sfc: Fix TX queue numbering when separate_tx_channels=1
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
0a6f40c6 4 * Copyright 2005-2011 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
64d8ad6d 24#include <linux/cpu_rmap.h>
8ceee660 25#include "net_driver.h"
8ceee660 26#include "efx.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec 29#include "mcdi.h"
fd371e32 30#include "workarounds.h"
8880f4ec 31
c459302d
BH
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
e58f69f4 43 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
e58f69f4
BH
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
69};
70
c459302d
BH
71const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
72const char *efx_reset_type_names[] = {
73 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
74 [RESET_TYPE_ALL] = "ALL",
75 [RESET_TYPE_WORLD] = "WORLD",
76 [RESET_TYPE_DISABLE] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
80 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
81 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
82 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 83 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
84};
85
8ceee660
BH
86#define EFX_MAX_MTU (9 * 1024)
87
1ab00629
SH
88/* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 */
92static struct workqueue_struct *reset_workqueue;
93
8ceee660
BH
94/**************************************************************************
95 *
96 * Configurable values
97 *
98 *************************************************************************/
99
8ceee660
BH
100/*
101 * Use separate channels for TX and RX events
102 *
28b581ab
NT
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
8ceee660 105 *
28b581ab 106 * This is only used in MSI-X interrupt mode
8ceee660 107 */
28b581ab 108static unsigned int separate_tx_channels;
8313aca3 109module_param(separate_tx_channels, uint, 0444);
28b581ab
NT
110MODULE_PARM_DESC(separate_tx_channels,
111 "Use separate channels for TX and RX");
8ceee660
BH
112
113/* This is the weight assigned to each of the (per-channel) virtual
114 * NAPI devices.
115 */
116static int napi_weight = 64;
117
118/* This is the time (in jiffies) between invocations of the hardware
e254c274
BH
119 * monitor. On Falcon-based NICs, this will:
120 * - Check the on-board hardware monitor;
121 * - Poll the link state and reconfigure the hardware as necessary.
8ceee660 122 */
d215697f 123static unsigned int efx_monitor_interval = 1 * HZ;
8ceee660 124
8ceee660
BH
125/* This controls whether or not the driver will initialise devices
126 * with invalid MAC addresses stored in the EEPROM or flash. If true,
127 * such devices will be initialised with a random locally-generated
128 * MAC address. This allows for loading the sfc_mtd driver to
129 * reprogram the flash, even if the flash contents (including the MAC
130 * address) have previously been erased.
131 */
132static unsigned int allow_bad_hwaddr;
133
134/* Initial interrupt moderation settings. They can be modified after
135 * module load with ethtool.
136 *
137 * The default for RX should strike a balance between increasing the
138 * round-trip latency and reducing overhead.
139 */
140static unsigned int rx_irq_mod_usec = 60;
141
142/* Initial interrupt moderation settings. They can be modified after
143 * module load with ethtool.
144 *
145 * This default is chosen to ensure that a 10G link does not go idle
146 * while a TX queue is stopped after it has become full. A queue is
147 * restarted when it drops below half full. The time this takes (assuming
148 * worst case 3 descriptors per packet and 1024 descriptors) is
149 * 512 / 3 * 1.2 = 205 usec.
150 */
151static unsigned int tx_irq_mod_usec = 150;
152
153/* This is the first interrupt mode to try out of:
154 * 0 => MSI-X
155 * 1 => MSI
156 * 2 => legacy
157 */
158static unsigned int interrupt_mode;
159
160/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
161 * i.e. the number of CPUs among which we may distribute simultaneous
162 * interrupt handling.
163 *
164 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
165 * The default (0) means to assign an interrupt to each package (level II cache)
166 */
167static unsigned int rss_cpus;
168module_param(rss_cpus, uint, 0444);
169MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
170
84ae48fe
BH
171static int phy_flash_cfg;
172module_param(phy_flash_cfg, int, 0644);
173MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
174
6fb70fd1
BH
175static unsigned irq_adapt_low_thresh = 10000;
176module_param(irq_adapt_low_thresh, uint, 0644);
177MODULE_PARM_DESC(irq_adapt_low_thresh,
178 "Threshold score for reducing IRQ moderation");
179
180static unsigned irq_adapt_high_thresh = 20000;
181module_param(irq_adapt_high_thresh, uint, 0644);
182MODULE_PARM_DESC(irq_adapt_high_thresh,
183 "Threshold score for increasing IRQ moderation");
184
62776d03
BH
185static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
186 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
187 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
188 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
189module_param(debug, uint, 0);
190MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
191
8ceee660
BH
192/**************************************************************************
193 *
194 * Utility functions and prototypes
195 *
196 *************************************************************************/
4642610c
BH
197
198static void efx_remove_channels(struct efx_nic *efx);
8ceee660 199static void efx_remove_port(struct efx_nic *efx);
e8f14992 200static void efx_init_napi(struct efx_nic *efx);
8ceee660 201static void efx_fini_napi(struct efx_nic *efx);
e8f14992 202static void efx_fini_napi_channel(struct efx_channel *channel);
4642610c
BH
203static void efx_fini_struct(struct efx_nic *efx);
204static void efx_start_all(struct efx_nic *efx);
205static void efx_stop_all(struct efx_nic *efx);
8ceee660
BH
206
207#define EFX_ASSERT_RESET_SERIALISED(efx) \
208 do { \
332c1ce9
BH
209 if ((efx->state == STATE_RUNNING) || \
210 (efx->state == STATE_DISABLED)) \
8ceee660
BH
211 ASSERT_RTNL(); \
212 } while (0)
213
214/**************************************************************************
215 *
216 * Event queue processing
217 *
218 *************************************************************************/
219
220/* Process channel's event queue
221 *
222 * This function is responsible for processing the event queue of a
223 * single channel. The caller must guarantee that this function will
224 * never be concurrently called more than once on the same channel,
225 * though different channels may be being processed concurrently.
226 */
fa236e18 227static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 228{
42cbe2d7 229 struct efx_nic *efx = channel->efx;
fa236e18 230 int spent;
8ceee660 231
42cbe2d7 232 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 233 !channel->enabled))
42cbe2d7 234 return 0;
8ceee660 235
fa236e18
BH
236 spent = efx_nic_process_eventq(channel, budget);
237 if (spent == 0)
42cbe2d7 238 return 0;
8ceee660
BH
239
240 /* Deliver last RX packet. */
241 if (channel->rx_pkt) {
242 __efx_rx_packet(channel, channel->rx_pkt,
243 channel->rx_pkt_csummed);
244 channel->rx_pkt = NULL;
245 }
246
8ceee660
BH
247 efx_rx_strategy(channel);
248
f7d12cdc 249 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
8ceee660 250
fa236e18 251 return spent;
8ceee660
BH
252}
253
254/* Mark channel as finished processing
255 *
256 * Note that since we will not receive further interrupts for this
257 * channel before we finish processing and call the eventq_read_ack()
258 * method, there is no need to use the interrupt hold-off timers.
259 */
260static inline void efx_channel_processed(struct efx_channel *channel)
261{
5b9e207c
BH
262 /* The interrupt handler for this channel may set work_pending
263 * as soon as we acknowledge the events we've seen. Make sure
264 * it's cleared before then. */
dc8cfa55 265 channel->work_pending = false;
5b9e207c
BH
266 smp_wmb();
267
152b6a62 268 efx_nic_eventq_read_ack(channel);
8ceee660
BH
269}
270
271/* NAPI poll handler
272 *
273 * NAPI guarantees serialisation of polls of the same device, which
274 * provides the guarantee required by efx_process_channel().
275 */
276static int efx_poll(struct napi_struct *napi, int budget)
277{
278 struct efx_channel *channel =
279 container_of(napi, struct efx_channel, napi_str);
62776d03 280 struct efx_nic *efx = channel->efx;
fa236e18 281 int spent;
8ceee660 282
62776d03
BH
283 netif_vdbg(efx, intr, efx->net_dev,
284 "channel %d NAPI poll executing on CPU %d\n",
285 channel->channel, raw_smp_processor_id());
8ceee660 286
fa236e18 287 spent = efx_process_channel(channel, budget);
8ceee660 288
fa236e18 289 if (spent < budget) {
a4900ac9 290 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
291 efx->irq_rx_adaptive &&
292 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
293 if (unlikely(channel->irq_mod_score <
294 irq_adapt_low_thresh)) {
0d86ebd8
BH
295 if (channel->irq_moderation > 1) {
296 channel->irq_moderation -= 1;
ef2b90ee 297 efx->type->push_irq_moderation(channel);
0d86ebd8 298 }
6fb70fd1
BH
299 } else if (unlikely(channel->irq_mod_score >
300 irq_adapt_high_thresh)) {
0d86ebd8
BH
301 if (channel->irq_moderation <
302 efx->irq_rx_moderation) {
303 channel->irq_moderation += 1;
ef2b90ee 304 efx->type->push_irq_moderation(channel);
0d86ebd8 305 }
6fb70fd1 306 }
6fb70fd1
BH
307 channel->irq_count = 0;
308 channel->irq_mod_score = 0;
309 }
310
64d8ad6d
BH
311 efx_filter_rfs_expire(channel);
312
8ceee660 313 /* There is no race here; although napi_disable() will
288379f0 314 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
315 * since efx_channel_processed() will have no effect if
316 * interrupts have already been disabled.
317 */
288379f0 318 napi_complete(napi);
8ceee660
BH
319 efx_channel_processed(channel);
320 }
321
fa236e18 322 return spent;
8ceee660
BH
323}
324
325/* Process the eventq of the specified channel immediately on this CPU
326 *
327 * Disable hardware generated interrupts, wait for any existing
328 * processing to finish, then directly poll (and ack ) the eventq.
329 * Finally reenable NAPI and interrupts.
330 *
d4fabcc8
BH
331 * This is for use only during a loopback self-test. It must not
332 * deliver any packets up the stack as this can result in deadlock.
8ceee660
BH
333 */
334void efx_process_channel_now(struct efx_channel *channel)
335{
336 struct efx_nic *efx = channel->efx;
337
8313aca3 338 BUG_ON(channel->channel >= efx->n_channels);
8ceee660 339 BUG_ON(!channel->enabled);
d4fabcc8 340 BUG_ON(!efx->loopback_selftest);
8ceee660
BH
341
342 /* Disable interrupts and wait for ISRs to complete */
152b6a62 343 efx_nic_disable_interrupts(efx);
94dec6a2 344 if (efx->legacy_irq) {
8ceee660 345 synchronize_irq(efx->legacy_irq);
94dec6a2
BH
346 efx->legacy_irq_enabled = false;
347 }
64ee3120 348 if (channel->irq)
8ceee660
BH
349 synchronize_irq(channel->irq);
350
351 /* Wait for any NAPI processing to complete */
352 napi_disable(&channel->napi_str);
353
354 /* Poll the channel */
ecc910f5 355 efx_process_channel(channel, channel->eventq_mask + 1);
8ceee660
BH
356
357 /* Ack the eventq. This may cause an interrupt to be generated
358 * when they are reenabled */
359 efx_channel_processed(channel);
360
361 napi_enable(&channel->napi_str);
94dec6a2
BH
362 if (efx->legacy_irq)
363 efx->legacy_irq_enabled = true;
152b6a62 364 efx_nic_enable_interrupts(efx);
8ceee660
BH
365}
366
367/* Create event queue
368 * Event queue memory allocations are done only once. If the channel
369 * is reset, the memory buffer will be reused; this guards against
370 * errors during channel reset and also simplifies interrupt handling.
371 */
372static int efx_probe_eventq(struct efx_channel *channel)
373{
ecc910f5
SH
374 struct efx_nic *efx = channel->efx;
375 unsigned long entries;
376
62776d03
BH
377 netif_dbg(channel->efx, probe, channel->efx->net_dev,
378 "chan %d create event queue\n", channel->channel);
8ceee660 379
ecc910f5
SH
380 /* Build an event queue with room for one event per tx and rx buffer,
381 * plus some extra for link state events and MCDI completions. */
382 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
383 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
384 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
385
152b6a62 386 return efx_nic_probe_eventq(channel);
8ceee660
BH
387}
388
389/* Prepare channel's event queue */
bc3c90a2 390static void efx_init_eventq(struct efx_channel *channel)
8ceee660 391{
62776d03
BH
392 netif_dbg(channel->efx, drv, channel->efx->net_dev,
393 "chan %d init event queue\n", channel->channel);
8ceee660
BH
394
395 channel->eventq_read_ptr = 0;
396
152b6a62 397 efx_nic_init_eventq(channel);
8ceee660
BH
398}
399
400static void efx_fini_eventq(struct efx_channel *channel)
401{
62776d03
BH
402 netif_dbg(channel->efx, drv, channel->efx->net_dev,
403 "chan %d fini event queue\n", channel->channel);
8ceee660 404
152b6a62 405 efx_nic_fini_eventq(channel);
8ceee660
BH
406}
407
408static void efx_remove_eventq(struct efx_channel *channel)
409{
62776d03
BH
410 netif_dbg(channel->efx, drv, channel->efx->net_dev,
411 "chan %d remove event queue\n", channel->channel);
8ceee660 412
152b6a62 413 efx_nic_remove_eventq(channel);
8ceee660
BH
414}
415
416/**************************************************************************
417 *
418 * Channel handling
419 *
420 *************************************************************************/
421
4642610c
BH
422/* Allocate and initialise a channel structure, optionally copying
423 * parameters (but not resources) from an old channel structure. */
424static struct efx_channel *
425efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
426{
427 struct efx_channel *channel;
428 struct efx_rx_queue *rx_queue;
429 struct efx_tx_queue *tx_queue;
430 int j;
431
432 if (old_channel) {
433 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
434 if (!channel)
435 return NULL;
436
437 *channel = *old_channel;
438
e8f14992 439 channel->napi_dev = NULL;
4642610c
BH
440 memset(&channel->eventq, 0, sizeof(channel->eventq));
441
442 rx_queue = &channel->rx_queue;
443 rx_queue->buffer = NULL;
444 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
445
446 for (j = 0; j < EFX_TXQ_TYPES; j++) {
447 tx_queue = &channel->tx_queue[j];
448 if (tx_queue->channel)
449 tx_queue->channel = channel;
450 tx_queue->buffer = NULL;
451 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
452 }
453 } else {
454 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
455 if (!channel)
456 return NULL;
457
458 channel->efx = efx;
459 channel->channel = i;
460
461 for (j = 0; j < EFX_TXQ_TYPES; j++) {
462 tx_queue = &channel->tx_queue[j];
463 tx_queue->efx = efx;
464 tx_queue->queue = i * EFX_TXQ_TYPES + j;
465 tx_queue->channel = channel;
466 }
467 }
468
4642610c
BH
469 rx_queue = &channel->rx_queue;
470 rx_queue->efx = efx;
471 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
472 (unsigned long)rx_queue);
473
474 return channel;
475}
476
8ceee660
BH
477static int efx_probe_channel(struct efx_channel *channel)
478{
479 struct efx_tx_queue *tx_queue;
480 struct efx_rx_queue *rx_queue;
481 int rc;
482
62776d03
BH
483 netif_dbg(channel->efx, probe, channel->efx->net_dev,
484 "creating channel %d\n", channel->channel);
8ceee660
BH
485
486 rc = efx_probe_eventq(channel);
487 if (rc)
488 goto fail1;
489
490 efx_for_each_channel_tx_queue(tx_queue, channel) {
491 rc = efx_probe_tx_queue(tx_queue);
492 if (rc)
493 goto fail2;
494 }
495
496 efx_for_each_channel_rx_queue(rx_queue, channel) {
497 rc = efx_probe_rx_queue(rx_queue);
498 if (rc)
499 goto fail3;
500 }
501
502 channel->n_rx_frm_trunc = 0;
503
504 return 0;
505
506 fail3:
507 efx_for_each_channel_rx_queue(rx_queue, channel)
508 efx_remove_rx_queue(rx_queue);
509 fail2:
510 efx_for_each_channel_tx_queue(tx_queue, channel)
511 efx_remove_tx_queue(tx_queue);
512 fail1:
513 return rc;
514}
515
516
56536e9c
BH
517static void efx_set_channel_names(struct efx_nic *efx)
518{
519 struct efx_channel *channel;
520 const char *type = "";
521 int number;
522
523 efx_for_each_channel(channel, efx) {
524 number = channel->channel;
a4900ac9
BH
525 if (efx->n_channels > efx->n_rx_channels) {
526 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
527 type = "-rx";
528 } else {
529 type = "-tx";
a4900ac9 530 number -= efx->n_rx_channels;
56536e9c
BH
531 }
532 }
4642610c
BH
533 snprintf(efx->channel_name[channel->channel],
534 sizeof(efx->channel_name[0]),
56536e9c
BH
535 "%s%s-%d", efx->name, type, number);
536 }
537}
538
4642610c
BH
539static int efx_probe_channels(struct efx_nic *efx)
540{
541 struct efx_channel *channel;
542 int rc;
543
544 /* Restart special buffer allocation */
545 efx->next_buffer_table = 0;
546
547 efx_for_each_channel(channel, efx) {
548 rc = efx_probe_channel(channel);
549 if (rc) {
550 netif_err(efx, probe, efx->net_dev,
551 "failed to create channel %d\n",
552 channel->channel);
553 goto fail;
554 }
555 }
556 efx_set_channel_names(efx);
557
558 return 0;
559
560fail:
561 efx_remove_channels(efx);
562 return rc;
563}
564
8ceee660
BH
565/* Channels are shutdown and reinitialised whilst the NIC is running
566 * to propagate configuration changes (mtu, checksum offload), or
567 * to clear hardware error conditions
568 */
bc3c90a2 569static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
570{
571 struct efx_tx_queue *tx_queue;
572 struct efx_rx_queue *rx_queue;
573 struct efx_channel *channel;
8ceee660 574
f7f13b0b
BH
575 /* Calculate the rx buffer allocation parameters required to
576 * support the current MTU, including padding for header
577 * alignment and overruns.
578 */
579 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
580 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
39c9cf07 581 efx->type->rx_buffer_hash_size +
f7f13b0b 582 efx->type->rx_buffer_padding);
62b330ba
SH
583 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
584 sizeof(struct efx_rx_page_state));
8ceee660
BH
585
586 /* Initialise the channels */
587 efx_for_each_channel(channel, efx) {
62776d03
BH
588 netif_dbg(channel->efx, drv, channel->efx->net_dev,
589 "init chan %d\n", channel->channel);
8ceee660 590
bc3c90a2 591 efx_init_eventq(channel);
8ceee660 592
bc3c90a2
BH
593 efx_for_each_channel_tx_queue(tx_queue, channel)
594 efx_init_tx_queue(tx_queue);
8ceee660
BH
595
596 /* The rx buffer allocation strategy is MTU dependent */
597 efx_rx_strategy(channel);
598
bc3c90a2
BH
599 efx_for_each_channel_rx_queue(rx_queue, channel)
600 efx_init_rx_queue(rx_queue);
8ceee660
BH
601
602 WARN_ON(channel->rx_pkt != NULL);
603 efx_rx_strategy(channel);
604 }
8ceee660
BH
605}
606
607/* This enables event queue processing and packet transmission.
608 *
609 * Note that this function is not allowed to fail, since that would
610 * introduce too much complexity into the suspend/resume path.
611 */
612static void efx_start_channel(struct efx_channel *channel)
613{
614 struct efx_rx_queue *rx_queue;
615
62776d03
BH
616 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
617 "starting chan %d\n", channel->channel);
8ceee660 618
5b9e207c
BH
619 /* The interrupt handler for this channel may set work_pending
620 * as soon as we enable it. Make sure it's cleared before
621 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
622 channel->work_pending = false;
623 channel->enabled = true;
5b9e207c 624 smp_wmb();
8ceee660 625
90d683af 626 /* Fill the queues before enabling NAPI */
8ceee660
BH
627 efx_for_each_channel_rx_queue(rx_queue, channel)
628 efx_fast_push_rx_descriptors(rx_queue);
90d683af
SH
629
630 napi_enable(&channel->napi_str);
8ceee660
BH
631}
632
633/* This disables event queue processing and packet transmission.
634 * This function does not guarantee that all queue processing
635 * (e.g. RX refill) is complete.
636 */
637static void efx_stop_channel(struct efx_channel *channel)
638{
8ceee660
BH
639 if (!channel->enabled)
640 return;
641
62776d03
BH
642 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
643 "stop chan %d\n", channel->channel);
8ceee660 644
dc8cfa55 645 channel->enabled = false;
8ceee660 646 napi_disable(&channel->napi_str);
8ceee660
BH
647}
648
649static void efx_fini_channels(struct efx_nic *efx)
650{
651 struct efx_channel *channel;
652 struct efx_tx_queue *tx_queue;
653 struct efx_rx_queue *rx_queue;
6bc5d3a9 654 int rc;
8ceee660
BH
655
656 EFX_ASSERT_RESET_SERIALISED(efx);
657 BUG_ON(efx->port_enabled);
658
152b6a62 659 rc = efx_nic_flush_queues(efx);
fd371e32
SH
660 if (rc && EFX_WORKAROUND_7803(efx)) {
661 /* Schedule a reset to recover from the flush failure. The
662 * descriptor caches reference memory we're about to free,
663 * but falcon_reconfigure_mac_wrapper() won't reconnect
664 * the MACs because of the pending reset. */
62776d03
BH
665 netif_err(efx, drv, efx->net_dev,
666 "Resetting to recover from flush failure\n");
fd371e32
SH
667 efx_schedule_reset(efx, RESET_TYPE_ALL);
668 } else if (rc) {
62776d03 669 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
fd371e32 670 } else {
62776d03
BH
671 netif_dbg(efx, drv, efx->net_dev,
672 "successfully flushed all queues\n");
fd371e32 673 }
6bc5d3a9 674
8ceee660 675 efx_for_each_channel(channel, efx) {
62776d03
BH
676 netif_dbg(channel->efx, drv, channel->efx->net_dev,
677 "shut down chan %d\n", channel->channel);
8ceee660
BH
678
679 efx_for_each_channel_rx_queue(rx_queue, channel)
680 efx_fini_rx_queue(rx_queue);
94b274bf 681 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660 682 efx_fini_tx_queue(tx_queue);
8ceee660
BH
683 efx_fini_eventq(channel);
684 }
685}
686
687static void efx_remove_channel(struct efx_channel *channel)
688{
689 struct efx_tx_queue *tx_queue;
690 struct efx_rx_queue *rx_queue;
691
62776d03
BH
692 netif_dbg(channel->efx, drv, channel->efx->net_dev,
693 "destroy chan %d\n", channel->channel);
8ceee660
BH
694
695 efx_for_each_channel_rx_queue(rx_queue, channel)
696 efx_remove_rx_queue(rx_queue);
94b274bf 697 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660
BH
698 efx_remove_tx_queue(tx_queue);
699 efx_remove_eventq(channel);
8ceee660
BH
700}
701
4642610c
BH
702static void efx_remove_channels(struct efx_nic *efx)
703{
704 struct efx_channel *channel;
705
706 efx_for_each_channel(channel, efx)
707 efx_remove_channel(channel);
708}
709
710int
711efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
712{
713 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
714 u32 old_rxq_entries, old_txq_entries;
715 unsigned i;
716 int rc;
717
718 efx_stop_all(efx);
719 efx_fini_channels(efx);
720
721 /* Clone channels */
722 memset(other_channel, 0, sizeof(other_channel));
723 for (i = 0; i < efx->n_channels; i++) {
724 channel = efx_alloc_channel(efx, i, efx->channel[i]);
725 if (!channel) {
726 rc = -ENOMEM;
727 goto out;
728 }
729 other_channel[i] = channel;
730 }
731
732 /* Swap entry counts and channel pointers */
733 old_rxq_entries = efx->rxq_entries;
734 old_txq_entries = efx->txq_entries;
735 efx->rxq_entries = rxq_entries;
736 efx->txq_entries = txq_entries;
737 for (i = 0; i < efx->n_channels; i++) {
738 channel = efx->channel[i];
739 efx->channel[i] = other_channel[i];
740 other_channel[i] = channel;
741 }
742
743 rc = efx_probe_channels(efx);
744 if (rc)
745 goto rollback;
746
e8f14992
BH
747 efx_init_napi(efx);
748
4642610c 749 /* Destroy old channels */
e8f14992
BH
750 for (i = 0; i < efx->n_channels; i++) {
751 efx_fini_napi_channel(other_channel[i]);
4642610c 752 efx_remove_channel(other_channel[i]);
e8f14992 753 }
4642610c
BH
754out:
755 /* Free unused channel structures */
756 for (i = 0; i < efx->n_channels; i++)
757 kfree(other_channel[i]);
758
759 efx_init_channels(efx);
760 efx_start_all(efx);
761 return rc;
762
763rollback:
764 /* Swap back */
765 efx->rxq_entries = old_rxq_entries;
766 efx->txq_entries = old_txq_entries;
767 for (i = 0; i < efx->n_channels; i++) {
768 channel = efx->channel[i];
769 efx->channel[i] = other_channel[i];
770 other_channel[i] = channel;
771 }
772 goto out;
773}
774
90d683af 775void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 776{
90d683af 777 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
778}
779
780/**************************************************************************
781 *
782 * Port handling
783 *
784 **************************************************************************/
785
786/* This ensures that the kernel is kept informed (via
787 * netif_carrier_on/off) of the link status, and also maintains the
788 * link status's stop on the port's TX queue.
789 */
fdaa9aed 790void efx_link_status_changed(struct efx_nic *efx)
8ceee660 791{
eb50c0d6
BH
792 struct efx_link_state *link_state = &efx->link_state;
793
8ceee660
BH
794 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
795 * that no events are triggered between unregister_netdev() and the
796 * driver unloading. A more general condition is that NETDEV_CHANGE
797 * can only be generated between NETDEV_UP and NETDEV_DOWN */
798 if (!netif_running(efx->net_dev))
799 return;
800
8c8661e4
BH
801 if (efx->port_inhibited) {
802 netif_carrier_off(efx->net_dev);
803 return;
804 }
805
eb50c0d6 806 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
807 efx->n_link_state_changes++;
808
eb50c0d6 809 if (link_state->up)
8ceee660
BH
810 netif_carrier_on(efx->net_dev);
811 else
812 netif_carrier_off(efx->net_dev);
813 }
814
815 /* Status message for kernel log */
eb50c0d6 816 if (link_state->up) {
62776d03
BH
817 netif_info(efx, link, efx->net_dev,
818 "link up at %uMbps %s-duplex (MTU %d)%s\n",
819 link_state->speed, link_state->fd ? "full" : "half",
820 efx->net_dev->mtu,
821 (efx->promiscuous ? " [PROMISC]" : ""));
8ceee660 822 } else {
62776d03 823 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
824 }
825
826}
827
d3245b28
BH
828void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
829{
830 efx->link_advertising = advertising;
831 if (advertising) {
832 if (advertising & ADVERTISED_Pause)
833 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
834 else
835 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
836 if (advertising & ADVERTISED_Asym_Pause)
837 efx->wanted_fc ^= EFX_FC_TX;
838 }
839}
840
841void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
842{
843 efx->wanted_fc = wanted_fc;
844 if (efx->link_advertising) {
845 if (wanted_fc & EFX_FC_RX)
846 efx->link_advertising |= (ADVERTISED_Pause |
847 ADVERTISED_Asym_Pause);
848 else
849 efx->link_advertising &= ~(ADVERTISED_Pause |
850 ADVERTISED_Asym_Pause);
851 if (wanted_fc & EFX_FC_TX)
852 efx->link_advertising ^= ADVERTISED_Asym_Pause;
853 }
854}
855
115122af
BH
856static void efx_fini_port(struct efx_nic *efx);
857
d3245b28
BH
858/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
859 * the MAC appropriately. All other PHY configuration changes are pushed
860 * through phy_op->set_settings(), and pushed asynchronously to the MAC
861 * through efx_monitor().
862 *
863 * Callers must hold the mac_lock
864 */
865int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 866{
d3245b28
BH
867 enum efx_phy_mode phy_mode;
868 int rc;
8ceee660 869
d3245b28 870 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 871
a816f75a
BH
872 /* Serialise the promiscuous flag with efx_set_multicast_list. */
873 if (efx_dev_registered(efx)) {
874 netif_addr_lock_bh(efx->net_dev);
875 netif_addr_unlock_bh(efx->net_dev);
876 }
877
d3245b28
BH
878 /* Disable PHY transmit in mac level loopbacks */
879 phy_mode = efx->phy_mode;
177dfcd8
BH
880 if (LOOPBACK_INTERNAL(efx))
881 efx->phy_mode |= PHY_MODE_TX_DISABLED;
882 else
883 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 884
d3245b28 885 rc = efx->type->reconfigure_port(efx);
8ceee660 886
d3245b28
BH
887 if (rc)
888 efx->phy_mode = phy_mode;
177dfcd8 889
d3245b28 890 return rc;
8ceee660
BH
891}
892
893/* Reinitialise the MAC to pick up new PHY settings, even if the port is
894 * disabled. */
d3245b28 895int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 896{
d3245b28
BH
897 int rc;
898
8ceee660
BH
899 EFX_ASSERT_RESET_SERIALISED(efx);
900
901 mutex_lock(&efx->mac_lock);
d3245b28 902 rc = __efx_reconfigure_port(efx);
8ceee660 903 mutex_unlock(&efx->mac_lock);
d3245b28
BH
904
905 return rc;
8ceee660
BH
906}
907
8be4f3e6
BH
908/* Asynchronous work item for changing MAC promiscuity and multicast
909 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
910 * MAC directly. */
766ca0fa
BH
911static void efx_mac_work(struct work_struct *data)
912{
913 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
914
915 mutex_lock(&efx->mac_lock);
8be4f3e6 916 if (efx->port_enabled) {
ef2b90ee 917 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
918 efx->mac_op->reconfigure(efx);
919 }
766ca0fa
BH
920 mutex_unlock(&efx->mac_lock);
921}
922
8ceee660
BH
923static int efx_probe_port(struct efx_nic *efx)
924{
7e300bc8 925 unsigned char *perm_addr;
8ceee660
BH
926 int rc;
927
62776d03 928 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 929
ff3b00a0
SH
930 if (phy_flash_cfg)
931 efx->phy_mode = PHY_MODE_SPECIAL;
932
ef2b90ee
BH
933 /* Connect up MAC/PHY operations table */
934 rc = efx->type->probe_port(efx);
8ceee660 935 if (rc)
e42de262 936 return rc;
8ceee660
BH
937
938 /* Sanity check MAC address */
7e300bc8
BH
939 perm_addr = efx->net_dev->perm_addr;
940 if (is_valid_ether_addr(perm_addr)) {
941 memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN);
8ceee660 942 } else {
62776d03 943 netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
7e300bc8 944 perm_addr);
8ceee660
BH
945 if (!allow_bad_hwaddr) {
946 rc = -EINVAL;
947 goto err;
948 }
949 random_ether_addr(efx->net_dev->dev_addr);
62776d03
BH
950 netif_info(efx, probe, efx->net_dev,
951 "using locally-generated MAC %pM\n",
952 efx->net_dev->dev_addr);
8ceee660
BH
953 }
954
955 return 0;
956
957 err:
e42de262 958 efx->type->remove_port(efx);
8ceee660
BH
959 return rc;
960}
961
962static int efx_init_port(struct efx_nic *efx)
963{
964 int rc;
965
62776d03 966 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 967
1dfc5cea
BH
968 mutex_lock(&efx->mac_lock);
969
177dfcd8 970 rc = efx->phy_op->init(efx);
8ceee660 971 if (rc)
1dfc5cea 972 goto fail1;
8ceee660 973
dc8cfa55 974 efx->port_initialized = true;
1dfc5cea 975
d3245b28
BH
976 /* Reconfigure the MAC before creating dma queues (required for
977 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
978 efx->mac_op->reconfigure(efx);
979
980 /* Ensure the PHY advertises the correct flow control settings */
981 rc = efx->phy_op->reconfigure(efx);
982 if (rc)
983 goto fail2;
984
1dfc5cea 985 mutex_unlock(&efx->mac_lock);
8ceee660 986 return 0;
177dfcd8 987
1dfc5cea 988fail2:
177dfcd8 989 efx->phy_op->fini(efx);
1dfc5cea
BH
990fail1:
991 mutex_unlock(&efx->mac_lock);
177dfcd8 992 return rc;
8ceee660
BH
993}
994
8ceee660
BH
995static void efx_start_port(struct efx_nic *efx)
996{
62776d03 997 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
998 BUG_ON(efx->port_enabled);
999
1000 mutex_lock(&efx->mac_lock);
dc8cfa55 1001 efx->port_enabled = true;
8be4f3e6
BH
1002
1003 /* efx_mac_work() might have been scheduled after efx_stop_port(),
1004 * and then cancelled by efx_flush_all() */
ef2b90ee 1005 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
1006 efx->mac_op->reconfigure(efx);
1007
8ceee660
BH
1008 mutex_unlock(&efx->mac_lock);
1009}
1010
fdaa9aed 1011/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
1012static void efx_stop_port(struct efx_nic *efx)
1013{
62776d03 1014 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660
BH
1015
1016 mutex_lock(&efx->mac_lock);
dc8cfa55 1017 efx->port_enabled = false;
8ceee660
BH
1018 mutex_unlock(&efx->mac_lock);
1019
1020 /* Serialise against efx_set_multicast_list() */
55668611 1021 if (efx_dev_registered(efx)) {
b9e40857
DM
1022 netif_addr_lock_bh(efx->net_dev);
1023 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
1024 }
1025}
1026
1027static void efx_fini_port(struct efx_nic *efx)
1028{
62776d03 1029 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
1030
1031 if (!efx->port_initialized)
1032 return;
1033
177dfcd8 1034 efx->phy_op->fini(efx);
dc8cfa55 1035 efx->port_initialized = false;
8ceee660 1036
eb50c0d6 1037 efx->link_state.up = false;
8ceee660
BH
1038 efx_link_status_changed(efx);
1039}
1040
1041static void efx_remove_port(struct efx_nic *efx)
1042{
62776d03 1043 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 1044
ef2b90ee 1045 efx->type->remove_port(efx);
8ceee660
BH
1046}
1047
1048/**************************************************************************
1049 *
1050 * NIC handling
1051 *
1052 **************************************************************************/
1053
1054/* This configures the PCI device to enable I/O and DMA. */
1055static int efx_init_io(struct efx_nic *efx)
1056{
1057 struct pci_dev *pci_dev = efx->pci_dev;
1058 dma_addr_t dma_mask = efx->type->max_dma_mask;
d88d6b05 1059 bool use_wc;
8ceee660
BH
1060 int rc;
1061
62776d03 1062 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
1063
1064 rc = pci_enable_device(pci_dev);
1065 if (rc) {
62776d03
BH
1066 netif_err(efx, probe, efx->net_dev,
1067 "failed to enable PCI device\n");
8ceee660
BH
1068 goto fail1;
1069 }
1070
1071 pci_set_master(pci_dev);
1072
1073 /* Set the PCI DMA mask. Try all possibilities from our
1074 * genuine mask down to 32 bits, because some architectures
1075 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1076 * masks event though they reject 46 bit masks.
1077 */
1078 while (dma_mask > 0x7fffffffUL) {
1079 if (pci_dma_supported(pci_dev, dma_mask) &&
1080 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
1081 break;
1082 dma_mask >>= 1;
1083 }
1084 if (rc) {
62776d03
BH
1085 netif_err(efx, probe, efx->net_dev,
1086 "could not find a suitable DMA mask\n");
8ceee660
BH
1087 goto fail2;
1088 }
62776d03
BH
1089 netif_dbg(efx, probe, efx->net_dev,
1090 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660
BH
1091 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1092 if (rc) {
1093 /* pci_set_consistent_dma_mask() is not *allowed* to
1094 * fail with a mask that pci_set_dma_mask() accepted,
1095 * but just in case...
1096 */
62776d03
BH
1097 netif_err(efx, probe, efx->net_dev,
1098 "failed to set consistent DMA mask\n");
8ceee660
BH
1099 goto fail2;
1100 }
1101
dc803df8
BH
1102 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1103 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 1104 if (rc) {
62776d03
BH
1105 netif_err(efx, probe, efx->net_dev,
1106 "request for memory BAR failed\n");
8ceee660
BH
1107 rc = -EIO;
1108 goto fail3;
1109 }
d88d6b05
SH
1110
1111 /* bug22643: If SR-IOV is enabled then tx push over a write combined
1112 * mapping is unsafe. We need to disable write combining in this case.
1113 * MSI is unsupported when SR-IOV is enabled, and the firmware will
1114 * have removed the MSI capability. So write combining is safe if
1115 * there is an MSI capability.
1116 */
1117 use_wc = (!EFX_WORKAROUND_22643(efx) ||
1118 pci_find_capability(pci_dev, PCI_CAP_ID_MSI));
1119 if (use_wc)
1120 efx->membase = ioremap_wc(efx->membase_phys,
1121 efx->type->mem_map_size);
1122 else
1123 efx->membase = ioremap_nocache(efx->membase_phys,
1124 efx->type->mem_map_size);
8ceee660 1125 if (!efx->membase) {
62776d03
BH
1126 netif_err(efx, probe, efx->net_dev,
1127 "could not map memory BAR at %llx+%x\n",
1128 (unsigned long long)efx->membase_phys,
1129 efx->type->mem_map_size);
8ceee660
BH
1130 rc = -ENOMEM;
1131 goto fail4;
1132 }
62776d03
BH
1133 netif_dbg(efx, probe, efx->net_dev,
1134 "memory BAR at %llx+%x (virtual %p)\n",
1135 (unsigned long long)efx->membase_phys,
1136 efx->type->mem_map_size, efx->membase);
8ceee660
BH
1137
1138 return 0;
1139
1140 fail4:
dc803df8 1141 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 1142 fail3:
2c118e0f 1143 efx->membase_phys = 0;
8ceee660
BH
1144 fail2:
1145 pci_disable_device(efx->pci_dev);
1146 fail1:
1147 return rc;
1148}
1149
1150static void efx_fini_io(struct efx_nic *efx)
1151{
62776d03 1152 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
1153
1154 if (efx->membase) {
1155 iounmap(efx->membase);
1156 efx->membase = NULL;
1157 }
1158
1159 if (efx->membase_phys) {
dc803df8 1160 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 1161 efx->membase_phys = 0;
8ceee660
BH
1162 }
1163
1164 pci_disable_device(efx->pci_dev);
1165}
1166
a4900ac9
BH
1167/* Get number of channels wanted. Each channel will have its own IRQ,
1168 * 1 RX queue and/or 2 TX queues. */
1169static int efx_wanted_channels(void)
46123d04 1170{
2f8975fb 1171 cpumask_var_t core_mask;
46123d04
BH
1172 int count;
1173 int cpu;
5b874e25
BH
1174
1175 if (rss_cpus)
1176 return rss_cpus;
46123d04 1177
79f55997 1178 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 1179 printk(KERN_WARNING
3977d033 1180 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
1181 return 1;
1182 }
1183
46123d04
BH
1184 count = 0;
1185 for_each_online_cpu(cpu) {
2f8975fb 1186 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 1187 ++count;
2f8975fb 1188 cpumask_or(core_mask, core_mask,
fbd59a8d 1189 topology_core_cpumask(cpu));
46123d04
BH
1190 }
1191 }
1192
2f8975fb 1193 free_cpumask_var(core_mask);
46123d04
BH
1194 return count;
1195}
1196
64d8ad6d
BH
1197static int
1198efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1199{
1200#ifdef CONFIG_RFS_ACCEL
1201 int i, rc;
1202
1203 efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1204 if (!efx->net_dev->rx_cpu_rmap)
1205 return -ENOMEM;
1206 for (i = 0; i < efx->n_rx_channels; i++) {
1207 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1208 xentries[i].vector);
1209 if (rc) {
1210 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1211 efx->net_dev->rx_cpu_rmap = NULL;
1212 return rc;
1213 }
1214 }
1215#endif
1216 return 0;
1217}
1218
46123d04
BH
1219/* Probe the number and type of interrupts we are able to obtain, and
1220 * the resulting numbers of channels and RX queues.
1221 */
64d8ad6d 1222static int efx_probe_interrupts(struct efx_nic *efx)
8ceee660 1223{
46123d04
BH
1224 int max_channels =
1225 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
1226 int rc, i;
1227
1228 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1229 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 1230 int n_channels;
aa6ef27e 1231
a4900ac9
BH
1232 n_channels = efx_wanted_channels();
1233 if (separate_tx_channels)
1234 n_channels *= 2;
1235 n_channels = min(n_channels, max_channels);
8ceee660 1236
a4900ac9 1237 for (i = 0; i < n_channels; i++)
8ceee660 1238 xentries[i].entry = i;
a4900ac9 1239 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1240 if (rc > 0) {
62776d03
BH
1241 netif_err(efx, drv, efx->net_dev,
1242 "WARNING: Insufficient MSI-X vectors"
1243 " available (%d < %d).\n", rc, n_channels);
1244 netif_err(efx, drv, efx->net_dev,
1245 "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1246 EFX_BUG_ON_PARANOID(rc >= n_channels);
1247 n_channels = rc;
8ceee660 1248 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1249 n_channels);
8ceee660
BH
1250 }
1251
1252 if (rc == 0) {
a4900ac9
BH
1253 efx->n_channels = n_channels;
1254 if (separate_tx_channels) {
1255 efx->n_tx_channels =
1256 max(efx->n_channels / 2, 1U);
1257 efx->n_rx_channels =
1258 max(efx->n_channels -
1259 efx->n_tx_channels, 1U);
1260 } else {
1261 efx->n_tx_channels = efx->n_channels;
1262 efx->n_rx_channels = efx->n_channels;
1263 }
64d8ad6d
BH
1264 rc = efx_init_rx_cpu_rmap(efx, xentries);
1265 if (rc) {
1266 pci_disable_msix(efx->pci_dev);
1267 return rc;
1268 }
a4900ac9 1269 for (i = 0; i < n_channels; i++)
f7d12cdc
BH
1270 efx_get_channel(efx, i)->irq =
1271 xentries[i].vector;
8ceee660
BH
1272 } else {
1273 /* Fall back to single channel MSI */
1274 efx->interrupt_mode = EFX_INT_MODE_MSI;
62776d03
BH
1275 netif_err(efx, drv, efx->net_dev,
1276 "could not enable MSI-X\n");
8ceee660
BH
1277 }
1278 }
1279
1280 /* Try single interrupt MSI */
1281 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1282 efx->n_channels = 1;
a4900ac9
BH
1283 efx->n_rx_channels = 1;
1284 efx->n_tx_channels = 1;
8ceee660
BH
1285 rc = pci_enable_msi(efx->pci_dev);
1286 if (rc == 0) {
f7d12cdc 1287 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
8ceee660 1288 } else {
62776d03
BH
1289 netif_err(efx, drv, efx->net_dev,
1290 "could not enable MSI\n");
8ceee660
BH
1291 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1292 }
1293 }
1294
1295 /* Assume legacy interrupts */
1296 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1297 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1298 efx->n_rx_channels = 1;
1299 efx->n_tx_channels = 1;
8ceee660
BH
1300 efx->legacy_irq = efx->pci_dev->irq;
1301 }
64d8ad6d
BH
1302
1303 return 0;
8ceee660
BH
1304}
1305
1306static void efx_remove_interrupts(struct efx_nic *efx)
1307{
1308 struct efx_channel *channel;
1309
1310 /* Remove MSI/MSI-X interrupts */
64ee3120 1311 efx_for_each_channel(channel, efx)
8ceee660
BH
1312 channel->irq = 0;
1313 pci_disable_msi(efx->pci_dev);
1314 pci_disable_msix(efx->pci_dev);
1315
1316 /* Remove legacy interrupt */
1317 efx->legacy_irq = 0;
1318}
1319
8831da7b 1320static void efx_set_channels(struct efx_nic *efx)
8ceee660 1321{
602a5322
BH
1322 struct efx_channel *channel;
1323 struct efx_tx_queue *tx_queue;
1324
97653431 1325 efx->tx_channel_offset =
a4900ac9 1326 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
602a5322
BH
1327
1328 /* We need to adjust the TX queue numbers if we have separate
1329 * RX-only and TX-only channels.
1330 */
1331 efx_for_each_channel(channel, efx) {
1332 efx_for_each_channel_tx_queue(tx_queue, channel)
1333 tx_queue->queue -= (efx->tx_channel_offset *
1334 EFX_TXQ_TYPES);
1335 }
8ceee660
BH
1336}
1337
1338static int efx_probe_nic(struct efx_nic *efx)
1339{
765c9f46 1340 size_t i;
8ceee660
BH
1341 int rc;
1342
62776d03 1343 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1344
1345 /* Carry out hardware-type specific initialisation */
ef2b90ee 1346 rc = efx->type->probe(efx);
8ceee660
BH
1347 if (rc)
1348 return rc;
1349
a4900ac9 1350 /* Determine the number of channels and queues by trying to hook
8ceee660 1351 * in MSI-X interrupts. */
64d8ad6d
BH
1352 rc = efx_probe_interrupts(efx);
1353 if (rc)
1354 goto fail;
8ceee660 1355
5d3a6fca
BH
1356 if (efx->n_channels > 1)
1357 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
765c9f46
BH
1358 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1359 efx->rx_indir_table[i] = i % efx->n_rx_channels;
5d3a6fca 1360
8831da7b 1361 efx_set_channels(efx);
c4f4adc7
BH
1362 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1363 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
8ceee660
BH
1364
1365 /* Initialise the interrupt moderation settings */
6fb70fd1 1366 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1367
1368 return 0;
64d8ad6d
BH
1369
1370fail:
1371 efx->type->remove(efx);
1372 return rc;
8ceee660
BH
1373}
1374
1375static void efx_remove_nic(struct efx_nic *efx)
1376{
62776d03 1377 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1378
1379 efx_remove_interrupts(efx);
ef2b90ee 1380 efx->type->remove(efx);
8ceee660
BH
1381}
1382
1383/**************************************************************************
1384 *
1385 * NIC startup/shutdown
1386 *
1387 *************************************************************************/
1388
1389static int efx_probe_all(struct efx_nic *efx)
1390{
8ceee660
BH
1391 int rc;
1392
8ceee660
BH
1393 rc = efx_probe_nic(efx);
1394 if (rc) {
62776d03 1395 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1396 goto fail1;
1397 }
1398
8ceee660
BH
1399 rc = efx_probe_port(efx);
1400 if (rc) {
62776d03 1401 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1402 goto fail2;
1403 }
1404
ecc910f5 1405 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
4642610c
BH
1406 rc = efx_probe_channels(efx);
1407 if (rc)
1408 goto fail3;
8ceee660 1409
64eebcfd
BH
1410 rc = efx_probe_filters(efx);
1411 if (rc) {
1412 netif_err(efx, probe, efx->net_dev,
1413 "failed to create filter tables\n");
1414 goto fail4;
1415 }
1416
8ceee660
BH
1417 return 0;
1418
64eebcfd
BH
1419 fail4:
1420 efx_remove_channels(efx);
8ceee660 1421 fail3:
8ceee660
BH
1422 efx_remove_port(efx);
1423 fail2:
1424 efx_remove_nic(efx);
1425 fail1:
1426 return rc;
1427}
1428
1429/* Called after previous invocation(s) of efx_stop_all, restarts the
1430 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1431 * and ensures that the port is scheduled to be reconfigured.
1432 * This function is safe to call multiple times when the NIC is in any
1433 * state. */
1434static void efx_start_all(struct efx_nic *efx)
1435{
1436 struct efx_channel *channel;
1437
1438 EFX_ASSERT_RESET_SERIALISED(efx);
1439
1440 /* Check that it is appropriate to restart the interface. All
1441 * of these flags are safe to read under just the rtnl lock */
1442 if (efx->port_enabled)
1443 return;
1444 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1445 return;
55668611 1446 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1447 return;
1448
1449 /* Mark the port as enabled so port reconfigurations can start, then
1450 * restart the transmit interface early so the watchdog timer stops */
1451 efx_start_port(efx);
8ceee660 1452
9d1aea62 1453 if (efx_dev_registered(efx) && !efx->port_inhibited)
c04bfc6b
BH
1454 netif_tx_wake_all_queues(efx->net_dev);
1455
1456 efx_for_each_channel(channel, efx)
8ceee660
BH
1457 efx_start_channel(channel);
1458
94dec6a2
BH
1459 if (efx->legacy_irq)
1460 efx->legacy_irq_enabled = true;
152b6a62 1461 efx_nic_enable_interrupts(efx);
8ceee660 1462
8880f4ec
BH
1463 /* Switch to event based MCDI completions after enabling interrupts.
1464 * If a reset has been scheduled, then we need to stay in polled mode.
1465 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1466 * reset_pending [modified from an atomic context], we instead guarantee
1467 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1468 efx_mcdi_mode_event(efx);
1469 if (efx->reset_pending != RESET_TYPE_NONE)
1470 efx_mcdi_mode_poll(efx);
1471
78c1f0a0
SH
1472 /* Start the hardware monitor if there is one. Otherwise (we're link
1473 * event driven), we have to poll the PHY because after an event queue
1474 * flush, we could have a missed a link state change */
1475 if (efx->type->monitor != NULL) {
8ceee660
BH
1476 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1477 efx_monitor_interval);
78c1f0a0
SH
1478 } else {
1479 mutex_lock(&efx->mac_lock);
1480 if (efx->phy_op->poll(efx))
1481 efx_link_status_changed(efx);
1482 mutex_unlock(&efx->mac_lock);
1483 }
55edc6e6 1484
ef2b90ee 1485 efx->type->start_stats(efx);
8ceee660
BH
1486}
1487
1488/* Flush all delayed work. Should only be called when no more delayed work
1489 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1490 * since we're holding the rtnl_lock at this point. */
1491static void efx_flush_all(struct efx_nic *efx)
1492{
8ceee660
BH
1493 /* Make sure the hardware monitor is stopped */
1494 cancel_delayed_work_sync(&efx->monitor_work);
8ceee660 1495 /* Stop scheduled port reconfigurations */
766ca0fa 1496 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1497}
1498
1499/* Quiesce hardware and software without bringing the link down.
1500 * Safe to call multiple times, when the nic and interface is in any
1501 * state. The caller is guaranteed to subsequently be in a position
1502 * to modify any hardware and software state they see fit without
1503 * taking locks. */
1504static void efx_stop_all(struct efx_nic *efx)
1505{
1506 struct efx_channel *channel;
1507
1508 EFX_ASSERT_RESET_SERIALISED(efx);
1509
1510 /* port_enabled can be read safely under the rtnl lock */
1511 if (!efx->port_enabled)
1512 return;
1513
ef2b90ee 1514 efx->type->stop_stats(efx);
55edc6e6 1515
8880f4ec
BH
1516 /* Switch to MCDI polling on Siena before disabling interrupts */
1517 efx_mcdi_mode_poll(efx);
1518
8ceee660 1519 /* Disable interrupts and wait for ISR to complete */
152b6a62 1520 efx_nic_disable_interrupts(efx);
94dec6a2 1521 if (efx->legacy_irq) {
8ceee660 1522 synchronize_irq(efx->legacy_irq);
94dec6a2
BH
1523 efx->legacy_irq_enabled = false;
1524 }
64ee3120 1525 efx_for_each_channel(channel, efx) {
8ceee660
BH
1526 if (channel->irq)
1527 synchronize_irq(channel->irq);
b3475645 1528 }
8ceee660
BH
1529
1530 /* Stop all NAPI processing and synchronous rx refills */
1531 efx_for_each_channel(channel, efx)
1532 efx_stop_channel(channel);
1533
1534 /* Stop all asynchronous port reconfigurations. Since all
1535 * event processing has already been stopped, there is no
1536 * window to loose phy events */
1537 efx_stop_port(efx);
1538
fdaa9aed 1539 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1540 efx_flush_all(efx);
1541
8ceee660
BH
1542 /* Stop the kernel transmit interface late, so the watchdog
1543 * timer isn't ticking over the flush */
55668611 1544 if (efx_dev_registered(efx)) {
c04bfc6b 1545 netif_tx_stop_all_queues(efx->net_dev);
8ceee660
BH
1546 netif_tx_lock_bh(efx->net_dev);
1547 netif_tx_unlock_bh(efx->net_dev);
1548 }
1549}
1550
1551static void efx_remove_all(struct efx_nic *efx)
1552{
64eebcfd 1553 efx_remove_filters(efx);
4642610c 1554 efx_remove_channels(efx);
8ceee660
BH
1555 efx_remove_port(efx);
1556 efx_remove_nic(efx);
1557}
1558
8ceee660
BH
1559/**************************************************************************
1560 *
1561 * Interrupt moderation
1562 *
1563 **************************************************************************/
1564
0d86ebd8
BH
1565static unsigned irq_mod_ticks(int usecs, int resolution)
1566{
1567 if (usecs <= 0)
1568 return 0; /* cannot receive interrupts ahead of time :-) */
1569 if (usecs < resolution)
1570 return 1; /* never round down to 0 */
1571 return usecs / resolution;
1572}
1573
8ceee660 1574/* Set interrupt moderation parameters */
6fb70fd1
BH
1575void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1576 bool rx_adaptive)
8ceee660 1577{
f7d12cdc 1578 struct efx_channel *channel;
152b6a62
BH
1579 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1580 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
8ceee660
BH
1581
1582 EFX_ASSERT_RESET_SERIALISED(efx);
1583
6fb70fd1 1584 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1585 efx->irq_rx_moderation = rx_ticks;
f7d12cdc 1586 efx_for_each_channel(channel, efx) {
525da907 1587 if (efx_channel_has_rx_queue(channel))
f7d12cdc 1588 channel->irq_moderation = rx_ticks;
525da907 1589 else if (efx_channel_has_tx_queues(channel))
f7d12cdc
BH
1590 channel->irq_moderation = tx_ticks;
1591 }
8ceee660
BH
1592}
1593
1594/**************************************************************************
1595 *
1596 * Hardware monitor
1597 *
1598 **************************************************************************/
1599
e254c274 1600/* Run periodically off the general workqueue */
8ceee660
BH
1601static void efx_monitor(struct work_struct *data)
1602{
1603 struct efx_nic *efx = container_of(data, struct efx_nic,
1604 monitor_work.work);
8ceee660 1605
62776d03
BH
1606 netif_vdbg(efx, timer, efx->net_dev,
1607 "hardware monitor executing on CPU %d\n",
1608 raw_smp_processor_id());
ef2b90ee 1609 BUG_ON(efx->type->monitor == NULL);
8ceee660 1610
8ceee660
BH
1611 /* If the mac_lock is already held then it is likely a port
1612 * reconfiguration is already in place, which will likely do
e254c274
BH
1613 * most of the work of monitor() anyway. */
1614 if (mutex_trylock(&efx->mac_lock)) {
1615 if (efx->port_enabled)
1616 efx->type->monitor(efx);
1617 mutex_unlock(&efx->mac_lock);
1618 }
8ceee660 1619
8ceee660
BH
1620 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1621 efx_monitor_interval);
1622}
1623
1624/**************************************************************************
1625 *
1626 * ioctls
1627 *
1628 *************************************************************************/
1629
1630/* Net device ioctl
1631 * Context: process, rtnl_lock() held.
1632 */
1633static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1634{
767e468c 1635 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1636 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1637
1638 EFX_ASSERT_RESET_SERIALISED(efx);
1639
68e7f45e
BH
1640 /* Convert phy_id from older PRTAD/DEVAD format */
1641 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1642 (data->phy_id & 0xfc00) == 0x0400)
1643 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1644
1645 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1646}
1647
1648/**************************************************************************
1649 *
1650 * NAPI interface
1651 *
1652 **************************************************************************/
1653
e8f14992 1654static void efx_init_napi(struct efx_nic *efx)
8ceee660
BH
1655{
1656 struct efx_channel *channel;
8ceee660
BH
1657
1658 efx_for_each_channel(channel, efx) {
1659 channel->napi_dev = efx->net_dev;
718cff1e
BH
1660 netif_napi_add(channel->napi_dev, &channel->napi_str,
1661 efx_poll, napi_weight);
8ceee660 1662 }
e8f14992
BH
1663}
1664
1665static void efx_fini_napi_channel(struct efx_channel *channel)
1666{
1667 if (channel->napi_dev)
1668 netif_napi_del(&channel->napi_str);
1669 channel->napi_dev = NULL;
8ceee660
BH
1670}
1671
1672static void efx_fini_napi(struct efx_nic *efx)
1673{
1674 struct efx_channel *channel;
1675
e8f14992
BH
1676 efx_for_each_channel(channel, efx)
1677 efx_fini_napi_channel(channel);
8ceee660
BH
1678}
1679
1680/**************************************************************************
1681 *
1682 * Kernel netpoll interface
1683 *
1684 *************************************************************************/
1685
1686#ifdef CONFIG_NET_POLL_CONTROLLER
1687
1688/* Although in the common case interrupts will be disabled, this is not
1689 * guaranteed. However, all our work happens inside the NAPI callback,
1690 * so no locking is required.
1691 */
1692static void efx_netpoll(struct net_device *net_dev)
1693{
767e468c 1694 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1695 struct efx_channel *channel;
1696
64ee3120 1697 efx_for_each_channel(channel, efx)
8ceee660
BH
1698 efx_schedule_channel(channel);
1699}
1700
1701#endif
1702
1703/**************************************************************************
1704 *
1705 * Kernel net device interface
1706 *
1707 *************************************************************************/
1708
1709/* Context: process, rtnl_lock() held. */
1710static int efx_net_open(struct net_device *net_dev)
1711{
767e468c 1712 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1713 EFX_ASSERT_RESET_SERIALISED(efx);
1714
62776d03
BH
1715 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1716 raw_smp_processor_id());
8ceee660 1717
f4bd954e
BH
1718 if (efx->state == STATE_DISABLED)
1719 return -EIO;
f8b87c17
BH
1720 if (efx->phy_mode & PHY_MODE_SPECIAL)
1721 return -EBUSY;
8880f4ec
BH
1722 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1723 return -EIO;
f8b87c17 1724
78c1f0a0
SH
1725 /* Notify the kernel of the link state polled during driver load,
1726 * before the monitor starts running */
1727 efx_link_status_changed(efx);
1728
8ceee660
BH
1729 efx_start_all(efx);
1730 return 0;
1731}
1732
1733/* Context: process, rtnl_lock() held.
1734 * Note that the kernel will ignore our return code; this method
1735 * should really be a void.
1736 */
1737static int efx_net_stop(struct net_device *net_dev)
1738{
767e468c 1739 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1740
62776d03
BH
1741 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1742 raw_smp_processor_id());
8ceee660 1743
f4bd954e
BH
1744 if (efx->state != STATE_DISABLED) {
1745 /* Stop the device and flush all the channels */
1746 efx_stop_all(efx);
1747 efx_fini_channels(efx);
1748 efx_init_channels(efx);
1749 }
8ceee660
BH
1750
1751 return 0;
1752}
1753
5b9e207c 1754/* Context: process, dev_base_lock or RTNL held, non-blocking. */
28172739 1755static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
8ceee660 1756{
767e468c 1757 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1758 struct efx_mac_stats *mac_stats = &efx->mac_stats;
8ceee660 1759
55edc6e6 1760 spin_lock_bh(&efx->stats_lock);
ef2b90ee 1761 efx->type->update_stats(efx);
55edc6e6 1762 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1763
1764 stats->rx_packets = mac_stats->rx_packets;
1765 stats->tx_packets = mac_stats->tx_packets;
1766 stats->rx_bytes = mac_stats->rx_bytes;
1767 stats->tx_bytes = mac_stats->tx_bytes;
80485d34 1768 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
8ceee660
BH
1769 stats->multicast = mac_stats->rx_multicast;
1770 stats->collisions = mac_stats->tx_collision;
1771 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1772 mac_stats->rx_length_error);
8ceee660
BH
1773 stats->rx_crc_errors = mac_stats->rx_bad;
1774 stats->rx_frame_errors = mac_stats->rx_align_error;
1775 stats->rx_fifo_errors = mac_stats->rx_overflow;
1776 stats->rx_missed_errors = mac_stats->rx_missed;
1777 stats->tx_window_errors = mac_stats->tx_late_collision;
1778
1779 stats->rx_errors = (stats->rx_length_errors +
8ceee660
BH
1780 stats->rx_crc_errors +
1781 stats->rx_frame_errors +
8ceee660
BH
1782 mac_stats->rx_symbol_error);
1783 stats->tx_errors = (stats->tx_window_errors +
1784 mac_stats->tx_bad);
1785
1786 return stats;
1787}
1788
1789/* Context: netif_tx_lock held, BHs disabled. */
1790static void efx_watchdog(struct net_device *net_dev)
1791{
767e468c 1792 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1793
62776d03
BH
1794 netif_err(efx, tx_err, efx->net_dev,
1795 "TX stuck with port_enabled=%d: resetting channels\n",
1796 efx->port_enabled);
8ceee660 1797
739bb23d 1798 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1799}
1800
1801
1802/* Context: process, rtnl_lock() held. */
1803static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1804{
767e468c 1805 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1806 int rc = 0;
1807
1808 EFX_ASSERT_RESET_SERIALISED(efx);
1809
1810 if (new_mtu > EFX_MAX_MTU)
1811 return -EINVAL;
1812
1813 efx_stop_all(efx);
1814
62776d03 1815 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660
BH
1816
1817 efx_fini_channels(efx);
d3245b28
BH
1818
1819 mutex_lock(&efx->mac_lock);
1820 /* Reconfigure the MAC before enabling the dma queues so that
1821 * the RX buffers don't overflow */
8ceee660 1822 net_dev->mtu = new_mtu;
d3245b28
BH
1823 efx->mac_op->reconfigure(efx);
1824 mutex_unlock(&efx->mac_lock);
1825
bc3c90a2 1826 efx_init_channels(efx);
8ceee660
BH
1827
1828 efx_start_all(efx);
1829 return rc;
8ceee660
BH
1830}
1831
1832static int efx_set_mac_address(struct net_device *net_dev, void *data)
1833{
767e468c 1834 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1835 struct sockaddr *addr = data;
1836 char *new_addr = addr->sa_data;
1837
1838 EFX_ASSERT_RESET_SERIALISED(efx);
1839
1840 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
1841 netif_err(efx, drv, efx->net_dev,
1842 "invalid ethernet MAC address requested: %pM\n",
1843 new_addr);
8ceee660
BH
1844 return -EINVAL;
1845 }
1846
1847 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1848
1849 /* Reconfigure the MAC */
d3245b28
BH
1850 mutex_lock(&efx->mac_lock);
1851 efx->mac_op->reconfigure(efx);
1852 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1853
1854 return 0;
1855}
1856
a816f75a 1857/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1858static void efx_set_multicast_list(struct net_device *net_dev)
1859{
767e468c 1860 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1861 struct netdev_hw_addr *ha;
8ceee660 1862 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1863 u32 crc;
1864 int bit;
8ceee660 1865
8be4f3e6 1866 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1867
1868 /* Build multicast hash table */
8be4f3e6 1869 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1870 memset(mc_hash, 0xff, sizeof(*mc_hash));
1871 } else {
1872 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1873 netdev_for_each_mc_addr(ha, net_dev) {
1874 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1875 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1876 set_bit_le(bit, mc_hash->byte);
8ceee660 1877 }
8ceee660 1878
8be4f3e6
BH
1879 /* Broadcast packets go through the multicast hash filter.
1880 * ether_crc_le() of the broadcast address is 0xbe2612ff
1881 * so we always add bit 0xff to the mask.
1882 */
1883 set_bit_le(0xff, mc_hash->byte);
1884 }
a816f75a 1885
8be4f3e6
BH
1886 if (efx->port_enabled)
1887 queue_work(efx->workqueue, &efx->mac_work);
1888 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1889}
1890
abfe9039
BH
1891static int efx_set_features(struct net_device *net_dev, u32 data)
1892{
1893 struct efx_nic *efx = netdev_priv(net_dev);
1894
1895 /* If disabling RX n-tuple filtering, clear existing filters */
1896 if (net_dev->features & ~data & NETIF_F_NTUPLE)
1897 efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
1898
1899 return 0;
1900}
1901
c3ecb9f3
SH
1902static const struct net_device_ops efx_netdev_ops = {
1903 .ndo_open = efx_net_open,
1904 .ndo_stop = efx_net_stop,
4472702e 1905 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
1906 .ndo_tx_timeout = efx_watchdog,
1907 .ndo_start_xmit = efx_hard_start_xmit,
1908 .ndo_validate_addr = eth_validate_addr,
1909 .ndo_do_ioctl = efx_ioctl,
1910 .ndo_change_mtu = efx_change_mtu,
1911 .ndo_set_mac_address = efx_set_mac_address,
1912 .ndo_set_multicast_list = efx_set_multicast_list,
abfe9039 1913 .ndo_set_features = efx_set_features,
c3ecb9f3
SH
1914#ifdef CONFIG_NET_POLL_CONTROLLER
1915 .ndo_poll_controller = efx_netpoll,
1916#endif
94b274bf 1917 .ndo_setup_tc = efx_setup_tc,
64d8ad6d
BH
1918#ifdef CONFIG_RFS_ACCEL
1919 .ndo_rx_flow_steer = efx_filter_rfs,
1920#endif
c3ecb9f3
SH
1921};
1922
7dde596e
BH
1923static void efx_update_name(struct efx_nic *efx)
1924{
1925 strcpy(efx->name, efx->net_dev->name);
1926 efx_mtd_rename(efx);
1927 efx_set_channel_names(efx);
1928}
1929
8ceee660
BH
1930static int efx_netdev_event(struct notifier_block *this,
1931 unsigned long event, void *ptr)
1932{
d3208b5e 1933 struct net_device *net_dev = ptr;
8ceee660 1934
7dde596e
BH
1935 if (net_dev->netdev_ops == &efx_netdev_ops &&
1936 event == NETDEV_CHANGENAME)
1937 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1938
1939 return NOTIFY_DONE;
1940}
1941
1942static struct notifier_block efx_netdev_notifier = {
1943 .notifier_call = efx_netdev_event,
1944};
1945
06d5e193
BH
1946static ssize_t
1947show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1948{
1949 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1950 return sprintf(buf, "%d\n", efx->phy_type);
1951}
1952static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1953
8ceee660
BH
1954static int efx_register_netdev(struct efx_nic *efx)
1955{
1956 struct net_device *net_dev = efx->net_dev;
c04bfc6b 1957 struct efx_channel *channel;
8ceee660
BH
1958 int rc;
1959
1960 net_dev->watchdog_timeo = 5 * HZ;
1961 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1962 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1963 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1964
8ceee660 1965 /* Clear MAC statistics */
177dfcd8 1966 efx->mac_op->update_stats(efx);
8ceee660
BH
1967 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1968
7dde596e 1969 rtnl_lock();
aed0628d
BH
1970
1971 rc = dev_alloc_name(net_dev, net_dev->name);
1972 if (rc < 0)
1973 goto fail_locked;
7dde596e 1974 efx_update_name(efx);
aed0628d
BH
1975
1976 rc = register_netdevice(net_dev);
1977 if (rc)
1978 goto fail_locked;
1979
c04bfc6b
BH
1980 efx_for_each_channel(channel, efx) {
1981 struct efx_tx_queue *tx_queue;
60031fcc
BH
1982 efx_for_each_channel_tx_queue(tx_queue, channel)
1983 efx_init_tx_queue_core_txq(tx_queue);
c04bfc6b
BH
1984 }
1985
aed0628d
BH
1986 /* Always start with carrier off; PHY events will detect the link */
1987 netif_carrier_off(efx->net_dev);
1988
7dde596e 1989 rtnl_unlock();
8ceee660 1990
06d5e193
BH
1991 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1992 if (rc) {
62776d03
BH
1993 netif_err(efx, drv, efx->net_dev,
1994 "failed to init net dev attributes\n");
06d5e193
BH
1995 goto fail_registered;
1996 }
1997
8ceee660 1998 return 0;
06d5e193 1999
aed0628d
BH
2000fail_locked:
2001 rtnl_unlock();
62776d03 2002 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d
BH
2003 return rc;
2004
06d5e193
BH
2005fail_registered:
2006 unregister_netdev(net_dev);
2007 return rc;
8ceee660
BH
2008}
2009
2010static void efx_unregister_netdev(struct efx_nic *efx)
2011{
f7d12cdc 2012 struct efx_channel *channel;
8ceee660
BH
2013 struct efx_tx_queue *tx_queue;
2014
2015 if (!efx->net_dev)
2016 return;
2017
767e468c 2018 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
2019
2020 /* Free up any skbs still remaining. This has to happen before
2021 * we try to unregister the netdev as running their destructors
2022 * may be needed to get the device ref. count to 0. */
f7d12cdc
BH
2023 efx_for_each_channel(channel, efx) {
2024 efx_for_each_channel_tx_queue(tx_queue, channel)
2025 efx_release_tx_buffers(tx_queue);
2026 }
8ceee660 2027
55668611 2028 if (efx_dev_registered(efx)) {
8ceee660 2029 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 2030 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
2031 unregister_netdev(efx->net_dev);
2032 }
2033}
2034
2035/**************************************************************************
2036 *
2037 * Device reset and suspend
2038 *
2039 **************************************************************************/
2040
2467ca46
BH
2041/* Tears down the entire software state and most of the hardware state
2042 * before reset. */
d3245b28 2043void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 2044{
8ceee660
BH
2045 EFX_ASSERT_RESET_SERIALISED(efx);
2046
2467ca46
BH
2047 efx_stop_all(efx);
2048 mutex_lock(&efx->mac_lock);
2049
8ceee660 2050 efx_fini_channels(efx);
4b988280
SH
2051 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2052 efx->phy_op->fini(efx);
ef2b90ee 2053 efx->type->fini(efx);
8ceee660
BH
2054}
2055
2467ca46
BH
2056/* This function will always ensure that the locks acquired in
2057 * efx_reset_down() are released. A failure return code indicates
2058 * that we were unable to reinitialise the hardware, and the
2059 * driver should be disabled. If ok is false, then the rx and tx
2060 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 2061int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
2062{
2063 int rc;
2064
2467ca46 2065 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 2066
ef2b90ee 2067 rc = efx->type->init(efx);
8ceee660 2068 if (rc) {
62776d03 2069 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 2070 goto fail;
8ceee660
BH
2071 }
2072
eb9f6744
BH
2073 if (!ok)
2074 goto fail;
2075
4b988280 2076 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
2077 rc = efx->phy_op->init(efx);
2078 if (rc)
2079 goto fail;
2080 if (efx->phy_op->reconfigure(efx))
62776d03
BH
2081 netif_err(efx, drv, efx->net_dev,
2082 "could not restore PHY settings\n");
4b988280
SH
2083 }
2084
eb9f6744 2085 efx->mac_op->reconfigure(efx);
8ceee660 2086
eb9f6744 2087 efx_init_channels(efx);
64eebcfd 2088 efx_restore_filters(efx);
eb9f6744 2089
eb9f6744
BH
2090 mutex_unlock(&efx->mac_lock);
2091
2092 efx_start_all(efx);
2093
2094 return 0;
2095
2096fail:
2097 efx->port_initialized = false;
2467ca46
BH
2098
2099 mutex_unlock(&efx->mac_lock);
2100
8ceee660
BH
2101 return rc;
2102}
2103
eb9f6744
BH
2104/* Reset the NIC using the specified method. Note that the reset may
2105 * fail, in which case the card will be left in an unusable state.
8ceee660 2106 *
eb9f6744 2107 * Caller must hold the rtnl_lock.
8ceee660 2108 */
eb9f6744 2109int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 2110{
eb9f6744
BH
2111 int rc, rc2;
2112 bool disabled;
8ceee660 2113
62776d03
BH
2114 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2115 RESET_TYPE(method));
8ceee660 2116
d3245b28 2117 efx_reset_down(efx, method);
8ceee660 2118
ef2b90ee 2119 rc = efx->type->reset(efx, method);
8ceee660 2120 if (rc) {
62776d03 2121 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 2122 goto out;
8ceee660
BH
2123 }
2124
2125 /* Allow resets to be rescheduled. */
2126 efx->reset_pending = RESET_TYPE_NONE;
2127
2128 /* Reinitialise bus-mastering, which may have been turned off before
2129 * the reset was scheduled. This is still appropriate, even in the
2130 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2131 * can respond to requests. */
2132 pci_set_master(efx->pci_dev);
2133
eb9f6744 2134out:
8ceee660 2135 /* Leave device stopped if necessary */
eb9f6744
BH
2136 disabled = rc || method == RESET_TYPE_DISABLE;
2137 rc2 = efx_reset_up(efx, method, !disabled);
2138 if (rc2) {
2139 disabled = true;
2140 if (!rc)
2141 rc = rc2;
8ceee660
BH
2142 }
2143
eb9f6744 2144 if (disabled) {
f49a4589 2145 dev_close(efx->net_dev);
62776d03 2146 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 2147 efx->state = STATE_DISABLED;
f4bd954e 2148 } else {
62776d03 2149 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
f4bd954e 2150 }
8ceee660
BH
2151 return rc;
2152}
2153
2154/* The worker thread exists so that code that cannot sleep can
2155 * schedule a reset for later.
2156 */
2157static void efx_reset_work(struct work_struct *data)
2158{
eb9f6744 2159 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
8ceee660 2160
319ba649
SH
2161 if (efx->reset_pending == RESET_TYPE_NONE)
2162 return;
2163
eb9f6744
BH
2164 /* If we're not RUNNING then don't reset. Leave the reset_pending
2165 * flag set so that efx_pci_probe_main will be retried */
2166 if (efx->state != STATE_RUNNING) {
62776d03
BH
2167 netif_info(efx, drv, efx->net_dev,
2168 "scheduled reset quenched. NIC not RUNNING\n");
eb9f6744
BH
2169 return;
2170 }
2171
2172 rtnl_lock();
f49a4589 2173 (void)efx_reset(efx, efx->reset_pending);
eb9f6744 2174 rtnl_unlock();
8ceee660
BH
2175}
2176
2177void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2178{
2179 enum reset_type method;
2180
2181 if (efx->reset_pending != RESET_TYPE_NONE) {
62776d03
BH
2182 netif_info(efx, drv, efx->net_dev,
2183 "quenching already scheduled reset\n");
8ceee660
BH
2184 return;
2185 }
2186
2187 switch (type) {
2188 case RESET_TYPE_INVISIBLE:
2189 case RESET_TYPE_ALL:
2190 case RESET_TYPE_WORLD:
2191 case RESET_TYPE_DISABLE:
2192 method = type;
2193 break;
2194 case RESET_TYPE_RX_RECOVERY:
2195 case RESET_TYPE_RX_DESC_FETCH:
2196 case RESET_TYPE_TX_DESC_FETCH:
2197 case RESET_TYPE_TX_SKIP:
2198 method = RESET_TYPE_INVISIBLE;
2199 break;
8880f4ec 2200 case RESET_TYPE_MC_FAILURE:
8ceee660
BH
2201 default:
2202 method = RESET_TYPE_ALL;
2203 break;
2204 }
2205
2206 if (method != type)
62776d03
BH
2207 netif_dbg(efx, drv, efx->net_dev,
2208 "scheduling %s reset for %s\n",
2209 RESET_TYPE(method), RESET_TYPE(type));
8ceee660 2210 else
62776d03
BH
2211 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2212 RESET_TYPE(method));
8ceee660
BH
2213
2214 efx->reset_pending = method;
2215
8880f4ec
BH
2216 /* efx_process_channel() will no longer read events once a
2217 * reset is scheduled. So switch back to poll'd MCDI completions. */
2218 efx_mcdi_mode_poll(efx);
2219
1ab00629 2220 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
2221}
2222
2223/**************************************************************************
2224 *
2225 * List of NICs we support
2226 *
2227 **************************************************************************/
2228
2229/* PCI device ID table */
a3aa1884 2230static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
8ceee660 2231 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
daeda630 2232 .driver_data = (unsigned long) &falcon_a1_nic_type},
8ceee660 2233 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
daeda630 2234 .driver_data = (unsigned long) &falcon_b0_nic_type},
8880f4ec
BH
2235 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
2236 .driver_data = (unsigned long) &siena_a0_nic_type},
2237 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
2238 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
2239 {0} /* end of list */
2240};
2241
2242/**************************************************************************
2243 *
3759433d 2244 * Dummy PHY/MAC operations
8ceee660 2245 *
01aad7b6 2246 * Can be used for some unimplemented operations
8ceee660
BH
2247 * Needed so all function pointers are valid and do not have to be tested
2248 * before use
2249 *
2250 **************************************************************************/
2251int efx_port_dummy_op_int(struct efx_nic *efx)
2252{
2253 return 0;
2254}
2255void efx_port_dummy_op_void(struct efx_nic *efx) {}
d215697f 2256
2257static bool efx_port_dummy_op_poll(struct efx_nic *efx)
fdaa9aed
SH
2258{
2259 return false;
2260}
8ceee660 2261
6c8c2513 2262static const struct efx_phy_operations efx_dummy_phy_operations = {
8ceee660 2263 .init = efx_port_dummy_op_int,
d3245b28 2264 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2265 .poll = efx_port_dummy_op_poll,
8ceee660 2266 .fini = efx_port_dummy_op_void,
8ceee660
BH
2267};
2268
8ceee660
BH
2269/**************************************************************************
2270 *
2271 * Data housekeeping
2272 *
2273 **************************************************************************/
2274
2275/* This zeroes out and then fills in the invariants in a struct
2276 * efx_nic (including all sub-structures).
2277 */
6c8c2513 2278static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
8ceee660
BH
2279 struct pci_dev *pci_dev, struct net_device *net_dev)
2280{
4642610c 2281 int i;
8ceee660
BH
2282
2283 /* Initialise common structures */
2284 memset(efx, 0, sizeof(*efx));
2285 spin_lock_init(&efx->biu_lock);
76884835
BH
2286#ifdef CONFIG_SFC_MTD
2287 INIT_LIST_HEAD(&efx->mtd_list);
2288#endif
8ceee660
BH
2289 INIT_WORK(&efx->reset_work, efx_reset_work);
2290 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2291 efx->pci_dev = pci_dev;
62776d03 2292 efx->msg_enable = debug;
8ceee660
BH
2293 efx->state = STATE_INIT;
2294 efx->reset_pending = RESET_TYPE_NONE;
2295 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2296
2297 efx->net_dev = net_dev;
8ceee660
BH
2298 spin_lock_init(&efx->stats_lock);
2299 mutex_init(&efx->mac_lock);
b895d73e 2300 efx->mac_op = type->default_mac_ops;
8ceee660 2301 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2302 efx->mdio.dev = net_dev;
766ca0fa 2303 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2304
2305 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
4642610c
BH
2306 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2307 if (!efx->channel[i])
2308 goto fail;
8ceee660
BH
2309 }
2310
2311 efx->type = type;
2312
8ceee660
BH
2313 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2314
2315 /* Higher numbered interrupt modes are less capable! */
2316 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2317 interrupt_mode);
2318
6977dc63
BH
2319 /* Would be good to use the net_dev name, but we're too early */
2320 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2321 pci_name(pci_dev));
2322 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629 2323 if (!efx->workqueue)
4642610c 2324 goto fail;
8d9853d9 2325
8ceee660 2326 return 0;
4642610c
BH
2327
2328fail:
2329 efx_fini_struct(efx);
2330 return -ENOMEM;
8ceee660
BH
2331}
2332
2333static void efx_fini_struct(struct efx_nic *efx)
2334{
8313aca3
BH
2335 int i;
2336
2337 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2338 kfree(efx->channel[i]);
2339
8ceee660
BH
2340 if (efx->workqueue) {
2341 destroy_workqueue(efx->workqueue);
2342 efx->workqueue = NULL;
2343 }
2344}
2345
2346/**************************************************************************
2347 *
2348 * PCI interface
2349 *
2350 **************************************************************************/
2351
2352/* Main body of final NIC shutdown code
2353 * This is called only at module unload (or hotplug removal).
2354 */
2355static void efx_pci_remove_main(struct efx_nic *efx)
2356{
64d8ad6d
BH
2357#ifdef CONFIG_RFS_ACCEL
2358 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2359 efx->net_dev->rx_cpu_rmap = NULL;
2360#endif
152b6a62 2361 efx_nic_fini_interrupt(efx);
8ceee660
BH
2362 efx_fini_channels(efx);
2363 efx_fini_port(efx);
ef2b90ee 2364 efx->type->fini(efx);
8ceee660
BH
2365 efx_fini_napi(efx);
2366 efx_remove_all(efx);
2367}
2368
2369/* Final NIC shutdown
2370 * This is called only at module unload (or hotplug removal).
2371 */
2372static void efx_pci_remove(struct pci_dev *pci_dev)
2373{
2374 struct efx_nic *efx;
2375
2376 efx = pci_get_drvdata(pci_dev);
2377 if (!efx)
2378 return;
2379
2380 /* Mark the NIC as fini, then stop the interface */
2381 rtnl_lock();
2382 efx->state = STATE_FINI;
2383 dev_close(efx->net_dev);
2384
2385 /* Allow any queued efx_resets() to complete */
2386 rtnl_unlock();
2387
8ceee660
BH
2388 efx_unregister_netdev(efx);
2389
7dde596e
BH
2390 efx_mtd_remove(efx);
2391
8ceee660
BH
2392 /* Wait for any scheduled resets to complete. No more will be
2393 * scheduled from this point because efx_stop_all() has been
2394 * called, we are no longer registered with driverlink, and
2395 * the net_device's have been removed. */
1ab00629 2396 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2397
2398 efx_pci_remove_main(efx);
2399
8ceee660 2400 efx_fini_io(efx);
62776d03 2401 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660
BH
2402
2403 pci_set_drvdata(pci_dev, NULL);
2404 efx_fini_struct(efx);
2405 free_netdev(efx->net_dev);
2406};
2407
2408/* Main body of NIC initialisation
2409 * This is called at module load (or hotplug insertion, theoretically).
2410 */
2411static int efx_pci_probe_main(struct efx_nic *efx)
2412{
2413 int rc;
2414
2415 /* Do start-of-day initialisation */
2416 rc = efx_probe_all(efx);
2417 if (rc)
2418 goto fail1;
2419
e8f14992 2420 efx_init_napi(efx);
8ceee660 2421
ef2b90ee 2422 rc = efx->type->init(efx);
8ceee660 2423 if (rc) {
62776d03
BH
2424 netif_err(efx, probe, efx->net_dev,
2425 "failed to initialise NIC\n");
278c0621 2426 goto fail3;
8ceee660
BH
2427 }
2428
2429 rc = efx_init_port(efx);
2430 if (rc) {
62776d03
BH
2431 netif_err(efx, probe, efx->net_dev,
2432 "failed to initialise port\n");
278c0621 2433 goto fail4;
8ceee660
BH
2434 }
2435
bc3c90a2 2436 efx_init_channels(efx);
8ceee660 2437
152b6a62 2438 rc = efx_nic_init_interrupt(efx);
8ceee660 2439 if (rc)
278c0621 2440 goto fail5;
8ceee660
BH
2441
2442 return 0;
2443
278c0621 2444 fail5:
bc3c90a2 2445 efx_fini_channels(efx);
8ceee660 2446 efx_fini_port(efx);
8ceee660 2447 fail4:
ef2b90ee 2448 efx->type->fini(efx);
8ceee660
BH
2449 fail3:
2450 efx_fini_napi(efx);
8ceee660
BH
2451 efx_remove_all(efx);
2452 fail1:
2453 return rc;
2454}
2455
2456/* NIC initialisation
2457 *
2458 * This is called at module load (or hotplug insertion,
2459 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2460 * sets up and registers the network devices with the kernel and hooks
2461 * the interrupt service routine. It does not prepare the device for
2462 * transmission; this is left to the first time one of the network
2463 * interfaces is brought up (i.e. efx_net_open).
2464 */
2465static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2466 const struct pci_device_id *entry)
2467{
6c8c2513 2468 const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
8ceee660
BH
2469 struct net_device *net_dev;
2470 struct efx_nic *efx;
2471 int i, rc;
2472
2473 /* Allocate and initialise a struct net_device and struct efx_nic */
94b274bf
BH
2474 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2475 EFX_MAX_RX_QUEUES);
8ceee660
BH
2476 if (!net_dev)
2477 return -ENOMEM;
c383b537 2478 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415 2479 NETIF_F_HIGHDMA | NETIF_F_TSO |
abfe9039 2480 NETIF_F_RXCSUM);
738a8f4b
BH
2481 if (type->offload_features & NETIF_F_V6_CSUM)
2482 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2483 /* Mask for features that also apply to VLAN devices */
2484 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
abfe9039
BH
2485 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2486 NETIF_F_RXCSUM);
2487 /* All offloads can be toggled */
2488 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
767e468c 2489 efx = netdev_priv(net_dev);
8ceee660 2490 pci_set_drvdata(pci_dev, efx);
62776d03 2491 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
8ceee660
BH
2492 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2493 if (rc)
2494 goto fail1;
2495
62776d03
BH
2496 netif_info(efx, probe, efx->net_dev,
2497 "Solarflare Communications NIC detected\n");
8ceee660
BH
2498
2499 /* Set up basic I/O (BAR mappings etc) */
2500 rc = efx_init_io(efx);
2501 if (rc)
2502 goto fail2;
2503
2504 /* No serialisation is required with the reset path because
2505 * we're in STATE_INIT. */
2506 for (i = 0; i < 5; i++) {
2507 rc = efx_pci_probe_main(efx);
8ceee660
BH
2508
2509 /* Serialise against efx_reset(). No more resets will be
2510 * scheduled since efx_stop_all() has been called, and we
2511 * have not and never have been registered with either
2512 * the rtnetlink or driverlink layers. */
1ab00629 2513 cancel_work_sync(&efx->reset_work);
8ceee660 2514
fa402b2e
SH
2515 if (rc == 0) {
2516 if (efx->reset_pending != RESET_TYPE_NONE) {
2517 /* If there was a scheduled reset during
2518 * probe, the NIC is probably hosed anyway */
2519 efx_pci_remove_main(efx);
2520 rc = -EIO;
2521 } else {
2522 break;
2523 }
2524 }
2525
8ceee660
BH
2526 /* Retry if a recoverably reset event has been scheduled */
2527 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2528 (efx->reset_pending != RESET_TYPE_ALL))
2529 goto fail3;
2530
2531 efx->reset_pending = RESET_TYPE_NONE;
2532 }
2533
2534 if (rc) {
62776d03 2535 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
8ceee660
BH
2536 goto fail4;
2537 }
2538
55edc6e6
BH
2539 /* Switch to the running state before we expose the device to the OS,
2540 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2541 efx->state = STATE_RUNNING;
7dde596e 2542
8ceee660
BH
2543 rc = efx_register_netdev(efx);
2544 if (rc)
2545 goto fail5;
2546
62776d03 2547 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5
BH
2548
2549 rtnl_lock();
2550 efx_mtd_probe(efx); /* allowed to fail */
2551 rtnl_unlock();
8ceee660
BH
2552 return 0;
2553
2554 fail5:
2555 efx_pci_remove_main(efx);
2556 fail4:
2557 fail3:
2558 efx_fini_io(efx);
2559 fail2:
2560 efx_fini_struct(efx);
2561 fail1:
5e2a911c 2562 WARN_ON(rc > 0);
62776d03 2563 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
2564 free_netdev(net_dev);
2565 return rc;
2566}
2567
89c758fa
BH
2568static int efx_pm_freeze(struct device *dev)
2569{
2570 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2571
2572 efx->state = STATE_FINI;
2573
2574 netif_device_detach(efx->net_dev);
2575
2576 efx_stop_all(efx);
2577 efx_fini_channels(efx);
2578
2579 return 0;
2580}
2581
2582static int efx_pm_thaw(struct device *dev)
2583{
2584 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2585
2586 efx->state = STATE_INIT;
2587
2588 efx_init_channels(efx);
2589
2590 mutex_lock(&efx->mac_lock);
2591 efx->phy_op->reconfigure(efx);
2592 mutex_unlock(&efx->mac_lock);
2593
2594 efx_start_all(efx);
2595
2596 netif_device_attach(efx->net_dev);
2597
2598 efx->state = STATE_RUNNING;
2599
2600 efx->type->resume_wol(efx);
2601
319ba649
SH
2602 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2603 queue_work(reset_workqueue, &efx->reset_work);
2604
89c758fa
BH
2605 return 0;
2606}
2607
2608static int efx_pm_poweroff(struct device *dev)
2609{
2610 struct pci_dev *pci_dev = to_pci_dev(dev);
2611 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2612
2613 efx->type->fini(efx);
2614
2615 efx->reset_pending = RESET_TYPE_NONE;
2616
2617 pci_save_state(pci_dev);
2618 return pci_set_power_state(pci_dev, PCI_D3hot);
2619}
2620
2621/* Used for both resume and restore */
2622static int efx_pm_resume(struct device *dev)
2623{
2624 struct pci_dev *pci_dev = to_pci_dev(dev);
2625 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2626 int rc;
2627
2628 rc = pci_set_power_state(pci_dev, PCI_D0);
2629 if (rc)
2630 return rc;
2631 pci_restore_state(pci_dev);
2632 rc = pci_enable_device(pci_dev);
2633 if (rc)
2634 return rc;
2635 pci_set_master(efx->pci_dev);
2636 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2637 if (rc)
2638 return rc;
2639 rc = efx->type->init(efx);
2640 if (rc)
2641 return rc;
2642 efx_pm_thaw(dev);
2643 return 0;
2644}
2645
2646static int efx_pm_suspend(struct device *dev)
2647{
2648 int rc;
2649
2650 efx_pm_freeze(dev);
2651 rc = efx_pm_poweroff(dev);
2652 if (rc)
2653 efx_pm_resume(dev);
2654 return rc;
2655}
2656
2657static struct dev_pm_ops efx_pm_ops = {
2658 .suspend = efx_pm_suspend,
2659 .resume = efx_pm_resume,
2660 .freeze = efx_pm_freeze,
2661 .thaw = efx_pm_thaw,
2662 .poweroff = efx_pm_poweroff,
2663 .restore = efx_pm_resume,
2664};
2665
8ceee660 2666static struct pci_driver efx_pci_driver = {
c5d5f5fd 2667 .name = KBUILD_MODNAME,
8ceee660
BH
2668 .id_table = efx_pci_table,
2669 .probe = efx_pci_probe,
2670 .remove = efx_pci_remove,
89c758fa 2671 .driver.pm = &efx_pm_ops,
8ceee660
BH
2672};
2673
2674/**************************************************************************
2675 *
2676 * Kernel module interface
2677 *
2678 *************************************************************************/
2679
2680module_param(interrupt_mode, uint, 0444);
2681MODULE_PARM_DESC(interrupt_mode,
2682 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2683
2684static int __init efx_init_module(void)
2685{
2686 int rc;
2687
2688 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2689
2690 rc = register_netdevice_notifier(&efx_netdev_notifier);
2691 if (rc)
2692 goto err_notifier;
2693
1ab00629
SH
2694 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2695 if (!reset_workqueue) {
2696 rc = -ENOMEM;
2697 goto err_reset;
2698 }
8ceee660
BH
2699
2700 rc = pci_register_driver(&efx_pci_driver);
2701 if (rc < 0)
2702 goto err_pci;
2703
2704 return 0;
2705
2706 err_pci:
1ab00629
SH
2707 destroy_workqueue(reset_workqueue);
2708 err_reset:
8ceee660
BH
2709 unregister_netdevice_notifier(&efx_netdev_notifier);
2710 err_notifier:
2711 return rc;
2712}
2713
2714static void __exit efx_exit_module(void)
2715{
2716 printk(KERN_INFO "Solarflare NET driver unloading\n");
2717
2718 pci_unregister_driver(&efx_pci_driver);
1ab00629 2719 destroy_workqueue(reset_workqueue);
8ceee660
BH
2720 unregister_netdevice_notifier(&efx_netdev_notifier);
2721
2722}
2723
2724module_init(efx_init_module);
2725module_exit(efx_exit_module);
2726
906bb26c
BH
2727MODULE_AUTHOR("Solarflare Communications and "
2728 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2729MODULE_DESCRIPTION("Solarflare Communications network driver");
2730MODULE_LICENSE("GPL");
2731MODULE_DEVICE_TABLE(pci, efx_pci_table);