sfc: Include RX IP filter table in register dump
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
906bb26c 4 * Copyright 2005-2009 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
8ceee660 24#include "net_driver.h"
8ceee660
BH
25#include "efx.h"
26#include "mdio_10g.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec 29#include "mcdi.h"
fd371e32 30#include "workarounds.h"
8880f4ec 31
c459302d
BH
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
e58f69f4 43 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
e58f69f4
BH
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
69};
70
71/* Interrupt mode names (see INT_MODE())) */
72const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
73const char *efx_interrupt_mode_names[] = {
74 [EFX_INT_MODE_MSIX] = "MSI-X",
75 [EFX_INT_MODE_MSI] = "MSI",
76 [EFX_INT_MODE_LEGACY] = "legacy",
77};
78
79const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
80const char *efx_reset_type_names[] = {
81 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
82 [RESET_TYPE_ALL] = "ALL",
83 [RESET_TYPE_WORLD] = "WORLD",
84 [RESET_TYPE_DISABLE] = "DISABLE",
85 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
86 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
87 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
88 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
89 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
90 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 91 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
92};
93
8ceee660
BH
94#define EFX_MAX_MTU (9 * 1024)
95
1ab00629
SH
96/* Reset workqueue. If any NIC has a hardware failure then a reset will be
97 * queued onto this work queue. This is not a per-nic work queue, because
98 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
99 */
100static struct workqueue_struct *reset_workqueue;
101
8ceee660
BH
102/**************************************************************************
103 *
104 * Configurable values
105 *
106 *************************************************************************/
107
8ceee660
BH
108/*
109 * Use separate channels for TX and RX events
110 *
28b581ab
NT
111 * Set this to 1 to use separate channels for TX and RX. It allows us
112 * to control interrupt affinity separately for TX and RX.
8ceee660 113 *
28b581ab 114 * This is only used in MSI-X interrupt mode
8ceee660 115 */
28b581ab 116static unsigned int separate_tx_channels;
8313aca3 117module_param(separate_tx_channels, uint, 0444);
28b581ab
NT
118MODULE_PARM_DESC(separate_tx_channels,
119 "Use separate channels for TX and RX");
8ceee660
BH
120
121/* This is the weight assigned to each of the (per-channel) virtual
122 * NAPI devices.
123 */
124static int napi_weight = 64;
125
126/* This is the time (in jiffies) between invocations of the hardware
127 * monitor, which checks for known hardware bugs and resets the
128 * hardware and driver as necessary.
129 */
130unsigned int efx_monitor_interval = 1 * HZ;
131
8ceee660
BH
132/* This controls whether or not the driver will initialise devices
133 * with invalid MAC addresses stored in the EEPROM or flash. If true,
134 * such devices will be initialised with a random locally-generated
135 * MAC address. This allows for loading the sfc_mtd driver to
136 * reprogram the flash, even if the flash contents (including the MAC
137 * address) have previously been erased.
138 */
139static unsigned int allow_bad_hwaddr;
140
141/* Initial interrupt moderation settings. They can be modified after
142 * module load with ethtool.
143 *
144 * The default for RX should strike a balance between increasing the
145 * round-trip latency and reducing overhead.
146 */
147static unsigned int rx_irq_mod_usec = 60;
148
149/* Initial interrupt moderation settings. They can be modified after
150 * module load with ethtool.
151 *
152 * This default is chosen to ensure that a 10G link does not go idle
153 * while a TX queue is stopped after it has become full. A queue is
154 * restarted when it drops below half full. The time this takes (assuming
155 * worst case 3 descriptors per packet and 1024 descriptors) is
156 * 512 / 3 * 1.2 = 205 usec.
157 */
158static unsigned int tx_irq_mod_usec = 150;
159
160/* This is the first interrupt mode to try out of:
161 * 0 => MSI-X
162 * 1 => MSI
163 * 2 => legacy
164 */
165static unsigned int interrupt_mode;
166
167/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
168 * i.e. the number of CPUs among which we may distribute simultaneous
169 * interrupt handling.
170 *
171 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
172 * The default (0) means to assign an interrupt to each package (level II cache)
173 */
174static unsigned int rss_cpus;
175module_param(rss_cpus, uint, 0444);
176MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
177
84ae48fe
BH
178static int phy_flash_cfg;
179module_param(phy_flash_cfg, int, 0644);
180MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
181
6fb70fd1
BH
182static unsigned irq_adapt_low_thresh = 10000;
183module_param(irq_adapt_low_thresh, uint, 0644);
184MODULE_PARM_DESC(irq_adapt_low_thresh,
185 "Threshold score for reducing IRQ moderation");
186
187static unsigned irq_adapt_high_thresh = 20000;
188module_param(irq_adapt_high_thresh, uint, 0644);
189MODULE_PARM_DESC(irq_adapt_high_thresh,
190 "Threshold score for increasing IRQ moderation");
191
62776d03
BH
192static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
193 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
194 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
195 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
196module_param(debug, uint, 0);
197MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
198
8ceee660
BH
199/**************************************************************************
200 *
201 * Utility functions and prototypes
202 *
203 *************************************************************************/
4642610c
BH
204
205static void efx_remove_channels(struct efx_nic *efx);
8ceee660
BH
206static void efx_remove_port(struct efx_nic *efx);
207static void efx_fini_napi(struct efx_nic *efx);
4642610c
BH
208static void efx_fini_struct(struct efx_nic *efx);
209static void efx_start_all(struct efx_nic *efx);
210static void efx_stop_all(struct efx_nic *efx);
8ceee660
BH
211
212#define EFX_ASSERT_RESET_SERIALISED(efx) \
213 do { \
332c1ce9
BH
214 if ((efx->state == STATE_RUNNING) || \
215 (efx->state == STATE_DISABLED)) \
8ceee660
BH
216 ASSERT_RTNL(); \
217 } while (0)
218
219/**************************************************************************
220 *
221 * Event queue processing
222 *
223 *************************************************************************/
224
225/* Process channel's event queue
226 *
227 * This function is responsible for processing the event queue of a
228 * single channel. The caller must guarantee that this function will
229 * never be concurrently called more than once on the same channel,
230 * though different channels may be being processed concurrently.
231 */
fa236e18 232static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 233{
42cbe2d7 234 struct efx_nic *efx = channel->efx;
fa236e18 235 int spent;
8ceee660 236
42cbe2d7 237 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 238 !channel->enabled))
42cbe2d7 239 return 0;
8ceee660 240
fa236e18
BH
241 spent = efx_nic_process_eventq(channel, budget);
242 if (spent == 0)
42cbe2d7 243 return 0;
8ceee660
BH
244
245 /* Deliver last RX packet. */
246 if (channel->rx_pkt) {
247 __efx_rx_packet(channel, channel->rx_pkt,
248 channel->rx_pkt_csummed);
249 channel->rx_pkt = NULL;
250 }
251
8ceee660
BH
252 efx_rx_strategy(channel);
253
f7d12cdc 254 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
8ceee660 255
fa236e18 256 return spent;
8ceee660
BH
257}
258
259/* Mark channel as finished processing
260 *
261 * Note that since we will not receive further interrupts for this
262 * channel before we finish processing and call the eventq_read_ack()
263 * method, there is no need to use the interrupt hold-off timers.
264 */
265static inline void efx_channel_processed(struct efx_channel *channel)
266{
5b9e207c
BH
267 /* The interrupt handler for this channel may set work_pending
268 * as soon as we acknowledge the events we've seen. Make sure
269 * it's cleared before then. */
dc8cfa55 270 channel->work_pending = false;
5b9e207c
BH
271 smp_wmb();
272
152b6a62 273 efx_nic_eventq_read_ack(channel);
8ceee660
BH
274}
275
276/* NAPI poll handler
277 *
278 * NAPI guarantees serialisation of polls of the same device, which
279 * provides the guarantee required by efx_process_channel().
280 */
281static int efx_poll(struct napi_struct *napi, int budget)
282{
283 struct efx_channel *channel =
284 container_of(napi, struct efx_channel, napi_str);
62776d03 285 struct efx_nic *efx = channel->efx;
fa236e18 286 int spent;
8ceee660 287
62776d03
BH
288 netif_vdbg(efx, intr, efx->net_dev,
289 "channel %d NAPI poll executing on CPU %d\n",
290 channel->channel, raw_smp_processor_id());
8ceee660 291
fa236e18 292 spent = efx_process_channel(channel, budget);
8ceee660 293
fa236e18 294 if (spent < budget) {
a4900ac9 295 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
296 efx->irq_rx_adaptive &&
297 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
298 if (unlikely(channel->irq_mod_score <
299 irq_adapt_low_thresh)) {
0d86ebd8
BH
300 if (channel->irq_moderation > 1) {
301 channel->irq_moderation -= 1;
ef2b90ee 302 efx->type->push_irq_moderation(channel);
0d86ebd8 303 }
6fb70fd1
BH
304 } else if (unlikely(channel->irq_mod_score >
305 irq_adapt_high_thresh)) {
0d86ebd8
BH
306 if (channel->irq_moderation <
307 efx->irq_rx_moderation) {
308 channel->irq_moderation += 1;
ef2b90ee 309 efx->type->push_irq_moderation(channel);
0d86ebd8 310 }
6fb70fd1 311 }
6fb70fd1
BH
312 channel->irq_count = 0;
313 channel->irq_mod_score = 0;
314 }
315
8ceee660 316 /* There is no race here; although napi_disable() will
288379f0 317 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
318 * since efx_channel_processed() will have no effect if
319 * interrupts have already been disabled.
320 */
288379f0 321 napi_complete(napi);
8ceee660
BH
322 efx_channel_processed(channel);
323 }
324
fa236e18 325 return spent;
8ceee660
BH
326}
327
328/* Process the eventq of the specified channel immediately on this CPU
329 *
330 * Disable hardware generated interrupts, wait for any existing
331 * processing to finish, then directly poll (and ack ) the eventq.
332 * Finally reenable NAPI and interrupts.
333 *
334 * Since we are touching interrupts the caller should hold the suspend lock
335 */
336void efx_process_channel_now(struct efx_channel *channel)
337{
338 struct efx_nic *efx = channel->efx;
339
8313aca3 340 BUG_ON(channel->channel >= efx->n_channels);
8ceee660
BH
341 BUG_ON(!channel->enabled);
342
343 /* Disable interrupts and wait for ISRs to complete */
152b6a62 344 efx_nic_disable_interrupts(efx);
8ceee660
BH
345 if (efx->legacy_irq)
346 synchronize_irq(efx->legacy_irq);
64ee3120 347 if (channel->irq)
8ceee660
BH
348 synchronize_irq(channel->irq);
349
350 /* Wait for any NAPI processing to complete */
351 napi_disable(&channel->napi_str);
352
353 /* Poll the channel */
ecc910f5 354 efx_process_channel(channel, channel->eventq_mask + 1);
8ceee660
BH
355
356 /* Ack the eventq. This may cause an interrupt to be generated
357 * when they are reenabled */
358 efx_channel_processed(channel);
359
360 napi_enable(&channel->napi_str);
152b6a62 361 efx_nic_enable_interrupts(efx);
8ceee660
BH
362}
363
364/* Create event queue
365 * Event queue memory allocations are done only once. If the channel
366 * is reset, the memory buffer will be reused; this guards against
367 * errors during channel reset and also simplifies interrupt handling.
368 */
369static int efx_probe_eventq(struct efx_channel *channel)
370{
ecc910f5
SH
371 struct efx_nic *efx = channel->efx;
372 unsigned long entries;
373
62776d03
BH
374 netif_dbg(channel->efx, probe, channel->efx->net_dev,
375 "chan %d create event queue\n", channel->channel);
8ceee660 376
ecc910f5
SH
377 /* Build an event queue with room for one event per tx and rx buffer,
378 * plus some extra for link state events and MCDI completions. */
379 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
380 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
381 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
382
152b6a62 383 return efx_nic_probe_eventq(channel);
8ceee660
BH
384}
385
386/* Prepare channel's event queue */
bc3c90a2 387static void efx_init_eventq(struct efx_channel *channel)
8ceee660 388{
62776d03
BH
389 netif_dbg(channel->efx, drv, channel->efx->net_dev,
390 "chan %d init event queue\n", channel->channel);
8ceee660
BH
391
392 channel->eventq_read_ptr = 0;
393
152b6a62 394 efx_nic_init_eventq(channel);
8ceee660
BH
395}
396
397static void efx_fini_eventq(struct efx_channel *channel)
398{
62776d03
BH
399 netif_dbg(channel->efx, drv, channel->efx->net_dev,
400 "chan %d fini event queue\n", channel->channel);
8ceee660 401
152b6a62 402 efx_nic_fini_eventq(channel);
8ceee660
BH
403}
404
405static void efx_remove_eventq(struct efx_channel *channel)
406{
62776d03
BH
407 netif_dbg(channel->efx, drv, channel->efx->net_dev,
408 "chan %d remove event queue\n", channel->channel);
8ceee660 409
152b6a62 410 efx_nic_remove_eventq(channel);
8ceee660
BH
411}
412
413/**************************************************************************
414 *
415 * Channel handling
416 *
417 *************************************************************************/
418
4642610c
BH
419/* Allocate and initialise a channel structure, optionally copying
420 * parameters (but not resources) from an old channel structure. */
421static struct efx_channel *
422efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
423{
424 struct efx_channel *channel;
425 struct efx_rx_queue *rx_queue;
426 struct efx_tx_queue *tx_queue;
427 int j;
428
429 if (old_channel) {
430 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
431 if (!channel)
432 return NULL;
433
434 *channel = *old_channel;
435
436 memset(&channel->eventq, 0, sizeof(channel->eventq));
437
438 rx_queue = &channel->rx_queue;
439 rx_queue->buffer = NULL;
440 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
441
442 for (j = 0; j < EFX_TXQ_TYPES; j++) {
443 tx_queue = &channel->tx_queue[j];
444 if (tx_queue->channel)
445 tx_queue->channel = channel;
446 tx_queue->buffer = NULL;
447 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
448 }
449 } else {
450 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
451 if (!channel)
452 return NULL;
453
454 channel->efx = efx;
455 channel->channel = i;
456
457 for (j = 0; j < EFX_TXQ_TYPES; j++) {
458 tx_queue = &channel->tx_queue[j];
459 tx_queue->efx = efx;
460 tx_queue->queue = i * EFX_TXQ_TYPES + j;
461 tx_queue->channel = channel;
462 }
463 }
464
465 spin_lock_init(&channel->tx_stop_lock);
466 atomic_set(&channel->tx_stop_count, 1);
467
468 rx_queue = &channel->rx_queue;
469 rx_queue->efx = efx;
470 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
471 (unsigned long)rx_queue);
472
473 return channel;
474}
475
8ceee660
BH
476static int efx_probe_channel(struct efx_channel *channel)
477{
478 struct efx_tx_queue *tx_queue;
479 struct efx_rx_queue *rx_queue;
480 int rc;
481
62776d03
BH
482 netif_dbg(channel->efx, probe, channel->efx->net_dev,
483 "creating channel %d\n", channel->channel);
8ceee660
BH
484
485 rc = efx_probe_eventq(channel);
486 if (rc)
487 goto fail1;
488
489 efx_for_each_channel_tx_queue(tx_queue, channel) {
490 rc = efx_probe_tx_queue(tx_queue);
491 if (rc)
492 goto fail2;
493 }
494
495 efx_for_each_channel_rx_queue(rx_queue, channel) {
496 rc = efx_probe_rx_queue(rx_queue);
497 if (rc)
498 goto fail3;
499 }
500
501 channel->n_rx_frm_trunc = 0;
502
503 return 0;
504
505 fail3:
506 efx_for_each_channel_rx_queue(rx_queue, channel)
507 efx_remove_rx_queue(rx_queue);
508 fail2:
509 efx_for_each_channel_tx_queue(tx_queue, channel)
510 efx_remove_tx_queue(tx_queue);
511 fail1:
512 return rc;
513}
514
515
56536e9c
BH
516static void efx_set_channel_names(struct efx_nic *efx)
517{
518 struct efx_channel *channel;
519 const char *type = "";
520 int number;
521
522 efx_for_each_channel(channel, efx) {
523 number = channel->channel;
a4900ac9
BH
524 if (efx->n_channels > efx->n_rx_channels) {
525 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
526 type = "-rx";
527 } else {
528 type = "-tx";
a4900ac9 529 number -= efx->n_rx_channels;
56536e9c
BH
530 }
531 }
4642610c
BH
532 snprintf(efx->channel_name[channel->channel],
533 sizeof(efx->channel_name[0]),
56536e9c
BH
534 "%s%s-%d", efx->name, type, number);
535 }
536}
537
4642610c
BH
538static int efx_probe_channels(struct efx_nic *efx)
539{
540 struct efx_channel *channel;
541 int rc;
542
543 /* Restart special buffer allocation */
544 efx->next_buffer_table = 0;
545
546 efx_for_each_channel(channel, efx) {
547 rc = efx_probe_channel(channel);
548 if (rc) {
549 netif_err(efx, probe, efx->net_dev,
550 "failed to create channel %d\n",
551 channel->channel);
552 goto fail;
553 }
554 }
555 efx_set_channel_names(efx);
556
557 return 0;
558
559fail:
560 efx_remove_channels(efx);
561 return rc;
562}
563
8ceee660
BH
564/* Channels are shutdown and reinitialised whilst the NIC is running
565 * to propagate configuration changes (mtu, checksum offload), or
566 * to clear hardware error conditions
567 */
bc3c90a2 568static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
569{
570 struct efx_tx_queue *tx_queue;
571 struct efx_rx_queue *rx_queue;
572 struct efx_channel *channel;
8ceee660 573
f7f13b0b
BH
574 /* Calculate the rx buffer allocation parameters required to
575 * support the current MTU, including padding for header
576 * alignment and overruns.
577 */
578 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
579 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
39c9cf07 580 efx->type->rx_buffer_hash_size +
f7f13b0b 581 efx->type->rx_buffer_padding);
62b330ba
SH
582 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
583 sizeof(struct efx_rx_page_state));
8ceee660
BH
584
585 /* Initialise the channels */
586 efx_for_each_channel(channel, efx) {
62776d03
BH
587 netif_dbg(channel->efx, drv, channel->efx->net_dev,
588 "init chan %d\n", channel->channel);
8ceee660 589
bc3c90a2 590 efx_init_eventq(channel);
8ceee660 591
bc3c90a2
BH
592 efx_for_each_channel_tx_queue(tx_queue, channel)
593 efx_init_tx_queue(tx_queue);
8ceee660
BH
594
595 /* The rx buffer allocation strategy is MTU dependent */
596 efx_rx_strategy(channel);
597
bc3c90a2
BH
598 efx_for_each_channel_rx_queue(rx_queue, channel)
599 efx_init_rx_queue(rx_queue);
8ceee660
BH
600
601 WARN_ON(channel->rx_pkt != NULL);
602 efx_rx_strategy(channel);
603 }
8ceee660
BH
604}
605
606/* This enables event queue processing and packet transmission.
607 *
608 * Note that this function is not allowed to fail, since that would
609 * introduce too much complexity into the suspend/resume path.
610 */
611static void efx_start_channel(struct efx_channel *channel)
612{
613 struct efx_rx_queue *rx_queue;
614
62776d03
BH
615 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
616 "starting chan %d\n", channel->channel);
8ceee660 617
5b9e207c
BH
618 /* The interrupt handler for this channel may set work_pending
619 * as soon as we enable it. Make sure it's cleared before
620 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
621 channel->work_pending = false;
622 channel->enabled = true;
5b9e207c 623 smp_wmb();
8ceee660 624
90d683af 625 /* Fill the queues before enabling NAPI */
8ceee660
BH
626 efx_for_each_channel_rx_queue(rx_queue, channel)
627 efx_fast_push_rx_descriptors(rx_queue);
90d683af
SH
628
629 napi_enable(&channel->napi_str);
8ceee660
BH
630}
631
632/* This disables event queue processing and packet transmission.
633 * This function does not guarantee that all queue processing
634 * (e.g. RX refill) is complete.
635 */
636static void efx_stop_channel(struct efx_channel *channel)
637{
8ceee660
BH
638 if (!channel->enabled)
639 return;
640
62776d03
BH
641 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
642 "stop chan %d\n", channel->channel);
8ceee660 643
dc8cfa55 644 channel->enabled = false;
8ceee660 645 napi_disable(&channel->napi_str);
8ceee660
BH
646}
647
648static void efx_fini_channels(struct efx_nic *efx)
649{
650 struct efx_channel *channel;
651 struct efx_tx_queue *tx_queue;
652 struct efx_rx_queue *rx_queue;
6bc5d3a9 653 int rc;
8ceee660
BH
654
655 EFX_ASSERT_RESET_SERIALISED(efx);
656 BUG_ON(efx->port_enabled);
657
152b6a62 658 rc = efx_nic_flush_queues(efx);
fd371e32
SH
659 if (rc && EFX_WORKAROUND_7803(efx)) {
660 /* Schedule a reset to recover from the flush failure. The
661 * descriptor caches reference memory we're about to free,
662 * but falcon_reconfigure_mac_wrapper() won't reconnect
663 * the MACs because of the pending reset. */
62776d03
BH
664 netif_err(efx, drv, efx->net_dev,
665 "Resetting to recover from flush failure\n");
fd371e32
SH
666 efx_schedule_reset(efx, RESET_TYPE_ALL);
667 } else if (rc) {
62776d03 668 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
fd371e32 669 } else {
62776d03
BH
670 netif_dbg(efx, drv, efx->net_dev,
671 "successfully flushed all queues\n");
fd371e32 672 }
6bc5d3a9 673
8ceee660 674 efx_for_each_channel(channel, efx) {
62776d03
BH
675 netif_dbg(channel->efx, drv, channel->efx->net_dev,
676 "shut down chan %d\n", channel->channel);
8ceee660
BH
677
678 efx_for_each_channel_rx_queue(rx_queue, channel)
679 efx_fini_rx_queue(rx_queue);
680 efx_for_each_channel_tx_queue(tx_queue, channel)
681 efx_fini_tx_queue(tx_queue);
8ceee660
BH
682 efx_fini_eventq(channel);
683 }
684}
685
686static void efx_remove_channel(struct efx_channel *channel)
687{
688 struct efx_tx_queue *tx_queue;
689 struct efx_rx_queue *rx_queue;
690
62776d03
BH
691 netif_dbg(channel->efx, drv, channel->efx->net_dev,
692 "destroy chan %d\n", channel->channel);
8ceee660
BH
693
694 efx_for_each_channel_rx_queue(rx_queue, channel)
695 efx_remove_rx_queue(rx_queue);
696 efx_for_each_channel_tx_queue(tx_queue, channel)
697 efx_remove_tx_queue(tx_queue);
698 efx_remove_eventq(channel);
8ceee660
BH
699}
700
4642610c
BH
701static void efx_remove_channels(struct efx_nic *efx)
702{
703 struct efx_channel *channel;
704
705 efx_for_each_channel(channel, efx)
706 efx_remove_channel(channel);
707}
708
709int
710efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
711{
712 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
713 u32 old_rxq_entries, old_txq_entries;
714 unsigned i;
715 int rc;
716
717 efx_stop_all(efx);
718 efx_fini_channels(efx);
719
720 /* Clone channels */
721 memset(other_channel, 0, sizeof(other_channel));
722 for (i = 0; i < efx->n_channels; i++) {
723 channel = efx_alloc_channel(efx, i, efx->channel[i]);
724 if (!channel) {
725 rc = -ENOMEM;
726 goto out;
727 }
728 other_channel[i] = channel;
729 }
730
731 /* Swap entry counts and channel pointers */
732 old_rxq_entries = efx->rxq_entries;
733 old_txq_entries = efx->txq_entries;
734 efx->rxq_entries = rxq_entries;
735 efx->txq_entries = txq_entries;
736 for (i = 0; i < efx->n_channels; i++) {
737 channel = efx->channel[i];
738 efx->channel[i] = other_channel[i];
739 other_channel[i] = channel;
740 }
741
742 rc = efx_probe_channels(efx);
743 if (rc)
744 goto rollback;
745
746 /* Destroy old channels */
747 for (i = 0; i < efx->n_channels; i++)
748 efx_remove_channel(other_channel[i]);
749out:
750 /* Free unused channel structures */
751 for (i = 0; i < efx->n_channels; i++)
752 kfree(other_channel[i]);
753
754 efx_init_channels(efx);
755 efx_start_all(efx);
756 return rc;
757
758rollback:
759 /* Swap back */
760 efx->rxq_entries = old_rxq_entries;
761 efx->txq_entries = old_txq_entries;
762 for (i = 0; i < efx->n_channels; i++) {
763 channel = efx->channel[i];
764 efx->channel[i] = other_channel[i];
765 other_channel[i] = channel;
766 }
767 goto out;
768}
769
90d683af 770void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 771{
90d683af 772 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
773}
774
775/**************************************************************************
776 *
777 * Port handling
778 *
779 **************************************************************************/
780
781/* This ensures that the kernel is kept informed (via
782 * netif_carrier_on/off) of the link status, and also maintains the
783 * link status's stop on the port's TX queue.
784 */
fdaa9aed 785void efx_link_status_changed(struct efx_nic *efx)
8ceee660 786{
eb50c0d6
BH
787 struct efx_link_state *link_state = &efx->link_state;
788
8ceee660
BH
789 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
790 * that no events are triggered between unregister_netdev() and the
791 * driver unloading. A more general condition is that NETDEV_CHANGE
792 * can only be generated between NETDEV_UP and NETDEV_DOWN */
793 if (!netif_running(efx->net_dev))
794 return;
795
8c8661e4
BH
796 if (efx->port_inhibited) {
797 netif_carrier_off(efx->net_dev);
798 return;
799 }
800
eb50c0d6 801 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
802 efx->n_link_state_changes++;
803
eb50c0d6 804 if (link_state->up)
8ceee660
BH
805 netif_carrier_on(efx->net_dev);
806 else
807 netif_carrier_off(efx->net_dev);
808 }
809
810 /* Status message for kernel log */
eb50c0d6 811 if (link_state->up) {
62776d03
BH
812 netif_info(efx, link, efx->net_dev,
813 "link up at %uMbps %s-duplex (MTU %d)%s\n",
814 link_state->speed, link_state->fd ? "full" : "half",
815 efx->net_dev->mtu,
816 (efx->promiscuous ? " [PROMISC]" : ""));
8ceee660 817 } else {
62776d03 818 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
819 }
820
821}
822
d3245b28
BH
823void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
824{
825 efx->link_advertising = advertising;
826 if (advertising) {
827 if (advertising & ADVERTISED_Pause)
828 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
829 else
830 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
831 if (advertising & ADVERTISED_Asym_Pause)
832 efx->wanted_fc ^= EFX_FC_TX;
833 }
834}
835
836void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
837{
838 efx->wanted_fc = wanted_fc;
839 if (efx->link_advertising) {
840 if (wanted_fc & EFX_FC_RX)
841 efx->link_advertising |= (ADVERTISED_Pause |
842 ADVERTISED_Asym_Pause);
843 else
844 efx->link_advertising &= ~(ADVERTISED_Pause |
845 ADVERTISED_Asym_Pause);
846 if (wanted_fc & EFX_FC_TX)
847 efx->link_advertising ^= ADVERTISED_Asym_Pause;
848 }
849}
850
115122af
BH
851static void efx_fini_port(struct efx_nic *efx);
852
d3245b28
BH
853/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
854 * the MAC appropriately. All other PHY configuration changes are pushed
855 * through phy_op->set_settings(), and pushed asynchronously to the MAC
856 * through efx_monitor().
857 *
858 * Callers must hold the mac_lock
859 */
860int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 861{
d3245b28
BH
862 enum efx_phy_mode phy_mode;
863 int rc;
8ceee660 864
d3245b28 865 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 866
a816f75a
BH
867 /* Serialise the promiscuous flag with efx_set_multicast_list. */
868 if (efx_dev_registered(efx)) {
869 netif_addr_lock_bh(efx->net_dev);
870 netif_addr_unlock_bh(efx->net_dev);
871 }
872
d3245b28
BH
873 /* Disable PHY transmit in mac level loopbacks */
874 phy_mode = efx->phy_mode;
177dfcd8
BH
875 if (LOOPBACK_INTERNAL(efx))
876 efx->phy_mode |= PHY_MODE_TX_DISABLED;
877 else
878 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 879
d3245b28 880 rc = efx->type->reconfigure_port(efx);
8ceee660 881
d3245b28
BH
882 if (rc)
883 efx->phy_mode = phy_mode;
177dfcd8 884
d3245b28 885 return rc;
8ceee660
BH
886}
887
888/* Reinitialise the MAC to pick up new PHY settings, even if the port is
889 * disabled. */
d3245b28 890int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 891{
d3245b28
BH
892 int rc;
893
8ceee660
BH
894 EFX_ASSERT_RESET_SERIALISED(efx);
895
896 mutex_lock(&efx->mac_lock);
d3245b28 897 rc = __efx_reconfigure_port(efx);
8ceee660 898 mutex_unlock(&efx->mac_lock);
d3245b28
BH
899
900 return rc;
8ceee660
BH
901}
902
8be4f3e6
BH
903/* Asynchronous work item for changing MAC promiscuity and multicast
904 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
905 * MAC directly. */
766ca0fa
BH
906static void efx_mac_work(struct work_struct *data)
907{
908 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
909
910 mutex_lock(&efx->mac_lock);
8be4f3e6 911 if (efx->port_enabled) {
ef2b90ee 912 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
913 efx->mac_op->reconfigure(efx);
914 }
766ca0fa
BH
915 mutex_unlock(&efx->mac_lock);
916}
917
8ceee660
BH
918static int efx_probe_port(struct efx_nic *efx)
919{
920 int rc;
921
62776d03 922 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 923
ff3b00a0
SH
924 if (phy_flash_cfg)
925 efx->phy_mode = PHY_MODE_SPECIAL;
926
ef2b90ee
BH
927 /* Connect up MAC/PHY operations table */
928 rc = efx->type->probe_port(efx);
8ceee660 929 if (rc)
e42de262 930 return rc;
8ceee660
BH
931
932 /* Sanity check MAC address */
933 if (is_valid_ether_addr(efx->mac_address)) {
934 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
935 } else {
62776d03
BH
936 netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
937 efx->mac_address);
8ceee660
BH
938 if (!allow_bad_hwaddr) {
939 rc = -EINVAL;
940 goto err;
941 }
942 random_ether_addr(efx->net_dev->dev_addr);
62776d03
BH
943 netif_info(efx, probe, efx->net_dev,
944 "using locally-generated MAC %pM\n",
945 efx->net_dev->dev_addr);
8ceee660
BH
946 }
947
948 return 0;
949
950 err:
e42de262 951 efx->type->remove_port(efx);
8ceee660
BH
952 return rc;
953}
954
955static int efx_init_port(struct efx_nic *efx)
956{
957 int rc;
958
62776d03 959 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 960
1dfc5cea
BH
961 mutex_lock(&efx->mac_lock);
962
177dfcd8 963 rc = efx->phy_op->init(efx);
8ceee660 964 if (rc)
1dfc5cea 965 goto fail1;
8ceee660 966
dc8cfa55 967 efx->port_initialized = true;
1dfc5cea 968
d3245b28
BH
969 /* Reconfigure the MAC before creating dma queues (required for
970 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
971 efx->mac_op->reconfigure(efx);
972
973 /* Ensure the PHY advertises the correct flow control settings */
974 rc = efx->phy_op->reconfigure(efx);
975 if (rc)
976 goto fail2;
977
1dfc5cea 978 mutex_unlock(&efx->mac_lock);
8ceee660 979 return 0;
177dfcd8 980
1dfc5cea 981fail2:
177dfcd8 982 efx->phy_op->fini(efx);
1dfc5cea
BH
983fail1:
984 mutex_unlock(&efx->mac_lock);
177dfcd8 985 return rc;
8ceee660
BH
986}
987
8ceee660
BH
988static void efx_start_port(struct efx_nic *efx)
989{
62776d03 990 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
991 BUG_ON(efx->port_enabled);
992
993 mutex_lock(&efx->mac_lock);
dc8cfa55 994 efx->port_enabled = true;
8be4f3e6
BH
995
996 /* efx_mac_work() might have been scheduled after efx_stop_port(),
997 * and then cancelled by efx_flush_all() */
ef2b90ee 998 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
999 efx->mac_op->reconfigure(efx);
1000
8ceee660
BH
1001 mutex_unlock(&efx->mac_lock);
1002}
1003
fdaa9aed 1004/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
1005static void efx_stop_port(struct efx_nic *efx)
1006{
62776d03 1007 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660
BH
1008
1009 mutex_lock(&efx->mac_lock);
dc8cfa55 1010 efx->port_enabled = false;
8ceee660
BH
1011 mutex_unlock(&efx->mac_lock);
1012
1013 /* Serialise against efx_set_multicast_list() */
55668611 1014 if (efx_dev_registered(efx)) {
b9e40857
DM
1015 netif_addr_lock_bh(efx->net_dev);
1016 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
1017 }
1018}
1019
1020static void efx_fini_port(struct efx_nic *efx)
1021{
62776d03 1022 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
1023
1024 if (!efx->port_initialized)
1025 return;
1026
177dfcd8 1027 efx->phy_op->fini(efx);
dc8cfa55 1028 efx->port_initialized = false;
8ceee660 1029
eb50c0d6 1030 efx->link_state.up = false;
8ceee660
BH
1031 efx_link_status_changed(efx);
1032}
1033
1034static void efx_remove_port(struct efx_nic *efx)
1035{
62776d03 1036 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 1037
ef2b90ee 1038 efx->type->remove_port(efx);
8ceee660
BH
1039}
1040
1041/**************************************************************************
1042 *
1043 * NIC handling
1044 *
1045 **************************************************************************/
1046
1047/* This configures the PCI device to enable I/O and DMA. */
1048static int efx_init_io(struct efx_nic *efx)
1049{
1050 struct pci_dev *pci_dev = efx->pci_dev;
1051 dma_addr_t dma_mask = efx->type->max_dma_mask;
1052 int rc;
1053
62776d03 1054 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
1055
1056 rc = pci_enable_device(pci_dev);
1057 if (rc) {
62776d03
BH
1058 netif_err(efx, probe, efx->net_dev,
1059 "failed to enable PCI device\n");
8ceee660
BH
1060 goto fail1;
1061 }
1062
1063 pci_set_master(pci_dev);
1064
1065 /* Set the PCI DMA mask. Try all possibilities from our
1066 * genuine mask down to 32 bits, because some architectures
1067 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1068 * masks event though they reject 46 bit masks.
1069 */
1070 while (dma_mask > 0x7fffffffUL) {
1071 if (pci_dma_supported(pci_dev, dma_mask) &&
1072 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
1073 break;
1074 dma_mask >>= 1;
1075 }
1076 if (rc) {
62776d03
BH
1077 netif_err(efx, probe, efx->net_dev,
1078 "could not find a suitable DMA mask\n");
8ceee660
BH
1079 goto fail2;
1080 }
62776d03
BH
1081 netif_dbg(efx, probe, efx->net_dev,
1082 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660
BH
1083 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1084 if (rc) {
1085 /* pci_set_consistent_dma_mask() is not *allowed* to
1086 * fail with a mask that pci_set_dma_mask() accepted,
1087 * but just in case...
1088 */
62776d03
BH
1089 netif_err(efx, probe, efx->net_dev,
1090 "failed to set consistent DMA mask\n");
8ceee660
BH
1091 goto fail2;
1092 }
1093
dc803df8
BH
1094 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1095 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 1096 if (rc) {
62776d03
BH
1097 netif_err(efx, probe, efx->net_dev,
1098 "request for memory BAR failed\n");
8ceee660
BH
1099 rc = -EIO;
1100 goto fail3;
1101 }
1102 efx->membase = ioremap_nocache(efx->membase_phys,
1103 efx->type->mem_map_size);
1104 if (!efx->membase) {
62776d03
BH
1105 netif_err(efx, probe, efx->net_dev,
1106 "could not map memory BAR at %llx+%x\n",
1107 (unsigned long long)efx->membase_phys,
1108 efx->type->mem_map_size);
8ceee660
BH
1109 rc = -ENOMEM;
1110 goto fail4;
1111 }
62776d03
BH
1112 netif_dbg(efx, probe, efx->net_dev,
1113 "memory BAR at %llx+%x (virtual %p)\n",
1114 (unsigned long long)efx->membase_phys,
1115 efx->type->mem_map_size, efx->membase);
8ceee660
BH
1116
1117 return 0;
1118
1119 fail4:
dc803df8 1120 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 1121 fail3:
2c118e0f 1122 efx->membase_phys = 0;
8ceee660
BH
1123 fail2:
1124 pci_disable_device(efx->pci_dev);
1125 fail1:
1126 return rc;
1127}
1128
1129static void efx_fini_io(struct efx_nic *efx)
1130{
62776d03 1131 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
1132
1133 if (efx->membase) {
1134 iounmap(efx->membase);
1135 efx->membase = NULL;
1136 }
1137
1138 if (efx->membase_phys) {
dc803df8 1139 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 1140 efx->membase_phys = 0;
8ceee660
BH
1141 }
1142
1143 pci_disable_device(efx->pci_dev);
1144}
1145
a4900ac9
BH
1146/* Get number of channels wanted. Each channel will have its own IRQ,
1147 * 1 RX queue and/or 2 TX queues. */
1148static int efx_wanted_channels(void)
46123d04 1149{
2f8975fb 1150 cpumask_var_t core_mask;
46123d04
BH
1151 int count;
1152 int cpu;
1153
79f55997 1154 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 1155 printk(KERN_WARNING
3977d033 1156 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
1157 return 1;
1158 }
1159
46123d04
BH
1160 count = 0;
1161 for_each_online_cpu(cpu) {
2f8975fb 1162 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 1163 ++count;
2f8975fb 1164 cpumask_or(core_mask, core_mask,
fbd59a8d 1165 topology_core_cpumask(cpu));
46123d04
BH
1166 }
1167 }
1168
2f8975fb 1169 free_cpumask_var(core_mask);
46123d04
BH
1170 return count;
1171}
1172
1173/* Probe the number and type of interrupts we are able to obtain, and
1174 * the resulting numbers of channels and RX queues.
1175 */
8ceee660
BH
1176static void efx_probe_interrupts(struct efx_nic *efx)
1177{
46123d04
BH
1178 int max_channels =
1179 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
1180 int rc, i;
1181
1182 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1183 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 1184 int n_channels;
aa6ef27e 1185
a4900ac9
BH
1186 n_channels = efx_wanted_channels();
1187 if (separate_tx_channels)
1188 n_channels *= 2;
1189 n_channels = min(n_channels, max_channels);
8ceee660 1190
a4900ac9 1191 for (i = 0; i < n_channels; i++)
8ceee660 1192 xentries[i].entry = i;
a4900ac9 1193 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1194 if (rc > 0) {
62776d03
BH
1195 netif_err(efx, drv, efx->net_dev,
1196 "WARNING: Insufficient MSI-X vectors"
1197 " available (%d < %d).\n", rc, n_channels);
1198 netif_err(efx, drv, efx->net_dev,
1199 "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1200 EFX_BUG_ON_PARANOID(rc >= n_channels);
1201 n_channels = rc;
8ceee660 1202 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1203 n_channels);
8ceee660
BH
1204 }
1205
1206 if (rc == 0) {
a4900ac9
BH
1207 efx->n_channels = n_channels;
1208 if (separate_tx_channels) {
1209 efx->n_tx_channels =
1210 max(efx->n_channels / 2, 1U);
1211 efx->n_rx_channels =
1212 max(efx->n_channels -
1213 efx->n_tx_channels, 1U);
1214 } else {
1215 efx->n_tx_channels = efx->n_channels;
1216 efx->n_rx_channels = efx->n_channels;
1217 }
1218 for (i = 0; i < n_channels; i++)
f7d12cdc
BH
1219 efx_get_channel(efx, i)->irq =
1220 xentries[i].vector;
8ceee660
BH
1221 } else {
1222 /* Fall back to single channel MSI */
1223 efx->interrupt_mode = EFX_INT_MODE_MSI;
62776d03
BH
1224 netif_err(efx, drv, efx->net_dev,
1225 "could not enable MSI-X\n");
8ceee660
BH
1226 }
1227 }
1228
1229 /* Try single interrupt MSI */
1230 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1231 efx->n_channels = 1;
a4900ac9
BH
1232 efx->n_rx_channels = 1;
1233 efx->n_tx_channels = 1;
8ceee660
BH
1234 rc = pci_enable_msi(efx->pci_dev);
1235 if (rc == 0) {
f7d12cdc 1236 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
8ceee660 1237 } else {
62776d03
BH
1238 netif_err(efx, drv, efx->net_dev,
1239 "could not enable MSI\n");
8ceee660
BH
1240 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1241 }
1242 }
1243
1244 /* Assume legacy interrupts */
1245 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1246 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1247 efx->n_rx_channels = 1;
1248 efx->n_tx_channels = 1;
8ceee660
BH
1249 efx->legacy_irq = efx->pci_dev->irq;
1250 }
1251}
1252
1253static void efx_remove_interrupts(struct efx_nic *efx)
1254{
1255 struct efx_channel *channel;
1256
1257 /* Remove MSI/MSI-X interrupts */
64ee3120 1258 efx_for_each_channel(channel, efx)
8ceee660
BH
1259 channel->irq = 0;
1260 pci_disable_msi(efx->pci_dev);
1261 pci_disable_msix(efx->pci_dev);
1262
1263 /* Remove legacy interrupt */
1264 efx->legacy_irq = 0;
1265}
1266
8313aca3
BH
1267struct efx_tx_queue *
1268efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1269{
1270 unsigned tx_channel_offset =
1271 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1272 EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1273 type >= EFX_TXQ_TYPES);
1274 return &efx->channel[tx_channel_offset + index]->tx_queue[type];
1275}
1276
8831da7b 1277static void efx_set_channels(struct efx_nic *efx)
8ceee660 1278{
a4900ac9 1279 struct efx_channel *channel;
8ceee660 1280 struct efx_tx_queue *tx_queue;
a4900ac9
BH
1281 unsigned tx_channel_offset =
1282 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
8ceee660 1283
8313aca3
BH
1284 /* Channel pointers were set in efx_init_struct() but we now
1285 * need to clear them for TX queues in any RX-only channels. */
a4900ac9 1286 efx_for_each_channel(channel, efx) {
8313aca3
BH
1287 if (channel->channel - tx_channel_offset >=
1288 efx->n_tx_channels) {
a4900ac9 1289 efx_for_each_channel_tx_queue(tx_queue, channel)
8313aca3 1290 tx_queue->channel = NULL;
a4900ac9 1291 }
60ac1065 1292 }
8ceee660
BH
1293}
1294
1295static int efx_probe_nic(struct efx_nic *efx)
1296{
765c9f46 1297 size_t i;
8ceee660
BH
1298 int rc;
1299
62776d03 1300 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1301
1302 /* Carry out hardware-type specific initialisation */
ef2b90ee 1303 rc = efx->type->probe(efx);
8ceee660
BH
1304 if (rc)
1305 return rc;
1306
a4900ac9 1307 /* Determine the number of channels and queues by trying to hook
8ceee660
BH
1308 * in MSI-X interrupts. */
1309 efx_probe_interrupts(efx);
1310
5d3a6fca
BH
1311 if (efx->n_channels > 1)
1312 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
765c9f46
BH
1313 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1314 efx->rx_indir_table[i] = i % efx->n_rx_channels;
5d3a6fca 1315
8831da7b 1316 efx_set_channels(efx);
a4900ac9 1317 efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
8ceee660
BH
1318
1319 /* Initialise the interrupt moderation settings */
6fb70fd1 1320 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1321
1322 return 0;
1323}
1324
1325static void efx_remove_nic(struct efx_nic *efx)
1326{
62776d03 1327 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1328
1329 efx_remove_interrupts(efx);
ef2b90ee 1330 efx->type->remove(efx);
8ceee660
BH
1331}
1332
1333/**************************************************************************
1334 *
1335 * NIC startup/shutdown
1336 *
1337 *************************************************************************/
1338
1339static int efx_probe_all(struct efx_nic *efx)
1340{
8ceee660
BH
1341 int rc;
1342
8ceee660
BH
1343 rc = efx_probe_nic(efx);
1344 if (rc) {
62776d03 1345 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1346 goto fail1;
1347 }
1348
8ceee660
BH
1349 rc = efx_probe_port(efx);
1350 if (rc) {
62776d03 1351 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1352 goto fail2;
1353 }
1354
ecc910f5 1355 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
4642610c
BH
1356 rc = efx_probe_channels(efx);
1357 if (rc)
1358 goto fail3;
8ceee660 1359
64eebcfd
BH
1360 rc = efx_probe_filters(efx);
1361 if (rc) {
1362 netif_err(efx, probe, efx->net_dev,
1363 "failed to create filter tables\n");
1364 goto fail4;
1365 }
1366
8ceee660
BH
1367 return 0;
1368
64eebcfd
BH
1369 fail4:
1370 efx_remove_channels(efx);
8ceee660 1371 fail3:
8ceee660
BH
1372 efx_remove_port(efx);
1373 fail2:
1374 efx_remove_nic(efx);
1375 fail1:
1376 return rc;
1377}
1378
1379/* Called after previous invocation(s) of efx_stop_all, restarts the
1380 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1381 * and ensures that the port is scheduled to be reconfigured.
1382 * This function is safe to call multiple times when the NIC is in any
1383 * state. */
1384static void efx_start_all(struct efx_nic *efx)
1385{
1386 struct efx_channel *channel;
1387
1388 EFX_ASSERT_RESET_SERIALISED(efx);
1389
1390 /* Check that it is appropriate to restart the interface. All
1391 * of these flags are safe to read under just the rtnl lock */
1392 if (efx->port_enabled)
1393 return;
1394 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1395 return;
55668611 1396 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1397 return;
1398
1399 /* Mark the port as enabled so port reconfigurations can start, then
1400 * restart the transmit interface early so the watchdog timer stops */
1401 efx_start_port(efx);
8ceee660 1402
a4900ac9
BH
1403 efx_for_each_channel(channel, efx) {
1404 if (efx_dev_registered(efx))
1405 efx_wake_queue(channel);
8ceee660 1406 efx_start_channel(channel);
a4900ac9 1407 }
8ceee660 1408
152b6a62 1409 efx_nic_enable_interrupts(efx);
8ceee660 1410
8880f4ec
BH
1411 /* Switch to event based MCDI completions after enabling interrupts.
1412 * If a reset has been scheduled, then we need to stay in polled mode.
1413 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1414 * reset_pending [modified from an atomic context], we instead guarantee
1415 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1416 efx_mcdi_mode_event(efx);
1417 if (efx->reset_pending != RESET_TYPE_NONE)
1418 efx_mcdi_mode_poll(efx);
1419
78c1f0a0
SH
1420 /* Start the hardware monitor if there is one. Otherwise (we're link
1421 * event driven), we have to poll the PHY because after an event queue
1422 * flush, we could have a missed a link state change */
1423 if (efx->type->monitor != NULL) {
8ceee660
BH
1424 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1425 efx_monitor_interval);
78c1f0a0
SH
1426 } else {
1427 mutex_lock(&efx->mac_lock);
1428 if (efx->phy_op->poll(efx))
1429 efx_link_status_changed(efx);
1430 mutex_unlock(&efx->mac_lock);
1431 }
55edc6e6 1432
ef2b90ee 1433 efx->type->start_stats(efx);
8ceee660
BH
1434}
1435
1436/* Flush all delayed work. Should only be called when no more delayed work
1437 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1438 * since we're holding the rtnl_lock at this point. */
1439static void efx_flush_all(struct efx_nic *efx)
1440{
8ceee660
BH
1441 /* Make sure the hardware monitor is stopped */
1442 cancel_delayed_work_sync(&efx->monitor_work);
8ceee660 1443 /* Stop scheduled port reconfigurations */
766ca0fa 1444 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1445}
1446
1447/* Quiesce hardware and software without bringing the link down.
1448 * Safe to call multiple times, when the nic and interface is in any
1449 * state. The caller is guaranteed to subsequently be in a position
1450 * to modify any hardware and software state they see fit without
1451 * taking locks. */
1452static void efx_stop_all(struct efx_nic *efx)
1453{
1454 struct efx_channel *channel;
1455
1456 EFX_ASSERT_RESET_SERIALISED(efx);
1457
1458 /* port_enabled can be read safely under the rtnl lock */
1459 if (!efx->port_enabled)
1460 return;
1461
ef2b90ee 1462 efx->type->stop_stats(efx);
55edc6e6 1463
8880f4ec
BH
1464 /* Switch to MCDI polling on Siena before disabling interrupts */
1465 efx_mcdi_mode_poll(efx);
1466
8ceee660 1467 /* Disable interrupts and wait for ISR to complete */
152b6a62 1468 efx_nic_disable_interrupts(efx);
8ceee660
BH
1469 if (efx->legacy_irq)
1470 synchronize_irq(efx->legacy_irq);
64ee3120 1471 efx_for_each_channel(channel, efx) {
8ceee660
BH
1472 if (channel->irq)
1473 synchronize_irq(channel->irq);
b3475645 1474 }
8ceee660
BH
1475
1476 /* Stop all NAPI processing and synchronous rx refills */
1477 efx_for_each_channel(channel, efx)
1478 efx_stop_channel(channel);
1479
1480 /* Stop all asynchronous port reconfigurations. Since all
1481 * event processing has already been stopped, there is no
1482 * window to loose phy events */
1483 efx_stop_port(efx);
1484
fdaa9aed 1485 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1486 efx_flush_all(efx);
1487
8ceee660
BH
1488 /* Stop the kernel transmit interface late, so the watchdog
1489 * timer isn't ticking over the flush */
55668611 1490 if (efx_dev_registered(efx)) {
a4900ac9
BH
1491 struct efx_channel *channel;
1492 efx_for_each_channel(channel, efx)
1493 efx_stop_queue(channel);
8ceee660
BH
1494 netif_tx_lock_bh(efx->net_dev);
1495 netif_tx_unlock_bh(efx->net_dev);
1496 }
1497}
1498
1499static void efx_remove_all(struct efx_nic *efx)
1500{
64eebcfd 1501 efx_remove_filters(efx);
4642610c 1502 efx_remove_channels(efx);
8ceee660
BH
1503 efx_remove_port(efx);
1504 efx_remove_nic(efx);
1505}
1506
8ceee660
BH
1507/**************************************************************************
1508 *
1509 * Interrupt moderation
1510 *
1511 **************************************************************************/
1512
0d86ebd8
BH
1513static unsigned irq_mod_ticks(int usecs, int resolution)
1514{
1515 if (usecs <= 0)
1516 return 0; /* cannot receive interrupts ahead of time :-) */
1517 if (usecs < resolution)
1518 return 1; /* never round down to 0 */
1519 return usecs / resolution;
1520}
1521
8ceee660 1522/* Set interrupt moderation parameters */
6fb70fd1
BH
1523void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1524 bool rx_adaptive)
8ceee660 1525{
f7d12cdc 1526 struct efx_channel *channel;
152b6a62
BH
1527 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1528 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
8ceee660
BH
1529
1530 EFX_ASSERT_RESET_SERIALISED(efx);
1531
6fb70fd1 1532 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1533 efx->irq_rx_moderation = rx_ticks;
f7d12cdc
BH
1534 efx_for_each_channel(channel, efx) {
1535 if (efx_channel_get_rx_queue(channel))
1536 channel->irq_moderation = rx_ticks;
1537 else if (efx_channel_get_tx_queue(channel, 0))
1538 channel->irq_moderation = tx_ticks;
1539 }
8ceee660
BH
1540}
1541
1542/**************************************************************************
1543 *
1544 * Hardware monitor
1545 *
1546 **************************************************************************/
1547
1548/* Run periodically off the general workqueue. Serialised against
1549 * efx_reconfigure_port via the mac_lock */
1550static void efx_monitor(struct work_struct *data)
1551{
1552 struct efx_nic *efx = container_of(data, struct efx_nic,
1553 monitor_work.work);
8ceee660 1554
62776d03
BH
1555 netif_vdbg(efx, timer, efx->net_dev,
1556 "hardware monitor executing on CPU %d\n",
1557 raw_smp_processor_id());
ef2b90ee 1558 BUG_ON(efx->type->monitor == NULL);
8ceee660 1559
8ceee660
BH
1560 /* If the mac_lock is already held then it is likely a port
1561 * reconfiguration is already in place, which will likely do
1562 * most of the work of check_hw() anyway. */
766ca0fa
BH
1563 if (!mutex_trylock(&efx->mac_lock))
1564 goto out_requeue;
1565 if (!efx->port_enabled)
1566 goto out_unlock;
ef2b90ee 1567 efx->type->monitor(efx);
8ceee660 1568
766ca0fa 1569out_unlock:
8ceee660 1570 mutex_unlock(&efx->mac_lock);
766ca0fa 1571out_requeue:
8ceee660
BH
1572 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1573 efx_monitor_interval);
1574}
1575
1576/**************************************************************************
1577 *
1578 * ioctls
1579 *
1580 *************************************************************************/
1581
1582/* Net device ioctl
1583 * Context: process, rtnl_lock() held.
1584 */
1585static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1586{
767e468c 1587 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1588 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1589
1590 EFX_ASSERT_RESET_SERIALISED(efx);
1591
68e7f45e
BH
1592 /* Convert phy_id from older PRTAD/DEVAD format */
1593 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1594 (data->phy_id & 0xfc00) == 0x0400)
1595 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1596
1597 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1598}
1599
1600/**************************************************************************
1601 *
1602 * NAPI interface
1603 *
1604 **************************************************************************/
1605
1606static int efx_init_napi(struct efx_nic *efx)
1607{
1608 struct efx_channel *channel;
8ceee660
BH
1609
1610 efx_for_each_channel(channel, efx) {
1611 channel->napi_dev = efx->net_dev;
718cff1e
BH
1612 netif_napi_add(channel->napi_dev, &channel->napi_str,
1613 efx_poll, napi_weight);
8ceee660
BH
1614 }
1615 return 0;
8ceee660
BH
1616}
1617
1618static void efx_fini_napi(struct efx_nic *efx)
1619{
1620 struct efx_channel *channel;
1621
1622 efx_for_each_channel(channel, efx) {
718cff1e
BH
1623 if (channel->napi_dev)
1624 netif_napi_del(&channel->napi_str);
8ceee660
BH
1625 channel->napi_dev = NULL;
1626 }
1627}
1628
1629/**************************************************************************
1630 *
1631 * Kernel netpoll interface
1632 *
1633 *************************************************************************/
1634
1635#ifdef CONFIG_NET_POLL_CONTROLLER
1636
1637/* Although in the common case interrupts will be disabled, this is not
1638 * guaranteed. However, all our work happens inside the NAPI callback,
1639 * so no locking is required.
1640 */
1641static void efx_netpoll(struct net_device *net_dev)
1642{
767e468c 1643 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1644 struct efx_channel *channel;
1645
64ee3120 1646 efx_for_each_channel(channel, efx)
8ceee660
BH
1647 efx_schedule_channel(channel);
1648}
1649
1650#endif
1651
1652/**************************************************************************
1653 *
1654 * Kernel net device interface
1655 *
1656 *************************************************************************/
1657
1658/* Context: process, rtnl_lock() held. */
1659static int efx_net_open(struct net_device *net_dev)
1660{
767e468c 1661 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1662 EFX_ASSERT_RESET_SERIALISED(efx);
1663
62776d03
BH
1664 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1665 raw_smp_processor_id());
8ceee660 1666
f4bd954e
BH
1667 if (efx->state == STATE_DISABLED)
1668 return -EIO;
f8b87c17
BH
1669 if (efx->phy_mode & PHY_MODE_SPECIAL)
1670 return -EBUSY;
8880f4ec
BH
1671 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1672 return -EIO;
f8b87c17 1673
78c1f0a0
SH
1674 /* Notify the kernel of the link state polled during driver load,
1675 * before the monitor starts running */
1676 efx_link_status_changed(efx);
1677
8ceee660
BH
1678 efx_start_all(efx);
1679 return 0;
1680}
1681
1682/* Context: process, rtnl_lock() held.
1683 * Note that the kernel will ignore our return code; this method
1684 * should really be a void.
1685 */
1686static int efx_net_stop(struct net_device *net_dev)
1687{
767e468c 1688 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1689
62776d03
BH
1690 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1691 raw_smp_processor_id());
8ceee660 1692
f4bd954e
BH
1693 if (efx->state != STATE_DISABLED) {
1694 /* Stop the device and flush all the channels */
1695 efx_stop_all(efx);
1696 efx_fini_channels(efx);
1697 efx_init_channels(efx);
1698 }
8ceee660
BH
1699
1700 return 0;
1701}
1702
5b9e207c 1703/* Context: process, dev_base_lock or RTNL held, non-blocking. */
28172739 1704static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
8ceee660 1705{
767e468c 1706 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1707 struct efx_mac_stats *mac_stats = &efx->mac_stats;
8ceee660 1708
55edc6e6 1709 spin_lock_bh(&efx->stats_lock);
ef2b90ee 1710 efx->type->update_stats(efx);
55edc6e6 1711 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1712
1713 stats->rx_packets = mac_stats->rx_packets;
1714 stats->tx_packets = mac_stats->tx_packets;
1715 stats->rx_bytes = mac_stats->rx_bytes;
1716 stats->tx_bytes = mac_stats->tx_bytes;
80485d34 1717 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
8ceee660
BH
1718 stats->multicast = mac_stats->rx_multicast;
1719 stats->collisions = mac_stats->tx_collision;
1720 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1721 mac_stats->rx_length_error);
8ceee660
BH
1722 stats->rx_crc_errors = mac_stats->rx_bad;
1723 stats->rx_frame_errors = mac_stats->rx_align_error;
1724 stats->rx_fifo_errors = mac_stats->rx_overflow;
1725 stats->rx_missed_errors = mac_stats->rx_missed;
1726 stats->tx_window_errors = mac_stats->tx_late_collision;
1727
1728 stats->rx_errors = (stats->rx_length_errors +
8ceee660
BH
1729 stats->rx_crc_errors +
1730 stats->rx_frame_errors +
8ceee660
BH
1731 mac_stats->rx_symbol_error);
1732 stats->tx_errors = (stats->tx_window_errors +
1733 mac_stats->tx_bad);
1734
1735 return stats;
1736}
1737
1738/* Context: netif_tx_lock held, BHs disabled. */
1739static void efx_watchdog(struct net_device *net_dev)
1740{
767e468c 1741 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1742
62776d03
BH
1743 netif_err(efx, tx_err, efx->net_dev,
1744 "TX stuck with port_enabled=%d: resetting channels\n",
1745 efx->port_enabled);
8ceee660 1746
739bb23d 1747 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1748}
1749
1750
1751/* Context: process, rtnl_lock() held. */
1752static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1753{
767e468c 1754 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1755 int rc = 0;
1756
1757 EFX_ASSERT_RESET_SERIALISED(efx);
1758
1759 if (new_mtu > EFX_MAX_MTU)
1760 return -EINVAL;
1761
1762 efx_stop_all(efx);
1763
62776d03 1764 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660
BH
1765
1766 efx_fini_channels(efx);
d3245b28
BH
1767
1768 mutex_lock(&efx->mac_lock);
1769 /* Reconfigure the MAC before enabling the dma queues so that
1770 * the RX buffers don't overflow */
8ceee660 1771 net_dev->mtu = new_mtu;
d3245b28
BH
1772 efx->mac_op->reconfigure(efx);
1773 mutex_unlock(&efx->mac_lock);
1774
bc3c90a2 1775 efx_init_channels(efx);
8ceee660
BH
1776
1777 efx_start_all(efx);
1778 return rc;
8ceee660
BH
1779}
1780
1781static int efx_set_mac_address(struct net_device *net_dev, void *data)
1782{
767e468c 1783 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1784 struct sockaddr *addr = data;
1785 char *new_addr = addr->sa_data;
1786
1787 EFX_ASSERT_RESET_SERIALISED(efx);
1788
1789 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
1790 netif_err(efx, drv, efx->net_dev,
1791 "invalid ethernet MAC address requested: %pM\n",
1792 new_addr);
8ceee660
BH
1793 return -EINVAL;
1794 }
1795
1796 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1797
1798 /* Reconfigure the MAC */
d3245b28
BH
1799 mutex_lock(&efx->mac_lock);
1800 efx->mac_op->reconfigure(efx);
1801 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1802
1803 return 0;
1804}
1805
a816f75a 1806/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1807static void efx_set_multicast_list(struct net_device *net_dev)
1808{
767e468c 1809 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1810 struct netdev_hw_addr *ha;
8ceee660 1811 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1812 u32 crc;
1813 int bit;
8ceee660 1814
8be4f3e6 1815 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1816
1817 /* Build multicast hash table */
8be4f3e6 1818 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1819 memset(mc_hash, 0xff, sizeof(*mc_hash));
1820 } else {
1821 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1822 netdev_for_each_mc_addr(ha, net_dev) {
1823 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1824 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1825 set_bit_le(bit, mc_hash->byte);
8ceee660 1826 }
8ceee660 1827
8be4f3e6
BH
1828 /* Broadcast packets go through the multicast hash filter.
1829 * ether_crc_le() of the broadcast address is 0xbe2612ff
1830 * so we always add bit 0xff to the mask.
1831 */
1832 set_bit_le(0xff, mc_hash->byte);
1833 }
a816f75a 1834
8be4f3e6
BH
1835 if (efx->port_enabled)
1836 queue_work(efx->workqueue, &efx->mac_work);
1837 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1838}
1839
c3ecb9f3
SH
1840static const struct net_device_ops efx_netdev_ops = {
1841 .ndo_open = efx_net_open,
1842 .ndo_stop = efx_net_stop,
4472702e 1843 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
1844 .ndo_tx_timeout = efx_watchdog,
1845 .ndo_start_xmit = efx_hard_start_xmit,
1846 .ndo_validate_addr = eth_validate_addr,
1847 .ndo_do_ioctl = efx_ioctl,
1848 .ndo_change_mtu = efx_change_mtu,
1849 .ndo_set_mac_address = efx_set_mac_address,
1850 .ndo_set_multicast_list = efx_set_multicast_list,
1851#ifdef CONFIG_NET_POLL_CONTROLLER
1852 .ndo_poll_controller = efx_netpoll,
1853#endif
1854};
1855
7dde596e
BH
1856static void efx_update_name(struct efx_nic *efx)
1857{
1858 strcpy(efx->name, efx->net_dev->name);
1859 efx_mtd_rename(efx);
1860 efx_set_channel_names(efx);
1861}
1862
8ceee660
BH
1863static int efx_netdev_event(struct notifier_block *this,
1864 unsigned long event, void *ptr)
1865{
d3208b5e 1866 struct net_device *net_dev = ptr;
8ceee660 1867
7dde596e
BH
1868 if (net_dev->netdev_ops == &efx_netdev_ops &&
1869 event == NETDEV_CHANGENAME)
1870 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1871
1872 return NOTIFY_DONE;
1873}
1874
1875static struct notifier_block efx_netdev_notifier = {
1876 .notifier_call = efx_netdev_event,
1877};
1878
06d5e193
BH
1879static ssize_t
1880show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1881{
1882 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1883 return sprintf(buf, "%d\n", efx->phy_type);
1884}
1885static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1886
8ceee660
BH
1887static int efx_register_netdev(struct efx_nic *efx)
1888{
1889 struct net_device *net_dev = efx->net_dev;
1890 int rc;
1891
1892 net_dev->watchdog_timeo = 5 * HZ;
1893 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1894 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1895 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1896
8ceee660 1897 /* Clear MAC statistics */
177dfcd8 1898 efx->mac_op->update_stats(efx);
8ceee660
BH
1899 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1900
7dde596e 1901 rtnl_lock();
aed0628d
BH
1902
1903 rc = dev_alloc_name(net_dev, net_dev->name);
1904 if (rc < 0)
1905 goto fail_locked;
7dde596e 1906 efx_update_name(efx);
aed0628d
BH
1907
1908 rc = register_netdevice(net_dev);
1909 if (rc)
1910 goto fail_locked;
1911
1912 /* Always start with carrier off; PHY events will detect the link */
1913 netif_carrier_off(efx->net_dev);
1914
7dde596e 1915 rtnl_unlock();
8ceee660 1916
06d5e193
BH
1917 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1918 if (rc) {
62776d03
BH
1919 netif_err(efx, drv, efx->net_dev,
1920 "failed to init net dev attributes\n");
06d5e193
BH
1921 goto fail_registered;
1922 }
1923
8ceee660 1924 return 0;
06d5e193 1925
aed0628d
BH
1926fail_locked:
1927 rtnl_unlock();
62776d03 1928 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d
BH
1929 return rc;
1930
06d5e193
BH
1931fail_registered:
1932 unregister_netdev(net_dev);
1933 return rc;
8ceee660
BH
1934}
1935
1936static void efx_unregister_netdev(struct efx_nic *efx)
1937{
f7d12cdc 1938 struct efx_channel *channel;
8ceee660
BH
1939 struct efx_tx_queue *tx_queue;
1940
1941 if (!efx->net_dev)
1942 return;
1943
767e468c 1944 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1945
1946 /* Free up any skbs still remaining. This has to happen before
1947 * we try to unregister the netdev as running their destructors
1948 * may be needed to get the device ref. count to 0. */
f7d12cdc
BH
1949 efx_for_each_channel(channel, efx) {
1950 efx_for_each_channel_tx_queue(tx_queue, channel)
1951 efx_release_tx_buffers(tx_queue);
1952 }
8ceee660 1953
55668611 1954 if (efx_dev_registered(efx)) {
8ceee660 1955 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1956 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1957 unregister_netdev(efx->net_dev);
1958 }
1959}
1960
1961/**************************************************************************
1962 *
1963 * Device reset and suspend
1964 *
1965 **************************************************************************/
1966
2467ca46
BH
1967/* Tears down the entire software state and most of the hardware state
1968 * before reset. */
d3245b28 1969void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 1970{
8ceee660
BH
1971 EFX_ASSERT_RESET_SERIALISED(efx);
1972
2467ca46
BH
1973 efx_stop_all(efx);
1974 mutex_lock(&efx->mac_lock);
f4150724 1975 mutex_lock(&efx->spi_lock);
2467ca46 1976
8ceee660 1977 efx_fini_channels(efx);
4b988280
SH
1978 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1979 efx->phy_op->fini(efx);
ef2b90ee 1980 efx->type->fini(efx);
8ceee660
BH
1981}
1982
2467ca46
BH
1983/* This function will always ensure that the locks acquired in
1984 * efx_reset_down() are released. A failure return code indicates
1985 * that we were unable to reinitialise the hardware, and the
1986 * driver should be disabled. If ok is false, then the rx and tx
1987 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 1988int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
1989{
1990 int rc;
1991
2467ca46 1992 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1993
ef2b90ee 1994 rc = efx->type->init(efx);
8ceee660 1995 if (rc) {
62776d03 1996 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 1997 goto fail;
8ceee660
BH
1998 }
1999
eb9f6744
BH
2000 if (!ok)
2001 goto fail;
2002
4b988280 2003 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
2004 rc = efx->phy_op->init(efx);
2005 if (rc)
2006 goto fail;
2007 if (efx->phy_op->reconfigure(efx))
62776d03
BH
2008 netif_err(efx, drv, efx->net_dev,
2009 "could not restore PHY settings\n");
4b988280
SH
2010 }
2011
eb9f6744 2012 efx->mac_op->reconfigure(efx);
8ceee660 2013
eb9f6744 2014 efx_init_channels(efx);
64eebcfd 2015 efx_restore_filters(efx);
eb9f6744
BH
2016
2017 mutex_unlock(&efx->spi_lock);
2018 mutex_unlock(&efx->mac_lock);
2019
2020 efx_start_all(efx);
2021
2022 return 0;
2023
2024fail:
2025 efx->port_initialized = false;
2467ca46 2026
f4150724 2027 mutex_unlock(&efx->spi_lock);
2467ca46
BH
2028 mutex_unlock(&efx->mac_lock);
2029
8ceee660
BH
2030 return rc;
2031}
2032
eb9f6744
BH
2033/* Reset the NIC using the specified method. Note that the reset may
2034 * fail, in which case the card will be left in an unusable state.
8ceee660 2035 *
eb9f6744 2036 * Caller must hold the rtnl_lock.
8ceee660 2037 */
eb9f6744 2038int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 2039{
eb9f6744
BH
2040 int rc, rc2;
2041 bool disabled;
8ceee660 2042
62776d03
BH
2043 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2044 RESET_TYPE(method));
8ceee660 2045
d3245b28 2046 efx_reset_down(efx, method);
8ceee660 2047
ef2b90ee 2048 rc = efx->type->reset(efx, method);
8ceee660 2049 if (rc) {
62776d03 2050 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 2051 goto out;
8ceee660
BH
2052 }
2053
2054 /* Allow resets to be rescheduled. */
2055 efx->reset_pending = RESET_TYPE_NONE;
2056
2057 /* Reinitialise bus-mastering, which may have been turned off before
2058 * the reset was scheduled. This is still appropriate, even in the
2059 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2060 * can respond to requests. */
2061 pci_set_master(efx->pci_dev);
2062
eb9f6744 2063out:
8ceee660 2064 /* Leave device stopped if necessary */
eb9f6744
BH
2065 disabled = rc || method == RESET_TYPE_DISABLE;
2066 rc2 = efx_reset_up(efx, method, !disabled);
2067 if (rc2) {
2068 disabled = true;
2069 if (!rc)
2070 rc = rc2;
8ceee660
BH
2071 }
2072
eb9f6744 2073 if (disabled) {
f49a4589 2074 dev_close(efx->net_dev);
62776d03 2075 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 2076 efx->state = STATE_DISABLED;
f4bd954e 2077 } else {
62776d03 2078 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
f4bd954e 2079 }
8ceee660
BH
2080 return rc;
2081}
2082
2083/* The worker thread exists so that code that cannot sleep can
2084 * schedule a reset for later.
2085 */
2086static void efx_reset_work(struct work_struct *data)
2087{
eb9f6744 2088 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
8ceee660 2089
319ba649
SH
2090 if (efx->reset_pending == RESET_TYPE_NONE)
2091 return;
2092
eb9f6744
BH
2093 /* If we're not RUNNING then don't reset. Leave the reset_pending
2094 * flag set so that efx_pci_probe_main will be retried */
2095 if (efx->state != STATE_RUNNING) {
62776d03
BH
2096 netif_info(efx, drv, efx->net_dev,
2097 "scheduled reset quenched. NIC not RUNNING\n");
eb9f6744
BH
2098 return;
2099 }
2100
2101 rtnl_lock();
f49a4589 2102 (void)efx_reset(efx, efx->reset_pending);
eb9f6744 2103 rtnl_unlock();
8ceee660
BH
2104}
2105
2106void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2107{
2108 enum reset_type method;
2109
2110 if (efx->reset_pending != RESET_TYPE_NONE) {
62776d03
BH
2111 netif_info(efx, drv, efx->net_dev,
2112 "quenching already scheduled reset\n");
8ceee660
BH
2113 return;
2114 }
2115
2116 switch (type) {
2117 case RESET_TYPE_INVISIBLE:
2118 case RESET_TYPE_ALL:
2119 case RESET_TYPE_WORLD:
2120 case RESET_TYPE_DISABLE:
2121 method = type;
2122 break;
2123 case RESET_TYPE_RX_RECOVERY:
2124 case RESET_TYPE_RX_DESC_FETCH:
2125 case RESET_TYPE_TX_DESC_FETCH:
2126 case RESET_TYPE_TX_SKIP:
2127 method = RESET_TYPE_INVISIBLE;
2128 break;
8880f4ec 2129 case RESET_TYPE_MC_FAILURE:
8ceee660
BH
2130 default:
2131 method = RESET_TYPE_ALL;
2132 break;
2133 }
2134
2135 if (method != type)
62776d03
BH
2136 netif_dbg(efx, drv, efx->net_dev,
2137 "scheduling %s reset for %s\n",
2138 RESET_TYPE(method), RESET_TYPE(type));
8ceee660 2139 else
62776d03
BH
2140 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2141 RESET_TYPE(method));
8ceee660
BH
2142
2143 efx->reset_pending = method;
2144
8880f4ec
BH
2145 /* efx_process_channel() will no longer read events once a
2146 * reset is scheduled. So switch back to poll'd MCDI completions. */
2147 efx_mcdi_mode_poll(efx);
2148
1ab00629 2149 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
2150}
2151
2152/**************************************************************************
2153 *
2154 * List of NICs we support
2155 *
2156 **************************************************************************/
2157
2158/* PCI device ID table */
a3aa1884 2159static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
8ceee660 2160 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
daeda630 2161 .driver_data = (unsigned long) &falcon_a1_nic_type},
8ceee660 2162 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
daeda630 2163 .driver_data = (unsigned long) &falcon_b0_nic_type},
8880f4ec
BH
2164 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
2165 .driver_data = (unsigned long) &siena_a0_nic_type},
2166 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
2167 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
2168 {0} /* end of list */
2169};
2170
2171/**************************************************************************
2172 *
3759433d 2173 * Dummy PHY/MAC operations
8ceee660 2174 *
01aad7b6 2175 * Can be used for some unimplemented operations
8ceee660
BH
2176 * Needed so all function pointers are valid and do not have to be tested
2177 * before use
2178 *
2179 **************************************************************************/
2180int efx_port_dummy_op_int(struct efx_nic *efx)
2181{
2182 return 0;
2183}
2184void efx_port_dummy_op_void(struct efx_nic *efx) {}
398468ed
BH
2185void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2186{
2187}
fdaa9aed
SH
2188bool efx_port_dummy_op_poll(struct efx_nic *efx)
2189{
2190 return false;
2191}
8ceee660
BH
2192
2193static struct efx_phy_operations efx_dummy_phy_operations = {
2194 .init = efx_port_dummy_op_int,
d3245b28 2195 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2196 .poll = efx_port_dummy_op_poll,
8ceee660 2197 .fini = efx_port_dummy_op_void,
8ceee660
BH
2198};
2199
8ceee660
BH
2200/**************************************************************************
2201 *
2202 * Data housekeeping
2203 *
2204 **************************************************************************/
2205
2206/* This zeroes out and then fills in the invariants in a struct
2207 * efx_nic (including all sub-structures).
2208 */
2209static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
2210 struct pci_dev *pci_dev, struct net_device *net_dev)
2211{
4642610c 2212 int i;
8ceee660
BH
2213
2214 /* Initialise common structures */
2215 memset(efx, 0, sizeof(*efx));
2216 spin_lock_init(&efx->biu_lock);
ab867461 2217 mutex_init(&efx->mdio_lock);
f4150724 2218 mutex_init(&efx->spi_lock);
76884835
BH
2219#ifdef CONFIG_SFC_MTD
2220 INIT_LIST_HEAD(&efx->mtd_list);
2221#endif
8ceee660
BH
2222 INIT_WORK(&efx->reset_work, efx_reset_work);
2223 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2224 efx->pci_dev = pci_dev;
62776d03 2225 efx->msg_enable = debug;
8ceee660
BH
2226 efx->state = STATE_INIT;
2227 efx->reset_pending = RESET_TYPE_NONE;
2228 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2229
2230 efx->net_dev = net_dev;
dc8cfa55 2231 efx->rx_checksum_enabled = true;
8ceee660
BH
2232 spin_lock_init(&efx->stats_lock);
2233 mutex_init(&efx->mac_lock);
b895d73e 2234 efx->mac_op = type->default_mac_ops;
8ceee660 2235 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2236 efx->mdio.dev = net_dev;
766ca0fa 2237 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2238
2239 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
4642610c
BH
2240 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2241 if (!efx->channel[i])
2242 goto fail;
8ceee660
BH
2243 }
2244
2245 efx->type = type;
2246
8ceee660
BH
2247 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2248
2249 /* Higher numbered interrupt modes are less capable! */
2250 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2251 interrupt_mode);
2252
6977dc63
BH
2253 /* Would be good to use the net_dev name, but we're too early */
2254 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2255 pci_name(pci_dev));
2256 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629 2257 if (!efx->workqueue)
4642610c 2258 goto fail;
8d9853d9 2259
8ceee660 2260 return 0;
4642610c
BH
2261
2262fail:
2263 efx_fini_struct(efx);
2264 return -ENOMEM;
8ceee660
BH
2265}
2266
2267static void efx_fini_struct(struct efx_nic *efx)
2268{
8313aca3
BH
2269 int i;
2270
2271 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2272 kfree(efx->channel[i]);
2273
8ceee660
BH
2274 if (efx->workqueue) {
2275 destroy_workqueue(efx->workqueue);
2276 efx->workqueue = NULL;
2277 }
2278}
2279
2280/**************************************************************************
2281 *
2282 * PCI interface
2283 *
2284 **************************************************************************/
2285
2286/* Main body of final NIC shutdown code
2287 * This is called only at module unload (or hotplug removal).
2288 */
2289static void efx_pci_remove_main(struct efx_nic *efx)
2290{
152b6a62 2291 efx_nic_fini_interrupt(efx);
8ceee660
BH
2292 efx_fini_channels(efx);
2293 efx_fini_port(efx);
ef2b90ee 2294 efx->type->fini(efx);
8ceee660
BH
2295 efx_fini_napi(efx);
2296 efx_remove_all(efx);
2297}
2298
2299/* Final NIC shutdown
2300 * This is called only at module unload (or hotplug removal).
2301 */
2302static void efx_pci_remove(struct pci_dev *pci_dev)
2303{
2304 struct efx_nic *efx;
2305
2306 efx = pci_get_drvdata(pci_dev);
2307 if (!efx)
2308 return;
2309
2310 /* Mark the NIC as fini, then stop the interface */
2311 rtnl_lock();
2312 efx->state = STATE_FINI;
2313 dev_close(efx->net_dev);
2314
2315 /* Allow any queued efx_resets() to complete */
2316 rtnl_unlock();
2317
8ceee660
BH
2318 efx_unregister_netdev(efx);
2319
7dde596e
BH
2320 efx_mtd_remove(efx);
2321
8ceee660
BH
2322 /* Wait for any scheduled resets to complete. No more will be
2323 * scheduled from this point because efx_stop_all() has been
2324 * called, we are no longer registered with driverlink, and
2325 * the net_device's have been removed. */
1ab00629 2326 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2327
2328 efx_pci_remove_main(efx);
2329
8ceee660 2330 efx_fini_io(efx);
62776d03 2331 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660
BH
2332
2333 pci_set_drvdata(pci_dev, NULL);
2334 efx_fini_struct(efx);
2335 free_netdev(efx->net_dev);
2336};
2337
2338/* Main body of NIC initialisation
2339 * This is called at module load (or hotplug insertion, theoretically).
2340 */
2341static int efx_pci_probe_main(struct efx_nic *efx)
2342{
2343 int rc;
2344
2345 /* Do start-of-day initialisation */
2346 rc = efx_probe_all(efx);
2347 if (rc)
2348 goto fail1;
2349
2350 rc = efx_init_napi(efx);
2351 if (rc)
2352 goto fail2;
2353
ef2b90ee 2354 rc = efx->type->init(efx);
8ceee660 2355 if (rc) {
62776d03
BH
2356 netif_err(efx, probe, efx->net_dev,
2357 "failed to initialise NIC\n");
278c0621 2358 goto fail3;
8ceee660
BH
2359 }
2360
2361 rc = efx_init_port(efx);
2362 if (rc) {
62776d03
BH
2363 netif_err(efx, probe, efx->net_dev,
2364 "failed to initialise port\n");
278c0621 2365 goto fail4;
8ceee660
BH
2366 }
2367
bc3c90a2 2368 efx_init_channels(efx);
8ceee660 2369
152b6a62 2370 rc = efx_nic_init_interrupt(efx);
8ceee660 2371 if (rc)
278c0621 2372 goto fail5;
8ceee660
BH
2373
2374 return 0;
2375
278c0621 2376 fail5:
bc3c90a2 2377 efx_fini_channels(efx);
8ceee660 2378 efx_fini_port(efx);
8ceee660 2379 fail4:
ef2b90ee 2380 efx->type->fini(efx);
8ceee660
BH
2381 fail3:
2382 efx_fini_napi(efx);
2383 fail2:
2384 efx_remove_all(efx);
2385 fail1:
2386 return rc;
2387}
2388
2389/* NIC initialisation
2390 *
2391 * This is called at module load (or hotplug insertion,
2392 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2393 * sets up and registers the network devices with the kernel and hooks
2394 * the interrupt service routine. It does not prepare the device for
2395 * transmission; this is left to the first time one of the network
2396 * interfaces is brought up (i.e. efx_net_open).
2397 */
2398static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2399 const struct pci_device_id *entry)
2400{
2401 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2402 struct net_device *net_dev;
2403 struct efx_nic *efx;
2404 int i, rc;
2405
2406 /* Allocate and initialise a struct net_device and struct efx_nic */
a4900ac9 2407 net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
8ceee660
BH
2408 if (!net_dev)
2409 return -ENOMEM;
c383b537 2410 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415
BH
2411 NETIF_F_HIGHDMA | NETIF_F_TSO |
2412 NETIF_F_GRO);
738a8f4b
BH
2413 if (type->offload_features & NETIF_F_V6_CSUM)
2414 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2415 /* Mask for features that also apply to VLAN devices */
2416 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2417 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2418 efx = netdev_priv(net_dev);
8ceee660 2419 pci_set_drvdata(pci_dev, efx);
62776d03 2420 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
8ceee660
BH
2421 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2422 if (rc)
2423 goto fail1;
2424
62776d03
BH
2425 netif_info(efx, probe, efx->net_dev,
2426 "Solarflare Communications NIC detected\n");
8ceee660
BH
2427
2428 /* Set up basic I/O (BAR mappings etc) */
2429 rc = efx_init_io(efx);
2430 if (rc)
2431 goto fail2;
2432
2433 /* No serialisation is required with the reset path because
2434 * we're in STATE_INIT. */
2435 for (i = 0; i < 5; i++) {
2436 rc = efx_pci_probe_main(efx);
8ceee660
BH
2437
2438 /* Serialise against efx_reset(). No more resets will be
2439 * scheduled since efx_stop_all() has been called, and we
2440 * have not and never have been registered with either
2441 * the rtnetlink or driverlink layers. */
1ab00629 2442 cancel_work_sync(&efx->reset_work);
8ceee660 2443
fa402b2e
SH
2444 if (rc == 0) {
2445 if (efx->reset_pending != RESET_TYPE_NONE) {
2446 /* If there was a scheduled reset during
2447 * probe, the NIC is probably hosed anyway */
2448 efx_pci_remove_main(efx);
2449 rc = -EIO;
2450 } else {
2451 break;
2452 }
2453 }
2454
8ceee660
BH
2455 /* Retry if a recoverably reset event has been scheduled */
2456 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2457 (efx->reset_pending != RESET_TYPE_ALL))
2458 goto fail3;
2459
2460 efx->reset_pending = RESET_TYPE_NONE;
2461 }
2462
2463 if (rc) {
62776d03 2464 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
8ceee660
BH
2465 goto fail4;
2466 }
2467
55edc6e6
BH
2468 /* Switch to the running state before we expose the device to the OS,
2469 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2470 efx->state = STATE_RUNNING;
7dde596e 2471
8ceee660
BH
2472 rc = efx_register_netdev(efx);
2473 if (rc)
2474 goto fail5;
2475
62776d03 2476 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5
BH
2477
2478 rtnl_lock();
2479 efx_mtd_probe(efx); /* allowed to fail */
2480 rtnl_unlock();
8ceee660
BH
2481 return 0;
2482
2483 fail5:
2484 efx_pci_remove_main(efx);
2485 fail4:
2486 fail3:
2487 efx_fini_io(efx);
2488 fail2:
2489 efx_fini_struct(efx);
2490 fail1:
5e2a911c 2491 WARN_ON(rc > 0);
62776d03 2492 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
2493 free_netdev(net_dev);
2494 return rc;
2495}
2496
89c758fa
BH
2497static int efx_pm_freeze(struct device *dev)
2498{
2499 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2500
2501 efx->state = STATE_FINI;
2502
2503 netif_device_detach(efx->net_dev);
2504
2505 efx_stop_all(efx);
2506 efx_fini_channels(efx);
2507
2508 return 0;
2509}
2510
2511static int efx_pm_thaw(struct device *dev)
2512{
2513 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2514
2515 efx->state = STATE_INIT;
2516
2517 efx_init_channels(efx);
2518
2519 mutex_lock(&efx->mac_lock);
2520 efx->phy_op->reconfigure(efx);
2521 mutex_unlock(&efx->mac_lock);
2522
2523 efx_start_all(efx);
2524
2525 netif_device_attach(efx->net_dev);
2526
2527 efx->state = STATE_RUNNING;
2528
2529 efx->type->resume_wol(efx);
2530
319ba649
SH
2531 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2532 queue_work(reset_workqueue, &efx->reset_work);
2533
89c758fa
BH
2534 return 0;
2535}
2536
2537static int efx_pm_poweroff(struct device *dev)
2538{
2539 struct pci_dev *pci_dev = to_pci_dev(dev);
2540 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2541
2542 efx->type->fini(efx);
2543
2544 efx->reset_pending = RESET_TYPE_NONE;
2545
2546 pci_save_state(pci_dev);
2547 return pci_set_power_state(pci_dev, PCI_D3hot);
2548}
2549
2550/* Used for both resume and restore */
2551static int efx_pm_resume(struct device *dev)
2552{
2553 struct pci_dev *pci_dev = to_pci_dev(dev);
2554 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2555 int rc;
2556
2557 rc = pci_set_power_state(pci_dev, PCI_D0);
2558 if (rc)
2559 return rc;
2560 pci_restore_state(pci_dev);
2561 rc = pci_enable_device(pci_dev);
2562 if (rc)
2563 return rc;
2564 pci_set_master(efx->pci_dev);
2565 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2566 if (rc)
2567 return rc;
2568 rc = efx->type->init(efx);
2569 if (rc)
2570 return rc;
2571 efx_pm_thaw(dev);
2572 return 0;
2573}
2574
2575static int efx_pm_suspend(struct device *dev)
2576{
2577 int rc;
2578
2579 efx_pm_freeze(dev);
2580 rc = efx_pm_poweroff(dev);
2581 if (rc)
2582 efx_pm_resume(dev);
2583 return rc;
2584}
2585
2586static struct dev_pm_ops efx_pm_ops = {
2587 .suspend = efx_pm_suspend,
2588 .resume = efx_pm_resume,
2589 .freeze = efx_pm_freeze,
2590 .thaw = efx_pm_thaw,
2591 .poweroff = efx_pm_poweroff,
2592 .restore = efx_pm_resume,
2593};
2594
8ceee660 2595static struct pci_driver efx_pci_driver = {
c5d5f5fd 2596 .name = KBUILD_MODNAME,
8ceee660
BH
2597 .id_table = efx_pci_table,
2598 .probe = efx_pci_probe,
2599 .remove = efx_pci_remove,
89c758fa 2600 .driver.pm = &efx_pm_ops,
8ceee660
BH
2601};
2602
2603/**************************************************************************
2604 *
2605 * Kernel module interface
2606 *
2607 *************************************************************************/
2608
2609module_param(interrupt_mode, uint, 0444);
2610MODULE_PARM_DESC(interrupt_mode,
2611 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2612
2613static int __init efx_init_module(void)
2614{
2615 int rc;
2616
2617 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2618
2619 rc = register_netdevice_notifier(&efx_netdev_notifier);
2620 if (rc)
2621 goto err_notifier;
2622
1ab00629
SH
2623 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2624 if (!reset_workqueue) {
2625 rc = -ENOMEM;
2626 goto err_reset;
2627 }
8ceee660
BH
2628
2629 rc = pci_register_driver(&efx_pci_driver);
2630 if (rc < 0)
2631 goto err_pci;
2632
2633 return 0;
2634
2635 err_pci:
1ab00629
SH
2636 destroy_workqueue(reset_workqueue);
2637 err_reset:
8ceee660
BH
2638 unregister_netdevice_notifier(&efx_netdev_notifier);
2639 err_notifier:
2640 return rc;
2641}
2642
2643static void __exit efx_exit_module(void)
2644{
2645 printk(KERN_INFO "Solarflare NET driver unloading\n");
2646
2647 pci_unregister_driver(&efx_pci_driver);
1ab00629 2648 destroy_workqueue(reset_workqueue);
8ceee660
BH
2649 unregister_netdevice_notifier(&efx_netdev_notifier);
2650
2651}
2652
2653module_init(efx_init_module);
2654module_exit(efx_exit_module);
2655
906bb26c
BH
2656MODULE_AUTHOR("Solarflare Communications and "
2657 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2658MODULE_DESCRIPTION("Solarflare Communications network driver");
2659MODULE_LICENSE("GPL");
2660MODULE_DEVICE_TABLE(pci, efx_pci_table);