[PATCH] s2io: additional stats
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
1da177e4
LT
3 * Copyright(c) 2002-2005 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8
AR
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7
AR
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
1da177e4
LT
45 ************************************************************************/
46
47#include <linux/config.h>
48#include <linux/module.h>
49#include <linux/types.h>
50#include <linux/errno.h>
51#include <linux/ioport.h>
52#include <linux/pci.h>
1e7f0bd8 53#include <linux/dma-mapping.h>
1da177e4
LT
54#include <linux/kernel.h>
55#include <linux/netdevice.h>
56#include <linux/etherdevice.h>
57#include <linux/skbuff.h>
58#include <linux/init.h>
59#include <linux/delay.h>
60#include <linux/stddef.h>
61#include <linux/ioctl.h>
62#include <linux/timex.h>
63#include <linux/sched.h>
64#include <linux/ethtool.h>
1da177e4 65#include <linux/workqueue.h>
be3a6b02 66#include <linux/if_vlan.h>
7d3d0439
RA
67#include <linux/ip.h>
68#include <linux/tcp.h>
69#include <net/tcp.h>
1da177e4 70
1da177e4
LT
71#include <asm/system.h>
72#include <asm/uaccess.h>
20346722 73#include <asm/io.h>
fe931395 74#include <asm/div64.h>
1da177e4
LT
75
76/* local include */
77#include "s2io.h"
78#include "s2io-regs.h"
79
7d3d0439 80#define DRV_VERSION "2.0.11.2"
6c1792f4 81
1da177e4 82/* S2io Driver name & version. */
20346722 83static char s2io_driver_name[] = "Neterion";
6c1792f4 84static char s2io_driver_version[] = DRV_VERSION;
1da177e4 85
26df54bf
AB
86static int rxd_size[4] = {32,48,48,64};
87static int rxd_count[4] = {127,85,85,63};
da6971d8 88
5e25b9dd
K
89static inline int RXD_IS_UP2DT(RxD_t *rxdp)
90{
91 int ret;
92
93 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
94 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
95
96 return ret;
97}
98
20346722 99/*
1da177e4
LT
100 * Cards with following subsystem_id have a link state indication
101 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
102 * macro below identifies these cards given the subsystem_id.
103 */
541ae68f
K
104#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
105 (dev_type == XFRAME_I_DEVICE) ? \
106 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
107 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
108
109#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
110 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
111#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
112#define PANIC 1
113#define LOW 2
114static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
115{
20346722
K
116 mac_info_t *mac_control;
117
118 mac_control = &sp->mac_control;
863c11a9
AR
119 if (rxb_size <= rxd_count[sp->rxd_mode])
120 return PANIC;
121 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
122 return LOW;
123 return 0;
1da177e4
LT
124}
125
126/* Ethtool related variables and Macros. */
127static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
133};
134
135static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
136 {"tmac_frms"},
137 {"tmac_data_octets"},
138 {"tmac_drop_frms"},
139 {"tmac_mcst_frms"},
140 {"tmac_bcst_frms"},
141 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
1da177e4 145 {"tmac_any_err_frms"},
bd1034f0 146 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
147 {"tmac_vld_ip_octets"},
148 {"tmac_vld_ip"},
149 {"tmac_drop_ip"},
150 {"tmac_icmp"},
151 {"tmac_rst_tcp"},
152 {"tmac_tcp"},
153 {"tmac_udp"},
154 {"rmac_vld_frms"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
157 {"rmac_drop_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
bd1034f0 161 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
162 {"rmac_long_frms"},
163 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
1da177e4 168 {"rmac_discarded_frms"},
bd1034f0
AR
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
1da177e4
LT
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
174 {"rmac_frag_frms"},
175 {"rmac_jabber_frms"},
bd1034f0
AR
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
182 {"rmac_ip"},
183 {"rmac_ip_octets"},
184 {"rmac_hdr_err_ip"},
185 {"rmac_drop_ip"},
186 {"rmac_icmp"},
187 {"rmac_tcp"},
188 {"rmac_udp"},
189 {"rmac_err_drp_udp"},
bd1034f0
AR
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
1da177e4 207 {"rmac_pause_cnt"},
bd1034f0
AR
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
210 {"rmac_accepted_ip"},
211 {"rmac_err_tcp"},
bd1034f0
AR
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
229 {"rxf_wr_cnt"},
230 {"rmac_ttl_1519_4095_frms"},
231 {"rmac_ttl_4096_8191_frms"},
232 {"rmac_ttl_8192_max_frms"},
233 {"rmac_ttl_gt_max_frms"},
234 {"rmac_osized_alt_frms"},
235 {"rmac_jabber_alt_frms"},
236 {"rmac_gt_max_alt_frms"},
237 {"rmac_vlan_frms"},
238 {"rmac_len_discard"},
239 {"rmac_fcs_discard"},
240 {"rmac_pf_discard"},
241 {"rmac_da_discard"},
242 {"rmac_red_discard"},
243 {"rmac_rts_discard"},
244 {"rmac_ingm_full_discard"},
245 {"link_fault_cnt"},
7ba013ac
K
246 {"\n DRIVER STATISTICS"},
247 {"single_bit_ecc_errs"},
248 {"double_bit_ecc_errs"},
bd1034f0
AR
249 {"parity_err_cnt"},
250 {"serious_err_cnt"},
251 {"soft_reset_cnt"},
252 {"fifo_full_cnt"},
253 {"ring_full_cnt"},
254 ("alarm_transceiver_temp_high"),
255 ("alarm_transceiver_temp_low"),
256 ("alarm_laser_bias_current_high"),
257 ("alarm_laser_bias_current_low"),
258 ("alarm_laser_output_power_high"),
259 ("alarm_laser_output_power_low"),
260 ("warn_transceiver_temp_high"),
261 ("warn_transceiver_temp_low"),
262 ("warn_laser_bias_current_high"),
263 ("warn_laser_bias_current_low"),
264 ("warn_laser_output_power_high"),
265 ("warn_laser_output_power_low"),
7d3d0439
RA
266 ("lro_aggregated_pkts"),
267 ("lro_flush_both_count"),
268 ("lro_out_of_sequence_pkts"),
269 ("lro_flush_due_to_max_pkts"),
270 ("lro_avg_aggr_pkts"),
1da177e4
LT
271};
272
273#define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
274#define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
275
276#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
277#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
278
25fff88e
K
279#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
280 init_timer(&timer); \
281 timer.function = handle; \
282 timer.data = (unsigned long) arg; \
283 mod_timer(&timer, (jiffies + exp)) \
284
be3a6b02
K
285/* Add the vlan */
286static void s2io_vlan_rx_register(struct net_device *dev,
287 struct vlan_group *grp)
288{
289 nic_t *nic = dev->priv;
290 unsigned long flags;
291
292 spin_lock_irqsave(&nic->tx_lock, flags);
293 nic->vlgrp = grp;
294 spin_unlock_irqrestore(&nic->tx_lock, flags);
295}
296
297/* Unregister the vlan */
298static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
299{
300 nic_t *nic = dev->priv;
301 unsigned long flags;
302
303 spin_lock_irqsave(&nic->tx_lock, flags);
304 if (nic->vlgrp)
305 nic->vlgrp->vlan_devices[vid] = NULL;
306 spin_unlock_irqrestore(&nic->tx_lock, flags);
307}
308
20346722 309/*
1da177e4
LT
310 * Constants to be programmed into the Xena's registers, to configure
311 * the XAUI.
312 */
313
1da177e4 314#define END_SIGN 0x0
f71e1309 315static const u64 herc_act_dtx_cfg[] = {
541ae68f 316 /* Set address */
e960fc5c 317 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 318 /* Write data */
e960fc5c 319 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
320 /* Set address */
321 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
322 /* Write data */
323 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
324 /* Set address */
e960fc5c 325 0x801205150D440000ULL, 0x801205150D4400E0ULL,
326 /* Write data */
327 0x801205150D440004ULL, 0x801205150D4400E4ULL,
328 /* Set address */
541ae68f
K
329 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
330 /* Write data */
331 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
332 /* Done */
333 END_SIGN
334};
335
f71e1309 336static const u64 xena_dtx_cfg[] = {
c92ca04b 337 /* Set address */
1da177e4 338 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
339 /* Write data */
340 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
341 /* Set address */
342 0x8001051500000000ULL, 0x80010515000000E0ULL,
343 /* Write data */
344 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
345 /* Set address */
1da177e4 346 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
347 /* Write data */
348 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
349 END_SIGN
350};
351
20346722 352/*
1da177e4
LT
353 * Constants for Fixing the MacAddress problem seen mostly on
354 * Alpha machines.
355 */
f71e1309 356static const u64 fix_mac[] = {
1da177e4
LT
357 0x0060000000000000ULL, 0x0060600000000000ULL,
358 0x0040600000000000ULL, 0x0000600000000000ULL,
359 0x0020600000000000ULL, 0x0060600000000000ULL,
360 0x0020600000000000ULL, 0x0060600000000000ULL,
361 0x0020600000000000ULL, 0x0060600000000000ULL,
362 0x0020600000000000ULL, 0x0060600000000000ULL,
363 0x0020600000000000ULL, 0x0060600000000000ULL,
364 0x0020600000000000ULL, 0x0060600000000000ULL,
365 0x0020600000000000ULL, 0x0060600000000000ULL,
366 0x0020600000000000ULL, 0x0060600000000000ULL,
367 0x0020600000000000ULL, 0x0060600000000000ULL,
368 0x0020600000000000ULL, 0x0060600000000000ULL,
369 0x0020600000000000ULL, 0x0000600000000000ULL,
370 0x0040600000000000ULL, 0x0060600000000000ULL,
371 END_SIGN
372};
373
374/* Module Loadable parameters. */
375static unsigned int tx_fifo_num = 1;
376static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
9dc737a7 377 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
1da177e4
LT
378static unsigned int rx_ring_num = 1;
379static unsigned int rx_ring_sz[MAX_RX_RINGS] =
9dc737a7 380 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
20346722
K
381static unsigned int rts_frm_len[MAX_RX_RINGS] =
382 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
da6971d8 383static unsigned int rx_ring_mode = 1;
5e25b9dd 384static unsigned int use_continuous_tx_intrs = 1;
863c11a9 385static unsigned int rmac_pause_time = 0x100;
1da177e4
LT
386static unsigned int mc_pause_threshold_q0q3 = 187;
387static unsigned int mc_pause_threshold_q4q7 = 187;
388static unsigned int shared_splits;
389static unsigned int tmac_util_period = 5;
390static unsigned int rmac_util_period = 5;
b6e3f982 391static unsigned int bimodal = 0;
da6971d8 392static unsigned int l3l4hdr_size = 128;
1da177e4
LT
393#ifndef CONFIG_S2IO_NAPI
394static unsigned int indicate_max_pkts;
395#endif
303bcb4b
K
396/* Frequency of Rx desc syncs expressed as power of 2 */
397static unsigned int rxsync_frequency = 3;
cc6e7c44
RA
398/* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
399static unsigned int intr_type = 0;
7d3d0439
RA
400/* Large receive offload feature */
401static unsigned int lro = 0;
402/* Max pkts to be aggregated by LRO at one time. If not specified,
403 * aggregation happens until we hit max IP pkt size(64K)
404 */
405static unsigned int lro_max_pkts = 0xFFFF;
1da177e4 406
20346722 407/*
1da177e4 408 * S2IO device table.
20346722 409 * This table lists all the devices that this driver supports.
1da177e4
LT
410 */
411static struct pci_device_id s2io_tbl[] __devinitdata = {
412 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
413 PCI_ANY_ID, PCI_ANY_ID},
414 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
415 PCI_ANY_ID, PCI_ANY_ID},
416 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722
K
417 PCI_ANY_ID, PCI_ANY_ID},
418 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
419 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
420 {0,}
421};
422
423MODULE_DEVICE_TABLE(pci, s2io_tbl);
424
425static struct pci_driver s2io_driver = {
426 .name = "S2IO",
427 .id_table = s2io_tbl,
428 .probe = s2io_init_nic,
429 .remove = __devexit_p(s2io_rem_nic),
430};
431
432/* A simplifier macro used both by init and free shared_mem Fns(). */
433#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
434
435/**
436 * init_shared_mem - Allocation and Initialization of Memory
437 * @nic: Device private variable.
20346722
K
438 * Description: The function allocates all the memory areas shared
439 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
440 * Rx descriptors and the statistics block.
441 */
442
443static int init_shared_mem(struct s2io_nic *nic)
444{
445 u32 size;
446 void *tmp_v_addr, *tmp_v_addr_next;
447 dma_addr_t tmp_p_addr, tmp_p_addr_next;
448 RxD_block_t *pre_rxd_blk = NULL;
20346722 449 int i, j, blk_cnt, rx_sz, tx_sz;
1da177e4
LT
450 int lst_size, lst_per_page;
451 struct net_device *dev = nic->dev;
8ae418cf 452 unsigned long tmp;
1da177e4 453 buffAdd_t *ba;
1da177e4
LT
454
455 mac_info_t *mac_control;
456 struct config_param *config;
457
458 mac_control = &nic->mac_control;
459 config = &nic->config;
460
461
462 /* Allocation and initialization of TXDLs in FIOFs */
463 size = 0;
464 for (i = 0; i < config->tx_fifo_num; i++) {
465 size += config->tx_cfg[i].fifo_len;
466 }
467 if (size > MAX_AVAILABLE_TXDS) {
0b1f7ebe
K
468 DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ",
469 __FUNCTION__);
470 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
1da177e4
LT
471 return FAILURE;
472 }
473
474 lst_size = (sizeof(TxD_t) * config->max_txds);
20346722 475 tx_sz = lst_size * size;
1da177e4
LT
476 lst_per_page = PAGE_SIZE / lst_size;
477
478 for (i = 0; i < config->tx_fifo_num; i++) {
479 int fifo_len = config->tx_cfg[i].fifo_len;
480 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
20346722
K
481 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
482 GFP_KERNEL);
483 if (!mac_control->fifos[i].list_info) {
1da177e4
LT
484 DBG_PRINT(ERR_DBG,
485 "Malloc failed for list_info\n");
486 return -ENOMEM;
487 }
20346722 488 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
1da177e4
LT
489 }
490 for (i = 0; i < config->tx_fifo_num; i++) {
491 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
492 lst_per_page);
20346722
K
493 mac_control->fifos[i].tx_curr_put_info.offset = 0;
494 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 495 config->tx_cfg[i].fifo_len - 1;
20346722
K
496 mac_control->fifos[i].tx_curr_get_info.offset = 0;
497 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 498 config->tx_cfg[i].fifo_len - 1;
20346722
K
499 mac_control->fifos[i].fifo_no = i;
500 mac_control->fifos[i].nic = nic;
fed5eccd 501 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
20346722 502
1da177e4
LT
503 for (j = 0; j < page_num; j++) {
504 int k = 0;
505 dma_addr_t tmp_p;
506 void *tmp_v;
507 tmp_v = pci_alloc_consistent(nic->pdev,
508 PAGE_SIZE, &tmp_p);
509 if (!tmp_v) {
510 DBG_PRINT(ERR_DBG,
511 "pci_alloc_consistent ");
512 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
513 return -ENOMEM;
514 }
776bd20f 515 /* If we got a zero DMA address(can happen on
516 * certain platforms like PPC), reallocate.
517 * Store virtual address of page we don't want,
518 * to be freed later.
519 */
520 if (!tmp_p) {
521 mac_control->zerodma_virt_addr = tmp_v;
522 DBG_PRINT(INIT_DBG,
523 "%s: Zero DMA address for TxDL. ", dev->name);
524 DBG_PRINT(INIT_DBG,
6b4d617d 525 "Virtual address %p\n", tmp_v);
776bd20f 526 tmp_v = pci_alloc_consistent(nic->pdev,
527 PAGE_SIZE, &tmp_p);
528 if (!tmp_v) {
529 DBG_PRINT(ERR_DBG,
530 "pci_alloc_consistent ");
531 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
532 return -ENOMEM;
533 }
534 }
1da177e4
LT
535 while (k < lst_per_page) {
536 int l = (j * lst_per_page) + k;
537 if (l == config->tx_cfg[i].fifo_len)
20346722
K
538 break;
539 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 540 tmp_v + (k * lst_size);
20346722 541 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
542 tmp_p + (k * lst_size);
543 k++;
544 }
545 }
546 }
1da177e4 547
fed5eccd
AR
548 nic->ufo_in_band_v = kmalloc((sizeof(u64) * size), GFP_KERNEL);
549 if (!nic->ufo_in_band_v)
550 return -ENOMEM;
551
1da177e4
LT
552 /* Allocation and initialization of RXDs in Rings */
553 size = 0;
554 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
555 if (config->rx_cfg[i].num_rxd %
556 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
557 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
558 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
559 i);
560 DBG_PRINT(ERR_DBG, "RxDs per Block");
561 return FAILURE;
562 }
563 size += config->rx_cfg[i].num_rxd;
20346722 564 mac_control->rings[i].block_count =
da6971d8
AR
565 config->rx_cfg[i].num_rxd /
566 (rxd_count[nic->rxd_mode] + 1 );
567 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
568 mac_control->rings[i].block_count;
1da177e4 569 }
da6971d8
AR
570 if (nic->rxd_mode == RXD_MODE_1)
571 size = (size * (sizeof(RxD1_t)));
572 else
573 size = (size * (sizeof(RxD3_t)));
20346722 574 rx_sz = size;
1da177e4
LT
575
576 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
577 mac_control->rings[i].rx_curr_get_info.block_index = 0;
578 mac_control->rings[i].rx_curr_get_info.offset = 0;
579 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 580 config->rx_cfg[i].num_rxd - 1;
20346722
K
581 mac_control->rings[i].rx_curr_put_info.block_index = 0;
582 mac_control->rings[i].rx_curr_put_info.offset = 0;
583 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 584 config->rx_cfg[i].num_rxd - 1;
20346722
K
585 mac_control->rings[i].nic = nic;
586 mac_control->rings[i].ring_no = i;
587
da6971d8
AR
588 blk_cnt = config->rx_cfg[i].num_rxd /
589 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
590 /* Allocating all the Rx blocks */
591 for (j = 0; j < blk_cnt; j++) {
da6971d8
AR
592 rx_block_info_t *rx_blocks;
593 int l;
594
595 rx_blocks = &mac_control->rings[i].rx_blocks[j];
596 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
597 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
598 &tmp_p_addr);
599 if (tmp_v_addr == NULL) {
600 /*
20346722
K
601 * In case of failure, free_shared_mem()
602 * is called, which should free any
603 * memory that was alloced till the
1da177e4
LT
604 * failure happened.
605 */
da6971d8 606 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
607 return -ENOMEM;
608 }
609 memset(tmp_v_addr, 0, size);
da6971d8
AR
610 rx_blocks->block_virt_addr = tmp_v_addr;
611 rx_blocks->block_dma_addr = tmp_p_addr;
612 rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
613 rxd_count[nic->rxd_mode],
614 GFP_KERNEL);
615 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
616 rx_blocks->rxds[l].virt_addr =
617 rx_blocks->block_virt_addr +
618 (rxd_size[nic->rxd_mode] * l);
619 rx_blocks->rxds[l].dma_addr =
620 rx_blocks->block_dma_addr +
621 (rxd_size[nic->rxd_mode] * l);
622 }
1da177e4
LT
623 }
624 /* Interlinking all Rx Blocks */
625 for (j = 0; j < blk_cnt; j++) {
20346722
K
626 tmp_v_addr =
627 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 628 tmp_v_addr_next =
20346722 629 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 630 blk_cnt].block_virt_addr;
20346722
K
631 tmp_p_addr =
632 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 633 tmp_p_addr_next =
20346722 634 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
635 blk_cnt].block_dma_addr;
636
637 pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
1da177e4
LT
638 pre_rxd_blk->reserved_2_pNext_RxD_block =
639 (unsigned long) tmp_v_addr_next;
1da177e4
LT
640 pre_rxd_blk->pNext_RxD_Blk_physical =
641 (u64) tmp_p_addr_next;
642 }
643 }
da6971d8
AR
644 if (nic->rxd_mode >= RXD_MODE_3A) {
645 /*
646 * Allocation of Storages for buffer addresses in 2BUFF mode
647 * and the buffers as well.
648 */
649 for (i = 0; i < config->rx_ring_num; i++) {
650 blk_cnt = config->rx_cfg[i].num_rxd /
651 (rxd_count[nic->rxd_mode]+ 1);
652 mac_control->rings[i].ba =
653 kmalloc((sizeof(buffAdd_t *) * blk_cnt),
1da177e4 654 GFP_KERNEL);
da6971d8 655 if (!mac_control->rings[i].ba)
1da177e4 656 return -ENOMEM;
da6971d8
AR
657 for (j = 0; j < blk_cnt; j++) {
658 int k = 0;
659 mac_control->rings[i].ba[j] =
660 kmalloc((sizeof(buffAdd_t) *
661 (rxd_count[nic->rxd_mode] + 1)),
662 GFP_KERNEL);
663 if (!mac_control->rings[i].ba[j])
1da177e4 664 return -ENOMEM;
da6971d8
AR
665 while (k != rxd_count[nic->rxd_mode]) {
666 ba = &mac_control->rings[i].ba[j][k];
667
668 ba->ba_0_org = (void *) kmalloc
669 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
670 if (!ba->ba_0_org)
671 return -ENOMEM;
672 tmp = (unsigned long)ba->ba_0_org;
673 tmp += ALIGN_SIZE;
674 tmp &= ~((unsigned long) ALIGN_SIZE);
675 ba->ba_0 = (void *) tmp;
676
677 ba->ba_1_org = (void *) kmalloc
678 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
679 if (!ba->ba_1_org)
680 return -ENOMEM;
681 tmp = (unsigned long) ba->ba_1_org;
682 tmp += ALIGN_SIZE;
683 tmp &= ~((unsigned long) ALIGN_SIZE);
684 ba->ba_1 = (void *) tmp;
685 k++;
686 }
1da177e4
LT
687 }
688 }
689 }
1da177e4
LT
690
691 /* Allocation and initialization of Statistics block */
692 size = sizeof(StatInfo_t);
693 mac_control->stats_mem = pci_alloc_consistent
694 (nic->pdev, size, &mac_control->stats_mem_phy);
695
696 if (!mac_control->stats_mem) {
20346722
K
697 /*
698 * In case of failure, free_shared_mem() is called, which
699 * should free any memory that was alloced till the
1da177e4
LT
700 * failure happened.
701 */
702 return -ENOMEM;
703 }
704 mac_control->stats_mem_sz = size;
705
706 tmp_v_addr = mac_control->stats_mem;
707 mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
708 memset(tmp_v_addr, 0, size);
1da177e4
LT
709 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
710 (unsigned long long) tmp_p_addr);
711
712 return SUCCESS;
713}
714
20346722
K
715/**
716 * free_shared_mem - Free the allocated Memory
1da177e4
LT
717 * @nic: Device private variable.
718 * Description: This function is to free all memory locations allocated by
719 * the init_shared_mem() function and return it to the kernel.
720 */
721
722static void free_shared_mem(struct s2io_nic *nic)
723{
724 int i, j, blk_cnt, size;
725 void *tmp_v_addr;
726 dma_addr_t tmp_p_addr;
727 mac_info_t *mac_control;
728 struct config_param *config;
729 int lst_size, lst_per_page;
776bd20f 730 struct net_device *dev = nic->dev;
1da177e4
LT
731
732 if (!nic)
733 return;
734
735 mac_control = &nic->mac_control;
736 config = &nic->config;
737
738 lst_size = (sizeof(TxD_t) * config->max_txds);
739 lst_per_page = PAGE_SIZE / lst_size;
740
741 for (i = 0; i < config->tx_fifo_num; i++) {
742 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
743 lst_per_page);
744 for (j = 0; j < page_num; j++) {
745 int mem_blks = (j * lst_per_page);
776bd20f 746 if (!mac_control->fifos[i].list_info)
747 return;
748 if (!mac_control->fifos[i].list_info[mem_blks].
749 list_virt_addr)
1da177e4
LT
750 break;
751 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722
K
752 mac_control->fifos[i].
753 list_info[mem_blks].
1da177e4 754 list_virt_addr,
20346722
K
755 mac_control->fifos[i].
756 list_info[mem_blks].
1da177e4
LT
757 list_phy_addr);
758 }
776bd20f 759 /* If we got a zero DMA address during allocation,
760 * free the page now
761 */
762 if (mac_control->zerodma_virt_addr) {
763 pci_free_consistent(nic->pdev, PAGE_SIZE,
764 mac_control->zerodma_virt_addr,
765 (dma_addr_t)0);
766 DBG_PRINT(INIT_DBG,
6b4d617d
AM
767 "%s: Freeing TxDL with zero DMA addr. ",
768 dev->name);
769 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
770 mac_control->zerodma_virt_addr);
776bd20f 771 }
20346722 772 kfree(mac_control->fifos[i].list_info);
1da177e4
LT
773 }
774
1da177e4 775 size = SIZE_OF_BLOCK;
1da177e4 776 for (i = 0; i < config->rx_ring_num; i++) {
20346722 777 blk_cnt = mac_control->rings[i].block_count;
1da177e4 778 for (j = 0; j < blk_cnt; j++) {
20346722
K
779 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
780 block_virt_addr;
781 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
782 block_dma_addr;
1da177e4
LT
783 if (tmp_v_addr == NULL)
784 break;
785 pci_free_consistent(nic->pdev, size,
786 tmp_v_addr, tmp_p_addr);
da6971d8 787 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1da177e4
LT
788 }
789 }
790
da6971d8
AR
791 if (nic->rxd_mode >= RXD_MODE_3A) {
792 /* Freeing buffer storage addresses in 2BUFF mode. */
793 for (i = 0; i < config->rx_ring_num; i++) {
794 blk_cnt = config->rx_cfg[i].num_rxd /
795 (rxd_count[nic->rxd_mode] + 1);
796 for (j = 0; j < blk_cnt; j++) {
797 int k = 0;
798 if (!mac_control->rings[i].ba[j])
799 continue;
800 while (k != rxd_count[nic->rxd_mode]) {
801 buffAdd_t *ba =
802 &mac_control->rings[i].ba[j][k];
803 kfree(ba->ba_0_org);
804 kfree(ba->ba_1_org);
805 k++;
806 }
807 kfree(mac_control->rings[i].ba[j]);
1da177e4 808 }
da6971d8 809 kfree(mac_control->rings[i].ba);
1da177e4 810 }
1da177e4 811 }
1da177e4
LT
812
813 if (mac_control->stats_mem) {
814 pci_free_consistent(nic->pdev,
815 mac_control->stats_mem_sz,
816 mac_control->stats_mem,
817 mac_control->stats_mem_phy);
818 }
fed5eccd
AR
819 if (nic->ufo_in_band_v)
820 kfree(nic->ufo_in_band_v);
1da177e4
LT
821}
822
541ae68f
K
823/**
824 * s2io_verify_pci_mode -
825 */
826
827static int s2io_verify_pci_mode(nic_t *nic)
828{
509a2671 829 XENA_dev_config_t __iomem *bar0 = nic->bar0;
541ae68f
K
830 register u64 val64 = 0;
831 int mode;
832
833 val64 = readq(&bar0->pci_mode);
834 mode = (u8)GET_PCI_MODE(val64);
835
836 if ( val64 & PCI_MODE_UNKNOWN_MODE)
837 return -1; /* Unknown PCI mode */
838 return mode;
839}
840
c92ca04b
AR
841#define NEC_VENID 0x1033
842#define NEC_DEVID 0x0125
843static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
844{
845 struct pci_dev *tdev = NULL;
846 while ((tdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
847 if ((tdev->vendor == NEC_VENID) && (tdev->device == NEC_DEVID)){
848 if (tdev->bus == s2io_pdev->bus->parent)
849 return 1;
850 }
851 }
852 return 0;
853}
541ae68f 854
c92ca04b 855int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
856/**
857 * s2io_print_pci_mode -
858 */
859static int s2io_print_pci_mode(nic_t *nic)
860{
509a2671 861 XENA_dev_config_t __iomem *bar0 = nic->bar0;
541ae68f
K
862 register u64 val64 = 0;
863 int mode;
864 struct config_param *config = &nic->config;
865
866 val64 = readq(&bar0->pci_mode);
867 mode = (u8)GET_PCI_MODE(val64);
868
869 if ( val64 & PCI_MODE_UNKNOWN_MODE)
870 return -1; /* Unknown PCI mode */
871
c92ca04b
AR
872 config->bus_speed = bus_speed[mode];
873
874 if (s2io_on_nec_bridge(nic->pdev)) {
875 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
876 nic->dev->name);
877 return mode;
878 }
879
541ae68f
K
880 if (val64 & PCI_MODE_32_BITS) {
881 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
882 } else {
883 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
884 }
885
886 switch(mode) {
887 case PCI_MODE_PCI_33:
888 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f
K
889 break;
890 case PCI_MODE_PCI_66:
891 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f
K
892 break;
893 case PCI_MODE_PCIX_M1_66:
894 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f
K
895 break;
896 case PCI_MODE_PCIX_M1_100:
897 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f
K
898 break;
899 case PCI_MODE_PCIX_M1_133:
900 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f
K
901 break;
902 case PCI_MODE_PCIX_M2_66:
903 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f
K
904 break;
905 case PCI_MODE_PCIX_M2_100:
906 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f
K
907 break;
908 case PCI_MODE_PCIX_M2_133:
909 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f
K
910 break;
911 default:
912 return -1; /* Unsupported bus speed */
913 }
914
915 return mode;
916}
917
20346722
K
918/**
919 * init_nic - Initialization of hardware
1da177e4 920 * @nic: device peivate variable
20346722
K
921 * Description: The function sequentially configures every block
922 * of the H/W from their reset values.
923 * Return Value: SUCCESS on success and
1da177e4
LT
924 * '-1' on failure (endian settings incorrect).
925 */
926
927static int init_nic(struct s2io_nic *nic)
928{
929 XENA_dev_config_t __iomem *bar0 = nic->bar0;
930 struct net_device *dev = nic->dev;
931 register u64 val64 = 0;
932 void __iomem *add;
933 u32 time;
934 int i, j;
935 mac_info_t *mac_control;
936 struct config_param *config;
c92ca04b 937 int dtx_cnt = 0;
1da177e4 938 unsigned long long mem_share;
20346722 939 int mem_size;
1da177e4
LT
940
941 mac_control = &nic->mac_control;
942 config = &nic->config;
943
5e25b9dd 944 /* to set the swapper controle on the card */
20346722 945 if(s2io_set_swapper(nic)) {
1da177e4
LT
946 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
947 return -1;
948 }
949
541ae68f
K
950 /*
951 * Herc requires EOI to be removed from reset before XGXS, so..
952 */
953 if (nic->device_type & XFRAME_II_DEVICE) {
954 val64 = 0xA500000000ULL;
955 writeq(val64, &bar0->sw_reset);
956 msleep(500);
957 val64 = readq(&bar0->sw_reset);
958 }
959
1da177e4
LT
960 /* Remove XGXS from reset state */
961 val64 = 0;
962 writeq(val64, &bar0->sw_reset);
1da177e4 963 msleep(500);
20346722 964 val64 = readq(&bar0->sw_reset);
1da177e4
LT
965
966 /* Enable Receiving broadcasts */
967 add = &bar0->mac_cfg;
968 val64 = readq(&bar0->mac_cfg);
969 val64 |= MAC_RMAC_BCAST_ENABLE;
970 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
971 writel((u32) val64, add);
972 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
973 writel((u32) (val64 >> 32), (add + 4));
974
975 /* Read registers in all blocks */
976 val64 = readq(&bar0->mac_int_mask);
977 val64 = readq(&bar0->mc_int_mask);
978 val64 = readq(&bar0->xgxs_int_mask);
979
980 /* Set MTU */
981 val64 = dev->mtu;
982 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
983
541ae68f
K
984 if (nic->device_type & XFRAME_II_DEVICE) {
985 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 986 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 987 &bar0->dtx_control, UF);
541ae68f
K
988 if (dtx_cnt & 0x1)
989 msleep(1); /* Necessary!! */
1da177e4
LT
990 dtx_cnt++;
991 }
541ae68f 992 } else {
c92ca04b
AR
993 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
994 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
995 &bar0->dtx_control, UF);
996 val64 = readq(&bar0->dtx_control);
997 dtx_cnt++;
1da177e4
LT
998 }
999 }
1000
1001 /* Tx DMA Initialization */
1002 val64 = 0;
1003 writeq(val64, &bar0->tx_fifo_partition_0);
1004 writeq(val64, &bar0->tx_fifo_partition_1);
1005 writeq(val64, &bar0->tx_fifo_partition_2);
1006 writeq(val64, &bar0->tx_fifo_partition_3);
1007
1008
1009 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1010 val64 |=
1011 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1012 13) | vBIT(config->tx_cfg[i].fifo_priority,
1013 ((i * 32) + 5), 3);
1014
1015 if (i == (config->tx_fifo_num - 1)) {
1016 if (i % 2 == 0)
1017 i++;
1018 }
1019
1020 switch (i) {
1021 case 1:
1022 writeq(val64, &bar0->tx_fifo_partition_0);
1023 val64 = 0;
1024 break;
1025 case 3:
1026 writeq(val64, &bar0->tx_fifo_partition_1);
1027 val64 = 0;
1028 break;
1029 case 5:
1030 writeq(val64, &bar0->tx_fifo_partition_2);
1031 val64 = 0;
1032 break;
1033 case 7:
1034 writeq(val64, &bar0->tx_fifo_partition_3);
1035 break;
1036 }
1037 }
1038
1039 /* Enable Tx FIFO partition 0. */
1040 val64 = readq(&bar0->tx_fifo_partition_0);
1041 val64 |= BIT(0); /* To enable the FIFO partition. */
1042 writeq(val64, &bar0->tx_fifo_partition_0);
1043
5e25b9dd
K
1044 /*
1045 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1046 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1047 */
541ae68f
K
1048 if ((nic->device_type == XFRAME_I_DEVICE) &&
1049 (get_xena_rev_id(nic->pdev) < 4))
5e25b9dd
K
1050 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1051
1da177e4
LT
1052 val64 = readq(&bar0->tx_fifo_partition_0);
1053 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1054 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1055
20346722
K
1056 /*
1057 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1058 * integrity checking.
1059 */
1060 val64 = readq(&bar0->tx_pa_cfg);
1061 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1062 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1063 writeq(val64, &bar0->tx_pa_cfg);
1064
1065 /* Rx DMA intialization. */
1066 val64 = 0;
1067 for (i = 0; i < config->rx_ring_num; i++) {
1068 val64 |=
1069 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1070 3);
1071 }
1072 writeq(val64, &bar0->rx_queue_priority);
1073
20346722
K
1074 /*
1075 * Allocating equal share of memory to all the
1da177e4
LT
1076 * configured Rings.
1077 */
1078 val64 = 0;
541ae68f
K
1079 if (nic->device_type & XFRAME_II_DEVICE)
1080 mem_size = 32;
1081 else
1082 mem_size = 64;
1083
1da177e4
LT
1084 for (i = 0; i < config->rx_ring_num; i++) {
1085 switch (i) {
1086 case 0:
20346722
K
1087 mem_share = (mem_size / config->rx_ring_num +
1088 mem_size % config->rx_ring_num);
1da177e4
LT
1089 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1090 continue;
1091 case 1:
20346722 1092 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1093 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1094 continue;
1095 case 2:
20346722 1096 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1097 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1098 continue;
1099 case 3:
20346722 1100 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1101 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1102 continue;
1103 case 4:
20346722 1104 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1105 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1106 continue;
1107 case 5:
20346722 1108 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1109 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1110 continue;
1111 case 6:
20346722 1112 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1113 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1114 continue;
1115 case 7:
20346722 1116 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1117 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1118 continue;
1119 }
1120 }
1121 writeq(val64, &bar0->rx_queue_cfg);
1122
20346722 1123 /*
5e25b9dd
K
1124 * Filling Tx round robin registers
1125 * as per the number of FIFOs
1da177e4 1126 */
5e25b9dd
K
1127 switch (config->tx_fifo_num) {
1128 case 1:
1129 val64 = 0x0000000000000000ULL;
1130 writeq(val64, &bar0->tx_w_round_robin_0);
1131 writeq(val64, &bar0->tx_w_round_robin_1);
1132 writeq(val64, &bar0->tx_w_round_robin_2);
1133 writeq(val64, &bar0->tx_w_round_robin_3);
1134 writeq(val64, &bar0->tx_w_round_robin_4);
1135 break;
1136 case 2:
1137 val64 = 0x0000010000010000ULL;
1138 writeq(val64, &bar0->tx_w_round_robin_0);
1139 val64 = 0x0100000100000100ULL;
1140 writeq(val64, &bar0->tx_w_round_robin_1);
1141 val64 = 0x0001000001000001ULL;
1142 writeq(val64, &bar0->tx_w_round_robin_2);
1143 val64 = 0x0000010000010000ULL;
1144 writeq(val64, &bar0->tx_w_round_robin_3);
1145 val64 = 0x0100000000000000ULL;
1146 writeq(val64, &bar0->tx_w_round_robin_4);
1147 break;
1148 case 3:
1149 val64 = 0x0001000102000001ULL;
1150 writeq(val64, &bar0->tx_w_round_robin_0);
1151 val64 = 0x0001020000010001ULL;
1152 writeq(val64, &bar0->tx_w_round_robin_1);
1153 val64 = 0x0200000100010200ULL;
1154 writeq(val64, &bar0->tx_w_round_robin_2);
1155 val64 = 0x0001000102000001ULL;
1156 writeq(val64, &bar0->tx_w_round_robin_3);
1157 val64 = 0x0001020000000000ULL;
1158 writeq(val64, &bar0->tx_w_round_robin_4);
1159 break;
1160 case 4:
1161 val64 = 0x0001020300010200ULL;
1162 writeq(val64, &bar0->tx_w_round_robin_0);
1163 val64 = 0x0100000102030001ULL;
1164 writeq(val64, &bar0->tx_w_round_robin_1);
1165 val64 = 0x0200010000010203ULL;
1166 writeq(val64, &bar0->tx_w_round_robin_2);
1167 val64 = 0x0001020001000001ULL;
1168 writeq(val64, &bar0->tx_w_round_robin_3);
1169 val64 = 0x0203000100000000ULL;
1170 writeq(val64, &bar0->tx_w_round_robin_4);
1171 break;
1172 case 5:
1173 val64 = 0x0001000203000102ULL;
1174 writeq(val64, &bar0->tx_w_round_robin_0);
1175 val64 = 0x0001020001030004ULL;
1176 writeq(val64, &bar0->tx_w_round_robin_1);
1177 val64 = 0x0001000203000102ULL;
1178 writeq(val64, &bar0->tx_w_round_robin_2);
1179 val64 = 0x0001020001030004ULL;
1180 writeq(val64, &bar0->tx_w_round_robin_3);
1181 val64 = 0x0001000000000000ULL;
1182 writeq(val64, &bar0->tx_w_round_robin_4);
1183 break;
1184 case 6:
1185 val64 = 0x0001020304000102ULL;
1186 writeq(val64, &bar0->tx_w_round_robin_0);
1187 val64 = 0x0304050001020001ULL;
1188 writeq(val64, &bar0->tx_w_round_robin_1);
1189 val64 = 0x0203000100000102ULL;
1190 writeq(val64, &bar0->tx_w_round_robin_2);
1191 val64 = 0x0304000102030405ULL;
1192 writeq(val64, &bar0->tx_w_round_robin_3);
1193 val64 = 0x0001000200000000ULL;
1194 writeq(val64, &bar0->tx_w_round_robin_4);
1195 break;
1196 case 7:
1197 val64 = 0x0001020001020300ULL;
1198 writeq(val64, &bar0->tx_w_round_robin_0);
1199 val64 = 0x0102030400010203ULL;
1200 writeq(val64, &bar0->tx_w_round_robin_1);
1201 val64 = 0x0405060001020001ULL;
1202 writeq(val64, &bar0->tx_w_round_robin_2);
1203 val64 = 0x0304050000010200ULL;
1204 writeq(val64, &bar0->tx_w_round_robin_3);
1205 val64 = 0x0102030000000000ULL;
1206 writeq(val64, &bar0->tx_w_round_robin_4);
1207 break;
1208 case 8:
1209 val64 = 0x0001020300040105ULL;
1210 writeq(val64, &bar0->tx_w_round_robin_0);
1211 val64 = 0x0200030106000204ULL;
1212 writeq(val64, &bar0->tx_w_round_robin_1);
1213 val64 = 0x0103000502010007ULL;
1214 writeq(val64, &bar0->tx_w_round_robin_2);
1215 val64 = 0x0304010002060500ULL;
1216 writeq(val64, &bar0->tx_w_round_robin_3);
1217 val64 = 0x0103020400000000ULL;
1218 writeq(val64, &bar0->tx_w_round_robin_4);
1219 break;
1220 }
1221
1222 /* Filling the Rx round robin registers as per the
1223 * number of Rings and steering based on QoS.
1224 */
1225 switch (config->rx_ring_num) {
1226 case 1:
1227 val64 = 0x8080808080808080ULL;
1228 writeq(val64, &bar0->rts_qos_steering);
1229 break;
1230 case 2:
1231 val64 = 0x0000010000010000ULL;
1232 writeq(val64, &bar0->rx_w_round_robin_0);
1233 val64 = 0x0100000100000100ULL;
1234 writeq(val64, &bar0->rx_w_round_robin_1);
1235 val64 = 0x0001000001000001ULL;
1236 writeq(val64, &bar0->rx_w_round_robin_2);
1237 val64 = 0x0000010000010000ULL;
1238 writeq(val64, &bar0->rx_w_round_robin_3);
1239 val64 = 0x0100000000000000ULL;
1240 writeq(val64, &bar0->rx_w_round_robin_4);
1241
1242 val64 = 0x8080808040404040ULL;
1243 writeq(val64, &bar0->rts_qos_steering);
1244 break;
1245 case 3:
1246 val64 = 0x0001000102000001ULL;
1247 writeq(val64, &bar0->rx_w_round_robin_0);
1248 val64 = 0x0001020000010001ULL;
1249 writeq(val64, &bar0->rx_w_round_robin_1);
1250 val64 = 0x0200000100010200ULL;
1251 writeq(val64, &bar0->rx_w_round_robin_2);
1252 val64 = 0x0001000102000001ULL;
1253 writeq(val64, &bar0->rx_w_round_robin_3);
1254 val64 = 0x0001020000000000ULL;
1255 writeq(val64, &bar0->rx_w_round_robin_4);
1256
1257 val64 = 0x8080804040402020ULL;
1258 writeq(val64, &bar0->rts_qos_steering);
1259 break;
1260 case 4:
1261 val64 = 0x0001020300010200ULL;
1262 writeq(val64, &bar0->rx_w_round_robin_0);
1263 val64 = 0x0100000102030001ULL;
1264 writeq(val64, &bar0->rx_w_round_robin_1);
1265 val64 = 0x0200010000010203ULL;
1266 writeq(val64, &bar0->rx_w_round_robin_2);
1267 val64 = 0x0001020001000001ULL;
1268 writeq(val64, &bar0->rx_w_round_robin_3);
1269 val64 = 0x0203000100000000ULL;
1270 writeq(val64, &bar0->rx_w_round_robin_4);
1271
1272 val64 = 0x8080404020201010ULL;
1273 writeq(val64, &bar0->rts_qos_steering);
1274 break;
1275 case 5:
1276 val64 = 0x0001000203000102ULL;
1277 writeq(val64, &bar0->rx_w_round_robin_0);
1278 val64 = 0x0001020001030004ULL;
1279 writeq(val64, &bar0->rx_w_round_robin_1);
1280 val64 = 0x0001000203000102ULL;
1281 writeq(val64, &bar0->rx_w_round_robin_2);
1282 val64 = 0x0001020001030004ULL;
1283 writeq(val64, &bar0->rx_w_round_robin_3);
1284 val64 = 0x0001000000000000ULL;
1285 writeq(val64, &bar0->rx_w_round_robin_4);
1286
1287 val64 = 0x8080404020201008ULL;
1288 writeq(val64, &bar0->rts_qos_steering);
1289 break;
1290 case 6:
1291 val64 = 0x0001020304000102ULL;
1292 writeq(val64, &bar0->rx_w_round_robin_0);
1293 val64 = 0x0304050001020001ULL;
1294 writeq(val64, &bar0->rx_w_round_robin_1);
1295 val64 = 0x0203000100000102ULL;
1296 writeq(val64, &bar0->rx_w_round_robin_2);
1297 val64 = 0x0304000102030405ULL;
1298 writeq(val64, &bar0->rx_w_round_robin_3);
1299 val64 = 0x0001000200000000ULL;
1300 writeq(val64, &bar0->rx_w_round_robin_4);
1301
1302 val64 = 0x8080404020100804ULL;
1303 writeq(val64, &bar0->rts_qos_steering);
1304 break;
1305 case 7:
1306 val64 = 0x0001020001020300ULL;
1307 writeq(val64, &bar0->rx_w_round_robin_0);
1308 val64 = 0x0102030400010203ULL;
1309 writeq(val64, &bar0->rx_w_round_robin_1);
1310 val64 = 0x0405060001020001ULL;
1311 writeq(val64, &bar0->rx_w_round_robin_2);
1312 val64 = 0x0304050000010200ULL;
1313 writeq(val64, &bar0->rx_w_round_robin_3);
1314 val64 = 0x0102030000000000ULL;
1315 writeq(val64, &bar0->rx_w_round_robin_4);
1316
1317 val64 = 0x8080402010080402ULL;
1318 writeq(val64, &bar0->rts_qos_steering);
1319 break;
1320 case 8:
1321 val64 = 0x0001020300040105ULL;
1322 writeq(val64, &bar0->rx_w_round_robin_0);
1323 val64 = 0x0200030106000204ULL;
1324 writeq(val64, &bar0->rx_w_round_robin_1);
1325 val64 = 0x0103000502010007ULL;
1326 writeq(val64, &bar0->rx_w_round_robin_2);
1327 val64 = 0x0304010002060500ULL;
1328 writeq(val64, &bar0->rx_w_round_robin_3);
1329 val64 = 0x0103020400000000ULL;
1330 writeq(val64, &bar0->rx_w_round_robin_4);
1331
1332 val64 = 0x8040201008040201ULL;
1333 writeq(val64, &bar0->rts_qos_steering);
1334 break;
1335 }
1da177e4
LT
1336
1337 /* UDP Fix */
1338 val64 = 0;
20346722 1339 for (i = 0; i < 8; i++)
1da177e4
LT
1340 writeq(val64, &bar0->rts_frm_len_n[i]);
1341
5e25b9dd
K
1342 /* Set the default rts frame length for the rings configured */
1343 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1344 for (i = 0 ; i < config->rx_ring_num ; i++)
1345 writeq(val64, &bar0->rts_frm_len_n[i]);
1346
1347 /* Set the frame length for the configured rings
1348 * desired by the user
1349 */
1350 for (i = 0; i < config->rx_ring_num; i++) {
1351 /* If rts_frm_len[i] == 0 then it is assumed that user not
1352 * specified frame length steering.
1353 * If the user provides the frame length then program
1354 * the rts_frm_len register for those values or else
1355 * leave it as it is.
1356 */
1357 if (rts_frm_len[i] != 0) {
1358 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1359 &bar0->rts_frm_len_n[i]);
1360 }
1361 }
1da177e4 1362
20346722 1363 /* Program statistics memory */
1da177e4 1364 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1365
541ae68f
K
1366 if (nic->device_type == XFRAME_II_DEVICE) {
1367 val64 = STAT_BC(0x320);
1368 writeq(val64, &bar0->stat_byte_cnt);
1369 }
1370
20346722 1371 /*
1da177e4
LT
1372 * Initializing the sampling rate for the device to calculate the
1373 * bandwidth utilization.
1374 */
1375 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1376 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1377 writeq(val64, &bar0->mac_link_util);
1378
1379
20346722
K
1380 /*
1381 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1382 * Scheme.
1383 */
20346722
K
1384 /*
1385 * TTI Initialization. Default Tx timer gets us about
1da177e4
LT
1386 * 250 interrupts per sec. Continuous interrupts are enabled
1387 * by default.
1388 */
541ae68f
K
1389 if (nic->device_type == XFRAME_II_DEVICE) {
1390 int count = (nic->config.bus_speed * 125)/2;
1391 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1392 } else {
1393
1394 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1395 }
1396 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1da177e4 1397 TTI_DATA1_MEM_TX_URNG_B(0x10) |
5e25b9dd 1398 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
541ae68f
K
1399 if (use_continuous_tx_intrs)
1400 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1da177e4
LT
1401 writeq(val64, &bar0->tti_data1_mem);
1402
1403 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1404 TTI_DATA2_MEM_TX_UFC_B(0x20) |
5e25b9dd 1405 TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1da177e4
LT
1406 writeq(val64, &bar0->tti_data2_mem);
1407
1408 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1409 writeq(val64, &bar0->tti_command_mem);
1410
20346722 1411 /*
1da177e4
LT
1412 * Once the operation completes, the Strobe bit of the command
1413 * register will be reset. We poll for this particular condition
1414 * We wait for a maximum of 500ms for the operation to complete,
1415 * if it's not complete by then we return error.
1416 */
1417 time = 0;
1418 while (TRUE) {
1419 val64 = readq(&bar0->tti_command_mem);
1420 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1421 break;
1422 }
1423 if (time > 10) {
1424 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1425 dev->name);
1426 return -1;
1427 }
1428 msleep(50);
1429 time++;
1430 }
1431
b6e3f982
K
1432 if (nic->config.bimodal) {
1433 int k = 0;
1434 for (k = 0; k < config->rx_ring_num; k++) {
1435 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1436 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1437 writeq(val64, &bar0->tti_command_mem);
541ae68f 1438
541ae68f 1439 /*
b6e3f982
K
1440 * Once the operation completes, the Strobe bit of the command
1441 * register will be reset. We poll for this particular condition
1442 * We wait for a maximum of 500ms for the operation to complete,
1443 * if it's not complete by then we return error.
1444 */
1445 time = 0;
1446 while (TRUE) {
1447 val64 = readq(&bar0->tti_command_mem);
1448 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1449 break;
1450 }
1451 if (time > 10) {
1452 DBG_PRINT(ERR_DBG,
1453 "%s: TTI init Failed\n",
1454 dev->name);
1455 return -1;
1456 }
1457 time++;
1458 msleep(50);
1459 }
1460 }
541ae68f 1461 } else {
1da177e4 1462
b6e3f982
K
1463 /* RTI Initialization */
1464 if (nic->device_type == XFRAME_II_DEVICE) {
1465 /*
1466 * Programmed to generate Apprx 500 Intrs per
1467 * second
1468 */
1469 int count = (nic->config.bus_speed * 125)/4;
1470 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1471 } else {
1472 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1473 }
1474 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1475 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1476 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1da177e4 1477
b6e3f982 1478 writeq(val64, &bar0->rti_data1_mem);
1da177e4 1479
b6e3f982 1480 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
cc6e7c44
RA
1481 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1482 if (nic->intr_type == MSI_X)
1483 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1484 RTI_DATA2_MEM_RX_UFC_D(0x40));
1485 else
1486 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1487 RTI_DATA2_MEM_RX_UFC_D(0x80));
b6e3f982 1488 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1489
b6e3f982
K
1490 for (i = 0; i < config->rx_ring_num; i++) {
1491 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1492 | RTI_CMD_MEM_OFFSET(i);
1493 writeq(val64, &bar0->rti_command_mem);
1494
1495 /*
1496 * Once the operation completes, the Strobe bit of the
1497 * command register will be reset. We poll for this
1498 * particular condition. We wait for a maximum of 500ms
1499 * for the operation to complete, if it's not complete
1500 * by then we return error.
1501 */
1502 time = 0;
1503 while (TRUE) {
1504 val64 = readq(&bar0->rti_command_mem);
1505 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1506 break;
1507 }
1508 if (time > 10) {
1509 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1510 dev->name);
1511 return -1;
1512 }
1513 time++;
1514 msleep(50);
1515 }
1da177e4 1516 }
1da177e4
LT
1517 }
1518
20346722
K
1519 /*
1520 * Initializing proper values as Pause threshold into all
1da177e4
LT
1521 * the 8 Queues on Rx side.
1522 */
1523 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1524 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1525
1526 /* Disable RMAC PAD STRIPPING */
509a2671 1527 add = &bar0->mac_cfg;
1da177e4
LT
1528 val64 = readq(&bar0->mac_cfg);
1529 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1530 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1531 writel((u32) (val64), add);
1532 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1533 writel((u32) (val64 >> 32), (add + 4));
1534 val64 = readq(&bar0->mac_cfg);
1535
7d3d0439
RA
1536 /* Enable FCS stripping by adapter */
1537 add = &bar0->mac_cfg;
1538 val64 = readq(&bar0->mac_cfg);
1539 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1540 if (nic->device_type == XFRAME_II_DEVICE)
1541 writeq(val64, &bar0->mac_cfg);
1542 else {
1543 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1544 writel((u32) (val64), add);
1545 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1546 writel((u32) (val64 >> 32), (add + 4));
1547 }
1548
20346722
K
1549 /*
1550 * Set the time value to be inserted in the pause frame
1da177e4
LT
1551 * generated by xena.
1552 */
1553 val64 = readq(&bar0->rmac_pause_cfg);
1554 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1555 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1556 writeq(val64, &bar0->rmac_pause_cfg);
1557
20346722 1558 /*
1da177e4
LT
1559 * Set the Threshold Limit for Generating the pause frame
1560 * If the amount of data in any Queue exceeds ratio of
1561 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1562 * pause frame is generated
1563 */
1564 val64 = 0;
1565 for (i = 0; i < 4; i++) {
1566 val64 |=
1567 (((u64) 0xFF00 | nic->mac_control.
1568 mc_pause_threshold_q0q3)
1569 << (i * 2 * 8));
1570 }
1571 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1572
1573 val64 = 0;
1574 for (i = 0; i < 4; i++) {
1575 val64 |=
1576 (((u64) 0xFF00 | nic->mac_control.
1577 mc_pause_threshold_q4q7)
1578 << (i * 2 * 8));
1579 }
1580 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1581
20346722
K
1582 /*
1583 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1584 * exceeded the limit pointed by shared_splits
1585 */
1586 val64 = readq(&bar0->pic_control);
1587 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1588 writeq(val64, &bar0->pic_control);
1589
863c11a9
AR
1590 if (nic->config.bus_speed == 266) {
1591 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1592 writeq(0x0, &bar0->read_retry_delay);
1593 writeq(0x0, &bar0->write_retry_delay);
1594 }
1595
541ae68f
K
1596 /*
1597 * Programming the Herc to split every write transaction
1598 * that does not start on an ADB to reduce disconnects.
1599 */
1600 if (nic->device_type == XFRAME_II_DEVICE) {
863c11a9
AR
1601 val64 = EXT_REQ_EN | MISC_LINK_STABILITY_PRD(3);
1602 writeq(val64, &bar0->misc_control);
1603 val64 = readq(&bar0->pic_control2);
1604 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1605 writeq(val64, &bar0->pic_control2);
541ae68f 1606 }
c92ca04b
AR
1607 if (strstr(nic->product_name, "CX4")) {
1608 val64 = TMAC_AVG_IPG(0x17);
1609 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1610 }
1611
1da177e4
LT
1612 return SUCCESS;
1613}
a371a07d
K
1614#define LINK_UP_DOWN_INTERRUPT 1
1615#define MAC_RMAC_ERR_TIMER 2
1616
ac1f60db 1617static int s2io_link_fault_indication(nic_t *nic)
a371a07d 1618{
cc6e7c44
RA
1619 if (nic->intr_type != INTA)
1620 return MAC_RMAC_ERR_TIMER;
a371a07d
K
1621 if (nic->device_type == XFRAME_II_DEVICE)
1622 return LINK_UP_DOWN_INTERRUPT;
1623 else
1624 return MAC_RMAC_ERR_TIMER;
1625}
1da177e4 1626
20346722
K
1627/**
1628 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1629 * @nic: device private variable,
1630 * @mask: A mask indicating which Intr block must be modified and,
1631 * @flag: A flag indicating whether to enable or disable the Intrs.
1632 * Description: This function will either disable or enable the interrupts
20346722
K
1633 * depending on the flag argument. The mask argument can be used to
1634 * enable/disable any Intr block.
1da177e4
LT
1635 * Return Value: NONE.
1636 */
1637
1638static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1639{
1640 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1641 register u64 val64 = 0, temp64 = 0;
1642
1643 /* Top level interrupt classification */
1644 /* PIC Interrupts */
1645 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1646 /* Enable PIC Intrs in the general intr mask register */
1647 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1648 if (flag == ENABLE_INTRS) {
1649 temp64 = readq(&bar0->general_int_mask);
1650 temp64 &= ~((u64) val64);
1651 writeq(temp64, &bar0->general_int_mask);
20346722 1652 /*
a371a07d
K
1653 * If Hercules adapter enable GPIO otherwise
1654 * disabled all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
1655 * interrupts for now.
1656 * TODO
1da177e4 1657 */
a371a07d
K
1658 if (s2io_link_fault_indication(nic) ==
1659 LINK_UP_DOWN_INTERRUPT ) {
1660 temp64 = readq(&bar0->pic_int_mask);
1661 temp64 &= ~((u64) PIC_INT_GPIO);
1662 writeq(temp64, &bar0->pic_int_mask);
1663 temp64 = readq(&bar0->gpio_int_mask);
1664 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1665 writeq(temp64, &bar0->gpio_int_mask);
1666 } else {
1667 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1668 }
20346722 1669 /*
1da177e4
LT
1670 * No MSI Support is available presently, so TTI and
1671 * RTI interrupts are also disabled.
1672 */
1673 } else if (flag == DISABLE_INTRS) {
20346722
K
1674 /*
1675 * Disable PIC Intrs in the general
1676 * intr mask register
1da177e4
LT
1677 */
1678 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1679 temp64 = readq(&bar0->general_int_mask);
1680 val64 |= temp64;
1681 writeq(val64, &bar0->general_int_mask);
1682 }
1683 }
1684
1685 /* DMA Interrupts */
1686 /* Enabling/Disabling Tx DMA interrupts */
1687 if (mask & TX_DMA_INTR) {
1688 /* Enable TxDMA Intrs in the general intr mask register */
1689 val64 = TXDMA_INT_M;
1690 if (flag == ENABLE_INTRS) {
1691 temp64 = readq(&bar0->general_int_mask);
1692 temp64 &= ~((u64) val64);
1693 writeq(temp64, &bar0->general_int_mask);
20346722
K
1694 /*
1695 * Keep all interrupts other than PFC interrupt
1da177e4
LT
1696 * and PCC interrupt disabled in DMA level.
1697 */
1698 val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1699 TXDMA_PCC_INT_M);
1700 writeq(val64, &bar0->txdma_int_mask);
20346722
K
1701 /*
1702 * Enable only the MISC error 1 interrupt in PFC block
1da177e4
LT
1703 */
1704 val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1705 writeq(val64, &bar0->pfc_err_mask);
20346722
K
1706 /*
1707 * Enable only the FB_ECC error interrupt in PCC block
1da177e4
LT
1708 */
1709 val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1710 writeq(val64, &bar0->pcc_err_mask);
1711 } else if (flag == DISABLE_INTRS) {
20346722
K
1712 /*
1713 * Disable TxDMA Intrs in the general intr mask
1714 * register
1da177e4
LT
1715 */
1716 writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1717 writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1718 temp64 = readq(&bar0->general_int_mask);
1719 val64 |= temp64;
1720 writeq(val64, &bar0->general_int_mask);
1721 }
1722 }
1723
1724 /* Enabling/Disabling Rx DMA interrupts */
1725 if (mask & RX_DMA_INTR) {
1726 /* Enable RxDMA Intrs in the general intr mask register */
1727 val64 = RXDMA_INT_M;
1728 if (flag == ENABLE_INTRS) {
1729 temp64 = readq(&bar0->general_int_mask);
1730 temp64 &= ~((u64) val64);
1731 writeq(temp64, &bar0->general_int_mask);
20346722
K
1732 /*
1733 * All RxDMA block interrupts are disabled for now
1734 * TODO
1da177e4
LT
1735 */
1736 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1737 } else if (flag == DISABLE_INTRS) {
20346722
K
1738 /*
1739 * Disable RxDMA Intrs in the general intr mask
1740 * register
1da177e4
LT
1741 */
1742 writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1743 temp64 = readq(&bar0->general_int_mask);
1744 val64 |= temp64;
1745 writeq(val64, &bar0->general_int_mask);
1746 }
1747 }
1748
1749 /* MAC Interrupts */
1750 /* Enabling/Disabling MAC interrupts */
1751 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1752 val64 = TXMAC_INT_M | RXMAC_INT_M;
1753 if (flag == ENABLE_INTRS) {
1754 temp64 = readq(&bar0->general_int_mask);
1755 temp64 &= ~((u64) val64);
1756 writeq(temp64, &bar0->general_int_mask);
20346722
K
1757 /*
1758 * All MAC block error interrupts are disabled for now
1da177e4
LT
1759 * TODO
1760 */
1da177e4 1761 } else if (flag == DISABLE_INTRS) {
20346722
K
1762 /*
1763 * Disable MAC Intrs in the general intr mask register
1da177e4
LT
1764 */
1765 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1766 writeq(DISABLE_ALL_INTRS,
1767 &bar0->mac_rmac_err_mask);
1768
1769 temp64 = readq(&bar0->general_int_mask);
1770 val64 |= temp64;
1771 writeq(val64, &bar0->general_int_mask);
1772 }
1773 }
1774
1775 /* XGXS Interrupts */
1776 if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1777 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1778 if (flag == ENABLE_INTRS) {
1779 temp64 = readq(&bar0->general_int_mask);
1780 temp64 &= ~((u64) val64);
1781 writeq(temp64, &bar0->general_int_mask);
20346722 1782 /*
1da177e4 1783 * All XGXS block error interrupts are disabled for now
20346722 1784 * TODO
1da177e4
LT
1785 */
1786 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1787 } else if (flag == DISABLE_INTRS) {
20346722
K
1788 /*
1789 * Disable MC Intrs in the general intr mask register
1da177e4
LT
1790 */
1791 writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1792 temp64 = readq(&bar0->general_int_mask);
1793 val64 |= temp64;
1794 writeq(val64, &bar0->general_int_mask);
1795 }
1796 }
1797
1798 /* Memory Controller(MC) interrupts */
1799 if (mask & MC_INTR) {
1800 val64 = MC_INT_M;
1801 if (flag == ENABLE_INTRS) {
1802 temp64 = readq(&bar0->general_int_mask);
1803 temp64 &= ~((u64) val64);
1804 writeq(temp64, &bar0->general_int_mask);
20346722 1805 /*
5e25b9dd 1806 * Enable all MC Intrs.
1da177e4 1807 */
5e25b9dd
K
1808 writeq(0x0, &bar0->mc_int_mask);
1809 writeq(0x0, &bar0->mc_err_mask);
1da177e4
LT
1810 } else if (flag == DISABLE_INTRS) {
1811 /*
1812 * Disable MC Intrs in the general intr mask register
1813 */
1814 writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1815 temp64 = readq(&bar0->general_int_mask);
1816 val64 |= temp64;
1817 writeq(val64, &bar0->general_int_mask);
1818 }
1819 }
1820
1821
1822 /* Tx traffic interrupts */
1823 if (mask & TX_TRAFFIC_INTR) {
1824 val64 = TXTRAFFIC_INT_M;
1825 if (flag == ENABLE_INTRS) {
1826 temp64 = readq(&bar0->general_int_mask);
1827 temp64 &= ~((u64) val64);
1828 writeq(temp64, &bar0->general_int_mask);
20346722 1829 /*
1da177e4 1830 * Enable all the Tx side interrupts
20346722 1831 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
1832 */
1833 writeq(0x0, &bar0->tx_traffic_mask);
1834 } else if (flag == DISABLE_INTRS) {
20346722
K
1835 /*
1836 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
1837 * register.
1838 */
1839 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1840 temp64 = readq(&bar0->general_int_mask);
1841 val64 |= temp64;
1842 writeq(val64, &bar0->general_int_mask);
1843 }
1844 }
1845
1846 /* Rx traffic interrupts */
1847 if (mask & RX_TRAFFIC_INTR) {
1848 val64 = RXTRAFFIC_INT_M;
1849 if (flag == ENABLE_INTRS) {
1850 temp64 = readq(&bar0->general_int_mask);
1851 temp64 &= ~((u64) val64);
1852 writeq(temp64, &bar0->general_int_mask);
1853 /* writing 0 Enables all 8 RX interrupt levels */
1854 writeq(0x0, &bar0->rx_traffic_mask);
1855 } else if (flag == DISABLE_INTRS) {
20346722
K
1856 /*
1857 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
1858 * register.
1859 */
1860 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1861 temp64 = readq(&bar0->general_int_mask);
1862 val64 |= temp64;
1863 writeq(val64, &bar0->general_int_mask);
1864 }
1865 }
1866}
1867
541ae68f 1868static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
20346722
K
1869{
1870 int ret = 0;
1871
1872 if (flag == FALSE) {
541ae68f 1873 if ((!herc && (rev_id >= 4)) || herc) {
5e25b9dd
K
1874 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1875 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1876 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1877 ret = 1;
1878 }
541ae68f 1879 }else {
5e25b9dd
K
1880 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1881 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1882 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1883 ret = 1;
1884 }
20346722
K
1885 }
1886 } else {
541ae68f 1887 if ((!herc && (rev_id >= 4)) || herc) {
5e25b9dd
K
1888 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1889 ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1890 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1891 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1892 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1893 ret = 1;
1894 }
1895 } else {
1896 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1897 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1898 (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1899 ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1900 ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1901 ret = 1;
1902 }
20346722
K
1903 }
1904 }
1905
1906 return ret;
1907}
1908/**
1909 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4
LT
1910 * @val64 : Value read from adapter status register.
1911 * @flag : indicates if the adapter enable bit was ever written once
1912 * before.
1913 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 1914 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
1915 * differs and the calling function passes the input argument flag to
1916 * indicate this.
20346722 1917 * Return: 1 If xena is quiescence
1da177e4
LT
1918 * 0 If Xena is not quiescence
1919 */
1920
20346722 1921static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1da177e4 1922{
541ae68f 1923 int ret = 0, herc;
1da177e4 1924 u64 tmp64 = ~((u64) val64);
5e25b9dd 1925 int rev_id = get_xena_rev_id(sp->pdev);
1da177e4 1926
541ae68f 1927 herc = (sp->device_type == XFRAME_II_DEVICE);
1da177e4
LT
1928 if (!
1929 (tmp64 &
1930 (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1931 ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1932 ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1933 ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1934 ADAPTER_STATUS_P_PLL_LOCK))) {
541ae68f 1935 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1da177e4
LT
1936 }
1937
1938 return ret;
1939}
1940
1941/**
1942 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1943 * @sp: Pointer to device specifc structure
20346722 1944 * Description :
1da177e4
LT
1945 * New procedure to clear mac address reading problems on Alpha platforms
1946 *
1947 */
1948
ac1f60db 1949static void fix_mac_address(nic_t * sp)
1da177e4
LT
1950{
1951 XENA_dev_config_t __iomem *bar0 = sp->bar0;
1952 u64 val64;
1953 int i = 0;
1954
1955 while (fix_mac[i] != END_SIGN) {
1956 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 1957 udelay(10);
1da177e4
LT
1958 val64 = readq(&bar0->gpio_control);
1959 }
1960}
1961
1962/**
20346722 1963 * start_nic - Turns the device on
1da177e4 1964 * @nic : device private variable.
20346722
K
1965 * Description:
1966 * This function actually turns the device on. Before this function is
1967 * called,all Registers are configured from their reset states
1968 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
1969 * calling this function, the device interrupts are cleared and the NIC is
1970 * literally switched on by writing into the adapter control register.
20346722 1971 * Return Value:
1da177e4
LT
1972 * SUCCESS on success and -1 on failure.
1973 */
1974
1975static int start_nic(struct s2io_nic *nic)
1976{
1977 XENA_dev_config_t __iomem *bar0 = nic->bar0;
1978 struct net_device *dev = nic->dev;
1979 register u64 val64 = 0;
20346722
K
1980 u16 interruptible;
1981 u16 subid, i;
1da177e4
LT
1982 mac_info_t *mac_control;
1983 struct config_param *config;
1984
1985 mac_control = &nic->mac_control;
1986 config = &nic->config;
1987
1988 /* PRC Initialization and configuration */
1989 for (i = 0; i < config->rx_ring_num; i++) {
20346722 1990 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
1991 &bar0->prc_rxd0_n[i]);
1992
1993 val64 = readq(&bar0->prc_ctrl_n[i]);
b6e3f982
K
1994 if (nic->config.bimodal)
1995 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
da6971d8
AR
1996 if (nic->rxd_mode == RXD_MODE_1)
1997 val64 |= PRC_CTRL_RC_ENABLED;
1998 else
1999 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2000 if (nic->device_type == XFRAME_II_DEVICE)
2001 val64 |= PRC_CTRL_GROUP_READS;
2002 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2003 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2004 writeq(val64, &bar0->prc_ctrl_n[i]);
2005 }
2006
da6971d8
AR
2007 if (nic->rxd_mode == RXD_MODE_3B) {
2008 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2009 val64 = readq(&bar0->rx_pa_cfg);
2010 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2011 writeq(val64, &bar0->rx_pa_cfg);
2012 }
1da177e4 2013
20346722 2014 /*
1da177e4
LT
2015 * Enabling MC-RLDRAM. After enabling the device, we timeout
2016 * for around 100ms, which is approximately the time required
2017 * for the device to be ready for operation.
2018 */
2019 val64 = readq(&bar0->mc_rldram_mrs);
2020 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2021 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2022 val64 = readq(&bar0->mc_rldram_mrs);
2023
20346722 2024 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2025
2026 /* Enabling ECC Protection. */
2027 val64 = readq(&bar0->adapter_control);
2028 val64 &= ~ADAPTER_ECC_EN;
2029 writeq(val64, &bar0->adapter_control);
2030
20346722
K
2031 /*
2032 * Clearing any possible Link state change interrupts that
1da177e4
LT
2033 * could have popped up just before Enabling the card.
2034 */
2035 val64 = readq(&bar0->mac_rmac_err_reg);
2036 if (val64)
2037 writeq(val64, &bar0->mac_rmac_err_reg);
2038
20346722
K
2039 /*
2040 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2041 * it.
2042 */
2043 val64 = readq(&bar0->adapter_status);
20346722 2044 if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1da177e4
LT
2045 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2046 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2047 (unsigned long long) val64);
2048 return FAILURE;
2049 }
2050
2051 /* Enable select interrupts */
cc6e7c44
RA
2052 if (nic->intr_type != INTA)
2053 en_dis_able_nic_intrs(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2054 else {
2055 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2056 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2057 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2058 en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
2059 }
1da177e4 2060
20346722 2061 /*
1da177e4 2062 * With some switches, link might be already up at this point.
20346722
K
2063 * Because of this weird behavior, when we enable laser,
2064 * we may not get link. We need to handle this. We cannot
2065 * figure out which switch is misbehaving. So we are forced to
2066 * make a global change.
1da177e4
LT
2067 */
2068
2069 /* Enabling Laser. */
2070 val64 = readq(&bar0->adapter_control);
2071 val64 |= ADAPTER_EOI_TX_ON;
2072 writeq(val64, &bar0->adapter_control);
2073
c92ca04b
AR
2074 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2075 /*
2076 * Dont see link state interrupts initally on some switches,
2077 * so directly scheduling the link state task here.
2078 */
2079 schedule_work(&nic->set_link_task);
2080 }
1da177e4
LT
2081 /* SXE-002: Initialize link and activity LED */
2082 subid = nic->pdev->subsystem_device;
541ae68f
K
2083 if (((subid & 0xFF) >= 0x07) &&
2084 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2085 val64 = readq(&bar0->gpio_control);
2086 val64 |= 0x0000800000000000ULL;
2087 writeq(val64, &bar0->gpio_control);
2088 val64 = 0x0411040400000000ULL;
509a2671 2089 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2090 }
2091
1da177e4
LT
2092 return SUCCESS;
2093}
fed5eccd
AR
2094/**
2095 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2096 */
2097static struct sk_buff *s2io_txdl_getskb(fifo_info_t *fifo_data, TxD_t *txdlp, int get_off)
2098{
2099 nic_t *nic = fifo_data->nic;
2100 struct sk_buff *skb;
2101 TxD_t *txds;
2102 u16 j, frg_cnt;
2103
2104 txds = txdlp;
26b7625c 2105 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
fed5eccd
AR
2106 pci_unmap_single(nic->pdev, (dma_addr_t)
2107 txds->Buffer_Pointer, sizeof(u64),
2108 PCI_DMA_TODEVICE);
2109 txds++;
2110 }
2111
2112 skb = (struct sk_buff *) ((unsigned long)
2113 txds->Host_Control);
2114 if (!skb) {
2115 memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds));
2116 return NULL;
2117 }
2118 pci_unmap_single(nic->pdev, (dma_addr_t)
2119 txds->Buffer_Pointer,
2120 skb->len - skb->data_len,
2121 PCI_DMA_TODEVICE);
2122 frg_cnt = skb_shinfo(skb)->nr_frags;
2123 if (frg_cnt) {
2124 txds++;
2125 for (j = 0; j < frg_cnt; j++, txds++) {
2126 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2127 if (!txds->Buffer_Pointer)
2128 break;
2129 pci_unmap_page(nic->pdev, (dma_addr_t)
2130 txds->Buffer_Pointer,
2131 frag->size, PCI_DMA_TODEVICE);
2132 }
2133 }
2134 txdlp->Host_Control = 0;
2135 return(skb);
2136}
1da177e4 2137
20346722
K
2138/**
2139 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2140 * @nic : device private variable.
20346722 2141 * Description:
1da177e4 2142 * Free all queued Tx buffers.
20346722 2143 * Return Value: void
1da177e4
LT
2144*/
2145
2146static void free_tx_buffers(struct s2io_nic *nic)
2147{
2148 struct net_device *dev = nic->dev;
2149 struct sk_buff *skb;
2150 TxD_t *txdp;
2151 int i, j;
2152 mac_info_t *mac_control;
2153 struct config_param *config;
fed5eccd 2154 int cnt = 0;
1da177e4
LT
2155
2156 mac_control = &nic->mac_control;
2157 config = &nic->config;
2158
2159 for (i = 0; i < config->tx_fifo_num; i++) {
2160 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
20346722 2161 txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
1da177e4 2162 list_virt_addr;
fed5eccd
AR
2163 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2164 if (skb) {
2165 dev_kfree_skb(skb);
2166 cnt++;
1da177e4 2167 }
1da177e4
LT
2168 }
2169 DBG_PRINT(INTR_DBG,
2170 "%s:forcibly freeing %d skbs on FIFO%d\n",
2171 dev->name, cnt, i);
20346722
K
2172 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2173 mac_control->fifos[i].tx_curr_put_info.offset = 0;
1da177e4
LT
2174 }
2175}
2176
20346722
K
2177/**
2178 * stop_nic - To stop the nic
1da177e4 2179 * @nic ; device private variable.
20346722
K
2180 * Description:
2181 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2182 * function does. This function is called to stop the device.
2183 * Return Value:
2184 * void.
2185 */
2186
2187static void stop_nic(struct s2io_nic *nic)
2188{
2189 XENA_dev_config_t __iomem *bar0 = nic->bar0;
2190 register u64 val64 = 0;
2191 u16 interruptible, i;
2192 mac_info_t *mac_control;
2193 struct config_param *config;
2194
2195 mac_control = &nic->mac_control;
2196 config = &nic->config;
2197
2198 /* Disable all interrupts */
e960fc5c 2199 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
a371a07d
K
2200 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2201 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1da177e4
LT
2202 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2203
2204 /* Disable PRCs */
2205 for (i = 0; i < config->rx_ring_num; i++) {
2206 val64 = readq(&bar0->prc_ctrl_n[i]);
2207 val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
2208 writeq(val64, &bar0->prc_ctrl_n[i]);
2209 }
2210}
2211
26df54bf 2212static int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
da6971d8
AR
2213{
2214 struct net_device *dev = nic->dev;
2215 struct sk_buff *frag_list;
50eb8006 2216 void *tmp;
da6971d8
AR
2217
2218 /* Buffer-1 receives L3/L4 headers */
2219 ((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
2220 (nic->pdev, skb->data, l3l4hdr_size + 4,
2221 PCI_DMA_FROMDEVICE);
2222
2223 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2224 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2225 if (skb_shinfo(skb)->frag_list == NULL) {
2226 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2227 return -ENOMEM ;
2228 }
2229 frag_list = skb_shinfo(skb)->frag_list;
2230 frag_list->next = NULL;
50eb8006
JG
2231 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2232 frag_list->data = tmp;
2233 frag_list->tail = tmp;
da6971d8
AR
2234
2235 /* Buffer-2 receives L4 data payload */
2236 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2237 frag_list->data, dev->mtu,
2238 PCI_DMA_FROMDEVICE);
2239 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2240 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2241
2242 return SUCCESS;
2243}
2244
20346722
K
2245/**
2246 * fill_rx_buffers - Allocates the Rx side skbs
1da177e4 2247 * @nic: device private variable
20346722
K
2248 * @ring_no: ring number
2249 * Description:
1da177e4
LT
2250 * The function allocates Rx side skbs and puts the physical
2251 * address of these buffers into the RxD buffer pointers, so that the NIC
2252 * can DMA the received frame into these locations.
2253 * The NIC supports 3 receive modes, viz
2254 * 1. single buffer,
2255 * 2. three buffer and
2256 * 3. Five buffer modes.
20346722
K
2257 * Each mode defines how many fragments the received frame will be split
2258 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2259 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2260 * is split into 3 fragments. As of now only single buffer mode is
2261 * supported.
2262 * Return Value:
2263 * SUCCESS on success or an appropriate -ve value on failure.
2264 */
2265
ac1f60db 2266static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
1da177e4
LT
2267{
2268 struct net_device *dev = nic->dev;
2269 struct sk_buff *skb;
2270 RxD_t *rxdp;
2271 int off, off1, size, block_no, block_no1;
1da177e4 2272 u32 alloc_tab = 0;
20346722 2273 u32 alloc_cnt;
1da177e4
LT
2274 mac_info_t *mac_control;
2275 struct config_param *config;
20346722 2276 u64 tmp;
1da177e4 2277 buffAdd_t *ba;
1da177e4
LT
2278#ifndef CONFIG_S2IO_NAPI
2279 unsigned long flags;
2280#endif
303bcb4b 2281 RxD_t *first_rxdp = NULL;
1da177e4
LT
2282
2283 mac_control = &nic->mac_control;
2284 config = &nic->config;
20346722
K
2285 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2286 atomic_read(&nic->rx_bufs_left[ring_no]);
1da177e4 2287
bd1034f0 2288 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
863c11a9 2289 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
1da177e4 2290 while (alloc_tab < alloc_cnt) {
20346722 2291 block_no = mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2292 block_index;
20346722 2293 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
1da177e4 2294
da6971d8
AR
2295 rxdp = mac_control->rings[ring_no].
2296 rx_blocks[block_no].rxds[off].virt_addr;
2297
2298 if ((block_no == block_no1) && (off == off1) &&
2299 (rxdp->Host_Control)) {
2300 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2301 dev->name);
1da177e4
LT
2302 DBG_PRINT(INTR_DBG, " info equated\n");
2303 goto end;
2304 }
da6971d8 2305 if (off && (off == rxd_count[nic->rxd_mode])) {
20346722 2306 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2307 block_index++;
da6971d8
AR
2308 if (mac_control->rings[ring_no].rx_curr_put_info.
2309 block_index == mac_control->rings[ring_no].
2310 block_count)
2311 mac_control->rings[ring_no].rx_curr_put_info.
2312 block_index = 0;
2313 block_no = mac_control->rings[ring_no].
2314 rx_curr_put_info.block_index;
2315 if (off == rxd_count[nic->rxd_mode])
2316 off = 0;
20346722 2317 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8
AR
2318 offset = off;
2319 rxdp = mac_control->rings[ring_no].
2320 rx_blocks[block_no].block_virt_addr;
1da177e4
LT
2321 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2322 dev->name, rxdp);
2323 }
2324#ifndef CONFIG_S2IO_NAPI
2325 spin_lock_irqsave(&nic->put_lock, flags);
20346722 2326 mac_control->rings[ring_no].put_pos =
da6971d8 2327 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
1da177e4
LT
2328 spin_unlock_irqrestore(&nic->put_lock, flags);
2329#endif
da6971d8
AR
2330 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2331 ((nic->rxd_mode >= RXD_MODE_3A) &&
2332 (rxdp->Control_2 & BIT(0)))) {
20346722 2333 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8 2334 offset = off;
1da177e4
LT
2335 goto end;
2336 }
da6971d8
AR
2337 /* calculate size of skb based on ring mode */
2338 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2339 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2340 if (nic->rxd_mode == RXD_MODE_1)
2341 size += NET_IP_ALIGN;
2342 else if (nic->rxd_mode == RXD_MODE_3B)
2343 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2344 else
2345 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2346
da6971d8
AR
2347 /* allocate skb */
2348 skb = dev_alloc_skb(size);
2349 if(!skb) {
1da177e4
LT
2350 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2351 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
303bcb4b
K
2352 if (first_rxdp) {
2353 wmb();
2354 first_rxdp->Control_1 |= RXD_OWN_XENA;
2355 }
da6971d8
AR
2356 return -ENOMEM ;
2357 }
2358 if (nic->rxd_mode == RXD_MODE_1) {
2359 /* 1 buffer mode - normal operation mode */
2360 memset(rxdp, 0, sizeof(RxD1_t));
2361 skb_reserve(skb, NET_IP_ALIGN);
2362 ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
863c11a9
AR
2363 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2364 PCI_DMA_FROMDEVICE);
2365 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
da6971d8
AR
2366
2367 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2368 /*
2369 * 2 or 3 buffer mode -
2370 * Both 2 buffer mode and 3 buffer mode provides 128
2371 * byte aligned receive buffers.
2372 *
2373 * 3 buffer mode provides header separation where in
2374 * skb->data will have L3/L4 headers where as
2375 * skb_shinfo(skb)->frag_list will have the L4 data
2376 * payload
2377 */
2378
2379 memset(rxdp, 0, sizeof(RxD3_t));
2380 ba = &mac_control->rings[ring_no].ba[block_no][off];
2381 skb_reserve(skb, BUF0_LEN);
2382 tmp = (u64)(unsigned long) skb->data;
2383 tmp += ALIGN_SIZE;
2384 tmp &= ~ALIGN_SIZE;
2385 skb->data = (void *) (unsigned long)tmp;
2386 skb->tail = (void *) (unsigned long)tmp;
2387
2388 ((RxD3_t*)rxdp)->Buffer0_ptr =
2389 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2390 PCI_DMA_FROMDEVICE);
2391 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2392 if (nic->rxd_mode == RXD_MODE_3B) {
2393 /* Two buffer mode */
2394
2395 /*
2396 * Buffer2 will have L3/L4 header plus
2397 * L4 payload
2398 */
2399 ((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
2400 (nic->pdev, skb->data, dev->mtu + 4,
2401 PCI_DMA_FROMDEVICE);
2402
2403 /* Buffer-1 will be dummy buffer not used */
2404 ((RxD3_t*)rxdp)->Buffer1_ptr =
2405 pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2406 PCI_DMA_FROMDEVICE);
2407 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2408 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2409 (dev->mtu + 4);
2410 } else {
2411 /* 3 buffer mode */
2412 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2413 dev_kfree_skb_irq(skb);
2414 if (first_rxdp) {
2415 wmb();
2416 first_rxdp->Control_1 |=
2417 RXD_OWN_XENA;
2418 }
2419 return -ENOMEM ;
2420 }
2421 }
2422 rxdp->Control_2 |= BIT(0);
1da177e4 2423 }
1da177e4 2424 rxdp->Host_Control = (unsigned long) (skb);
303bcb4b
K
2425 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2426 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2427 off++;
da6971d8
AR
2428 if (off == (rxd_count[nic->rxd_mode] + 1))
2429 off = 0;
20346722 2430 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
20346722 2431
da6971d8 2432 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2433 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2434 if (first_rxdp) {
2435 wmb();
2436 first_rxdp->Control_1 |= RXD_OWN_XENA;
2437 }
2438 first_rxdp = rxdp;
2439 }
1da177e4
LT
2440 atomic_inc(&nic->rx_bufs_left[ring_no]);
2441 alloc_tab++;
2442 }
2443
2444 end:
303bcb4b
K
2445 /* Transfer ownership of first descriptor to adapter just before
2446 * exiting. Before that, use memory barrier so that ownership
2447 * and other fields are seen by adapter correctly.
2448 */
2449 if (first_rxdp) {
2450 wmb();
2451 first_rxdp->Control_1 |= RXD_OWN_XENA;
2452 }
2453
1da177e4
LT
2454 return SUCCESS;
2455}
2456
da6971d8
AR
2457static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2458{
2459 struct net_device *dev = sp->dev;
2460 int j;
2461 struct sk_buff *skb;
2462 RxD_t *rxdp;
2463 mac_info_t *mac_control;
2464 buffAdd_t *ba;
2465
2466 mac_control = &sp->mac_control;
2467 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2468 rxdp = mac_control->rings[ring_no].
2469 rx_blocks[blk].rxds[j].virt_addr;
2470 skb = (struct sk_buff *)
2471 ((unsigned long) rxdp->Host_Control);
2472 if (!skb) {
2473 continue;
2474 }
2475 if (sp->rxd_mode == RXD_MODE_1) {
2476 pci_unmap_single(sp->pdev, (dma_addr_t)
2477 ((RxD1_t*)rxdp)->Buffer0_ptr,
2478 dev->mtu +
2479 HEADER_ETHERNET_II_802_3_SIZE
2480 + HEADER_802_2_SIZE +
2481 HEADER_SNAP_SIZE,
2482 PCI_DMA_FROMDEVICE);
2483 memset(rxdp, 0, sizeof(RxD1_t));
2484 } else if(sp->rxd_mode == RXD_MODE_3B) {
2485 ba = &mac_control->rings[ring_no].
2486 ba[blk][j];
2487 pci_unmap_single(sp->pdev, (dma_addr_t)
2488 ((RxD3_t*)rxdp)->Buffer0_ptr,
2489 BUF0_LEN,
2490 PCI_DMA_FROMDEVICE);
2491 pci_unmap_single(sp->pdev, (dma_addr_t)
2492 ((RxD3_t*)rxdp)->Buffer1_ptr,
2493 BUF1_LEN,
2494 PCI_DMA_FROMDEVICE);
2495 pci_unmap_single(sp->pdev, (dma_addr_t)
2496 ((RxD3_t*)rxdp)->Buffer2_ptr,
2497 dev->mtu + 4,
2498 PCI_DMA_FROMDEVICE);
2499 memset(rxdp, 0, sizeof(RxD3_t));
2500 } else {
2501 pci_unmap_single(sp->pdev, (dma_addr_t)
2502 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2503 PCI_DMA_FROMDEVICE);
2504 pci_unmap_single(sp->pdev, (dma_addr_t)
2505 ((RxD3_t*)rxdp)->Buffer1_ptr,
2506 l3l4hdr_size + 4,
2507 PCI_DMA_FROMDEVICE);
2508 pci_unmap_single(sp->pdev, (dma_addr_t)
2509 ((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
2510 PCI_DMA_FROMDEVICE);
2511 memset(rxdp, 0, sizeof(RxD3_t));
2512 }
2513 dev_kfree_skb(skb);
2514 atomic_dec(&sp->rx_bufs_left[ring_no]);
2515 }
2516}
2517
1da177e4 2518/**
20346722 2519 * free_rx_buffers - Frees all Rx buffers
1da177e4 2520 * @sp: device private variable.
20346722 2521 * Description:
1da177e4
LT
2522 * This function will free all Rx buffers allocated by host.
2523 * Return Value:
2524 * NONE.
2525 */
2526
2527static void free_rx_buffers(struct s2io_nic *sp)
2528{
2529 struct net_device *dev = sp->dev;
da6971d8 2530 int i, blk = 0, buf_cnt = 0;
1da177e4
LT
2531 mac_info_t *mac_control;
2532 struct config_param *config;
1da177e4
LT
2533
2534 mac_control = &sp->mac_control;
2535 config = &sp->config;
2536
2537 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2538 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2539 free_rxd_blk(sp,i,blk);
1da177e4 2540
20346722
K
2541 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2542 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2543 mac_control->rings[i].rx_curr_put_info.offset = 0;
2544 mac_control->rings[i].rx_curr_get_info.offset = 0;
1da177e4
LT
2545 atomic_set(&sp->rx_bufs_left[i], 0);
2546 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2547 dev->name, buf_cnt, i);
2548 }
2549}
2550
2551/**
2552 * s2io_poll - Rx interrupt handler for NAPI support
2553 * @dev : pointer to the device structure.
20346722 2554 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2555 * during one pass through the 'Poll" function.
2556 * Description:
2557 * Comes into picture only if NAPI support has been incorporated. It does
2558 * the same thing that rx_intr_handler does, but not in a interrupt context
2559 * also It will process only a given number of packets.
2560 * Return value:
2561 * 0 on success and 1 if there are No Rx packets to be processed.
2562 */
2563
20346722 2564#if defined(CONFIG_S2IO_NAPI)
1da177e4
LT
2565static int s2io_poll(struct net_device *dev, int *budget)
2566{
2567 nic_t *nic = dev->priv;
20346722 2568 int pkt_cnt = 0, org_pkts_to_process;
1da177e4
LT
2569 mac_info_t *mac_control;
2570 struct config_param *config;
509a2671 2571 XENA_dev_config_t __iomem *bar0 = nic->bar0;
863c11a9 2572 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
20346722 2573 int i;
1da177e4 2574
7ba013ac 2575 atomic_inc(&nic->isr_cnt);
1da177e4
LT
2576 mac_control = &nic->mac_control;
2577 config = &nic->config;
2578
20346722
K
2579 nic->pkts_to_process = *budget;
2580 if (nic->pkts_to_process > dev->quota)
2581 nic->pkts_to_process = dev->quota;
2582 org_pkts_to_process = nic->pkts_to_process;
1da177e4 2583
1da177e4 2584 writeq(val64, &bar0->rx_traffic_int);
863c11a9 2585 val64 = readl(&bar0->rx_traffic_int);
1da177e4
LT
2586
2587 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
2588 rx_intr_handler(&mac_control->rings[i]);
2589 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2590 if (!nic->pkts_to_process) {
2591 /* Quota for the current iteration has been met */
2592 goto no_rx;
1da177e4 2593 }
1da177e4
LT
2594 }
2595 if (!pkt_cnt)
2596 pkt_cnt = 1;
2597
2598 dev->quota -= pkt_cnt;
2599 *budget -= pkt_cnt;
2600 netif_rx_complete(dev);
2601
2602 for (i = 0; i < config->rx_ring_num; i++) {
2603 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2604 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2605 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2606 break;
2607 }
2608 }
2609 /* Re enable the Rx interrupts. */
c92ca04b
AR
2610 writeq(0x0, &bar0->rx_traffic_mask);
2611 val64 = readl(&bar0->rx_traffic_mask);
7ba013ac 2612 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2613 return 0;
2614
20346722 2615no_rx:
1da177e4
LT
2616 dev->quota -= pkt_cnt;
2617 *budget -= pkt_cnt;
2618
2619 for (i = 0; i < config->rx_ring_num; i++) {
2620 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2621 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2622 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2623 break;
2624 }
2625 }
7ba013ac 2626 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2627 return 1;
2628}
20346722
K
2629#endif
2630
2631/**
1da177e4
LT
2632 * rx_intr_handler - Rx interrupt handler
2633 * @nic: device private variable.
20346722
K
2634 * Description:
2635 * If the interrupt is because of a received frame or if the
1da177e4 2636 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2637 * called. It picks out the RxD at which place the last Rx processing had
2638 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2639 * the offset.
2640 * Return Value:
2641 * NONE.
2642 */
20346722 2643static void rx_intr_handler(ring_info_t *ring_data)
1da177e4 2644{
20346722 2645 nic_t *nic = ring_data->nic;
1da177e4 2646 struct net_device *dev = (struct net_device *) nic->dev;
da6971d8 2647 int get_block, put_block, put_offset;
1da177e4
LT
2648 rx_curr_get_info_t get_info, put_info;
2649 RxD_t *rxdp;
2650 struct sk_buff *skb;
20346722
K
2651#ifndef CONFIG_S2IO_NAPI
2652 int pkt_cnt = 0;
1da177e4 2653#endif
7d3d0439
RA
2654 int i;
2655
7ba013ac
K
2656 spin_lock(&nic->rx_lock);
2657 if (atomic_read(&nic->card_state) == CARD_DOWN) {
776bd20f 2658 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
7ba013ac
K
2659 __FUNCTION__, dev->name);
2660 spin_unlock(&nic->rx_lock);
776bd20f 2661 return;
7ba013ac
K
2662 }
2663
20346722
K
2664 get_info = ring_data->rx_curr_get_info;
2665 get_block = get_info.block_index;
2666 put_info = ring_data->rx_curr_put_info;
2667 put_block = put_info.block_index;
da6971d8 2668 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
20346722
K
2669#ifndef CONFIG_S2IO_NAPI
2670 spin_lock(&nic->put_lock);
2671 put_offset = ring_data->put_pos;
2672 spin_unlock(&nic->put_lock);
2673#else
da6971d8 2674 put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
20346722
K
2675 put_info.offset;
2676#endif
da6971d8
AR
2677 while (RXD_IS_UP2DT(rxdp)) {
2678 /* If your are next to put index then it's FIFO full condition */
2679 if ((get_block == put_block) &&
2680 (get_info.offset + 1) == put_info.offset) {
2681 DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
2682 break;
2683 }
20346722
K
2684 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2685 if (skb == NULL) {
2686 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2687 dev->name);
2688 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
7ba013ac 2689 spin_unlock(&nic->rx_lock);
20346722 2690 return;
1da177e4 2691 }
da6971d8
AR
2692 if (nic->rxd_mode == RXD_MODE_1) {
2693 pci_unmap_single(nic->pdev, (dma_addr_t)
2694 ((RxD1_t*)rxdp)->Buffer0_ptr,
20346722
K
2695 dev->mtu +
2696 HEADER_ETHERNET_II_802_3_SIZE +
2697 HEADER_802_2_SIZE +
2698 HEADER_SNAP_SIZE,
2699 PCI_DMA_FROMDEVICE);
da6971d8
AR
2700 } else if (nic->rxd_mode == RXD_MODE_3B) {
2701 pci_unmap_single(nic->pdev, (dma_addr_t)
2702 ((RxD3_t*)rxdp)->Buffer0_ptr,
20346722 2703 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8
AR
2704 pci_unmap_single(nic->pdev, (dma_addr_t)
2705 ((RxD3_t*)rxdp)->Buffer1_ptr,
20346722 2706 BUF1_LEN, PCI_DMA_FROMDEVICE);
da6971d8
AR
2707 pci_unmap_single(nic->pdev, (dma_addr_t)
2708 ((RxD3_t*)rxdp)->Buffer2_ptr,
2709 dev->mtu + 4,
20346722 2710 PCI_DMA_FROMDEVICE);
da6971d8
AR
2711 } else {
2712 pci_unmap_single(nic->pdev, (dma_addr_t)
2713 ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
2714 PCI_DMA_FROMDEVICE);
2715 pci_unmap_single(nic->pdev, (dma_addr_t)
2716 ((RxD3_t*)rxdp)->Buffer1_ptr,
2717 l3l4hdr_size + 4,
2718 PCI_DMA_FROMDEVICE);
2719 pci_unmap_single(nic->pdev, (dma_addr_t)
2720 ((RxD3_t*)rxdp)->Buffer2_ptr,
2721 dev->mtu, PCI_DMA_FROMDEVICE);
2722 }
863c11a9 2723 prefetch(skb->data);
20346722
K
2724 rx_osm_handler(ring_data, rxdp);
2725 get_info.offset++;
da6971d8
AR
2726 ring_data->rx_curr_get_info.offset = get_info.offset;
2727 rxdp = ring_data->rx_blocks[get_block].
2728 rxds[get_info.offset].virt_addr;
2729 if (get_info.offset == rxd_count[nic->rxd_mode]) {
20346722 2730 get_info.offset = 0;
da6971d8 2731 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 2732 get_block++;
da6971d8
AR
2733 if (get_block == ring_data->block_count)
2734 get_block = 0;
2735 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
2736 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2737 }
1da177e4 2738
20346722
K
2739#ifdef CONFIG_S2IO_NAPI
2740 nic->pkts_to_process -= 1;
2741 if (!nic->pkts_to_process)
2742 break;
2743#else
2744 pkt_cnt++;
1da177e4
LT
2745 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2746 break;
20346722 2747#endif
1da177e4 2748 }
7d3d0439
RA
2749 if (nic->lro) {
2750 /* Clear all LRO sessions before exiting */
2751 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2752 lro_t *lro = &nic->lro0_n[i];
2753 if (lro->in_use) {
2754 update_L3L4_header(nic, lro);
2755 queue_rx_frame(lro->parent);
2756 clear_lro_session(lro);
2757 }
2758 }
2759 }
2760
7ba013ac 2761 spin_unlock(&nic->rx_lock);
1da177e4 2762}
20346722
K
2763
2764/**
1da177e4
LT
2765 * tx_intr_handler - Transmit interrupt handler
2766 * @nic : device private variable
20346722
K
2767 * Description:
2768 * If an interrupt was raised to indicate DMA complete of the
2769 * Tx packet, this function is called. It identifies the last TxD
2770 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
2771 * DMA'ed into the NICs internal memory.
2772 * Return Value:
2773 * NONE
2774 */
2775
20346722 2776static void tx_intr_handler(fifo_info_t *fifo_data)
1da177e4 2777{
20346722 2778 nic_t *nic = fifo_data->nic;
1da177e4
LT
2779 struct net_device *dev = (struct net_device *) nic->dev;
2780 tx_curr_get_info_t get_info, put_info;
2781 struct sk_buff *skb;
2782 TxD_t *txdlp;
1da177e4 2783
20346722
K
2784 get_info = fifo_data->tx_curr_get_info;
2785 put_info = fifo_data->tx_curr_put_info;
2786 txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2787 list_virt_addr;
2788 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2789 (get_info.offset != put_info.offset) &&
2790 (txdlp->Host_Control)) {
2791 /* Check for TxD errors */
2792 if (txdlp->Control_1 & TXD_T_CODE) {
2793 unsigned long long err;
2794 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
2795 if (err & 0x1) {
2796 nic->mac_control.stats_info->sw_stat.
2797 parity_err_cnt++;
2798 }
776bd20f 2799 if ((err >> 48) == 0xA) {
2800 DBG_PRINT(TX_DBG, "TxD returned due \
cc6e7c44 2801to loss of link\n");
776bd20f 2802 }
2803 else {
2804 DBG_PRINT(ERR_DBG, "***TxD error \
cc6e7c44 2805%llx\n", err);
776bd20f 2806 }
20346722 2807 }
1da177e4 2808
fed5eccd 2809 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722
K
2810 if (skb == NULL) {
2811 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2812 __FUNCTION__);
2813 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2814 return;
2815 }
2816
20346722 2817 /* Updating the statistics block */
20346722
K
2818 nic->stats.tx_bytes += skb->len;
2819 dev_kfree_skb_irq(skb);
2820
2821 get_info.offset++;
863c11a9
AR
2822 if (get_info.offset == get_info.fifo_len + 1)
2823 get_info.offset = 0;
20346722
K
2824 txdlp = (TxD_t *) fifo_data->list_info
2825 [get_info.offset].list_virt_addr;
2826 fifo_data->tx_curr_get_info.offset =
2827 get_info.offset;
1da177e4
LT
2828 }
2829
2830 spin_lock(&nic->tx_lock);
2831 if (netif_queue_stopped(dev))
2832 netif_wake_queue(dev);
2833 spin_unlock(&nic->tx_lock);
2834}
2835
bd1034f0
AR
2836/**
2837 * s2io_mdio_write - Function to write in to MDIO registers
2838 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2839 * @addr : address value
2840 * @value : data value
2841 * @dev : pointer to net_device structure
2842 * Description:
2843 * This function is used to write values to the MDIO registers
2844 * NONE
2845 */
2846static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2847{
2848 u64 val64 = 0x0;
2849 nic_t *sp = dev->priv;
2850 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2851
2852 //address transaction
2853 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2854 | MDIO_MMD_DEV_ADDR(mmd_type)
2855 | MDIO_MMS_PRT_ADDR(0x0);
2856 writeq(val64, &bar0->mdio_control);
2857 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2858 writeq(val64, &bar0->mdio_control);
2859 udelay(100);
2860
2861 //Data transaction
2862 val64 = 0x0;
2863 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2864 | MDIO_MMD_DEV_ADDR(mmd_type)
2865 | MDIO_MMS_PRT_ADDR(0x0)
2866 | MDIO_MDIO_DATA(value)
2867 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2868 writeq(val64, &bar0->mdio_control);
2869 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2870 writeq(val64, &bar0->mdio_control);
2871 udelay(100);
2872
2873 val64 = 0x0;
2874 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2875 | MDIO_MMD_DEV_ADDR(mmd_type)
2876 | MDIO_MMS_PRT_ADDR(0x0)
2877 | MDIO_OP(MDIO_OP_READ_TRANS);
2878 writeq(val64, &bar0->mdio_control);
2879 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2880 writeq(val64, &bar0->mdio_control);
2881 udelay(100);
2882
2883}
2884
2885/**
2886 * s2io_mdio_read - Function to write in to MDIO registers
2887 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2888 * @addr : address value
2889 * @dev : pointer to net_device structure
2890 * Description:
2891 * This function is used to read values to the MDIO registers
2892 * NONE
2893 */
2894static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2895{
2896 u64 val64 = 0x0;
2897 u64 rval64 = 0x0;
2898 nic_t *sp = dev->priv;
2899 XENA_dev_config_t *bar0 = (XENA_dev_config_t *)sp->bar0;
2900
2901 /* address transaction */
2902 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2903 | MDIO_MMD_DEV_ADDR(mmd_type)
2904 | MDIO_MMS_PRT_ADDR(0x0);
2905 writeq(val64, &bar0->mdio_control);
2906 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2907 writeq(val64, &bar0->mdio_control);
2908 udelay(100);
2909
2910 /* Data transaction */
2911 val64 = 0x0;
2912 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2913 | MDIO_MMD_DEV_ADDR(mmd_type)
2914 | MDIO_MMS_PRT_ADDR(0x0)
2915 | MDIO_OP(MDIO_OP_READ_TRANS);
2916 writeq(val64, &bar0->mdio_control);
2917 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2918 writeq(val64, &bar0->mdio_control);
2919 udelay(100);
2920
2921 /* Read the value from regs */
2922 rval64 = readq(&bar0->mdio_control);
2923 rval64 = rval64 & 0xFFFF0000;
2924 rval64 = rval64 >> 16;
2925 return rval64;
2926}
2927/**
2928 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2929 * @counter : couter value to be updated
2930 * @flag : flag to indicate the status
2931 * @type : counter type
2932 * Description:
2933 * This function is to check the status of the xpak counters value
2934 * NONE
2935 */
2936
2937static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2938{
2939 u64 mask = 0x3;
2940 u64 val64;
2941 int i;
2942 for(i = 0; i <index; i++)
2943 mask = mask << 0x2;
2944
2945 if(flag > 0)
2946 {
2947 *counter = *counter + 1;
2948 val64 = *regs_stat & mask;
2949 val64 = val64 >> (index * 0x2);
2950 val64 = val64 + 1;
2951 if(val64 == 3)
2952 {
2953 switch(type)
2954 {
2955 case 1:
2956 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2957 "service. Excessive temperatures may "
2958 "result in premature transceiver "
2959 "failure \n");
2960 break;
2961 case 2:
2962 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2963 "service Excessive bias currents may "
2964 "indicate imminent laser diode "
2965 "failure \n");
2966 break;
2967 case 3:
2968 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2969 "service Excessive laser output "
2970 "power may saturate far-end "
2971 "receiver\n");
2972 break;
2973 default:
2974 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2975 "type \n");
2976 }
2977 val64 = 0x0;
2978 }
2979 val64 = val64 << (index * 0x2);
2980 *regs_stat = (*regs_stat & (~mask)) | (val64);
2981
2982 } else {
2983 *regs_stat = *regs_stat & (~mask);
2984 }
2985}
2986
2987/**
2988 * s2io_updt_xpak_counter - Function to update the xpak counters
2989 * @dev : pointer to net_device struct
2990 * Description:
2991 * This function is to upate the status of the xpak counters value
2992 * NONE
2993 */
2994static void s2io_updt_xpak_counter(struct net_device *dev)
2995{
2996 u16 flag = 0x0;
2997 u16 type = 0x0;
2998 u16 val16 = 0x0;
2999 u64 val64 = 0x0;
3000 u64 addr = 0x0;
3001
3002 nic_t *sp = dev->priv;
3003 StatInfo_t *stat_info = sp->mac_control.stats_info;
3004
3005 /* Check the communication with the MDIO slave */
3006 addr = 0x0000;
3007 val64 = 0x0;
3008 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3009 if((val64 == 0xFFFF) || (val64 == 0x0000))
3010 {
3011 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3012 "Returned %llx\n", (unsigned long long)val64);
3013 return;
3014 }
3015
3016 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3017 if(val64 != 0x2040)
3018 {
3019 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3020 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3021 (unsigned long long)val64);
3022 return;
3023 }
3024
3025 /* Loading the DOM register to MDIO register */
3026 addr = 0xA100;
3027 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3028 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3029
3030 /* Reading the Alarm flags */
3031 addr = 0xA070;
3032 val64 = 0x0;
3033 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3034
3035 flag = CHECKBIT(val64, 0x7);
3036 type = 1;
3037 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3038 &stat_info->xpak_stat.xpak_regs_stat,
3039 0x0, flag, type);
3040
3041 if(CHECKBIT(val64, 0x6))
3042 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3043
3044 flag = CHECKBIT(val64, 0x3);
3045 type = 2;
3046 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3047 &stat_info->xpak_stat.xpak_regs_stat,
3048 0x2, flag, type);
3049
3050 if(CHECKBIT(val64, 0x2))
3051 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3052
3053 flag = CHECKBIT(val64, 0x1);
3054 type = 3;
3055 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3056 &stat_info->xpak_stat.xpak_regs_stat,
3057 0x4, flag, type);
3058
3059 if(CHECKBIT(val64, 0x0))
3060 stat_info->xpak_stat.alarm_laser_output_power_low++;
3061
3062 /* Reading the Warning flags */
3063 addr = 0xA074;
3064 val64 = 0x0;
3065 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3066
3067 if(CHECKBIT(val64, 0x7))
3068 stat_info->xpak_stat.warn_transceiver_temp_high++;
3069
3070 if(CHECKBIT(val64, 0x6))
3071 stat_info->xpak_stat.warn_transceiver_temp_low++;
3072
3073 if(CHECKBIT(val64, 0x3))
3074 stat_info->xpak_stat.warn_laser_bias_current_high++;
3075
3076 if(CHECKBIT(val64, 0x2))
3077 stat_info->xpak_stat.warn_laser_bias_current_low++;
3078
3079 if(CHECKBIT(val64, 0x1))
3080 stat_info->xpak_stat.warn_laser_output_power_high++;
3081
3082 if(CHECKBIT(val64, 0x0))
3083 stat_info->xpak_stat.warn_laser_output_power_low++;
3084}
3085
20346722 3086/**
1da177e4
LT
3087 * alarm_intr_handler - Alarm Interrrupt handler
3088 * @nic: device private variable
20346722 3089 * Description: If the interrupt was neither because of Rx packet or Tx
1da177e4 3090 * complete, this function is called. If the interrupt was to indicate
20346722
K
3091 * a loss of link, the OSM link status handler is invoked for any other
3092 * alarm interrupt the block that raised the interrupt is displayed
1da177e4
LT
3093 * and a H/W reset is issued.
3094 * Return Value:
3095 * NONE
3096*/
3097
3098static void alarm_intr_handler(struct s2io_nic *nic)
3099{
3100 struct net_device *dev = (struct net_device *) nic->dev;
3101 XENA_dev_config_t __iomem *bar0 = nic->bar0;
3102 register u64 val64 = 0, err_reg = 0;
bd1034f0
AR
3103 u64 cnt;
3104 int i;
3105 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3106 /* Handling the XPAK counters update */
3107 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3108 /* waiting for an hour */
3109 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3110 } else {
3111 s2io_updt_xpak_counter(dev);
3112 /* reset the count to zero */
3113 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3114 }
1da177e4
LT
3115
3116 /* Handling link status change error Intr */
a371a07d
K
3117 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3118 err_reg = readq(&bar0->mac_rmac_err_reg);
3119 writeq(err_reg, &bar0->mac_rmac_err_reg);
3120 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3121 schedule_work(&nic->set_link_task);
3122 }
1da177e4
LT
3123 }
3124
5e25b9dd
K
3125 /* Handling Ecc errors */
3126 val64 = readq(&bar0->mc_err_reg);
3127 writeq(val64, &bar0->mc_err_reg);
3128 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3129 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
7ba013ac
K
3130 nic->mac_control.stats_info->sw_stat.
3131 double_ecc_errs++;
776bd20f 3132 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
5e25b9dd 3133 dev->name);
776bd20f 3134 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
e960fc5c 3135 if (nic->device_type != XFRAME_II_DEVICE) {
776bd20f 3136 /* Reset XframeI only if critical error */
3137 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3138 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3139 netif_stop_queue(dev);
3140 schedule_work(&nic->rst_timer_task);
bd1034f0
AR
3141 nic->mac_control.stats_info->sw_stat.
3142 soft_reset_cnt++;
776bd20f 3143 }
e960fc5c 3144 }
5e25b9dd 3145 } else {
7ba013ac
K
3146 nic->mac_control.stats_info->sw_stat.
3147 single_ecc_errs++;
5e25b9dd
K
3148 }
3149 }
3150
1da177e4
LT
3151 /* In case of a serious error, the device will be Reset. */
3152 val64 = readq(&bar0->serr_source);
3153 if (val64 & SERR_SOURCE_ANY) {
bd1034f0 3154 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
1da177e4 3155 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
776bd20f 3156 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3157 (unsigned long long)val64);
1da177e4
LT
3158 netif_stop_queue(dev);
3159 schedule_work(&nic->rst_timer_task);
bd1034f0 3160 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
3161 }
3162
3163 /*
3164 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3165 * Error occurs, the adapter will be recycled by disabling the
20346722 3166 * adapter enable bit and enabling it again after the device
1da177e4
LT
3167 * becomes Quiescent.
3168 */
3169 val64 = readq(&bar0->pcc_err_reg);
3170 writeq(val64, &bar0->pcc_err_reg);
3171 if (val64 & PCC_FB_ECC_DB_ERR) {
3172 u64 ac = readq(&bar0->adapter_control);
3173 ac &= ~(ADAPTER_CNTL_EN);
3174 writeq(ac, &bar0->adapter_control);
3175 ac = readq(&bar0->adapter_control);
3176 schedule_work(&nic->set_link_task);
3177 }
bd1034f0
AR
3178 /* Check for data parity error */
3179 val64 = readq(&bar0->pic_int_status);
3180 if (val64 & PIC_INT_GPIO) {
3181 val64 = readq(&bar0->gpio_int_reg);
3182 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3183 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3184 schedule_work(&nic->rst_timer_task);
3185 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3186 }
3187 }
3188
3189 /* Check for ring full counter */
3190 if (nic->device_type & XFRAME_II_DEVICE) {
3191 val64 = readq(&bar0->ring_bump_counter1);
3192 for (i=0; i<4; i++) {
3193 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3194 cnt >>= 64 - ((i+1)*16);
3195 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3196 += cnt;
3197 }
3198
3199 val64 = readq(&bar0->ring_bump_counter2);
3200 for (i=0; i<4; i++) {
3201 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3202 cnt >>= 64 - ((i+1)*16);
3203 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3204 += cnt;
3205 }
3206 }
1da177e4
LT
3207
3208 /* Other type of interrupts are not being handled now, TODO */
3209}
3210
20346722 3211/**
1da177e4 3212 * wait_for_cmd_complete - waits for a command to complete.
20346722 3213 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3214 * s2io_nic structure.
20346722
K
3215 * Description: Function that waits for a command to Write into RMAC
3216 * ADDR DATA registers to be completed and returns either success or
3217 * error depending on whether the command was complete or not.
1da177e4
LT
3218 * Return value:
3219 * SUCCESS on success and FAILURE on failure.
3220 */
3221
c92ca04b 3222static int wait_for_cmd_complete(void *addr, u64 busy_bit)
1da177e4 3223{
1da177e4
LT
3224 int ret = FAILURE, cnt = 0;
3225 u64 val64;
3226
3227 while (TRUE) {
c92ca04b
AR
3228 val64 = readq(addr);
3229 if (!(val64 & busy_bit)) {
1da177e4
LT
3230 ret = SUCCESS;
3231 break;
3232 }
c92ca04b
AR
3233
3234 if(in_interrupt())
3235 mdelay(50);
3236 else
3237 msleep(50);
3238
1da177e4
LT
3239 if (cnt++ > 10)
3240 break;
3241 }
1da177e4
LT
3242 return ret;
3243}
3244
20346722
K
3245/**
3246 * s2io_reset - Resets the card.
1da177e4
LT
3247 * @sp : private member of the device structure.
3248 * Description: Function to Reset the card. This function then also
20346722 3249 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3250 * the card reset also resets the configuration space.
3251 * Return value:
3252 * void.
3253 */
3254
26df54bf 3255static void s2io_reset(nic_t * sp)
1da177e4
LT
3256{
3257 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3258 u64 val64;
5e25b9dd 3259 u16 subid, pci_cmd;
1da177e4 3260
0b1f7ebe 3261 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3262 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3263
1da177e4
LT
3264 val64 = SW_RESET_ALL;
3265 writeq(val64, &bar0->sw_reset);
3266
20346722
K
3267 /*
3268 * At this stage, if the PCI write is indeed completed, the
3269 * card is reset and so is the PCI Config space of the device.
3270 * So a read cannot be issued at this stage on any of the
1da177e4
LT
3271 * registers to ensure the write into "sw_reset" register
3272 * has gone through.
3273 * Question: Is there any system call that will explicitly force
3274 * all the write commands still pending on the bus to be pushed
3275 * through?
3276 * As of now I'am just giving a 250ms delay and hoping that the
3277 * PCI write to sw_reset register is done by this time.
3278 */
3279 msleep(250);
c92ca04b
AR
3280 if (strstr(sp->product_name, "CX4")) {
3281 msleep(750);
3282 }
1da177e4 3283
e960fc5c 3284 /* Restore the PCI state saved during initialization. */
3285 pci_restore_state(sp->pdev);
3286 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
0b1f7ebe 3287 pci_cmd);
1da177e4
LT
3288 s2io_init_pci(sp);
3289
3290 msleep(250);
3291
20346722
K
3292 /* Set swapper to enable I/O register access */
3293 s2io_set_swapper(sp);
3294
cc6e7c44
RA
3295 /* Restore the MSIX table entries from local variables */
3296 restore_xmsi_data(sp);
3297
5e25b9dd 3298 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b
K
3299 if (sp->device_type == XFRAME_II_DEVICE) {
3300 /* Clear parity err detect bit */
3301 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3302
303bcb4b
K
3303 /* Clearing PCIX Ecc status register */
3304 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3305
303bcb4b
K
3306 /* Clearing PCI_STATUS error reflected here */
3307 writeq(BIT(62), &bar0->txpic_int_reg);
3308 }
5e25b9dd 3309
20346722
K
3310 /* Reset device statistics maintained by OS */
3311 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3312
1da177e4
LT
3313 /* SXE-002: Configure link and activity LED to turn it off */
3314 subid = sp->pdev->subsystem_device;
541ae68f
K
3315 if (((subid & 0xFF) >= 0x07) &&
3316 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3317 val64 = readq(&bar0->gpio_control);
3318 val64 |= 0x0000800000000000ULL;
3319 writeq(val64, &bar0->gpio_control);
3320 val64 = 0x0411040400000000ULL;
509a2671 3321 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3322 }
3323
541ae68f
K
3324 /*
3325 * Clear spurious ECC interrupts that would have occured on
3326 * XFRAME II cards after reset.
3327 */
3328 if (sp->device_type == XFRAME_II_DEVICE) {
3329 val64 = readq(&bar0->pcc_err_reg);
3330 writeq(val64, &bar0->pcc_err_reg);
3331 }
3332
1da177e4
LT
3333 sp->device_enabled_once = FALSE;
3334}
3335
3336/**
20346722
K
3337 * s2io_set_swapper - to set the swapper controle on the card
3338 * @sp : private member of the device structure,
1da177e4 3339 * pointer to the s2io_nic structure.
20346722 3340 * Description: Function to set the swapper control on the card
1da177e4
LT
3341 * correctly depending on the 'endianness' of the system.
3342 * Return value:
3343 * SUCCESS on success and FAILURE on failure.
3344 */
3345
26df54bf 3346static int s2io_set_swapper(nic_t * sp)
1da177e4
LT
3347{
3348 struct net_device *dev = sp->dev;
3349 XENA_dev_config_t __iomem *bar0 = sp->bar0;
3350 u64 val64, valt, valr;
3351
20346722 3352 /*
1da177e4
LT
3353 * Set proper endian settings and verify the same by reading
3354 * the PIF Feed-back register.
3355 */
3356
3357 val64 = readq(&bar0->pif_rd_swapper_fb);
3358 if (val64 != 0x0123456789ABCDEFULL) {
3359 int i = 0;
3360 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3361 0x8100008181000081ULL, /* FE=1, SE=0 */
3362 0x4200004242000042ULL, /* FE=0, SE=1 */
3363 0}; /* FE=0, SE=0 */
3364
3365 while(i<4) {
3366 writeq(value[i], &bar0->swapper_ctrl);
3367 val64 = readq(&bar0->pif_rd_swapper_fb);
3368 if (val64 == 0x0123456789ABCDEFULL)
3369 break;
3370 i++;
3371 }
3372 if (i == 4) {
3373 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3374 dev->name);
3375 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3376 (unsigned long long) val64);
3377 return FAILURE;
3378 }
3379 valr = value[i];
3380 } else {
3381 valr = readq(&bar0->swapper_ctrl);
3382 }
3383
3384 valt = 0x0123456789ABCDEFULL;
3385 writeq(valt, &bar0->xmsi_address);
3386 val64 = readq(&bar0->xmsi_address);
3387
3388 if(val64 != valt) {
3389 int i = 0;
3390 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3391 0x0081810000818100ULL, /* FE=1, SE=0 */
3392 0x0042420000424200ULL, /* FE=0, SE=1 */
3393 0}; /* FE=0, SE=0 */
3394
3395 while(i<4) {
3396 writeq((value[i] | valr), &bar0->swapper_ctrl);
3397 writeq(valt, &bar0->xmsi_address);
3398 val64 = readq(&bar0->xmsi_address);
3399 if(val64 == valt)
3400 break;
3401 i++;
3402 }
3403 if(i == 4) {
20346722 3404 unsigned long long x = val64;
1da177e4 3405 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3406 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3407 return FAILURE;
3408 }
3409 }
3410 val64 = readq(&bar0->swapper_ctrl);
3411 val64 &= 0xFFFF000000000000ULL;
3412
3413#ifdef __BIG_ENDIAN
20346722
K
3414 /*
3415 * The device by default set to a big endian format, so a
1da177e4
LT
3416 * big endian driver need not set anything.
3417 */
3418 val64 |= (SWAPPER_CTRL_TXP_FE |
3419 SWAPPER_CTRL_TXP_SE |
3420 SWAPPER_CTRL_TXD_R_FE |
3421 SWAPPER_CTRL_TXD_W_FE |
3422 SWAPPER_CTRL_TXF_R_FE |
3423 SWAPPER_CTRL_RXD_R_FE |
3424 SWAPPER_CTRL_RXD_W_FE |
3425 SWAPPER_CTRL_RXF_W_FE |
3426 SWAPPER_CTRL_XMSI_FE |
1da177e4 3427 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
92383340 3428 if (sp->intr_type == INTA)
cc6e7c44 3429 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3430 writeq(val64, &bar0->swapper_ctrl);
3431#else
20346722 3432 /*
1da177e4 3433 * Initially we enable all bits to make it accessible by the
20346722 3434 * driver, then we selectively enable only those bits that
1da177e4
LT
3435 * we want to set.
3436 */
3437 val64 |= (SWAPPER_CTRL_TXP_FE |
3438 SWAPPER_CTRL_TXP_SE |
3439 SWAPPER_CTRL_TXD_R_FE |
3440 SWAPPER_CTRL_TXD_R_SE |
3441 SWAPPER_CTRL_TXD_W_FE |
3442 SWAPPER_CTRL_TXD_W_SE |
3443 SWAPPER_CTRL_TXF_R_FE |
3444 SWAPPER_CTRL_RXD_R_FE |
3445 SWAPPER_CTRL_RXD_R_SE |
3446 SWAPPER_CTRL_RXD_W_FE |
3447 SWAPPER_CTRL_RXD_W_SE |
3448 SWAPPER_CTRL_RXF_W_FE |
3449 SWAPPER_CTRL_XMSI_FE |
1da177e4 3450 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
cc6e7c44
RA
3451 if (sp->intr_type == INTA)
3452 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3453 writeq(val64, &bar0->swapper_ctrl);
3454#endif
3455 val64 = readq(&bar0->swapper_ctrl);
3456
20346722
K
3457 /*
3458 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3459 * feedback register.
3460 */
3461 val64 = readq(&bar0->pif_rd_swapper_fb);
3462 if (val64 != 0x0123456789ABCDEFULL) {
3463 /* Endian settings are incorrect, calls for another dekko. */
3464 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3465 dev->name);
3466 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3467 (unsigned long long) val64);
3468 return FAILURE;
3469 }
3470
3471 return SUCCESS;
3472}
3473
ac1f60db 3474static int wait_for_msix_trans(nic_t *nic, int i)
cc6e7c44 3475{
37eb47ed 3476 XENA_dev_config_t __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3477 u64 val64;
3478 int ret = 0, cnt = 0;
3479
3480 do {
3481 val64 = readq(&bar0->xmsi_access);
3482 if (!(val64 & BIT(15)))
3483 break;
3484 mdelay(1);
3485 cnt++;
3486 } while(cnt < 5);
3487 if (cnt == 5) {
3488 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3489 ret = 1;
3490 }
3491
3492 return ret;
3493}
3494
26df54bf 3495static void restore_xmsi_data(nic_t *nic)
cc6e7c44 3496{
37eb47ed 3497 XENA_dev_config_t __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3498 u64 val64;
3499 int i;
3500
c92ca04b 3501 for (i=0; i< nic->avail_msix_vectors; i++) {
cc6e7c44
RA
3502 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3503 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3504 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3505 writeq(val64, &bar0->xmsi_access);
3506 if (wait_for_msix_trans(nic, i)) {
3507 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3508 continue;
3509 }
3510 }
3511}
3512
ac1f60db 3513static void store_xmsi_data(nic_t *nic)
cc6e7c44 3514{
37eb47ed 3515 XENA_dev_config_t __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3516 u64 val64, addr, data;
3517 int i;
3518
3519 /* Store and display */
c92ca04b 3520 for (i=0; i< nic->avail_msix_vectors; i++) {
cc6e7c44
RA
3521 val64 = (BIT(15) | vBIT(i, 26, 6));
3522 writeq(val64, &bar0->xmsi_access);
3523 if (wait_for_msix_trans(nic, i)) {
3524 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3525 continue;
3526 }
3527 addr = readq(&bar0->xmsi_address);
3528 data = readq(&bar0->xmsi_data);
3529 if (addr && data) {
3530 nic->msix_info[i].addr = addr;
3531 nic->msix_info[i].data = data;
3532 }
3533 }
3534}
3535
3536int s2io_enable_msi(nic_t *nic)
3537{
37eb47ed 3538 XENA_dev_config_t __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3539 u16 msi_ctrl, msg_val;
3540 struct config_param *config = &nic->config;
3541 struct net_device *dev = nic->dev;
3542 u64 val64, tx_mat, rx_mat;
3543 int i, err;
3544
3545 val64 = readq(&bar0->pic_control);
3546 val64 &= ~BIT(1);
3547 writeq(val64, &bar0->pic_control);
3548
3549 err = pci_enable_msi(nic->pdev);
3550 if (err) {
3551 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3552 nic->dev->name);
3553 return err;
3554 }
3555
3556 /*
3557 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3558 * for interrupt handling.
3559 */
3560 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3561 msg_val ^= 0x1;
3562 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3563 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3564
3565 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3566 msi_ctrl |= 0x10;
3567 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3568
3569 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3570 tx_mat = readq(&bar0->tx_mat0_n[0]);
3571 for (i=0; i<config->tx_fifo_num; i++) {
3572 tx_mat |= TX_MAT_SET(i, 1);
3573 }
3574 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3575
3576 rx_mat = readq(&bar0->rx_mat);
3577 for (i=0; i<config->rx_ring_num; i++) {
3578 rx_mat |= RX_MAT_SET(i, 1);
3579 }
3580 writeq(rx_mat, &bar0->rx_mat);
3581
3582 dev->irq = nic->pdev->irq;
3583 return 0;
3584}
3585
26df54bf 3586static int s2io_enable_msi_x(nic_t *nic)
cc6e7c44 3587{
37eb47ed 3588 XENA_dev_config_t __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3589 u64 tx_mat, rx_mat;
3590 u16 msi_control; /* Temp variable */
3591 int ret, i, j, msix_indx = 1;
3592
3593 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3594 GFP_KERNEL);
3595 if (nic->entries == NULL) {
3596 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3597 return -ENOMEM;
3598 }
3599 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3600
3601 nic->s2io_entries =
3602 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3603 GFP_KERNEL);
3604 if (nic->s2io_entries == NULL) {
3605 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3606 kfree(nic->entries);
3607 return -ENOMEM;
3608 }
3609 memset(nic->s2io_entries, 0,
3610 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3611
3612 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3613 nic->entries[i].entry = i;
3614 nic->s2io_entries[i].entry = i;
3615 nic->s2io_entries[i].arg = NULL;
3616 nic->s2io_entries[i].in_use = 0;
3617 }
3618
3619 tx_mat = readq(&bar0->tx_mat0_n[0]);
3620 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3621 tx_mat |= TX_MAT_SET(i, msix_indx);
3622 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3623 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3624 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3625 }
3626 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3627
3628 if (!nic->config.bimodal) {
3629 rx_mat = readq(&bar0->rx_mat);
3630 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3631 rx_mat |= RX_MAT_SET(j, msix_indx);
3632 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3633 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3634 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3635 }
3636 writeq(rx_mat, &bar0->rx_mat);
3637 } else {
3638 tx_mat = readq(&bar0->tx_mat0_n[7]);
3639 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3640 tx_mat |= TX_MAT_SET(i, msix_indx);
3641 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3642 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3643 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3644 }
3645 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3646 }
3647
c92ca04b 3648 nic->avail_msix_vectors = 0;
cc6e7c44 3649 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
c92ca04b
AR
3650 /* We fail init if error or we get less vectors than min required */
3651 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3652 nic->avail_msix_vectors = ret;
3653 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3654 }
cc6e7c44
RA
3655 if (ret) {
3656 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3657 kfree(nic->entries);
3658 kfree(nic->s2io_entries);
3659 nic->entries = NULL;
3660 nic->s2io_entries = NULL;
c92ca04b 3661 nic->avail_msix_vectors = 0;
cc6e7c44
RA
3662 return -ENOMEM;
3663 }
c92ca04b
AR
3664 if (!nic->avail_msix_vectors)
3665 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
cc6e7c44
RA
3666
3667 /*
3668 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3669 * in the herc NIC. (Temp change, needs to be removed later)
3670 */
3671 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3672 msi_control |= 0x1; /* Enable MSI */
3673 pci_write_config_word(nic->pdev, 0x42, msi_control);
3674
3675 return 0;
3676}
3677
1da177e4
LT
3678/* ********************************************************* *
3679 * Functions defined below concern the OS part of the driver *
3680 * ********************************************************* */
3681
20346722 3682/**
1da177e4
LT
3683 * s2io_open - open entry point of the driver
3684 * @dev : pointer to the device structure.
3685 * Description:
3686 * This function is the open entry point of the driver. It mainly calls a
3687 * function to allocate Rx buffers and inserts them into the buffer
20346722 3688 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3689 * Return value:
3690 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3691 * file on failure.
3692 */
3693
ac1f60db 3694static int s2io_open(struct net_device *dev)
1da177e4
LT
3695{
3696 nic_t *sp = dev->priv;
3697 int err = 0;
3698
20346722
K
3699 /*
3700 * Make sure you have link off by default every time
1da177e4
LT
3701 * Nic is initialized
3702 */
3703 netif_carrier_off(dev);
0b1f7ebe 3704 sp->last_link_state = 0;
1da177e4
LT
3705
3706 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3707 err = s2io_card_up(sp);
3708 if (err) {
1da177e4
LT
3709 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3710 dev->name);
c92ca04b
AR
3711 if (err == -ENODEV)
3712 goto hw_init_failed;
3713 else
3714 goto hw_enable_failed;
1da177e4
LT
3715 }
3716
cc6e7c44
RA
3717 /* Store the values of the MSIX table in the nic_t structure */
3718 store_xmsi_data(sp);
3719
1da177e4 3720 /* After proper initialization of H/W, register ISR */
cc6e7c44
RA
3721 if (sp->intr_type == MSI) {
3722 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
3723 SA_SHIRQ, sp->name, dev);
3724 if (err) {
3725 DBG_PRINT(ERR_DBG, "%s: MSI registration \
3726failed\n", dev->name);
3727 goto isr_registration_failed;
3728 }
3729 }
3730 if (sp->intr_type == MSI_X) {
c92ca04b
AR
3731 int i;
3732
cc6e7c44
RA
3733 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
3734 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
3735 sprintf(sp->desc1, "%s:MSI-X-%d-TX",
3736 dev->name, i);
3737 err = request_irq(sp->entries[i].vector,
3738 s2io_msix_fifo_handle, 0, sp->desc1,
3739 sp->s2io_entries[i].arg);
3740 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc1,
26b7625c 3741 (unsigned long long)sp->msix_info[i].addr);
cc6e7c44
RA
3742 } else {
3743 sprintf(sp->desc2, "%s:MSI-X-%d-RX",
3744 dev->name, i);
3745 err = request_irq(sp->entries[i].vector,
3746 s2io_msix_ring_handle, 0, sp->desc2,
3747 sp->s2io_entries[i].arg);
3748 DBG_PRINT(ERR_DBG, "%s @ 0x%llx\n", sp->desc2,
26b7625c 3749 (unsigned long long)sp->msix_info[i].addr);
cc6e7c44
RA
3750 }
3751 if (err) {
3752 DBG_PRINT(ERR_DBG, "%s: MSI-X-%d registration \
3753failed\n", dev->name, i);
3754 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
3755 goto isr_registration_failed;
3756 }
3757 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
3758 }
3759 }
3760 if (sp->intr_type == INTA) {
3761 err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
3762 sp->name, dev);
3763 if (err) {
3764 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
3765 dev->name);
3766 goto isr_registration_failed;
3767 }
1da177e4
LT
3768 }
3769
3770 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3771 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
20346722
K
3772 err = -ENODEV;
3773 goto setting_mac_address_failed;
1da177e4
LT
3774 }
3775
3776 netif_start_queue(dev);
3777 return 0;
20346722
K
3778
3779setting_mac_address_failed:
cc6e7c44
RA
3780 if (sp->intr_type != MSI_X)
3781 free_irq(sp->pdev->irq, dev);
20346722 3782isr_registration_failed:
25fff88e 3783 del_timer_sync(&sp->alarm_timer);
cc6e7c44 3784 if (sp->intr_type == MSI_X) {
c92ca04b
AR
3785 int i;
3786 u16 msi_control; /* Temp variable */
bd1034f0 3787
c92ca04b 3788 for (i=1; (sp->s2io_entries[i].in_use ==
cc6e7c44 3789 MSIX_REGISTERED_SUCCESS); i++) {
c92ca04b
AR
3790 int vector = sp->entries[i].vector;
3791 void *arg = sp->s2io_entries[i].arg;
cc6e7c44 3792
c92ca04b 3793 free_irq(vector, arg);
cc6e7c44 3794 }
c92ca04b
AR
3795 pci_disable_msix(sp->pdev);
3796
3797 /* Temp */
3798 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3799 msi_control &= 0xFFFE; /* Disable MSI */
3800 pci_write_config_word(sp->pdev, 0x42, msi_control);
cc6e7c44
RA
3801 }
3802 else if (sp->intr_type == MSI)
3803 pci_disable_msi(sp->pdev);
c92ca04b 3804hw_enable_failed:
20346722
K
3805 s2io_reset(sp);
3806hw_init_failed:
cc6e7c44
RA
3807 if (sp->intr_type == MSI_X) {
3808 if (sp->entries)
3809 kfree(sp->entries);
3810 if (sp->s2io_entries)
3811 kfree(sp->s2io_entries);
3812 }
20346722 3813 return err;
1da177e4
LT
3814}
3815
3816/**
3817 * s2io_close -close entry point of the driver
3818 * @dev : device pointer.
3819 * Description:
3820 * This is the stop entry point of the driver. It needs to undo exactly
3821 * whatever was done by the open entry point,thus it's usually referred to
3822 * as the close function.Among other things this function mainly stops the
3823 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3824 * Return value:
3825 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3826 * file on failure.
3827 */
3828
ac1f60db 3829static int s2io_close(struct net_device *dev)
1da177e4
LT
3830{
3831 nic_t *sp = dev->priv;
cc6e7c44 3832
1da177e4
LT
3833 flush_scheduled_work();
3834 netif_stop_queue(dev);
3835 /* Reset card, kill tasklet and free Tx and Rx buffers. */
c92ca04b 3836 s2io_card_down(sp, 1);
cc6e7c44 3837
1da177e4
LT
3838 sp->device_close_flag = TRUE; /* Device is shut down. */
3839 return 0;
3840}
3841
3842/**
3843 * s2io_xmit - Tx entry point of te driver
3844 * @skb : the socket buffer containing the Tx data.
3845 * @dev : device pointer.
3846 * Description :
3847 * This function is the Tx entry point of the driver. S2IO NIC supports
3848 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3849 * NOTE: when device cant queue the pkt,just the trans_start variable will
3850 * not be upadted.
3851 * Return value:
3852 * 0 on success & 1 on failure.
3853 */
3854
ac1f60db 3855static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
3856{
3857 nic_t *sp = dev->priv;
3858 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3859 register u64 val64;
3860 TxD_t *txdp;
3861 TxFIFO_element_t __iomem *tx_fifo;
3862 unsigned long flags;
3863#ifdef NETIF_F_TSO
3864 int mss;
3865#endif
be3a6b02
K
3866 u16 vlan_tag = 0;
3867 int vlan_priority = 0;
1da177e4
LT
3868 mac_info_t *mac_control;
3869 struct config_param *config;
1da177e4
LT
3870
3871 mac_control = &sp->mac_control;
3872 config = &sp->config;
3873
20346722 3874 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
1da177e4 3875 spin_lock_irqsave(&sp->tx_lock, flags);
1da177e4 3876 if (atomic_read(&sp->card_state) == CARD_DOWN) {
20346722 3877 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4
LT
3878 dev->name);
3879 spin_unlock_irqrestore(&sp->tx_lock, flags);
20346722
K
3880 dev_kfree_skb(skb);
3881 return 0;
1da177e4
LT
3882 }
3883
3884 queue = 0;
1da177e4 3885
be3a6b02
K
3886 /* Get Fifo number to Transmit based on vlan priority */
3887 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3888 vlan_tag = vlan_tx_tag_get(skb);
3889 vlan_priority = vlan_tag >> 13;
3890 queue = config->fifo_mapping[vlan_priority];
3891 }
3892
20346722
K
3893 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3894 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3895 txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3896 list_virt_addr;
3897
3898 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
1da177e4 3899 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
3900 if (txdp->Host_Control ||
3901 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 3902 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
1da177e4
LT
3903 netif_stop_queue(dev);
3904 dev_kfree_skb(skb);
3905 spin_unlock_irqrestore(&sp->tx_lock, flags);
3906 return 0;
3907 }
0b1f7ebe
K
3908
3909 /* A buffer with no data will be dropped */
3910 if (!skb->len) {
3911 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3912 dev_kfree_skb(skb);
3913 spin_unlock_irqrestore(&sp->tx_lock, flags);
3914 return 0;
3915 }
3916
fed5eccd
AR
3917 txdp->Control_1 = 0;
3918 txdp->Control_2 = 0;
1da177e4
LT
3919#ifdef NETIF_F_TSO
3920 mss = skb_shinfo(skb)->tso_size;
3921 if (mss) {
3922 txdp->Control_1 |= TXD_TCP_LSO_EN;
3923 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3924 }
3925#endif
1da177e4
LT
3926 if (skb->ip_summed == CHECKSUM_HW) {
3927 txdp->Control_2 |=
3928 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3929 TXD_TX_CKO_UDP_EN);
3930 }
fed5eccd
AR
3931 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3932 txdp->Control_1 |= TXD_LIST_OWN_XENA;
1da177e4 3933 txdp->Control_2 |= config->tx_intr_type;
d8892c6e 3934
be3a6b02
K
3935 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3936 txdp->Control_2 |= TXD_VLAN_ENABLE;
3937 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3938 }
3939
fed5eccd
AR
3940 frg_len = skb->len - skb->data_len;
3941 if (skb_shinfo(skb)->ufo_size) {
3942 int ufo_size;
3943
3944 ufo_size = skb_shinfo(skb)->ufo_size;
3945 ufo_size &= ~7;
3946 txdp->Control_1 |= TXD_UFO_EN;
3947 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3948 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3949#ifdef __BIG_ENDIAN
3950 sp->ufo_in_band_v[put_off] =
3951 (u64)skb_shinfo(skb)->ip6_frag_id;
3952#else
3953 sp->ufo_in_band_v[put_off] =
3954 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3955#endif
3956 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3957 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3958 sp->ufo_in_band_v,
3959 sizeof(u64), PCI_DMA_TODEVICE);
3960 txdp++;
3961 txdp->Control_1 = 0;
3962 txdp->Control_2 = 0;
3963 }
1da177e4 3964
fed5eccd
AR
3965 txdp->Buffer_Pointer = pci_map_single
3966 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3967 txdp->Host_Control = (unsigned long) skb;
3968 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3969
3970 if (skb_shinfo(skb)->ufo_size)
3971 txdp->Control_1 |= TXD_UFO_EN;
3972
3973 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
3974 /* For fragmented SKB. */
3975 for (i = 0; i < frg_cnt; i++) {
3976 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
3977 /* A '0' length fragment will be ignored */
3978 if (!frag->size)
3979 continue;
1da177e4
LT
3980 txdp++;
3981 txdp->Buffer_Pointer = (u64) pci_map_page
3982 (sp->pdev, frag->page, frag->page_offset,
3983 frag->size, PCI_DMA_TODEVICE);
efd51b5c 3984 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
fed5eccd
AR
3985 if (skb_shinfo(skb)->ufo_size)
3986 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
3987 }
3988 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3989
fed5eccd
AR
3990 if (skb_shinfo(skb)->ufo_size)
3991 frg_cnt++; /* as Txd0 was used for inband header */
3992
1da177e4 3993 tx_fifo = mac_control->tx_FIFO_start[queue];
20346722 3994 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
1da177e4
LT
3995 writeq(val64, &tx_fifo->TxDL_Pointer);
3996
3997 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3998 TX_FIFO_LAST_LIST);
20346722 3999
1da177e4
LT
4000#ifdef NETIF_F_TSO
4001 if (mss)
4002 val64 |= TX_FIFO_SPECIAL_FUNC;
4003#endif
fed5eccd
AR
4004 if (skb_shinfo(skb)->ufo_size)
4005 val64 |= TX_FIFO_SPECIAL_FUNC;
1da177e4
LT
4006 writeq(val64, &tx_fifo->List_Control);
4007
303bcb4b
K
4008 mmiowb();
4009
1da177e4 4010 put_off++;
863c11a9
AR
4011 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4012 put_off = 0;
20346722 4013 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
1da177e4
LT
4014
4015 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4016 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 4017 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
4018 DBG_PRINT(TX_DBG,
4019 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4020 put_off, get_off);
4021 netif_stop_queue(dev);
4022 }
4023
4024 dev->trans_start = jiffies;
4025 spin_unlock_irqrestore(&sp->tx_lock, flags);
4026
4027 return 0;
4028}
4029
25fff88e
K
4030static void
4031s2io_alarm_handle(unsigned long data)
4032{
4033 nic_t *sp = (nic_t *)data;
4034
4035 alarm_intr_handler(sp);
4036 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4037}
4038
cc6e7c44
RA
4039static irqreturn_t
4040s2io_msi_handle(int irq, void *dev_id, struct pt_regs *regs)
4041{
4042 struct net_device *dev = (struct net_device *) dev_id;
4043 nic_t *sp = dev->priv;
4044 int i;
4045 int ret;
4046 mac_info_t *mac_control;
4047 struct config_param *config;
4048
4049 atomic_inc(&sp->isr_cnt);
4050 mac_control = &sp->mac_control;
4051 config = &sp->config;
4052 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4053
4054 /* If Intr is because of Rx Traffic */
4055 for (i = 0; i < config->rx_ring_num; i++)
4056 rx_intr_handler(&mac_control->rings[i]);
4057
4058 /* If Intr is because of Tx Traffic */
4059 for (i = 0; i < config->tx_fifo_num; i++)
4060 tx_intr_handler(&mac_control->fifos[i]);
4061
4062 /*
4063 * If the Rx buffer count is below the panic threshold then
4064 * reallocate the buffers from the interrupt handler itself,
4065 * else schedule a tasklet to reallocate the buffers.
4066 */
4067 for (i = 0; i < config->rx_ring_num; i++) {
7d3d0439
RA
4068 if (!sp->lro) {
4069 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4070 int level = rx_buffer_level(sp, rxb_size, i);
4071
4072 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4073 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
4074 dev->name);
4075 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4076 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4077 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4078 dev->name);
4079 DBG_PRINT(ERR_DBG, " in ISR!!\n");
4080 clear_bit(0, (&sp->tasklet_status));
4081 atomic_dec(&sp->isr_cnt);
4082 return IRQ_HANDLED;
4083 }
cc6e7c44 4084 clear_bit(0, (&sp->tasklet_status));
7d3d0439
RA
4085 } else if (level == LOW) {
4086 tasklet_schedule(&sp->task);
cc6e7c44 4087 }
7d3d0439
RA
4088 }
4089 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4090 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4091 dev->name);
4092 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4093 break;
cc6e7c44
RA
4094 }
4095 }
4096
4097 atomic_dec(&sp->isr_cnt);
4098 return IRQ_HANDLED;
4099}
4100
4101static irqreturn_t
4102s2io_msix_ring_handle(int irq, void *dev_id, struct pt_regs *regs)
4103{
4104 ring_info_t *ring = (ring_info_t *)dev_id;
4105 nic_t *sp = ring->nic;
7d3d0439 4106 struct net_device *dev = (struct net_device *) dev_id;
cc6e7c44
RA
4107 int rxb_size, level, rng_n;
4108
4109 atomic_inc(&sp->isr_cnt);
4110 rx_intr_handler(ring);
4111
4112 rng_n = ring->ring_no;
7d3d0439
RA
4113 if (!sp->lro) {
4114 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4115 level = rx_buffer_level(sp, rxb_size, rng_n);
4116
4117 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4118 int ret;
4119 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4120 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4121 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4122 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4123 __FUNCTION__);
4124 clear_bit(0, (&sp->tasklet_status));
4125 return IRQ_HANDLED;
4126 }
cc6e7c44 4127 clear_bit(0, (&sp->tasklet_status));
7d3d0439
RA
4128 } else if (level == LOW) {
4129 tasklet_schedule(&sp->task);
cc6e7c44 4130 }
cc6e7c44 4131 }
7d3d0439
RA
4132 else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4133 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
4134 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4135 }
4136
cc6e7c44
RA
4137 atomic_dec(&sp->isr_cnt);
4138
4139 return IRQ_HANDLED;
4140}
4141
4142static irqreturn_t
4143s2io_msix_fifo_handle(int irq, void *dev_id, struct pt_regs *regs)
4144{
4145 fifo_info_t *fifo = (fifo_info_t *)dev_id;
4146 nic_t *sp = fifo->nic;
4147
4148 atomic_inc(&sp->isr_cnt);
4149 tx_intr_handler(fifo);
4150 atomic_dec(&sp->isr_cnt);
4151 return IRQ_HANDLED;
4152}
a371a07d
K
4153static void s2io_txpic_intr_handle(nic_t *sp)
4154{
509a2671 4155 XENA_dev_config_t __iomem *bar0 = sp->bar0;
a371a07d
K
4156 u64 val64;
4157
4158 val64 = readq(&bar0->pic_int_status);
4159 if (val64 & PIC_INT_GPIO) {
4160 val64 = readq(&bar0->gpio_int_reg);
4161 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4162 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4163 /*
4164 * This is unstable state so clear both up/down
4165 * interrupt and adapter to re-evaluate the link state.
4166 */
a371a07d
K
4167 val64 |= GPIO_INT_REG_LINK_DOWN;
4168 val64 |= GPIO_INT_REG_LINK_UP;
4169 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4170 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4171 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4172 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4173 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4174 }
c92ca04b
AR
4175 else if (val64 & GPIO_INT_REG_LINK_UP) {
4176 val64 = readq(&bar0->adapter_status);
4177 if (verify_xena_quiescence(sp, val64,
4178 sp->device_enabled_once)) {
4179 /* Enable Adapter */
4180 val64 = readq(&bar0->adapter_control);
4181 val64 |= ADAPTER_CNTL_EN;
4182 writeq(val64, &bar0->adapter_control);
4183 val64 |= ADAPTER_LED_ON;
4184 writeq(val64, &bar0->adapter_control);
4185 if (!sp->device_enabled_once)
4186 sp->device_enabled_once = 1;
4187
4188 s2io_link(sp, LINK_UP);
4189 /*
4190 * unmask link down interrupt and mask link-up
4191 * intr
4192 */
4193 val64 = readq(&bar0->gpio_int_mask);
4194 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4195 val64 |= GPIO_INT_MASK_LINK_UP;
4196 writeq(val64, &bar0->gpio_int_mask);
4197
4198 }
4199 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4200 val64 = readq(&bar0->adapter_status);
4201 if (verify_xena_quiescence(sp, val64,
4202 sp->device_enabled_once)) {
4203 s2io_link(sp, LINK_DOWN);
4204 /* Link is down so unmaks link up interrupt */
4205 val64 = readq(&bar0->gpio_int_mask);
4206 val64 &= ~GPIO_INT_MASK_LINK_UP;
4207 val64 |= GPIO_INT_MASK_LINK_DOWN;
4208 writeq(val64, &bar0->gpio_int_mask);
4209 }
a371a07d
K
4210 }
4211 }
c92ca04b 4212 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4213}
4214
1da177e4
LT
4215/**
4216 * s2io_isr - ISR handler of the device .
4217 * @irq: the irq of the device.
4218 * @dev_id: a void pointer to the dev structure of the NIC.
4219 * @pt_regs: pointer to the registers pushed on the stack.
20346722
K
4220 * Description: This function is the ISR handler of the device. It
4221 * identifies the reason for the interrupt and calls the relevant
4222 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4223 * recv buffers, if their numbers are below the panic value which is
4224 * presently set to 25% of the original number of rcv buffers allocated.
4225 * Return value:
20346722 4226 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4227 * IRQ_NONE: will be returned if interrupt is not from our device
4228 */
4229static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
4230{
4231 struct net_device *dev = (struct net_device *) dev_id;
4232 nic_t *sp = dev->priv;
4233 XENA_dev_config_t __iomem *bar0 = sp->bar0;
20346722 4234 int i;
fe113638 4235 u64 reason = 0, val64;
1da177e4
LT
4236 mac_info_t *mac_control;
4237 struct config_param *config;
4238
7ba013ac 4239 atomic_inc(&sp->isr_cnt);
1da177e4
LT
4240 mac_control = &sp->mac_control;
4241 config = &sp->config;
4242
20346722 4243 /*
1da177e4
LT
4244 * Identify the cause for interrupt and call the appropriate
4245 * interrupt handler. Causes for the interrupt could be;
4246 * 1. Rx of packet.
4247 * 2. Tx complete.
4248 * 3. Link down.
20346722 4249 * 4. Error in any functional blocks of the NIC.
1da177e4
LT
4250 */
4251 reason = readq(&bar0->general_int_status);
4252
4253 if (!reason) {
4254 /* The interrupt was not raised by Xena. */
7ba013ac 4255 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4256 return IRQ_NONE;
4257 }
4258
863c11a9 4259 val64 = 0xFFFFFFFFFFFFFFFFULL;
1da177e4
LT
4260#ifdef CONFIG_S2IO_NAPI
4261 if (reason & GEN_INTR_RXTRAFFIC) {
4262 if (netif_rx_schedule_prep(dev)) {
863c11a9 4263 writeq(val64, &bar0->rx_traffic_mask);
1da177e4
LT
4264 __netif_rx_schedule(dev);
4265 }
4266 }
4267#else
863c11a9
AR
4268 /*
4269 * Rx handler is called by default, without checking for the
4270 * cause of interrupt.
4271 * rx_traffic_int reg is an R1 register, writing all 1's
4272 * will ensure that the actual interrupt causing bit get's
4273 * cleared and hence a read can be avoided.
4274 */
4275 writeq(val64, &bar0->rx_traffic_int);
4276 for (i = 0; i < config->rx_ring_num; i++) {
4277 rx_intr_handler(&mac_control->rings[i]);
1da177e4
LT
4278 }
4279#endif
4280
863c11a9
AR
4281 /*
4282 * tx_traffic_int reg is an R1 register, writing all 1's
4283 * will ensure that the actual interrupt causing bit get's
4284 * cleared and hence a read can be avoided.
4285 */
4286 writeq(val64, &bar0->tx_traffic_int);
fe113638 4287
863c11a9
AR
4288 for (i = 0; i < config->tx_fifo_num; i++)
4289 tx_intr_handler(&mac_control->fifos[i]);
20346722 4290
a371a07d
K
4291 if (reason & GEN_INTR_TXPIC)
4292 s2io_txpic_intr_handle(sp);
20346722
K
4293 /*
4294 * If the Rx buffer count is below the panic threshold then
4295 * reallocate the buffers from the interrupt handler itself,
1da177e4
LT
4296 * else schedule a tasklet to reallocate the buffers.
4297 */
4298#ifndef CONFIG_S2IO_NAPI
4299 for (i = 0; i < config->rx_ring_num; i++) {
7d3d0439
RA
4300 if (!sp->lro) {
4301 int ret;
4302 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
4303 int level = rx_buffer_level(sp, rxb_size, i);
4304
4305 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4306 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ",
4307 dev->name);
4308 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4309 if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
4310 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4311 dev->name);
4312 DBG_PRINT(ERR_DBG, " in ISR!!\n");
4313 clear_bit(0, (&sp->tasklet_status));
4314 atomic_dec(&sp->isr_cnt);
4315 return IRQ_HANDLED;
4316 }
1da177e4 4317 clear_bit(0, (&sp->tasklet_status));
7d3d0439
RA
4318 } else if (level == LOW) {
4319 tasklet_schedule(&sp->task);
1da177e4 4320 }
7d3d0439
RA
4321 }
4322 else if (fill_rx_buffers(sp, i) == -ENOMEM) {
4323 DBG_PRINT(ERR_DBG, "%s:Out of memory",
4324 dev->name);
4325 DBG_PRINT(ERR_DBG, " in Rx intr!!\n");
4326 break;
1da177e4
LT
4327 }
4328 }
4329#endif
4330
7ba013ac 4331 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4332 return IRQ_HANDLED;
4333}
4334
7ba013ac
K
4335/**
4336 * s2io_updt_stats -
4337 */
4338static void s2io_updt_stats(nic_t *sp)
4339{
4340 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4341 u64 val64;
4342 int cnt = 0;
4343
4344 if (atomic_read(&sp->card_state) == CARD_UP) {
4345 /* Apprx 30us on a 133 MHz bus */
4346 val64 = SET_UPDT_CLICKS(10) |
4347 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4348 writeq(val64, &bar0->stat_cfg);
4349 do {
4350 udelay(100);
4351 val64 = readq(&bar0->stat_cfg);
4352 if (!(val64 & BIT(0)))
4353 break;
4354 cnt++;
4355 if (cnt == 5)
4356 break; /* Updt failed */
4357 } while(1);
4358 }
4359}
4360
1da177e4 4361/**
20346722 4362 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4363 * @dev : pointer to the device structure.
4364 * Description:
20346722 4365 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4366 * structure and returns a pointer to the same.
4367 * Return value:
4368 * pointer to the updated net_device_stats structure.
4369 */
4370
ac1f60db 4371static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4
LT
4372{
4373 nic_t *sp = dev->priv;
4374 mac_info_t *mac_control;
4375 struct config_param *config;
4376
20346722 4377
1da177e4
LT
4378 mac_control = &sp->mac_control;
4379 config = &sp->config;
4380
7ba013ac
K
4381 /* Configure Stats for immediate updt */
4382 s2io_updt_stats(sp);
4383
4384 sp->stats.tx_packets =
4385 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722
K
4386 sp->stats.tx_errors =
4387 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4388 sp->stats.rx_errors =
4389 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
4390 sp->stats.multicast =
4391 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 4392 sp->stats.rx_length_errors =
20346722 4393 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4
LT
4394
4395 return (&sp->stats);
4396}
4397
4398/**
4399 * s2io_set_multicast - entry point for multicast address enable/disable.
4400 * @dev : pointer to the device structure
4401 * Description:
20346722
K
4402 * This function is a driver entry point which gets called by the kernel
4403 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4404 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4405 * determine, if multicast address must be enabled or if promiscuous mode
4406 * is to be disabled etc.
4407 * Return value:
4408 * void.
4409 */
4410
4411static void s2io_set_multicast(struct net_device *dev)
4412{
4413 int i, j, prev_cnt;
4414 struct dev_mc_list *mclist;
4415 nic_t *sp = dev->priv;
4416 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4417 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4418 0xfeffffffffffULL;
4419 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4420 void __iomem *add;
4421
4422 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4423 /* Enable all Multicast addresses */
4424 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4425 &bar0->rmac_addr_data0_mem);
4426 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4427 &bar0->rmac_addr_data1_mem);
4428 val64 = RMAC_ADDR_CMD_MEM_WE |
4429 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4430 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4431 writeq(val64, &bar0->rmac_addr_cmd_mem);
4432 /* Wait till command completes */
c92ca04b
AR
4433 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4434 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
1da177e4
LT
4435
4436 sp->m_cast_flg = 1;
4437 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4438 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4439 /* Disable all Multicast addresses */
4440 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4441 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4442 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4443 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4444 val64 = RMAC_ADDR_CMD_MEM_WE |
4445 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4446 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4447 writeq(val64, &bar0->rmac_addr_cmd_mem);
4448 /* Wait till command completes */
c92ca04b
AR
4449 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4450 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
1da177e4
LT
4451
4452 sp->m_cast_flg = 0;
4453 sp->all_multi_pos = 0;
4454 }
4455
4456 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4457 /* Put the NIC into promiscuous mode */
4458 add = &bar0->mac_cfg;
4459 val64 = readq(&bar0->mac_cfg);
4460 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4461
4462 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4463 writel((u32) val64, add);
4464 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4465 writel((u32) (val64 >> 32), (add + 4));
4466
4467 val64 = readq(&bar0->mac_cfg);
4468 sp->promisc_flg = 1;
776bd20f 4469 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
4470 dev->name);
4471 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4472 /* Remove the NIC from promiscuous mode */
4473 add = &bar0->mac_cfg;
4474 val64 = readq(&bar0->mac_cfg);
4475 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4476
4477 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4478 writel((u32) val64, add);
4479 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4480 writel((u32) (val64 >> 32), (add + 4));
4481
4482 val64 = readq(&bar0->mac_cfg);
4483 sp->promisc_flg = 0;
776bd20f 4484 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
4485 dev->name);
4486 }
4487
4488 /* Update individual M_CAST address list */
4489 if ((!sp->m_cast_flg) && dev->mc_count) {
4490 if (dev->mc_count >
4491 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4492 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4493 dev->name);
4494 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4495 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4496 return;
4497 }
4498
4499 prev_cnt = sp->mc_addr_count;
4500 sp->mc_addr_count = dev->mc_count;
4501
4502 /* Clear out the previous list of Mc in the H/W. */
4503 for (i = 0; i < prev_cnt; i++) {
4504 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4505 &bar0->rmac_addr_data0_mem);
4506 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4507 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4508 val64 = RMAC_ADDR_CMD_MEM_WE |
4509 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4510 RMAC_ADDR_CMD_MEM_OFFSET
4511 (MAC_MC_ADDR_START_OFFSET + i);
4512 writeq(val64, &bar0->rmac_addr_cmd_mem);
4513
4514 /* Wait for command completes */
c92ca04b
AR
4515 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4516 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
1da177e4
LT
4517 DBG_PRINT(ERR_DBG, "%s: Adding ",
4518 dev->name);
4519 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4520 return;
4521 }
4522 }
4523
4524 /* Create the new Rx filter list and update the same in H/W. */
4525 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4526 i++, mclist = mclist->next) {
4527 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4528 ETH_ALEN);
a7a80d5a 4529 mac_addr = 0;
1da177e4
LT
4530 for (j = 0; j < ETH_ALEN; j++) {
4531 mac_addr |= mclist->dmi_addr[j];
4532 mac_addr <<= 8;
4533 }
4534 mac_addr >>= 8;
4535 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4536 &bar0->rmac_addr_data0_mem);
4537 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4538 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4539 val64 = RMAC_ADDR_CMD_MEM_WE |
4540 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4541 RMAC_ADDR_CMD_MEM_OFFSET
4542 (i + MAC_MC_ADDR_START_OFFSET);
4543 writeq(val64, &bar0->rmac_addr_cmd_mem);
4544
4545 /* Wait for command completes */
c92ca04b
AR
4546 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4547 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
1da177e4
LT
4548 DBG_PRINT(ERR_DBG, "%s: Adding ",
4549 dev->name);
4550 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4551 return;
4552 }
4553 }
4554 }
4555}
4556
4557/**
20346722 4558 * s2io_set_mac_addr - Programs the Xframe mac address
1da177e4
LT
4559 * @dev : pointer to the device structure.
4560 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 4561 * Description : This procedure will program the Xframe to receive
1da177e4 4562 * frames with new Mac Address
20346722 4563 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
4564 * as defined in errno.h file on failure.
4565 */
4566
26df54bf 4567static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
1da177e4
LT
4568{
4569 nic_t *sp = dev->priv;
4570 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4571 register u64 val64, mac_addr = 0;
4572 int i;
4573
20346722 4574 /*
1da177e4
LT
4575 * Set the new MAC address as the new unicast filter and reflect this
4576 * change on the device address registered with the OS. It will be
20346722 4577 * at offset 0.
1da177e4
LT
4578 */
4579 for (i = 0; i < ETH_ALEN; i++) {
4580 mac_addr <<= 8;
4581 mac_addr |= addr[i];
4582 }
4583
4584 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4585 &bar0->rmac_addr_data0_mem);
4586
4587 val64 =
4588 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4589 RMAC_ADDR_CMD_MEM_OFFSET(0);
4590 writeq(val64, &bar0->rmac_addr_cmd_mem);
4591 /* Wait till command completes */
c92ca04b
AR
4592 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4593 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
1da177e4
LT
4594 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4595 return FAILURE;
4596 }
4597
4598 return SUCCESS;
4599}
4600
4601/**
20346722 4602 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
4603 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4604 * @info: pointer to the structure with parameters given by ethtool to set
4605 * link information.
4606 * Description:
20346722 4607 * The function sets different link parameters provided by the user onto
1da177e4
LT
4608 * the NIC.
4609 * Return value:
4610 * 0 on success.
4611*/
4612
4613static int s2io_ethtool_sset(struct net_device *dev,
4614 struct ethtool_cmd *info)
4615{
4616 nic_t *sp = dev->priv;
4617 if ((info->autoneg == AUTONEG_ENABLE) ||
4618 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4619 return -EINVAL;
4620 else {
4621 s2io_close(sp->dev);
4622 s2io_open(sp->dev);
4623 }
4624
4625 return 0;
4626}
4627
4628/**
20346722 4629 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
4630 * @sp : private member of the device structure, pointer to the
4631 * s2io_nic structure.
4632 * @info : pointer to the structure with parameters given by ethtool
4633 * to return link information.
4634 * Description:
4635 * Returns link specific information like speed, duplex etc.. to ethtool.
4636 * Return value :
4637 * return 0 on success.
4638 */
4639
4640static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4641{
4642 nic_t *sp = dev->priv;
4643 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4644 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4645 info->port = PORT_FIBRE;
4646 /* info->transceiver?? TODO */
4647
4648 if (netif_carrier_ok(sp->dev)) {
4649 info->speed = 10000;
4650 info->duplex = DUPLEX_FULL;
4651 } else {
4652 info->speed = -1;
4653 info->duplex = -1;
4654 }
4655
4656 info->autoneg = AUTONEG_DISABLE;
4657 return 0;
4658}
4659
4660/**
20346722
K
4661 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4662 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4663 * s2io_nic structure.
4664 * @info : pointer to the structure with parameters given by ethtool to
4665 * return driver information.
4666 * Description:
4667 * Returns driver specefic information like name, version etc.. to ethtool.
4668 * Return value:
4669 * void
4670 */
4671
4672static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4673 struct ethtool_drvinfo *info)
4674{
4675 nic_t *sp = dev->priv;
4676
dbc2309d
JL
4677 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4678 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4679 strncpy(info->fw_version, "", sizeof(info->fw_version));
4680 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
4681 info->regdump_len = XENA_REG_SPACE;
4682 info->eedump_len = XENA_EEPROM_SPACE;
4683 info->testinfo_len = S2IO_TEST_LEN;
4684 info->n_stats = S2IO_STAT_LEN;
4685}
4686
4687/**
4688 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 4689 * @sp: private member of the device structure, which is a pointer to the
1da177e4 4690 * s2io_nic structure.
20346722 4691 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
4692 * dumping the registers.
4693 * @reg_space: The input argumnet into which all the registers are dumped.
4694 * Description:
4695 * Dumps the entire register space of xFrame NIC into the user given
4696 * buffer area.
4697 * Return value :
4698 * void .
4699*/
4700
4701static void s2io_ethtool_gregs(struct net_device *dev,
4702 struct ethtool_regs *regs, void *space)
4703{
4704 int i;
4705 u64 reg;
4706 u8 *reg_space = (u8 *) space;
4707 nic_t *sp = dev->priv;
4708
4709 regs->len = XENA_REG_SPACE;
4710 regs->version = sp->pdev->subsystem_device;
4711
4712 for (i = 0; i < regs->len; i += 8) {
4713 reg = readq(sp->bar0 + i);
4714 memcpy((reg_space + i), &reg, 8);
4715 }
4716}
4717
4718/**
4719 * s2io_phy_id - timer function that alternates adapter LED.
20346722 4720 * @data : address of the private member of the device structure, which
1da177e4 4721 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
4722 * Description: This is actually the timer function that alternates the
4723 * adapter LED bit of the adapter control bit to set/reset every time on
4724 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
4725 * once every second.
4726*/
4727static void s2io_phy_id(unsigned long data)
4728{
4729 nic_t *sp = (nic_t *) data;
4730 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4731 u64 val64 = 0;
4732 u16 subid;
4733
4734 subid = sp->pdev->subsystem_device;
541ae68f
K
4735 if ((sp->device_type == XFRAME_II_DEVICE) ||
4736 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
4737 val64 = readq(&bar0->gpio_control);
4738 val64 ^= GPIO_CTRL_GPIO_0;
4739 writeq(val64, &bar0->gpio_control);
4740 } else {
4741 val64 = readq(&bar0->adapter_control);
4742 val64 ^= ADAPTER_LED_ON;
4743 writeq(val64, &bar0->adapter_control);
4744 }
4745
4746 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4747}
4748
4749/**
4750 * s2io_ethtool_idnic - To physically identify the nic on the system.
4751 * @sp : private member of the device structure, which is a pointer to the
4752 * s2io_nic structure.
20346722 4753 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
4754 * ethtool.
4755 * Description: Used to physically identify the NIC on the system.
20346722 4756 * The Link LED will blink for a time specified by the user for
1da177e4 4757 * identification.
20346722 4758 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
4759 * identification is possible only if it's link is up.
4760 * Return value:
4761 * int , returns 0 on success
4762 */
4763
4764static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4765{
4766 u64 val64 = 0, last_gpio_ctrl_val;
4767 nic_t *sp = dev->priv;
4768 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4769 u16 subid;
4770
4771 subid = sp->pdev->subsystem_device;
4772 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f
K
4773 if ((sp->device_type == XFRAME_I_DEVICE) &&
4774 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
4775 val64 = readq(&bar0->adapter_control);
4776 if (!(val64 & ADAPTER_CNTL_EN)) {
4777 printk(KERN_ERR
4778 "Adapter Link down, cannot blink LED\n");
4779 return -EFAULT;
4780 }
4781 }
4782 if (sp->id_timer.function == NULL) {
4783 init_timer(&sp->id_timer);
4784 sp->id_timer.function = s2io_phy_id;
4785 sp->id_timer.data = (unsigned long) sp;
4786 }
4787 mod_timer(&sp->id_timer, jiffies);
4788 if (data)
20346722 4789 msleep_interruptible(data * HZ);
1da177e4 4790 else
20346722 4791 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
4792 del_timer_sync(&sp->id_timer);
4793
541ae68f 4794 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
4795 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4796 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4797 }
4798
4799 return 0;
4800}
4801
4802/**
4803 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
4804 * @sp : private member of the device structure, which is a pointer to the
4805 * s2io_nic structure.
1da177e4
LT
4806 * @ep : pointer to the structure with pause parameters given by ethtool.
4807 * Description:
4808 * Returns the Pause frame generation and reception capability of the NIC.
4809 * Return value:
4810 * void
4811 */
4812static void s2io_ethtool_getpause_data(struct net_device *dev,
4813 struct ethtool_pauseparam *ep)
4814{
4815 u64 val64;
4816 nic_t *sp = dev->priv;
4817 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4818
4819 val64 = readq(&bar0->rmac_pause_cfg);
4820 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4821 ep->tx_pause = TRUE;
4822 if (val64 & RMAC_PAUSE_RX_ENABLE)
4823 ep->rx_pause = TRUE;
4824 ep->autoneg = FALSE;
4825}
4826
4827/**
4828 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 4829 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4830 * s2io_nic structure.
4831 * @ep : pointer to the structure with pause parameters given by ethtool.
4832 * Description:
4833 * It can be used to set or reset Pause frame generation or reception
4834 * support of the NIC.
4835 * Return value:
4836 * int, returns 0 on Success
4837 */
4838
4839static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 4840 struct ethtool_pauseparam *ep)
1da177e4
LT
4841{
4842 u64 val64;
4843 nic_t *sp = dev->priv;
4844 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4845
4846 val64 = readq(&bar0->rmac_pause_cfg);
4847 if (ep->tx_pause)
4848 val64 |= RMAC_PAUSE_GEN_ENABLE;
4849 else
4850 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4851 if (ep->rx_pause)
4852 val64 |= RMAC_PAUSE_RX_ENABLE;
4853 else
4854 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4855 writeq(val64, &bar0->rmac_pause_cfg);
4856 return 0;
4857}
4858
4859/**
4860 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 4861 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4862 * s2io_nic structure.
4863 * @off : offset at which the data must be written
4864 * @data : Its an output parameter where the data read at the given
20346722 4865 * offset is stored.
1da177e4 4866 * Description:
20346722 4867 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
4868 * read data.
4869 * NOTE: Will allow to read only part of the EEPROM visible through the
4870 * I2C bus.
4871 * Return value:
4872 * -1 on failure and 0 on success.
4873 */
4874
4875#define S2IO_DEV_ID 5
ad4ebed0 4876static int read_eeprom(nic_t * sp, int off, u64 * data)
1da177e4
LT
4877{
4878 int ret = -1;
4879 u32 exit_cnt = 0;
4880 u64 val64;
4881 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4882
ad4ebed0 4883 if (sp->device_type == XFRAME_I_DEVICE) {
4884 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4885 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4886 I2C_CONTROL_CNTL_START;
4887 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 4888
ad4ebed0 4889 while (exit_cnt < 5) {
4890 val64 = readq(&bar0->i2c_control);
4891 if (I2C_CONTROL_CNTL_END(val64)) {
4892 *data = I2C_CONTROL_GET_DATA(val64);
4893 ret = 0;
4894 break;
4895 }
4896 msleep(50);
4897 exit_cnt++;
1da177e4 4898 }
1da177e4
LT
4899 }
4900
ad4ebed0 4901 if (sp->device_type == XFRAME_II_DEVICE) {
4902 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4903 SPI_CONTROL_BYTECNT(0x3) |
4904 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4905 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4906 val64 |= SPI_CONTROL_REQ;
4907 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4908 while (exit_cnt < 5) {
4909 val64 = readq(&bar0->spi_control);
4910 if (val64 & SPI_CONTROL_NACK) {
4911 ret = 1;
4912 break;
4913 } else if (val64 & SPI_CONTROL_DONE) {
4914 *data = readq(&bar0->spi_data);
4915 *data &= 0xffffff;
4916 ret = 0;
4917 break;
4918 }
4919 msleep(50);
4920 exit_cnt++;
4921 }
4922 }
1da177e4
LT
4923 return ret;
4924}
4925
4926/**
4927 * write_eeprom - actually writes the relevant part of the data value.
4928 * @sp : private member of the device structure, which is a pointer to the
4929 * s2io_nic structure.
4930 * @off : offset at which the data must be written
4931 * @data : The data that is to be written
20346722 4932 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
4933 * the Eeprom. (max of 3)
4934 * Description:
4935 * Actually writes the relevant part of the data value into the Eeprom
4936 * through the I2C bus.
4937 * Return value:
4938 * 0 on success, -1 on failure.
4939 */
4940
ad4ebed0 4941static int write_eeprom(nic_t * sp, int off, u64 data, int cnt)
1da177e4
LT
4942{
4943 int exit_cnt = 0, ret = -1;
4944 u64 val64;
4945 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4946
ad4ebed0 4947 if (sp->device_type == XFRAME_I_DEVICE) {
4948 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4949 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4950 I2C_CONTROL_CNTL_START;
4951 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4952
4953 while (exit_cnt < 5) {
4954 val64 = readq(&bar0->i2c_control);
4955 if (I2C_CONTROL_CNTL_END(val64)) {
4956 if (!(val64 & I2C_CONTROL_NACK))
4957 ret = 0;
4958 break;
4959 }
4960 msleep(50);
4961 exit_cnt++;
4962 }
4963 }
1da177e4 4964
ad4ebed0 4965 if (sp->device_type == XFRAME_II_DEVICE) {
4966 int write_cnt = (cnt == 8) ? 0 : cnt;
4967 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4968
4969 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4970 SPI_CONTROL_BYTECNT(write_cnt) |
4971 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4972 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4973 val64 |= SPI_CONTROL_REQ;
4974 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4975 while (exit_cnt < 5) {
4976 val64 = readq(&bar0->spi_control);
4977 if (val64 & SPI_CONTROL_NACK) {
4978 ret = 1;
4979 break;
4980 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 4981 ret = 0;
ad4ebed0 4982 break;
4983 }
4984 msleep(50);
4985 exit_cnt++;
1da177e4 4986 }
1da177e4 4987 }
1da177e4
LT
4988 return ret;
4989}
9dc737a7
AR
4990static void s2io_vpd_read(nic_t *nic)
4991{
4992 u8 vpd_data[256],data;
4993 int i=0, cnt, fail = 0;
4994 int vpd_addr = 0x80;
4995
4996 if (nic->device_type == XFRAME_II_DEVICE) {
4997 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4998 vpd_addr = 0x80;
4999 }
5000 else {
5001 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5002 vpd_addr = 0x50;
5003 }
5004
5005 for (i = 0; i < 256; i +=4 ) {
5006 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5007 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5008 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5009 for (cnt = 0; cnt <5; cnt++) {
5010 msleep(2);
5011 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5012 if (data == 0x80)
5013 break;
5014 }
5015 if (cnt >= 5) {
5016 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5017 fail = 1;
5018 break;
5019 }
5020 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5021 (u32 *)&vpd_data[i]);
5022 }
5023 if ((!fail) && (vpd_data[1] < VPD_PRODUCT_NAME_LEN)) {
5024 memset(nic->product_name, 0, vpd_data[1]);
5025 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5026 }
5027}
5028
1da177e4
LT
5029/**
5030 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5031 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5032 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5033 * containing all relevant information.
5034 * @data_buf : user defined value to be written into Eeprom.
5035 * Description: Reads the values stored in the Eeprom at given offset
5036 * for a given length. Stores these values int the input argument data
5037 * buffer 'data_buf' and returns these to the caller (ethtool.)
5038 * Return value:
5039 * int 0 on success
5040 */
5041
5042static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 5043 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5044{
ad4ebed0 5045 u32 i, valid;
5046 u64 data;
1da177e4
LT
5047 nic_t *sp = dev->priv;
5048
5049 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5050
5051 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5052 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5053
5054 for (i = 0; i < eeprom->len; i += 4) {
5055 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5056 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5057 return -EFAULT;
5058 }
5059 valid = INV(data);
5060 memcpy((data_buf + i), &valid, 4);
5061 }
5062 return 0;
5063}
5064
5065/**
5066 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5067 * @sp : private member of the device structure, which is a pointer to the
5068 * s2io_nic structure.
20346722 5069 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5070 * containing all relevant information.
5071 * @data_buf ; user defined value to be written into Eeprom.
5072 * Description:
5073 * Tries to write the user provided value in the Eeprom, at the offset
5074 * given by the user.
5075 * Return value:
5076 * 0 on success, -EFAULT on failure.
5077 */
5078
5079static int s2io_ethtool_seeprom(struct net_device *dev,
5080 struct ethtool_eeprom *eeprom,
5081 u8 * data_buf)
5082{
5083 int len = eeprom->len, cnt = 0;
ad4ebed0 5084 u64 valid = 0, data;
1da177e4
LT
5085 nic_t *sp = dev->priv;
5086
5087 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5088 DBG_PRINT(ERR_DBG,
5089 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5090 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5091 eeprom->magic);
5092 return -EFAULT;
5093 }
5094
5095 while (len) {
5096 data = (u32) data_buf[cnt] & 0x000000FF;
5097 if (data) {
5098 valid = (u32) (data << 24);
5099 } else
5100 valid = data;
5101
5102 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5103 DBG_PRINT(ERR_DBG,
5104 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5105 DBG_PRINT(ERR_DBG,
5106 "write into the specified offset\n");
5107 return -EFAULT;
5108 }
5109 cnt++;
5110 len--;
5111 }
5112
5113 return 0;
5114}
5115
5116/**
20346722
K
5117 * s2io_register_test - reads and writes into all clock domains.
5118 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5119 * s2io_nic structure.
5120 * @data : variable that returns the result of each of the test conducted b
5121 * by the driver.
5122 * Description:
5123 * Read and write into all clock domains. The NIC has 3 clock domains,
5124 * see that registers in all the three regions are accessible.
5125 * Return value:
5126 * 0 on success.
5127 */
5128
5129static int s2io_register_test(nic_t * sp, uint64_t * data)
5130{
5131 XENA_dev_config_t __iomem *bar0 = sp->bar0;
ad4ebed0 5132 u64 val64 = 0, exp_val;
1da177e4
LT
5133 int fail = 0;
5134
20346722
K
5135 val64 = readq(&bar0->pif_rd_swapper_fb);
5136 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5137 fail = 1;
5138 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5139 }
5140
5141 val64 = readq(&bar0->rmac_pause_cfg);
5142 if (val64 != 0xc000ffff00000000ULL) {
5143 fail = 1;
5144 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5145 }
5146
5147 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5148 if (sp->device_type == XFRAME_II_DEVICE)
5149 exp_val = 0x0404040404040404ULL;
5150 else
5151 exp_val = 0x0808080808080808ULL;
5152 if (val64 != exp_val) {
1da177e4
LT
5153 fail = 1;
5154 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5155 }
5156
5157 val64 = readq(&bar0->xgxs_efifo_cfg);
5158 if (val64 != 0x000000001923141EULL) {
5159 fail = 1;
5160 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5161 }
5162
5163 val64 = 0x5A5A5A5A5A5A5A5AULL;
5164 writeq(val64, &bar0->xmsi_data);
5165 val64 = readq(&bar0->xmsi_data);
5166 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5167 fail = 1;
5168 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5169 }
5170
5171 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5172 writeq(val64, &bar0->xmsi_data);
5173 val64 = readq(&bar0->xmsi_data);
5174 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5175 fail = 1;
5176 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5177 }
5178
5179 *data = fail;
ad4ebed0 5180 return fail;
1da177e4
LT
5181}
5182
5183/**
20346722 5184 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5185 * @sp : private member of the device structure, which is a pointer to the
5186 * s2io_nic structure.
5187 * @data:variable that returns the result of each of the test conducted by
5188 * the driver.
5189 * Description:
20346722 5190 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5191 * register.
5192 * Return value:
5193 * 0 on success.
5194 */
5195
5196static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
5197{
5198 int fail = 0;
ad4ebed0 5199 u64 ret_data, org_4F0, org_7F0;
5200 u8 saved_4F0 = 0, saved_7F0 = 0;
5201 struct net_device *dev = sp->dev;
1da177e4
LT
5202
5203 /* Test Write Error at offset 0 */
ad4ebed0 5204 /* Note that SPI interface allows write access to all areas
5205 * of EEPROM. Hence doing all negative testing only for Xframe I.
5206 */
5207 if (sp->device_type == XFRAME_I_DEVICE)
5208 if (!write_eeprom(sp, 0, 0, 3))
5209 fail = 1;
5210
5211 /* Save current values at offsets 0x4F0 and 0x7F0 */
5212 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5213 saved_4F0 = 1;
5214 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5215 saved_7F0 = 1;
1da177e4
LT
5216
5217 /* Test Write at offset 4f0 */
ad4ebed0 5218 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
5219 fail = 1;
5220 if (read_eeprom(sp, 0x4F0, &ret_data))
5221 fail = 1;
5222
ad4ebed0 5223 if (ret_data != 0x012345) {
26b7625c
AM
5224 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5225 "Data written %llx Data read %llx\n",
5226 dev->name, (unsigned long long)0x12345,
5227 (unsigned long long)ret_data);
1da177e4 5228 fail = 1;
ad4ebed0 5229 }
1da177e4
LT
5230
5231 /* Reset the EEPROM data go FFFF */
ad4ebed0 5232 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
5233
5234 /* Test Write Request Error at offset 0x7c */
ad4ebed0 5235 if (sp->device_type == XFRAME_I_DEVICE)
5236 if (!write_eeprom(sp, 0x07C, 0, 3))
5237 fail = 1;
1da177e4 5238
ad4ebed0 5239 /* Test Write Request at offset 0x7f0 */
5240 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 5241 fail = 1;
ad4ebed0 5242 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
5243 fail = 1;
5244
ad4ebed0 5245 if (ret_data != 0x012345) {
26b7625c
AM
5246 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5247 "Data written %llx Data read %llx\n",
5248 dev->name, (unsigned long long)0x12345,
5249 (unsigned long long)ret_data);
1da177e4 5250 fail = 1;
ad4ebed0 5251 }
1da177e4
LT
5252
5253 /* Reset the EEPROM data go FFFF */
ad4ebed0 5254 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 5255
ad4ebed0 5256 if (sp->device_type == XFRAME_I_DEVICE) {
5257 /* Test Write Error at offset 0x80 */
5258 if (!write_eeprom(sp, 0x080, 0, 3))
5259 fail = 1;
1da177e4 5260
ad4ebed0 5261 /* Test Write Error at offset 0xfc */
5262 if (!write_eeprom(sp, 0x0FC, 0, 3))
5263 fail = 1;
1da177e4 5264
ad4ebed0 5265 /* Test Write Error at offset 0x100 */
5266 if (!write_eeprom(sp, 0x100, 0, 3))
5267 fail = 1;
1da177e4 5268
ad4ebed0 5269 /* Test Write Error at offset 4ec */
5270 if (!write_eeprom(sp, 0x4EC, 0, 3))
5271 fail = 1;
5272 }
5273
5274 /* Restore values at offsets 0x4F0 and 0x7F0 */
5275 if (saved_4F0)
5276 write_eeprom(sp, 0x4F0, org_4F0, 3);
5277 if (saved_7F0)
5278 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
5279
5280 *data = fail;
ad4ebed0 5281 return fail;
1da177e4
LT
5282}
5283
5284/**
5285 * s2io_bist_test - invokes the MemBist test of the card .
20346722 5286 * @sp : private member of the device structure, which is a pointer to the
1da177e4 5287 * s2io_nic structure.
20346722 5288 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
5289 * the driver.
5290 * Description:
5291 * This invokes the MemBist test of the card. We give around
5292 * 2 secs time for the Test to complete. If it's still not complete
20346722 5293 * within this peiod, we consider that the test failed.
1da177e4
LT
5294 * Return value:
5295 * 0 on success and -1 on failure.
5296 */
5297
5298static int s2io_bist_test(nic_t * sp, uint64_t * data)
5299{
5300 u8 bist = 0;
5301 int cnt = 0, ret = -1;
5302
5303 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5304 bist |= PCI_BIST_START;
5305 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5306
5307 while (cnt < 20) {
5308 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5309 if (!(bist & PCI_BIST_START)) {
5310 *data = (bist & PCI_BIST_CODE_MASK);
5311 ret = 0;
5312 break;
5313 }
5314 msleep(100);
5315 cnt++;
5316 }
5317
5318 return ret;
5319}
5320
5321/**
20346722
K
5322 * s2io-link_test - verifies the link state of the nic
5323 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
5324 * s2io_nic structure.
5325 * @data: variable that returns the result of each of the test conducted by
5326 * the driver.
5327 * Description:
20346722 5328 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
5329 * argument 'data' appropriately.
5330 * Return value:
5331 * 0 on success.
5332 */
5333
5334static int s2io_link_test(nic_t * sp, uint64_t * data)
5335{
5336 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5337 u64 val64;
5338
5339 val64 = readq(&bar0->adapter_status);
c92ca04b 5340 if(!(LINK_IS_UP(val64)))
1da177e4 5341 *data = 1;
c92ca04b
AR
5342 else
5343 *data = 0;
1da177e4
LT
5344
5345 return 0;
5346}
5347
5348/**
20346722
K
5349 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5350 * @sp - private member of the device structure, which is a pointer to the
1da177e4 5351 * s2io_nic structure.
20346722 5352 * @data - variable that returns the result of each of the test
1da177e4
LT
5353 * conducted by the driver.
5354 * Description:
20346722 5355 * This is one of the offline test that tests the read and write
1da177e4
LT
5356 * access to the RldRam chip on the NIC.
5357 * Return value:
5358 * 0 on success.
5359 */
5360
5361static int s2io_rldram_test(nic_t * sp, uint64_t * data)
5362{
5363 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5364 u64 val64;
ad4ebed0 5365 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
5366
5367 val64 = readq(&bar0->adapter_control);
5368 val64 &= ~ADAPTER_ECC_EN;
5369 writeq(val64, &bar0->adapter_control);
5370
5371 val64 = readq(&bar0->mc_rldram_test_ctrl);
5372 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 5373 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5374
5375 val64 = readq(&bar0->mc_rldram_mrs);
5376 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5377 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5378
5379 val64 |= MC_RLDRAM_MRS_ENABLE;
5380 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5381
5382 while (iteration < 2) {
5383 val64 = 0x55555555aaaa0000ULL;
5384 if (iteration == 1) {
5385 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5386 }
5387 writeq(val64, &bar0->mc_rldram_test_d0);
5388
5389 val64 = 0xaaaa5a5555550000ULL;
5390 if (iteration == 1) {
5391 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5392 }
5393 writeq(val64, &bar0->mc_rldram_test_d1);
5394
5395 val64 = 0x55aaaaaaaa5a0000ULL;
5396 if (iteration == 1) {
5397 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5398 }
5399 writeq(val64, &bar0->mc_rldram_test_d2);
5400
ad4ebed0 5401 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
5402 writeq(val64, &bar0->mc_rldram_test_add);
5403
ad4ebed0 5404 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5405 MC_RLDRAM_TEST_GO;
5406 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5407
5408 for (cnt = 0; cnt < 5; cnt++) {
5409 val64 = readq(&bar0->mc_rldram_test_ctrl);
5410 if (val64 & MC_RLDRAM_TEST_DONE)
5411 break;
5412 msleep(200);
5413 }
5414
5415 if (cnt == 5)
5416 break;
5417
ad4ebed0 5418 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5419 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5420
5421 for (cnt = 0; cnt < 5; cnt++) {
5422 val64 = readq(&bar0->mc_rldram_test_ctrl);
5423 if (val64 & MC_RLDRAM_TEST_DONE)
5424 break;
5425 msleep(500);
5426 }
5427
5428 if (cnt == 5)
5429 break;
5430
5431 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 5432 if (!(val64 & MC_RLDRAM_TEST_PASS))
5433 test_fail = 1;
1da177e4
LT
5434
5435 iteration++;
5436 }
5437
ad4ebed0 5438 *data = test_fail;
1da177e4 5439
ad4ebed0 5440 /* Bring the adapter out of test mode */
5441 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5442
5443 return test_fail;
1da177e4
LT
5444}
5445
5446/**
5447 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5448 * @sp : private member of the device structure, which is a pointer to the
5449 * s2io_nic structure.
5450 * @ethtest : pointer to a ethtool command specific structure that will be
5451 * returned to the user.
20346722 5452 * @data : variable that returns the result of each of the test
1da177e4
LT
5453 * conducted by the driver.
5454 * Description:
5455 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5456 * the health of the card.
5457 * Return value:
5458 * void
5459 */
5460
5461static void s2io_ethtool_test(struct net_device *dev,
5462 struct ethtool_test *ethtest,
5463 uint64_t * data)
5464{
5465 nic_t *sp = dev->priv;
5466 int orig_state = netif_running(sp->dev);
5467
5468 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5469 /* Offline Tests. */
20346722 5470 if (orig_state)
1da177e4 5471 s2io_close(sp->dev);
1da177e4
LT
5472
5473 if (s2io_register_test(sp, &data[0]))
5474 ethtest->flags |= ETH_TEST_FL_FAILED;
5475
5476 s2io_reset(sp);
1da177e4
LT
5477
5478 if (s2io_rldram_test(sp, &data[3]))
5479 ethtest->flags |= ETH_TEST_FL_FAILED;
5480
5481 s2io_reset(sp);
1da177e4
LT
5482
5483 if (s2io_eeprom_test(sp, &data[1]))
5484 ethtest->flags |= ETH_TEST_FL_FAILED;
5485
5486 if (s2io_bist_test(sp, &data[4]))
5487 ethtest->flags |= ETH_TEST_FL_FAILED;
5488
5489 if (orig_state)
5490 s2io_open(sp->dev);
5491
5492 data[2] = 0;
5493 } else {
5494 /* Online Tests. */
5495 if (!orig_state) {
5496 DBG_PRINT(ERR_DBG,
5497 "%s: is not up, cannot run test\n",
5498 dev->name);
5499 data[0] = -1;
5500 data[1] = -1;
5501 data[2] = -1;
5502 data[3] = -1;
5503 data[4] = -1;
5504 }
5505
5506 if (s2io_link_test(sp, &data[2]))
5507 ethtest->flags |= ETH_TEST_FL_FAILED;
5508
5509 data[0] = 0;
5510 data[1] = 0;
5511 data[3] = 0;
5512 data[4] = 0;
5513 }
5514}
5515
5516static void s2io_get_ethtool_stats(struct net_device *dev,
5517 struct ethtool_stats *estats,
5518 u64 * tmp_stats)
5519{
5520 int i = 0;
5521 nic_t *sp = dev->priv;
5522 StatInfo_t *stat_info = sp->mac_control.stats_info;
5523
7ba013ac 5524 s2io_updt_stats(sp);
541ae68f
K
5525 tmp_stats[i++] =
5526 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5527 le32_to_cpu(stat_info->tmac_frms);
5528 tmp_stats[i++] =
5529 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5530 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 5531 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f
K
5532 tmp_stats[i++] =
5533 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5534 le32_to_cpu(stat_info->tmac_mcst_frms);
5535 tmp_stats[i++] =
5536 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5537 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 5538 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
5539 tmp_stats[i++] =
5540 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5541 le32_to_cpu(stat_info->tmac_ttl_octets);
5542 tmp_stats[i++] =
5543 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5544 le32_to_cpu(stat_info->tmac_ucst_frms);
5545 tmp_stats[i++] =
5546 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5547 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f
K
5548 tmp_stats[i++] =
5549 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5550 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 5551 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 5552 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f
K
5553 tmp_stats[i++] =
5554 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5555 le32_to_cpu(stat_info->tmac_vld_ip);
5556 tmp_stats[i++] =
5557 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5558 le32_to_cpu(stat_info->tmac_drop_ip);
5559 tmp_stats[i++] =
5560 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5561 le32_to_cpu(stat_info->tmac_icmp);
5562 tmp_stats[i++] =
5563 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5564 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 5565 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f
K
5566 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5567 le32_to_cpu(stat_info->tmac_udp);
5568 tmp_stats[i++] =
5569 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5570 le32_to_cpu(stat_info->rmac_vld_frms);
5571 tmp_stats[i++] =
5572 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5573 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
5574 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5575 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f
K
5576 tmp_stats[i++] =
5577 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5578 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5579 tmp_stats[i++] =
5580 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5581 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 5582 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 5583 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
5584 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5585 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
5586 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5587 tmp_stats[i++] =
5588 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5589 le32_to_cpu(stat_info->rmac_ttl_octets);
5590 tmp_stats[i++] =
5591 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5592 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5593 tmp_stats[i++] =
5594 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5595 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f
K
5596 tmp_stats[i++] =
5597 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5598 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
5599 tmp_stats[i++] =
5600 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5601 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5602 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5603 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f
K
5604 tmp_stats[i++] =
5605 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5606 le32_to_cpu(stat_info->rmac_usized_frms);
5607 tmp_stats[i++] =
5608 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5609 le32_to_cpu(stat_info->rmac_osized_frms);
5610 tmp_stats[i++] =
5611 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5612 le32_to_cpu(stat_info->rmac_frag_frms);
5613 tmp_stats[i++] =
5614 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5615 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
5616 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5617 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5618 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5619 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5620 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5621 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5622 tmp_stats[i++] =
5623 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 5624 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
5625 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5626 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
5627 tmp_stats[i++] =
5628 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 5629 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
5630 tmp_stats[i++] =
5631 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 5632 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 5633 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
5634 tmp_stats[i++] =
5635 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f
K
5636 le32_to_cpu(stat_info->rmac_udp);
5637 tmp_stats[i++] =
5638 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5639 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
5640 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5641 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5642 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5643 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5644 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5645 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5646 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5647 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5648 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5649 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5650 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5651 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5652 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5653 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5654 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5655 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5656 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f
K
5657 tmp_stats[i++] =
5658 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5659 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
5660 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5661 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f
K
5662 tmp_stats[i++] =
5663 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5664 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 5665 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
5666 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5667 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5668 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5669 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5670 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5671 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5672 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5673 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5674 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5675 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5676 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5677 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5678 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5679 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5680 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5681 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5682 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5683 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5684 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5685 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5686 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5687 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5688 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5689 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5690 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5691 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5692 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5693 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5694 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5695 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5696 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5697 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5698 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5699 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
7ba013ac
K
5700 tmp_stats[i++] = 0;
5701 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5702 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
5703 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5704 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5705 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5706 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5707 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5708 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5709 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5710 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5711 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5712 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5713 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5714 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5715 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5716 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5717 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5718 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5719 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
5720 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5721 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5722 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5723 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 5724 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
5725 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5726 int count = 0;
5727 /*
5728 * Since 64-bit divide does not work on all platforms,
5729 * do repeated subtraction.
5730 */
5731 while (tmp >= stat_info->sw_stat.num_aggregations) {
5732 tmp -= stat_info->sw_stat.num_aggregations;
5733 count++;
5734 }
5735 tmp_stats[i++] = count;
fe931395 5736 }
bd1034f0
AR
5737 else
5738 tmp_stats[i++] = 0;
1da177e4
LT
5739}
5740
ac1f60db 5741static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
5742{
5743 return (XENA_REG_SPACE);
5744}
5745
5746
ac1f60db 5747static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4
LT
5748{
5749 nic_t *sp = dev->priv;
5750
5751 return (sp->rx_csum);
5752}
ac1f60db
AB
5753
5754static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4
LT
5755{
5756 nic_t *sp = dev->priv;
5757
5758 if (data)
5759 sp->rx_csum = 1;
5760 else
5761 sp->rx_csum = 0;
5762
5763 return 0;
5764}
ac1f60db
AB
5765
5766static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
5767{
5768 return (XENA_EEPROM_SPACE);
5769}
5770
ac1f60db 5771static int s2io_ethtool_self_test_count(struct net_device *dev)
1da177e4
LT
5772{
5773 return (S2IO_TEST_LEN);
5774}
ac1f60db
AB
5775
5776static void s2io_ethtool_get_strings(struct net_device *dev,
5777 u32 stringset, u8 * data)
1da177e4
LT
5778{
5779 switch (stringset) {
5780 case ETH_SS_TEST:
5781 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5782 break;
5783 case ETH_SS_STATS:
5784 memcpy(data, &ethtool_stats_keys,
5785 sizeof(ethtool_stats_keys));
5786 }
5787}
1da177e4
LT
5788static int s2io_ethtool_get_stats_count(struct net_device *dev)
5789{
5790 return (S2IO_STAT_LEN);
5791}
5792
ac1f60db 5793static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
5794{
5795 if (data)
5796 dev->features |= NETIF_F_IP_CSUM;
5797 else
5798 dev->features &= ~NETIF_F_IP_CSUM;
5799
5800 return 0;
5801}
5802
5803
5804static struct ethtool_ops netdev_ethtool_ops = {
5805 .get_settings = s2io_ethtool_gset,
5806 .set_settings = s2io_ethtool_sset,
5807 .get_drvinfo = s2io_ethtool_gdrvinfo,
5808 .get_regs_len = s2io_ethtool_get_regs_len,
5809 .get_regs = s2io_ethtool_gregs,
5810 .get_link = ethtool_op_get_link,
5811 .get_eeprom_len = s2io_get_eeprom_len,
5812 .get_eeprom = s2io_ethtool_geeprom,
5813 .set_eeprom = s2io_ethtool_seeprom,
5814 .get_pauseparam = s2io_ethtool_getpause_data,
5815 .set_pauseparam = s2io_ethtool_setpause_data,
5816 .get_rx_csum = s2io_ethtool_get_rx_csum,
5817 .set_rx_csum = s2io_ethtool_set_rx_csum,
5818 .get_tx_csum = ethtool_op_get_tx_csum,
5819 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5820 .get_sg = ethtool_op_get_sg,
5821 .set_sg = ethtool_op_set_sg,
5822#ifdef NETIF_F_TSO
5823 .get_tso = ethtool_op_get_tso,
5824 .set_tso = ethtool_op_set_tso,
5825#endif
fed5eccd
AR
5826 .get_ufo = ethtool_op_get_ufo,
5827 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
5828 .self_test_count = s2io_ethtool_self_test_count,
5829 .self_test = s2io_ethtool_test,
5830 .get_strings = s2io_ethtool_get_strings,
5831 .phys_id = s2io_ethtool_idnic,
5832 .get_stats_count = s2io_ethtool_get_stats_count,
5833 .get_ethtool_stats = s2io_get_ethtool_stats
5834};
5835
5836/**
20346722 5837 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
5838 * @dev : Device pointer.
5839 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5840 * a proprietary structure used to pass information to the driver.
5841 * @cmd : This is used to distinguish between the different commands that
5842 * can be passed to the IOCTL functions.
5843 * Description:
20346722
K
5844 * Currently there are no special functionality supported in IOCTL, hence
5845 * function always return EOPNOTSUPPORTED
1da177e4
LT
5846 */
5847
ac1f60db 5848static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
5849{
5850 return -EOPNOTSUPP;
5851}
5852
5853/**
5854 * s2io_change_mtu - entry point to change MTU size for the device.
5855 * @dev : device pointer.
5856 * @new_mtu : the new MTU size for the device.
5857 * Description: A driver entry point to change MTU size for the device.
5858 * Before changing the MTU the device must be stopped.
5859 * Return value:
5860 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5861 * file on failure.
5862 */
5863
ac1f60db 5864static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4
LT
5865{
5866 nic_t *sp = dev->priv;
1da177e4
LT
5867
5868 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5869 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5870 dev->name);
5871 return -EPERM;
5872 }
5873
1da177e4 5874 dev->mtu = new_mtu;
d8892c6e 5875 if (netif_running(dev)) {
c92ca04b 5876 s2io_card_down(sp, 0);
d8892c6e
K
5877 netif_stop_queue(dev);
5878 if (s2io_card_up(sp)) {
5879 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5880 __FUNCTION__);
5881 }
5882 if (netif_queue_stopped(dev))
5883 netif_wake_queue(dev);
5884 } else { /* Device is down */
5885 XENA_dev_config_t __iomem *bar0 = sp->bar0;
5886 u64 val64 = new_mtu;
5887
5888 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5889 }
1da177e4
LT
5890
5891 return 0;
5892}
5893
5894/**
5895 * s2io_tasklet - Bottom half of the ISR.
5896 * @dev_adr : address of the device structure in dma_addr_t format.
5897 * Description:
5898 * This is the tasklet or the bottom half of the ISR. This is
20346722 5899 * an extension of the ISR which is scheduled by the scheduler to be run
1da177e4 5900 * when the load on the CPU is low. All low priority tasks of the ISR can
20346722 5901 * be pushed into the tasklet. For now the tasklet is used only to
1da177e4
LT
5902 * replenish the Rx buffers in the Rx buffer descriptors.
5903 * Return value:
5904 * void.
5905 */
5906
5907static void s2io_tasklet(unsigned long dev_addr)
5908{
5909 struct net_device *dev = (struct net_device *) dev_addr;
5910 nic_t *sp = dev->priv;
5911 int i, ret;
5912 mac_info_t *mac_control;
5913 struct config_param *config;
5914
5915 mac_control = &sp->mac_control;
5916 config = &sp->config;
5917
5918 if (!TASKLET_IN_USE) {
5919 for (i = 0; i < config->rx_ring_num; i++) {
5920 ret = fill_rx_buffers(sp, i);
5921 if (ret == -ENOMEM) {
5922 DBG_PRINT(ERR_DBG, "%s: Out of ",
5923 dev->name);
5924 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5925 break;
5926 } else if (ret == -EFILL) {
5927 DBG_PRINT(ERR_DBG,
5928 "%s: Rx Ring %d is full\n",
5929 dev->name, i);
5930 break;
5931 }
5932 }
5933 clear_bit(0, (&sp->tasklet_status));
5934 }
5935}
5936
5937/**
5938 * s2io_set_link - Set the LInk status
5939 * @data: long pointer to device private structue
5940 * Description: Sets the link status for the adapter
5941 */
5942
5943static void s2io_set_link(unsigned long data)
5944{
5945 nic_t *nic = (nic_t *) data;
5946 struct net_device *dev = nic->dev;
5947 XENA_dev_config_t __iomem *bar0 = nic->bar0;
5948 register u64 val64;
5949 u16 subid;
5950
5951 if (test_and_set_bit(0, &(nic->link_state))) {
5952 /* The card is being reset, no point doing anything */
5953 return;
5954 }
5955
5956 subid = nic->pdev->subsystem_device;
a371a07d
K
5957 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
5958 /*
5959 * Allow a small delay for the NICs self initiated
5960 * cleanup to complete.
5961 */
5962 msleep(100);
5963 }
1da177e4
LT
5964
5965 val64 = readq(&bar0->adapter_status);
20346722 5966 if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1da177e4
LT
5967 if (LINK_IS_UP(val64)) {
5968 val64 = readq(&bar0->adapter_control);
5969 val64 |= ADAPTER_CNTL_EN;
5970 writeq(val64, &bar0->adapter_control);
541ae68f
K
5971 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5972 subid)) {
1da177e4
LT
5973 val64 = readq(&bar0->gpio_control);
5974 val64 |= GPIO_CTRL_GPIO_0;
5975 writeq(val64, &bar0->gpio_control);
5976 val64 = readq(&bar0->gpio_control);
5977 } else {
5978 val64 |= ADAPTER_LED_ON;
5979 writeq(val64, &bar0->adapter_control);
5980 }
a371a07d
K
5981 if (s2io_link_fault_indication(nic) ==
5982 MAC_RMAC_ERR_TIMER) {
5983 val64 = readq(&bar0->adapter_status);
5984 if (!LINK_IS_UP(val64)) {
5985 DBG_PRINT(ERR_DBG, "%s:", dev->name);
5986 DBG_PRINT(ERR_DBG, " Link down");
5987 DBG_PRINT(ERR_DBG, "after ");
5988 DBG_PRINT(ERR_DBG, "enabling ");
5989 DBG_PRINT(ERR_DBG, "device \n");
5990 }
1da177e4
LT
5991 }
5992 if (nic->device_enabled_once == FALSE) {
5993 nic->device_enabled_once = TRUE;
5994 }
5995 s2io_link(nic, LINK_UP);
5996 } else {
541ae68f
K
5997 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
5998 subid)) {
1da177e4
LT
5999 val64 = readq(&bar0->gpio_control);
6000 val64 &= ~GPIO_CTRL_GPIO_0;
6001 writeq(val64, &bar0->gpio_control);
6002 val64 = readq(&bar0->gpio_control);
6003 }
6004 s2io_link(nic, LINK_DOWN);
6005 }
6006 } else { /* NIC is not Quiescent. */
6007 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6008 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6009 netif_stop_queue(dev);
6010 }
6011 clear_bit(0, &(nic->link_state));
6012}
6013
c92ca04b 6014static void s2io_card_down(nic_t * sp, int flag)
1da177e4
LT
6015{
6016 int cnt = 0;
6017 XENA_dev_config_t __iomem *bar0 = sp->bar0;
6018 unsigned long flags;
6019 register u64 val64 = 0;
c92ca04b 6020 struct net_device *dev = sp->dev;
1da177e4 6021
25fff88e 6022 del_timer_sync(&sp->alarm_timer);
1da177e4 6023 /* If s2io_set_link task is executing, wait till it completes. */
20346722 6024 while (test_and_set_bit(0, &(sp->link_state))) {
1da177e4 6025 msleep(50);
20346722 6026 }
1da177e4
LT
6027 atomic_set(&sp->card_state, CARD_DOWN);
6028
6029 /* disable Tx and Rx traffic on the NIC */
6030 stop_nic(sp);
c92ca04b
AR
6031 if (flag) {
6032 if (sp->intr_type == MSI_X) {
6033 int i;
6034 u16 msi_control;
6035
6036 for (i=1; (sp->s2io_entries[i].in_use ==
6037 MSIX_REGISTERED_SUCCESS); i++) {
6038 int vector = sp->entries[i].vector;
6039 void *arg = sp->s2io_entries[i].arg;
6040
6041 free_irq(vector, arg);
6042 }
6043 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6044 msi_control &= 0xFFFE; /* Disable MSI */
6045 pci_write_config_word(sp->pdev, 0x42, msi_control);
6046 pci_disable_msix(sp->pdev);
6047 } else {
6048 free_irq(sp->pdev->irq, dev);
6049 if (sp->intr_type == MSI)
6050 pci_disable_msi(sp->pdev);
6051 }
6052 }
6053 /* Waiting till all Interrupt handlers are complete */
6054 cnt = 0;
6055 do {
6056 msleep(10);
6057 if (!atomic_read(&sp->isr_cnt))
6058 break;
6059 cnt++;
6060 } while(cnt < 5);
1da177e4
LT
6061
6062 /* Kill tasklet. */
6063 tasklet_kill(&sp->task);
6064
6065 /* Check if the device is Quiescent and then Reset the NIC */
6066 do {
6067 val64 = readq(&bar0->adapter_status);
20346722 6068 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
1da177e4
LT
6069 break;
6070 }
6071
6072 msleep(50);
6073 cnt++;
6074 if (cnt == 10) {
6075 DBG_PRINT(ERR_DBG,
6076 "s2io_close:Device not Quiescent ");
6077 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6078 (unsigned long long) val64);
6079 break;
6080 }
6081 } while (1);
1da177e4
LT
6082 s2io_reset(sp);
6083
7ba013ac
K
6084 spin_lock_irqsave(&sp->tx_lock, flags);
6085 /* Free all Tx buffers */
1da177e4 6086 free_tx_buffers(sp);
7ba013ac
K
6087 spin_unlock_irqrestore(&sp->tx_lock, flags);
6088
6089 /* Free all Rx buffers */
6090 spin_lock_irqsave(&sp->rx_lock, flags);
1da177e4 6091 free_rx_buffers(sp);
7ba013ac 6092 spin_unlock_irqrestore(&sp->rx_lock, flags);
1da177e4 6093
1da177e4
LT
6094 clear_bit(0, &(sp->link_state));
6095}
6096
6097static int s2io_card_up(nic_t * sp)
6098{
cc6e7c44 6099 int i, ret = 0;
1da177e4
LT
6100 mac_info_t *mac_control;
6101 struct config_param *config;
6102 struct net_device *dev = (struct net_device *) sp->dev;
6103
6104 /* Initialize the H/W I/O registers */
6105 if (init_nic(sp) != 0) {
6106 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6107 dev->name);
6108 return -ENODEV;
6109 }
6110
cc6e7c44
RA
6111 if (sp->intr_type == MSI)
6112 ret = s2io_enable_msi(sp);
6113 else if (sp->intr_type == MSI_X)
6114 ret = s2io_enable_msi_x(sp);
6115 if (ret) {
6116 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6117 sp->intr_type = INTA;
6118 }
6119
20346722
K
6120 /*
6121 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
6122 * Rx ring and initializing buffers into 30 Rx blocks
6123 */
6124 mac_control = &sp->mac_control;
6125 config = &sp->config;
6126
6127 for (i = 0; i < config->rx_ring_num; i++) {
6128 if ((ret = fill_rx_buffers(sp, i))) {
6129 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6130 dev->name);
6131 s2io_reset(sp);
6132 free_rx_buffers(sp);
6133 return -ENOMEM;
6134 }
6135 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6136 atomic_read(&sp->rx_bufs_left[i]));
6137 }
6138
6139 /* Setting its receive mode */
6140 s2io_set_multicast(dev);
6141
7d3d0439
RA
6142 if (sp->lro) {
6143 /* Initialize max aggregatable pkts based on MTU */
6144 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6145 /* Check if we can use(if specified) user provided value */
6146 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6147 sp->lro_max_aggr_per_sess = lro_max_pkts;
6148 }
6149
1da177e4
LT
6150 /* Enable tasklet for the device */
6151 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6152
6153 /* Enable Rx Traffic and interrupts on the NIC */
6154 if (start_nic(sp)) {
6155 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6156 tasklet_kill(&sp->task);
6157 s2io_reset(sp);
6158 free_irq(dev->irq, dev);
6159 free_rx_buffers(sp);
6160 return -ENODEV;
6161 }
6162
25fff88e
K
6163 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6164
1da177e4
LT
6165 atomic_set(&sp->card_state, CARD_UP);
6166 return 0;
6167}
6168
20346722 6169/**
1da177e4
LT
6170 * s2io_restart_nic - Resets the NIC.
6171 * @data : long pointer to the device private structure
6172 * Description:
6173 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 6174 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
6175 * the run time of the watch dog routine which is run holding a
6176 * spin lock.
6177 */
6178
6179static void s2io_restart_nic(unsigned long data)
6180{
6181 struct net_device *dev = (struct net_device *) data;
6182 nic_t *sp = dev->priv;
6183
c92ca04b 6184 s2io_card_down(sp, 0);
1da177e4
LT
6185 if (s2io_card_up(sp)) {
6186 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6187 dev->name);
6188 }
6189 netif_wake_queue(dev);
6190 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6191 dev->name);
20346722 6192
1da177e4
LT
6193}
6194
20346722
K
6195/**
6196 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
6197 * @dev : Pointer to net device structure
6198 * Description:
6199 * This function is triggered if the Tx Queue is stopped
6200 * for a pre-defined amount of time when the Interface is still up.
6201 * If the Interface is jammed in such a situation, the hardware is
6202 * reset (by s2io_close) and restarted again (by s2io_open) to
6203 * overcome any problem that might have been caused in the hardware.
6204 * Return value:
6205 * void
6206 */
6207
6208static void s2io_tx_watchdog(struct net_device *dev)
6209{
6210 nic_t *sp = dev->priv;
6211
6212 if (netif_carrier_ok(dev)) {
6213 schedule_work(&sp->rst_timer_task);
bd1034f0 6214 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
6215 }
6216}
6217
6218/**
6219 * rx_osm_handler - To perform some OS related operations on SKB.
6220 * @sp: private member of the device structure,pointer to s2io_nic structure.
6221 * @skb : the socket buffer pointer.
6222 * @len : length of the packet
6223 * @cksum : FCS checksum of the frame.
6224 * @ring_no : the ring from which this RxD was extracted.
20346722 6225 * Description:
1da177e4
LT
6226 * This function is called by the Tx interrupt serivce routine to perform
6227 * some OS related operations on the SKB before passing it to the upper
6228 * layers. It mainly checks if the checksum is OK, if so adds it to the
6229 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6230 * to the upper layer. If the checksum is wrong, it increments the Rx
6231 * packet error count, frees the SKB and returns error.
6232 * Return value:
6233 * SUCCESS on success and -1 on failure.
6234 */
20346722 6235static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
1da177e4 6236{
20346722 6237 nic_t *sp = ring_data->nic;
1da177e4 6238 struct net_device *dev = (struct net_device *) sp->dev;
20346722
K
6239 struct sk_buff *skb = (struct sk_buff *)
6240 ((unsigned long) rxdp->Host_Control);
6241 int ring_no = ring_data->ring_no;
1da177e4 6242 u16 l3_csum, l4_csum;
863c11a9 6243 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7d3d0439 6244 lro_t *lro;
da6971d8 6245
20346722 6246 skb->dev = dev;
c92ca04b 6247
863c11a9 6248 if (err) {
bd1034f0
AR
6249 /* Check for parity error */
6250 if (err & 0x1) {
6251 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6252 }
6253
863c11a9
AR
6254 /*
6255 * Drop the packet if bad transfer code. Exception being
6256 * 0x5, which could be due to unsupported IPv6 extension header.
6257 * In this case, we let stack handle the packet.
6258 * Note that in this case, since checksum will be incorrect,
6259 * stack will validate the same.
6260 */
6261 if (err && ((err >> 48) != 0x5)) {
6262 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6263 dev->name, err);
6264 sp->stats.rx_crc_errors++;
6265 dev_kfree_skb(skb);
6266 atomic_dec(&sp->rx_bufs_left[ring_no]);
6267 rxdp->Host_Control = 0;
6268 return 0;
6269 }
20346722 6270 }
1da177e4 6271
20346722
K
6272 /* Updating statistics */
6273 rxdp->Host_Control = 0;
6274 sp->rx_pkt_count++;
6275 sp->stats.rx_packets++;
da6971d8
AR
6276 if (sp->rxd_mode == RXD_MODE_1) {
6277 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 6278
da6971d8
AR
6279 sp->stats.rx_bytes += len;
6280 skb_put(skb, len);
6281
6282 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6283 int get_block = ring_data->rx_curr_get_info.block_index;
6284 int get_off = ring_data->rx_curr_get_info.offset;
6285 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6286 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6287 unsigned char *buff = skb_push(skb, buf0_len);
6288
6289 buffAdd_t *ba = &ring_data->ba[get_block][get_off];
6290 sp->stats.rx_bytes += buf0_len + buf2_len;
6291 memcpy(buff, ba->ba_0, buf0_len);
6292
6293 if (sp->rxd_mode == RXD_MODE_3A) {
6294 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6295
6296 skb_put(skb, buf1_len);
6297 skb->len += buf2_len;
6298 skb->data_len += buf2_len;
6299 skb->truesize += buf2_len;
6300 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6301 sp->stats.rx_bytes += buf1_len;
6302
6303 } else
6304 skb_put(skb, buf2_len);
6305 }
20346722 6306
7d3d0439
RA
6307 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6308 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
6309 (sp->rx_csum)) {
6310 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
6311 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6312 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 6313 /*
1da177e4
LT
6314 * NIC verifies if the Checksum of the received
6315 * frame is Ok or not and accordingly returns
6316 * a flag in the RxD.
6317 */
6318 skb->ip_summed = CHECKSUM_UNNECESSARY;
7d3d0439
RA
6319 if (sp->lro) {
6320 u32 tcp_len;
6321 u8 *tcp;
6322 int ret = 0;
6323
6324 ret = s2io_club_tcp_session(skb->data, &tcp,
6325 &tcp_len, &lro, rxdp, sp);
6326 switch (ret) {
6327 case 3: /* Begin anew */
6328 lro->parent = skb;
6329 goto aggregate;
6330 case 1: /* Aggregate */
6331 {
6332 lro_append_pkt(sp, lro,
6333 skb, tcp_len);
6334 goto aggregate;
6335 }
6336 case 4: /* Flush session */
6337 {
6338 lro_append_pkt(sp, lro,
6339 skb, tcp_len);
6340 queue_rx_frame(lro->parent);
6341 clear_lro_session(lro);
6342 sp->mac_control.stats_info->
6343 sw_stat.flush_max_pkts++;
6344 goto aggregate;
6345 }
6346 case 2: /* Flush both */
6347 lro->parent->data_len =
6348 lro->frags_len;
6349 sp->mac_control.stats_info->
6350 sw_stat.sending_both++;
6351 queue_rx_frame(lro->parent);
6352 clear_lro_session(lro);
6353 goto send_up;
6354 case 0: /* sessions exceeded */
c92ca04b
AR
6355 case -1: /* non-TCP or not
6356 * L2 aggregatable
6357 */
7d3d0439
RA
6358 case 5: /*
6359 * First pkt in session not
6360 * L3/L4 aggregatable
6361 */
6362 break;
6363 default:
6364 DBG_PRINT(ERR_DBG,
6365 "%s: Samadhana!!\n",
6366 __FUNCTION__);
6367 BUG();
6368 }
6369 }
1da177e4 6370 } else {
20346722
K
6371 /*
6372 * Packet with erroneous checksum, let the
1da177e4
LT
6373 * upper layers deal with it.
6374 */
6375 skb->ip_summed = CHECKSUM_NONE;
6376 }
6377 } else {
6378 skb->ip_summed = CHECKSUM_NONE;
6379 }
6380
7d3d0439
RA
6381 if (!sp->lro) {
6382 skb->protocol = eth_type_trans(skb, dev);
1da177e4 6383#ifdef CONFIG_S2IO_NAPI
7d3d0439
RA
6384 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6385 /* Queueing the vlan frame to the upper layer */
6386 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6387 RXD_GET_VLAN_TAG(rxdp->Control_2));
6388 } else {
6389 netif_receive_skb(skb);
6390 }
1da177e4 6391#else
7d3d0439
RA
6392 if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
6393 /* Queueing the vlan frame to the upper layer */
6394 vlan_hwaccel_rx(skb, sp->vlgrp,
6395 RXD_GET_VLAN_TAG(rxdp->Control_2));
6396 } else {
6397 netif_rx(skb);
6398 }
1da177e4 6399#endif
7d3d0439
RA
6400 } else {
6401send_up:
6402 queue_rx_frame(skb);
6403 }
1da177e4 6404 dev->last_rx = jiffies;
7d3d0439 6405aggregate:
1da177e4 6406 atomic_dec(&sp->rx_bufs_left[ring_no]);
1da177e4
LT
6407 return SUCCESS;
6408}
6409
6410/**
6411 * s2io_link - stops/starts the Tx queue.
6412 * @sp : private member of the device structure, which is a pointer to the
6413 * s2io_nic structure.
6414 * @link : inidicates whether link is UP/DOWN.
6415 * Description:
6416 * This function stops/starts the Tx queue depending on whether the link
20346722
K
6417 * status of the NIC is is down or up. This is called by the Alarm
6418 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
6419 * Return value:
6420 * void.
6421 */
6422
26df54bf 6423static void s2io_link(nic_t * sp, int link)
1da177e4
LT
6424{
6425 struct net_device *dev = (struct net_device *) sp->dev;
6426
6427 if (link != sp->last_link_state) {
6428 if (link == LINK_DOWN) {
6429 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6430 netif_carrier_off(dev);
6431 } else {
6432 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6433 netif_carrier_on(dev);
6434 }
6435 }
6436 sp->last_link_state = link;
6437}
6438
6439/**
20346722
K
6440 * get_xena_rev_id - to identify revision ID of xena.
6441 * @pdev : PCI Dev structure
6442 * Description:
6443 * Function to identify the Revision ID of xena.
6444 * Return value:
6445 * returns the revision ID of the device.
6446 */
6447
26df54bf 6448static int get_xena_rev_id(struct pci_dev *pdev)
20346722
K
6449{
6450 u8 id = 0;
6451 int ret;
6452 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6453 return id;
6454}
6455
6456/**
6457 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6458 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
6459 * s2io_nic structure.
6460 * Description:
6461 * This function initializes a few of the PCI and PCI-X configuration registers
6462 * with recommended values.
6463 * Return value:
6464 * void
6465 */
6466
6467static void s2io_init_pci(nic_t * sp)
6468{
20346722 6469 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
6470
6471 /* Enable Data Parity Error Recovery in PCI-X command register. */
6472 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6473 &(pcix_cmd));
1da177e4 6474 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6475 (pcix_cmd | 1));
1da177e4 6476 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6477 &(pcix_cmd));
1da177e4
LT
6478
6479 /* Set the PErr Response bit in PCI command register. */
6480 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6481 pci_write_config_word(sp->pdev, PCI_COMMAND,
6482 (pci_cmd | PCI_COMMAND_PARITY));
6483 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
6484}
6485
6486MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
6487MODULE_LICENSE("GPL");
6c1792f4
JL
6488MODULE_VERSION(DRV_VERSION);
6489
1da177e4 6490module_param(tx_fifo_num, int, 0);
1da177e4 6491module_param(rx_ring_num, int, 0);
da6971d8 6492module_param(rx_ring_mode, int, 0);
20346722
K
6493module_param_array(tx_fifo_len, uint, NULL, 0);
6494module_param_array(rx_ring_sz, uint, NULL, 0);
20346722 6495module_param_array(rts_frm_len, uint, NULL, 0);
5e25b9dd 6496module_param(use_continuous_tx_intrs, int, 1);
1da177e4
LT
6497module_param(rmac_pause_time, int, 0);
6498module_param(mc_pause_threshold_q0q3, int, 0);
6499module_param(mc_pause_threshold_q4q7, int, 0);
6500module_param(shared_splits, int, 0);
6501module_param(tmac_util_period, int, 0);
6502module_param(rmac_util_period, int, 0);
b6e3f982 6503module_param(bimodal, bool, 0);
da6971d8 6504module_param(l3l4hdr_size, int , 0);
1da177e4
LT
6505#ifndef CONFIG_S2IO_NAPI
6506module_param(indicate_max_pkts, int, 0);
6507#endif
303bcb4b 6508module_param(rxsync_frequency, int, 0);
cc6e7c44 6509module_param(intr_type, int, 0);
7d3d0439
RA
6510module_param(lro, int, 0);
6511module_param(lro_max_pkts, int, 0);
20346722 6512
9dc737a7
AR
6513static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6514{
6515 if ( tx_fifo_num > 8) {
6516 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6517 "supported\n");
6518 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6519 tx_fifo_num = 8;
6520 }
6521 if ( rx_ring_num > 8) {
6522 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6523 "supported\n");
6524 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6525 rx_ring_num = 8;
6526 }
6527#ifdef CONFIG_S2IO_NAPI
6528 if (*dev_intr_type != INTA) {
6529 DBG_PRINT(ERR_DBG, "s2io: NAPI cannot be enabled when "
6530 "MSI/MSI-X is enabled. Defaulting to INTA\n");
6531 *dev_intr_type = INTA;
6532 }
6533#endif
6534#ifndef CONFIG_PCI_MSI
6535 if (*dev_intr_type != INTA) {
6536 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6537 "MSI/MSI-X. Defaulting to INTA\n");
6538 *dev_intr_type = INTA;
6539 }
6540#else
6541 if (*dev_intr_type > MSI_X) {
6542 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6543 "Defaulting to INTA\n");
6544 *dev_intr_type = INTA;
6545 }
6546#endif
6547 if ((*dev_intr_type == MSI_X) &&
6548 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6549 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6550 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6551 "Defaulting to INTA\n");
6552 *dev_intr_type = INTA;
6553 }
6554 if (rx_ring_mode > 3) {
6555 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6556 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6557 rx_ring_mode = 3;
6558 }
6559 return SUCCESS;
6560}
6561
1da177e4 6562/**
20346722 6563 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
6564 * @pdev : structure containing the PCI related information of the device.
6565 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6566 * Description:
6567 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
6568 * All OS related initialization including memory and device structure and
6569 * initlaization of the device private variable is done. Also the swapper
6570 * control register is initialized to enable read and write into the I/O
1da177e4
LT
6571 * registers of the device.
6572 * Return value:
6573 * returns 0 on success and negative on failure.
6574 */
6575
6576static int __devinit
6577s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6578{
6579 nic_t *sp;
6580 struct net_device *dev;
1da177e4
LT
6581 int i, j, ret;
6582 int dma_flag = FALSE;
6583 u32 mac_up, mac_down;
6584 u64 val64 = 0, tmp64 = 0;
6585 XENA_dev_config_t __iomem *bar0 = NULL;
6586 u16 subid;
6587 mac_info_t *mac_control;
6588 struct config_param *config;
541ae68f 6589 int mode;
cc6e7c44 6590 u8 dev_intr_type = intr_type;
1da177e4 6591
9dc737a7
AR
6592 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6593 return ret;
1da177e4
LT
6594
6595 if ((ret = pci_enable_device(pdev))) {
6596 DBG_PRINT(ERR_DBG,
6597 "s2io_init_nic: pci_enable_device failed\n");
6598 return ret;
6599 }
6600
1e7f0bd8 6601 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
6602 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6603 dma_flag = TRUE;
1da177e4 6604 if (pci_set_consistent_dma_mask
1e7f0bd8 6605 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
6606 DBG_PRINT(ERR_DBG,
6607 "Unable to obtain 64bit DMA for \
6608 consistent allocations\n");
6609 pci_disable_device(pdev);
6610 return -ENOMEM;
6611 }
1e7f0bd8 6612 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
6613 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6614 } else {
6615 pci_disable_device(pdev);
6616 return -ENOMEM;
6617 }
cc6e7c44
RA
6618 if (dev_intr_type != MSI_X) {
6619 if (pci_request_regions(pdev, s2io_driver_name)) {
6620 DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
6621 pci_disable_device(pdev);
6622 return -ENODEV;
6623 }
6624 }
6625 else {
6626 if (!(request_mem_region(pci_resource_start(pdev, 0),
6627 pci_resource_len(pdev, 0), s2io_driver_name))) {
6628 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6629 pci_disable_device(pdev);
6630 return -ENODEV;
6631 }
6632 if (!(request_mem_region(pci_resource_start(pdev, 2),
6633 pci_resource_len(pdev, 2), s2io_driver_name))) {
6634 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6635 release_mem_region(pci_resource_start(pdev, 0),
6636 pci_resource_len(pdev, 0));
6637 pci_disable_device(pdev);
6638 return -ENODEV;
6639 }
1da177e4
LT
6640 }
6641
6642 dev = alloc_etherdev(sizeof(nic_t));
6643 if (dev == NULL) {
6644 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
6645 pci_disable_device(pdev);
6646 pci_release_regions(pdev);
6647 return -ENODEV;
6648 }
6649
6650 pci_set_master(pdev);
6651 pci_set_drvdata(pdev, dev);
6652 SET_MODULE_OWNER(dev);
6653 SET_NETDEV_DEV(dev, &pdev->dev);
6654
6655 /* Private member variable initialized to s2io NIC structure */
6656 sp = dev->priv;
6657 memset(sp, 0, sizeof(nic_t));
6658 sp->dev = dev;
6659 sp->pdev = pdev;
1da177e4 6660 sp->high_dma_flag = dma_flag;
1da177e4 6661 sp->device_enabled_once = FALSE;
da6971d8
AR
6662 if (rx_ring_mode == 1)
6663 sp->rxd_mode = RXD_MODE_1;
6664 if (rx_ring_mode == 2)
6665 sp->rxd_mode = RXD_MODE_3B;
6666 if (rx_ring_mode == 3)
6667 sp->rxd_mode = RXD_MODE_3A;
6668
cc6e7c44 6669 sp->intr_type = dev_intr_type;
1da177e4 6670
541ae68f
K
6671 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
6672 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
6673 sp->device_type = XFRAME_II_DEVICE;
6674 else
6675 sp->device_type = XFRAME_I_DEVICE;
6676
7d3d0439 6677 sp->lro = lro;
cc6e7c44 6678
1da177e4
LT
6679 /* Initialize some PCI/PCI-X fields of the NIC. */
6680 s2io_init_pci(sp);
6681
20346722 6682 /*
1da177e4 6683 * Setting the device configuration parameters.
20346722
K
6684 * Most of these parameters can be specified by the user during
6685 * module insertion as they are module loadable parameters. If
6686 * these parameters are not not specified during load time, they
1da177e4
LT
6687 * are initialized with default values.
6688 */
6689 mac_control = &sp->mac_control;
6690 config = &sp->config;
6691
6692 /* Tx side parameters. */
1da177e4
LT
6693 config->tx_fifo_num = tx_fifo_num;
6694 for (i = 0; i < MAX_TX_FIFOS; i++) {
6695 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
6696 config->tx_cfg[i].fifo_priority = i;
6697 }
6698
20346722
K
6699 /* mapping the QoS priority to the configured fifos */
6700 for (i = 0; i < MAX_TX_FIFOS; i++)
6701 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
6702
1da177e4
LT
6703 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
6704 for (i = 0; i < config->tx_fifo_num; i++) {
6705 config->tx_cfg[i].f_no_snoop =
6706 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
6707 if (config->tx_cfg[i].fifo_len < 65) {
6708 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
6709 break;
6710 }
6711 }
fed5eccd
AR
6712 /* + 2 because one Txd for skb->data and one Txd for UFO */
6713 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
6714
6715 /* Rx side parameters. */
1da177e4
LT
6716 config->rx_ring_num = rx_ring_num;
6717 for (i = 0; i < MAX_RX_RINGS; i++) {
6718 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 6719 (rxd_count[sp->rxd_mode] + 1);
1da177e4
LT
6720 config->rx_cfg[i].ring_priority = i;
6721 }
6722
6723 for (i = 0; i < rx_ring_num; i++) {
6724 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
6725 config->rx_cfg[i].f_no_snoop =
6726 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
6727 }
6728
6729 /* Setting Mac Control parameters */
6730 mac_control->rmac_pause_time = rmac_pause_time;
6731 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
6732 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
6733
6734
6735 /* Initialize Ring buffer parameters. */
6736 for (i = 0; i < config->rx_ring_num; i++)
6737 atomic_set(&sp->rx_bufs_left[i], 0);
6738
7ba013ac
K
6739 /* Initialize the number of ISRs currently running */
6740 atomic_set(&sp->isr_cnt, 0);
6741
1da177e4
LT
6742 /* initialize the shared memory used by the NIC and the host */
6743 if (init_shared_mem(sp)) {
6744 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
0b1f7ebe 6745 __FUNCTION__);
1da177e4
LT
6746 ret = -ENOMEM;
6747 goto mem_alloc_failed;
6748 }
6749
6750 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
6751 pci_resource_len(pdev, 0));
6752 if (!sp->bar0) {
6753 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
6754 dev->name);
6755 ret = -ENOMEM;
6756 goto bar0_remap_failed;
6757 }
6758
6759 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
6760 pci_resource_len(pdev, 2));
6761 if (!sp->bar1) {
6762 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
6763 dev->name);
6764 ret = -ENOMEM;
6765 goto bar1_remap_failed;
6766 }
6767
6768 dev->irq = pdev->irq;
6769 dev->base_addr = (unsigned long) sp->bar0;
6770
6771 /* Initializing the BAR1 address as the start of the FIFO pointer. */
6772 for (j = 0; j < MAX_TX_FIFOS; j++) {
6773 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
6774 (sp->bar1 + (j * 0x00020000));
6775 }
6776
6777 /* Driver entry points */
6778 dev->open = &s2io_open;
6779 dev->stop = &s2io_close;
6780 dev->hard_start_xmit = &s2io_xmit;
6781 dev->get_stats = &s2io_get_stats;
6782 dev->set_multicast_list = &s2io_set_multicast;
6783 dev->do_ioctl = &s2io_ioctl;
6784 dev->change_mtu = &s2io_change_mtu;
6785 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02
K
6786 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
6787 dev->vlan_rx_register = s2io_vlan_rx_register;
6788 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
20346722 6789
1da177e4
LT
6790 /*
6791 * will use eth_mac_addr() for dev->set_mac_address
6792 * mac address will be set every time dev->open() is called
6793 */
20346722 6794#if defined(CONFIG_S2IO_NAPI)
1da177e4 6795 dev->poll = s2io_poll;
20346722 6796 dev->weight = 32;
1da177e4
LT
6797#endif
6798
6799 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
6800 if (sp->high_dma_flag == TRUE)
6801 dev->features |= NETIF_F_HIGHDMA;
6802#ifdef NETIF_F_TSO
6803 dev->features |= NETIF_F_TSO;
6804#endif
fed5eccd
AR
6805 if (sp->device_type & XFRAME_II_DEVICE) {
6806 dev->features |= NETIF_F_UFO;
6807 dev->features |= NETIF_F_HW_CSUM;
6808 }
1da177e4
LT
6809
6810 dev->tx_timeout = &s2io_tx_watchdog;
6811 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
6812 INIT_WORK(&sp->rst_timer_task,
6813 (void (*)(void *)) s2io_restart_nic, dev);
6814 INIT_WORK(&sp->set_link_task,
6815 (void (*)(void *)) s2io_set_link, sp);
6816
e960fc5c 6817 pci_save_state(sp->pdev);
1da177e4
LT
6818
6819 /* Setting swapper control on the NIC, for proper reset operation */
6820 if (s2io_set_swapper(sp)) {
6821 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
6822 dev->name);
6823 ret = -EAGAIN;
6824 goto set_swap_failed;
6825 }
6826
541ae68f
K
6827 /* Verify if the Herc works on the slot its placed into */
6828 if (sp->device_type & XFRAME_II_DEVICE) {
6829 mode = s2io_verify_pci_mode(sp);
6830 if (mode < 0) {
6831 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
6832 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
6833 ret = -EBADSLT;
6834 goto set_swap_failed;
6835 }
6836 }
6837
6838 /* Not needed for Herc */
6839 if (sp->device_type & XFRAME_I_DEVICE) {
6840 /*
6841 * Fix for all "FFs" MAC address problems observed on
6842 * Alpha platforms
6843 */
6844 fix_mac_address(sp);
6845 s2io_reset(sp);
6846 }
1da177e4
LT
6847
6848 /*
1da177e4
LT
6849 * MAC address initialization.
6850 * For now only one mac address will be read and used.
6851 */
6852 bar0 = sp->bar0;
6853 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
6854 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
6855 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b
AR
6856 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
6857 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING);
1da177e4
LT
6858 tmp64 = readq(&bar0->rmac_addr_data0_mem);
6859 mac_down = (u32) tmp64;
6860 mac_up = (u32) (tmp64 >> 32);
6861
6862 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
6863
6864 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
6865 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
6866 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
6867 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
6868 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
6869 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
6870
1da177e4
LT
6871 /* Set the factory defined MAC address initially */
6872 dev->addr_len = ETH_ALEN;
6873 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
6874
6875 /*
20346722 6876 * Initialize the tasklet status and link state flags
541ae68f 6877 * and the card state parameter
1da177e4
LT
6878 */
6879 atomic_set(&(sp->card_state), 0);
6880 sp->tasklet_status = 0;
6881 sp->link_state = 0;
6882
1da177e4
LT
6883 /* Initialize spinlocks */
6884 spin_lock_init(&sp->tx_lock);
6885#ifndef CONFIG_S2IO_NAPI
6886 spin_lock_init(&sp->put_lock);
6887#endif
7ba013ac 6888 spin_lock_init(&sp->rx_lock);
1da177e4 6889
20346722
K
6890 /*
6891 * SXE-002: Configure link and activity LED to init state
6892 * on driver load.
1da177e4
LT
6893 */
6894 subid = sp->pdev->subsystem_device;
6895 if ((subid & 0xFF) >= 0x07) {
6896 val64 = readq(&bar0->gpio_control);
6897 val64 |= 0x0000800000000000ULL;
6898 writeq(val64, &bar0->gpio_control);
6899 val64 = 0x0411040400000000ULL;
6900 writeq(val64, (void __iomem *) bar0 + 0x2700);
6901 val64 = readq(&bar0->gpio_control);
6902 }
6903
6904 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
6905
6906 if (register_netdev(dev)) {
6907 DBG_PRINT(ERR_DBG, "Device registration failed\n");
6908 ret = -ENODEV;
6909 goto register_failed;
6910 }
9dc737a7
AR
6911 s2io_vpd_read(sp);
6912 DBG_PRINT(ERR_DBG, "%s: Neterion %s",dev->name, sp->product_name);
6913 DBG_PRINT(ERR_DBG, "(rev %d), Driver version %s\n",
541ae68f
K
6914 get_xena_rev_id(sp->pdev),
6915 s2io_driver_version);
9dc737a7
AR
6916 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
6917 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
6918 "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
541ae68f
K
6919 sp->def_mac_addr[0].mac_addr[0],
6920 sp->def_mac_addr[0].mac_addr[1],
6921 sp->def_mac_addr[0].mac_addr[2],
6922 sp->def_mac_addr[0].mac_addr[3],
6923 sp->def_mac_addr[0].mac_addr[4],
6924 sp->def_mac_addr[0].mac_addr[5]);
9dc737a7 6925 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 6926 mode = s2io_print_pci_mode(sp);
541ae68f 6927 if (mode < 0) {
9dc737a7 6928 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 6929 ret = -EBADSLT;
9dc737a7 6930 unregister_netdev(dev);
541ae68f
K
6931 goto set_swap_failed;
6932 }
541ae68f 6933 }
9dc737a7
AR
6934 switch(sp->rxd_mode) {
6935 case RXD_MODE_1:
6936 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
6937 dev->name);
6938 break;
6939 case RXD_MODE_3B:
6940 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
6941 dev->name);
6942 break;
6943 case RXD_MODE_3A:
6944 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
6945 dev->name);
6946 break;
6947 }
6948#ifdef CONFIG_S2IO_NAPI
6949 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
6950#endif
6951 switch(sp->intr_type) {
6952 case INTA:
6953 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
6954 break;
6955 case MSI:
6956 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
6957 break;
6958 case MSI_X:
6959 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
6960 break;
6961 }
7d3d0439
RA
6962 if (sp->lro)
6963 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 6964 dev->name);
7d3d0439 6965
7ba013ac 6966 /* Initialize device name */
9dc737a7 6967 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 6968
b6e3f982
K
6969 /* Initialize bimodal Interrupts */
6970 sp->config.bimodal = bimodal;
6971 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
6972 sp->config.bimodal = 0;
6973 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
6974 dev->name);
6975 }
6976
20346722
K
6977 /*
6978 * Make Link state as off at this point, when the Link change
6979 * interrupt comes the state will be automatically changed to
1da177e4
LT
6980 * the right state.
6981 */
6982 netif_carrier_off(dev);
1da177e4
LT
6983
6984 return 0;
6985
6986 register_failed:
6987 set_swap_failed:
6988 iounmap(sp->bar1);
6989 bar1_remap_failed:
6990 iounmap(sp->bar0);
6991 bar0_remap_failed:
6992 mem_alloc_failed:
6993 free_shared_mem(sp);
6994 pci_disable_device(pdev);
cc6e7c44
RA
6995 if (dev_intr_type != MSI_X)
6996 pci_release_regions(pdev);
6997 else {
6998 release_mem_region(pci_resource_start(pdev, 0),
6999 pci_resource_len(pdev, 0));
7000 release_mem_region(pci_resource_start(pdev, 2),
7001 pci_resource_len(pdev, 2));
7002 }
1da177e4
LT
7003 pci_set_drvdata(pdev, NULL);
7004 free_netdev(dev);
7005
7006 return ret;
7007}
7008
7009/**
20346722 7010 * s2io_rem_nic - Free the PCI device
1da177e4 7011 * @pdev: structure containing the PCI related information of the device.
20346722 7012 * Description: This function is called by the Pci subsystem to release a
1da177e4 7013 * PCI device and free up all resource held up by the device. This could
20346722 7014 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
7015 * from memory.
7016 */
7017
7018static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7019{
7020 struct net_device *dev =
7021 (struct net_device *) pci_get_drvdata(pdev);
7022 nic_t *sp;
7023
7024 if (dev == NULL) {
7025 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7026 return;
7027 }
7028
7029 sp = dev->priv;
7030 unregister_netdev(dev);
7031
7032 free_shared_mem(sp);
7033 iounmap(sp->bar0);
7034 iounmap(sp->bar1);
7035 pci_disable_device(pdev);
cc6e7c44
RA
7036 if (sp->intr_type != MSI_X)
7037 pci_release_regions(pdev);
7038 else {
7039 release_mem_region(pci_resource_start(pdev, 0),
7040 pci_resource_len(pdev, 0));
7041 release_mem_region(pci_resource_start(pdev, 2),
7042 pci_resource_len(pdev, 2));
7043 }
1da177e4 7044 pci_set_drvdata(pdev, NULL);
1da177e4
LT
7045 free_netdev(dev);
7046}
7047
7048/**
7049 * s2io_starter - Entry point for the driver
7050 * Description: This function is the entry point for the driver. It verifies
7051 * the module loadable parameters and initializes PCI configuration space.
7052 */
7053
7054int __init s2io_starter(void)
7055{
7056 return pci_module_init(&s2io_driver);
7057}
7058
7059/**
20346722 7060 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
7061 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7062 */
7063
26df54bf 7064static void s2io_closer(void)
1da177e4
LT
7065{
7066 pci_unregister_driver(&s2io_driver);
7067 DBG_PRINT(INIT_DBG, "cleanup done\n");
7068}
7069
7070module_init(s2io_starter);
7071module_exit(s2io_closer);
7d3d0439
RA
7072
7073static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7074 struct tcphdr **tcp, RxD_t *rxdp)
7075{
7076 int ip_off;
7077 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7078
7079 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7080 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7081 __FUNCTION__);
7082 return -1;
7083 }
7084
7085 /* TODO:
7086 * By default the VLAN field in the MAC is stripped by the card, if this
7087 * feature is turned off in rx_pa_cfg register, then the ip_off field
7088 * has to be shifted by a further 2 bytes
7089 */
7090 switch (l2_type) {
7091 case 0: /* DIX type */
7092 case 4: /* DIX type with VLAN */
7093 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7094 break;
7095 /* LLC, SNAP etc are considered non-mergeable */
7096 default:
7097 return -1;
7098 }
7099
7100 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7101 ip_len = (u8)((*ip)->ihl);
7102 ip_len <<= 2;
7103 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7104
7105 return 0;
7106}
7107
7108static int check_for_socket_match(lro_t *lro, struct iphdr *ip,
7109 struct tcphdr *tcp)
7110{
7111 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7112 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7113 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7114 return -1;
7115 return 0;
7116}
7117
7118static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7119{
7120 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7121}
7122
7123static void initiate_new_session(lro_t *lro, u8 *l2h,
7124 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7125{
7126 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7127 lro->l2h = l2h;
7128 lro->iph = ip;
7129 lro->tcph = tcp;
7130 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7131 lro->tcp_ack = ntohl(tcp->ack_seq);
7132 lro->sg_num = 1;
7133 lro->total_len = ntohs(ip->tot_len);
7134 lro->frags_len = 0;
7135 /*
7136 * check if we saw TCP timestamp. Other consistency checks have
7137 * already been done.
7138 */
7139 if (tcp->doff == 8) {
7140 u32 *ptr;
7141 ptr = (u32 *)(tcp+1);
7142 lro->saw_ts = 1;
7143 lro->cur_tsval = *(ptr+1);
7144 lro->cur_tsecr = *(ptr+2);
7145 }
7146 lro->in_use = 1;
7147}
7148
7149static void update_L3L4_header(nic_t *sp, lro_t *lro)
7150{
7151 struct iphdr *ip = lro->iph;
7152 struct tcphdr *tcp = lro->tcph;
7153 u16 nchk;
7154 StatInfo_t *statinfo = sp->mac_control.stats_info;
7155 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7156
7157 /* Update L3 header */
7158 ip->tot_len = htons(lro->total_len);
7159 ip->check = 0;
7160 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7161 ip->check = nchk;
7162
7163 /* Update L4 header */
7164 tcp->ack_seq = lro->tcp_ack;
7165 tcp->window = lro->window;
7166
7167 /* Update tsecr field if this session has timestamps enabled */
7168 if (lro->saw_ts) {
7169 u32 *ptr = (u32 *)(tcp + 1);
7170 *(ptr+2) = lro->cur_tsecr;
7171 }
7172
7173 /* Update counters required for calculation of
7174 * average no. of packets aggregated.
7175 */
7176 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7177 statinfo->sw_stat.num_aggregations++;
7178}
7179
7180static void aggregate_new_rx(lro_t *lro, struct iphdr *ip,
7181 struct tcphdr *tcp, u32 l4_pyld)
7182{
7183 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7184 lro->total_len += l4_pyld;
7185 lro->frags_len += l4_pyld;
7186 lro->tcp_next_seq += l4_pyld;
7187 lro->sg_num++;
7188
7189 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7190 lro->tcp_ack = tcp->ack_seq;
7191 lro->window = tcp->window;
7192
7193 if (lro->saw_ts) {
7194 u32 *ptr;
7195 /* Update tsecr and tsval from this packet */
7196 ptr = (u32 *) (tcp + 1);
7197 lro->cur_tsval = *(ptr + 1);
7198 lro->cur_tsecr = *(ptr + 2);
7199 }
7200}
7201
7202static int verify_l3_l4_lro_capable(lro_t *l_lro, struct iphdr *ip,
7203 struct tcphdr *tcp, u32 tcp_pyld_len)
7204{
7d3d0439
RA
7205 u8 *ptr;
7206
79dc1901
AM
7207 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7208
7d3d0439
RA
7209 if (!tcp_pyld_len) {
7210 /* Runt frame or a pure ack */
7211 return -1;
7212 }
7213
7214 if (ip->ihl != 5) /* IP has options */
7215 return -1;
7216
7217 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7218 !tcp->ack) {
7219 /*
7220 * Currently recognize only the ack control word and
7221 * any other control field being set would result in
7222 * flushing the LRO session
7223 */
7224 return -1;
7225 }
7226
7227 /*
7228 * Allow only one TCP timestamp option. Don't aggregate if
7229 * any other options are detected.
7230 */
7231 if (tcp->doff != 5 && tcp->doff != 8)
7232 return -1;
7233
7234 if (tcp->doff == 8) {
7235 ptr = (u8 *)(tcp + 1);
7236 while (*ptr == TCPOPT_NOP)
7237 ptr++;
7238 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7239 return -1;
7240
7241 /* Ensure timestamp value increases monotonically */
7242 if (l_lro)
7243 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7244 return -1;
7245
7246 /* timestamp echo reply should be non-zero */
7247 if (*((u32 *)(ptr+6)) == 0)
7248 return -1;
7249 }
7250
7251 return 0;
7252}
7253
7254static int
7255s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro,
7256 RxD_t *rxdp, nic_t *sp)
7257{
7258 struct iphdr *ip;
7259 struct tcphdr *tcph;
7260 int ret = 0, i;
7261
7262 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7263 rxdp))) {
7264 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7265 ip->saddr, ip->daddr);
7266 } else {
7267 return ret;
7268 }
7269
7270 tcph = (struct tcphdr *)*tcp;
7271 *tcp_len = get_l4_pyld_length(ip, tcph);
7272 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7273 lro_t *l_lro = &sp->lro0_n[i];
7274 if (l_lro->in_use) {
7275 if (check_for_socket_match(l_lro, ip, tcph))
7276 continue;
7277 /* Sock pair matched */
7278 *lro = l_lro;
7279
7280 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7281 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7282 "0x%x, actual 0x%x\n", __FUNCTION__,
7283 (*lro)->tcp_next_seq,
7284 ntohl(tcph->seq));
7285
7286 sp->mac_control.stats_info->
7287 sw_stat.outof_sequence_pkts++;
7288 ret = 2;
7289 break;
7290 }
7291
7292 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7293 ret = 1; /* Aggregate */
7294 else
7295 ret = 2; /* Flush both */
7296 break;
7297 }
7298 }
7299
7300 if (ret == 0) {
7301 /* Before searching for available LRO objects,
7302 * check if the pkt is L3/L4 aggregatable. If not
7303 * don't create new LRO session. Just send this
7304 * packet up.
7305 */
7306 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7307 return 5;
7308 }
7309
7310 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7311 lro_t *l_lro = &sp->lro0_n[i];
7312 if (!(l_lro->in_use)) {
7313 *lro = l_lro;
7314 ret = 3; /* Begin anew */
7315 break;
7316 }
7317 }
7318 }
7319
7320 if (ret == 0) { /* sessions exceeded */
7321 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7322 __FUNCTION__);
7323 *lro = NULL;
7324 return ret;
7325 }
7326
7327 switch (ret) {
7328 case 3:
7329 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7330 break;
7331 case 2:
7332 update_L3L4_header(sp, *lro);
7333 break;
7334 case 1:
7335 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7336 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7337 update_L3L4_header(sp, *lro);
7338 ret = 4; /* Flush the LRO */
7339 }
7340 break;
7341 default:
7342 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7343 __FUNCTION__);
7344 break;
7345 }
7346
7347 return ret;
7348}
7349
7350static void clear_lro_session(lro_t *lro)
7351{
7352 static u16 lro_struct_size = sizeof(lro_t);
7353
7354 memset(lro, 0, lro_struct_size);
7355}
7356
7357static void queue_rx_frame(struct sk_buff *skb)
7358{
7359 struct net_device *dev = skb->dev;
7360
7361 skb->protocol = eth_type_trans(skb, dev);
7362#ifdef CONFIG_S2IO_NAPI
7363 netif_receive_skb(skb);
7364#else
7365 netif_rx(skb);
7366#endif
7367}
7368
7369static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb,
7370 u32 tcp_len)
7371{
7372 struct sk_buff *tmp, *first = lro->parent;
7373
7374 first->len += tcp_len;
7375 first->data_len = lro->frags_len;
7376 skb_pull(skb, (skb->len - tcp_len));
7377 if ((tmp = skb_shinfo(first)->frag_list)) {
7378 while (tmp->next)
7379 tmp = tmp->next;
7380 tmp->next = skb;
7381 }
7382 else
7383 skb_shinfo(first)->frag_list = skb;
7384 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7385 return;
7386}