sfc: Remove unused field efx_channel::reset_work
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660
BH
23#include "net_driver.h"
24#include "gmii.h"
25#include "ethtool.h"
26#include "tx.h"
27#include "rx.h"
28#include "efx.h"
29#include "mdio_10g.h"
30#include "falcon.h"
31#include "workarounds.h"
32#include "mac.h"
33
34#define EFX_MAX_MTU (9 * 1024)
35
36/* RX slow fill workqueue. If memory allocation fails in the fast path,
37 * a work item is pushed onto this work queue to retry the allocation later,
38 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
39 * workqueue, there is nothing to be gained in making it per NIC
40 */
41static struct workqueue_struct *refill_workqueue;
42
43/**************************************************************************
44 *
45 * Configurable values
46 *
47 *************************************************************************/
48
49/*
50 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
51 *
52 * This sets the default for new devices. It can be controlled later
53 * using ethtool.
54 */
55static int lro = 1;
56module_param(lro, int, 0644);
57MODULE_PARM_DESC(lro, "Large receive offload acceleration");
58
59/*
60 * Use separate channels for TX and RX events
61 *
62 * Set this to 1 to use separate channels for TX and RX. It allows us to
63 * apply a higher level of interrupt moderation to TX events.
64 *
65 * This is forced to 0 for MSI interrupt mode as the interrupt vector
66 * is not written
67 */
68static unsigned int separate_tx_and_rx_channels = 1;
69
70/* This is the weight assigned to each of the (per-channel) virtual
71 * NAPI devices.
72 */
73static int napi_weight = 64;
74
75/* This is the time (in jiffies) between invocations of the hardware
76 * monitor, which checks for known hardware bugs and resets the
77 * hardware and driver as necessary.
78 */
79unsigned int efx_monitor_interval = 1 * HZ;
80
81/* This controls whether or not the hardware monitor will trigger a
82 * reset when it detects an error condition.
83 */
84static unsigned int monitor_reset = 1;
85
86/* This controls whether or not the driver will initialise devices
87 * with invalid MAC addresses stored in the EEPROM or flash. If true,
88 * such devices will be initialised with a random locally-generated
89 * MAC address. This allows for loading the sfc_mtd driver to
90 * reprogram the flash, even if the flash contents (including the MAC
91 * address) have previously been erased.
92 */
93static unsigned int allow_bad_hwaddr;
94
95/* Initial interrupt moderation settings. They can be modified after
96 * module load with ethtool.
97 *
98 * The default for RX should strike a balance between increasing the
99 * round-trip latency and reducing overhead.
100 */
101static unsigned int rx_irq_mod_usec = 60;
102
103/* Initial interrupt moderation settings. They can be modified after
104 * module load with ethtool.
105 *
106 * This default is chosen to ensure that a 10G link does not go idle
107 * while a TX queue is stopped after it has become full. A queue is
108 * restarted when it drops below half full. The time this takes (assuming
109 * worst case 3 descriptors per packet and 1024 descriptors) is
110 * 512 / 3 * 1.2 = 205 usec.
111 */
112static unsigned int tx_irq_mod_usec = 150;
113
114/* This is the first interrupt mode to try out of:
115 * 0 => MSI-X
116 * 1 => MSI
117 * 2 => legacy
118 */
119static unsigned int interrupt_mode;
120
121/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
122 * i.e. the number of CPUs among which we may distribute simultaneous
123 * interrupt handling.
124 *
125 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
126 * The default (0) means to assign an interrupt to each package (level II cache)
127 */
128static unsigned int rss_cpus;
129module_param(rss_cpus, uint, 0444);
130MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
131
132/**************************************************************************
133 *
134 * Utility functions and prototypes
135 *
136 *************************************************************************/
137static void efx_remove_channel(struct efx_channel *channel);
138static void efx_remove_port(struct efx_nic *efx);
139static void efx_fini_napi(struct efx_nic *efx);
140static void efx_fini_channels(struct efx_nic *efx);
141
142#define EFX_ASSERT_RESET_SERIALISED(efx) \
143 do { \
144 if ((efx->state == STATE_RUNNING) || \
145 (efx->state == STATE_RESETTING)) \
146 ASSERT_RTNL(); \
147 } while (0)
148
149/**************************************************************************
150 *
151 * Event queue processing
152 *
153 *************************************************************************/
154
155/* Process channel's event queue
156 *
157 * This function is responsible for processing the event queue of a
158 * single channel. The caller must guarantee that this function will
159 * never be concurrently called more than once on the same channel,
160 * though different channels may be being processed concurrently.
161 */
162static inline int efx_process_channel(struct efx_channel *channel, int rx_quota)
163{
164 int rxdmaqs;
165 struct efx_rx_queue *rx_queue;
166
167 if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE ||
168 !channel->enabled))
169 return rx_quota;
170
171 rxdmaqs = falcon_process_eventq(channel, &rx_quota);
172
173 /* Deliver last RX packet. */
174 if (channel->rx_pkt) {
175 __efx_rx_packet(channel, channel->rx_pkt,
176 channel->rx_pkt_csummed);
177 channel->rx_pkt = NULL;
178 }
179
180 efx_flush_lro(channel);
181 efx_rx_strategy(channel);
182
183 /* Refill descriptor rings as necessary */
184 rx_queue = &channel->efx->rx_queue[0];
185 while (rxdmaqs) {
186 if (rxdmaqs & 0x01)
187 efx_fast_push_rx_descriptors(rx_queue);
188 rx_queue++;
189 rxdmaqs >>= 1;
190 }
191
192 return rx_quota;
193}
194
195/* Mark channel as finished processing
196 *
197 * Note that since we will not receive further interrupts for this
198 * channel before we finish processing and call the eventq_read_ack()
199 * method, there is no need to use the interrupt hold-off timers.
200 */
201static inline void efx_channel_processed(struct efx_channel *channel)
202{
5b9e207c
BH
203 /* The interrupt handler for this channel may set work_pending
204 * as soon as we acknowledge the events we've seen. Make sure
205 * it's cleared before then. */
8ceee660 206 channel->work_pending = 0;
5b9e207c
BH
207 smp_wmb();
208
8ceee660
BH
209 falcon_eventq_read_ack(channel);
210}
211
212/* NAPI poll handler
213 *
214 * NAPI guarantees serialisation of polls of the same device, which
215 * provides the guarantee required by efx_process_channel().
216 */
217static int efx_poll(struct napi_struct *napi, int budget)
218{
219 struct efx_channel *channel =
220 container_of(napi, struct efx_channel, napi_str);
221 struct net_device *napi_dev = channel->napi_dev;
222 int unused;
223 int rx_packets;
224
225 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
226 channel->channel, raw_smp_processor_id());
227
228 unused = efx_process_channel(channel, budget);
229 rx_packets = (budget - unused);
230
231 if (rx_packets < budget) {
232 /* There is no race here; although napi_disable() will
233 * only wait for netif_rx_complete(), this isn't a problem
234 * since efx_channel_processed() will have no effect if
235 * interrupts have already been disabled.
236 */
237 netif_rx_complete(napi_dev, napi);
238 efx_channel_processed(channel);
239 }
240
241 return rx_packets;
242}
243
244/* Process the eventq of the specified channel immediately on this CPU
245 *
246 * Disable hardware generated interrupts, wait for any existing
247 * processing to finish, then directly poll (and ack ) the eventq.
248 * Finally reenable NAPI and interrupts.
249 *
250 * Since we are touching interrupts the caller should hold the suspend lock
251 */
252void efx_process_channel_now(struct efx_channel *channel)
253{
254 struct efx_nic *efx = channel->efx;
255
256 BUG_ON(!channel->used_flags);
257 BUG_ON(!channel->enabled);
258
259 /* Disable interrupts and wait for ISRs to complete */
260 falcon_disable_interrupts(efx);
261 if (efx->legacy_irq)
262 synchronize_irq(efx->legacy_irq);
263 if (channel->has_interrupt && channel->irq)
264 synchronize_irq(channel->irq);
265
266 /* Wait for any NAPI processing to complete */
267 napi_disable(&channel->napi_str);
268
269 /* Poll the channel */
91ad757c 270 efx_process_channel(channel, efx->type->evq_size);
8ceee660
BH
271
272 /* Ack the eventq. This may cause an interrupt to be generated
273 * when they are reenabled */
274 efx_channel_processed(channel);
275
276 napi_enable(&channel->napi_str);
277 falcon_enable_interrupts(efx);
278}
279
280/* Create event queue
281 * Event queue memory allocations are done only once. If the channel
282 * is reset, the memory buffer will be reused; this guards against
283 * errors during channel reset and also simplifies interrupt handling.
284 */
285static int efx_probe_eventq(struct efx_channel *channel)
286{
287 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
288
289 return falcon_probe_eventq(channel);
290}
291
292/* Prepare channel's event queue */
293static int efx_init_eventq(struct efx_channel *channel)
294{
295 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
296
297 channel->eventq_read_ptr = 0;
298
299 return falcon_init_eventq(channel);
300}
301
302static void efx_fini_eventq(struct efx_channel *channel)
303{
304 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
305
306 falcon_fini_eventq(channel);
307}
308
309static void efx_remove_eventq(struct efx_channel *channel)
310{
311 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
312
313 falcon_remove_eventq(channel);
314}
315
316/**************************************************************************
317 *
318 * Channel handling
319 *
320 *************************************************************************/
321
8ceee660
BH
322static int efx_probe_channel(struct efx_channel *channel)
323{
324 struct efx_tx_queue *tx_queue;
325 struct efx_rx_queue *rx_queue;
326 int rc;
327
328 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
329
330 rc = efx_probe_eventq(channel);
331 if (rc)
332 goto fail1;
333
334 efx_for_each_channel_tx_queue(tx_queue, channel) {
335 rc = efx_probe_tx_queue(tx_queue);
336 if (rc)
337 goto fail2;
338 }
339
340 efx_for_each_channel_rx_queue(rx_queue, channel) {
341 rc = efx_probe_rx_queue(rx_queue);
342 if (rc)
343 goto fail3;
344 }
345
346 channel->n_rx_frm_trunc = 0;
347
348 return 0;
349
350 fail3:
351 efx_for_each_channel_rx_queue(rx_queue, channel)
352 efx_remove_rx_queue(rx_queue);
353 fail2:
354 efx_for_each_channel_tx_queue(tx_queue, channel)
355 efx_remove_tx_queue(tx_queue);
356 fail1:
357 return rc;
358}
359
360
361/* Channels are shutdown and reinitialised whilst the NIC is running
362 * to propagate configuration changes (mtu, checksum offload), or
363 * to clear hardware error conditions
364 */
365static int efx_init_channels(struct efx_nic *efx)
366{
367 struct efx_tx_queue *tx_queue;
368 struct efx_rx_queue *rx_queue;
369 struct efx_channel *channel;
370 int rc = 0;
371
f7f13b0b
BH
372 /* Calculate the rx buffer allocation parameters required to
373 * support the current MTU, including padding for header
374 * alignment and overruns.
375 */
376 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
377 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
378 efx->type->rx_buffer_padding);
379 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
380
381 /* Initialise the channels */
382 efx_for_each_channel(channel, efx) {
383 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
384
385 rc = efx_init_eventq(channel);
386 if (rc)
387 goto err;
388
389 efx_for_each_channel_tx_queue(tx_queue, channel) {
390 rc = efx_init_tx_queue(tx_queue);
391 if (rc)
392 goto err;
393 }
394
395 /* The rx buffer allocation strategy is MTU dependent */
396 efx_rx_strategy(channel);
397
398 efx_for_each_channel_rx_queue(rx_queue, channel) {
399 rc = efx_init_rx_queue(rx_queue);
400 if (rc)
401 goto err;
402 }
403
404 WARN_ON(channel->rx_pkt != NULL);
405 efx_rx_strategy(channel);
406 }
407
408 return 0;
409
410 err:
411 EFX_ERR(efx, "failed to initialise channel %d\n",
412 channel ? channel->channel : -1);
413 efx_fini_channels(efx);
414 return rc;
415}
416
417/* This enables event queue processing and packet transmission.
418 *
419 * Note that this function is not allowed to fail, since that would
420 * introduce too much complexity into the suspend/resume path.
421 */
422static void efx_start_channel(struct efx_channel *channel)
423{
424 struct efx_rx_queue *rx_queue;
425
426 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
427
428 if (!(channel->efx->net_dev->flags & IFF_UP))
429 netif_napi_add(channel->napi_dev, &channel->napi_str,
430 efx_poll, napi_weight);
431
5b9e207c
BH
432 /* The interrupt handler for this channel may set work_pending
433 * as soon as we enable it. Make sure it's cleared before
434 * then. Similarly, make sure it sees the enabled flag set. */
8ceee660
BH
435 channel->work_pending = 0;
436 channel->enabled = 1;
5b9e207c 437 smp_wmb();
8ceee660
BH
438
439 napi_enable(&channel->napi_str);
440
441 /* Load up RX descriptors */
442 efx_for_each_channel_rx_queue(rx_queue, channel)
443 efx_fast_push_rx_descriptors(rx_queue);
444}
445
446/* This disables event queue processing and packet transmission.
447 * This function does not guarantee that all queue processing
448 * (e.g. RX refill) is complete.
449 */
450static void efx_stop_channel(struct efx_channel *channel)
451{
452 struct efx_rx_queue *rx_queue;
453
454 if (!channel->enabled)
455 return;
456
457 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
458
459 channel->enabled = 0;
460 napi_disable(&channel->napi_str);
461
462 /* Ensure that any worker threads have exited or will be no-ops */
463 efx_for_each_channel_rx_queue(rx_queue, channel) {
464 spin_lock_bh(&rx_queue->add_lock);
465 spin_unlock_bh(&rx_queue->add_lock);
466 }
467}
468
469static void efx_fini_channels(struct efx_nic *efx)
470{
471 struct efx_channel *channel;
472 struct efx_tx_queue *tx_queue;
473 struct efx_rx_queue *rx_queue;
474
475 EFX_ASSERT_RESET_SERIALISED(efx);
476 BUG_ON(efx->port_enabled);
477
478 efx_for_each_channel(channel, efx) {
479 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
480
481 efx_for_each_channel_rx_queue(rx_queue, channel)
482 efx_fini_rx_queue(rx_queue);
483 efx_for_each_channel_tx_queue(tx_queue, channel)
484 efx_fini_tx_queue(tx_queue);
485 }
486
487 /* Do the event queues last so that we can handle flush events
488 * for all DMA queues. */
489 efx_for_each_channel(channel, efx) {
490 EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
491
492 efx_fini_eventq(channel);
493 }
494}
495
496static void efx_remove_channel(struct efx_channel *channel)
497{
498 struct efx_tx_queue *tx_queue;
499 struct efx_rx_queue *rx_queue;
500
501 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
502
503 efx_for_each_channel_rx_queue(rx_queue, channel)
504 efx_remove_rx_queue(rx_queue);
505 efx_for_each_channel_tx_queue(tx_queue, channel)
506 efx_remove_tx_queue(tx_queue);
507 efx_remove_eventq(channel);
508
509 channel->used_flags = 0;
510}
511
512void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
513{
514 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
515}
516
517/**************************************************************************
518 *
519 * Port handling
520 *
521 **************************************************************************/
522
523/* This ensures that the kernel is kept informed (via
524 * netif_carrier_on/off) of the link status, and also maintains the
525 * link status's stop on the port's TX queue.
526 */
527static void efx_link_status_changed(struct efx_nic *efx)
528{
529 int carrier_ok;
530
531 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
532 * that no events are triggered between unregister_netdev() and the
533 * driver unloading. A more general condition is that NETDEV_CHANGE
534 * can only be generated between NETDEV_UP and NETDEV_DOWN */
535 if (!netif_running(efx->net_dev))
536 return;
537
538 carrier_ok = netif_carrier_ok(efx->net_dev) ? 1 : 0;
539 if (efx->link_up != carrier_ok) {
540 efx->n_link_state_changes++;
541
542 if (efx->link_up)
543 netif_carrier_on(efx->net_dev);
544 else
545 netif_carrier_off(efx->net_dev);
546 }
547
548 /* Status message for kernel log */
549 if (efx->link_up) {
550 struct mii_if_info *gmii = &efx->mii;
551 unsigned adv, lpa;
552 /* NONE here means direct XAUI from the controller, with no
553 * MDIO-attached device we can query. */
554 if (efx->phy_type != PHY_TYPE_NONE) {
555 adv = gmii_advertised(gmii);
556 lpa = gmii_lpa(gmii);
557 } else {
558 lpa = GM_LPA_10000 | LPA_DUPLEX;
559 adv = lpa;
560 }
561 EFX_INFO(efx, "link up at %dMbps %s-duplex "
562 "(adv %04x lpa %04x) (MTU %d)%s\n",
563 (efx->link_options & GM_LPA_10000 ? 10000 :
564 (efx->link_options & GM_LPA_1000 ? 1000 :
565 (efx->link_options & GM_LPA_100 ? 100 :
566 10))),
567 (efx->link_options & GM_LPA_DUPLEX ?
568 "full" : "half"),
569 adv, lpa,
570 efx->net_dev->mtu,
571 (efx->promiscuous ? " [PROMISC]" : ""));
572 } else {
573 EFX_INFO(efx, "link down\n");
574 }
575
576}
577
578/* This call reinitialises the MAC to pick up new PHY settings. The
579 * caller must hold the mac_lock */
580static void __efx_reconfigure_port(struct efx_nic *efx)
581{
582 WARN_ON(!mutex_is_locked(&efx->mac_lock));
583
584 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
585 raw_smp_processor_id());
586
587 falcon_reconfigure_xmac(efx);
588
589 /* Inform kernel of loss/gain of carrier */
590 efx_link_status_changed(efx);
591}
592
593/* Reinitialise the MAC to pick up new PHY settings, even if the port is
594 * disabled. */
595void efx_reconfigure_port(struct efx_nic *efx)
596{
597 EFX_ASSERT_RESET_SERIALISED(efx);
598
599 mutex_lock(&efx->mac_lock);
600 __efx_reconfigure_port(efx);
601 mutex_unlock(&efx->mac_lock);
602}
603
604/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
605 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
606 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
607static void efx_reconfigure_work(struct work_struct *data)
608{
609 struct efx_nic *efx = container_of(data, struct efx_nic,
610 reconfigure_work);
611
612 mutex_lock(&efx->mac_lock);
613 if (efx->port_enabled)
614 __efx_reconfigure_port(efx);
615 mutex_unlock(&efx->mac_lock);
616}
617
618static int efx_probe_port(struct efx_nic *efx)
619{
620 int rc;
621
622 EFX_LOG(efx, "create port\n");
623
624 /* Connect up MAC/PHY operations table and read MAC address */
625 rc = falcon_probe_port(efx);
626 if (rc)
627 goto err;
628
629 /* Sanity check MAC address */
630 if (is_valid_ether_addr(efx->mac_address)) {
631 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
632 } else {
633 DECLARE_MAC_BUF(mac);
634
635 EFX_ERR(efx, "invalid MAC address %s\n",
636 print_mac(mac, efx->mac_address));
637 if (!allow_bad_hwaddr) {
638 rc = -EINVAL;
639 goto err;
640 }
641 random_ether_addr(efx->net_dev->dev_addr);
642 EFX_INFO(efx, "using locally-generated MAC %s\n",
643 print_mac(mac, efx->net_dev->dev_addr));
644 }
645
646 return 0;
647
648 err:
649 efx_remove_port(efx);
650 return rc;
651}
652
653static int efx_init_port(struct efx_nic *efx)
654{
655 int rc;
656
657 EFX_LOG(efx, "init port\n");
658
659 /* Initialise the MAC and PHY */
660 rc = falcon_init_xmac(efx);
661 if (rc)
662 return rc;
663
664 efx->port_initialized = 1;
665
666 /* Reconfigure port to program MAC registers */
667 falcon_reconfigure_xmac(efx);
668
669 return 0;
670}
671
672/* Allow efx_reconfigure_port() to be scheduled, and close the window
673 * between efx_stop_port and efx_flush_all whereby a previously scheduled
674 * efx_reconfigure_port() may have been cancelled */
675static void efx_start_port(struct efx_nic *efx)
676{
677 EFX_LOG(efx, "start port\n");
678 BUG_ON(efx->port_enabled);
679
680 mutex_lock(&efx->mac_lock);
681 efx->port_enabled = 1;
682 __efx_reconfigure_port(efx);
683 mutex_unlock(&efx->mac_lock);
684}
685
686/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
687 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
688 * efx_reconfigure_work can still be scheduled via NAPI processing
689 * until efx_flush_all() is called */
690static void efx_stop_port(struct efx_nic *efx)
691{
692 EFX_LOG(efx, "stop port\n");
693
694 mutex_lock(&efx->mac_lock);
695 efx->port_enabled = 0;
696 mutex_unlock(&efx->mac_lock);
697
698 /* Serialise against efx_set_multicast_list() */
55668611 699 if (efx_dev_registered(efx)) {
b9e40857
DM
700 netif_addr_lock_bh(efx->net_dev);
701 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
702 }
703}
704
705static void efx_fini_port(struct efx_nic *efx)
706{
707 EFX_LOG(efx, "shut down port\n");
708
709 if (!efx->port_initialized)
710 return;
711
712 falcon_fini_xmac(efx);
713 efx->port_initialized = 0;
714
715 efx->link_up = 0;
716 efx_link_status_changed(efx);
717}
718
719static void efx_remove_port(struct efx_nic *efx)
720{
721 EFX_LOG(efx, "destroying port\n");
722
723 falcon_remove_port(efx);
724}
725
726/**************************************************************************
727 *
728 * NIC handling
729 *
730 **************************************************************************/
731
732/* This configures the PCI device to enable I/O and DMA. */
733static int efx_init_io(struct efx_nic *efx)
734{
735 struct pci_dev *pci_dev = efx->pci_dev;
736 dma_addr_t dma_mask = efx->type->max_dma_mask;
737 int rc;
738
739 EFX_LOG(efx, "initialising I/O\n");
740
741 rc = pci_enable_device(pci_dev);
742 if (rc) {
743 EFX_ERR(efx, "failed to enable PCI device\n");
744 goto fail1;
745 }
746
747 pci_set_master(pci_dev);
748
749 /* Set the PCI DMA mask. Try all possibilities from our
750 * genuine mask down to 32 bits, because some architectures
751 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
752 * masks event though they reject 46 bit masks.
753 */
754 while (dma_mask > 0x7fffffffUL) {
755 if (pci_dma_supported(pci_dev, dma_mask) &&
756 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
757 break;
758 dma_mask >>= 1;
759 }
760 if (rc) {
761 EFX_ERR(efx, "could not find a suitable DMA mask\n");
762 goto fail2;
763 }
764 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
765 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
766 if (rc) {
767 /* pci_set_consistent_dma_mask() is not *allowed* to
768 * fail with a mask that pci_set_dma_mask() accepted,
769 * but just in case...
770 */
771 EFX_ERR(efx, "failed to set consistent DMA mask\n");
772 goto fail2;
773 }
774
775 efx->membase_phys = pci_resource_start(efx->pci_dev,
776 efx->type->mem_bar);
777 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
778 if (rc) {
779 EFX_ERR(efx, "request for memory BAR failed\n");
780 rc = -EIO;
781 goto fail3;
782 }
783 efx->membase = ioremap_nocache(efx->membase_phys,
784 efx->type->mem_map_size);
785 if (!efx->membase) {
086ea356
BH
786 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
787 efx->type->mem_bar,
788 (unsigned long long)efx->membase_phys,
8ceee660
BH
789 efx->type->mem_map_size);
790 rc = -ENOMEM;
791 goto fail4;
792 }
086ea356
BH
793 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
794 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
795 efx->type->mem_map_size, efx->membase);
8ceee660
BH
796
797 return 0;
798
799 fail4:
800 release_mem_region(efx->membase_phys, efx->type->mem_map_size);
801 fail3:
2c118e0f 802 efx->membase_phys = 0;
8ceee660
BH
803 fail2:
804 pci_disable_device(efx->pci_dev);
805 fail1:
806 return rc;
807}
808
809static void efx_fini_io(struct efx_nic *efx)
810{
811 EFX_LOG(efx, "shutting down I/O\n");
812
813 if (efx->membase) {
814 iounmap(efx->membase);
815 efx->membase = NULL;
816 }
817
818 if (efx->membase_phys) {
819 pci_release_region(efx->pci_dev, efx->type->mem_bar);
2c118e0f 820 efx->membase_phys = 0;
8ceee660
BH
821 }
822
823 pci_disable_device(efx->pci_dev);
824}
825
826/* Probe the number and type of interrupts we are able to obtain. */
827static void efx_probe_interrupts(struct efx_nic *efx)
828{
829 int max_channel = efx->type->phys_addr_channels - 1;
830 struct msix_entry xentries[EFX_MAX_CHANNELS];
831 int rc, i;
832
833 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
834 BUG_ON(!pci_find_capability(efx->pci_dev, PCI_CAP_ID_MSIX));
835
aa6ef27e
BH
836 if (rss_cpus == 0) {
837 cpumask_t core_mask;
838 int cpu;
839
840 cpus_clear(core_mask);
841 efx->rss_queues = 0;
842 for_each_online_cpu(cpu) {
843 if (!cpu_isset(cpu, core_mask)) {
844 ++efx->rss_queues;
845 cpus_or(core_mask, core_mask,
846 topology_core_siblings(cpu));
847 }
848 }
849 } else {
850 efx->rss_queues = rss_cpus;
851 }
852
8ceee660
BH
853 efx->rss_queues = min(efx->rss_queues, max_channel + 1);
854 efx->rss_queues = min(efx->rss_queues, EFX_MAX_CHANNELS);
855
856 /* Request maximum number of MSI interrupts, and fill out
857 * the channel interrupt information the allowed allocation */
858 for (i = 0; i < efx->rss_queues; i++)
859 xentries[i].entry = i;
860 rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues);
861 if (rc > 0) {
862 EFX_BUG_ON_PARANOID(rc >= efx->rss_queues);
863 efx->rss_queues = rc;
864 rc = pci_enable_msix(efx->pci_dev, xentries,
865 efx->rss_queues);
866 }
867
868 if (rc == 0) {
869 for (i = 0; i < efx->rss_queues; i++) {
870 efx->channel[i].has_interrupt = 1;
871 efx->channel[i].irq = xentries[i].vector;
872 }
873 } else {
874 /* Fall back to single channel MSI */
875 efx->interrupt_mode = EFX_INT_MODE_MSI;
876 EFX_ERR(efx, "could not enable MSI-X\n");
877 }
878 }
879
880 /* Try single interrupt MSI */
881 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
882 efx->rss_queues = 1;
883 rc = pci_enable_msi(efx->pci_dev);
884 if (rc == 0) {
885 efx->channel[0].irq = efx->pci_dev->irq;
886 efx->channel[0].has_interrupt = 1;
887 } else {
888 EFX_ERR(efx, "could not enable MSI\n");
889 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
890 }
891 }
892
893 /* Assume legacy interrupts */
894 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
895 efx->rss_queues = 1;
896 /* Every channel is interruptible */
897 for (i = 0; i < EFX_MAX_CHANNELS; i++)
898 efx->channel[i].has_interrupt = 1;
899 efx->legacy_irq = efx->pci_dev->irq;
900 }
901}
902
903static void efx_remove_interrupts(struct efx_nic *efx)
904{
905 struct efx_channel *channel;
906
907 /* Remove MSI/MSI-X interrupts */
908 efx_for_each_channel_with_interrupt(channel, efx)
909 channel->irq = 0;
910 pci_disable_msi(efx->pci_dev);
911 pci_disable_msix(efx->pci_dev);
912
913 /* Remove legacy interrupt */
914 efx->legacy_irq = 0;
915}
916
917/* Select number of used resources
918 * Should be called after probe_interrupts()
919 */
920static void efx_select_used(struct efx_nic *efx)
921{
922 struct efx_tx_queue *tx_queue;
923 struct efx_rx_queue *rx_queue;
924 int i;
925
926 /* TX queues. One per port per channel with TX capability
927 * (more than one per port won't work on Linux, due to out
928 * of order issues... but will be fine on Solaris)
929 */
930 tx_queue = &efx->tx_queue[0];
931
932 /* Perform this for each channel with TX capabilities.
933 * At the moment, we only support a single TX queue
934 */
935 tx_queue->used = 1;
936 if ((!EFX_INT_MODE_USE_MSI(efx)) && separate_tx_and_rx_channels)
937 tx_queue->channel = &efx->channel[1];
938 else
939 tx_queue->channel = &efx->channel[0];
940 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
941 tx_queue++;
942
943 /* RX queues. Each has a dedicated channel. */
944 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
945 rx_queue = &efx->rx_queue[i];
946
947 if (i < efx->rss_queues) {
948 rx_queue->used = 1;
949 /* If we allow multiple RX queues per channel
950 * we need to decide that here
951 */
952 rx_queue->channel = &efx->channel[rx_queue->queue];
953 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
954 rx_queue++;
955 }
956 }
957}
958
959static int efx_probe_nic(struct efx_nic *efx)
960{
961 int rc;
962
963 EFX_LOG(efx, "creating NIC\n");
964
965 /* Carry out hardware-type specific initialisation */
966 rc = falcon_probe_nic(efx);
967 if (rc)
968 return rc;
969
970 /* Determine the number of channels and RX queues by trying to hook
971 * in MSI-X interrupts. */
972 efx_probe_interrupts(efx);
973
974 /* Determine number of RX queues and TX queues */
975 efx_select_used(efx);
976
977 /* Initialise the interrupt moderation settings */
978 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
979
980 return 0;
981}
982
983static void efx_remove_nic(struct efx_nic *efx)
984{
985 EFX_LOG(efx, "destroying NIC\n");
986
987 efx_remove_interrupts(efx);
988 falcon_remove_nic(efx);
989}
990
991/**************************************************************************
992 *
993 * NIC startup/shutdown
994 *
995 *************************************************************************/
996
997static int efx_probe_all(struct efx_nic *efx)
998{
999 struct efx_channel *channel;
1000 int rc;
1001
1002 /* Create NIC */
1003 rc = efx_probe_nic(efx);
1004 if (rc) {
1005 EFX_ERR(efx, "failed to create NIC\n");
1006 goto fail1;
1007 }
1008
1009 /* Create port */
1010 rc = efx_probe_port(efx);
1011 if (rc) {
1012 EFX_ERR(efx, "failed to create port\n");
1013 goto fail2;
1014 }
1015
1016 /* Create channels */
1017 efx_for_each_channel(channel, efx) {
1018 rc = efx_probe_channel(channel);
1019 if (rc) {
1020 EFX_ERR(efx, "failed to create channel %d\n",
1021 channel->channel);
1022 goto fail3;
1023 }
1024 }
1025
1026 return 0;
1027
1028 fail3:
1029 efx_for_each_channel(channel, efx)
1030 efx_remove_channel(channel);
1031 efx_remove_port(efx);
1032 fail2:
1033 efx_remove_nic(efx);
1034 fail1:
1035 return rc;
1036}
1037
1038/* Called after previous invocation(s) of efx_stop_all, restarts the
1039 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1040 * and ensures that the port is scheduled to be reconfigured.
1041 * This function is safe to call multiple times when the NIC is in any
1042 * state. */
1043static void efx_start_all(struct efx_nic *efx)
1044{
1045 struct efx_channel *channel;
1046
1047 EFX_ASSERT_RESET_SERIALISED(efx);
1048
1049 /* Check that it is appropriate to restart the interface. All
1050 * of these flags are safe to read under just the rtnl lock */
1051 if (efx->port_enabled)
1052 return;
1053 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1054 return;
55668611 1055 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1056 return;
1057
1058 /* Mark the port as enabled so port reconfigurations can start, then
1059 * restart the transmit interface early so the watchdog timer stops */
1060 efx_start_port(efx);
1061 efx_wake_queue(efx);
1062
1063 efx_for_each_channel(channel, efx)
1064 efx_start_channel(channel);
1065
1066 falcon_enable_interrupts(efx);
1067
1068 /* Start hardware monitor if we're in RUNNING */
1069 if (efx->state == STATE_RUNNING)
1070 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1071 efx_monitor_interval);
1072}
1073
1074/* Flush all delayed work. Should only be called when no more delayed work
1075 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1076 * since we're holding the rtnl_lock at this point. */
1077static void efx_flush_all(struct efx_nic *efx)
1078{
1079 struct efx_rx_queue *rx_queue;
1080
1081 /* Make sure the hardware monitor is stopped */
1082 cancel_delayed_work_sync(&efx->monitor_work);
1083
1084 /* Ensure that all RX slow refills are complete. */
b3475645 1085 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1086 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1087
1088 /* Stop scheduled port reconfigurations */
1089 cancel_work_sync(&efx->reconfigure_work);
1090
1091}
1092
1093/* Quiesce hardware and software without bringing the link down.
1094 * Safe to call multiple times, when the nic and interface is in any
1095 * state. The caller is guaranteed to subsequently be in a position
1096 * to modify any hardware and software state they see fit without
1097 * taking locks. */
1098static void efx_stop_all(struct efx_nic *efx)
1099{
1100 struct efx_channel *channel;
1101
1102 EFX_ASSERT_RESET_SERIALISED(efx);
1103
1104 /* port_enabled can be read safely under the rtnl lock */
1105 if (!efx->port_enabled)
1106 return;
1107
1108 /* Disable interrupts and wait for ISR to complete */
1109 falcon_disable_interrupts(efx);
1110 if (efx->legacy_irq)
1111 synchronize_irq(efx->legacy_irq);
b3475645 1112 efx_for_each_channel_with_interrupt(channel, efx) {
8ceee660
BH
1113 if (channel->irq)
1114 synchronize_irq(channel->irq);
b3475645 1115 }
8ceee660
BH
1116
1117 /* Stop all NAPI processing and synchronous rx refills */
1118 efx_for_each_channel(channel, efx)
1119 efx_stop_channel(channel);
1120
1121 /* Stop all asynchronous port reconfigurations. Since all
1122 * event processing has already been stopped, there is no
1123 * window to loose phy events */
1124 efx_stop_port(efx);
1125
1126 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1127 efx_flush_all(efx);
1128
1129 /* Isolate the MAC from the TX and RX engines, so that queue
1130 * flushes will complete in a timely fashion. */
1131 falcon_deconfigure_mac_wrapper(efx);
1132 falcon_drain_tx_fifo(efx);
1133
1134 /* Stop the kernel transmit interface late, so the watchdog
1135 * timer isn't ticking over the flush */
1136 efx_stop_queue(efx);
55668611 1137 if (efx_dev_registered(efx)) {
8ceee660
BH
1138 netif_tx_lock_bh(efx->net_dev);
1139 netif_tx_unlock_bh(efx->net_dev);
1140 }
1141}
1142
1143static void efx_remove_all(struct efx_nic *efx)
1144{
1145 struct efx_channel *channel;
1146
1147 efx_for_each_channel(channel, efx)
1148 efx_remove_channel(channel);
1149 efx_remove_port(efx);
1150 efx_remove_nic(efx);
1151}
1152
1153/* A convinience function to safely flush all the queues */
1154int efx_flush_queues(struct efx_nic *efx)
1155{
1156 int rc;
1157
1158 EFX_ASSERT_RESET_SERIALISED(efx);
1159
1160 efx_stop_all(efx);
1161
1162 efx_fini_channels(efx);
1163 rc = efx_init_channels(efx);
1164 if (rc) {
1165 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1166 return rc;
1167 }
1168
1169 efx_start_all(efx);
1170
1171 return 0;
1172}
1173
1174/**************************************************************************
1175 *
1176 * Interrupt moderation
1177 *
1178 **************************************************************************/
1179
1180/* Set interrupt moderation parameters */
1181void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1182{
1183 struct efx_tx_queue *tx_queue;
1184 struct efx_rx_queue *rx_queue;
1185
1186 EFX_ASSERT_RESET_SERIALISED(efx);
1187
1188 efx_for_each_tx_queue(tx_queue, efx)
1189 tx_queue->channel->irq_moderation = tx_usecs;
1190
1191 efx_for_each_rx_queue(rx_queue, efx)
1192 rx_queue->channel->irq_moderation = rx_usecs;
1193}
1194
1195/**************************************************************************
1196 *
1197 * Hardware monitor
1198 *
1199 **************************************************************************/
1200
1201/* Run periodically off the general workqueue. Serialised against
1202 * efx_reconfigure_port via the mac_lock */
1203static void efx_monitor(struct work_struct *data)
1204{
1205 struct efx_nic *efx = container_of(data, struct efx_nic,
1206 monitor_work.work);
1207 int rc = 0;
1208
1209 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1210 raw_smp_processor_id());
1211
1212
1213 /* If the mac_lock is already held then it is likely a port
1214 * reconfiguration is already in place, which will likely do
1215 * most of the work of check_hw() anyway. */
1216 if (!mutex_trylock(&efx->mac_lock)) {
1217 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1218 efx_monitor_interval);
1219 return;
1220 }
1221
1222 if (efx->port_enabled)
1223 rc = falcon_check_xmac(efx);
1224 mutex_unlock(&efx->mac_lock);
1225
1226 if (rc) {
1227 if (monitor_reset) {
1228 EFX_ERR(efx, "hardware monitor detected a fault: "
1229 "triggering reset\n");
1230 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1231 } else {
1232 EFX_ERR(efx, "hardware monitor detected a fault, "
1233 "skipping reset\n");
1234 }
1235 }
1236
1237 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1238 efx_monitor_interval);
1239}
1240
1241/**************************************************************************
1242 *
1243 * ioctls
1244 *
1245 *************************************************************************/
1246
1247/* Net device ioctl
1248 * Context: process, rtnl_lock() held.
1249 */
1250static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1251{
767e468c 1252 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1253
1254 EFX_ASSERT_RESET_SERIALISED(efx);
1255
1256 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1257}
1258
1259/**************************************************************************
1260 *
1261 * NAPI interface
1262 *
1263 **************************************************************************/
1264
1265static int efx_init_napi(struct efx_nic *efx)
1266{
1267 struct efx_channel *channel;
1268 int rc;
1269
1270 efx_for_each_channel(channel, efx) {
1271 channel->napi_dev = efx->net_dev;
1272 rc = efx_lro_init(&channel->lro_mgr, efx);
1273 if (rc)
1274 goto err;
1275 }
1276 return 0;
1277 err:
1278 efx_fini_napi(efx);
1279 return rc;
1280}
1281
1282static void efx_fini_napi(struct efx_nic *efx)
1283{
1284 struct efx_channel *channel;
1285
1286 efx_for_each_channel(channel, efx) {
1287 efx_lro_fini(&channel->lro_mgr);
1288 channel->napi_dev = NULL;
1289 }
1290}
1291
1292/**************************************************************************
1293 *
1294 * Kernel netpoll interface
1295 *
1296 *************************************************************************/
1297
1298#ifdef CONFIG_NET_POLL_CONTROLLER
1299
1300/* Although in the common case interrupts will be disabled, this is not
1301 * guaranteed. However, all our work happens inside the NAPI callback,
1302 * so no locking is required.
1303 */
1304static void efx_netpoll(struct net_device *net_dev)
1305{
767e468c 1306 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1307 struct efx_channel *channel;
1308
1309 efx_for_each_channel_with_interrupt(channel, efx)
1310 efx_schedule_channel(channel);
1311}
1312
1313#endif
1314
1315/**************************************************************************
1316 *
1317 * Kernel net device interface
1318 *
1319 *************************************************************************/
1320
1321/* Context: process, rtnl_lock() held. */
1322static int efx_net_open(struct net_device *net_dev)
1323{
767e468c 1324 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1325 EFX_ASSERT_RESET_SERIALISED(efx);
1326
1327 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1328 raw_smp_processor_id());
1329
1330 efx_start_all(efx);
1331 return 0;
1332}
1333
1334/* Context: process, rtnl_lock() held.
1335 * Note that the kernel will ignore our return code; this method
1336 * should really be a void.
1337 */
1338static int efx_net_stop(struct net_device *net_dev)
1339{
767e468c 1340 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1341 int rc;
1342
1343 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1344 raw_smp_processor_id());
1345
1346 /* Stop the device and flush all the channels */
1347 efx_stop_all(efx);
1348 efx_fini_channels(efx);
1349 rc = efx_init_channels(efx);
1350 if (rc)
1351 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1352
1353 return 0;
1354}
1355
5b9e207c 1356/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1357static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1358{
767e468c 1359 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1360 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1361 struct net_device_stats *stats = &net_dev->stats;
1362
5b9e207c
BH
1363 /* Update stats if possible, but do not wait if another thread
1364 * is updating them (or resetting the NIC); slightly stale
1365 * stats are acceptable.
1366 */
8ceee660
BH
1367 if (!spin_trylock(&efx->stats_lock))
1368 return stats;
1369 if (efx->state == STATE_RUNNING) {
1370 falcon_update_stats_xmac(efx);
1371 falcon_update_nic_stats(efx);
1372 }
1373 spin_unlock(&efx->stats_lock);
1374
1375 stats->rx_packets = mac_stats->rx_packets;
1376 stats->tx_packets = mac_stats->tx_packets;
1377 stats->rx_bytes = mac_stats->rx_bytes;
1378 stats->tx_bytes = mac_stats->tx_bytes;
1379 stats->multicast = mac_stats->rx_multicast;
1380 stats->collisions = mac_stats->tx_collision;
1381 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1382 mac_stats->rx_length_error);
1383 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1384 stats->rx_crc_errors = mac_stats->rx_bad;
1385 stats->rx_frame_errors = mac_stats->rx_align_error;
1386 stats->rx_fifo_errors = mac_stats->rx_overflow;
1387 stats->rx_missed_errors = mac_stats->rx_missed;
1388 stats->tx_window_errors = mac_stats->tx_late_collision;
1389
1390 stats->rx_errors = (stats->rx_length_errors +
1391 stats->rx_over_errors +
1392 stats->rx_crc_errors +
1393 stats->rx_frame_errors +
1394 stats->rx_fifo_errors +
1395 stats->rx_missed_errors +
1396 mac_stats->rx_symbol_error);
1397 stats->tx_errors = (stats->tx_window_errors +
1398 mac_stats->tx_bad);
1399
1400 return stats;
1401}
1402
1403/* Context: netif_tx_lock held, BHs disabled. */
1404static void efx_watchdog(struct net_device *net_dev)
1405{
767e468c 1406 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1407
1408 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
1409 atomic_read(&efx->netif_stop_count), efx->port_enabled,
1410 monitor_reset ? "resetting channels" : "skipping reset");
1411
1412 if (monitor_reset)
1413 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1414}
1415
1416
1417/* Context: process, rtnl_lock() held. */
1418static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1419{
767e468c 1420 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1421 int rc = 0;
1422
1423 EFX_ASSERT_RESET_SERIALISED(efx);
1424
1425 if (new_mtu > EFX_MAX_MTU)
1426 return -EINVAL;
1427
1428 efx_stop_all(efx);
1429
1430 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1431
1432 efx_fini_channels(efx);
1433 net_dev->mtu = new_mtu;
1434 rc = efx_init_channels(efx);
1435 if (rc)
1436 goto fail;
1437
1438 efx_start_all(efx);
1439 return rc;
1440
1441 fail:
1442 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1443 return rc;
1444}
1445
1446static int efx_set_mac_address(struct net_device *net_dev, void *data)
1447{
767e468c 1448 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1449 struct sockaddr *addr = data;
1450 char *new_addr = addr->sa_data;
1451
1452 EFX_ASSERT_RESET_SERIALISED(efx);
1453
1454 if (!is_valid_ether_addr(new_addr)) {
1455 DECLARE_MAC_BUF(mac);
1456 EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
1457 print_mac(mac, new_addr));
1458 return -EINVAL;
1459 }
1460
1461 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1462
1463 /* Reconfigure the MAC */
1464 efx_reconfigure_port(efx);
1465
1466 return 0;
1467}
1468
1469/* Context: netif_tx_lock held, BHs disabled. */
1470static void efx_set_multicast_list(struct net_device *net_dev)
1471{
767e468c 1472 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1473 struct dev_mc_list *mc_list = net_dev->mc_list;
1474 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1475 int promiscuous;
1476 u32 crc;
1477 int bit;
1478 int i;
1479
1480 /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
1481 promiscuous = (net_dev->flags & IFF_PROMISC) ? 1 : 0;
1482 if (efx->promiscuous != promiscuous) {
1483 efx->promiscuous = promiscuous;
1484 /* Close the window between efx_stop_port() and efx_flush_all()
1485 * by only queuing work when the port is enabled. */
1486 if (efx->port_enabled)
1487 queue_work(efx->workqueue, &efx->reconfigure_work);
1488 }
1489
1490 /* Build multicast hash table */
1491 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1492 memset(mc_hash, 0xff, sizeof(*mc_hash));
1493 } else {
1494 memset(mc_hash, 0x00, sizeof(*mc_hash));
1495 for (i = 0; i < net_dev->mc_count; i++) {
1496 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1497 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1498 set_bit_le(bit, mc_hash->byte);
1499 mc_list = mc_list->next;
1500 }
1501 }
1502
1503 /* Create and activate new global multicast hash table */
1504 falcon_set_multicast_hash(efx);
1505}
1506
1507static int efx_netdev_event(struct notifier_block *this,
1508 unsigned long event, void *ptr)
1509{
d3208b5e 1510 struct net_device *net_dev = ptr;
8ceee660
BH
1511
1512 if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
767e468c 1513 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1514
1515 strcpy(efx->name, net_dev->name);
1516 }
1517
1518 return NOTIFY_DONE;
1519}
1520
1521static struct notifier_block efx_netdev_notifier = {
1522 .notifier_call = efx_netdev_event,
1523};
1524
1525static int efx_register_netdev(struct efx_nic *efx)
1526{
1527 struct net_device *net_dev = efx->net_dev;
1528 int rc;
1529
1530 net_dev->watchdog_timeo = 5 * HZ;
1531 net_dev->irq = efx->pci_dev->irq;
1532 net_dev->open = efx_net_open;
1533 net_dev->stop = efx_net_stop;
1534 net_dev->get_stats = efx_net_stats;
1535 net_dev->tx_timeout = &efx_watchdog;
1536 net_dev->hard_start_xmit = efx_hard_start_xmit;
1537 net_dev->do_ioctl = efx_ioctl;
1538 net_dev->change_mtu = efx_change_mtu;
1539 net_dev->set_mac_address = efx_set_mac_address;
1540 net_dev->set_multicast_list = efx_set_multicast_list;
1541#ifdef CONFIG_NET_POLL_CONTROLLER
1542 net_dev->poll_controller = efx_netpoll;
1543#endif
1544 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1545 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1546
1547 /* Always start with carrier off; PHY events will detect the link */
1548 netif_carrier_off(efx->net_dev);
1549
1550 /* Clear MAC statistics */
1551 falcon_update_stats_xmac(efx);
1552 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1553
1554 rc = register_netdev(net_dev);
1555 if (rc) {
1556 EFX_ERR(efx, "could not register net dev\n");
1557 return rc;
1558 }
1559 strcpy(efx->name, net_dev->name);
1560
1561 return 0;
1562}
1563
1564static void efx_unregister_netdev(struct efx_nic *efx)
1565{
1566 struct efx_tx_queue *tx_queue;
1567
1568 if (!efx->net_dev)
1569 return;
1570
767e468c 1571 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1572
1573 /* Free up any skbs still remaining. This has to happen before
1574 * we try to unregister the netdev as running their destructors
1575 * may be needed to get the device ref. count to 0. */
1576 efx_for_each_tx_queue(tx_queue, efx)
1577 efx_release_tx_buffers(tx_queue);
1578
55668611 1579 if (efx_dev_registered(efx)) {
8ceee660
BH
1580 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1581 unregister_netdev(efx->net_dev);
1582 }
1583}
1584
1585/**************************************************************************
1586 *
1587 * Device reset and suspend
1588 *
1589 **************************************************************************/
1590
1591/* The final hardware and software finalisation before reset. */
1592static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1593{
1594 int rc;
1595
1596 EFX_ASSERT_RESET_SERIALISED(efx);
1597
1598 rc = falcon_xmac_get_settings(efx, ecmd);
1599 if (rc) {
1600 EFX_ERR(efx, "could not back up PHY settings\n");
1601 goto fail;
1602 }
1603
1604 efx_fini_channels(efx);
1605 return 0;
1606
1607 fail:
1608 return rc;
1609}
1610
1611/* The first part of software initialisation after a hardware reset
1612 * This function does not handle serialisation with the kernel, it
1613 * assumes the caller has done this */
1614static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1615{
1616 int rc;
1617
1618 rc = efx_init_channels(efx);
1619 if (rc)
1620 goto fail1;
1621
1622 /* Restore MAC and PHY settings. */
1623 rc = falcon_xmac_set_settings(efx, ecmd);
1624 if (rc) {
1625 EFX_ERR(efx, "could not restore PHY settings\n");
1626 goto fail2;
1627 }
1628
1629 return 0;
1630
1631 fail2:
1632 efx_fini_channels(efx);
1633 fail1:
1634 return rc;
1635}
1636
1637/* Reset the NIC as transparently as possible. Do not reset the PHY
1638 * Note that the reset may fail, in which case the card will be left
1639 * in a most-probably-unusable state.
1640 *
1641 * This function will sleep. You cannot reset from within an atomic
1642 * state; use efx_schedule_reset() instead.
1643 *
1644 * Grabs the rtnl_lock.
1645 */
1646static int efx_reset(struct efx_nic *efx)
1647{
1648 struct ethtool_cmd ecmd;
1649 enum reset_type method = efx->reset_pending;
1650 int rc;
1651
1652 /* Serialise with kernel interfaces */
1653 rtnl_lock();
1654
1655 /* If we're not RUNNING then don't reset. Leave the reset_pending
1656 * flag set so that efx_pci_probe_main will be retried */
1657 if (efx->state != STATE_RUNNING) {
1658 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1659 goto unlock_rtnl;
1660 }
1661
1662 efx->state = STATE_RESETTING;
1663 EFX_INFO(efx, "resetting (%d)\n", method);
1664
1665 /* The net_dev->get_stats handler is quite slow, and will fail
1666 * if a fetch is pending over reset. Serialise against it. */
1667 spin_lock(&efx->stats_lock);
1668 spin_unlock(&efx->stats_lock);
1669
1670 efx_stop_all(efx);
1671 mutex_lock(&efx->mac_lock);
1672
1673 rc = efx_reset_down(efx, &ecmd);
1674 if (rc)
1675 goto fail1;
1676
1677 rc = falcon_reset_hw(efx, method);
1678 if (rc) {
1679 EFX_ERR(efx, "failed to reset hardware\n");
1680 goto fail2;
1681 }
1682
1683 /* Allow resets to be rescheduled. */
1684 efx->reset_pending = RESET_TYPE_NONE;
1685
1686 /* Reinitialise bus-mastering, which may have been turned off before
1687 * the reset was scheduled. This is still appropriate, even in the
1688 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1689 * can respond to requests. */
1690 pci_set_master(efx->pci_dev);
1691
1692 /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
1693 * case so the driver can talk to external SRAM */
1694 rc = falcon_init_nic(efx);
1695 if (rc) {
1696 EFX_ERR(efx, "failed to initialise NIC\n");
1697 goto fail3;
1698 }
1699
1700 /* Leave device stopped if necessary */
1701 if (method == RESET_TYPE_DISABLE) {
1702 /* Reinitialise the device anyway so the driver unload sequence
1703 * can talk to the external SRAM */
91ad757c 1704 falcon_init_nic(efx);
8ceee660
BH
1705 rc = -EIO;
1706 goto fail4;
1707 }
1708
1709 rc = efx_reset_up(efx, &ecmd);
1710 if (rc)
1711 goto fail5;
1712
1713 mutex_unlock(&efx->mac_lock);
1714 EFX_LOG(efx, "reset complete\n");
1715
1716 efx->state = STATE_RUNNING;
1717 efx_start_all(efx);
1718
1719 unlock_rtnl:
1720 rtnl_unlock();
1721 return 0;
1722
1723 fail5:
1724 fail4:
1725 fail3:
1726 fail2:
1727 fail1:
1728 EFX_ERR(efx, "has been disabled\n");
1729 efx->state = STATE_DISABLED;
1730
1731 mutex_unlock(&efx->mac_lock);
1732 rtnl_unlock();
1733 efx_unregister_netdev(efx);
1734 efx_fini_port(efx);
1735 return rc;
1736}
1737
1738/* The worker thread exists so that code that cannot sleep can
1739 * schedule a reset for later.
1740 */
1741static void efx_reset_work(struct work_struct *data)
1742{
1743 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1744
1745 efx_reset(nic);
1746}
1747
1748void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1749{
1750 enum reset_type method;
1751
1752 if (efx->reset_pending != RESET_TYPE_NONE) {
1753 EFX_INFO(efx, "quenching already scheduled reset\n");
1754 return;
1755 }
1756
1757 switch (type) {
1758 case RESET_TYPE_INVISIBLE:
1759 case RESET_TYPE_ALL:
1760 case RESET_TYPE_WORLD:
1761 case RESET_TYPE_DISABLE:
1762 method = type;
1763 break;
1764 case RESET_TYPE_RX_RECOVERY:
1765 case RESET_TYPE_RX_DESC_FETCH:
1766 case RESET_TYPE_TX_DESC_FETCH:
1767 case RESET_TYPE_TX_SKIP:
1768 method = RESET_TYPE_INVISIBLE;
1769 break;
1770 default:
1771 method = RESET_TYPE_ALL;
1772 break;
1773 }
1774
1775 if (method != type)
1776 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1777 else
1778 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1779
1780 efx->reset_pending = method;
1781
8d9853d9 1782 queue_work(efx->reset_workqueue, &efx->reset_work);
8ceee660
BH
1783}
1784
1785/**************************************************************************
1786 *
1787 * List of NICs we support
1788 *
1789 **************************************************************************/
1790
1791/* PCI device ID table */
1792static struct pci_device_id efx_pci_table[] __devinitdata = {
1793 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1794 .driver_data = (unsigned long) &falcon_a_nic_type},
1795 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1796 .driver_data = (unsigned long) &falcon_b_nic_type},
1797 {0} /* end of list */
1798};
1799
1800/**************************************************************************
1801 *
1802 * Dummy PHY/MAC/Board operations
1803 *
1804 * Can be used where the MAC does not implement this operation
1805 * Needed so all function pointers are valid and do not have to be tested
1806 * before use
1807 *
1808 **************************************************************************/
1809int efx_port_dummy_op_int(struct efx_nic *efx)
1810{
1811 return 0;
1812}
1813void efx_port_dummy_op_void(struct efx_nic *efx) {}
1814void efx_port_dummy_op_blink(struct efx_nic *efx, int blink) {}
1815
1816static struct efx_phy_operations efx_dummy_phy_operations = {
1817 .init = efx_port_dummy_op_int,
1818 .reconfigure = efx_port_dummy_op_void,
1819 .check_hw = efx_port_dummy_op_int,
1820 .fini = efx_port_dummy_op_void,
1821 .clear_interrupt = efx_port_dummy_op_void,
1822 .reset_xaui = efx_port_dummy_op_void,
1823};
1824
1825/* Dummy board operations */
1826static int efx_nic_dummy_op_int(struct efx_nic *nic)
1827{
1828 return 0;
1829}
1830
1831static struct efx_board efx_dummy_board_info = {
1832 .init = efx_nic_dummy_op_int,
1833 .init_leds = efx_port_dummy_op_int,
1834 .set_fault_led = efx_port_dummy_op_blink,
37b5a603 1835 .fini = efx_port_dummy_op_void,
8ceee660
BH
1836};
1837
1838/**************************************************************************
1839 *
1840 * Data housekeeping
1841 *
1842 **************************************************************************/
1843
1844/* This zeroes out and then fills in the invariants in a struct
1845 * efx_nic (including all sub-structures).
1846 */
1847static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1848 struct pci_dev *pci_dev, struct net_device *net_dev)
1849{
1850 struct efx_channel *channel;
1851 struct efx_tx_queue *tx_queue;
1852 struct efx_rx_queue *rx_queue;
1853 int i, rc;
1854
1855 /* Initialise common structures */
1856 memset(efx, 0, sizeof(*efx));
1857 spin_lock_init(&efx->biu_lock);
1858 spin_lock_init(&efx->phy_lock);
1859 INIT_WORK(&efx->reset_work, efx_reset_work);
1860 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1861 efx->pci_dev = pci_dev;
1862 efx->state = STATE_INIT;
1863 efx->reset_pending = RESET_TYPE_NONE;
1864 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1865 efx->board_info = efx_dummy_board_info;
1866
1867 efx->net_dev = net_dev;
1868 efx->rx_checksum_enabled = 1;
1869 spin_lock_init(&efx->netif_stop_lock);
1870 spin_lock_init(&efx->stats_lock);
1871 mutex_init(&efx->mac_lock);
1872 efx->phy_op = &efx_dummy_phy_operations;
1873 efx->mii.dev = net_dev;
1874 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1875 atomic_set(&efx->netif_stop_count, 1);
1876
1877 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1878 channel = &efx->channel[i];
1879 channel->efx = efx;
1880 channel->channel = i;
1881 channel->evqnum = i;
1882 channel->work_pending = 0;
1883 }
1884 for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
1885 tx_queue = &efx->tx_queue[i];
1886 tx_queue->efx = efx;
1887 tx_queue->queue = i;
1888 tx_queue->buffer = NULL;
1889 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1890 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1891 }
1892 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1893 rx_queue = &efx->rx_queue[i];
1894 rx_queue->efx = efx;
1895 rx_queue->queue = i;
1896 rx_queue->channel = &efx->channel[0]; /* for safety */
1897 rx_queue->buffer = NULL;
1898 spin_lock_init(&rx_queue->add_lock);
1899 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1900 }
1901
1902 efx->type = type;
1903
1904 /* Sanity-check NIC type */
1905 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1906 (efx->type->txd_ring_mask + 1));
1907 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1908 (efx->type->rxd_ring_mask + 1));
1909 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1910 (efx->type->evq_size - 1));
1911 /* As close as we can get to guaranteeing that we don't overflow */
1912 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1913 (efx->type->txd_ring_mask + 1 +
1914 efx->type->rxd_ring_mask + 1));
1915 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1916
1917 /* Higher numbered interrupt modes are less capable! */
1918 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1919 interrupt_mode);
1920
1921 efx->workqueue = create_singlethread_workqueue("sfc_work");
1922 if (!efx->workqueue) {
1923 rc = -ENOMEM;
1924 goto fail1;
1925 }
1926
8d9853d9
BH
1927 efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
1928 if (!efx->reset_workqueue) {
1929 rc = -ENOMEM;
1930 goto fail2;
1931 }
1932
8ceee660
BH
1933 return 0;
1934
8d9853d9
BH
1935 fail2:
1936 destroy_workqueue(efx->workqueue);
1937 efx->workqueue = NULL;
1938
8ceee660
BH
1939 fail1:
1940 return rc;
1941}
1942
1943static void efx_fini_struct(struct efx_nic *efx)
1944{
8d9853d9
BH
1945 if (efx->reset_workqueue) {
1946 destroy_workqueue(efx->reset_workqueue);
1947 efx->reset_workqueue = NULL;
1948 }
8ceee660
BH
1949 if (efx->workqueue) {
1950 destroy_workqueue(efx->workqueue);
1951 efx->workqueue = NULL;
1952 }
1953}
1954
1955/**************************************************************************
1956 *
1957 * PCI interface
1958 *
1959 **************************************************************************/
1960
1961/* Main body of final NIC shutdown code
1962 * This is called only at module unload (or hotplug removal).
1963 */
1964static void efx_pci_remove_main(struct efx_nic *efx)
1965{
1966 EFX_ASSERT_RESET_SERIALISED(efx);
1967
1968 /* Skip everything if we never obtained a valid membase */
1969 if (!efx->membase)
1970 return;
1971
1972 efx_fini_channels(efx);
1973 efx_fini_port(efx);
1974
1975 /* Shutdown the board, then the NIC and board state */
37b5a603 1976 efx->board_info.fini(efx);
8ceee660
BH
1977 falcon_fini_interrupt(efx);
1978
1979 efx_fini_napi(efx);
1980 efx_remove_all(efx);
1981}
1982
1983/* Final NIC shutdown
1984 * This is called only at module unload (or hotplug removal).
1985 */
1986static void efx_pci_remove(struct pci_dev *pci_dev)
1987{
1988 struct efx_nic *efx;
1989
1990 efx = pci_get_drvdata(pci_dev);
1991 if (!efx)
1992 return;
1993
1994 /* Mark the NIC as fini, then stop the interface */
1995 rtnl_lock();
1996 efx->state = STATE_FINI;
1997 dev_close(efx->net_dev);
1998
1999 /* Allow any queued efx_resets() to complete */
2000 rtnl_unlock();
2001
2002 if (efx->membase == NULL)
2003 goto out;
2004
2005 efx_unregister_netdev(efx);
2006
2007 /* Wait for any scheduled resets to complete. No more will be
2008 * scheduled from this point because efx_stop_all() has been
2009 * called, we are no longer registered with driverlink, and
2010 * the net_device's have been removed. */
8d9853d9 2011 flush_workqueue(efx->reset_workqueue);
8ceee660
BH
2012
2013 efx_pci_remove_main(efx);
2014
2015out:
2016 efx_fini_io(efx);
2017 EFX_LOG(efx, "shutdown successful\n");
2018
2019 pci_set_drvdata(pci_dev, NULL);
2020 efx_fini_struct(efx);
2021 free_netdev(efx->net_dev);
2022};
2023
2024/* Main body of NIC initialisation
2025 * This is called at module load (or hotplug insertion, theoretically).
2026 */
2027static int efx_pci_probe_main(struct efx_nic *efx)
2028{
2029 int rc;
2030
2031 /* Do start-of-day initialisation */
2032 rc = efx_probe_all(efx);
2033 if (rc)
2034 goto fail1;
2035
2036 rc = efx_init_napi(efx);
2037 if (rc)
2038 goto fail2;
2039
2040 /* Initialise the board */
2041 rc = efx->board_info.init(efx);
2042 if (rc) {
2043 EFX_ERR(efx, "failed to initialise board\n");
2044 goto fail3;
2045 }
2046
2047 rc = falcon_init_nic(efx);
2048 if (rc) {
2049 EFX_ERR(efx, "failed to initialise NIC\n");
2050 goto fail4;
2051 }
2052
2053 rc = efx_init_port(efx);
2054 if (rc) {
2055 EFX_ERR(efx, "failed to initialise port\n");
2056 goto fail5;
2057 }
2058
2059 rc = efx_init_channels(efx);
2060 if (rc)
2061 goto fail6;
2062
2063 rc = falcon_init_interrupt(efx);
2064 if (rc)
2065 goto fail7;
2066
2067 return 0;
2068
2069 fail7:
2070 efx_fini_channels(efx);
2071 fail6:
2072 efx_fini_port(efx);
2073 fail5:
2074 fail4:
2075 fail3:
2076 efx_fini_napi(efx);
2077 fail2:
2078 efx_remove_all(efx);
2079 fail1:
2080 return rc;
2081}
2082
2083/* NIC initialisation
2084 *
2085 * This is called at module load (or hotplug insertion,
2086 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2087 * sets up and registers the network devices with the kernel and hooks
2088 * the interrupt service routine. It does not prepare the device for
2089 * transmission; this is left to the first time one of the network
2090 * interfaces is brought up (i.e. efx_net_open).
2091 */
2092static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2093 const struct pci_device_id *entry)
2094{
2095 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2096 struct net_device *net_dev;
2097 struct efx_nic *efx;
2098 int i, rc;
2099
2100 /* Allocate and initialise a struct net_device and struct efx_nic */
2101 net_dev = alloc_etherdev(sizeof(*efx));
2102 if (!net_dev)
2103 return -ENOMEM;
b9b39b62
BH
2104 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2105 NETIF_F_HIGHDMA | NETIF_F_TSO);
8ceee660
BH
2106 if (lro)
2107 net_dev->features |= NETIF_F_LRO;
767e468c 2108 efx = netdev_priv(net_dev);
8ceee660
BH
2109 pci_set_drvdata(pci_dev, efx);
2110 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2111 if (rc)
2112 goto fail1;
2113
2114 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2115
2116 /* Set up basic I/O (BAR mappings etc) */
2117 rc = efx_init_io(efx);
2118 if (rc)
2119 goto fail2;
2120
2121 /* No serialisation is required with the reset path because
2122 * we're in STATE_INIT. */
2123 for (i = 0; i < 5; i++) {
2124 rc = efx_pci_probe_main(efx);
2125 if (rc == 0)
2126 break;
2127
2128 /* Serialise against efx_reset(). No more resets will be
2129 * scheduled since efx_stop_all() has been called, and we
2130 * have not and never have been registered with either
2131 * the rtnetlink or driverlink layers. */
8d9853d9 2132 flush_workqueue(efx->reset_workqueue);
8ceee660
BH
2133
2134 /* Retry if a recoverably reset event has been scheduled */
2135 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2136 (efx->reset_pending != RESET_TYPE_ALL))
2137 goto fail3;
2138
2139 efx->reset_pending = RESET_TYPE_NONE;
2140 }
2141
2142 if (rc) {
2143 EFX_ERR(efx, "Could not reset NIC\n");
2144 goto fail4;
2145 }
2146
2147 /* Switch to the running state before we expose the device to
2148 * the OS. This is to ensure that the initial gathering of
2149 * MAC stats succeeds. */
2150 rtnl_lock();
2151 efx->state = STATE_RUNNING;
2152 rtnl_unlock();
2153
2154 rc = efx_register_netdev(efx);
2155 if (rc)
2156 goto fail5;
2157
2158 EFX_LOG(efx, "initialisation successful\n");
2159
2160 return 0;
2161
2162 fail5:
2163 efx_pci_remove_main(efx);
2164 fail4:
2165 fail3:
2166 efx_fini_io(efx);
2167 fail2:
2168 efx_fini_struct(efx);
2169 fail1:
2170 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2171 free_netdev(net_dev);
2172 return rc;
2173}
2174
2175static struct pci_driver efx_pci_driver = {
2176 .name = EFX_DRIVER_NAME,
2177 .id_table = efx_pci_table,
2178 .probe = efx_pci_probe,
2179 .remove = efx_pci_remove,
2180};
2181
2182/**************************************************************************
2183 *
2184 * Kernel module interface
2185 *
2186 *************************************************************************/
2187
2188module_param(interrupt_mode, uint, 0444);
2189MODULE_PARM_DESC(interrupt_mode,
2190 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2191
2192static int __init efx_init_module(void)
2193{
2194 int rc;
2195
2196 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2197
2198 rc = register_netdevice_notifier(&efx_netdev_notifier);
2199 if (rc)
2200 goto err_notifier;
2201
2202 refill_workqueue = create_workqueue("sfc_refill");
2203 if (!refill_workqueue) {
2204 rc = -ENOMEM;
2205 goto err_refill;
2206 }
2207
2208 rc = pci_register_driver(&efx_pci_driver);
2209 if (rc < 0)
2210 goto err_pci;
2211
2212 return 0;
2213
2214 err_pci:
2215 destroy_workqueue(refill_workqueue);
2216 err_refill:
2217 unregister_netdevice_notifier(&efx_netdev_notifier);
2218 err_notifier:
2219 return rc;
2220}
2221
2222static void __exit efx_exit_module(void)
2223{
2224 printk(KERN_INFO "Solarflare NET driver unloading\n");
2225
2226 pci_unregister_driver(&efx_pci_driver);
2227 destroy_workqueue(refill_workqueue);
2228 unregister_netdevice_notifier(&efx_netdev_notifier);
2229
2230}
2231
2232module_init(efx_init_module);
2233module_exit(efx_exit_module);
2234
2235MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2236 "Solarflare Communications");
2237MODULE_DESCRIPTION("Solarflare Communications network driver");
2238MODULE_LICENSE("GPL");
2239MODULE_DEVICE_TABLE(pci, efx_pci_table);