sfc: Restore phy_flash_cfg module parameter
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660
BH
23#include "net_driver.h"
24#include "gmii.h"
25#include "ethtool.h"
26#include "tx.h"
27#include "rx.h"
28#include "efx.h"
29#include "mdio_10g.h"
30#include "falcon.h"
8ceee660
BH
31#include "mac.h"
32
33#define EFX_MAX_MTU (9 * 1024)
34
35/* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
39 */
40static struct workqueue_struct *refill_workqueue;
41
1ab00629
SH
42/* Reset workqueue. If any NIC has a hardware failure then a reset will be
43 * queued onto this work queue. This is not a per-nic work queue, because
44 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
45 */
46static struct workqueue_struct *reset_workqueue;
47
8ceee660
BH
48/**************************************************************************
49 *
50 * Configurable values
51 *
52 *************************************************************************/
53
54/*
55 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
56 *
57 * This sets the default for new devices. It can be controlled later
58 * using ethtool.
59 */
dc8cfa55 60static int lro = true;
8ceee660
BH
61module_param(lro, int, 0644);
62MODULE_PARM_DESC(lro, "Large receive offload acceleration");
63
64/*
65 * Use separate channels for TX and RX events
66 *
67 * Set this to 1 to use separate channels for TX and RX. It allows us to
68 * apply a higher level of interrupt moderation to TX events.
69 *
70 * This is forced to 0 for MSI interrupt mode as the interrupt vector
71 * is not written
72 */
dc8cfa55 73static unsigned int separate_tx_and_rx_channels = true;
8ceee660
BH
74
75/* This is the weight assigned to each of the (per-channel) virtual
76 * NAPI devices.
77 */
78static int napi_weight = 64;
79
80/* This is the time (in jiffies) between invocations of the hardware
81 * monitor, which checks for known hardware bugs and resets the
82 * hardware and driver as necessary.
83 */
84unsigned int efx_monitor_interval = 1 * HZ;
85
8ceee660
BH
86/* This controls whether or not the driver will initialise devices
87 * with invalid MAC addresses stored in the EEPROM or flash. If true,
88 * such devices will be initialised with a random locally-generated
89 * MAC address. This allows for loading the sfc_mtd driver to
90 * reprogram the flash, even if the flash contents (including the MAC
91 * address) have previously been erased.
92 */
93static unsigned int allow_bad_hwaddr;
94
95/* Initial interrupt moderation settings. They can be modified after
96 * module load with ethtool.
97 *
98 * The default for RX should strike a balance between increasing the
99 * round-trip latency and reducing overhead.
100 */
101static unsigned int rx_irq_mod_usec = 60;
102
103/* Initial interrupt moderation settings. They can be modified after
104 * module load with ethtool.
105 *
106 * This default is chosen to ensure that a 10G link does not go idle
107 * while a TX queue is stopped after it has become full. A queue is
108 * restarted when it drops below half full. The time this takes (assuming
109 * worst case 3 descriptors per packet and 1024 descriptors) is
110 * 512 / 3 * 1.2 = 205 usec.
111 */
112static unsigned int tx_irq_mod_usec = 150;
113
114/* This is the first interrupt mode to try out of:
115 * 0 => MSI-X
116 * 1 => MSI
117 * 2 => legacy
118 */
119static unsigned int interrupt_mode;
120
121/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
122 * i.e. the number of CPUs among which we may distribute simultaneous
123 * interrupt handling.
124 *
125 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
126 * The default (0) means to assign an interrupt to each package (level II cache)
127 */
128static unsigned int rss_cpus;
129module_param(rss_cpus, uint, 0444);
130MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
131
84ae48fe
BH
132static int phy_flash_cfg;
133module_param(phy_flash_cfg, int, 0644);
134MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
135
8ceee660
BH
136/**************************************************************************
137 *
138 * Utility functions and prototypes
139 *
140 *************************************************************************/
141static void efx_remove_channel(struct efx_channel *channel);
142static void efx_remove_port(struct efx_nic *efx);
143static void efx_fini_napi(struct efx_nic *efx);
144static void efx_fini_channels(struct efx_nic *efx);
145
146#define EFX_ASSERT_RESET_SERIALISED(efx) \
147 do { \
3c78708f 148 if (efx->state == STATE_RUNNING) \
8ceee660
BH
149 ASSERT_RTNL(); \
150 } while (0)
151
152/**************************************************************************
153 *
154 * Event queue processing
155 *
156 *************************************************************************/
157
158/* Process channel's event queue
159 *
160 * This function is responsible for processing the event queue of a
161 * single channel. The caller must guarantee that this function will
162 * never be concurrently called more than once on the same channel,
163 * though different channels may be being processed concurrently.
164 */
4d566063 165static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660 166{
42cbe2d7
BH
167 struct efx_nic *efx = channel->efx;
168 int rx_packets;
8ceee660 169
42cbe2d7 170 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 171 !channel->enabled))
42cbe2d7 172 return 0;
8ceee660 173
42cbe2d7
BH
174 rx_packets = falcon_process_eventq(channel, rx_quota);
175 if (rx_packets == 0)
176 return 0;
8ceee660
BH
177
178 /* Deliver last RX packet. */
179 if (channel->rx_pkt) {
180 __efx_rx_packet(channel, channel->rx_pkt,
181 channel->rx_pkt_csummed);
182 channel->rx_pkt = NULL;
183 }
184
185 efx_flush_lro(channel);
186 efx_rx_strategy(channel);
187
42cbe2d7 188 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 189
42cbe2d7 190 return rx_packets;
8ceee660
BH
191}
192
193/* Mark channel as finished processing
194 *
195 * Note that since we will not receive further interrupts for this
196 * channel before we finish processing and call the eventq_read_ack()
197 * method, there is no need to use the interrupt hold-off timers.
198 */
199static inline void efx_channel_processed(struct efx_channel *channel)
200{
5b9e207c
BH
201 /* The interrupt handler for this channel may set work_pending
202 * as soon as we acknowledge the events we've seen. Make sure
203 * it's cleared before then. */
dc8cfa55 204 channel->work_pending = false;
5b9e207c
BH
205 smp_wmb();
206
8ceee660
BH
207 falcon_eventq_read_ack(channel);
208}
209
210/* NAPI poll handler
211 *
212 * NAPI guarantees serialisation of polls of the same device, which
213 * provides the guarantee required by efx_process_channel().
214 */
215static int efx_poll(struct napi_struct *napi, int budget)
216{
217 struct efx_channel *channel =
218 container_of(napi, struct efx_channel, napi_str);
219 struct net_device *napi_dev = channel->napi_dev;
8ceee660
BH
220 int rx_packets;
221
222 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
223 channel->channel, raw_smp_processor_id());
224
42cbe2d7 225 rx_packets = efx_process_channel(channel, budget);
8ceee660
BH
226
227 if (rx_packets < budget) {
228 /* There is no race here; although napi_disable() will
229 * only wait for netif_rx_complete(), this isn't a problem
230 * since efx_channel_processed() will have no effect if
231 * interrupts have already been disabled.
232 */
233 netif_rx_complete(napi_dev, napi);
234 efx_channel_processed(channel);
235 }
236
237 return rx_packets;
238}
239
240/* Process the eventq of the specified channel immediately on this CPU
241 *
242 * Disable hardware generated interrupts, wait for any existing
243 * processing to finish, then directly poll (and ack ) the eventq.
244 * Finally reenable NAPI and interrupts.
245 *
246 * Since we are touching interrupts the caller should hold the suspend lock
247 */
248void efx_process_channel_now(struct efx_channel *channel)
249{
250 struct efx_nic *efx = channel->efx;
251
252 BUG_ON(!channel->used_flags);
253 BUG_ON(!channel->enabled);
254
255 /* Disable interrupts and wait for ISRs to complete */
256 falcon_disable_interrupts(efx);
257 if (efx->legacy_irq)
258 synchronize_irq(efx->legacy_irq);
64ee3120 259 if (channel->irq)
8ceee660
BH
260 synchronize_irq(channel->irq);
261
262 /* Wait for any NAPI processing to complete */
263 napi_disable(&channel->napi_str);
264
265 /* Poll the channel */
91ad757c 266 efx_process_channel(channel, efx->type->evq_size);
8ceee660
BH
267
268 /* Ack the eventq. This may cause an interrupt to be generated
269 * when they are reenabled */
270 efx_channel_processed(channel);
271
272 napi_enable(&channel->napi_str);
273 falcon_enable_interrupts(efx);
274}
275
276/* Create event queue
277 * Event queue memory allocations are done only once. If the channel
278 * is reset, the memory buffer will be reused; this guards against
279 * errors during channel reset and also simplifies interrupt handling.
280 */
281static int efx_probe_eventq(struct efx_channel *channel)
282{
283 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
284
285 return falcon_probe_eventq(channel);
286}
287
288/* Prepare channel's event queue */
bc3c90a2 289static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
290{
291 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
292
293 channel->eventq_read_ptr = 0;
294
bc3c90a2 295 falcon_init_eventq(channel);
8ceee660
BH
296}
297
298static void efx_fini_eventq(struct efx_channel *channel)
299{
300 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
301
302 falcon_fini_eventq(channel);
303}
304
305static void efx_remove_eventq(struct efx_channel *channel)
306{
307 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
308
309 falcon_remove_eventq(channel);
310}
311
312/**************************************************************************
313 *
314 * Channel handling
315 *
316 *************************************************************************/
317
8ceee660
BH
318static int efx_probe_channel(struct efx_channel *channel)
319{
320 struct efx_tx_queue *tx_queue;
321 struct efx_rx_queue *rx_queue;
322 int rc;
323
324 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
325
326 rc = efx_probe_eventq(channel);
327 if (rc)
328 goto fail1;
329
330 efx_for_each_channel_tx_queue(tx_queue, channel) {
331 rc = efx_probe_tx_queue(tx_queue);
332 if (rc)
333 goto fail2;
334 }
335
336 efx_for_each_channel_rx_queue(rx_queue, channel) {
337 rc = efx_probe_rx_queue(rx_queue);
338 if (rc)
339 goto fail3;
340 }
341
342 channel->n_rx_frm_trunc = 0;
343
344 return 0;
345
346 fail3:
347 efx_for_each_channel_rx_queue(rx_queue, channel)
348 efx_remove_rx_queue(rx_queue);
349 fail2:
350 efx_for_each_channel_tx_queue(tx_queue, channel)
351 efx_remove_tx_queue(tx_queue);
352 fail1:
353 return rc;
354}
355
356
357/* Channels are shutdown and reinitialised whilst the NIC is running
358 * to propagate configuration changes (mtu, checksum offload), or
359 * to clear hardware error conditions
360 */
bc3c90a2 361static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
362{
363 struct efx_tx_queue *tx_queue;
364 struct efx_rx_queue *rx_queue;
365 struct efx_channel *channel;
8ceee660 366
f7f13b0b
BH
367 /* Calculate the rx buffer allocation parameters required to
368 * support the current MTU, including padding for header
369 * alignment and overruns.
370 */
371 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
372 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
373 efx->type->rx_buffer_padding);
374 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
375
376 /* Initialise the channels */
377 efx_for_each_channel(channel, efx) {
378 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
379
bc3c90a2 380 efx_init_eventq(channel);
8ceee660 381
bc3c90a2
BH
382 efx_for_each_channel_tx_queue(tx_queue, channel)
383 efx_init_tx_queue(tx_queue);
8ceee660
BH
384
385 /* The rx buffer allocation strategy is MTU dependent */
386 efx_rx_strategy(channel);
387
bc3c90a2
BH
388 efx_for_each_channel_rx_queue(rx_queue, channel)
389 efx_init_rx_queue(rx_queue);
8ceee660
BH
390
391 WARN_ON(channel->rx_pkt != NULL);
392 efx_rx_strategy(channel);
393 }
8ceee660
BH
394}
395
396/* This enables event queue processing and packet transmission.
397 *
398 * Note that this function is not allowed to fail, since that would
399 * introduce too much complexity into the suspend/resume path.
400 */
401static void efx_start_channel(struct efx_channel *channel)
402{
403 struct efx_rx_queue *rx_queue;
404
405 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
406
407 if (!(channel->efx->net_dev->flags & IFF_UP))
408 netif_napi_add(channel->napi_dev, &channel->napi_str,
409 efx_poll, napi_weight);
410
5b9e207c
BH
411 /* The interrupt handler for this channel may set work_pending
412 * as soon as we enable it. Make sure it's cleared before
413 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
414 channel->work_pending = false;
415 channel->enabled = true;
5b9e207c 416 smp_wmb();
8ceee660
BH
417
418 napi_enable(&channel->napi_str);
419
420 /* Load up RX descriptors */
421 efx_for_each_channel_rx_queue(rx_queue, channel)
422 efx_fast_push_rx_descriptors(rx_queue);
423}
424
425/* This disables event queue processing and packet transmission.
426 * This function does not guarantee that all queue processing
427 * (e.g. RX refill) is complete.
428 */
429static void efx_stop_channel(struct efx_channel *channel)
430{
431 struct efx_rx_queue *rx_queue;
432
433 if (!channel->enabled)
434 return;
435
436 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
437
dc8cfa55 438 channel->enabled = false;
8ceee660
BH
439 napi_disable(&channel->napi_str);
440
441 /* Ensure that any worker threads have exited or will be no-ops */
442 efx_for_each_channel_rx_queue(rx_queue, channel) {
443 spin_lock_bh(&rx_queue->add_lock);
444 spin_unlock_bh(&rx_queue->add_lock);
445 }
446}
447
448static void efx_fini_channels(struct efx_nic *efx)
449{
450 struct efx_channel *channel;
451 struct efx_tx_queue *tx_queue;
452 struct efx_rx_queue *rx_queue;
6bc5d3a9 453 int rc;
8ceee660
BH
454
455 EFX_ASSERT_RESET_SERIALISED(efx);
456 BUG_ON(efx->port_enabled);
457
6bc5d3a9
BH
458 rc = falcon_flush_queues(efx);
459 if (rc)
460 EFX_ERR(efx, "failed to flush queues\n");
461 else
462 EFX_LOG(efx, "successfully flushed all queues\n");
463
8ceee660
BH
464 efx_for_each_channel(channel, efx) {
465 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
466
467 efx_for_each_channel_rx_queue(rx_queue, channel)
468 efx_fini_rx_queue(rx_queue);
469 efx_for_each_channel_tx_queue(tx_queue, channel)
470 efx_fini_tx_queue(tx_queue);
8ceee660
BH
471 efx_fini_eventq(channel);
472 }
473}
474
475static void efx_remove_channel(struct efx_channel *channel)
476{
477 struct efx_tx_queue *tx_queue;
478 struct efx_rx_queue *rx_queue;
479
480 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
481
482 efx_for_each_channel_rx_queue(rx_queue, channel)
483 efx_remove_rx_queue(rx_queue);
484 efx_for_each_channel_tx_queue(tx_queue, channel)
485 efx_remove_tx_queue(tx_queue);
486 efx_remove_eventq(channel);
487
488 channel->used_flags = 0;
489}
490
491void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
492{
493 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
494}
495
496/**************************************************************************
497 *
498 * Port handling
499 *
500 **************************************************************************/
501
502/* This ensures that the kernel is kept informed (via
503 * netif_carrier_on/off) of the link status, and also maintains the
504 * link status's stop on the port's TX queue.
505 */
506static void efx_link_status_changed(struct efx_nic *efx)
507{
8ceee660
BH
508 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
509 * that no events are triggered between unregister_netdev() and the
510 * driver unloading. A more general condition is that NETDEV_CHANGE
511 * can only be generated between NETDEV_UP and NETDEV_DOWN */
512 if (!netif_running(efx->net_dev))
513 return;
514
8c8661e4
BH
515 if (efx->port_inhibited) {
516 netif_carrier_off(efx->net_dev);
517 return;
518 }
519
dc8cfa55 520 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
521 efx->n_link_state_changes++;
522
523 if (efx->link_up)
524 netif_carrier_on(efx->net_dev);
525 else
526 netif_carrier_off(efx->net_dev);
527 }
528
529 /* Status message for kernel log */
530 if (efx->link_up) {
531 struct mii_if_info *gmii = &efx->mii;
532 unsigned adv, lpa;
533 /* NONE here means direct XAUI from the controller, with no
534 * MDIO-attached device we can query. */
535 if (efx->phy_type != PHY_TYPE_NONE) {
536 adv = gmii_advertised(gmii);
537 lpa = gmii_lpa(gmii);
538 } else {
539 lpa = GM_LPA_10000 | LPA_DUPLEX;
540 adv = lpa;
541 }
542 EFX_INFO(efx, "link up at %dMbps %s-duplex "
543 "(adv %04x lpa %04x) (MTU %d)%s\n",
544 (efx->link_options & GM_LPA_10000 ? 10000 :
545 (efx->link_options & GM_LPA_1000 ? 1000 :
546 (efx->link_options & GM_LPA_100 ? 100 :
547 10))),
548 (efx->link_options & GM_LPA_DUPLEX ?
549 "full" : "half"),
550 adv, lpa,
551 efx->net_dev->mtu,
552 (efx->promiscuous ? " [PROMISC]" : ""));
553 } else {
554 EFX_INFO(efx, "link down\n");
555 }
556
557}
558
559/* This call reinitialises the MAC to pick up new PHY settings. The
560 * caller must hold the mac_lock */
8c8661e4 561void __efx_reconfigure_port(struct efx_nic *efx)
8ceee660
BH
562{
563 WARN_ON(!mutex_is_locked(&efx->mac_lock));
564
565 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
566 raw_smp_processor_id());
567
a816f75a
BH
568 /* Serialise the promiscuous flag with efx_set_multicast_list. */
569 if (efx_dev_registered(efx)) {
570 netif_addr_lock_bh(efx->net_dev);
571 netif_addr_unlock_bh(efx->net_dev);
572 }
573
8ceee660
BH
574 falcon_reconfigure_xmac(efx);
575
576 /* Inform kernel of loss/gain of carrier */
577 efx_link_status_changed(efx);
578}
579
580/* Reinitialise the MAC to pick up new PHY settings, even if the port is
581 * disabled. */
582void efx_reconfigure_port(struct efx_nic *efx)
583{
584 EFX_ASSERT_RESET_SERIALISED(efx);
585
586 mutex_lock(&efx->mac_lock);
587 __efx_reconfigure_port(efx);
588 mutex_unlock(&efx->mac_lock);
589}
590
591/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
592 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
593 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
594static void efx_reconfigure_work(struct work_struct *data)
595{
596 struct efx_nic *efx = container_of(data, struct efx_nic,
597 reconfigure_work);
598
599 mutex_lock(&efx->mac_lock);
600 if (efx->port_enabled)
601 __efx_reconfigure_port(efx);
602 mutex_unlock(&efx->mac_lock);
603}
604
605static int efx_probe_port(struct efx_nic *efx)
606{
607 int rc;
608
609 EFX_LOG(efx, "create port\n");
610
611 /* Connect up MAC/PHY operations table and read MAC address */
612 rc = falcon_probe_port(efx);
613 if (rc)
614 goto err;
615
84ae48fe
BH
616 if (phy_flash_cfg)
617 efx->phy_mode = PHY_MODE_SPECIAL;
618
8ceee660
BH
619 /* Sanity check MAC address */
620 if (is_valid_ether_addr(efx->mac_address)) {
621 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
622 } else {
e174961c
JB
623 EFX_ERR(efx, "invalid MAC address %pM\n",
624 efx->mac_address);
8ceee660
BH
625 if (!allow_bad_hwaddr) {
626 rc = -EINVAL;
627 goto err;
628 }
629 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
630 EFX_INFO(efx, "using locally-generated MAC %pM\n",
631 efx->net_dev->dev_addr);
8ceee660
BH
632 }
633
634 return 0;
635
636 err:
637 efx_remove_port(efx);
638 return rc;
639}
640
641static int efx_init_port(struct efx_nic *efx)
642{
643 int rc;
644
645 EFX_LOG(efx, "init port\n");
646
647 /* Initialise the MAC and PHY */
648 rc = falcon_init_xmac(efx);
649 if (rc)
650 return rc;
651
dc8cfa55 652 efx->port_initialized = true;
8c8661e4 653 efx->stats_enabled = true;
8ceee660
BH
654
655 /* Reconfigure port to program MAC registers */
656 falcon_reconfigure_xmac(efx);
657
658 return 0;
659}
660
661/* Allow efx_reconfigure_port() to be scheduled, and close the window
662 * between efx_stop_port and efx_flush_all whereby a previously scheduled
663 * efx_reconfigure_port() may have been cancelled */
664static void efx_start_port(struct efx_nic *efx)
665{
666 EFX_LOG(efx, "start port\n");
667 BUG_ON(efx->port_enabled);
668
669 mutex_lock(&efx->mac_lock);
dc8cfa55 670 efx->port_enabled = true;
8ceee660
BH
671 __efx_reconfigure_port(efx);
672 mutex_unlock(&efx->mac_lock);
673}
674
675/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
676 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
677 * efx_reconfigure_work can still be scheduled via NAPI processing
678 * until efx_flush_all() is called */
679static void efx_stop_port(struct efx_nic *efx)
680{
681 EFX_LOG(efx, "stop port\n");
682
683 mutex_lock(&efx->mac_lock);
dc8cfa55 684 efx->port_enabled = false;
8ceee660
BH
685 mutex_unlock(&efx->mac_lock);
686
687 /* Serialise against efx_set_multicast_list() */
55668611 688 if (efx_dev_registered(efx)) {
b9e40857
DM
689 netif_addr_lock_bh(efx->net_dev);
690 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
691 }
692}
693
694static void efx_fini_port(struct efx_nic *efx)
695{
696 EFX_LOG(efx, "shut down port\n");
697
698 if (!efx->port_initialized)
699 return;
700
701 falcon_fini_xmac(efx);
dc8cfa55 702 efx->port_initialized = false;
8ceee660 703
dc8cfa55 704 efx->link_up = false;
8ceee660
BH
705 efx_link_status_changed(efx);
706}
707
708static void efx_remove_port(struct efx_nic *efx)
709{
710 EFX_LOG(efx, "destroying port\n");
711
712 falcon_remove_port(efx);
713}
714
715/**************************************************************************
716 *
717 * NIC handling
718 *
719 **************************************************************************/
720
721/* This configures the PCI device to enable I/O and DMA. */
722static int efx_init_io(struct efx_nic *efx)
723{
724 struct pci_dev *pci_dev = efx->pci_dev;
725 dma_addr_t dma_mask = efx->type->max_dma_mask;
726 int rc;
727
728 EFX_LOG(efx, "initialising I/O\n");
729
730 rc = pci_enable_device(pci_dev);
731 if (rc) {
732 EFX_ERR(efx, "failed to enable PCI device\n");
733 goto fail1;
734 }
735
736 pci_set_master(pci_dev);
737
738 /* Set the PCI DMA mask. Try all possibilities from our
739 * genuine mask down to 32 bits, because some architectures
740 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
741 * masks event though they reject 46 bit masks.
742 */
743 while (dma_mask > 0x7fffffffUL) {
744 if (pci_dma_supported(pci_dev, dma_mask) &&
745 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
746 break;
747 dma_mask >>= 1;
748 }
749 if (rc) {
750 EFX_ERR(efx, "could not find a suitable DMA mask\n");
751 goto fail2;
752 }
753 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
754 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
755 if (rc) {
756 /* pci_set_consistent_dma_mask() is not *allowed* to
757 * fail with a mask that pci_set_dma_mask() accepted,
758 * but just in case...
759 */
760 EFX_ERR(efx, "failed to set consistent DMA mask\n");
761 goto fail2;
762 }
763
764 efx->membase_phys = pci_resource_start(efx->pci_dev,
765 efx->type->mem_bar);
766 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
767 if (rc) {
768 EFX_ERR(efx, "request for memory BAR failed\n");
769 rc = -EIO;
770 goto fail3;
771 }
772 efx->membase = ioremap_nocache(efx->membase_phys,
773 efx->type->mem_map_size);
774 if (!efx->membase) {
086ea356
BH
775 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
776 efx->type->mem_bar,
777 (unsigned long long)efx->membase_phys,
8ceee660
BH
778 efx->type->mem_map_size);
779 rc = -ENOMEM;
780 goto fail4;
781 }
086ea356
BH
782 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
783 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
784 efx->type->mem_map_size, efx->membase);
8ceee660
BH
785
786 return 0;
787
788 fail4:
e1074a0d 789 pci_release_region(efx->pci_dev, efx->type->mem_bar);
8ceee660 790 fail3:
2c118e0f 791 efx->membase_phys = 0;
8ceee660
BH
792 fail2:
793 pci_disable_device(efx->pci_dev);
794 fail1:
795 return rc;
796}
797
798static void efx_fini_io(struct efx_nic *efx)
799{
800 EFX_LOG(efx, "shutting down I/O\n");
801
802 if (efx->membase) {
803 iounmap(efx->membase);
804 efx->membase = NULL;
805 }
806
807 if (efx->membase_phys) {
808 pci_release_region(efx->pci_dev, efx->type->mem_bar);
2c118e0f 809 efx->membase_phys = 0;
8ceee660
BH
810 }
811
812 pci_disable_device(efx->pci_dev);
813}
814
46123d04
BH
815/* Get number of RX queues wanted. Return number of online CPU
816 * packages in the expectation that an IRQ balancer will spread
817 * interrupts across them. */
818static int efx_wanted_rx_queues(void)
819{
820 cpumask_t core_mask;
821 int count;
822 int cpu;
823
824 cpus_clear(core_mask);
825 count = 0;
826 for_each_online_cpu(cpu) {
827 if (!cpu_isset(cpu, core_mask)) {
828 ++count;
829 cpus_or(core_mask, core_mask,
830 topology_core_siblings(cpu));
831 }
832 }
833
834 return count;
835}
836
837/* Probe the number and type of interrupts we are able to obtain, and
838 * the resulting numbers of channels and RX queues.
839 */
8ceee660
BH
840static void efx_probe_interrupts(struct efx_nic *efx)
841{
46123d04
BH
842 int max_channels =
843 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
844 int rc, i;
845
846 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
847 struct msix_entry xentries[EFX_MAX_CHANNELS];
848 int wanted_ints;
aa6ef27e 849
46123d04
BH
850 /* We want one RX queue and interrupt per CPU package
851 * (or as specified by the rss_cpus module parameter).
852 * We will need one channel per interrupt.
853 */
854 wanted_ints = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
8831da7b 855 efx->n_rx_queues = min(wanted_ints, max_channels);
8ceee660 856
8831da7b 857 for (i = 0; i < efx->n_rx_queues; i++)
8ceee660 858 xentries[i].entry = i;
8831da7b 859 rc = pci_enable_msix(efx->pci_dev, xentries, efx->n_rx_queues);
8ceee660 860 if (rc > 0) {
8831da7b
BH
861 EFX_BUG_ON_PARANOID(rc >= efx->n_rx_queues);
862 efx->n_rx_queues = rc;
8ceee660 863 rc = pci_enable_msix(efx->pci_dev, xentries,
8831da7b 864 efx->n_rx_queues);
8ceee660
BH
865 }
866
867 if (rc == 0) {
8831da7b 868 for (i = 0; i < efx->n_rx_queues; i++)
8ceee660 869 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
870 } else {
871 /* Fall back to single channel MSI */
872 efx->interrupt_mode = EFX_INT_MODE_MSI;
873 EFX_ERR(efx, "could not enable MSI-X\n");
874 }
875 }
876
877 /* Try single interrupt MSI */
878 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
8831da7b 879 efx->n_rx_queues = 1;
8ceee660
BH
880 rc = pci_enable_msi(efx->pci_dev);
881 if (rc == 0) {
882 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
883 } else {
884 EFX_ERR(efx, "could not enable MSI\n");
885 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
886 }
887 }
888
889 /* Assume legacy interrupts */
890 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
8831da7b 891 efx->n_rx_queues = 1;
8ceee660
BH
892 efx->legacy_irq = efx->pci_dev->irq;
893 }
894}
895
896static void efx_remove_interrupts(struct efx_nic *efx)
897{
898 struct efx_channel *channel;
899
900 /* Remove MSI/MSI-X interrupts */
64ee3120 901 efx_for_each_channel(channel, efx)
8ceee660
BH
902 channel->irq = 0;
903 pci_disable_msi(efx->pci_dev);
904 pci_disable_msix(efx->pci_dev);
905
906 /* Remove legacy interrupt */
907 efx->legacy_irq = 0;
908}
909
8831da7b 910static void efx_set_channels(struct efx_nic *efx)
8ceee660
BH
911{
912 struct efx_tx_queue *tx_queue;
913 struct efx_rx_queue *rx_queue;
8ceee660 914
60ac1065
BH
915 efx_for_each_tx_queue(tx_queue, efx) {
916 if (!EFX_INT_MODE_USE_MSI(efx) && separate_tx_and_rx_channels)
917 tx_queue->channel = &efx->channel[1];
918 else
919 tx_queue->channel = &efx->channel[0];
920 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
921 }
8ceee660 922
8831da7b
BH
923 efx_for_each_rx_queue(rx_queue, efx) {
924 rx_queue->channel = &efx->channel[rx_queue->queue];
925 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
8ceee660
BH
926 }
927}
928
929static int efx_probe_nic(struct efx_nic *efx)
930{
931 int rc;
932
933 EFX_LOG(efx, "creating NIC\n");
934
935 /* Carry out hardware-type specific initialisation */
936 rc = falcon_probe_nic(efx);
937 if (rc)
938 return rc;
939
940 /* Determine the number of channels and RX queues by trying to hook
941 * in MSI-X interrupts. */
942 efx_probe_interrupts(efx);
943
8831da7b 944 efx_set_channels(efx);
8ceee660
BH
945
946 /* Initialise the interrupt moderation settings */
947 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
948
949 return 0;
950}
951
952static void efx_remove_nic(struct efx_nic *efx)
953{
954 EFX_LOG(efx, "destroying NIC\n");
955
956 efx_remove_interrupts(efx);
957 falcon_remove_nic(efx);
958}
959
960/**************************************************************************
961 *
962 * NIC startup/shutdown
963 *
964 *************************************************************************/
965
966static int efx_probe_all(struct efx_nic *efx)
967{
968 struct efx_channel *channel;
969 int rc;
970
971 /* Create NIC */
972 rc = efx_probe_nic(efx);
973 if (rc) {
974 EFX_ERR(efx, "failed to create NIC\n");
975 goto fail1;
976 }
977
978 /* Create port */
979 rc = efx_probe_port(efx);
980 if (rc) {
981 EFX_ERR(efx, "failed to create port\n");
982 goto fail2;
983 }
984
985 /* Create channels */
986 efx_for_each_channel(channel, efx) {
987 rc = efx_probe_channel(channel);
988 if (rc) {
989 EFX_ERR(efx, "failed to create channel %d\n",
990 channel->channel);
991 goto fail3;
992 }
993 }
994
995 return 0;
996
997 fail3:
998 efx_for_each_channel(channel, efx)
999 efx_remove_channel(channel);
1000 efx_remove_port(efx);
1001 fail2:
1002 efx_remove_nic(efx);
1003 fail1:
1004 return rc;
1005}
1006
1007/* Called after previous invocation(s) of efx_stop_all, restarts the
1008 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1009 * and ensures that the port is scheduled to be reconfigured.
1010 * This function is safe to call multiple times when the NIC is in any
1011 * state. */
1012static void efx_start_all(struct efx_nic *efx)
1013{
1014 struct efx_channel *channel;
1015
1016 EFX_ASSERT_RESET_SERIALISED(efx);
1017
1018 /* Check that it is appropriate to restart the interface. All
1019 * of these flags are safe to read under just the rtnl lock */
1020 if (efx->port_enabled)
1021 return;
1022 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1023 return;
55668611 1024 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1025 return;
1026
1027 /* Mark the port as enabled so port reconfigurations can start, then
1028 * restart the transmit interface early so the watchdog timer stops */
1029 efx_start_port(efx);
dacccc74
SH
1030 if (efx_dev_registered(efx))
1031 efx_wake_queue(efx);
8ceee660
BH
1032
1033 efx_for_each_channel(channel, efx)
1034 efx_start_channel(channel);
1035
1036 falcon_enable_interrupts(efx);
1037
1038 /* Start hardware monitor if we're in RUNNING */
1039 if (efx->state == STATE_RUNNING)
1040 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1041 efx_monitor_interval);
1042}
1043
1044/* Flush all delayed work. Should only be called when no more delayed work
1045 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1046 * since we're holding the rtnl_lock at this point. */
1047static void efx_flush_all(struct efx_nic *efx)
1048{
1049 struct efx_rx_queue *rx_queue;
1050
1051 /* Make sure the hardware monitor is stopped */
1052 cancel_delayed_work_sync(&efx->monitor_work);
1053
1054 /* Ensure that all RX slow refills are complete. */
b3475645 1055 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1056 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1057
1058 /* Stop scheduled port reconfigurations */
1059 cancel_work_sync(&efx->reconfigure_work);
1060
1061}
1062
1063/* Quiesce hardware and software without bringing the link down.
1064 * Safe to call multiple times, when the nic and interface is in any
1065 * state. The caller is guaranteed to subsequently be in a position
1066 * to modify any hardware and software state they see fit without
1067 * taking locks. */
1068static void efx_stop_all(struct efx_nic *efx)
1069{
1070 struct efx_channel *channel;
1071
1072 EFX_ASSERT_RESET_SERIALISED(efx);
1073
1074 /* port_enabled can be read safely under the rtnl lock */
1075 if (!efx->port_enabled)
1076 return;
1077
1078 /* Disable interrupts and wait for ISR to complete */
1079 falcon_disable_interrupts(efx);
1080 if (efx->legacy_irq)
1081 synchronize_irq(efx->legacy_irq);
64ee3120 1082 efx_for_each_channel(channel, efx) {
8ceee660
BH
1083 if (channel->irq)
1084 synchronize_irq(channel->irq);
b3475645 1085 }
8ceee660
BH
1086
1087 /* Stop all NAPI processing and synchronous rx refills */
1088 efx_for_each_channel(channel, efx)
1089 efx_stop_channel(channel);
1090
1091 /* Stop all asynchronous port reconfigurations. Since all
1092 * event processing has already been stopped, there is no
1093 * window to loose phy events */
1094 efx_stop_port(efx);
1095
1096 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1097 efx_flush_all(efx);
1098
1099 /* Isolate the MAC from the TX and RX engines, so that queue
1100 * flushes will complete in a timely fashion. */
8ceee660
BH
1101 falcon_drain_tx_fifo(efx);
1102
1103 /* Stop the kernel transmit interface late, so the watchdog
1104 * timer isn't ticking over the flush */
55668611 1105 if (efx_dev_registered(efx)) {
dacccc74 1106 efx_stop_queue(efx);
8ceee660
BH
1107 netif_tx_lock_bh(efx->net_dev);
1108 netif_tx_unlock_bh(efx->net_dev);
1109 }
1110}
1111
1112static void efx_remove_all(struct efx_nic *efx)
1113{
1114 struct efx_channel *channel;
1115
1116 efx_for_each_channel(channel, efx)
1117 efx_remove_channel(channel);
1118 efx_remove_port(efx);
1119 efx_remove_nic(efx);
1120}
1121
1122/* A convinience function to safely flush all the queues */
bc3c90a2 1123void efx_flush_queues(struct efx_nic *efx)
8ceee660 1124{
8ceee660
BH
1125 EFX_ASSERT_RESET_SERIALISED(efx);
1126
1127 efx_stop_all(efx);
1128
1129 efx_fini_channels(efx);
bc3c90a2 1130 efx_init_channels(efx);
8ceee660
BH
1131
1132 efx_start_all(efx);
8ceee660
BH
1133}
1134
1135/**************************************************************************
1136 *
1137 * Interrupt moderation
1138 *
1139 **************************************************************************/
1140
1141/* Set interrupt moderation parameters */
1142void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1143{
1144 struct efx_tx_queue *tx_queue;
1145 struct efx_rx_queue *rx_queue;
1146
1147 EFX_ASSERT_RESET_SERIALISED(efx);
1148
1149 efx_for_each_tx_queue(tx_queue, efx)
1150 tx_queue->channel->irq_moderation = tx_usecs;
1151
1152 efx_for_each_rx_queue(rx_queue, efx)
1153 rx_queue->channel->irq_moderation = rx_usecs;
1154}
1155
1156/**************************************************************************
1157 *
1158 * Hardware monitor
1159 *
1160 **************************************************************************/
1161
1162/* Run periodically off the general workqueue. Serialised against
1163 * efx_reconfigure_port via the mac_lock */
1164static void efx_monitor(struct work_struct *data)
1165{
1166 struct efx_nic *efx = container_of(data, struct efx_nic,
1167 monitor_work.work);
1168 int rc = 0;
1169
1170 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1171 raw_smp_processor_id());
1172
1173
1174 /* If the mac_lock is already held then it is likely a port
1175 * reconfiguration is already in place, which will likely do
1176 * most of the work of check_hw() anyway. */
1177 if (!mutex_trylock(&efx->mac_lock)) {
1178 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1179 efx_monitor_interval);
1180 return;
1181 }
1182
1183 if (efx->port_enabled)
1184 rc = falcon_check_xmac(efx);
1185 mutex_unlock(&efx->mac_lock);
1186
8ceee660
BH
1187 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1188 efx_monitor_interval);
1189}
1190
1191/**************************************************************************
1192 *
1193 * ioctls
1194 *
1195 *************************************************************************/
1196
1197/* Net device ioctl
1198 * Context: process, rtnl_lock() held.
1199 */
1200static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1201{
767e468c 1202 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1203
1204 EFX_ASSERT_RESET_SERIALISED(efx);
1205
1206 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1207}
1208
1209/**************************************************************************
1210 *
1211 * NAPI interface
1212 *
1213 **************************************************************************/
1214
1215static int efx_init_napi(struct efx_nic *efx)
1216{
1217 struct efx_channel *channel;
1218 int rc;
1219
1220 efx_for_each_channel(channel, efx) {
1221 channel->napi_dev = efx->net_dev;
1222 rc = efx_lro_init(&channel->lro_mgr, efx);
1223 if (rc)
1224 goto err;
1225 }
1226 return 0;
1227 err:
1228 efx_fini_napi(efx);
1229 return rc;
1230}
1231
1232static void efx_fini_napi(struct efx_nic *efx)
1233{
1234 struct efx_channel *channel;
1235
1236 efx_for_each_channel(channel, efx) {
1237 efx_lro_fini(&channel->lro_mgr);
1238 channel->napi_dev = NULL;
1239 }
1240}
1241
1242/**************************************************************************
1243 *
1244 * Kernel netpoll interface
1245 *
1246 *************************************************************************/
1247
1248#ifdef CONFIG_NET_POLL_CONTROLLER
1249
1250/* Although in the common case interrupts will be disabled, this is not
1251 * guaranteed. However, all our work happens inside the NAPI callback,
1252 * so no locking is required.
1253 */
1254static void efx_netpoll(struct net_device *net_dev)
1255{
767e468c 1256 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1257 struct efx_channel *channel;
1258
64ee3120 1259 efx_for_each_channel(channel, efx)
8ceee660
BH
1260 efx_schedule_channel(channel);
1261}
1262
1263#endif
1264
1265/**************************************************************************
1266 *
1267 * Kernel net device interface
1268 *
1269 *************************************************************************/
1270
1271/* Context: process, rtnl_lock() held. */
1272static int efx_net_open(struct net_device *net_dev)
1273{
767e468c 1274 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1275 EFX_ASSERT_RESET_SERIALISED(efx);
1276
1277 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1278 raw_smp_processor_id());
1279
f8b87c17
BH
1280 if (efx->phy_mode & PHY_MODE_SPECIAL)
1281 return -EBUSY;
1282
8ceee660
BH
1283 efx_start_all(efx);
1284 return 0;
1285}
1286
1287/* Context: process, rtnl_lock() held.
1288 * Note that the kernel will ignore our return code; this method
1289 * should really be a void.
1290 */
1291static int efx_net_stop(struct net_device *net_dev)
1292{
767e468c 1293 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1294
1295 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1296 raw_smp_processor_id());
1297
1298 /* Stop the device and flush all the channels */
1299 efx_stop_all(efx);
1300 efx_fini_channels(efx);
bc3c90a2 1301 efx_init_channels(efx);
8ceee660
BH
1302
1303 return 0;
1304}
1305
5b9e207c 1306/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1307static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1308{
767e468c 1309 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1310 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1311 struct net_device_stats *stats = &net_dev->stats;
1312
5b9e207c
BH
1313 /* Update stats if possible, but do not wait if another thread
1314 * is updating them (or resetting the NIC); slightly stale
1315 * stats are acceptable.
1316 */
8ceee660
BH
1317 if (!spin_trylock(&efx->stats_lock))
1318 return stats;
8c8661e4 1319 if (efx->stats_enabled) {
8ceee660
BH
1320 falcon_update_stats_xmac(efx);
1321 falcon_update_nic_stats(efx);
1322 }
1323 spin_unlock(&efx->stats_lock);
1324
1325 stats->rx_packets = mac_stats->rx_packets;
1326 stats->tx_packets = mac_stats->tx_packets;
1327 stats->rx_bytes = mac_stats->rx_bytes;
1328 stats->tx_bytes = mac_stats->tx_bytes;
1329 stats->multicast = mac_stats->rx_multicast;
1330 stats->collisions = mac_stats->tx_collision;
1331 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1332 mac_stats->rx_length_error);
1333 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1334 stats->rx_crc_errors = mac_stats->rx_bad;
1335 stats->rx_frame_errors = mac_stats->rx_align_error;
1336 stats->rx_fifo_errors = mac_stats->rx_overflow;
1337 stats->rx_missed_errors = mac_stats->rx_missed;
1338 stats->tx_window_errors = mac_stats->tx_late_collision;
1339
1340 stats->rx_errors = (stats->rx_length_errors +
1341 stats->rx_over_errors +
1342 stats->rx_crc_errors +
1343 stats->rx_frame_errors +
1344 stats->rx_fifo_errors +
1345 stats->rx_missed_errors +
1346 mac_stats->rx_symbol_error);
1347 stats->tx_errors = (stats->tx_window_errors +
1348 mac_stats->tx_bad);
1349
1350 return stats;
1351}
1352
1353/* Context: netif_tx_lock held, BHs disabled. */
1354static void efx_watchdog(struct net_device *net_dev)
1355{
767e468c 1356 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1357
739bb23d
BH
1358 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1359 " resetting channels\n",
1360 atomic_read(&efx->netif_stop_count), efx->port_enabled);
8ceee660 1361
739bb23d 1362 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1363}
1364
1365
1366/* Context: process, rtnl_lock() held. */
1367static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1368{
767e468c 1369 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1370 int rc = 0;
1371
1372 EFX_ASSERT_RESET_SERIALISED(efx);
1373
1374 if (new_mtu > EFX_MAX_MTU)
1375 return -EINVAL;
1376
1377 efx_stop_all(efx);
1378
1379 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1380
1381 efx_fini_channels(efx);
1382 net_dev->mtu = new_mtu;
bc3c90a2 1383 efx_init_channels(efx);
8ceee660
BH
1384
1385 efx_start_all(efx);
1386 return rc;
8ceee660
BH
1387}
1388
1389static int efx_set_mac_address(struct net_device *net_dev, void *data)
1390{
767e468c 1391 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1392 struct sockaddr *addr = data;
1393 char *new_addr = addr->sa_data;
1394
1395 EFX_ASSERT_RESET_SERIALISED(efx);
1396
1397 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1398 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1399 new_addr);
8ceee660
BH
1400 return -EINVAL;
1401 }
1402
1403 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1404
1405 /* Reconfigure the MAC */
1406 efx_reconfigure_port(efx);
1407
1408 return 0;
1409}
1410
a816f75a 1411/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1412static void efx_set_multicast_list(struct net_device *net_dev)
1413{
767e468c 1414 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1415 struct dev_mc_list *mc_list = net_dev->mc_list;
1416 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
a816f75a
BH
1417 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1418 bool changed = (efx->promiscuous != promiscuous);
8ceee660
BH
1419 u32 crc;
1420 int bit;
1421 int i;
1422
a816f75a 1423 efx->promiscuous = promiscuous;
8ceee660
BH
1424
1425 /* Build multicast hash table */
1426 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1427 memset(mc_hash, 0xff, sizeof(*mc_hash));
1428 } else {
1429 memset(mc_hash, 0x00, sizeof(*mc_hash));
1430 for (i = 0; i < net_dev->mc_count; i++) {
1431 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1432 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1433 set_bit_le(bit, mc_hash->byte);
1434 mc_list = mc_list->next;
1435 }
1436 }
1437
a816f75a
BH
1438 if (!efx->port_enabled)
1439 /* Delay pushing settings until efx_start_port() */
1440 return;
1441
1442 if (changed)
1443 queue_work(efx->workqueue, &efx->reconfigure_work);
1444
8ceee660
BH
1445 /* Create and activate new global multicast hash table */
1446 falcon_set_multicast_hash(efx);
1447}
1448
c3ecb9f3
SH
1449static const struct net_device_ops efx_netdev_ops = {
1450 .ndo_open = efx_net_open,
1451 .ndo_stop = efx_net_stop,
1452 .ndo_get_stats = efx_net_stats,
1453 .ndo_tx_timeout = efx_watchdog,
1454 .ndo_start_xmit = efx_hard_start_xmit,
1455 .ndo_validate_addr = eth_validate_addr,
1456 .ndo_do_ioctl = efx_ioctl,
1457 .ndo_change_mtu = efx_change_mtu,
1458 .ndo_set_mac_address = efx_set_mac_address,
1459 .ndo_set_multicast_list = efx_set_multicast_list,
1460#ifdef CONFIG_NET_POLL_CONTROLLER
1461 .ndo_poll_controller = efx_netpoll,
1462#endif
1463};
1464
8ceee660
BH
1465static int efx_netdev_event(struct notifier_block *this,
1466 unsigned long event, void *ptr)
1467{
d3208b5e 1468 struct net_device *net_dev = ptr;
8ceee660 1469
c3ecb9f3 1470 if (net_dev->netdev_ops == &efx_netdev_ops && event == NETDEV_CHANGENAME) {
767e468c 1471 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1472
1473 strcpy(efx->name, net_dev->name);
f4150724 1474 efx_mtd_rename(efx);
8ceee660
BH
1475 }
1476
1477 return NOTIFY_DONE;
1478}
1479
1480static struct notifier_block efx_netdev_notifier = {
1481 .notifier_call = efx_netdev_event,
1482};
1483
1484static int efx_register_netdev(struct efx_nic *efx)
1485{
1486 struct net_device *net_dev = efx->net_dev;
1487 int rc;
1488
1489 net_dev->watchdog_timeo = 5 * HZ;
1490 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1491 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1492 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1493 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1494
1495 /* Always start with carrier off; PHY events will detect the link */
1496 netif_carrier_off(efx->net_dev);
1497
1498 /* Clear MAC statistics */
1499 falcon_update_stats_xmac(efx);
1500 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1501
1502 rc = register_netdev(net_dev);
1503 if (rc) {
1504 EFX_ERR(efx, "could not register net dev\n");
1505 return rc;
1506 }
1507 strcpy(efx->name, net_dev->name);
1508
1509 return 0;
1510}
1511
1512static void efx_unregister_netdev(struct efx_nic *efx)
1513{
1514 struct efx_tx_queue *tx_queue;
1515
1516 if (!efx->net_dev)
1517 return;
1518
767e468c 1519 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1520
1521 /* Free up any skbs still remaining. This has to happen before
1522 * we try to unregister the netdev as running their destructors
1523 * may be needed to get the device ref. count to 0. */
1524 efx_for_each_tx_queue(tx_queue, efx)
1525 efx_release_tx_buffers(tx_queue);
1526
55668611 1527 if (efx_dev_registered(efx)) {
8ceee660
BH
1528 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1529 unregister_netdev(efx->net_dev);
1530 }
1531}
1532
1533/**************************************************************************
1534 *
1535 * Device reset and suspend
1536 *
1537 **************************************************************************/
1538
2467ca46
BH
1539/* Tears down the entire software state and most of the hardware state
1540 * before reset. */
8c8661e4 1541void efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
8ceee660
BH
1542{
1543 int rc;
1544
1545 EFX_ASSERT_RESET_SERIALISED(efx);
1546
2467ca46
BH
1547 /* The net_dev->get_stats handler is quite slow, and will fail
1548 * if a fetch is pending over reset. Serialise against it. */
1549 spin_lock(&efx->stats_lock);
8c8661e4 1550 efx->stats_enabled = false;
2467ca46
BH
1551 spin_unlock(&efx->stats_lock);
1552
1553 efx_stop_all(efx);
1554 mutex_lock(&efx->mac_lock);
f4150724 1555 mutex_lock(&efx->spi_lock);
2467ca46 1556
8ceee660 1557 rc = falcon_xmac_get_settings(efx, ecmd);
2467ca46 1558 if (rc)
8ceee660 1559 EFX_ERR(efx, "could not back up PHY settings\n");
8ceee660
BH
1560
1561 efx_fini_channels(efx);
8ceee660
BH
1562}
1563
2467ca46
BH
1564/* This function will always ensure that the locks acquired in
1565 * efx_reset_down() are released. A failure return code indicates
1566 * that we were unable to reinitialise the hardware, and the
1567 * driver should be disabled. If ok is false, then the rx and tx
1568 * engines are not restarted, pending a RESET_DISABLE. */
8c8661e4 1569int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd, bool ok)
8ceee660
BH
1570{
1571 int rc;
1572
2467ca46 1573 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1574
2467ca46 1575 rc = falcon_init_nic(efx);
8ceee660 1576 if (rc) {
2467ca46
BH
1577 EFX_ERR(efx, "failed to initialise NIC\n");
1578 ok = false;
8ceee660
BH
1579 }
1580
2467ca46
BH
1581 if (ok) {
1582 efx_init_channels(efx);
8ceee660 1583
2467ca46
BH
1584 if (falcon_xmac_set_settings(efx, ecmd))
1585 EFX_ERR(efx, "could not restore PHY settings\n");
1586 }
1587
f4150724 1588 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1589 mutex_unlock(&efx->mac_lock);
1590
8c8661e4 1591 if (ok) {
2467ca46 1592 efx_start_all(efx);
8c8661e4
BH
1593 efx->stats_enabled = true;
1594 }
8ceee660
BH
1595 return rc;
1596}
1597
1598/* Reset the NIC as transparently as possible. Do not reset the PHY
1599 * Note that the reset may fail, in which case the card will be left
1600 * in a most-probably-unusable state.
1601 *
1602 * This function will sleep. You cannot reset from within an atomic
1603 * state; use efx_schedule_reset() instead.
1604 *
1605 * Grabs the rtnl_lock.
1606 */
1607static int efx_reset(struct efx_nic *efx)
1608{
1609 struct ethtool_cmd ecmd;
1610 enum reset_type method = efx->reset_pending;
1611 int rc;
1612
1613 /* Serialise with kernel interfaces */
1614 rtnl_lock();
1615
1616 /* If we're not RUNNING then don't reset. Leave the reset_pending
1617 * flag set so that efx_pci_probe_main will be retried */
1618 if (efx->state != STATE_RUNNING) {
1619 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1620 goto unlock_rtnl;
1621 }
1622
8ceee660
BH
1623 EFX_INFO(efx, "resetting (%d)\n", method);
1624
2467ca46 1625 efx_reset_down(efx, &ecmd);
8ceee660
BH
1626
1627 rc = falcon_reset_hw(efx, method);
1628 if (rc) {
1629 EFX_ERR(efx, "failed to reset hardware\n");
2467ca46 1630 goto fail;
8ceee660
BH
1631 }
1632
1633 /* Allow resets to be rescheduled. */
1634 efx->reset_pending = RESET_TYPE_NONE;
1635
1636 /* Reinitialise bus-mastering, which may have been turned off before
1637 * the reset was scheduled. This is still appropriate, even in the
1638 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1639 * can respond to requests. */
1640 pci_set_master(efx->pci_dev);
1641
8ceee660
BH
1642 /* Leave device stopped if necessary */
1643 if (method == RESET_TYPE_DISABLE) {
8ceee660 1644 rc = -EIO;
2467ca46 1645 goto fail;
8ceee660
BH
1646 }
1647
2467ca46 1648 rc = efx_reset_up(efx, &ecmd, true);
8ceee660 1649 if (rc)
2467ca46 1650 goto disable;
8ceee660 1651
8ceee660 1652 EFX_LOG(efx, "reset complete\n");
8ceee660
BH
1653 unlock_rtnl:
1654 rtnl_unlock();
1655 return 0;
1656
2467ca46
BH
1657 fail:
1658 efx_reset_up(efx, &ecmd, false);
1659 disable:
8ceee660
BH
1660 EFX_ERR(efx, "has been disabled\n");
1661 efx->state = STATE_DISABLED;
1662
8ceee660
BH
1663 rtnl_unlock();
1664 efx_unregister_netdev(efx);
1665 efx_fini_port(efx);
1666 return rc;
1667}
1668
1669/* The worker thread exists so that code that cannot sleep can
1670 * schedule a reset for later.
1671 */
1672static void efx_reset_work(struct work_struct *data)
1673{
1674 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1675
1676 efx_reset(nic);
1677}
1678
1679void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1680{
1681 enum reset_type method;
1682
1683 if (efx->reset_pending != RESET_TYPE_NONE) {
1684 EFX_INFO(efx, "quenching already scheduled reset\n");
1685 return;
1686 }
1687
1688 switch (type) {
1689 case RESET_TYPE_INVISIBLE:
1690 case RESET_TYPE_ALL:
1691 case RESET_TYPE_WORLD:
1692 case RESET_TYPE_DISABLE:
1693 method = type;
1694 break;
1695 case RESET_TYPE_RX_RECOVERY:
1696 case RESET_TYPE_RX_DESC_FETCH:
1697 case RESET_TYPE_TX_DESC_FETCH:
1698 case RESET_TYPE_TX_SKIP:
1699 method = RESET_TYPE_INVISIBLE;
1700 break;
1701 default:
1702 method = RESET_TYPE_ALL;
1703 break;
1704 }
1705
1706 if (method != type)
1707 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1708 else
1709 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1710
1711 efx->reset_pending = method;
1712
1ab00629 1713 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1714}
1715
1716/**************************************************************************
1717 *
1718 * List of NICs we support
1719 *
1720 **************************************************************************/
1721
1722/* PCI device ID table */
1723static struct pci_device_id efx_pci_table[] __devinitdata = {
1724 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1725 .driver_data = (unsigned long) &falcon_a_nic_type},
1726 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1727 .driver_data = (unsigned long) &falcon_b_nic_type},
1728 {0} /* end of list */
1729};
1730
1731/**************************************************************************
1732 *
1733 * Dummy PHY/MAC/Board operations
1734 *
01aad7b6 1735 * Can be used for some unimplemented operations
8ceee660
BH
1736 * Needed so all function pointers are valid and do not have to be tested
1737 * before use
1738 *
1739 **************************************************************************/
1740int efx_port_dummy_op_int(struct efx_nic *efx)
1741{
1742 return 0;
1743}
1744void efx_port_dummy_op_void(struct efx_nic *efx) {}
dc8cfa55 1745void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
8ceee660
BH
1746
1747static struct efx_phy_operations efx_dummy_phy_operations = {
1748 .init = efx_port_dummy_op_int,
1749 .reconfigure = efx_port_dummy_op_void,
1750 .check_hw = efx_port_dummy_op_int,
1751 .fini = efx_port_dummy_op_void,
1752 .clear_interrupt = efx_port_dummy_op_void,
8ceee660
BH
1753};
1754
8ceee660 1755static struct efx_board efx_dummy_board_info = {
01aad7b6
BH
1756 .init = efx_port_dummy_op_int,
1757 .init_leds = efx_port_dummy_op_int,
1758 .set_fault_led = efx_port_dummy_op_blink,
a17102b1 1759 .monitor = efx_port_dummy_op_int,
01aad7b6
BH
1760 .blink = efx_port_dummy_op_blink,
1761 .fini = efx_port_dummy_op_void,
8ceee660
BH
1762};
1763
1764/**************************************************************************
1765 *
1766 * Data housekeeping
1767 *
1768 **************************************************************************/
1769
1770/* This zeroes out and then fills in the invariants in a struct
1771 * efx_nic (including all sub-structures).
1772 */
1773static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1774 struct pci_dev *pci_dev, struct net_device *net_dev)
1775{
1776 struct efx_channel *channel;
1777 struct efx_tx_queue *tx_queue;
1778 struct efx_rx_queue *rx_queue;
1ab00629 1779 int i;
8ceee660
BH
1780
1781 /* Initialise common structures */
1782 memset(efx, 0, sizeof(*efx));
1783 spin_lock_init(&efx->biu_lock);
1784 spin_lock_init(&efx->phy_lock);
f4150724 1785 mutex_init(&efx->spi_lock);
8ceee660
BH
1786 INIT_WORK(&efx->reset_work, efx_reset_work);
1787 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1788 efx->pci_dev = pci_dev;
1789 efx->state = STATE_INIT;
1790 efx->reset_pending = RESET_TYPE_NONE;
1791 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1792 efx->board_info = efx_dummy_board_info;
1793
1794 efx->net_dev = net_dev;
dc8cfa55 1795 efx->rx_checksum_enabled = true;
8ceee660
BH
1796 spin_lock_init(&efx->netif_stop_lock);
1797 spin_lock_init(&efx->stats_lock);
1798 mutex_init(&efx->mac_lock);
1799 efx->phy_op = &efx_dummy_phy_operations;
1800 efx->mii.dev = net_dev;
1801 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1802 atomic_set(&efx->netif_stop_count, 1);
1803
1804 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1805 channel = &efx->channel[i];
1806 channel->efx = efx;
1807 channel->channel = i;
dc8cfa55 1808 channel->work_pending = false;
8ceee660 1809 }
60ac1065 1810 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1811 tx_queue = &efx->tx_queue[i];
1812 tx_queue->efx = efx;
1813 tx_queue->queue = i;
1814 tx_queue->buffer = NULL;
1815 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1816 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1817 }
1818 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1819 rx_queue = &efx->rx_queue[i];
1820 rx_queue->efx = efx;
1821 rx_queue->queue = i;
1822 rx_queue->channel = &efx->channel[0]; /* for safety */
1823 rx_queue->buffer = NULL;
1824 spin_lock_init(&rx_queue->add_lock);
1825 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1826 }
1827
1828 efx->type = type;
1829
1830 /* Sanity-check NIC type */
1831 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1832 (efx->type->txd_ring_mask + 1));
1833 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1834 (efx->type->rxd_ring_mask + 1));
1835 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1836 (efx->type->evq_size - 1));
1837 /* As close as we can get to guaranteeing that we don't overflow */
1838 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1839 (efx->type->txd_ring_mask + 1 +
1840 efx->type->rxd_ring_mask + 1));
1841 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1842
1843 /* Higher numbered interrupt modes are less capable! */
1844 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1845 interrupt_mode);
1846
1847 efx->workqueue = create_singlethread_workqueue("sfc_work");
1ab00629
SH
1848 if (!efx->workqueue)
1849 return -ENOMEM;
8d9853d9 1850
8ceee660 1851 return 0;
8ceee660
BH
1852}
1853
1854static void efx_fini_struct(struct efx_nic *efx)
1855{
1856 if (efx->workqueue) {
1857 destroy_workqueue(efx->workqueue);
1858 efx->workqueue = NULL;
1859 }
1860}
1861
1862/**************************************************************************
1863 *
1864 * PCI interface
1865 *
1866 **************************************************************************/
1867
1868/* Main body of final NIC shutdown code
1869 * This is called only at module unload (or hotplug removal).
1870 */
1871static void efx_pci_remove_main(struct efx_nic *efx)
1872{
1873 EFX_ASSERT_RESET_SERIALISED(efx);
1874
1875 /* Skip everything if we never obtained a valid membase */
1876 if (!efx->membase)
1877 return;
1878
1879 efx_fini_channels(efx);
1880 efx_fini_port(efx);
1881
1882 /* Shutdown the board, then the NIC and board state */
37b5a603 1883 efx->board_info.fini(efx);
8ceee660
BH
1884 falcon_fini_interrupt(efx);
1885
1886 efx_fini_napi(efx);
1887 efx_remove_all(efx);
1888}
1889
1890/* Final NIC shutdown
1891 * This is called only at module unload (or hotplug removal).
1892 */
1893static void efx_pci_remove(struct pci_dev *pci_dev)
1894{
1895 struct efx_nic *efx;
1896
1897 efx = pci_get_drvdata(pci_dev);
1898 if (!efx)
1899 return;
1900
f4150724
BH
1901 efx_mtd_remove(efx);
1902
8ceee660
BH
1903 /* Mark the NIC as fini, then stop the interface */
1904 rtnl_lock();
1905 efx->state = STATE_FINI;
1906 dev_close(efx->net_dev);
1907
1908 /* Allow any queued efx_resets() to complete */
1909 rtnl_unlock();
1910
1911 if (efx->membase == NULL)
1912 goto out;
1913
1914 efx_unregister_netdev(efx);
1915
1916 /* Wait for any scheduled resets to complete. No more will be
1917 * scheduled from this point because efx_stop_all() has been
1918 * called, we are no longer registered with driverlink, and
1919 * the net_device's have been removed. */
1ab00629 1920 cancel_work_sync(&efx->reset_work);
8ceee660
BH
1921
1922 efx_pci_remove_main(efx);
1923
1924out:
1925 efx_fini_io(efx);
1926 EFX_LOG(efx, "shutdown successful\n");
1927
1928 pci_set_drvdata(pci_dev, NULL);
1929 efx_fini_struct(efx);
1930 free_netdev(efx->net_dev);
1931};
1932
1933/* Main body of NIC initialisation
1934 * This is called at module load (or hotplug insertion, theoretically).
1935 */
1936static int efx_pci_probe_main(struct efx_nic *efx)
1937{
1938 int rc;
1939
1940 /* Do start-of-day initialisation */
1941 rc = efx_probe_all(efx);
1942 if (rc)
1943 goto fail1;
1944
1945 rc = efx_init_napi(efx);
1946 if (rc)
1947 goto fail2;
1948
1949 /* Initialise the board */
1950 rc = efx->board_info.init(efx);
1951 if (rc) {
1952 EFX_ERR(efx, "failed to initialise board\n");
1953 goto fail3;
1954 }
1955
1956 rc = falcon_init_nic(efx);
1957 if (rc) {
1958 EFX_ERR(efx, "failed to initialise NIC\n");
1959 goto fail4;
1960 }
1961
1962 rc = efx_init_port(efx);
1963 if (rc) {
1964 EFX_ERR(efx, "failed to initialise port\n");
1965 goto fail5;
1966 }
1967
bc3c90a2 1968 efx_init_channels(efx);
8ceee660
BH
1969
1970 rc = falcon_init_interrupt(efx);
1971 if (rc)
bc3c90a2 1972 goto fail6;
8ceee660
BH
1973
1974 return 0;
1975
8ceee660 1976 fail6:
bc3c90a2 1977 efx_fini_channels(efx);
8ceee660
BH
1978 efx_fini_port(efx);
1979 fail5:
1980 fail4:
a17102b1 1981 efx->board_info.fini(efx);
8ceee660
BH
1982 fail3:
1983 efx_fini_napi(efx);
1984 fail2:
1985 efx_remove_all(efx);
1986 fail1:
1987 return rc;
1988}
1989
1990/* NIC initialisation
1991 *
1992 * This is called at module load (or hotplug insertion,
1993 * theoretically). It sets up PCI mappings, tests and resets the NIC,
1994 * sets up and registers the network devices with the kernel and hooks
1995 * the interrupt service routine. It does not prepare the device for
1996 * transmission; this is left to the first time one of the network
1997 * interfaces is brought up (i.e. efx_net_open).
1998 */
1999static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2000 const struct pci_device_id *entry)
2001{
2002 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2003 struct net_device *net_dev;
2004 struct efx_nic *efx;
2005 int i, rc;
2006
2007 /* Allocate and initialise a struct net_device and struct efx_nic */
2008 net_dev = alloc_etherdev(sizeof(*efx));
2009 if (!net_dev)
2010 return -ENOMEM;
b9b39b62
BH
2011 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2012 NETIF_F_HIGHDMA | NETIF_F_TSO);
8ceee660
BH
2013 if (lro)
2014 net_dev->features |= NETIF_F_LRO;
28506563
BH
2015 /* Mask for features that also apply to VLAN devices */
2016 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2017 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2018 efx = netdev_priv(net_dev);
8ceee660
BH
2019 pci_set_drvdata(pci_dev, efx);
2020 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2021 if (rc)
2022 goto fail1;
2023
2024 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2025
2026 /* Set up basic I/O (BAR mappings etc) */
2027 rc = efx_init_io(efx);
2028 if (rc)
2029 goto fail2;
2030
2031 /* No serialisation is required with the reset path because
2032 * we're in STATE_INIT. */
2033 for (i = 0; i < 5; i++) {
2034 rc = efx_pci_probe_main(efx);
2035 if (rc == 0)
2036 break;
2037
2038 /* Serialise against efx_reset(). No more resets will be
2039 * scheduled since efx_stop_all() has been called, and we
2040 * have not and never have been registered with either
2041 * the rtnetlink or driverlink layers. */
1ab00629 2042 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2043
2044 /* Retry if a recoverably reset event has been scheduled */
2045 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2046 (efx->reset_pending != RESET_TYPE_ALL))
2047 goto fail3;
2048
2049 efx->reset_pending = RESET_TYPE_NONE;
2050 }
2051
2052 if (rc) {
2053 EFX_ERR(efx, "Could not reset NIC\n");
2054 goto fail4;
2055 }
2056
2057 /* Switch to the running state before we expose the device to
2058 * the OS. This is to ensure that the initial gathering of
2059 * MAC stats succeeds. */
2060 rtnl_lock();
2061 efx->state = STATE_RUNNING;
2062 rtnl_unlock();
2063
2064 rc = efx_register_netdev(efx);
2065 if (rc)
2066 goto fail5;
2067
2068 EFX_LOG(efx, "initialisation successful\n");
2069
f4150724 2070 efx_mtd_probe(efx); /* allowed to fail */
8ceee660
BH
2071 return 0;
2072
2073 fail5:
2074 efx_pci_remove_main(efx);
2075 fail4:
2076 fail3:
2077 efx_fini_io(efx);
2078 fail2:
2079 efx_fini_struct(efx);
2080 fail1:
2081 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2082 free_netdev(net_dev);
2083 return rc;
2084}
2085
2086static struct pci_driver efx_pci_driver = {
2087 .name = EFX_DRIVER_NAME,
2088 .id_table = efx_pci_table,
2089 .probe = efx_pci_probe,
2090 .remove = efx_pci_remove,
2091};
2092
2093/**************************************************************************
2094 *
2095 * Kernel module interface
2096 *
2097 *************************************************************************/
2098
2099module_param(interrupt_mode, uint, 0444);
2100MODULE_PARM_DESC(interrupt_mode,
2101 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2102
2103static int __init efx_init_module(void)
2104{
2105 int rc;
2106
2107 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2108
2109 rc = register_netdevice_notifier(&efx_netdev_notifier);
2110 if (rc)
2111 goto err_notifier;
2112
2113 refill_workqueue = create_workqueue("sfc_refill");
2114 if (!refill_workqueue) {
2115 rc = -ENOMEM;
2116 goto err_refill;
2117 }
1ab00629
SH
2118 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2119 if (!reset_workqueue) {
2120 rc = -ENOMEM;
2121 goto err_reset;
2122 }
8ceee660
BH
2123
2124 rc = pci_register_driver(&efx_pci_driver);
2125 if (rc < 0)
2126 goto err_pci;
2127
2128 return 0;
2129
2130 err_pci:
1ab00629
SH
2131 destroy_workqueue(reset_workqueue);
2132 err_reset:
8ceee660
BH
2133 destroy_workqueue(refill_workqueue);
2134 err_refill:
2135 unregister_netdevice_notifier(&efx_netdev_notifier);
2136 err_notifier:
2137 return rc;
2138}
2139
2140static void __exit efx_exit_module(void)
2141{
2142 printk(KERN_INFO "Solarflare NET driver unloading\n");
2143
2144 pci_unregister_driver(&efx_pci_driver);
1ab00629 2145 destroy_workqueue(reset_workqueue);
8ceee660
BH
2146 destroy_workqueue(refill_workqueue);
2147 unregister_netdevice_notifier(&efx_netdev_notifier);
2148
2149}
2150
2151module_init(efx_init_module);
2152module_exit(efx_exit_module);
2153
2154MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2155 "Solarflare Communications");
2156MODULE_DESCRIPTION("Solarflare Communications network driver");
2157MODULE_LICENSE("GPL");
2158MODULE_DEVICE_TABLE(pci, efx_pci_table);