
252 goto err_out3;
253 }
254
255 dev->irq = pdev->irq;
256 dev->get_stats = &skfp_ctl_get_stats;
257 dev->open = &skfp_open;
258 dev->stop = &skfp_close;
259 dev->hard_start_xmit = &skfp_send_pkt;
260 dev->set_multicast_list = &skfp_ctl_set_multicast_list;
261 dev->set_mac_address = &skfp_ctl_set_mac_address;
262 dev->do_ioctl = &skfp_ioctl;
263 dev->header_cache_update = NULL; /* not supported */
264
265 SET_MODULE_OWNER(dev);
266 SET_NETDEV_DEV(dev, &pdev->dev);
267
268 /* Initialize board structure with bus-specific info */
269 smc = netdev_priv(dev);
270 smc->os.dev = dev;
271 smc->os.bus_type = SK_BUS_TYPE_PCI;
272 smc->os.pdev = *pdev;
273 smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
274 smc->os.MaxFrameSize = MAX_FRAME_SIZE;
275 smc->os.dev = dev;
276 smc->hw.slot = -1;
277 smc->hw.iop = mem;
278 smc->os.ResetRequested = FALSE;
279 skb_queue_head_init(&smc->os.SendSkbQueue);
280
281 dev->base_addr = (unsigned long)mem;
282
283 err = skfp_driver_init(dev);
284 if (err)
285 goto err_out4;
286
287 err = register_netdev(dev);
288 if (err)
289 goto err_out5;
290
291 ++num_boards;
292 pci_set_drvdata(pdev, dev);
293
294 if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
295 (pdev->subsystem_device & 0xff00) == 0x5800)
296 printk("%s: SysKonnect FDDI PCI adapter"
297 " found (SK-%04X)\n", dev->name,
298 pdev->subsystem_device);
299 else
300 printk("%s: FDDI PCI adapter found\n", dev->name);
301
302 return 0;
303err_out5:
304 if (smc->os.SharedMemAddr)
305 pci_free_consistent(pdev, smc->os.SharedMemSize,
306 smc->os.SharedMemAddr,
307 smc->os.SharedMemDMA);
308 pci_free_consistent(pdev, MAX_FRAME_SIZE,
309 smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
310err_out4:
311 free_netdev(dev);
312err_out3:
313#ifdef MEM_MAPPED_IO
314 iounmap(mem);
315#else
316 ioport_unmap(mem);
317#endif
318err_out2:
319 pci_release_regions(pdev);
320err_out1:
321 pci_disable_device(pdev);
322 return err;
323}
324
325/*
326 * Called for each adapter board from pci_unregister_driver
327 */
328static void __devexit skfp_remove_one(struct pci_dev *pdev)
329{
330 struct net_device *p = pci_get_drvdata(pdev);
331 struct s_smc *lp = netdev_priv(p);
332
333 unregister_netdev(p);
334
335 if (lp->os.SharedMemAddr) {
336 pci_free_consistent(&lp->os.pdev,
337 lp->os.SharedMemSize,
338 lp->os.SharedMemAddr,
339 lp->os.SharedMemDMA);
340 lp->os.SharedMemAddr = NULL;
341 }
342 if (lp->os.LocalRxBuffer) {
343 pci_free_consistent(&lp->os.pdev,
344 MAX_FRAME_SIZE,
345 lp->os.LocalRxBuffer,
346 lp->os.LocalRxBufferDMA);
347 lp->os.LocalRxBuffer = NULL;
348 }
349#ifdef MEM_MAPPED_IO
350 iounmap(lp->hw.iop);
351#else
352 ioport_unmap(lp->hw.iop);
353#endif
354 pci_release_regions(pdev);
355 free_netdev(p);
356
357 pci_disable_device(pdev);
358 pci_set_drvdata(pdev, NULL);
359}
360
361/*
362 * ====================
363 * = skfp_driver_init =
364 * ====================
365 *
366 * Overview:
367 * Initializes remaining adapter board structure information
368 * and makes sure adapter is in a safe state prior to skfp_open().
369 *
370 * Returns:
371 * Condition code
372 *
373 * Arguments:
374 * dev - pointer to device information
375 *
376 * Functional Description:
377 * This function allocates additional resources such as the host memory
378 * blocks needed by the adapter.
379 * The adapter is also reset. The OS must call skfp_open() to open
380 * the adapter and bring it on-line.
381 *
382 * Return Codes:
383 * 0 - initialization succeeded
384 * -1 - initialization failed
385 */
386static int skfp_driver_init(struct net_device *dev)
387{
388 struct s_smc *smc = netdev_priv(dev);
389 skfddi_priv *bp = &smc->os;
390 int err = -EIO;
391
392 PRINTK(KERN_INFO "entering skfp_driver_init\n");
393
394 // set the io address in private structures
395 bp->base_addr = dev->base_addr;
396
397 // Get the interrupt level from the PCI Configuration Table
398 smc->hw.irq = dev->irq;
399
400 spin_lock_init(&bp->DriverLock);
401
402 // Allocate invalid frame
403 bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
404 if (!bp->LocalRxBuffer) {
405 printk("could not allocate mem for ");
406 printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
407 goto fail;
408 }
409
410 // Determine the required size of the 'shared' memory area.
411 bp->SharedMemSize = mac_drv_check_space();
412 PRINTK(KERN_INFO "Memory for HWM: %ld\n", bp->SharedMemSize);
413 if (bp->SharedMemSize > 0) {
414 bp->SharedMemSize += 16; // for descriptor alignment
415
416 bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
417 bp->SharedMemSize,
418 &bp->SharedMemDMA);
419 if (!bp->SharedMemSize) {
420 printk("could not allocate mem for ");
421 printk("hardware module: %ld byte\n",
422 bp->SharedMemSize);
423 goto fail;
424 }
425 bp->SharedMemHeap = 0; // Nothing used yet.
426
427 } else {
428 bp->SharedMemAddr = NULL;
429 bp->SharedMemHeap = 0;
430 } // SharedMemSize > 0
431
432 memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
433
434 card_stop(smc); // Reset adapter.
435
436 PRINTK(KERN_INFO "mac_drv_init()..\n");
437 if (mac_drv_init(smc) != 0) {
438 PRINTK(KERN_INFO "mac_drv_init() failed.\n");
439 goto fail;
440 }
441 read_address(smc, NULL);
442 PRINTK(KERN_INFO "HW-Addr: %02x %02x %02x %02x %02x %02x\n",
443 smc->hw.fddi_canon_addr.a[0],
444 smc->hw.fddi_canon_addr.a[1],
445 smc->hw.fddi_canon_addr.a[2],
446 smc->hw.fddi_canon_addr.a[3],
447 smc->hw.fddi_canon_addr.a[4],
448 smc->hw.fddi_canon_addr.a[5]);
449 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
450
451 smt_reset_defaults(smc, 0);
452
453 return (0);
454
455fail:
456 if (bp->SharedMemAddr) {
457 pci_free_consistent(&bp->pdev,
458 bp->SharedMemSize,
459 bp->SharedMemAddr,
460 bp->SharedMemDMA);
461 bp->SharedMemAddr = NULL;
462 }
463 if (bp->LocalRxBuffer) {
464 pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
465 bp->LocalRxBuffer, bp->LocalRxBufferDMA);
466 bp->LocalRxBuffer = NULL;
467 }
468 return err;
469} // skfp_driver_init
470
471
472/*
473 * =============
474 * = skfp_open =
475 * =============
476 *
477 * Overview:
478 * Opens the adapter
479 *
480 * Returns:
481 * Condition code
482 *
483 * Arguments:
484 * dev - pointer to device information
485 *
486 * Functional Description:
487 * This function brings the adapter to an operational state.
488 *
489 * Return Codes:
490 * 0 - Adapter was successfully opened
491 * -EAGAIN - Could not register IRQ
492 */
493static int skfp_open(struct net_device *dev)
494{
495 struct s_smc *smc = netdev_priv(dev);
496 int err;
497
498 PRINTK(KERN_INFO "entering skfp_open\n");
499 /* Register IRQ - support shared interrupts by passing device ptr */
1fb9df5d 500 err = request_irq(dev->irq, (void *) skfp_interrupt, IRQF_SHARED,
1da177e4
LT
501 dev->name, dev);
502 if (err)
503 return err;
504
505 /*
506 * Set current address to factory MAC address
507 *
508 * Note: We've already done this step in skfp_driver_init.
509 * However, it's possible that a user has set a node
510 * address override, then closed and reopened the
511 * adapter. Unless we reset the device address field
512 * now, we'll continue to use the existing modified
513 * address.
514 */
515 read_address(smc, NULL);
516 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
517
518 init_smt(smc, NULL);
519 smt_online(smc, 1);
520 STI_FBI();
521
522 /* Clear local multicast address tables */
523 mac_clear_multicast(smc);
524
525 /* Disable promiscuous filter settings */
526 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
527
528 netif_start_queue(dev);
529 return (0);
530} // skfp_open
531
532
533/*
534 * ==============
535 * = skfp_close =
536 * ==============
537 *
538 * Overview:
539 * Closes the device/module.
540 *
541 * Returns:
542 * Condition code
543 *
544 * Arguments:
545 * dev - pointer to device information
546 *
547 * Functional Description:
548 * This routine closes the adapter and brings it to a safe state.
549 * The interrupt service routine is deregistered with the OS.
550 * The adapter can be opened again with another call to skfp_open().
551 *
552 * Return Codes:
553 * Always return 0.
554 *
555 * Assumptions:
556 * No further requests for this adapter are made after this routine is
557 * called. skfp_open() can be called to reset and reinitialize the
558 * adapter.
559 */
560static int skfp_close(struct net_device *dev)
561{
562 struct s_smc *smc = netdev_priv(dev);
563 skfddi_priv *bp = &smc->os;
564
565 CLI_FBI();
566 smt_reset_defaults(smc, 1);
567 card_stop(smc);
568 mac_drv_clear_tx_queue(smc);
569 mac_drv_clear_rx_queue(smc);
570
571 netif_stop_queue(dev);
572 /* Deregister (free) IRQ */
573 free_irq(dev->irq, dev);
574
575 skb_queue_purge(&bp->SendSkbQueue);
576 bp->QueueSkb = MAX_TX_QUEUE_LEN;
577
578 return (0);
579} // skfp_close
580
581
582/*
583 * ==================
584 * = skfp_interrupt =
585 * ==================
586 *
587 * Overview:
588 * Interrupt processing routine
589 *
590 * Returns:
591 * None
592 *
593 * Arguments:
594 * irq - interrupt vector
595 * dev_id - pointer to device information
1da177e4
LT
596 *
597 * Functional Description:
598 * This routine calls the interrupt processing routine for this adapter. It
599 * disables and reenables adapter interrupts, as appropriate. We can support
600 * shared interrupts since the incoming dev_id pointer provides our device
601 * structure context. All the real work is done in the hardware module.
602 *
603 * Return Codes:
604 * None
605 *
606 * Assumptions:
607 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
608 * on Intel-based systems) is done by the operating system outside this
609 * routine.
610 *
611 * System interrupts are enabled through this call.
612 *
613 * Side Effects:
614 * Interrupts are disabled, then reenabled at the adapter.
615 */
616
7d12e780 617irqreturn_t skfp_interrupt(int irq, void *dev_id)
1da177e4
LT
618{
619 struct net_device *dev = (struct net_device *) dev_id;
620 struct s_smc *smc; /* private board structure pointer */
621 skfddi_priv *bp;
622
623 if (dev == NULL) {
624 printk("%s: irq %d for unknown device\n", dev->name, irq);
625 return IRQ_NONE;
626 }
627
628 smc = netdev_priv(dev);
629 bp = &smc->os;
630
631 // IRQs enabled or disabled ?
632 if (inpd(ADDR(B0_IMSK)) == 0) {
633 // IRQs are disabled: must be shared interrupt
634 return IRQ_NONE;
635 }
636 // Note: At this point, IRQs are enabled.
637 if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ?
638 // Adapter did not issue an IRQ: must be shared interrupt
639 return IRQ_NONE;
640 }
641 CLI_FBI(); // Disable IRQs from our adapter.
642 spin_lock(&bp->DriverLock);
643
644 // Call interrupt handler in hardware module (HWM).
645 fddi_isr(smc);
646
647 if (smc->os.ResetRequested) {
648 ResetAdapter(smc);
649 smc->os.ResetRequested = FALSE;
650 }
651 spin_unlock(&bp->DriverLock);
652 STI_FBI(); // Enable IRQs from our adapter.
653
654 return IRQ_HANDLED;
655} // skfp_interrupt
656
657
658/*
659 * ======================
660 * = skfp_ctl_get_stats =
661 * ======================
662 *
663 * Overview:
664 * Get statistics for FDDI adapter
665 *
666 * Returns:
667 * Pointer to FDDI statistics structure
668 *
669 * Arguments:
670 * dev - pointer to device information
671 *
672 * Functional Description:
673 * Gets current MIB objects from adapter, then
674 * returns FDDI statistics structure as defined
675 * in if_fddi.h.
676 *
677 * Note: Since the FDDI statistics structure is
678 * still new and the device structure doesn't
679 * have an FDDI-specific get statistics handler,
680 * we'll return the FDDI statistics structure as
681 * a pointer to an Ethernet statistics structure.
682 * That way, at least the first part of the statistics
683 * structure can be decoded properly.
684 * We'll have to pay attention to this routine as the
685 * device structure becomes more mature and LAN media
686 * independent.
687 *
688 */
689struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
690{
691 struct s_smc *bp = netdev_priv(dev);
692
693 /* Fill the bp->stats structure with driver-maintained counters */
694
695 bp->os.MacStat.port_bs_flag[0] = 0x1234;
696 bp->os.MacStat.port_bs_flag[1] = 0x5678;
697// goos: need to fill out fddi statistic
698#if 0
699 /* Get FDDI SMT MIB objects */
700
701/* Fill the bp->stats structure with the SMT MIB object values */
702
703 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
704 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
705 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
706 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
707 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
708 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
709 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
710 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
711 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
712 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
713 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
714 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
715 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
716 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
717 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
718 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
719 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
720 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
721 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
722 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
723 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
724 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
725 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
726 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
727 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
728 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
729 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
730 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
731 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
732 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
733 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
734 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
735 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
736 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
737 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
738 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
739 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
740 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
741 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
742 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
743 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
744 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
745 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
746 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
747 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
748 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
749 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
750 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
751 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
752 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
753 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
754 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
755 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
756 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
757 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
758 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
759 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
760 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
761 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
762 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
763 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
764 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
765 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
766 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
767 memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
768 memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
769 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
770 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
771 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
772 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
773 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
774 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
775 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
776 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
777 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
778 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
779 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
780 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
781 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
782 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
783 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
784 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
785 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
786 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
787 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
788 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
789 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
790 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
791 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
792 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
793 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
794 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
795
796
797 /* Fill the bp->stats structure with the FDDI counter values */
798
799 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
800 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
801 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
802 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
803 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
804 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
805 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
806 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
807 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
808 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
809 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
810
811#endif
812 return ((struct net_device_stats *) &bp->os.MacStat);
813} // ctl_get_stat
814
815
816/*
817 * ==============================
818 * = skfp_ctl_set_multicast_list =
819 * ==============================
820 *
821 * Overview:
822 * Enable/Disable LLC frame promiscuous mode reception
823 * on the adapter and/or update multicast address table.
824 *
825 * Returns:
826 * None
827 *
828 * Arguments:
829 * dev - pointer to device information
830 *
831 * Functional Description:
832 * This function acquires the driver lock and only calls
833 * skfp_ctl_set_multicast_list_wo_lock then.
834 * This routine follows a fairly simple algorithm for setting the
835 * adapter filters and CAM:
836 *
837 * if IFF_PROMISC flag is set
838 * enable promiscuous mode
839 * else
840 * disable promiscuous mode
841 * if number of multicast addresses <= max. multicast number
842 * add mc addresses to adapter table
843 * else
844 * enable promiscuous mode
845 * update adapter filters
846 *
847 * Assumptions:
848 * Multicast addresses are presented in canonical (LSB) format.
849 *
850 * Side Effects:
851 * On-board adapter filters are updated.
852 */
853static void skfp_ctl_set_multicast_list(struct net_device *dev)
854{
855 struct s_smc *smc = netdev_priv(dev);
856 skfddi_priv *bp = &smc->os;
857 unsigned long Flags;
858
859 spin_lock_irqsave(&bp->DriverLock, Flags);
860 skfp_ctl_set_multicast_list_wo_lock(dev);
861 spin_unlock_irqrestore(&bp->DriverLock, Flags);
862 return;
863} // skfp_ctl_set_multicast_list
864
865
866
867static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
868{
869 struct s_smc *smc = netdev_priv(dev);
870 struct dev_mc_list *dmi; /* ptr to multicast addr entry */
871 int i;
872
873 /* Enable promiscuous mode, if necessary */
874 if (dev->flags & IFF_PROMISC) {
875 mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
876 PRINTK(KERN_INFO "PROMISCUOUS MODE ENABLED\n");
877 }
878 /* Else, update multicast address table */
879 else {
880 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
881 PRINTK(KERN_INFO "PROMISCUOUS MODE DISABLED\n");
882
883 // Reset all MC addresses
884 mac_clear_multicast(smc);
885 mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
886
887 if (dev->flags & IFF_ALLMULTI) {
888 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
889 PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
890 } else if (dev->mc_count > 0) {
891 if (dev->mc_count <= FPMAX_MULTICAST) {
892 /* use exact filtering */
893
894 // point to first multicast addr
895 dmi = dev->mc_list;
896
897 for (i = 0; i < dev->mc_count; i++) {
898 mac_add_multicast(smc,
899 (struct fddi_addr *)dmi->dmi_addr,
900 1);
901
902 PRINTK(KERN_INFO "ENABLE MC ADDRESS:");
903 PRINTK(" %02x %02x %02x ",
904 dmi->dmi_addr[0],
905 dmi->dmi_addr[1],
906 dmi->dmi_addr[2]);
907 PRINTK("%02x %02x %02x\n",
908 dmi->dmi_addr[3],
909 dmi->dmi_addr[4],
910 dmi->dmi_addr[5]);
911 dmi = dmi->next;
912 } // for
913
914 } else { // more MC addresses than HW supports
915
916 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
917 PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
918 }
919 } else { // no MC addresses
920
921 PRINTK(KERN_INFO "DISABLE ALL MC ADDRESSES\n");
922 }
923
924 /* Update adapter filters */
925 mac_update_multicast(smc);
926 }
927 return;
928} // skfp_ctl_set_multicast_list_wo_lock
929
930
931/*
932 * ===========================
933 * = skfp_ctl_set_mac_address =
934 * ===========================
935 *
936 * Overview:
937 * set new mac address on adapter and update dev_addr field in device table.
938 *
939 * Returns:
940 * None
941 *
942 * Arguments:
943 * dev - pointer to device information
944 * addr - pointer to sockaddr structure containing unicast address to set
945 *
946 * Assumptions:
947 * The address pointed to by addr->sa_data is a valid unicast
948 * address and is presented in canonical (LSB) format.
949 */
950static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
951{
952 struct s_smc *smc = netdev_priv(dev);
953 struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
954 skfddi_priv *bp = &smc->os;
955 unsigned long Flags;
956
957
958 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
959 spin_lock_irqsave(&bp->DriverLock, Flags);
960 ResetAdapter(smc);
961 spin_unlock_irqrestore(&bp->DriverLock, Flags);
962
963 return (0); /* always return zero */
964} // skfp_ctl_set_mac_address
965
966
967/*
968 * ==============
969 * = skfp_ioctl =
970 * ==============
971 *
972 * Overview:
973 *
974 * Perform IOCTL call functions here. Some are privileged operations and the
975 * effective uid is checked in those cases.
976 *
977 * Returns:
978 * status value
979 * 0 - success
980 * other - failure
981 *
982 * Arguments:
983 * dev - pointer to device information
984 * rq - pointer to ioctl request structure
985 * cmd - ?
986 *
987 */
988
989
990static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
991{
992 struct s_smc *smc = netdev_priv(dev);
993 skfddi_priv *lp = &smc->os;
994 struct s_skfp_ioctl ioc;
995 int status = 0;
996
997 if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
998 return -EFAULT;
999
1000 switch (ioc.cmd) {
1001 case SKFP_GET_STATS: /* Get the driver statistics */
1002 ioc.len = sizeof(lp->MacStat);
1003 status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
1004 ? -EFAULT : 0;
1005 break;
1006 case SKFP_CLR_STATS: /* Zero out the driver statistics */
1007 if (!capable(CAP_NET_ADMIN)) {
1008 memset(&lp->MacStat, 0, sizeof(lp->MacStat));
1009 } else {
1010 status = -EPERM;
1011 }
1012 break;
1013 default:
1014 printk("ioctl for %s: unknow cmd: %04x\n", dev->name, ioc.cmd);
1015 status = -EOPNOTSUPP;
1016
1017 } // switch
1018
1019 return status;
1020} // skfp_ioctl
1021
1022
1023/*
1024 * =====================
1025 * = skfp_send_pkt =
1026 * =====================
1027 *
1028 * Overview:
1029 * Queues a packet for transmission and try to transmit it.
1030 *
1031 * Returns:
1032 * Condition code
1033 *
1034 * Arguments:
1035 * skb - pointer to sk_buff to queue for transmission
1036 * dev - pointer to device information
1037 *
1038 * Functional Description:
1039 * Here we assume that an incoming skb transmit request
1040 * is contained in a single physically contiguous buffer
1041 * in which the virtual address of the start of packet
1042 * (skb->data) can be converted to a physical address
1043 * by using pci_map_single().
1044 *
1045 * We have an internal queue for packets we can not send
1046 * immediately. Packets in this queue can be given to the
1047 * adapter if transmit buffers are freed.
1048 *
1049 * We can't free the skb until after it's been DMA'd
1050 * out by the adapter, so we'll keep it in the driver and
1051 * return it in mac_drv_tx_complete.
1052 *
1053 * Return Codes:
1054 * 0 - driver has queued and/or sent packet
1055 * 1 - caller should requeue the sk_buff for later transmission
1056 *
1057 * Assumptions:
1058 * The entire packet is stored in one physically
1059 * contiguous buffer which is not cached and whose
1060 * 32-bit physical address can be determined.
1061 *
1062 * It's vital that this routine is NOT reentered for the
1063 * same board and that the OS is not in another section of
1064 * code (eg. skfp_interrupt) for the same board on a
1065 * different thread.
1066 *
1067 * Side Effects:
1068 * None
1069 */
1070static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev)
1071{
1072 struct s_smc *smc = netdev_priv(dev);
1073 skfddi_priv *bp = &smc->os;
1074
1075 PRINTK(KERN_INFO "skfp_send_pkt\n");
1076
1077 /*
1078 * Verify that incoming transmit request is OK
1079 *
1080 * Note: The packet size check is consistent with other
1081 * Linux device drivers, although the correct packet
1082 * size should be verified before calling the
1083 * transmit routine.
1084 */
1085
1086 if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1087 bp->MacStat.gen.tx_errors++; /* bump error counter */
1088 // dequeue packets from xmt queue and send them
1089 netif_start_queue(dev);
1090 dev_kfree_skb(skb);
1091 return (0); /* return "success" */
1092 }
1093 if (bp->QueueSkb == 0) { // return with tbusy set: queue full
1094
1095 netif_stop_queue(dev);
1096 return 1;
1097 }
1098 bp->QueueSkb--;
1099 skb_queue_tail(&bp->SendSkbQueue, skb);
1100 send_queued_packets(netdev_priv(dev));
1101 if (bp->QueueSkb == 0) {
1102 netif_stop_queue(dev);
1103 }
1104 dev->trans_start = jiffies;
1105 return 0;
1106
1107} // skfp_send_pkt
1108
1109
1110/*
1111 * =======================
1112 * = send_queued_packets =
1113 * =======================
1114 *
1115 * Overview:
1116 * Send packets from the driver queue as long as there are some and
1117 * transmit resources are available.
1118 *
1119 * Returns:
1120 * None
1121 *
1122 * Arguments:
1123 * smc - pointer to smc (adapter) structure
1124 *
1125 * Functional Description:
1126 * Take a packet from queue if there is any. If not, then we are done.
1127 * Check if there are resources to send the packet. If not, requeue it
1128 * and exit.
1129 * Set packet descriptor flags and give packet to adapter.
1130 * Check if any send resources can be freed (we do not use the
1131 * transmit complete interrupt).
1132 */
1133static void send_queued_packets(struct s_smc *smc)
1134{
1135 skfddi_priv *bp = &smc->os;
1136 struct sk_buff *skb;
1137 unsigned char fc;
1138 int queue;
1139 struct s_smt_fp_txd *txd; // Current TxD.
1140 dma_addr_t dma_address;
1141 unsigned long Flags;
1142
1143 int frame_status; // HWM tx frame status.
1144
1145 PRINTK(KERN_INFO "send queued packets\n");
1146 for (;;) {
1147 // send first buffer from queue
1148 skb = skb_dequeue(&bp->SendSkbQueue);
1149
1150 if (!skb) {
1151 PRINTK(KERN_INFO "queue empty\n");
1152 return;
1153 } // queue empty !
1154
1155 spin_lock_irqsave(&bp->DriverLock, Flags);
1156 fc = skb->data[0];
1157 queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1158#ifdef ESS
1159 // Check if the frame may/must be sent as a synchronous frame.
1160
1161 if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1162 // It's an LLC frame.
1163 if (!smc->ess.sync_bw_available)
1164 fc &= ~FC_SYNC_BIT; // No bandwidth available.
1165
1166 else { // Bandwidth is available.
1167
1168 if (smc->mib.fddiESSSynchTxMode) {
1169 // Send as sync. frame.
1170 fc |= FC_SYNC_BIT;
1171 }
1172 }
1173 }
1174#endif // ESS
1175 frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1176
1177 if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1178 // Unable to send the frame.
1179
1180 if ((frame_status & RING_DOWN) != 0) {
1181 // Ring is down.
1182 PRINTK("Tx attempt while ring down.\n");
1183 } else if ((frame_status & OUT_OF_TXD) != 0) {
1184 PRINTK("%s: out of TXDs.\n", bp->dev->name);
1185 } else {
1186 PRINTK("%s: out of transmit resources",
1187 bp->dev->name);
1188 }
1189
1190 // Note: We will retry the operation as soon as
1191 // transmit resources become available.
1192 skb_queue_head(&bp->SendSkbQueue, skb);
1193 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1194 return; // Packet has been queued.
1195
1196 } // if (unable to send frame)
1197
1198 bp->QueueSkb++; // one packet less in local queue
1199
1200 // source address in packet ?
1201 CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1202
1203 txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1204
1205 dma_address = pci_map_single(&bp->pdev, skb->data,
1206 skb->len, PCI_DMA_TODEVICE);
1207 if (frame_status & LAN_TX) {
1208 txd->txd_os.skb = skb; // save skb
1209 txd->txd_os.dma_addr = dma_address; // save dma mapping
1210 }
1211 hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1212 frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1213
1214 if (!(frame_status & LAN_TX)) { // local only frame
1215 pci_unmap_single(&bp->pdev, dma_address,
1216 skb->len, PCI_DMA_TODEVICE);
1217 dev_kfree_skb_irq(skb);
1218 }
1219 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1220 } // for
1221
1222 return; // never reached
1223
1224} // send_queued_packets
1225
1226
1227/************************
1228 *
1229 * CheckSourceAddress
1230 *
1231 * Verify if the source address is set. Insert it if necessary.
1232 *
1233 ************************/
1234void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1235{
1236 unsigned char SRBit;
1237
1238 if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1239
1240 return;
1241 if ((unsigned short) frame[1 + 10] != 0)
1242 return;
1243 SRBit = frame[1 + 6] & 0x01;
1244 memcpy(&frame[1 + 6], hw_addr, 6);
1245 frame[8] |= SRBit;
1246} // CheckSourceAddress
1247
1248
1249/************************
1250 *
1251 * ResetAdapter
1252 *
1253 * Reset the adapter and bring it back to operational mode.
1254 * Args
1255 * smc - A pointer to the SMT context struct.
1256 * Out
1257 * Nothing.
1258 *
1259 ************************/
1260static void ResetAdapter(struct s_smc *smc)
1261{
1262
1263 PRINTK(KERN_INFO "[fddi: ResetAdapter]\n");
1264
1265 // Stop the adapter.
1266
1267 card_stop(smc); // Stop all activity.
1268
1269 // Clear the transmit and receive descriptor queues.
1270 mac_drv_clear_tx_queue(smc);
1271 mac_drv_clear_rx_queue(smc);
1272
1273 // Restart the adapter.
1274
1275 smt_reset_defaults(smc, 1); // Initialize the SMT module.
1276
1277 init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1278
1279 smt_online(smc, 1); // Insert into the ring again.
1280 STI_FBI();
1281
1282 // Restore original receive mode (multicasts, promiscuous, etc.).
1283 skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1284} // ResetAdapter
1285
1286
1287//--------------- functions called by hardware module ----------------
1288
1289/************************
1290 *
1291 * llc_restart_tx
1292 *
1293 * The hardware driver calls this routine when the transmit complete
1294 * interrupt bits (end of frame) for the synchronous or asynchronous
1295 * queue is set.
1296 *
1297 * NOTE The hardware driver calls this function also if no packets are queued.
1298 * The routine must be able to handle this case.
1299 * Args
1300 * smc - A pointer to the SMT context struct.
1301 * Out
1302 * Nothing.
1303 *
1304 ************************/
1305void llc_restart_tx(struct s_smc *smc)
1306{
1307 skfddi_priv *bp = &smc->os;
1308
1309 PRINTK(KERN_INFO "[llc_restart_tx]\n");
1310
1311 // Try to send queued packets
1312 spin_unlock(&bp->DriverLock);
1313 send_queued_packets(smc);
1314 spin_lock(&bp->DriverLock);
1315 netif_start_queue(bp->dev);// system may send again if it was blocked
1316
1317} // llc_restart_tx
1318
1319
1320/************************
1321 *
1322 * mac_drv_get_space
1323 *
1324 * The hardware module calls this function to allocate the memory
1325 * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1326 * Args
1327 * smc - A pointer to the SMT context struct.
1328 *
1329 * size - Size of memory in bytes to allocate.
1330 * Out
1331 * != 0 A pointer to the virtual address of the allocated memory.
1332 * == 0 Allocation error.
1333 *
1334 ************************/
1335void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1336{
1337 void *virt;
1338
1339 PRINTK(KERN_INFO "mac_drv_get_space (%d bytes), ", size);
1340 virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1341
1342 if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1343 printk("Unexpected SMT memory size requested: %d\n", size);
1344 return (NULL);
1345 }
1346 smc->os.SharedMemHeap += size; // Move heap pointer.
1347
1348 PRINTK(KERN_INFO "mac_drv_get_space end\n");
1349 PRINTK(KERN_INFO "virt addr: %lx\n", (ulong) virt);
1350 PRINTK(KERN_INFO "bus addr: %lx\n", (ulong)
1351 (smc->os.SharedMemDMA +
1352 ((char *) virt - (char *)smc->os.SharedMemAddr)));
1353 return (virt);
1354} // mac_drv_get_space
1355
1356
1357/************************
1358 *
1359 * mac_drv_get_desc_mem
1360 *
1361 * This function is called by the hardware dependent module.
1362 * It allocates the memory for the RxD and TxD descriptors.
1363 *
1364 * This memory must be non-cached, non-movable and non-swappable.
1365 * This memory should start at a physical page boundary.
1366 * Args
1367 * smc - A pointer to the SMT context struct.
1368 *
1369 * size - Size of memory in bytes to allocate.
1370 * Out
1371 * != 0 A pointer to the virtual address of the allocated memory.
1372 * == 0 Allocation error.
1373 *
1374 ************************/
1375void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1376{
1377
1378 char *virt;
1379
1380 PRINTK(KERN_INFO "mac_drv_get_desc_mem\n");
1381
1382 // Descriptor memory must be aligned on 16-byte boundary.
1383
1384 virt = mac_drv_get_space(smc, size);
1385
1386 size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1387 size = size % 16;
1388
1389 PRINTK("Allocate %u bytes alignment gap ", size);
1390 PRINTK("for descriptor memory.\n");
1391
1392 if (!mac_drv_get_space(smc, size)) {
1393 printk("fddi: Unable to align descriptor memory.\n");
1394 return (NULL);
1395 }
1396 return (virt + size);
1397} // mac_drv_get_desc_mem
1398
1399
1400/************************
1401 *
1402 * mac_drv_virt2phys
1403 *
1404 * Get the physical address of a given virtual address.
1405 * Args
1406 * smc - A pointer to the SMT context struct.
1407 *
1408 * virt - A (virtual) pointer into our 'shared' memory area.
1409 * Out
1410 * Physical address of the given virtual address.
1411 *
1412 ************************/
1413unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1414{
1415 return (smc->os.SharedMemDMA +
1416 ((char *) virt - (char *)smc->os.SharedMemAddr));
1417} // mac_drv_virt2phys
1418
1419
1420/************************
1421 *
1422 * dma_master
1423 *
1424 * The HWM calls this function, when the driver leads through a DMA
1425 * transfer. If the OS-specific module must prepare the system hardware
1426 * for the DMA transfer, it should do it in this function.
1427 *
1428 * The hardware module calls this dma_master if it wants to send an SMT
1429 * frame. This means that the virt address passed in here is part of
1430 * the 'shared' memory area.
1431 * Args
1432 * smc - A pointer to the SMT context struct.
1433 *
1434 * virt - The virtual address of the data.
1435 *
1436 * len - The length in bytes of the data.
1437 *
1438 * flag - Indicates the transmit direction and the buffer type:
1439 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1440 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1441 * SMT_BUF (0x80) SMT buffer
1442 *
1443 * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1444 * Out
1445 * Returns the pyhsical address for the DMA transfer.
1446 *
1447 ************************/
1448u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1449{
1450 return (smc->os.SharedMemDMA +
1451 ((char *) virt - (char *)smc->os.SharedMemAddr));
1452} // dma_master
1453
1454
1455/************************
1456 *
1457 * dma_complete
1458 *
1459 * The hardware module calls this routine when it has completed a DMA
1460 * transfer. If the operating system dependent module has set up the DMA
1461 * channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1462 * the DMA channel.
1463 * Args
1464 * smc - A pointer to the SMT context struct.
1465 *
1466 * descr - A pointer to a TxD or RxD, respectively.
1467 *
1468 * flag - Indicates the DMA transfer direction / SMT buffer:
1469 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1470 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1471 * SMT_BUF (0x80) SMT buffer (managed by HWM)
1472 * Out
1473 * Nothing.
1474 *
1475 ************************/
1476void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1477{
1478 /* For TX buffers, there are two cases. If it is an SMT transmit
1479 * buffer, there is nothing to do since we use consistent memory
1480 * for the 'shared' memory area. The other case is for normal
1481 * transmit packets given to us by the networking stack, and in
1482 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1483 * below.
1484 *
1485 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1486 * because the hardware module is about to potentially look at
1487 * the contents of the buffer. If we did not call the PCI DMA
1488 * unmap first, the hardware module could read inconsistent data.
1489 */
1490 if (flag & DMA_WR) {
1491 skfddi_priv *bp = &smc->os;
1492 volatile struct s_smt_fp_rxd *r = &descr->r;
1493
1494 /* If SKB is NULL, we used the local buffer. */
1495 if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1496 int MaxFrameSize = bp->MaxFrameSize;
1497
1498 pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1499 MaxFrameSize, PCI_DMA_FROMDEVICE);
1500 r->rxd_os.dma_addr = 0;
1501 }
1502 }
1503} // dma_complete
1504
1505
1506/************************
1507 *
1508 * mac_drv_tx_complete
1509 *
1510 * Transmit of a packet is complete. Release the tx staging buffer.
1511 *
1512 * Args
1513 * smc - A pointer to the SMT context struct.
1514 *
1515 * txd - A pointer to the last TxD which is used by the frame.
1516 * Out
1517 * Returns nothing.
1518 *
1519 ************************/
1520void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1521{
1522 struct sk_buff *skb;
1523
1524 PRINTK(KERN_INFO "entering mac_drv_tx_complete\n");
1525 // Check if this TxD points to a skb
1526
1527 if (!(skb = txd->txd_os.skb)) {
1528 PRINTK("TXD with no skb assigned.\n");
1529 return;
1530 }
1531 txd->txd_os.skb = NULL;
1532
1533 // release the DMA mapping
1534 pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1535 skb->len, PCI_DMA_TODEVICE);
1536 txd->txd_os.dma_addr = 0;
1537
1538 smc->os.MacStat.gen.tx_packets++; // Count transmitted packets.
1539 smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1540
1541 // free the skb
1542 dev_kfree_skb_irq(skb);
1543
1544 PRINTK(KERN_INFO "leaving mac_drv_tx_complete\n");
1545} // mac_drv_tx_complete
1546
1547
1548/************************
1549 *
1550 * dump packets to logfile
1551 *
1552 ************************/
1553#ifdef DUMPPACKETS
1554void dump_data(unsigned char *Data, int length)
1555{
1556 int i, j;
1557 unsigned char s[255], sh[10];
1558 if (length > 64) {
1559 length = 64;
1560 }
1561 printk(KERN_INFO "---Packet start---\n");
1562 for (i = 0, j = 0; i < length / 8; i++, j += 8)
1563 printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1564 Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1565 Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1566 strcpy(s, "");
1567 for (i = 0; i < length % 8; i++) {
1568 sprintf(sh, "%02x ", Data[j + i]);
1569 strcat(s, sh);
1570 }
1571 printk(KERN_INFO "%s\n", s);
1572 printk(KERN_INFO "------------------\n");
1573} // dump_data
1574#else
1575#define dump_data(data,len)
1576#endif // DUMPPACKETS
1577
1578/************************
1579 *
1580 * mac_drv_rx_complete
1581 *
1582 * The hardware module calls this function if an LLC frame is received
1583 * in a receive buffer. Also the SMT, NSA, and directed beacon frames
1584 * from the network will be passed to the LLC layer by this function
1585 * if passing is enabled.
1586 *
1587 * mac_drv_rx_complete forwards the frame to the LLC layer if it should
1588 * be received. It also fills the RxD ring with new receive buffers if
1589 * some can be queued.
1590 * Args
1591 * smc - A pointer to the SMT context struct.
1592 *
1593 * rxd - A pointer to the first RxD which is used by the receive frame.
1594 *
1595 * frag_count - Count of RxDs used by the received frame.
1596 *
1597 * len - Frame length.
1598 * Out
1599 * Nothing.
1600 *
1601 ************************/
1602void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1603 int frag_count, int len)
1604{
1605 skfddi_priv *bp = &smc->os;
1606 struct sk_buff *skb;
1607 unsigned char *virt, *cp;
1608 unsigned short ri;
1609 u_int RifLength;
1610
1611 PRINTK(KERN_INFO "entering mac_drv_rx_complete (len=%d)\n", len);
1612 if (frag_count != 1) { // This is not allowed to happen.
1613
1614 printk("fddi: Multi-fragment receive!\n");
1615 goto RequeueRxd; // Re-use the given RXD(s).
1616
1617 }
1618 skb = rxd->rxd_os.skb;
1619 if (!skb) {
1620 PRINTK(KERN_INFO "No skb in rxd\n");
1621 smc->os.MacStat.gen.rx_errors++;
1622 goto RequeueRxd;
1623 }
1624 virt = skb->data;
1625
1626 // The DMA mapping was released in dma_complete above.
1627
1628 dump_data(skb->data, len);
1629
1630 /*
1631 * FDDI Frame format:
1632 * +-------+-------+-------+------------+--------+------------+
1633 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1634 * +-------+-------+-------+------------+--------+------------+
1635 *
1636 * FC = Frame Control
1637 * DA = Destination Address
1638 * SA = Source Address
1639 * RIF = Routing Information Field
1640 * LLC = Logical Link Control
1641 */
1642
1643 // Remove Routing Information Field (RIF), if present.
1644
1645 if ((virt[1 + 6] & FDDI_RII) == 0)
1646 RifLength = 0;
1647 else {
1648 int n;
1649// goos: RIF removal has still to be tested
1650 PRINTK(KERN_INFO "RIF found\n");
1651 // Get RIF length from Routing Control (RC) field.
1652 cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header.
1653
1654 ri = ntohs(*((unsigned short *) cp));
1655 RifLength = ri & FDDI_RCF_LEN_MASK;
1656 if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1657 printk("fddi: Invalid RIF.\n");
1658 goto RequeueRxd; // Discard the frame.
1659
1660 }
1661 virt[1 + 6] &= ~FDDI_RII; // Clear RII bit.
1662 // regions overlap
1663
1664 virt = cp + RifLength;
1665 for (n = FDDI_MAC_HDR_LEN; n; n--)
1666 *--virt = *--cp;
1667 // adjust sbd->data pointer
1668 skb_pull(skb, RifLength);
1669 len -= RifLength;
1670 RifLength = 0;
1671 }
1672
1673 // Count statistics.
1674 smc->os.MacStat.gen.rx_packets++; // Count indicated receive
1675 // packets.
1676 smc->os.MacStat.gen.rx_bytes+=len; // Count bytes.
1677
1678 // virt points to header again
1679 if (virt[1] & 0x01) { // Check group (multicast) bit.
1680
1681 smc->os.MacStat.gen.multicast++;
1682 }
1683
1684 // deliver frame to system
1685 rxd->rxd_os.skb = NULL;
1686 skb_trim(skb, len);
1687 skb->protocol = fddi_type_trans(skb, bp->dev);
1688 skb->dev = bp->dev; /* pass up device pointer */
1689
1690 netif_rx(skb);
1691 bp->dev->last_rx = jiffies;
1692
1693 HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1694 return;
1695
1696 RequeueRxd:
1697 PRINTK(KERN_INFO "Rx: re-queue RXD.\n");
1698 mac_drv_requeue_rxd(smc, rxd, frag_count);
1699 smc->os.MacStat.gen.rx_errors++; // Count receive packets
1700 // not indicated.
1701
1702} // mac_drv_rx_complete
1703
1704
1705/************************
1706 *
1707 * mac_drv_requeue_rxd
1708 *
1709 * The hardware module calls this function to request the OS-specific
1710 * module to queue the receive buffer(s) represented by the pointer
1711 * to the RxD and the frag_count into the receive queue again. This
1712 * buffer was filled with an invalid frame or an SMT frame.
1713 * Args
1714 * smc - A pointer to the SMT context struct.
1715 *
1716 * rxd - A pointer to the first RxD which is used by the receive frame.
1717 *
1718 * frag_count - Count of RxDs used by the received frame.
1719 * Out
1720 * Nothing.
1721 *
1722 ************************/
1723void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1724 int frag_count)
1725{
1726 volatile struct s_smt_fp_rxd *next_rxd;
1727 volatile struct s_smt_fp_rxd *src_rxd;
1728 struct sk_buff *skb;
1729 int MaxFrameSize;
1730 unsigned char *v_addr;
1731 dma_addr_t b_addr;
1732
1733 if (frag_count != 1) // This is not allowed to happen.
1734
1735 printk("fddi: Multi-fragment requeue!\n");
1736
1737 MaxFrameSize = smc->os.MaxFrameSize;
1738 src_rxd = rxd;
1739 for (; frag_count > 0; frag_count--) {
1740 next_rxd = src_rxd->rxd_next;
1741 rxd = HWM_GET_CURR_RXD(smc);
1742
1743 skb = src_rxd->rxd_os.skb;
1744 if (skb == NULL) { // this should not happen
1745
1746 PRINTK("Requeue with no skb in rxd!\n");
1747 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1748 if (skb) {
1749 // we got a skb
1750 rxd->rxd_os.skb = skb;
1751 skb_reserve(skb, 3);
1752 skb_put(skb, MaxFrameSize);
1753 v_addr = skb->data;
1754 b_addr = pci_map_single(&smc->os.pdev,
1755 v_addr,
1756 MaxFrameSize,
1757 PCI_DMA_FROMDEVICE);
1758 rxd->rxd_os.dma_addr = b_addr;
1759 } else {
1760 // no skb available, use local buffer
1761 PRINTK("Queueing invalid buffer!\n");
1762 rxd->rxd_os.skb = NULL;
1763 v_addr = smc->os.LocalRxBuffer;
1764 b_addr = smc->os.LocalRxBufferDMA;
1765 }
1766 } else {
1767 // we use skb from old rxd
1768 rxd->rxd_os.skb = skb;
1769 v_addr = skb->data;
1770 b_addr = pci_map_single(&smc->os.pdev,
1771 v_addr,
1772 MaxFrameSize,
1773 PCI_DMA_FROMDEVICE);
1774 rxd->rxd_os.dma_addr = b_addr;
1775 }
1776 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1777 FIRST_FRAG | LAST_FRAG);
1778
1779 src_rxd = next_rxd;
1780 }
1781} // mac_drv_requeue_rxd
1782
1783
1784/************************
1785 *
1786 * mac_drv_fill_rxd
1787 *
1788 * The hardware module calls this function at initialization time
1789 * to fill the RxD ring with receive buffers. It is also called by
1790 * mac_drv_rx_complete if rx_free is large enough to queue some new
1791 * receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1792 * receive buffers as long as enough RxDs and receive buffers are
1793 * available.
1794 * Args
1795 * smc - A pointer to the SMT context struct.
1796 * Out
1797 * Nothing.
1798 *
1799 ************************/
1800void mac_drv_fill_rxd(struct s_smc *smc)
1801{
1802 int MaxFrameSize;
1803 unsigned char *v_addr;
1804 unsigned long b_addr;
1805 struct sk_buff *skb;
1806 volatile struct s_smt_fp_rxd *rxd;
1807
1808 PRINTK(KERN_INFO "entering mac_drv_fill_rxd\n");
1809
1810 // Walk through the list of free receive buffers, passing receive
1811 // buffers to the HWM as long as RXDs are available.
1812
1813 MaxFrameSize = smc->os.MaxFrameSize;
1814 // Check if there is any RXD left.
1815 while (HWM_GET_RX_FREE(smc) > 0) {
1816 PRINTK(KERN_INFO ".\n");
1817
1818 rxd = HWM_GET_CURR_RXD(smc);
1819 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1820 if (skb) {
1821 // we got a skb
1822 skb_reserve(skb, 3);
1823 skb_put(skb, MaxFrameSize);
1824 v_addr = skb->data;
1825 b_addr = pci_map_single(&smc->os.pdev,
1826 v_addr,
1827 MaxFrameSize,
1828 PCI_DMA_FROMDEVICE);
1829 rxd->rxd_os.dma_addr = b_addr;
1830 } else {
1831 // no skb available, use local buffer
1832 // System has run out of buffer memory, but we want to
1833 // keep the receiver running in hope of better times.
1834 // Multiple descriptors may point to this local buffer,
1835 // so data in it must be considered invalid.
1836 PRINTK("Queueing invalid buffer!\n");
1837 v_addr = smc->os.LocalRxBuffer;
1838 b_addr = smc->os.LocalRxBufferDMA;
1839 }
1840
1841 rxd->rxd_os.skb = skb;
1842
1843 // Pass receive buffer to HWM.
1844 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1845 FIRST_FRAG | LAST_FRAG);
1846 }
1847 PRINTK(KERN_INFO "leaving mac_drv_fill_rxd\n");
1848} // mac_drv_fill_rxd
1849
1850
1851/************************
1852 *
1853 * mac_drv_clear_rxd
1854 *
1855 * The hardware module calls this function to release unused
1856 * receive buffers.
1857 * Args
1858 * smc - A pointer to the SMT context struct.
1859 *
1860 * rxd - A pointer to the first RxD which is used by the receive buffer.
1861 *
1862 * frag_count - Count of RxDs used by the receive buffer.
1863 * Out
1864 * Nothing.
1865 *
1866 ************************/
1867void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1868 int frag_count)
1869{
1870
1871 struct sk_buff *skb;
1872
1873 PRINTK("entering mac_drv_clear_rxd\n");
1874
1875 if (frag_count != 1) // This is not allowed to happen.
1876
1877 printk("fddi: Multi-fragment clear!\n");
1878
1879 for (; frag_count > 0; frag_count--) {
1880 skb = rxd->rxd_os.skb;
1881 if (skb != NULL) {
1882 skfddi_priv *bp = &smc->os;
1883 int MaxFrameSize = bp->MaxFrameSize;
1884
1885 pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1886 MaxFrameSize, PCI_DMA_FROMDEVICE);
1887
1888 dev_kfree_skb(skb);
1889 rxd->rxd_os.skb = NULL;
1890 }
1891 rxd = rxd->rxd_next; // Next RXD.
1892
1893 }
1894} // mac_drv_clear_rxd
1895
1896
1897/************************
1898 *
1899 * mac_drv_rx_init
1900 *
1901 * The hardware module calls this routine when an SMT or NSA frame of the
1902 * local SMT should be delivered to the LLC layer.
1903 *
1904 * It is necessary to have this function, because there is no other way to
1905 * copy the contents of SMT MBufs into receive buffers.
1906 *
1907 * mac_drv_rx_init allocates the required target memory for this frame,
1908 * and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1909 * Args
1910 * smc - A pointer to the SMT context struct.
1911 *
1912 * len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1913 *
1914 * fc - The Frame Control field of the received frame.
1915 *
1916 * look_ahead - A pointer to the lookahead data buffer (may be NULL).
1917 *
1918 * la_len - The length of the lookahead data stored in the lookahead
1919 * buffer (may be zero).
1920 * Out
1921 * Always returns zero (0).
1922 *
1923 ************************/
1924int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1925 char *look_ahead, int la_len)
1926{
1927 struct sk_buff *skb;
1928
1929 PRINTK("entering mac_drv_rx_init(len=%d)\n", len);
1930
1931 // "Received" a SMT or NSA frame of the local SMT.
1932
1933 if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1934 PRINTK("fddi: Discard invalid local SMT frame\n");
1935 PRINTK(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1936 len, la_len, (unsigned long) look_ahead);
1937 return (0);
1938 }
1939 skb = alloc_skb(len + 3, GFP_ATOMIC);
1940 if (!skb) {
1941 PRINTK("fddi: Local SMT: skb memory exhausted.\n");
1942 return (0);
1943 }
1944 skb_reserve(skb, 3);
1945 skb_put(skb, len);
1946 memcpy(skb->data, look_ahead, len);
1947
1948 // deliver frame to system
1949 skb->protocol = fddi_type_trans(skb, smc->os.dev);
1950 skb->dev->last_rx = jiffies;
1951 netif_rx(skb);
1952
1953 return (0);
1954} // mac_drv_rx_init
1955
1956
1957/************************
1958 *
1959 * smt_timer_poll
1960 *
1961 * This routine is called periodically by the SMT module to clean up the
1962 * driver.
1963 *
1964 * Return any queued frames back to the upper protocol layers if the ring
1965 * is down.
1966 * Args
1967 * smc - A pointer to the SMT context struct.
1968 * Out
1969 * Nothing.
1970 *
1971 ************************/
1972void smt_timer_poll(struct s_smc *smc)
1973{
1974} // smt_timer_poll
1975
1976
1977/************************
1978 *
1979 * ring_status_indication
1980 *
1981 * This function indicates a change of the ring state.
1982 * Args
1983 * smc - A pointer to the SMT context struct.
1984 *
1985 * status - The current ring status.
1986 * Out
1987 * Nothing.
1988 *
1989 ************************/
1990void ring_status_indication(struct s_smc *smc, u_long status)
1991{
1992 PRINTK("ring_status_indication( ");
1993 if (status & RS_RES15)
1994 PRINTK("RS_RES15 ");
1995 if (status & RS_HARDERROR)
1996 PRINTK("RS_HARDERROR ");
1997 if (status & RS_SOFTERROR)
1998 PRINTK("RS_SOFTERROR ");
1999 if (status & RS_BEACON)
2000 PRINTK("RS_BEACON ");
2001 if (status & RS_PATHTEST)
2002 PRINTK("RS_PATHTEST ");
2003 if (status & RS_SELFTEST)
2004 PRINTK("RS_SELFTEST ");
2005 if (status & RS_RES9)
2006 PRINTK("RS_RES9 ");
2007 if (status & RS_DISCONNECT)
2008 PRINTK("RS_DISCONNECT ");
2009 if (status & RS_RES7)
2010 PRINTK("RS_RES7 ");
2011 if (status & RS_DUPADDR)
2012 PRINTK("RS_DUPADDR ");
2013 if (status & RS_NORINGOP)
2014 PRINTK("RS_NORINGOP ");
2015 if (status & RS_VERSION)
2016 PRINTK("RS_VERSION ");
2017 if (status & RS_STUCKBYPASSS)
2018 PRINTK("RS_STUCKBYPASSS ");
2019 if (status & RS_EVENT)
2020 PRINTK("RS_EVENT ");
2021 if (status & RS_RINGOPCHANGE)
2022 PRINTK("RS_RINGOPCHANGE ");
2023 if (status & RS_RES0)
2024 PRINTK("RS_RES0 ");
2025 PRINTK("]\n");
2026} // ring_status_indication
2027
2028
2029/************************
2030 *
2031 * smt_get_time
2032 *
2033 * Gets the current time from the system.
2034 * Args
2035 * None.
2036 * Out
2037 * The current time in TICKS_PER_SECOND.
2038 *
2039 * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2040 * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2041 * to the time returned by smt_get_time().
2042 *
2043 ************************/
2044unsigned long smt_get_time(void)
2045{
2046 return jiffies;
2047} // smt_get_time
2048
2049
2050/************************
2051 *
2052 * smt_stat_counter
2053 *
2054 * Status counter update (ring_op, fifo full).
2055 * Args
2056 * smc - A pointer to the SMT context struct.
2057 *
2058 * stat - = 0: A ring operational change occurred.
2059 * = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2060 * Out
2061 * Nothing.
2062 *
2063 ************************/
2064void smt_stat_counter(struct s_smc *smc, int stat)
2065{
2066// BOOLEAN RingIsUp ;
2067
2068 PRINTK(KERN_INFO "smt_stat_counter\n");
2069 switch (stat) {
2070 case 0:
2071 PRINTK(KERN_INFO "Ring operational change.\n");
2072 break;
2073 case 1:
2074 PRINTK(KERN_INFO "Receive fifo overflow.\n");
2075 smc->os.MacStat.gen.rx_errors++;
2076 break;
2077 default:
2078 PRINTK(KERN_INFO "Unknown status (%d).\n", stat);
2079 break;
2080 }
2081} // smt_stat_counter
2082
2083
2084/************************
2085 *
2086 * cfm_state_change
2087 *
2088 * Sets CFM state in custom statistics.
2089 * Args
2090 * smc - A pointer to the SMT context struct.
2091 *
2092 * c_state - Possible values are:
2093 *
2094 * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2095 * EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2096 * Out
2097 * Nothing.
2098 *
2099 ************************/
2100void cfm_state_change(struct s_smc *smc, int c_state)
2101{
2102#ifdef DRIVERDEBUG
2103 char *s;
2104
2105 switch (c_state) {
2106 case SC0_ISOLATED:
2107 s = "SC0_ISOLATED";
2108 break;
2109 case SC1_WRAP_A:
2110 s = "SC1_WRAP_A";
2111 break;
2112 case SC2_WRAP_B:
2113 s = "SC2_WRAP_B";
2114 break;
2115 case SC4_THRU_A:
2116 s = "SC4_THRU_A";
2117 break;
2118 case SC5_THRU_B:
2119 s = "SC5_THRU_B";
2120 break;
2121 case SC7_WRAP_S:
2122 s = "SC7_WRAP_S";
2123 break;
2124 case SC9_C_WRAP_A:
2125 s = "SC9_C_WRAP_A";
2126 break;
2127 case SC10_C_WRAP_B:
2128 s = "SC10_C_WRAP_B";
2129 break;
2130 case SC11_C_WRAP_S:
2131 s = "SC11_C_WRAP_S";
2132 break;
2133 default:
2134 PRINTK(KERN_INFO "cfm_state_change: unknown %d\n", c_state);
2135 return;
2136 }
2137 PRINTK(KERN_INFO "cfm_state_change: %s\n", s);
2138#endif // DRIVERDEBUG
2139} // cfm_state_change
2140
2141
2142/************************
2143 *
2144 * ecm_state_change
2145 *
2146 * Sets ECM state in custom statistics.
2147 * Args
2148 * smc - A pointer to the SMT context struct.
2149 *
2150 * e_state - Possible values are:
2151 *
2152 * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2153 * SC5_THRU_B (7), SC7_WRAP_S (8)
2154 * Out
2155 * Nothing.
2156 *
2157 ************************/
2158void ecm_state_change(struct s_smc *smc, int e_state)
2159{
2160#ifdef DRIVERDEBUG
2161 char *s;
2162
2163 switch (e_state) {
2164 case EC0_OUT:
2165 s = "EC0_OUT";
2166 break;
2167 case EC1_IN:
2168 s = "EC1_IN";
2169 break;
2170 case EC2_TRACE:
2171 s = "EC2_TRACE";
2172 break;
2173 case EC3_LEAVE:
2174 s = "EC3_LEAVE";
2175 break;
2176 case EC4_PATH_TEST:
2177 s = "EC4_PATH_TEST";
2178 break;
2179 case EC5_INSERT:
2180 s = "EC5_INSERT";
2181 break;
2182 case EC6_CHECK:
2183 s = "EC6_CHECK";
2184 break;
2185 case EC7_DEINSERT:
2186 s = "EC7_DEINSERT";
2187 break;
2188 default:
2189 s = "unknown";
2190 break;
2191 }
2192 PRINTK(KERN_INFO "ecm_state_change: %s\n", s);
2193#endif //DRIVERDEBUG
2194} // ecm_state_change
2195
2196
2197/************************
2198 *
2199 * rmt_state_change
2200 *
2201 * Sets RMT state in custom statistics.
2202 * Args
2203 * smc - A pointer to the SMT context struct.
2204 *
2205 * r_state - Possible values are:
2206 *
2207 * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2208 * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2209 * Out
2210 * Nothing.
2211 *
2212 ************************/
2213void rmt_state_change(struct s_smc *smc, int r_state)
2214{
2215#ifdef DRIVERDEBUG
2216 char *s;
2217
2218 switch (r_state) {
2219 case RM0_ISOLATED:
2220 s = "RM0_ISOLATED";
2221 break;
2222 case RM1_NON_OP:
2223 s = "RM1_NON_OP - not operational";
2224 break;
2225 case RM2_RING_OP:
2226 s = "RM2_RING_OP - ring operational";
2227 break;
2228 case RM3_DETECT:
2229 s = "RM3_DETECT - detect dupl addresses";
2230 break;
2231 case RM4_NON_OP_DUP:
2232 s = "RM4_NON_OP_DUP - dupl. addr detected";
2233 break;
2234 case RM5_RING_OP_DUP:
2235 s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2236 break;
2237 case RM6_DIRECTED:
2238 s = "RM6_DIRECTED - sending directed beacons";
2239 break;
2240 case RM7_TRACE:
2241 s = "RM7_TRACE - trace initiated";
2242 break;
2243 default:
2244 s = "unknown";
2245 break;
2246 }
2247 PRINTK(KERN_INFO "[rmt_state_change: %s]\n", s);
2248#endif // DRIVERDEBUG
2249} // rmt_state_change
2250
2251
2252/************************
2253 *
2254 * drv_reset_indication
2255 *
2256 * This function is called by the SMT when it has detected a severe
2257 * hardware problem. The driver should perform a reset on the adapter
2258 * as soon as possible, but not from within this function.
2259 * Args
2260 * smc - A pointer to the SMT context struct.
2261 * Out
2262 * Nothing.
2263 *
2264 ************************/
2265void drv_reset_indication(struct s_smc *smc)
2266{
2267 PRINTK(KERN_INFO "entering drv_reset_indication\n");
2268
2269 smc->os.ResetRequested = TRUE; // Set flag.
2270
2271} // drv_reset_indication
2272
2273static struct pci_driver skfddi_pci_driver = {
2274 .name = "skfddi",
2275 .id_table = skfddi_pci_tbl,
2276 .probe = skfp_init_one,
2277 .remove = __devexit_p(skfp_remove_one),
2278};
2279
2280static int __init skfd_init(void)
2281{
29917620 2282 return pci_register_driver(&skfddi_pci_driver);
1da177e4
LT
2283}
2284
2285static void __exit skfd_exit(void)
2286{
2287 pci_unregister_driver(&skfddi_pci_driver);
2288}
2289
2290module_init(skfd_init);
2291module_exit(skfd_exit);