s2io.c: fix spelling explaination
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
0c61ed5f 3 * Copyright(c) 2002-2007 Neterion Inc.
d44570e4 4 *
1da177e4
LT
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4 27 * The module loadable parameters that are supported by the driver and a brief
a2a20aef 28 * explanation of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
43b7c451 41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
9dc737a7
AR
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
3a3d5756
SH
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
1da177e4
LT
55 ************************************************************************/
56
6cef2b8e
JP
57#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
1da177e4
LT
59#include <linux/module.h>
60#include <linux/types.h>
61#include <linux/errno.h>
62#include <linux/ioport.h>
63#include <linux/pci.h>
1e7f0bd8 64#include <linux/dma-mapping.h>
1da177e4
LT
65#include <linux/kernel.h>
66#include <linux/netdevice.h>
67#include <linux/etherdevice.h>
40239396 68#include <linux/mdio.h>
1da177e4
LT
69#include <linux/skbuff.h>
70#include <linux/init.h>
71#include <linux/delay.h>
72#include <linux/stddef.h>
73#include <linux/ioctl.h>
74#include <linux/timex.h>
1da177e4 75#include <linux/ethtool.h>
1da177e4 76#include <linux/workqueue.h>
be3a6b02 77#include <linux/if_vlan.h>
7d3d0439
RA
78#include <linux/ip.h>
79#include <linux/tcp.h>
d44570e4
JP
80#include <linux/uaccess.h>
81#include <linux/io.h>
7d3d0439 82#include <net/tcp.h>
1da177e4 83
1da177e4 84#include <asm/system.h>
fe931395 85#include <asm/div64.h>
330ce0de 86#include <asm/irq.h>
1da177e4
LT
87
88/* local include */
89#include "s2io.h"
90#include "s2io-regs.h"
91
29d0a2b0 92#define DRV_VERSION "2.0.26.25"
6c1792f4 93
1da177e4 94/* S2io Driver name & version. */
20346722 95static char s2io_driver_name[] = "Neterion";
6c1792f4 96static char s2io_driver_version[] = DRV_VERSION;
1da177e4 97
d44570e4
JP
98static int rxd_size[2] = {32, 48};
99static int rxd_count[2] = {127, 85};
da6971d8 100
1ee6dd77 101static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd
K
102{
103 int ret;
104
105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
d44570e4 106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
5e25b9dd
K
107
108 return ret;
109}
110
20346722 111/*
1da177e4
LT
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
115 */
d44570e4
JP
116#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
120
121#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
1da177e4 123
d44570e4 124static inline int is_s2io_card_up(const struct s2io_nic *sp)
92b84437
SS
125{
126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127}
128
1da177e4 129/* Ethtool related variables and Macros. */
6fce365d 130static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
1da177e4
LT
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
136};
137
6fce365d 138static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
139 {"tmac_frms"},
140 {"tmac_data_octets"},
141 {"tmac_drop_frms"},
142 {"tmac_mcst_frms"},
143 {"tmac_bcst_frms"},
144 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
145 {"tmac_ttl_octets"},
146 {"tmac_ucst_frms"},
147 {"tmac_nucst_frms"},
1da177e4 148 {"tmac_any_err_frms"},
bd1034f0 149 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
150 {"tmac_vld_ip_octets"},
151 {"tmac_vld_ip"},
152 {"tmac_drop_ip"},
153 {"tmac_icmp"},
154 {"tmac_rst_tcp"},
155 {"tmac_tcp"},
156 {"tmac_udp"},
157 {"rmac_vld_frms"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
160 {"rmac_drop_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
bd1034f0 164 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
165 {"rmac_long_frms"},
166 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
167 {"rmac_unsup_ctrl_frms"},
168 {"rmac_ttl_octets"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
1da177e4 171 {"rmac_discarded_frms"},
bd1034f0
AR
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
174 {"rmac_ttl_frms"},
1da177e4
LT
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
177 {"rmac_frag_frms"},
178 {"rmac_jabber_frms"},
bd1034f0
AR
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
185 {"rmac_ip"},
186 {"rmac_ip_octets"},
187 {"rmac_hdr_err_ip"},
188 {"rmac_drop_ip"},
189 {"rmac_icmp"},
190 {"rmac_tcp"},
191 {"rmac_udp"},
192 {"rmac_err_drp_udp"},
bd1034f0
AR
193 {"rmac_xgmii_err_sym"},
194 {"rmac_frms_q0"},
195 {"rmac_frms_q1"},
196 {"rmac_frms_q2"},
197 {"rmac_frms_q3"},
198 {"rmac_frms_q4"},
199 {"rmac_frms_q5"},
200 {"rmac_frms_q6"},
201 {"rmac_frms_q7"},
202 {"rmac_full_q0"},
203 {"rmac_full_q1"},
204 {"rmac_full_q2"},
205 {"rmac_full_q3"},
206 {"rmac_full_q4"},
207 {"rmac_full_q5"},
208 {"rmac_full_q6"},
209 {"rmac_full_q7"},
1da177e4 210 {"rmac_pause_cnt"},
bd1034f0
AR
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
213 {"rmac_accepted_ip"},
214 {"rmac_err_tcp"},
bd1034f0
AR
215 {"rd_req_cnt"},
216 {"new_rd_req_cnt"},
217 {"new_rd_req_rtry_cnt"},
218 {"rd_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
220 {"wr_req_cnt"},
221 {"new_wr_req_cnt"},
222 {"new_wr_req_rtry_cnt"},
223 {"wr_rtry_cnt"},
224 {"wr_disc_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
226 {"txp_wr_cnt"},
227 {"txd_rd_cnt"},
228 {"txd_wr_cnt"},
229 {"rxd_rd_cnt"},
230 {"rxd_wr_cnt"},
231 {"txf_rd_cnt"},
fa1f0cb3
SS
232 {"rxf_wr_cnt"}
233};
234
6fce365d 235static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
243 {"rmac_vlan_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
246 {"rmac_pf_discard"},
247 {"rmac_da_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
251 {"link_fault_cnt"}
252};
253
6fce365d 254static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac
K
255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
bd1034f0
AR
258 {"parity_err_cnt"},
259 {"serious_err_cnt"},
260 {"soft_reset_cnt"},
261 {"fifo_full_cnt"},
8116f3cf
SS
262 {"ring_0_full_cnt"},
263 {"ring_1_full_cnt"},
264 {"ring_2_full_cnt"},
265 {"ring_3_full_cnt"},
266 {"ring_4_full_cnt"},
267 {"ring_5_full_cnt"},
268 {"ring_6_full_cnt"},
269 {"ring_7_full_cnt"},
43b7c451
SH
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
290 {"mem_allocated"},
291 {"mem_freed"},
292 {"link_up_cnt"},
293 {"link_down_cnt"},
294 {"link_up_time"},
295 {"link_down_time"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
310 {"tda_err_cnt"},
311 {"pfc_err_cnt"},
312 {"pcc_err_cnt"},
313 {"tti_err_cnt"},
314 {"tpa_err_cnt"},
315 {"sm_err_cnt"},
316 {"lso_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
321 {"rc_err_cnt"},
322 {"prc_pcix_err_cnt"},
323 {"rpa_err_cnt"},
324 {"rda_err_cnt"},
325 {"rti_err_cnt"},
326 {"mc_err_cnt"}
1da177e4
LT
327};
328
4c3616cd
AMR
329#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
fa1f0cb3 332
d44570e4
JP
333#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
fa1f0cb3 335
d44570e4
JP
336#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
1da177e4 338
4c3616cd 339#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
d44570e4 340#define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
1da177e4 341
d44570e4
JP
342#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
25fff88e 347
2fd37688
SS
348/* copy mac addr to def_mac_addr array */
349static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350{
351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357}
04025095 358
be3a6b02
K
359/* Add the vlan */
360static void s2io_vlan_rx_register(struct net_device *dev,
04025095 361 struct vlan_group *grp)
be3a6b02 362{
2fda096d 363 int i;
4cf1653a 364 struct s2io_nic *nic = netdev_priv(dev);
2fda096d
SR
365 unsigned long flags[MAX_TX_FIFOS];
366 struct mac_info *mac_control = &nic->mac_control;
367 struct config_param *config = &nic->config;
368
13d866a9
JP
369 for (i = 0; i < config->tx_fifo_num; i++) {
370 struct fifo_info *fifo = &mac_control->fifos[i];
371
372 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
373 }
be3a6b02 374
be3a6b02 375 nic->vlgrp = grp;
13d866a9
JP
376
377 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
378 struct fifo_info *fifo = &mac_control->fifos[i];
379
380 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
381 }
be3a6b02
K
382}
383
cdb5bf02 384/* Unregister the vlan */
04025095 385static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
cdb5bf02
SH
386{
387 int i;
4cf1653a 388 struct s2io_nic *nic = netdev_priv(dev);
cdb5bf02
SH
389 unsigned long flags[MAX_TX_FIFOS];
390 struct mac_info *mac_control = &nic->mac_control;
391 struct config_param *config = &nic->config;
392
13d866a9
JP
393 for (i = 0; i < config->tx_fifo_num; i++) {
394 struct fifo_info *fifo = &mac_control->fifos[i];
395
396 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
397 }
cdb5bf02
SH
398
399 if (nic->vlgrp)
400 vlan_group_set_device(nic->vlgrp, vid, NULL);
401
13d866a9
JP
402 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
403 struct fifo_info *fifo = &mac_control->fifos[i];
404
405 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
406 }
cdb5bf02
SH
407}
408
20346722 409/*
1da177e4
LT
410 * Constants to be programmed into the Xena's registers, to configure
411 * the XAUI.
412 */
413
1da177e4 414#define END_SIGN 0x0
f71e1309 415static const u64 herc_act_dtx_cfg[] = {
541ae68f 416 /* Set address */
e960fc5c 417 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 418 /* Write data */
e960fc5c 419 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
420 /* Set address */
421 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
422 /* Write data */
423 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
424 /* Set address */
e960fc5c 425 0x801205150D440000ULL, 0x801205150D4400E0ULL,
426 /* Write data */
427 0x801205150D440004ULL, 0x801205150D4400E4ULL,
428 /* Set address */
541ae68f
K
429 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
430 /* Write data */
431 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
432 /* Done */
433 END_SIGN
434};
435
f71e1309 436static const u64 xena_dtx_cfg[] = {
c92ca04b 437 /* Set address */
1da177e4 438 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
439 /* Write data */
440 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
441 /* Set address */
442 0x8001051500000000ULL, 0x80010515000000E0ULL,
443 /* Write data */
444 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
445 /* Set address */
1da177e4 446 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
447 /* Write data */
448 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
449 END_SIGN
450};
451
20346722 452/*
1da177e4
LT
453 * Constants for Fixing the MacAddress problem seen mostly on
454 * Alpha machines.
455 */
f71e1309 456static const u64 fix_mac[] = {
1da177e4
LT
457 0x0060000000000000ULL, 0x0060600000000000ULL,
458 0x0040600000000000ULL, 0x0000600000000000ULL,
459 0x0020600000000000ULL, 0x0060600000000000ULL,
460 0x0020600000000000ULL, 0x0060600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0000600000000000ULL,
470 0x0040600000000000ULL, 0x0060600000000000ULL,
471 END_SIGN
472};
473
b41477f3
AR
474MODULE_LICENSE("GPL");
475MODULE_VERSION(DRV_VERSION);
476
477
1da177e4 478/* Module Loadable parameters. */
6cfc482b 479S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
b41477f3 480S2IO_PARM_INT(rx_ring_num, 1);
3a3d5756 481S2IO_PARM_INT(multiq, 0);
b41477f3
AR
482S2IO_PARM_INT(rx_ring_mode, 1);
483S2IO_PARM_INT(use_continuous_tx_intrs, 1);
484S2IO_PARM_INT(rmac_pause_time, 0x100);
485S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
486S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
487S2IO_PARM_INT(shared_splits, 0);
488S2IO_PARM_INT(tmac_util_period, 5);
489S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 490S2IO_PARM_INT(l3l4hdr_size, 128);
6cfc482b
SH
491/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
492S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
303bcb4b 493/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 494S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 495/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 496S2IO_PARM_INT(intr_type, 2);
7d3d0439 497/* Large receive offload feature */
43b7c451
SH
498static unsigned int lro_enable;
499module_param_named(lro, lro_enable, uint, 0);
500
7d3d0439
RA
501/* Max pkts to be aggregated by LRO at one time. If not specified,
502 * aggregation happens until we hit max IP pkt size(64K)
503 */
b41477f3 504S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 505S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
506
507S2IO_PARM_INT(napi, 1);
508S2IO_PARM_INT(ufo, 0);
926930b2 509S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
510
511static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
d44570e4 512{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
b41477f3 513static unsigned int rx_ring_sz[MAX_RX_RINGS] =
d44570e4 514{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
b41477f3 515static unsigned int rts_frm_len[MAX_RX_RINGS] =
d44570e4 516{[0 ...(MAX_RX_RINGS - 1)] = 0 };
b41477f3
AR
517
518module_param_array(tx_fifo_len, uint, NULL, 0);
519module_param_array(rx_ring_sz, uint, NULL, 0);
520module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 521
20346722 522/*
1da177e4 523 * S2IO device table.
20346722 524 * This table lists all the devices that this driver supports.
1da177e4
LT
525 */
526static struct pci_device_id s2io_tbl[] __devinitdata = {
527 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
528 PCI_ANY_ID, PCI_ANY_ID},
529 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
530 PCI_ANY_ID, PCI_ANY_ID},
531 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
d44570e4
JP
532 PCI_ANY_ID, PCI_ANY_ID},
533 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
534 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
535 {0,}
536};
537
538MODULE_DEVICE_TABLE(pci, s2io_tbl);
539
d796fdb7
LV
540static struct pci_error_handlers s2io_err_handler = {
541 .error_detected = s2io_io_error_detected,
542 .slot_reset = s2io_io_slot_reset,
543 .resume = s2io_io_resume,
544};
545
1da177e4 546static struct pci_driver s2io_driver = {
d44570e4
JP
547 .name = "S2IO",
548 .id_table = s2io_tbl,
549 .probe = s2io_init_nic,
550 .remove = __devexit_p(s2io_rem_nic),
551 .err_handler = &s2io_err_handler,
1da177e4
LT
552};
553
554/* A simplifier macro used both by init and free shared_mem Fns(). */
555#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
556
3a3d5756
SH
557/* netqueue manipulation helper functions */
558static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
559{
fd2ea0a7
DM
560 if (!sp->config.multiq) {
561 int i;
562
3a3d5756
SH
563 for (i = 0; i < sp->config.tx_fifo_num; i++)
564 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
3a3d5756 565 }
fd2ea0a7 566 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
567}
568
569static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
570{
fd2ea0a7 571 if (!sp->config.multiq)
3a3d5756
SH
572 sp->mac_control.fifos[fifo_no].queue_state =
573 FIFO_QUEUE_STOP;
fd2ea0a7
DM
574
575 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
576}
577
578static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
579{
fd2ea0a7
DM
580 if (!sp->config.multiq) {
581 int i;
582
3a3d5756
SH
583 for (i = 0; i < sp->config.tx_fifo_num; i++)
584 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 585 }
fd2ea0a7 586 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
587}
588
589static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
590{
fd2ea0a7 591 if (!sp->config.multiq)
3a3d5756
SH
592 sp->mac_control.fifos[fifo_no].queue_state =
593 FIFO_QUEUE_START;
fd2ea0a7
DM
594
595 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
596}
597
598static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
599{
fd2ea0a7
DM
600 if (!sp->config.multiq) {
601 int i;
602
3a3d5756
SH
603 for (i = 0; i < sp->config.tx_fifo_num; i++)
604 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 605 }
fd2ea0a7 606 netif_tx_wake_all_queues(sp->dev);
3a3d5756
SH
607}
608
609static inline void s2io_wake_tx_queue(
610 struct fifo_info *fifo, int cnt, u8 multiq)
611{
612
3a3d5756
SH
613 if (multiq) {
614 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
615 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
b19fa1fa 616 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
617 if (netif_queue_stopped(fifo->dev)) {
618 fifo->queue_state = FIFO_QUEUE_START;
619 netif_wake_queue(fifo->dev);
620 }
621 }
622}
623
1da177e4
LT
624/**
625 * init_shared_mem - Allocation and Initialization of Memory
626 * @nic: Device private variable.
20346722
K
627 * Description: The function allocates all the memory areas shared
628 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
629 * Rx descriptors and the statistics block.
630 */
631
632static int init_shared_mem(struct s2io_nic *nic)
633{
634 u32 size;
635 void *tmp_v_addr, *tmp_v_addr_next;
636 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 637 struct RxD_block *pre_rxd_blk = NULL;
372cc597 638 int i, j, blk_cnt;
1da177e4
LT
639 int lst_size, lst_per_page;
640 struct net_device *dev = nic->dev;
8ae418cf 641 unsigned long tmp;
1ee6dd77 642 struct buffAdd *ba;
1da177e4 643
1ee6dd77 644 struct mac_info *mac_control;
1da177e4 645 struct config_param *config;
491976b2 646 unsigned long long mem_allocated = 0;
1da177e4
LT
647
648 mac_control = &nic->mac_control;
649 config = &nic->config;
650
13d866a9 651 /* Allocation and initialization of TXDLs in FIFOs */
1da177e4
LT
652 size = 0;
653 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
654 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
655
656 size += tx_cfg->fifo_len;
1da177e4
LT
657 }
658 if (size > MAX_AVAILABLE_TXDS) {
b41477f3 659 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
d44570e4
JP
660 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n",
661 size);
b41477f3 662 return -EINVAL;
1da177e4
LT
663 }
664
2fda096d
SR
665 size = 0;
666 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
667 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
668
669 size = tx_cfg->fifo_len;
2fda096d
SR
670 /*
671 * Legal values are from 2 to 8192
672 */
673 if (size < 2) {
674 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
675 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
676 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
d44570e4 677 "are 2 to 8192\n");
2fda096d
SR
678 return -EINVAL;
679 }
680 }
681
1ee6dd77 682 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
683 lst_per_page = PAGE_SIZE / lst_size;
684
685 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
686 struct fifo_info *fifo = &mac_control->fifos[i];
687 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
688 int fifo_len = tx_cfg->fifo_len;
1ee6dd77 689 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
13d866a9
JP
690
691 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
692 if (!fifo->list_info) {
d44570e4 693 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
1da177e4
LT
694 return -ENOMEM;
695 }
491976b2 696 mem_allocated += list_holder_size;
1da177e4
LT
697 }
698 for (i = 0; i < config->tx_fifo_num; i++) {
699 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
700 lst_per_page);
13d866a9
JP
701 struct fifo_info *fifo = &mac_control->fifos[i];
702 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
703
704 fifo->tx_curr_put_info.offset = 0;
705 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
706 fifo->tx_curr_get_info.offset = 0;
707 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
708 fifo->fifo_no = i;
709 fifo->nic = nic;
710 fifo->max_txds = MAX_SKB_FRAGS + 2;
711 fifo->dev = dev;
20346722 712
1da177e4
LT
713 for (j = 0; j < page_num; j++) {
714 int k = 0;
715 dma_addr_t tmp_p;
716 void *tmp_v;
717 tmp_v = pci_alloc_consistent(nic->pdev,
718 PAGE_SIZE, &tmp_p);
719 if (!tmp_v) {
d44570e4 720 DBG_PRINT(INFO_DBG, "pci_alloc_consistent ");
0c61ed5f 721 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
1da177e4
LT
722 return -ENOMEM;
723 }
776bd20f 724 /* If we got a zero DMA address(can happen on
725 * certain platforms like PPC), reallocate.
726 * Store virtual address of page we don't want,
727 * to be freed later.
728 */
729 if (!tmp_p) {
730 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 731 DBG_PRINT(INIT_DBG,
d44570e4
JP
732 "%s: Zero DMA address for TxDL. ",
733 dev->name);
6aa20a22 734 DBG_PRINT(INIT_DBG,
d44570e4 735 "Virtual address %p\n", tmp_v);
776bd20f 736 tmp_v = pci_alloc_consistent(nic->pdev,
d44570e4 737 PAGE_SIZE, &tmp_p);
776bd20f 738 if (!tmp_v) {
0c61ed5f 739 DBG_PRINT(INFO_DBG,
d44570e4
JP
740 "pci_alloc_consistent ");
741 DBG_PRINT(INFO_DBG,
742 "failed for TxDL\n");
776bd20f 743 return -ENOMEM;
744 }
491976b2 745 mem_allocated += PAGE_SIZE;
776bd20f 746 }
1da177e4
LT
747 while (k < lst_per_page) {
748 int l = (j * lst_per_page) + k;
13d866a9 749 if (l == tx_cfg->fifo_len)
20346722 750 break;
13d866a9 751 fifo->list_info[l].list_virt_addr =
d44570e4 752 tmp_v + (k * lst_size);
13d866a9 753 fifo->list_info[l].list_phy_addr =
d44570e4 754 tmp_p + (k * lst_size);
1da177e4
LT
755 k++;
756 }
757 }
758 }
1da177e4 759
2fda096d 760 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
761 struct fifo_info *fifo = &mac_control->fifos[i];
762 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
763
764 size = tx_cfg->fifo_len;
765 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
766 if (!fifo->ufo_in_band_v)
2fda096d
SR
767 return -ENOMEM;
768 mem_allocated += (size * sizeof(u64));
769 }
fed5eccd 770
1da177e4
LT
771 /* Allocation and initialization of RXDs in Rings */
772 size = 0;
773 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
774 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
775 struct ring_info *ring = &mac_control->rings[i];
776
777 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
1da177e4 778 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
13d866a9 779 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ", i);
1da177e4
LT
780 DBG_PRINT(ERR_DBG, "RxDs per Block");
781 return FAILURE;
782 }
13d866a9
JP
783 size += rx_cfg->num_rxd;
784 ring->block_count = rx_cfg->num_rxd /
d44570e4 785 (rxd_count[nic->rxd_mode] + 1);
13d866a9 786 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
1da177e4 787 }
da6971d8 788 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 789 size = (size * (sizeof(struct RxD1)));
da6971d8 790 else
1ee6dd77 791 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
792
793 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
794 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
795 struct ring_info *ring = &mac_control->rings[i];
796
797 ring->rx_curr_get_info.block_index = 0;
798 ring->rx_curr_get_info.offset = 0;
799 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
800 ring->rx_curr_put_info.block_index = 0;
801 ring->rx_curr_put_info.offset = 0;
802 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
803 ring->nic = nic;
804 ring->ring_no = i;
805 ring->lro = lro_enable;
806
807 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
808 /* Allocating all the Rx blocks */
809 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 810 struct rx_block_info *rx_blocks;
da6971d8
AR
811 int l;
812
13d866a9 813 rx_blocks = &ring->rx_blocks[j];
d44570e4 814 size = SIZE_OF_BLOCK; /* size is always page size */
1da177e4
LT
815 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
816 &tmp_p_addr);
817 if (tmp_v_addr == NULL) {
818 /*
20346722
K
819 * In case of failure, free_shared_mem()
820 * is called, which should free any
821 * memory that was alloced till the
1da177e4
LT
822 * failure happened.
823 */
da6971d8 824 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
825 return -ENOMEM;
826 }
491976b2 827 mem_allocated += size;
1da177e4 828 memset(tmp_v_addr, 0, size);
4f870320
JP
829
830 size = sizeof(struct rxd_info) *
831 rxd_count[nic->rxd_mode];
da6971d8
AR
832 rx_blocks->block_virt_addr = tmp_v_addr;
833 rx_blocks->block_dma_addr = tmp_p_addr;
4f870320 834 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
372cc597
SS
835 if (!rx_blocks->rxds)
836 return -ENOMEM;
4f870320 837 mem_allocated += size;
d44570e4 838 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
da6971d8
AR
839 rx_blocks->rxds[l].virt_addr =
840 rx_blocks->block_virt_addr +
841 (rxd_size[nic->rxd_mode] * l);
842 rx_blocks->rxds[l].dma_addr =
843 rx_blocks->block_dma_addr +
844 (rxd_size[nic->rxd_mode] * l);
845 }
1da177e4
LT
846 }
847 /* Interlinking all Rx Blocks */
848 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
849 int next = (j + 1) % blk_cnt;
850 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
851 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
852 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
853 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
1da177e4 854
d44570e4 855 pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
1da177e4 856 pre_rxd_blk->reserved_2_pNext_RxD_block =
d44570e4 857 (unsigned long)tmp_v_addr_next;
1da177e4 858 pre_rxd_blk->pNext_RxD_Blk_physical =
d44570e4 859 (u64)tmp_p_addr_next;
1da177e4
LT
860 }
861 }
6d517a27 862 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
863 /*
864 * Allocation of Storages for buffer addresses in 2BUFF mode
865 * and the buffers as well.
866 */
867 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
868 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
869 struct ring_info *ring = &mac_control->rings[i];
870
871 blk_cnt = rx_cfg->num_rxd /
d44570e4 872 (rxd_count[nic->rxd_mode] + 1);
4f870320
JP
873 size = sizeof(struct buffAdd *) * blk_cnt;
874 ring->ba = kmalloc(size, GFP_KERNEL);
13d866a9 875 if (!ring->ba)
1da177e4 876 return -ENOMEM;
4f870320 877 mem_allocated += size;
da6971d8
AR
878 for (j = 0; j < blk_cnt; j++) {
879 int k = 0;
4f870320
JP
880
881 size = sizeof(struct buffAdd) *
882 (rxd_count[nic->rxd_mode] + 1);
883 ring->ba[j] = kmalloc(size, GFP_KERNEL);
13d866a9 884 if (!ring->ba[j])
1da177e4 885 return -ENOMEM;
4f870320 886 mem_allocated += size;
da6971d8 887 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 888 ba = &ring->ba[j][k];
4f870320
JP
889 size = BUF0_LEN + ALIGN_SIZE;
890 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
891 if (!ba->ba_0_org)
892 return -ENOMEM;
4f870320 893 mem_allocated += size;
da6971d8
AR
894 tmp = (unsigned long)ba->ba_0_org;
895 tmp += ALIGN_SIZE;
d44570e4
JP
896 tmp &= ~((unsigned long)ALIGN_SIZE);
897 ba->ba_0 = (void *)tmp;
da6971d8 898
4f870320
JP
899 size = BUF1_LEN + ALIGN_SIZE;
900 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
901 if (!ba->ba_1_org)
902 return -ENOMEM;
4f870320 903 mem_allocated += size;
d44570e4 904 tmp = (unsigned long)ba->ba_1_org;
da6971d8 905 tmp += ALIGN_SIZE;
d44570e4
JP
906 tmp &= ~((unsigned long)ALIGN_SIZE);
907 ba->ba_1 = (void *)tmp;
da6971d8
AR
908 k++;
909 }
1da177e4
LT
910 }
911 }
912 }
1da177e4
LT
913
914 /* Allocation and initialization of Statistics block */
1ee6dd77 915 size = sizeof(struct stat_block);
d44570e4
JP
916 mac_control->stats_mem =
917 pci_alloc_consistent(nic->pdev, size,
918 &mac_control->stats_mem_phy);
1da177e4
LT
919
920 if (!mac_control->stats_mem) {
20346722
K
921 /*
922 * In case of failure, free_shared_mem() is called, which
923 * should free any memory that was alloced till the
1da177e4
LT
924 * failure happened.
925 */
926 return -ENOMEM;
927 }
491976b2 928 mem_allocated += size;
1da177e4
LT
929 mac_control->stats_mem_sz = size;
930
931 tmp_v_addr = mac_control->stats_mem;
d44570e4 932 mac_control->stats_info = (struct stat_block *)tmp_v_addr;
1da177e4 933 memset(tmp_v_addr, 0, size);
1da177e4 934 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
d44570e4 935 (unsigned long long)tmp_p_addr);
491976b2 936 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
937 return SUCCESS;
938}
939
20346722
K
940/**
941 * free_shared_mem - Free the allocated Memory
1da177e4
LT
942 * @nic: Device private variable.
943 * Description: This function is to free all memory locations allocated by
944 * the init_shared_mem() function and return it to the kernel.
945 */
946
947static void free_shared_mem(struct s2io_nic *nic)
948{
949 int i, j, blk_cnt, size;
950 void *tmp_v_addr;
951 dma_addr_t tmp_p_addr;
1ee6dd77 952 struct mac_info *mac_control;
1da177e4
LT
953 struct config_param *config;
954 int lst_size, lst_per_page;
8910b49f 955 struct net_device *dev;
491976b2 956 int page_num = 0;
1da177e4
LT
957
958 if (!nic)
959 return;
960
8910b49f
MG
961 dev = nic->dev;
962
1da177e4
LT
963 mac_control = &nic->mac_control;
964 config = &nic->config;
965
d44570e4 966 lst_size = sizeof(struct TxD) * config->max_txds;
1da177e4
LT
967 lst_per_page = PAGE_SIZE / lst_size;
968
969 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
970 struct fifo_info *fifo = &mac_control->fifos[i];
971 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
972
973 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
1da177e4
LT
974 for (j = 0; j < page_num; j++) {
975 int mem_blks = (j * lst_per_page);
13d866a9
JP
976 struct list_info_hold *fli;
977
978 if (!fifo->list_info)
6aa20a22 979 return;
13d866a9
JP
980
981 fli = &fifo->list_info[mem_blks];
982 if (!fli->list_virt_addr)
1da177e4
LT
983 break;
984 pci_free_consistent(nic->pdev, PAGE_SIZE,
13d866a9
JP
985 fli->list_virt_addr,
986 fli->list_phy_addr);
8a4bdbaa 987 nic->mac_control.stats_info->sw_stat.mem_freed
d44570e4 988 += PAGE_SIZE;
1da177e4 989 }
776bd20f 990 /* If we got a zero DMA address during allocation,
991 * free the page now
992 */
993 if (mac_control->zerodma_virt_addr) {
994 pci_free_consistent(nic->pdev, PAGE_SIZE,
995 mac_control->zerodma_virt_addr,
996 (dma_addr_t)0);
6aa20a22 997 DBG_PRINT(INIT_DBG,
d44570e4
JP
998 "%s: Freeing TxDL with zero DMA addr. ",
999 dev->name);
6b4d617d 1000 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
d44570e4 1001 mac_control->zerodma_virt_addr);
8a4bdbaa 1002 nic->mac_control.stats_info->sw_stat.mem_freed
d44570e4 1003 += PAGE_SIZE;
776bd20f 1004 }
13d866a9 1005 kfree(fifo->list_info);
8a4bdbaa 1006 nic->mac_control.stats_info->sw_stat.mem_freed +=
d44570e4
JP
1007 nic->config.tx_cfg[i].fifo_len *
1008 sizeof(struct list_info_hold);
1da177e4
LT
1009 }
1010
1da177e4 1011 size = SIZE_OF_BLOCK;
1da177e4 1012 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1013 struct ring_info *ring = &mac_control->rings[i];
1014
1015 blk_cnt = ring->block_count;
1da177e4 1016 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
1017 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1018 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1da177e4
LT
1019 if (tmp_v_addr == NULL)
1020 break;
1021 pci_free_consistent(nic->pdev, size,
1022 tmp_v_addr, tmp_p_addr);
491976b2 1023 nic->mac_control.stats_info->sw_stat.mem_freed += size;
13d866a9 1024 kfree(ring->rx_blocks[j].rxds);
8a4bdbaa 1025 nic->mac_control.stats_info->sw_stat.mem_freed +=
d44570e4 1026 sizeof(struct rxd_info) * rxd_count[nic->rxd_mode];
1da177e4
LT
1027 }
1028 }
1029
6d517a27 1030 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
1031 /* Freeing buffer storage addresses in 2BUFF mode. */
1032 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1033 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1034 struct ring_info *ring = &mac_control->rings[i];
1035
1036 blk_cnt = rx_cfg->num_rxd /
1037 (rxd_count[nic->rxd_mode] + 1);
da6971d8
AR
1038 for (j = 0; j < blk_cnt; j++) {
1039 int k = 0;
13d866a9 1040 if (!ring->ba[j])
da6971d8
AR
1041 continue;
1042 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 1043 struct buffAdd *ba = &ring->ba[j][k];
da6971d8 1044 kfree(ba->ba_0_org);
491976b2 1045 nic->mac_control.stats_info->sw_stat.\
d44570e4 1046 mem_freed += (BUF0_LEN + ALIGN_SIZE);
da6971d8 1047 kfree(ba->ba_1_org);
491976b2 1048 nic->mac_control.stats_info->sw_stat.\
d44570e4 1049 mem_freed += (BUF1_LEN + ALIGN_SIZE);
da6971d8
AR
1050 k++;
1051 }
13d866a9 1052 kfree(ring->ba[j]);
9caab458
SS
1053 nic->mac_control.stats_info->sw_stat.mem_freed +=
1054 (sizeof(struct buffAdd) *
d44570e4 1055 (rxd_count[nic->rxd_mode] + 1));
1da177e4 1056 }
13d866a9 1057 kfree(ring->ba);
8a4bdbaa 1058 nic->mac_control.stats_info->sw_stat.mem_freed +=
d44570e4 1059 (sizeof(struct buffAdd *) * blk_cnt);
1da177e4 1060 }
1da177e4 1061 }
1da177e4 1062
2fda096d 1063 for (i = 0; i < nic->config.tx_fifo_num; i++) {
13d866a9
JP
1064 struct fifo_info *fifo = &mac_control->fifos[i];
1065 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1066
1067 if (fifo->ufo_in_band_v) {
2fda096d 1068 nic->mac_control.stats_info->sw_stat.mem_freed
13d866a9
JP
1069 += (tx_cfg->fifo_len * sizeof(u64));
1070 kfree(fifo->ufo_in_band_v);
2fda096d
SR
1071 }
1072 }
1073
1da177e4 1074 if (mac_control->stats_mem) {
2fda096d
SR
1075 nic->mac_control.stats_info->sw_stat.mem_freed +=
1076 mac_control->stats_mem_sz;
1da177e4
LT
1077 pci_free_consistent(nic->pdev,
1078 mac_control->stats_mem_sz,
1079 mac_control->stats_mem,
1080 mac_control->stats_mem_phy);
491976b2 1081 }
1da177e4
LT
1082}
1083
541ae68f
K
1084/**
1085 * s2io_verify_pci_mode -
1086 */
1087
1ee6dd77 1088static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 1089{
1ee6dd77 1090 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1091 register u64 val64 = 0;
1092 int mode;
1093
1094 val64 = readq(&bar0->pci_mode);
1095 mode = (u8)GET_PCI_MODE(val64);
1096
d44570e4 1097 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f
K
1098 return -1; /* Unknown PCI mode */
1099 return mode;
1100}
1101
c92ca04b
AR
1102#define NEC_VENID 0x1033
1103#define NEC_DEVID 0x0125
1104static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1105{
1106 struct pci_dev *tdev = NULL;
26d36b64
AC
1107 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1108 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
7ad62dbc 1109 if (tdev->bus == s2io_pdev->bus->parent) {
26d36b64 1110 pci_dev_put(tdev);
c92ca04b 1111 return 1;
7ad62dbc 1112 }
c92ca04b
AR
1113 }
1114 }
1115 return 0;
1116}
541ae68f 1117
7b32a312 1118static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
1119/**
1120 * s2io_print_pci_mode -
1121 */
1ee6dd77 1122static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 1123{
1ee6dd77 1124 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1125 register u64 val64 = 0;
1126 int mode;
1127 struct config_param *config = &nic->config;
1128
1129 val64 = readq(&bar0->pci_mode);
1130 mode = (u8)GET_PCI_MODE(val64);
1131
d44570e4 1132 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f
K
1133 return -1; /* Unknown PCI mode */
1134
c92ca04b
AR
1135 config->bus_speed = bus_speed[mode];
1136
1137 if (s2io_on_nec_bridge(nic->pdev)) {
1138 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
d44570e4 1139 nic->dev->name);
c92ca04b
AR
1140 return mode;
1141 }
1142
d44570e4
JP
1143 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit ",
1144 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64);
541ae68f 1145
d44570e4
JP
1146 switch (mode) {
1147 case PCI_MODE_PCI_33:
1148 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1149 break;
1150 case PCI_MODE_PCI_66:
1151 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1152 break;
1153 case PCI_MODE_PCIX_M1_66:
1154 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1155 break;
1156 case PCI_MODE_PCIX_M1_100:
1157 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1158 break;
1159 case PCI_MODE_PCIX_M1_133:
1160 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1161 break;
1162 case PCI_MODE_PCIX_M2_66:
1163 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1164 break;
1165 case PCI_MODE_PCIX_M2_100:
1166 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1167 break;
1168 case PCI_MODE_PCIX_M2_133:
1169 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1170 break;
1171 default:
1172 return -1; /* Unsupported bus speed */
541ae68f
K
1173 }
1174
1175 return mode;
1176}
1177
b7c5678f
RV
1178/**
1179 * init_tti - Initialization transmit traffic interrupt scheme
1180 * @nic: device private variable
1181 * @link: link status (UP/DOWN) used to enable/disable continuous
1182 * transmit interrupts
1183 * Description: The function configures transmit traffic interrupts
1184 * Return Value: SUCCESS on success and
1185 * '-1' on failure
1186 */
1187
0d66afe7 1188static int init_tti(struct s2io_nic *nic, int link)
b7c5678f
RV
1189{
1190 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1191 register u64 val64 = 0;
1192 int i;
1193 struct config_param *config;
1194
1195 config = &nic->config;
1196
1197 for (i = 0; i < config->tx_fifo_num; i++) {
1198 /*
1199 * TTI Initialization. Default Tx timer gets us about
1200 * 250 interrupts per sec. Continuous interrupts are enabled
1201 * by default.
1202 */
1203 if (nic->device_type == XFRAME_II_DEVICE) {
1204 int count = (nic->config.bus_speed * 125)/2;
1205 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1206 } else
1207 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1208
1209 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
d44570e4
JP
1210 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1211 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1212 TTI_DATA1_MEM_TX_TIMER_AC_EN;
ac731ab6
SH
1213 if (i == 0)
1214 if (use_continuous_tx_intrs && (link == LINK_UP))
1215 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
b7c5678f
RV
1216 writeq(val64, &bar0->tti_data1_mem);
1217
ac731ab6
SH
1218 if (nic->config.intr_type == MSI_X) {
1219 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1220 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1221 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1222 TTI_DATA2_MEM_TX_UFC_D(0x300);
1223 } else {
1224 if ((nic->config.tx_steering_type ==
d44570e4
JP
1225 TX_DEFAULT_STEERING) &&
1226 (config->tx_fifo_num > 1) &&
1227 (i >= nic->udp_fifo_idx) &&
1228 (i < (nic->udp_fifo_idx +
1229 nic->total_udp_fifos)))
ac731ab6
SH
1230 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1231 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1232 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1233 TTI_DATA2_MEM_TX_UFC_D(0x120);
1234 else
1235 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1236 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1237 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1238 TTI_DATA2_MEM_TX_UFC_D(0x80);
1239 }
b7c5678f
RV
1240
1241 writeq(val64, &bar0->tti_data2_mem);
1242
d44570e4
JP
1243 val64 = TTI_CMD_MEM_WE |
1244 TTI_CMD_MEM_STROBE_NEW_CMD |
1245 TTI_CMD_MEM_OFFSET(i);
b7c5678f
RV
1246 writeq(val64, &bar0->tti_command_mem);
1247
1248 if (wait_for_cmd_complete(&bar0->tti_command_mem,
d44570e4
JP
1249 TTI_CMD_MEM_STROBE_NEW_CMD,
1250 S2IO_BIT_RESET) != SUCCESS)
b7c5678f
RV
1251 return FAILURE;
1252 }
1253
1254 return SUCCESS;
1255}
1256
20346722
K
1257/**
1258 * init_nic - Initialization of hardware
b7c5678f 1259 * @nic: device private variable
20346722
K
1260 * Description: The function sequentially configures every block
1261 * of the H/W from their reset values.
1262 * Return Value: SUCCESS on success and
1da177e4
LT
1263 * '-1' on failure (endian settings incorrect).
1264 */
1265
1266static int init_nic(struct s2io_nic *nic)
1267{
1ee6dd77 1268 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1269 struct net_device *dev = nic->dev;
1270 register u64 val64 = 0;
1271 void __iomem *add;
1272 u32 time;
1273 int i, j;
1ee6dd77 1274 struct mac_info *mac_control;
1da177e4 1275 struct config_param *config;
c92ca04b 1276 int dtx_cnt = 0;
1da177e4 1277 unsigned long long mem_share;
20346722 1278 int mem_size;
1da177e4
LT
1279
1280 mac_control = &nic->mac_control;
1281 config = &nic->config;
1282
5e25b9dd 1283 /* to set the swapper controle on the card */
d44570e4
JP
1284 if (s2io_set_swapper(nic)) {
1285 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
9f74ffde 1286 return -EIO;
1da177e4
LT
1287 }
1288
541ae68f
K
1289 /*
1290 * Herc requires EOI to be removed from reset before XGXS, so..
1291 */
1292 if (nic->device_type & XFRAME_II_DEVICE) {
1293 val64 = 0xA500000000ULL;
1294 writeq(val64, &bar0->sw_reset);
1295 msleep(500);
1296 val64 = readq(&bar0->sw_reset);
1297 }
1298
1da177e4
LT
1299 /* Remove XGXS from reset state */
1300 val64 = 0;
1301 writeq(val64, &bar0->sw_reset);
1da177e4 1302 msleep(500);
20346722 1303 val64 = readq(&bar0->sw_reset);
1da177e4 1304
7962024e
SH
1305 /* Ensure that it's safe to access registers by checking
1306 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1307 */
1308 if (nic->device_type == XFRAME_II_DEVICE) {
1309 for (i = 0; i < 50; i++) {
1310 val64 = readq(&bar0->adapter_status);
1311 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1312 break;
1313 msleep(10);
1314 }
1315 if (i == 50)
1316 return -ENODEV;
1317 }
1318
1da177e4
LT
1319 /* Enable Receiving broadcasts */
1320 add = &bar0->mac_cfg;
1321 val64 = readq(&bar0->mac_cfg);
1322 val64 |= MAC_RMAC_BCAST_ENABLE;
1323 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 1324 writel((u32)val64, add);
1da177e4
LT
1325 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1326 writel((u32) (val64 >> 32), (add + 4));
1327
1328 /* Read registers in all blocks */
1329 val64 = readq(&bar0->mac_int_mask);
1330 val64 = readq(&bar0->mc_int_mask);
1331 val64 = readq(&bar0->xgxs_int_mask);
1332
1333 /* Set MTU */
1334 val64 = dev->mtu;
1335 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1336
541ae68f
K
1337 if (nic->device_type & XFRAME_II_DEVICE) {
1338 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1339 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1340 &bar0->dtx_control, UF);
541ae68f
K
1341 if (dtx_cnt & 0x1)
1342 msleep(1); /* Necessary!! */
1da177e4
LT
1343 dtx_cnt++;
1344 }
541ae68f 1345 } else {
c92ca04b
AR
1346 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1347 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1348 &bar0->dtx_control, UF);
1349 val64 = readq(&bar0->dtx_control);
1350 dtx_cnt++;
1da177e4
LT
1351 }
1352 }
1353
1354 /* Tx DMA Initialization */
1355 val64 = 0;
1356 writeq(val64, &bar0->tx_fifo_partition_0);
1357 writeq(val64, &bar0->tx_fifo_partition_1);
1358 writeq(val64, &bar0->tx_fifo_partition_2);
1359 writeq(val64, &bar0->tx_fifo_partition_3);
1360
1da177e4 1361 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
1362 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1363
1364 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1365 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1da177e4
LT
1366
1367 if (i == (config->tx_fifo_num - 1)) {
1368 if (i % 2 == 0)
1369 i++;
1370 }
1371
1372 switch (i) {
1373 case 1:
1374 writeq(val64, &bar0->tx_fifo_partition_0);
1375 val64 = 0;
b7c5678f 1376 j = 0;
1da177e4
LT
1377 break;
1378 case 3:
1379 writeq(val64, &bar0->tx_fifo_partition_1);
1380 val64 = 0;
b7c5678f 1381 j = 0;
1da177e4
LT
1382 break;
1383 case 5:
1384 writeq(val64, &bar0->tx_fifo_partition_2);
1385 val64 = 0;
b7c5678f 1386 j = 0;
1da177e4
LT
1387 break;
1388 case 7:
1389 writeq(val64, &bar0->tx_fifo_partition_3);
b7c5678f
RV
1390 val64 = 0;
1391 j = 0;
1392 break;
1393 default:
1394 j++;
1da177e4
LT
1395 break;
1396 }
1397 }
1398
5e25b9dd
K
1399 /*
1400 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1401 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1402 */
d44570e4 1403 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
5e25b9dd
K
1404 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1405
1da177e4
LT
1406 val64 = readq(&bar0->tx_fifo_partition_0);
1407 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
d44570e4 1408 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1da177e4 1409
20346722
K
1410 /*
1411 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1412 * integrity checking.
1413 */
1414 val64 = readq(&bar0->tx_pa_cfg);
d44570e4
JP
1415 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1416 TX_PA_CFG_IGNORE_SNAP_OUI |
1417 TX_PA_CFG_IGNORE_LLC_CTRL |
1418 TX_PA_CFG_IGNORE_L2_ERR;
1da177e4
LT
1419 writeq(val64, &bar0->tx_pa_cfg);
1420
1421 /* Rx DMA intialization. */
1422 val64 = 0;
1423 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1424 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1425
1426 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1da177e4
LT
1427 }
1428 writeq(val64, &bar0->rx_queue_priority);
1429
20346722
K
1430 /*
1431 * Allocating equal share of memory to all the
1da177e4
LT
1432 * configured Rings.
1433 */
1434 val64 = 0;
541ae68f
K
1435 if (nic->device_type & XFRAME_II_DEVICE)
1436 mem_size = 32;
1437 else
1438 mem_size = 64;
1439
1da177e4
LT
1440 for (i = 0; i < config->rx_ring_num; i++) {
1441 switch (i) {
1442 case 0:
20346722
K
1443 mem_share = (mem_size / config->rx_ring_num +
1444 mem_size % config->rx_ring_num);
1da177e4
LT
1445 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1446 continue;
1447 case 1:
20346722 1448 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1449 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1450 continue;
1451 case 2:
20346722 1452 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1453 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1454 continue;
1455 case 3:
20346722 1456 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1457 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1458 continue;
1459 case 4:
20346722 1460 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1461 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1462 continue;
1463 case 5:
20346722 1464 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1465 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1466 continue;
1467 case 6:
20346722 1468 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1469 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1470 continue;
1471 case 7:
20346722 1472 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1473 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1474 continue;
1475 }
1476 }
1477 writeq(val64, &bar0->rx_queue_cfg);
1478
20346722 1479 /*
5e25b9dd 1480 * Filling Tx round robin registers
b7c5678f 1481 * as per the number of FIFOs for equal scheduling priority
1da177e4 1482 */
5e25b9dd
K
1483 switch (config->tx_fifo_num) {
1484 case 1:
b7c5678f 1485 val64 = 0x0;
5e25b9dd
K
1486 writeq(val64, &bar0->tx_w_round_robin_0);
1487 writeq(val64, &bar0->tx_w_round_robin_1);
1488 writeq(val64, &bar0->tx_w_round_robin_2);
1489 writeq(val64, &bar0->tx_w_round_robin_3);
1490 writeq(val64, &bar0->tx_w_round_robin_4);
1491 break;
1492 case 2:
b7c5678f 1493 val64 = 0x0001000100010001ULL;
5e25b9dd 1494 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1495 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1496 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1497 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1498 val64 = 0x0001000100000000ULL;
5e25b9dd
K
1499 writeq(val64, &bar0->tx_w_round_robin_4);
1500 break;
1501 case 3:
b7c5678f 1502 val64 = 0x0001020001020001ULL;
5e25b9dd 1503 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1504 val64 = 0x0200010200010200ULL;
5e25b9dd 1505 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1506 val64 = 0x0102000102000102ULL;
5e25b9dd 1507 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1508 val64 = 0x0001020001020001ULL;
5e25b9dd 1509 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1510 val64 = 0x0200010200000000ULL;
5e25b9dd
K
1511 writeq(val64, &bar0->tx_w_round_robin_4);
1512 break;
1513 case 4:
b7c5678f 1514 val64 = 0x0001020300010203ULL;
5e25b9dd 1515 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1516 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1517 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1518 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1519 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1520 writeq(val64, &bar0->tx_w_round_robin_4);
1521 break;
1522 case 5:
b7c5678f 1523 val64 = 0x0001020304000102ULL;
5e25b9dd 1524 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1525 val64 = 0x0304000102030400ULL;
5e25b9dd 1526 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1527 val64 = 0x0102030400010203ULL;
5e25b9dd 1528 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1529 val64 = 0x0400010203040001ULL;
5e25b9dd 1530 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1531 val64 = 0x0203040000000000ULL;
5e25b9dd
K
1532 writeq(val64, &bar0->tx_w_round_robin_4);
1533 break;
1534 case 6:
b7c5678f 1535 val64 = 0x0001020304050001ULL;
5e25b9dd 1536 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1537 val64 = 0x0203040500010203ULL;
5e25b9dd 1538 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1539 val64 = 0x0405000102030405ULL;
5e25b9dd 1540 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1541 val64 = 0x0001020304050001ULL;
5e25b9dd 1542 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1543 val64 = 0x0203040500000000ULL;
5e25b9dd
K
1544 writeq(val64, &bar0->tx_w_round_robin_4);
1545 break;
1546 case 7:
b7c5678f 1547 val64 = 0x0001020304050600ULL;
5e25b9dd 1548 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1549 val64 = 0x0102030405060001ULL;
5e25b9dd 1550 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1551 val64 = 0x0203040506000102ULL;
5e25b9dd 1552 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1553 val64 = 0x0304050600010203ULL;
5e25b9dd 1554 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1555 val64 = 0x0405060000000000ULL;
5e25b9dd
K
1556 writeq(val64, &bar0->tx_w_round_robin_4);
1557 break;
1558 case 8:
b7c5678f 1559 val64 = 0x0001020304050607ULL;
5e25b9dd 1560 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1561 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1562 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1563 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1564 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1565 writeq(val64, &bar0->tx_w_round_robin_4);
1566 break;
1567 }
1568
b41477f3 1569 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1570 val64 = readq(&bar0->tx_fifo_partition_0);
1571 val64 |= (TX_FIFO_PARTITION_EN);
1572 writeq(val64, &bar0->tx_fifo_partition_0);
1573
5e25b9dd 1574 /* Filling the Rx round robin registers as per the
0425b46a
SH
1575 * number of Rings and steering based on QoS with
1576 * equal priority.
1577 */
5e25b9dd
K
1578 switch (config->rx_ring_num) {
1579 case 1:
0425b46a
SH
1580 val64 = 0x0;
1581 writeq(val64, &bar0->rx_w_round_robin_0);
1582 writeq(val64, &bar0->rx_w_round_robin_1);
1583 writeq(val64, &bar0->rx_w_round_robin_2);
1584 writeq(val64, &bar0->rx_w_round_robin_3);
1585 writeq(val64, &bar0->rx_w_round_robin_4);
1586
5e25b9dd
K
1587 val64 = 0x8080808080808080ULL;
1588 writeq(val64, &bar0->rts_qos_steering);
1589 break;
1590 case 2:
0425b46a 1591 val64 = 0x0001000100010001ULL;
5e25b9dd 1592 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1593 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1594 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1595 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1596 val64 = 0x0001000100000000ULL;
5e25b9dd
K
1597 writeq(val64, &bar0->rx_w_round_robin_4);
1598
1599 val64 = 0x8080808040404040ULL;
1600 writeq(val64, &bar0->rts_qos_steering);
1601 break;
1602 case 3:
0425b46a 1603 val64 = 0x0001020001020001ULL;
5e25b9dd 1604 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1605 val64 = 0x0200010200010200ULL;
5e25b9dd 1606 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1607 val64 = 0x0102000102000102ULL;
5e25b9dd 1608 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1609 val64 = 0x0001020001020001ULL;
5e25b9dd 1610 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1611 val64 = 0x0200010200000000ULL;
5e25b9dd
K
1612 writeq(val64, &bar0->rx_w_round_robin_4);
1613
1614 val64 = 0x8080804040402020ULL;
1615 writeq(val64, &bar0->rts_qos_steering);
1616 break;
1617 case 4:
0425b46a 1618 val64 = 0x0001020300010203ULL;
5e25b9dd 1619 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1620 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1621 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1622 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1623 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1624 writeq(val64, &bar0->rx_w_round_robin_4);
1625
1626 val64 = 0x8080404020201010ULL;
1627 writeq(val64, &bar0->rts_qos_steering);
1628 break;
1629 case 5:
0425b46a 1630 val64 = 0x0001020304000102ULL;
5e25b9dd 1631 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1632 val64 = 0x0304000102030400ULL;
5e25b9dd 1633 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1634 val64 = 0x0102030400010203ULL;
5e25b9dd 1635 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1636 val64 = 0x0400010203040001ULL;
5e25b9dd 1637 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1638 val64 = 0x0203040000000000ULL;
5e25b9dd
K
1639 writeq(val64, &bar0->rx_w_round_robin_4);
1640
1641 val64 = 0x8080404020201008ULL;
1642 writeq(val64, &bar0->rts_qos_steering);
1643 break;
1644 case 6:
0425b46a 1645 val64 = 0x0001020304050001ULL;
5e25b9dd 1646 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1647 val64 = 0x0203040500010203ULL;
5e25b9dd 1648 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1649 val64 = 0x0405000102030405ULL;
5e25b9dd 1650 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1651 val64 = 0x0001020304050001ULL;
5e25b9dd 1652 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1653 val64 = 0x0203040500000000ULL;
5e25b9dd
K
1654 writeq(val64, &bar0->rx_w_round_robin_4);
1655
1656 val64 = 0x8080404020100804ULL;
1657 writeq(val64, &bar0->rts_qos_steering);
1658 break;
1659 case 7:
0425b46a 1660 val64 = 0x0001020304050600ULL;
5e25b9dd 1661 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1662 val64 = 0x0102030405060001ULL;
5e25b9dd 1663 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1664 val64 = 0x0203040506000102ULL;
5e25b9dd 1665 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1666 val64 = 0x0304050600010203ULL;
5e25b9dd 1667 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1668 val64 = 0x0405060000000000ULL;
5e25b9dd
K
1669 writeq(val64, &bar0->rx_w_round_robin_4);
1670
1671 val64 = 0x8080402010080402ULL;
1672 writeq(val64, &bar0->rts_qos_steering);
1673 break;
1674 case 8:
0425b46a 1675 val64 = 0x0001020304050607ULL;
5e25b9dd 1676 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1677 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1678 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1679 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1680 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1681 writeq(val64, &bar0->rx_w_round_robin_4);
1682
1683 val64 = 0x8040201008040201ULL;
1684 writeq(val64, &bar0->rts_qos_steering);
1685 break;
1686 }
1da177e4
LT
1687
1688 /* UDP Fix */
1689 val64 = 0;
20346722 1690 for (i = 0; i < 8; i++)
1da177e4
LT
1691 writeq(val64, &bar0->rts_frm_len_n[i]);
1692
5e25b9dd
K
1693 /* Set the default rts frame length for the rings configured */
1694 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1695 for (i = 0 ; i < config->rx_ring_num ; i++)
1696 writeq(val64, &bar0->rts_frm_len_n[i]);
1697
1698 /* Set the frame length for the configured rings
1699 * desired by the user
1700 */
1701 for (i = 0; i < config->rx_ring_num; i++) {
1702 /* If rts_frm_len[i] == 0 then it is assumed that user not
1703 * specified frame length steering.
1704 * If the user provides the frame length then program
1705 * the rts_frm_len register for those values or else
1706 * leave it as it is.
1707 */
1708 if (rts_frm_len[i] != 0) {
1709 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
d44570e4 1710 &bar0->rts_frm_len_n[i]);
5e25b9dd
K
1711 }
1712 }
8a4bdbaa 1713
9fc93a41
SS
1714 /* Disable differentiated services steering logic */
1715 for (i = 0; i < 64; i++) {
1716 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1717 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
d44570e4 1718 dev->name);
9fc93a41 1719 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
9f74ffde 1720 return -ENODEV;
9fc93a41
SS
1721 }
1722 }
1723
20346722 1724 /* Program statistics memory */
1da177e4 1725 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1726
541ae68f
K
1727 if (nic->device_type == XFRAME_II_DEVICE) {
1728 val64 = STAT_BC(0x320);
1729 writeq(val64, &bar0->stat_byte_cnt);
1730 }
1731
20346722 1732 /*
1da177e4
LT
1733 * Initializing the sampling rate for the device to calculate the
1734 * bandwidth utilization.
1735 */
1736 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
d44570e4 1737 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1da177e4
LT
1738 writeq(val64, &bar0->mac_link_util);
1739
20346722
K
1740 /*
1741 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1742 * Scheme.
1743 */
1da177e4 1744
b7c5678f
RV
1745 /* Initialize TTI */
1746 if (SUCCESS != init_tti(nic, nic->last_link_state))
1747 return -ENODEV;
1da177e4 1748
8a4bdbaa
SS
1749 /* RTI Initialization */
1750 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1751 /*
8a4bdbaa
SS
1752 * Programmed to generate Apprx 500 Intrs per
1753 * second
1754 */
1755 int count = (nic->config.bus_speed * 125)/4;
1756 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1757 } else
1758 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1759 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
d44570e4
JP
1760 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1761 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1762 RTI_DATA1_MEM_RX_TIMER_AC_EN;
8a4bdbaa
SS
1763
1764 writeq(val64, &bar0->rti_data1_mem);
1765
1766 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1767 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1768 if (nic->config.intr_type == MSI_X)
d44570e4
JP
1769 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1770 RTI_DATA2_MEM_RX_UFC_D(0x40));
8a4bdbaa 1771 else
d44570e4
JP
1772 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1773 RTI_DATA2_MEM_RX_UFC_D(0x80));
8a4bdbaa 1774 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1775
8a4bdbaa 1776 for (i = 0; i < config->rx_ring_num; i++) {
d44570e4
JP
1777 val64 = RTI_CMD_MEM_WE |
1778 RTI_CMD_MEM_STROBE_NEW_CMD |
1779 RTI_CMD_MEM_OFFSET(i);
8a4bdbaa 1780 writeq(val64, &bar0->rti_command_mem);
1da177e4 1781
8a4bdbaa
SS
1782 /*
1783 * Once the operation completes, the Strobe bit of the
1784 * command register will be reset. We poll for this
1785 * particular condition. We wait for a maximum of 500ms
1786 * for the operation to complete, if it's not complete
1787 * by then we return error.
1788 */
1789 time = 0;
f957bcf0 1790 while (true) {
8a4bdbaa
SS
1791 val64 = readq(&bar0->rti_command_mem);
1792 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1793 break;
b6e3f982 1794
8a4bdbaa
SS
1795 if (time > 10) {
1796 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1797 dev->name);
9f74ffde 1798 return -ENODEV;
b6e3f982 1799 }
8a4bdbaa
SS
1800 time++;
1801 msleep(50);
1da177e4 1802 }
1da177e4
LT
1803 }
1804
20346722
K
1805 /*
1806 * Initializing proper values as Pause threshold into all
1da177e4
LT
1807 * the 8 Queues on Rx side.
1808 */
1809 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1810 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1811
1812 /* Disable RMAC PAD STRIPPING */
509a2671 1813 add = &bar0->mac_cfg;
1da177e4
LT
1814 val64 = readq(&bar0->mac_cfg);
1815 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1816 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1817 writel((u32) (val64), add);
1818 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1819 writel((u32) (val64 >> 32), (add + 4));
1820 val64 = readq(&bar0->mac_cfg);
1821
7d3d0439
RA
1822 /* Enable FCS stripping by adapter */
1823 add = &bar0->mac_cfg;
1824 val64 = readq(&bar0->mac_cfg);
1825 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1826 if (nic->device_type == XFRAME_II_DEVICE)
1827 writeq(val64, &bar0->mac_cfg);
1828 else {
1829 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1830 writel((u32) (val64), add);
1831 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1832 writel((u32) (val64 >> 32), (add + 4));
1833 }
1834
20346722
K
1835 /*
1836 * Set the time value to be inserted in the pause frame
1da177e4
LT
1837 * generated by xena.
1838 */
1839 val64 = readq(&bar0->rmac_pause_cfg);
1840 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1841 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1842 writeq(val64, &bar0->rmac_pause_cfg);
1843
20346722 1844 /*
1da177e4
LT
1845 * Set the Threshold Limit for Generating the pause frame
1846 * If the amount of data in any Queue exceeds ratio of
1847 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1848 * pause frame is generated
1849 */
1850 val64 = 0;
1851 for (i = 0; i < 4; i++) {
d44570e4
JP
1852 val64 |= (((u64)0xFF00 |
1853 nic->mac_control.mc_pause_threshold_q0q3)
1854 << (i * 2 * 8));
1da177e4
LT
1855 }
1856 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1857
1858 val64 = 0;
1859 for (i = 0; i < 4; i++) {
d44570e4
JP
1860 val64 |= (((u64)0xFF00 |
1861 nic->mac_control.mc_pause_threshold_q4q7)
1862 << (i * 2 * 8));
1da177e4
LT
1863 }
1864 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1865
20346722
K
1866 /*
1867 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1868 * exceeded the limit pointed by shared_splits
1869 */
1870 val64 = readq(&bar0->pic_control);
1871 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1872 writeq(val64, &bar0->pic_control);
1873
863c11a9
AR
1874 if (nic->config.bus_speed == 266) {
1875 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1876 writeq(0x0, &bar0->read_retry_delay);
1877 writeq(0x0, &bar0->write_retry_delay);
1878 }
1879
541ae68f
K
1880 /*
1881 * Programming the Herc to split every write transaction
1882 * that does not start on an ADB to reduce disconnects.
1883 */
1884 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1885 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1886 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1887 writeq(val64, &bar0->misc_control);
1888 val64 = readq(&bar0->pic_control2);
b7b5a128 1889 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1890 writeq(val64, &bar0->pic_control2);
541ae68f 1891 }
c92ca04b
AR
1892 if (strstr(nic->product_name, "CX4")) {
1893 val64 = TMAC_AVG_IPG(0x17);
1894 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1895 }
1896
1da177e4
LT
1897 return SUCCESS;
1898}
a371a07d
K
1899#define LINK_UP_DOWN_INTERRUPT 1
1900#define MAC_RMAC_ERR_TIMER 2
1901
1ee6dd77 1902static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d
K
1903{
1904 if (nic->device_type == XFRAME_II_DEVICE)
1905 return LINK_UP_DOWN_INTERRUPT;
1906 else
1907 return MAC_RMAC_ERR_TIMER;
1908}
8116f3cf 1909
9caab458
SS
1910/**
1911 * do_s2io_write_bits - update alarm bits in alarm register
1912 * @value: alarm bits
1913 * @flag: interrupt status
1914 * @addr: address value
1915 * Description: update alarm bits in alarm register
1916 * Return Value:
1917 * NONE.
1918 */
1919static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1920{
1921 u64 temp64;
1922
1923 temp64 = readq(addr);
1924
d44570e4
JP
1925 if (flag == ENABLE_INTRS)
1926 temp64 &= ~((u64)value);
9caab458 1927 else
d44570e4 1928 temp64 |= ((u64)value);
9caab458
SS
1929 writeq(temp64, addr);
1930}
1da177e4 1931
43b7c451 1932static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1933{
1934 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1935 register u64 gen_int_mask = 0;
01e16faa 1936 u64 interruptible;
9caab458 1937
01e16faa 1938 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
9caab458 1939 if (mask & TX_DMA_INTR) {
9caab458
SS
1940 gen_int_mask |= TXDMA_INT_M;
1941
1942 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
d44570e4
JP
1943 TXDMA_PCC_INT | TXDMA_TTI_INT |
1944 TXDMA_LSO_INT | TXDMA_TPA_INT |
1945 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
9caab458
SS
1946
1947 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
d44570e4
JP
1948 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1949 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1950 &bar0->pfc_err_mask);
9caab458
SS
1951
1952 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
d44570e4
JP
1953 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1954 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
9caab458
SS
1955
1956 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
d44570e4
JP
1957 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1958 PCC_N_SERR | PCC_6_COF_OV_ERR |
1959 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1960 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1961 PCC_TXB_ECC_SG_ERR,
1962 flag, &bar0->pcc_err_mask);
9caab458
SS
1963
1964 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
d44570e4 1965 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
9caab458
SS
1966
1967 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
d44570e4
JP
1968 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1969 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1970 flag, &bar0->lso_err_mask);
9caab458
SS
1971
1972 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
d44570e4 1973 flag, &bar0->tpa_err_mask);
9caab458
SS
1974
1975 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
9caab458
SS
1976 }
1977
1978 if (mask & TX_MAC_INTR) {
1979 gen_int_mask |= TXMAC_INT_M;
1980 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
d44570e4 1981 &bar0->mac_int_mask);
9caab458 1982 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
d44570e4
JP
1983 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1984 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1985 flag, &bar0->mac_tmac_err_mask);
9caab458
SS
1986 }
1987
1988 if (mask & TX_XGXS_INTR) {
1989 gen_int_mask |= TXXGXS_INT_M;
1990 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
d44570e4 1991 &bar0->xgxs_int_mask);
9caab458 1992 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
d44570e4
JP
1993 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1994 flag, &bar0->xgxs_txgxs_err_mask);
9caab458
SS
1995 }
1996
1997 if (mask & RX_DMA_INTR) {
1998 gen_int_mask |= RXDMA_INT_M;
1999 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
d44570e4
JP
2000 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
2001 flag, &bar0->rxdma_int_mask);
9caab458 2002 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
d44570e4
JP
2003 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
2004 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
2005 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
9caab458 2006 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
d44570e4
JP
2007 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
2008 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
2009 &bar0->prc_pcix_err_mask);
9caab458 2010 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
d44570e4
JP
2011 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2012 &bar0->rpa_err_mask);
9caab458 2013 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
d44570e4
JP
2014 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2015 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2016 RDA_FRM_ECC_SG_ERR |
2017 RDA_MISC_ERR|RDA_PCIX_ERR,
2018 flag, &bar0->rda_err_mask);
9caab458 2019 do_s2io_write_bits(RTI_SM_ERR_ALARM |
d44570e4
JP
2020 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2021 flag, &bar0->rti_err_mask);
9caab458
SS
2022 }
2023
2024 if (mask & RX_MAC_INTR) {
2025 gen_int_mask |= RXMAC_INT_M;
2026 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
d44570e4
JP
2027 &bar0->mac_int_mask);
2028 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2029 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2030 RMAC_DOUBLE_ECC_ERR);
01e16faa
SH
2031 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2032 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2033 do_s2io_write_bits(interruptible,
d44570e4 2034 flag, &bar0->mac_rmac_err_mask);
9caab458
SS
2035 }
2036
d44570e4 2037 if (mask & RX_XGXS_INTR) {
9caab458
SS
2038 gen_int_mask |= RXXGXS_INT_M;
2039 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
d44570e4 2040 &bar0->xgxs_int_mask);
9caab458 2041 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
d44570e4 2042 &bar0->xgxs_rxgxs_err_mask);
9caab458
SS
2043 }
2044
2045 if (mask & MC_INTR) {
2046 gen_int_mask |= MC_INT_M;
d44570e4
JP
2047 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2048 flag, &bar0->mc_int_mask);
9caab458 2049 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
d44570e4
JP
2050 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2051 &bar0->mc_err_mask);
9caab458
SS
2052 }
2053 nic->general_int_mask = gen_int_mask;
2054
2055 /* Remove this line when alarm interrupts are enabled */
2056 nic->general_int_mask = 0;
2057}
d44570e4 2058
20346722
K
2059/**
2060 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
2061 * @nic: device private variable,
2062 * @mask: A mask indicating which Intr block must be modified and,
2063 * @flag: A flag indicating whether to enable or disable the Intrs.
2064 * Description: This function will either disable or enable the interrupts
20346722
K
2065 * depending on the flag argument. The mask argument can be used to
2066 * enable/disable any Intr block.
1da177e4
LT
2067 * Return Value: NONE.
2068 */
2069
2070static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2071{
1ee6dd77 2072 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
2073 register u64 temp64 = 0, intr_mask = 0;
2074
2075 intr_mask = nic->general_int_mask;
1da177e4
LT
2076
2077 /* Top level interrupt classification */
2078 /* PIC Interrupts */
9caab458 2079 if (mask & TX_PIC_INTR) {
1da177e4 2080 /* Enable PIC Intrs in the general intr mask register */
9caab458 2081 intr_mask |= TXPIC_INT_M;
1da177e4 2082 if (flag == ENABLE_INTRS) {
20346722 2083 /*
a371a07d 2084 * If Hercules adapter enable GPIO otherwise
b41477f3 2085 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
2086 * interrupts for now.
2087 * TODO
1da177e4 2088 */
a371a07d 2089 if (s2io_link_fault_indication(nic) ==
d44570e4 2090 LINK_UP_DOWN_INTERRUPT) {
9caab458 2091 do_s2io_write_bits(PIC_INT_GPIO, flag,
d44570e4 2092 &bar0->pic_int_mask);
9caab458 2093 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
d44570e4 2094 &bar0->gpio_int_mask);
9caab458 2095 } else
a371a07d 2096 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 2097 } else if (flag == DISABLE_INTRS) {
20346722
K
2098 /*
2099 * Disable PIC Intrs in the general
2100 * intr mask register
1da177e4
LT
2101 */
2102 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
2103 }
2104 }
2105
1da177e4
LT
2106 /* Tx traffic interrupts */
2107 if (mask & TX_TRAFFIC_INTR) {
9caab458 2108 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 2109 if (flag == ENABLE_INTRS) {
20346722 2110 /*
1da177e4 2111 * Enable all the Tx side interrupts
20346722 2112 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
2113 */
2114 writeq(0x0, &bar0->tx_traffic_mask);
2115 } else if (flag == DISABLE_INTRS) {
20346722
K
2116 /*
2117 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
2118 * register.
2119 */
2120 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
2121 }
2122 }
2123
2124 /* Rx traffic interrupts */
2125 if (mask & RX_TRAFFIC_INTR) {
9caab458 2126 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 2127 if (flag == ENABLE_INTRS) {
1da177e4
LT
2128 /* writing 0 Enables all 8 RX interrupt levels */
2129 writeq(0x0, &bar0->rx_traffic_mask);
2130 } else if (flag == DISABLE_INTRS) {
20346722
K
2131 /*
2132 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
2133 * register.
2134 */
2135 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
2136 }
2137 }
9caab458
SS
2138
2139 temp64 = readq(&bar0->general_int_mask);
2140 if (flag == ENABLE_INTRS)
d44570e4 2141 temp64 &= ~((u64)intr_mask);
9caab458
SS
2142 else
2143 temp64 = DISABLE_ALL_INTRS;
2144 writeq(temp64, &bar0->general_int_mask);
2145
2146 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
2147}
2148
19a60522
SS
2149/**
2150 * verify_pcc_quiescent- Checks for PCC quiescent state
2151 * Return: 1 If PCC is quiescence
2152 * 0 If PCC is not quiescence
2153 */
1ee6dd77 2154static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2155{
19a60522 2156 int ret = 0, herc;
1ee6dd77 2157 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 2158 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2159
19a60522 2160 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722 2161
f957bcf0 2162 if (flag == false) {
44c10138 2163 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2164 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2165 ret = 1;
19a60522
SS
2166 } else {
2167 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2168 ret = 1;
20346722
K
2169 }
2170 } else {
44c10138 2171 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2172 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2173 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2174 ret = 1;
5e25b9dd
K
2175 } else {
2176 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2177 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2178 ret = 1;
20346722
K
2179 }
2180 }
2181
2182 return ret;
2183}
2184/**
2185 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2186 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2187 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2188 * differs and the calling function passes the input argument flag to
2189 * indicate this.
20346722 2190 * Return: 1 If xena is quiescence
1da177e4
LT
2191 * 0 If Xena is not quiescence
2192 */
2193
1ee6dd77 2194static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2195{
19a60522 2196 int mode;
1ee6dd77 2197 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2198 u64 val64 = readq(&bar0->adapter_status);
2199 mode = s2io_verify_pci_mode(sp);
1da177e4 2200
19a60522
SS
2201 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2202 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2203 return 0;
2204 }
2205 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
d44570e4 2206 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
19a60522
SS
2207 return 0;
2208 }
2209 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2210 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2211 return 0;
2212 }
2213 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2214 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2215 return 0;
2216 }
2217 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2218 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2219 return 0;
2220 }
2221 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2222 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2223 return 0;
2224 }
2225 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2226 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2227 return 0;
2228 }
2229 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2230 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2231 return 0;
1da177e4
LT
2232 }
2233
19a60522
SS
2234 /*
2235 * In PCI 33 mode, the P_PLL is not used, and therefore,
2236 * the the P_PLL_LOCK bit in the adapter_status register will
2237 * not be asserted.
2238 */
2239 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
d44570e4
JP
2240 sp->device_type == XFRAME_II_DEVICE &&
2241 mode != PCI_MODE_PCI_33) {
19a60522
SS
2242 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2243 return 0;
2244 }
2245 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
d44570e4 2246 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
19a60522
SS
2247 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2248 return 0;
2249 }
2250 return 1;
1da177e4
LT
2251}
2252
2253/**
2254 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2255 * @sp: Pointer to device specifc structure
20346722 2256 * Description :
1da177e4
LT
2257 * New procedure to clear mac address reading problems on Alpha platforms
2258 *
2259 */
2260
d44570e4 2261static void fix_mac_address(struct s2io_nic *sp)
1da177e4 2262{
1ee6dd77 2263 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2264 u64 val64;
2265 int i = 0;
2266
2267 while (fix_mac[i] != END_SIGN) {
2268 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2269 udelay(10);
1da177e4
LT
2270 val64 = readq(&bar0->gpio_control);
2271 }
2272}
2273
2274/**
20346722 2275 * start_nic - Turns the device on
1da177e4 2276 * @nic : device private variable.
20346722
K
2277 * Description:
2278 * This function actually turns the device on. Before this function is
2279 * called,all Registers are configured from their reset states
2280 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2281 * calling this function, the device interrupts are cleared and the NIC is
2282 * literally switched on by writing into the adapter control register.
20346722 2283 * Return Value:
1da177e4
LT
2284 * SUCCESS on success and -1 on failure.
2285 */
2286
2287static int start_nic(struct s2io_nic *nic)
2288{
1ee6dd77 2289 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2290 struct net_device *dev = nic->dev;
2291 register u64 val64 = 0;
20346722 2292 u16 subid, i;
1ee6dd77 2293 struct mac_info *mac_control;
1da177e4
LT
2294 struct config_param *config;
2295
2296 mac_control = &nic->mac_control;
2297 config = &nic->config;
2298
2299 /* PRC Initialization and configuration */
2300 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2301 struct ring_info *ring = &mac_control->rings[i];
2302
d44570e4 2303 writeq((u64)ring->rx_blocks[0].block_dma_addr,
1da177e4
LT
2304 &bar0->prc_rxd0_n[i]);
2305
2306 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2307 if (nic->rxd_mode == RXD_MODE_1)
2308 val64 |= PRC_CTRL_RC_ENABLED;
2309 else
2310 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2311 if (nic->device_type == XFRAME_II_DEVICE)
2312 val64 |= PRC_CTRL_GROUP_READS;
2313 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2314 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2315 writeq(val64, &bar0->prc_ctrl_n[i]);
2316 }
2317
da6971d8
AR
2318 if (nic->rxd_mode == RXD_MODE_3B) {
2319 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2320 val64 = readq(&bar0->rx_pa_cfg);
2321 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2322 writeq(val64, &bar0->rx_pa_cfg);
2323 }
1da177e4 2324
926930b2
SS
2325 if (vlan_tag_strip == 0) {
2326 val64 = readq(&bar0->rx_pa_cfg);
2327 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2328 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 2329 nic->vlan_strip_flag = 0;
926930b2
SS
2330 }
2331
20346722 2332 /*
1da177e4
LT
2333 * Enabling MC-RLDRAM. After enabling the device, we timeout
2334 * for around 100ms, which is approximately the time required
2335 * for the device to be ready for operation.
2336 */
2337 val64 = readq(&bar0->mc_rldram_mrs);
2338 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2339 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2340 val64 = readq(&bar0->mc_rldram_mrs);
2341
20346722 2342 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2343
2344 /* Enabling ECC Protection. */
2345 val64 = readq(&bar0->adapter_control);
2346 val64 &= ~ADAPTER_ECC_EN;
2347 writeq(val64, &bar0->adapter_control);
2348
20346722
K
2349 /*
2350 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2351 * it.
2352 */
2353 val64 = readq(&bar0->adapter_status);
19a60522 2354 if (!verify_xena_quiescence(nic)) {
1da177e4
LT
2355 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2356 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
d44570e4 2357 (unsigned long long)val64);
1da177e4
LT
2358 return FAILURE;
2359 }
2360
20346722 2361 /*
1da177e4 2362 * With some switches, link might be already up at this point.
20346722
K
2363 * Because of this weird behavior, when we enable laser,
2364 * we may not get link. We need to handle this. We cannot
2365 * figure out which switch is misbehaving. So we are forced to
2366 * make a global change.
1da177e4
LT
2367 */
2368
2369 /* Enabling Laser. */
2370 val64 = readq(&bar0->adapter_control);
2371 val64 |= ADAPTER_EOI_TX_ON;
2372 writeq(val64, &bar0->adapter_control);
2373
c92ca04b
AR
2374 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2375 /*
2376 * Dont see link state interrupts initally on some switches,
2377 * so directly scheduling the link state task here.
2378 */
2379 schedule_work(&nic->set_link_task);
2380 }
1da177e4
LT
2381 /* SXE-002: Initialize link and activity LED */
2382 subid = nic->pdev->subsystem_device;
541ae68f
K
2383 if (((subid & 0xFF) >= 0x07) &&
2384 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2385 val64 = readq(&bar0->gpio_control);
2386 val64 |= 0x0000800000000000ULL;
2387 writeq(val64, &bar0->gpio_control);
2388 val64 = 0x0411040400000000ULL;
509a2671 2389 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2390 }
2391
1da177e4
LT
2392 return SUCCESS;
2393}
fed5eccd
AR
2394/**
2395 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2396 */
d44570e4
JP
2397static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2398 struct TxD *txdlp, int get_off)
fed5eccd 2399{
1ee6dd77 2400 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2401 struct sk_buff *skb;
1ee6dd77 2402 struct TxD *txds;
fed5eccd
AR
2403 u16 j, frg_cnt;
2404
2405 txds = txdlp;
2fda096d 2406 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
d44570e4
JP
2407 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2408 sizeof(u64), PCI_DMA_TODEVICE);
fed5eccd
AR
2409 txds++;
2410 }
2411
d44570e4 2412 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
fed5eccd 2413 if (!skb) {
1ee6dd77 2414 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2415 return NULL;
2416 }
d44570e4
JP
2417 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2418 skb->len - skb->data_len, PCI_DMA_TODEVICE);
fed5eccd
AR
2419 frg_cnt = skb_shinfo(skb)->nr_frags;
2420 if (frg_cnt) {
2421 txds++;
2422 for (j = 0; j < frg_cnt; j++, txds++) {
2423 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2424 if (!txds->Buffer_Pointer)
2425 break;
d44570e4
JP
2426 pci_unmap_page(nic->pdev,
2427 (dma_addr_t)txds->Buffer_Pointer,
fed5eccd
AR
2428 frag->size, PCI_DMA_TODEVICE);
2429 }
2430 }
d44570e4
JP
2431 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2432 return skb;
fed5eccd 2433}
1da177e4 2434
20346722
K
2435/**
2436 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2437 * @nic : device private variable.
20346722 2438 * Description:
1da177e4 2439 * Free all queued Tx buffers.
20346722 2440 * Return Value: void
d44570e4 2441 */
1da177e4
LT
2442
2443static void free_tx_buffers(struct s2io_nic *nic)
2444{
2445 struct net_device *dev = nic->dev;
2446 struct sk_buff *skb;
1ee6dd77 2447 struct TxD *txdp;
1da177e4 2448 int i, j;
1ee6dd77 2449 struct mac_info *mac_control;
1da177e4 2450 struct config_param *config;
fed5eccd 2451 int cnt = 0;
1da177e4
LT
2452
2453 mac_control = &nic->mac_control;
2454 config = &nic->config;
2455
2456 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
2457 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2458 struct fifo_info *fifo = &mac_control->fifos[i];
2fda096d 2459 unsigned long flags;
13d866a9
JP
2460
2461 spin_lock_irqsave(&fifo->tx_lock, flags);
2462 for (j = 0; j < tx_cfg->fifo_len; j++) {
2463 txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
fed5eccd
AR
2464 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2465 if (skb) {
8a4bdbaa 2466 nic->mac_control.stats_info->sw_stat.mem_freed
491976b2 2467 += skb->truesize;
fed5eccd
AR
2468 dev_kfree_skb(skb);
2469 cnt++;
1da177e4 2470 }
1da177e4
LT
2471 }
2472 DBG_PRINT(INTR_DBG,
2473 "%s:forcibly freeing %d skbs on FIFO%d\n",
2474 dev->name, cnt, i);
13d866a9
JP
2475 fifo->tx_curr_get_info.offset = 0;
2476 fifo->tx_curr_put_info.offset = 0;
2477 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
2478 }
2479}
2480
20346722
K
2481/**
2482 * stop_nic - To stop the nic
1da177e4 2483 * @nic ; device private variable.
20346722
K
2484 * Description:
2485 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2486 * function does. This function is called to stop the device.
2487 * Return Value:
2488 * void.
2489 */
2490
2491static void stop_nic(struct s2io_nic *nic)
2492{
1ee6dd77 2493 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2494 register u64 val64 = 0;
5d3213cc 2495 u16 interruptible;
1ee6dd77 2496 struct mac_info *mac_control;
1da177e4
LT
2497 struct config_param *config;
2498
2499 mac_control = &nic->mac_control;
2500 config = &nic->config;
2501
2502 /* Disable all interrupts */
9caab458 2503 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2504 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2505 interruptible |= TX_PIC_INTR;
1da177e4
LT
2506 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2507
5d3213cc
AR
2508 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2509 val64 = readq(&bar0->adapter_control);
2510 val64 &= ~(ADAPTER_CNTL_EN);
2511 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2512}
2513
20346722
K
2514/**
2515 * fill_rx_buffers - Allocates the Rx side skbs
0425b46a 2516 * @ring_info: per ring structure
3f78d885
SH
2517 * @from_card_up: If this is true, we will map the buffer to get
2518 * the dma address for buf0 and buf1 to give it to the card.
2519 * Else we will sync the already mapped buffer to give it to the card.
20346722 2520 * Description:
1da177e4
LT
2521 * The function allocates Rx side skbs and puts the physical
2522 * address of these buffers into the RxD buffer pointers, so that the NIC
2523 * can DMA the received frame into these locations.
2524 * The NIC supports 3 receive modes, viz
2525 * 1. single buffer,
2526 * 2. three buffer and
2527 * 3. Five buffer modes.
20346722
K
2528 * Each mode defines how many fragments the received frame will be split
2529 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2530 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2531 * is split into 3 fragments. As of now only single buffer mode is
2532 * supported.
2533 * Return Value:
2534 * SUCCESS on success or an appropriate -ve value on failure.
2535 */
8d8bb39b 2536static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
d44570e4 2537 int from_card_up)
1da177e4 2538{
1da177e4 2539 struct sk_buff *skb;
1ee6dd77 2540 struct RxD_t *rxdp;
0425b46a 2541 int off, size, block_no, block_no1;
1da177e4 2542 u32 alloc_tab = 0;
20346722 2543 u32 alloc_cnt;
20346722 2544 u64 tmp;
1ee6dd77 2545 struct buffAdd *ba;
1ee6dd77 2546 struct RxD_t *first_rxdp = NULL;
363dc367 2547 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
0425b46a 2548 int rxd_index = 0;
6d517a27
VP
2549 struct RxD1 *rxdp1;
2550 struct RxD3 *rxdp3;
0425b46a 2551 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
1da177e4 2552
0425b46a 2553 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
1da177e4 2554
0425b46a 2555 block_no1 = ring->rx_curr_get_info.block_index;
1da177e4 2556 while (alloc_tab < alloc_cnt) {
0425b46a 2557 block_no = ring->rx_curr_put_info.block_index;
1da177e4 2558
0425b46a
SH
2559 off = ring->rx_curr_put_info.offset;
2560
2561 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2562
2563 rxd_index = off + 1;
2564 if (block_no)
2565 rxd_index += (block_no * ring->rxd_count);
da6971d8 2566
7d2e3cb7 2567 if ((block_no == block_no1) &&
d44570e4
JP
2568 (off == ring->rx_curr_get_info.offset) &&
2569 (rxdp->Host_Control)) {
2570 DBG_PRINT(INTR_DBG, "%s: Get and Put", ring->dev->name);
1da177e4
LT
2571 DBG_PRINT(INTR_DBG, " info equated\n");
2572 goto end;
2573 }
0425b46a
SH
2574 if (off && (off == ring->rxd_count)) {
2575 ring->rx_curr_put_info.block_index++;
2576 if (ring->rx_curr_put_info.block_index ==
d44570e4 2577 ring->block_count)
0425b46a
SH
2578 ring->rx_curr_put_info.block_index = 0;
2579 block_no = ring->rx_curr_put_info.block_index;
2580 off = 0;
2581 ring->rx_curr_put_info.offset = off;
2582 rxdp = ring->rx_blocks[block_no].block_virt_addr;
1da177e4 2583 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
0425b46a
SH
2584 ring->dev->name, rxdp);
2585
1da177e4 2586 }
c9fcbf47 2587
da6971d8 2588 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
d44570e4
JP
2589 ((ring->rxd_mode == RXD_MODE_3B) &&
2590 (rxdp->Control_2 & s2BIT(0)))) {
0425b46a 2591 ring->rx_curr_put_info.offset = off;
1da177e4
LT
2592 goto end;
2593 }
da6971d8 2594 /* calculate size of skb based on ring mode */
d44570e4
JP
2595 size = ring->mtu +
2596 HEADER_ETHERNET_II_802_3_SIZE +
2597 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
0425b46a 2598 if (ring->rxd_mode == RXD_MODE_1)
da6971d8 2599 size += NET_IP_ALIGN;
da6971d8 2600 else
0425b46a 2601 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2602
da6971d8
AR
2603 /* allocate skb */
2604 skb = dev_alloc_skb(size);
d44570e4 2605 if (!skb) {
0425b46a 2606 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
0c61ed5f 2607 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
303bcb4b
K
2608 if (first_rxdp) {
2609 wmb();
2610 first_rxdp->Control_1 |= RXD_OWN_XENA;
2611 }
0425b46a 2612 stats->mem_alloc_fail_cnt++;
7d2e3cb7 2613
da6971d8
AR
2614 return -ENOMEM ;
2615 }
0425b46a
SH
2616 stats->mem_allocated += skb->truesize;
2617
2618 if (ring->rxd_mode == RXD_MODE_1) {
da6971d8 2619 /* 1 buffer mode - normal operation mode */
d44570e4 2620 rxdp1 = (struct RxD1 *)rxdp;
1ee6dd77 2621 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2622 skb_reserve(skb, NET_IP_ALIGN);
d44570e4
JP
2623 rxdp1->Buffer0_ptr =
2624 pci_map_single(ring->pdev, skb->data,
2625 size - NET_IP_ALIGN,
2626 PCI_DMA_FROMDEVICE);
8d8bb39b 2627 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2628 rxdp1->Buffer0_ptr))
491abf25
VP
2629 goto pci_map_failed;
2630
8a4bdbaa 2631 rxdp->Control_2 =
491976b2 2632 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
d44570e4 2633 rxdp->Host_Control = (unsigned long)skb;
0425b46a 2634 } else if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8 2635 /*
6d517a27
VP
2636 * 2 buffer mode -
2637 * 2 buffer mode provides 128
da6971d8 2638 * byte aligned receive buffers.
da6971d8
AR
2639 */
2640
d44570e4 2641 rxdp3 = (struct RxD3 *)rxdp;
491976b2 2642 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2643 Buffer0_ptr = rxdp3->Buffer0_ptr;
2644 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2645 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2646 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2647 rxdp3->Buffer0_ptr = Buffer0_ptr;
2648 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2649
0425b46a 2650 ba = &ring->ba[block_no][off];
da6971d8 2651 skb_reserve(skb, BUF0_LEN);
d44570e4 2652 tmp = (u64)(unsigned long)skb->data;
da6971d8
AR
2653 tmp += ALIGN_SIZE;
2654 tmp &= ~ALIGN_SIZE;
2655 skb->data = (void *) (unsigned long)tmp;
27a884dc 2656 skb_reset_tail_pointer(skb);
da6971d8 2657
3f78d885 2658 if (from_card_up) {
6d517a27 2659 rxdp3->Buffer0_ptr =
d44570e4
JP
2660 pci_map_single(ring->pdev, ba->ba_0,
2661 BUF0_LEN,
2662 PCI_DMA_FROMDEVICE);
2663 if (pci_dma_mapping_error(nic->pdev,
2664 rxdp3->Buffer0_ptr))
3f78d885
SH
2665 goto pci_map_failed;
2666 } else
0425b46a 2667 pci_dma_sync_single_for_device(ring->pdev,
d44570e4
JP
2668 (dma_addr_t)rxdp3->Buffer0_ptr,
2669 BUF0_LEN,
2670 PCI_DMA_FROMDEVICE);
491abf25 2671
da6971d8 2672 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
0425b46a 2673 if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
2674 /* Two buffer mode */
2675
2676 /*
6aa20a22 2677 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2678 * L4 payload
2679 */
d44570e4
JP
2680 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2681 skb->data,
2682 ring->mtu + 4,
2683 PCI_DMA_FROMDEVICE);
da6971d8 2684
8d8bb39b 2685 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2686 rxdp3->Buffer2_ptr))
491abf25
VP
2687 goto pci_map_failed;
2688
3f78d885 2689 if (from_card_up) {
0425b46a
SH
2690 rxdp3->Buffer1_ptr =
2691 pci_map_single(ring->pdev,
d44570e4
JP
2692 ba->ba_1,
2693 BUF1_LEN,
2694 PCI_DMA_FROMDEVICE);
0425b46a 2695
8d8bb39b 2696 if (pci_dma_mapping_error(nic->pdev,
d44570e4
JP
2697 rxdp3->Buffer1_ptr)) {
2698 pci_unmap_single(ring->pdev,
2699 (dma_addr_t)(unsigned long)
2700 skb->data,
2701 ring->mtu + 4,
2702 PCI_DMA_FROMDEVICE);
3f78d885
SH
2703 goto pci_map_failed;
2704 }
75c30b13 2705 }
da6971d8
AR
2706 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2707 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
d44570e4 2708 (ring->mtu + 4);
da6971d8 2709 }
b7b5a128 2710 rxdp->Control_2 |= s2BIT(0);
0425b46a 2711 rxdp->Host_Control = (unsigned long) (skb);
1da177e4 2712 }
303bcb4b
K
2713 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2714 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2715 off++;
0425b46a 2716 if (off == (ring->rxd_count + 1))
da6971d8 2717 off = 0;
0425b46a 2718 ring->rx_curr_put_info.offset = off;
20346722 2719
da6971d8 2720 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2721 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2722 if (first_rxdp) {
2723 wmb();
2724 first_rxdp->Control_1 |= RXD_OWN_XENA;
2725 }
2726 first_rxdp = rxdp;
2727 }
0425b46a 2728 ring->rx_bufs_left += 1;
1da177e4
LT
2729 alloc_tab++;
2730 }
2731
d44570e4 2732end:
303bcb4b
K
2733 /* Transfer ownership of first descriptor to adapter just before
2734 * exiting. Before that, use memory barrier so that ownership
2735 * and other fields are seen by adapter correctly.
2736 */
2737 if (first_rxdp) {
2738 wmb();
2739 first_rxdp->Control_1 |= RXD_OWN_XENA;
2740 }
2741
1da177e4 2742 return SUCCESS;
d44570e4 2743
491abf25
VP
2744pci_map_failed:
2745 stats->pci_map_fail_cnt++;
2746 stats->mem_freed += skb->truesize;
2747 dev_kfree_skb_irq(skb);
2748 return -ENOMEM;
1da177e4
LT
2749}
2750
da6971d8
AR
2751static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2752{
2753 struct net_device *dev = sp->dev;
2754 int j;
2755 struct sk_buff *skb;
1ee6dd77
RB
2756 struct RxD_t *rxdp;
2757 struct mac_info *mac_control;
2758 struct buffAdd *ba;
6d517a27
VP
2759 struct RxD1 *rxdp1;
2760 struct RxD3 *rxdp3;
da6971d8
AR
2761
2762 mac_control = &sp->mac_control;
2763 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2764 rxdp = mac_control->rings[ring_no].
d44570e4
JP
2765 rx_blocks[blk].rxds[j].virt_addr;
2766 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2767 if (!skb)
da6971d8 2768 continue;
da6971d8 2769 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4
JP
2770 rxdp1 = (struct RxD1 *)rxdp;
2771 pci_unmap_single(sp->pdev,
2772 (dma_addr_t)rxdp1->Buffer0_ptr,
2773 dev->mtu +
2774 HEADER_ETHERNET_II_802_3_SIZE +
2775 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2776 PCI_DMA_FROMDEVICE);
1ee6dd77 2777 memset(rxdp, 0, sizeof(struct RxD1));
d44570e4
JP
2778 } else if (sp->rxd_mode == RXD_MODE_3B) {
2779 rxdp3 = (struct RxD3 *)rxdp;
2780 ba = &mac_control->rings[ring_no].ba[blk][j];
2781 pci_unmap_single(sp->pdev,
2782 (dma_addr_t)rxdp3->Buffer0_ptr,
2783 BUF0_LEN,
2784 PCI_DMA_FROMDEVICE);
2785 pci_unmap_single(sp->pdev,
2786 (dma_addr_t)rxdp3->Buffer1_ptr,
2787 BUF1_LEN,
2788 PCI_DMA_FROMDEVICE);
2789 pci_unmap_single(sp->pdev,
2790 (dma_addr_t)rxdp3->Buffer2_ptr,
2791 dev->mtu + 4,
2792 PCI_DMA_FROMDEVICE);
1ee6dd77 2793 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2794 }
491976b2 2795 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
da6971d8 2796 dev_kfree_skb(skb);
0425b46a 2797 mac_control->rings[ring_no].rx_bufs_left -= 1;
da6971d8
AR
2798 }
2799}
2800
1da177e4 2801/**
20346722 2802 * free_rx_buffers - Frees all Rx buffers
1da177e4 2803 * @sp: device private variable.
20346722 2804 * Description:
1da177e4
LT
2805 * This function will free all Rx buffers allocated by host.
2806 * Return Value:
2807 * NONE.
2808 */
2809
2810static void free_rx_buffers(struct s2io_nic *sp)
2811{
2812 struct net_device *dev = sp->dev;
da6971d8 2813 int i, blk = 0, buf_cnt = 0;
1ee6dd77 2814 struct mac_info *mac_control;
1da177e4 2815 struct config_param *config;
1da177e4
LT
2816
2817 mac_control = &sp->mac_control;
2818 config = &sp->config;
2819
2820 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2821 struct ring_info *ring = &mac_control->rings[i];
2822
da6971d8 2823 for (blk = 0; blk < rx_ring_sz[i]; blk++)
d44570e4 2824 free_rxd_blk(sp, i, blk);
1da177e4 2825
13d866a9
JP
2826 ring->rx_curr_put_info.block_index = 0;
2827 ring->rx_curr_get_info.block_index = 0;
2828 ring->rx_curr_put_info.offset = 0;
2829 ring->rx_curr_get_info.offset = 0;
2830 ring->rx_bufs_left = 0;
1da177e4
LT
2831 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2832 dev->name, buf_cnt, i);
2833 }
2834}
2835
8d8bb39b 2836static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
f61e0a35 2837{
8d8bb39b 2838 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
f61e0a35
SH
2839 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2840 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2841 }
2842 return 0;
2843}
2844
1da177e4
LT
2845/**
2846 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2847 * @napi : pointer to the napi structure.
20346722 2848 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2849 * during one pass through the 'Poll" function.
2850 * Description:
2851 * Comes into picture only if NAPI support has been incorporated. It does
2852 * the same thing that rx_intr_handler does, but not in a interrupt context
2853 * also It will process only a given number of packets.
2854 * Return value:
2855 * 0 on success and 1 if there are No Rx packets to be processed.
2856 */
2857
f61e0a35 2858static int s2io_poll_msix(struct napi_struct *napi, int budget)
1da177e4 2859{
f61e0a35
SH
2860 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2861 struct net_device *dev = ring->dev;
1da177e4 2862 struct config_param *config;
f61e0a35
SH
2863 struct mac_info *mac_control;
2864 int pkts_processed = 0;
1a79d1c3
AV
2865 u8 __iomem *addr = NULL;
2866 u8 val8 = 0;
4cf1653a 2867 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2868 struct XENA_dev_config __iomem *bar0 = nic->bar0;
f61e0a35 2869 int budget_org = budget;
1da177e4 2870
1da177e4 2871 config = &nic->config;
f61e0a35 2872 mac_control = &nic->mac_control;
1da177e4 2873
f61e0a35
SH
2874 if (unlikely(!is_s2io_card_up(nic)))
2875 return 0;
1da177e4 2876
f61e0a35 2877 pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2878 s2io_chk_rx_buffers(nic, ring);
1da177e4 2879
f61e0a35 2880 if (pkts_processed < budget_org) {
288379f0 2881 napi_complete(napi);
f61e0a35 2882 /*Re Enable MSI-Rx Vector*/
1a79d1c3 2883 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
2884 addr += 7 - ring->ring_no;
2885 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2886 writeb(val8, addr);
2887 val8 = readb(addr);
1da177e4 2888 }
f61e0a35
SH
2889 return pkts_processed;
2890}
d44570e4 2891
f61e0a35
SH
2892static int s2io_poll_inta(struct napi_struct *napi, int budget)
2893{
2894 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
f61e0a35
SH
2895 struct config_param *config;
2896 struct mac_info *mac_control;
2897 int pkts_processed = 0;
2898 int ring_pkts_processed, i;
2899 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2900 int budget_org = budget;
1da177e4 2901
f61e0a35
SH
2902 config = &nic->config;
2903 mac_control = &nic->mac_control;
1da177e4 2904
f61e0a35
SH
2905 if (unlikely(!is_s2io_card_up(nic)))
2906 return 0;
1da177e4 2907
1da177e4 2908 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9 2909 struct ring_info *ring = &mac_control->rings[i];
f61e0a35 2910 ring_pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2911 s2io_chk_rx_buffers(nic, ring);
f61e0a35
SH
2912 pkts_processed += ring_pkts_processed;
2913 budget -= ring_pkts_processed;
2914 if (budget <= 0)
1da177e4 2915 break;
1da177e4 2916 }
f61e0a35 2917 if (pkts_processed < budget_org) {
288379f0 2918 napi_complete(napi);
f61e0a35
SH
2919 /* Re enable the Rx interrupts for the ring */
2920 writeq(0, &bar0->rx_traffic_mask);
2921 readl(&bar0->rx_traffic_mask);
2922 }
2923 return pkts_processed;
1da177e4 2924}
20346722 2925
b41477f3 2926#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2927/**
b41477f3 2928 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2929 * @dev : pointer to the device structure.
2930 * Description:
b41477f3
AR
2931 * This function will be called by upper layer to check for events on the
2932 * interface in situations where interrupts are disabled. It is used for
2933 * specific in-kernel networking tasks, such as remote consoles and kernel
2934 * debugging over the network (example netdump in RedHat).
612eff0e 2935 */
612eff0e
BH
2936static void s2io_netpoll(struct net_device *dev)
2937{
4cf1653a 2938 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2939 struct mac_info *mac_control;
612eff0e 2940 struct config_param *config;
1ee6dd77 2941 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2942 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e
BH
2943 int i;
2944
d796fdb7
LV
2945 if (pci_channel_offline(nic->pdev))
2946 return;
2947
612eff0e
BH
2948 disable_irq(dev->irq);
2949
612eff0e
BH
2950 mac_control = &nic->mac_control;
2951 config = &nic->config;
2952
612eff0e 2953 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2954 writeq(val64, &bar0->tx_traffic_int);
2955
6aa20a22 2956 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2957 * run out of skbs and will fail and eventually netpoll application such
2958 * as netdump will fail.
2959 */
2960 for (i = 0; i < config->tx_fifo_num; i++)
2961 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2962
b41477f3 2963 /* check for received packet and indicate up to network */
13d866a9
JP
2964 for (i = 0; i < config->rx_ring_num; i++) {
2965 struct ring_info *ring = &mac_control->rings[i];
2966
2967 rx_intr_handler(ring, 0);
2968 }
612eff0e
BH
2969
2970 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2971 struct ring_info *ring = &mac_control->rings[i];
2972
2973 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
0c61ed5f
RV
2974 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2975 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
612eff0e
BH
2976 break;
2977 }
2978 }
612eff0e
BH
2979 enable_irq(dev->irq);
2980 return;
2981}
2982#endif
2983
20346722 2984/**
1da177e4 2985 * rx_intr_handler - Rx interrupt handler
f61e0a35
SH
2986 * @ring_info: per ring structure.
2987 * @budget: budget for napi processing.
20346722
K
2988 * Description:
2989 * If the interrupt is because of a received frame or if the
1da177e4 2990 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2991 * called. It picks out the RxD at which place the last Rx processing had
2992 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2993 * the offset.
2994 * Return Value:
f61e0a35 2995 * No. of napi packets processed.
1da177e4 2996 */
f61e0a35 2997static int rx_intr_handler(struct ring_info *ring_data, int budget)
1da177e4 2998{
c9fcbf47 2999 int get_block, put_block;
1ee6dd77
RB
3000 struct rx_curr_get_info get_info, put_info;
3001 struct RxD_t *rxdp;
1da177e4 3002 struct sk_buff *skb;
f61e0a35 3003 int pkt_cnt = 0, napi_pkts = 0;
7d3d0439 3004 int i;
d44570e4
JP
3005 struct RxD1 *rxdp1;
3006 struct RxD3 *rxdp3;
7d3d0439 3007
20346722
K
3008 get_info = ring_data->rx_curr_get_info;
3009 get_block = get_info.block_index;
1ee6dd77 3010 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 3011 put_block = put_info.block_index;
da6971d8 3012 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65 3013
da6971d8 3014 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
3015 /*
3016 * If your are next to put index then it's
3017 * FIFO full condition
3018 */
da6971d8
AR
3019 if ((get_block == put_block) &&
3020 (get_info.offset + 1) == put_info.offset) {
0425b46a 3021 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
d44570e4 3022 ring_data->dev->name);
da6971d8
AR
3023 break;
3024 }
d44570e4 3025 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
20346722
K
3026 if (skb == NULL) {
3027 DBG_PRINT(ERR_DBG, "%s: The skb is ",
0425b46a 3028 ring_data->dev->name);
20346722 3029 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
f61e0a35 3030 return 0;
1da177e4 3031 }
0425b46a 3032 if (ring_data->rxd_mode == RXD_MODE_1) {
d44570e4 3033 rxdp1 = (struct RxD1 *)rxdp;
0425b46a 3034 pci_unmap_single(ring_data->pdev, (dma_addr_t)
d44570e4
JP
3035 rxdp1->Buffer0_ptr,
3036 ring_data->mtu +
3037 HEADER_ETHERNET_II_802_3_SIZE +
3038 HEADER_802_2_SIZE +
3039 HEADER_SNAP_SIZE,
3040 PCI_DMA_FROMDEVICE);
0425b46a 3041 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
d44570e4
JP
3042 rxdp3 = (struct RxD3 *)rxdp;
3043 pci_dma_sync_single_for_cpu(ring_data->pdev,
3044 (dma_addr_t)rxdp3->Buffer0_ptr,
3045 BUF0_LEN,
3046 PCI_DMA_FROMDEVICE);
3047 pci_unmap_single(ring_data->pdev,
3048 (dma_addr_t)rxdp3->Buffer2_ptr,
3049 ring_data->mtu + 4,
3050 PCI_DMA_FROMDEVICE);
da6971d8 3051 }
863c11a9 3052 prefetch(skb->data);
20346722
K
3053 rx_osm_handler(ring_data, rxdp);
3054 get_info.offset++;
da6971d8
AR
3055 ring_data->rx_curr_get_info.offset = get_info.offset;
3056 rxdp = ring_data->rx_blocks[get_block].
d44570e4 3057 rxds[get_info.offset].virt_addr;
0425b46a 3058 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
20346722 3059 get_info.offset = 0;
da6971d8 3060 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 3061 get_block++;
da6971d8
AR
3062 if (get_block == ring_data->block_count)
3063 get_block = 0;
3064 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
3065 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3066 }
1da177e4 3067
f61e0a35
SH
3068 if (ring_data->nic->config.napi) {
3069 budget--;
3070 napi_pkts++;
3071 if (!budget)
0425b46a
SH
3072 break;
3073 }
20346722 3074 pkt_cnt++;
1da177e4
LT
3075 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3076 break;
3077 }
0425b46a 3078 if (ring_data->lro) {
7d3d0439 3079 /* Clear all LRO sessions before exiting */
d44570e4 3080 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 3081 struct lro *lro = &ring_data->lro0_n[i];
7d3d0439 3082 if (lro->in_use) {
0425b46a 3083 update_L3L4_header(ring_data->nic, lro);
cdb5bf02 3084 queue_rx_frame(lro->parent, lro->vlan_tag);
7d3d0439
RA
3085 clear_lro_session(lro);
3086 }
3087 }
3088 }
d44570e4 3089 return napi_pkts;
1da177e4 3090}
20346722
K
3091
3092/**
1da177e4
LT
3093 * tx_intr_handler - Transmit interrupt handler
3094 * @nic : device private variable
20346722
K
3095 * Description:
3096 * If an interrupt was raised to indicate DMA complete of the
3097 * Tx packet, this function is called. It identifies the last TxD
3098 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
3099 * DMA'ed into the NICs internal memory.
3100 * Return Value:
3101 * NONE
3102 */
3103
1ee6dd77 3104static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 3105{
1ee6dd77 3106 struct s2io_nic *nic = fifo_data->nic;
1ee6dd77 3107 struct tx_curr_get_info get_info, put_info;
3a3d5756 3108 struct sk_buff *skb = NULL;
1ee6dd77 3109 struct TxD *txdlp;
3a3d5756 3110 int pkt_cnt = 0;
2fda096d 3111 unsigned long flags = 0;
f9046eb3 3112 u8 err_mask;
1da177e4 3113
2fda096d 3114 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
d44570e4 3115 return;
2fda096d 3116
20346722 3117 get_info = fifo_data->tx_curr_get_info;
1ee6dd77 3118 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
d44570e4
JP
3119 txdlp = (struct TxD *)
3120 fifo_data->list_info[get_info.offset].list_virt_addr;
20346722
K
3121 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3122 (get_info.offset != put_info.offset) &&
3123 (txdlp->Host_Control)) {
3124 /* Check for TxD errors */
3125 if (txdlp->Control_1 & TXD_T_CODE) {
3126 unsigned long long err;
3127 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
3128 if (err & 0x1) {
3129 nic->mac_control.stats_info->sw_stat.
d44570e4 3130 parity_err_cnt++;
bd1034f0 3131 }
491976b2
SH
3132
3133 /* update t_code statistics */
f9046eb3 3134 err_mask = err >> 48;
d44570e4
JP
3135 switch (err_mask) {
3136 case 2:
3137 nic->mac_control.stats_info->sw_stat.
3138 tx_buf_abort_cnt++;
491976b2
SH
3139 break;
3140
d44570e4
JP
3141 case 3:
3142 nic->mac_control.stats_info->sw_stat.
3143 tx_desc_abort_cnt++;
491976b2
SH
3144 break;
3145
d44570e4
JP
3146 case 7:
3147 nic->mac_control.stats_info->sw_stat.
3148 tx_parity_err_cnt++;
491976b2
SH
3149 break;
3150
d44570e4
JP
3151 case 10:
3152 nic->mac_control.stats_info->sw_stat.
3153 tx_link_loss_cnt++;
491976b2
SH
3154 break;
3155
d44570e4
JP
3156 case 15:
3157 nic->mac_control.stats_info->sw_stat.
3158 tx_list_proc_err_cnt++;
491976b2 3159 break;
d44570e4 3160 }
20346722 3161 }
1da177e4 3162
fed5eccd 3163 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 3164 if (skb == NULL) {
2fda096d 3165 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
d44570e4 3166 DBG_PRINT(ERR_DBG, "%s: Null skb ", __func__);
20346722
K
3167 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3168 return;
3169 }
3a3d5756 3170 pkt_cnt++;
20346722 3171
20346722 3172 /* Updating the statistics block */
dc56e634 3173 nic->dev->stats.tx_bytes += skb->len;
491976b2 3174 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
20346722
K
3175 dev_kfree_skb_irq(skb);
3176
3177 get_info.offset++;
863c11a9
AR
3178 if (get_info.offset == get_info.fifo_len + 1)
3179 get_info.offset = 0;
d44570e4
JP
3180 txdlp = (struct TxD *)
3181 fifo_data->list_info[get_info.offset].list_virt_addr;
3182 fifo_data->tx_curr_get_info.offset = get_info.offset;
1da177e4
LT
3183 }
3184
3a3d5756 3185 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
2fda096d
SR
3186
3187 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
1da177e4
LT
3188}
3189
bd1034f0
AR
3190/**
3191 * s2io_mdio_write - Function to write in to MDIO registers
3192 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3193 * @addr : address value
3194 * @value : data value
3195 * @dev : pointer to net_device structure
3196 * Description:
3197 * This function is used to write values to the MDIO registers
3198 * NONE
3199 */
d44570e4
JP
3200static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3201 struct net_device *dev)
bd1034f0 3202{
d44570e4 3203 u64 val64;
4cf1653a 3204 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3205 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0 3206
d44570e4
JP
3207 /* address transaction */
3208 val64 = MDIO_MMD_INDX_ADDR(addr) |
3209 MDIO_MMD_DEV_ADDR(mmd_type) |
3210 MDIO_MMS_PRT_ADDR(0x0);
bd1034f0
AR
3211 writeq(val64, &bar0->mdio_control);
3212 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3213 writeq(val64, &bar0->mdio_control);
3214 udelay(100);
3215
d44570e4
JP
3216 /* Data transaction */
3217 val64 = MDIO_MMD_INDX_ADDR(addr) |
3218 MDIO_MMD_DEV_ADDR(mmd_type) |
3219 MDIO_MMS_PRT_ADDR(0x0) |
3220 MDIO_MDIO_DATA(value) |
3221 MDIO_OP(MDIO_OP_WRITE_TRANS);
bd1034f0
AR
3222 writeq(val64, &bar0->mdio_control);
3223 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3224 writeq(val64, &bar0->mdio_control);
3225 udelay(100);
3226
d44570e4
JP
3227 val64 = MDIO_MMD_INDX_ADDR(addr) |
3228 MDIO_MMD_DEV_ADDR(mmd_type) |
3229 MDIO_MMS_PRT_ADDR(0x0) |
3230 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3231 writeq(val64, &bar0->mdio_control);
3232 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3233 writeq(val64, &bar0->mdio_control);
3234 udelay(100);
bd1034f0
AR
3235}
3236
3237/**
3238 * s2io_mdio_read - Function to write in to MDIO registers
3239 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3240 * @addr : address value
3241 * @dev : pointer to net_device structure
3242 * Description:
3243 * This function is used to read values to the MDIO registers
3244 * NONE
3245 */
3246static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3247{
3248 u64 val64 = 0x0;
3249 u64 rval64 = 0x0;
4cf1653a 3250 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3251 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3252
3253 /* address transaction */
d44570e4
JP
3254 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3255 | MDIO_MMD_DEV_ADDR(mmd_type)
3256 | MDIO_MMS_PRT_ADDR(0x0));
bd1034f0
AR
3257 writeq(val64, &bar0->mdio_control);
3258 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3259 writeq(val64, &bar0->mdio_control);
3260 udelay(100);
3261
3262 /* Data transaction */
d44570e4
JP
3263 val64 = MDIO_MMD_INDX_ADDR(addr) |
3264 MDIO_MMD_DEV_ADDR(mmd_type) |
3265 MDIO_MMS_PRT_ADDR(0x0) |
3266 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3267 writeq(val64, &bar0->mdio_control);
3268 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3269 writeq(val64, &bar0->mdio_control);
3270 udelay(100);
3271
3272 /* Read the value from regs */
3273 rval64 = readq(&bar0->mdio_control);
3274 rval64 = rval64 & 0xFFFF0000;
3275 rval64 = rval64 >> 16;
3276 return rval64;
3277}
d44570e4 3278
bd1034f0
AR
3279/**
3280 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3281 * @counter : couter value to be updated
3282 * @flag : flag to indicate the status
3283 * @type : counter type
3284 * Description:
3285 * This function is to check the status of the xpak counters value
3286 * NONE
3287 */
3288
d44570e4
JP
3289static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3290 u16 flag, u16 type)
bd1034f0
AR
3291{
3292 u64 mask = 0x3;
3293 u64 val64;
3294 int i;
d44570e4 3295 for (i = 0; i < index; i++)
bd1034f0
AR
3296 mask = mask << 0x2;
3297
d44570e4 3298 if (flag > 0) {
bd1034f0
AR
3299 *counter = *counter + 1;
3300 val64 = *regs_stat & mask;
3301 val64 = val64 >> (index * 0x2);
3302 val64 = val64 + 1;
d44570e4
JP
3303 if (val64 == 3) {
3304 switch (type) {
bd1034f0
AR
3305 case 1:
3306 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3307 "service. Excessive temperatures may "
3308 "result in premature transceiver "
3309 "failure \n");
d44570e4 3310 break;
bd1034f0
AR
3311 case 2:
3312 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3313 "service Excessive bias currents may "
3314 "indicate imminent laser diode "
3315 "failure \n");
d44570e4 3316 break;
bd1034f0
AR
3317 case 3:
3318 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3319 "service Excessive laser output "
3320 "power may saturate far-end "
3321 "receiver\n");
d44570e4 3322 break;
bd1034f0 3323 default:
d44570e4
JP
3324 DBG_PRINT(ERR_DBG,
3325 "Incorrect XPAK Alarm type\n");
bd1034f0
AR
3326 }
3327 val64 = 0x0;
3328 }
3329 val64 = val64 << (index * 0x2);
3330 *regs_stat = (*regs_stat & (~mask)) | (val64);
3331
3332 } else {
3333 *regs_stat = *regs_stat & (~mask);
3334 }
3335}
3336
3337/**
3338 * s2io_updt_xpak_counter - Function to update the xpak counters
3339 * @dev : pointer to net_device struct
3340 * Description:
3341 * This function is to upate the status of the xpak counters value
3342 * NONE
3343 */
3344static void s2io_updt_xpak_counter(struct net_device *dev)
3345{
3346 u16 flag = 0x0;
3347 u16 type = 0x0;
3348 u16 val16 = 0x0;
3349 u64 val64 = 0x0;
3350 u64 addr = 0x0;
3351
4cf1653a 3352 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3353 struct stat_block *stat_info = sp->mac_control.stats_info;
bd1034f0
AR
3354
3355 /* Check the communication with the MDIO slave */
40239396 3356 addr = MDIO_CTRL1;
bd1034f0 3357 val64 = 0x0;
40239396 3358 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
d44570e4 3359 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
bd1034f0
AR
3360 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3361 "Returned %llx\n", (unsigned long long)val64);
3362 return;
3363 }
3364
40239396 3365 /* Check for the expected value of control reg 1 */
d44570e4 3366 if (val64 != MDIO_CTRL1_SPEED10G) {
bd1034f0 3367 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
40239396
BH
3368 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x%x\n",
3369 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
bd1034f0
AR
3370 return;
3371 }
3372
3373 /* Loading the DOM register to MDIO register */
3374 addr = 0xA100;
40239396
BH
3375 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3376 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3377
3378 /* Reading the Alarm flags */
3379 addr = 0xA070;
3380 val64 = 0x0;
40239396 3381 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3382
3383 flag = CHECKBIT(val64, 0x7);
3384 type = 1;
3385 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
d44570e4
JP
3386 &stat_info->xpak_stat.xpak_regs_stat,
3387 0x0, flag, type);
bd1034f0 3388
d44570e4 3389 if (CHECKBIT(val64, 0x6))
bd1034f0
AR
3390 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3391
3392 flag = CHECKBIT(val64, 0x3);
3393 type = 2;
3394 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
d44570e4
JP
3395 &stat_info->xpak_stat.xpak_regs_stat,
3396 0x2, flag, type);
bd1034f0 3397
d44570e4 3398 if (CHECKBIT(val64, 0x2))
bd1034f0
AR
3399 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3400
3401 flag = CHECKBIT(val64, 0x1);
3402 type = 3;
3403 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
d44570e4
JP
3404 &stat_info->xpak_stat.xpak_regs_stat,
3405 0x4, flag, type);
bd1034f0 3406
d44570e4 3407 if (CHECKBIT(val64, 0x0))
bd1034f0
AR
3408 stat_info->xpak_stat.alarm_laser_output_power_low++;
3409
3410 /* Reading the Warning flags */
3411 addr = 0xA074;
3412 val64 = 0x0;
40239396 3413 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0 3414
d44570e4 3415 if (CHECKBIT(val64, 0x7))
bd1034f0
AR
3416 stat_info->xpak_stat.warn_transceiver_temp_high++;
3417
d44570e4 3418 if (CHECKBIT(val64, 0x6))
bd1034f0
AR
3419 stat_info->xpak_stat.warn_transceiver_temp_low++;
3420
d44570e4 3421 if (CHECKBIT(val64, 0x3))
bd1034f0
AR
3422 stat_info->xpak_stat.warn_laser_bias_current_high++;
3423
d44570e4 3424 if (CHECKBIT(val64, 0x2))
bd1034f0
AR
3425 stat_info->xpak_stat.warn_laser_bias_current_low++;
3426
d44570e4 3427 if (CHECKBIT(val64, 0x1))
bd1034f0
AR
3428 stat_info->xpak_stat.warn_laser_output_power_high++;
3429
d44570e4 3430 if (CHECKBIT(val64, 0x0))
bd1034f0
AR
3431 stat_info->xpak_stat.warn_laser_output_power_low++;
3432}
3433
20346722 3434/**
1da177e4 3435 * wait_for_cmd_complete - waits for a command to complete.
20346722 3436 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3437 * s2io_nic structure.
20346722
K
3438 * Description: Function that waits for a command to Write into RMAC
3439 * ADDR DATA registers to be completed and returns either success or
3440 * error depending on whether the command was complete or not.
1da177e4
LT
3441 * Return value:
3442 * SUCCESS on success and FAILURE on failure.
3443 */
3444
9fc93a41 3445static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
d44570e4 3446 int bit_state)
1da177e4 3447{
9fc93a41 3448 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3449 u64 val64;
3450
9fc93a41
SS
3451 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3452 return FAILURE;
3453
3454 do {
c92ca04b 3455 val64 = readq(addr);
9fc93a41
SS
3456 if (bit_state == S2IO_BIT_RESET) {
3457 if (!(val64 & busy_bit)) {
3458 ret = SUCCESS;
3459 break;
3460 }
3461 } else {
3462 if (!(val64 & busy_bit)) {
3463 ret = SUCCESS;
3464 break;
3465 }
1da177e4 3466 }
c92ca04b 3467
d44570e4 3468 if (in_interrupt())
9fc93a41 3469 mdelay(delay);
c92ca04b 3470 else
9fc93a41 3471 msleep(delay);
c92ca04b 3472
9fc93a41
SS
3473 if (++cnt >= 10)
3474 delay = 50;
3475 } while (cnt < 20);
1da177e4
LT
3476 return ret;
3477}
19a60522
SS
3478/*
3479 * check_pci_device_id - Checks if the device id is supported
3480 * @id : device id
3481 * Description: Function to check if the pci device id is supported by driver.
3482 * Return value: Actual device id if supported else PCI_ANY_ID
3483 */
3484static u16 check_pci_device_id(u16 id)
3485{
3486 switch (id) {
3487 case PCI_DEVICE_ID_HERC_WIN:
3488 case PCI_DEVICE_ID_HERC_UNI:
3489 return XFRAME_II_DEVICE;
3490 case PCI_DEVICE_ID_S2IO_UNI:
3491 case PCI_DEVICE_ID_S2IO_WIN:
3492 return XFRAME_I_DEVICE;
3493 default:
3494 return PCI_ANY_ID;
3495 }
3496}
1da177e4 3497
20346722
K
3498/**
3499 * s2io_reset - Resets the card.
1da177e4
LT
3500 * @sp : private member of the device structure.
3501 * Description: Function to Reset the card. This function then also
20346722 3502 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3503 * the card reset also resets the configuration space.
3504 * Return value:
3505 * void.
3506 */
3507
d44570e4 3508static void s2io_reset(struct s2io_nic *sp)
1da177e4 3509{
1ee6dd77 3510 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3511 u64 val64;
5e25b9dd 3512 u16 subid, pci_cmd;
19a60522
SS
3513 int i;
3514 u16 val16;
491976b2
SH
3515 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3516 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3517
d44570e4
JP
3518 DBG_PRINT(INIT_DBG, "%s - Resetting XFrame card %s\n",
3519 __func__, sp->dev->name);
1da177e4 3520
0b1f7ebe 3521 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3522 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3523
1da177e4
LT
3524 val64 = SW_RESET_ALL;
3525 writeq(val64, &bar0->sw_reset);
d44570e4 3526 if (strstr(sp->product_name, "CX4"))
c92ca04b 3527 msleep(750);
19a60522
SS
3528 msleep(250);
3529 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3530
19a60522
SS
3531 /* Restore the PCI state saved during initialization. */
3532 pci_restore_state(sp->pdev);
3533 pci_read_config_word(sp->pdev, 0x2, &val16);
3534 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3535 break;
3536 msleep(200);
3537 }
1da177e4 3538
d44570e4
JP
3539 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3540 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
19a60522
SS
3541
3542 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3543
3544 s2io_init_pci(sp);
1da177e4 3545
20346722
K
3546 /* Set swapper to enable I/O register access */
3547 s2io_set_swapper(sp);
3548
faa4f796
SH
3549 /* restore mac_addr entries */
3550 do_s2io_restore_unicast_mc(sp);
3551
cc6e7c44
RA
3552 /* Restore the MSIX table entries from local variables */
3553 restore_xmsi_data(sp);
3554
5e25b9dd 3555 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3556 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3557 /* Clear "detected parity error" bit */
303bcb4b 3558 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3559
303bcb4b
K
3560 /* Clearing PCIX Ecc status register */
3561 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3562
303bcb4b 3563 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3564 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3565 }
5e25b9dd 3566
20346722 3567 /* Reset device statistics maintained by OS */
d44570e4 3568 memset(&sp->stats, 0, sizeof(struct net_device_stats));
8a4bdbaa 3569
491976b2
SH
3570 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3571 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3572 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3573 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
363dc367 3574 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
491976b2
SH
3575 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3576 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3577 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3578 /* save link up/down time/cnt, reset/memory/watchdog cnt */
363dc367 3579 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
491976b2
SH
3580 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3581 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3582 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3583 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3584 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
363dc367 3585 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
491976b2
SH
3586 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3587 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3588 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
20346722 3589
1da177e4
LT
3590 /* SXE-002: Configure link and activity LED to turn it off */
3591 subid = sp->pdev->subsystem_device;
541ae68f
K
3592 if (((subid & 0xFF) >= 0x07) &&
3593 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3594 val64 = readq(&bar0->gpio_control);
3595 val64 |= 0x0000800000000000ULL;
3596 writeq(val64, &bar0->gpio_control);
3597 val64 = 0x0411040400000000ULL;
509a2671 3598 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3599 }
3600
541ae68f
K
3601 /*
3602 * Clear spurious ECC interrupts that would have occured on
3603 * XFRAME II cards after reset.
3604 */
3605 if (sp->device_type == XFRAME_II_DEVICE) {
3606 val64 = readq(&bar0->pcc_err_reg);
3607 writeq(val64, &bar0->pcc_err_reg);
3608 }
3609
f957bcf0 3610 sp->device_enabled_once = false;
1da177e4
LT
3611}
3612
3613/**
20346722
K
3614 * s2io_set_swapper - to set the swapper controle on the card
3615 * @sp : private member of the device structure,
1da177e4 3616 * pointer to the s2io_nic structure.
20346722 3617 * Description: Function to set the swapper control on the card
1da177e4
LT
3618 * correctly depending on the 'endianness' of the system.
3619 * Return value:
3620 * SUCCESS on success and FAILURE on failure.
3621 */
3622
d44570e4 3623static int s2io_set_swapper(struct s2io_nic *sp)
1da177e4
LT
3624{
3625 struct net_device *dev = sp->dev;
1ee6dd77 3626 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3627 u64 val64, valt, valr;
3628
20346722 3629 /*
1da177e4
LT
3630 * Set proper endian settings and verify the same by reading
3631 * the PIF Feed-back register.
3632 */
3633
3634 val64 = readq(&bar0->pif_rd_swapper_fb);
3635 if (val64 != 0x0123456789ABCDEFULL) {
3636 int i = 0;
3637 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3638 0x8100008181000081ULL, /* FE=1, SE=0 */
3639 0x4200004242000042ULL, /* FE=0, SE=1 */
3640 0}; /* FE=0, SE=0 */
3641
d44570e4 3642 while (i < 4) {
1da177e4
LT
3643 writeq(value[i], &bar0->swapper_ctrl);
3644 val64 = readq(&bar0->pif_rd_swapper_fb);
3645 if (val64 == 0x0123456789ABCDEFULL)
3646 break;
3647 i++;
3648 }
3649 if (i == 4) {
3650 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
d44570e4 3651 dev->name);
1da177e4 3652 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
d44570e4 3653 (unsigned long long)val64);
1da177e4
LT
3654 return FAILURE;
3655 }
3656 valr = value[i];
3657 } else {
3658 valr = readq(&bar0->swapper_ctrl);
3659 }
3660
3661 valt = 0x0123456789ABCDEFULL;
3662 writeq(valt, &bar0->xmsi_address);
3663 val64 = readq(&bar0->xmsi_address);
3664
d44570e4 3665 if (val64 != valt) {
1da177e4
LT
3666 int i = 0;
3667 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3668 0x0081810000818100ULL, /* FE=1, SE=0 */
3669 0x0042420000424200ULL, /* FE=0, SE=1 */
3670 0}; /* FE=0, SE=0 */
3671
d44570e4 3672 while (i < 4) {
1da177e4
LT
3673 writeq((value[i] | valr), &bar0->swapper_ctrl);
3674 writeq(valt, &bar0->xmsi_address);
3675 val64 = readq(&bar0->xmsi_address);
d44570e4 3676 if (val64 == valt)
1da177e4
LT
3677 break;
3678 i++;
3679 }
d44570e4 3680 if (i == 4) {
20346722 3681 unsigned long long x = val64;
1da177e4 3682 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3683 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3684 return FAILURE;
3685 }
3686 }
3687 val64 = readq(&bar0->swapper_ctrl);
3688 val64 &= 0xFFFF000000000000ULL;
3689
d44570e4 3690#ifdef __BIG_ENDIAN
20346722
K
3691 /*
3692 * The device by default set to a big endian format, so a
1da177e4
LT
3693 * big endian driver need not set anything.
3694 */
3695 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3696 SWAPPER_CTRL_TXP_SE |
3697 SWAPPER_CTRL_TXD_R_FE |
3698 SWAPPER_CTRL_TXD_W_FE |
3699 SWAPPER_CTRL_TXF_R_FE |
3700 SWAPPER_CTRL_RXD_R_FE |
3701 SWAPPER_CTRL_RXD_W_FE |
3702 SWAPPER_CTRL_RXF_W_FE |
3703 SWAPPER_CTRL_XMSI_FE |
3704 SWAPPER_CTRL_STATS_FE |
3705 SWAPPER_CTRL_STATS_SE);
eaae7f72 3706 if (sp->config.intr_type == INTA)
cc6e7c44 3707 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3708 writeq(val64, &bar0->swapper_ctrl);
3709#else
20346722 3710 /*
1da177e4 3711 * Initially we enable all bits to make it accessible by the
20346722 3712 * driver, then we selectively enable only those bits that
1da177e4
LT
3713 * we want to set.
3714 */
3715 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3716 SWAPPER_CTRL_TXP_SE |
3717 SWAPPER_CTRL_TXD_R_FE |
3718 SWAPPER_CTRL_TXD_R_SE |
3719 SWAPPER_CTRL_TXD_W_FE |
3720 SWAPPER_CTRL_TXD_W_SE |
3721 SWAPPER_CTRL_TXF_R_FE |
3722 SWAPPER_CTRL_RXD_R_FE |
3723 SWAPPER_CTRL_RXD_R_SE |
3724 SWAPPER_CTRL_RXD_W_FE |
3725 SWAPPER_CTRL_RXD_W_SE |
3726 SWAPPER_CTRL_RXF_W_FE |
3727 SWAPPER_CTRL_XMSI_FE |
3728 SWAPPER_CTRL_STATS_FE |
3729 SWAPPER_CTRL_STATS_SE);
eaae7f72 3730 if (sp->config.intr_type == INTA)
cc6e7c44 3731 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3732 writeq(val64, &bar0->swapper_ctrl);
3733#endif
3734 val64 = readq(&bar0->swapper_ctrl);
3735
20346722
K
3736 /*
3737 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3738 * feedback register.
3739 */
3740 val64 = readq(&bar0->pif_rd_swapper_fb);
3741 if (val64 != 0x0123456789ABCDEFULL) {
3742 /* Endian settings are incorrect, calls for another dekko. */
3743 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3744 dev->name);
3745 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
d44570e4 3746 (unsigned long long)val64);
1da177e4
LT
3747 return FAILURE;
3748 }
3749
3750 return SUCCESS;
3751}
3752
1ee6dd77 3753static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3754{
1ee6dd77 3755 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3756 u64 val64;
3757 int ret = 0, cnt = 0;
3758
3759 do {
3760 val64 = readq(&bar0->xmsi_access);
b7b5a128 3761 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3762 break;
3763 mdelay(1);
3764 cnt++;
d44570e4 3765 } while (cnt < 5);
cc6e7c44
RA
3766 if (cnt == 5) {
3767 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3768 ret = 1;
3769 }
3770
3771 return ret;
3772}
3773
1ee6dd77 3774static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3775{
1ee6dd77 3776 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3777 u64 val64;
f61e0a35
SH
3778 int i, msix_index;
3779
f61e0a35
SH
3780 if (nic->device_type == XFRAME_I_DEVICE)
3781 return;
cc6e7c44 3782
d44570e4
JP
3783 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3784 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
cc6e7c44
RA
3785 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3786 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
f61e0a35 3787 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3788 writeq(val64, &bar0->xmsi_access);
f61e0a35 3789 if (wait_for_msix_trans(nic, msix_index)) {
b39d66a8 3790 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
cc6e7c44
RA
3791 continue;
3792 }
3793 }
3794}
3795
1ee6dd77 3796static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3797{
1ee6dd77 3798 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3799 u64 val64, addr, data;
f61e0a35
SH
3800 int i, msix_index;
3801
3802 if (nic->device_type == XFRAME_I_DEVICE)
3803 return;
cc6e7c44
RA
3804
3805 /* Store and display */
d44570e4
JP
3806 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3807 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
f61e0a35 3808 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3809 writeq(val64, &bar0->xmsi_access);
f61e0a35 3810 if (wait_for_msix_trans(nic, msix_index)) {
b39d66a8 3811 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
cc6e7c44
RA
3812 continue;
3813 }
3814 addr = readq(&bar0->xmsi_address);
3815 data = readq(&bar0->xmsi_data);
3816 if (addr && data) {
3817 nic->msix_info[i].addr = addr;
3818 nic->msix_info[i].data = data;
3819 }
3820 }
3821}
3822
1ee6dd77 3823static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3824{
1ee6dd77 3825 struct XENA_dev_config __iomem *bar0 = nic->bar0;
ac731ab6 3826 u64 rx_mat;
cc6e7c44
RA
3827 u16 msi_control; /* Temp variable */
3828 int ret, i, j, msix_indx = 1;
4f870320 3829 int size;
cc6e7c44 3830
4f870320 3831 size = nic->num_entries * sizeof(struct msix_entry);
44364a03 3832 nic->entries = kzalloc(size, GFP_KERNEL);
bd684e43 3833 if (!nic->entries) {
d44570e4
JP
3834 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3835 __func__);
c53d4945 3836 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44
RA
3837 return -ENOMEM;
3838 }
4f870320 3839 nic->mac_control.stats_info->sw_stat.mem_allocated += size;
f61e0a35 3840
4f870320 3841 size = nic->num_entries * sizeof(struct s2io_msix_entry);
44364a03 3842 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
bd684e43 3843 if (!nic->s2io_entries) {
8a4bdbaa 3844 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
d44570e4 3845 __func__);
c53d4945 3846 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
cc6e7c44 3847 kfree(nic->entries);
8a4bdbaa 3848 nic->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 3849 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3850 return -ENOMEM;
3851 }
4f870320 3852 nic->mac_control.stats_info->sw_stat.mem_allocated += size;
cc6e7c44 3853
ac731ab6
SH
3854 nic->entries[0].entry = 0;
3855 nic->s2io_entries[0].entry = 0;
3856 nic->s2io_entries[0].in_use = MSIX_FLG;
3857 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3858 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3859
f61e0a35
SH
3860 for (i = 1; i < nic->num_entries; i++) {
3861 nic->entries[i].entry = ((i - 1) * 8) + 1;
3862 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
cc6e7c44
RA
3863 nic->s2io_entries[i].arg = NULL;
3864 nic->s2io_entries[i].in_use = 0;
3865 }
3866
8a4bdbaa 3867 rx_mat = readq(&bar0->rx_mat);
f61e0a35 3868 for (j = 0; j < nic->config.rx_ring_num; j++) {
8a4bdbaa 3869 rx_mat |= RX_MAT_SET(j, msix_indx);
f61e0a35
SH
3870 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3871 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3872 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3873 msix_indx += 8;
cc6e7c44 3874 }
8a4bdbaa 3875 writeq(rx_mat, &bar0->rx_mat);
f61e0a35 3876 readq(&bar0->rx_mat);
cc6e7c44 3877
f61e0a35 3878 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
c92ca04b 3879 /* We fail init if error or we get less vectors than min required */
cc6e7c44 3880 if (ret) {
073a2436 3881 DBG_PRINT(ERR_DBG, "s2io: Enabling MSI-X failed\n");
cc6e7c44 3882 kfree(nic->entries);
8a4bdbaa 3883 nic->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 3884 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44 3885 kfree(nic->s2io_entries);
8a4bdbaa 3886 nic->mac_control.stats_info->sw_stat.mem_freed
f61e0a35 3887 += (nic->num_entries * sizeof(struct s2io_msix_entry));
cc6e7c44
RA
3888 nic->entries = NULL;
3889 nic->s2io_entries = NULL;
3890 return -ENOMEM;
3891 }
3892
3893 /*
3894 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3895 * in the herc NIC. (Temp change, needs to be removed later)
3896 */
3897 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3898 msi_control |= 0x1; /* Enable MSI */
3899 pci_write_config_word(nic->pdev, 0x42, msi_control);
3900
3901 return 0;
3902}
3903
8abc4d5b 3904/* Handle software interrupt used during MSI(X) test */
33390a70 3905static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3906{
3907 struct s2io_nic *sp = dev_id;
3908
3909 sp->msi_detected = 1;
3910 wake_up(&sp->msi_wait);
3911
3912 return IRQ_HANDLED;
3913}
3914
3915/* Test interrupt path by forcing a a software IRQ */
33390a70 3916static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3917{
3918 struct pci_dev *pdev = sp->pdev;
3919 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3920 int err;
3921 u64 val64, saved64;
3922
3923 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
d44570e4 3924 sp->name, sp);
8abc4d5b
SS
3925 if (err) {
3926 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
d44570e4 3927 sp->dev->name, pci_name(pdev), pdev->irq);
8abc4d5b
SS
3928 return err;
3929 }
3930
d44570e4 3931 init_waitqueue_head(&sp->msi_wait);
8abc4d5b
SS
3932 sp->msi_detected = 0;
3933
3934 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3935 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3936 val64 |= SCHED_INT_CTRL_TIMER_EN;
3937 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3938 writeq(val64, &bar0->scheduled_int_ctrl);
3939
3940 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3941
3942 if (!sp->msi_detected) {
3943 /* MSI(X) test failed, go back to INTx mode */
2450022a 3944 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
d44570e4
JP
3945 "using MSI(X) during test\n", sp->dev->name,
3946 pci_name(pdev));
8abc4d5b
SS
3947
3948 err = -EOPNOTSUPP;
3949 }
3950
3951 free_irq(sp->entries[1].vector, sp);
3952
3953 writeq(saved64, &bar0->scheduled_int_ctrl);
3954
3955 return err;
3956}
18b2b7bd
SH
3957
3958static void remove_msix_isr(struct s2io_nic *sp)
3959{
3960 int i;
3961 u16 msi_control;
3962
f61e0a35 3963 for (i = 0; i < sp->num_entries; i++) {
d44570e4 3964 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
18b2b7bd
SH
3965 int vector = sp->entries[i].vector;
3966 void *arg = sp->s2io_entries[i].arg;
3967 free_irq(vector, arg);
3968 }
3969 }
3970
3971 kfree(sp->entries);
3972 kfree(sp->s2io_entries);
3973 sp->entries = NULL;
3974 sp->s2io_entries = NULL;
3975
3976 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3977 msi_control &= 0xFFFE; /* Disable MSI */
3978 pci_write_config_word(sp->pdev, 0x42, msi_control);
3979
3980 pci_disable_msix(sp->pdev);
3981}
3982
3983static void remove_inta_isr(struct s2io_nic *sp)
3984{
3985 struct net_device *dev = sp->dev;
3986
3987 free_irq(sp->pdev->irq, dev);
3988}
3989
1da177e4
LT
3990/* ********************************************************* *
3991 * Functions defined below concern the OS part of the driver *
3992 * ********************************************************* */
3993
20346722 3994/**
1da177e4
LT
3995 * s2io_open - open entry point of the driver
3996 * @dev : pointer to the device structure.
3997 * Description:
3998 * This function is the open entry point of the driver. It mainly calls a
3999 * function to allocate Rx buffers and inserts them into the buffer
20346722 4000 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
4001 * Return value:
4002 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4003 * file on failure.
4004 */
4005
ac1f60db 4006static int s2io_open(struct net_device *dev)
1da177e4 4007{
4cf1653a 4008 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
4009 int err = 0;
4010
20346722
K
4011 /*
4012 * Make sure you have link off by default every time
1da177e4
LT
4013 * Nic is initialized
4014 */
4015 netif_carrier_off(dev);
0b1f7ebe 4016 sp->last_link_state = 0;
1da177e4
LT
4017
4018 /* Initialize H/W and enable interrupts */
c92ca04b
AR
4019 err = s2io_card_up(sp);
4020 if (err) {
1da177e4
LT
4021 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4022 dev->name);
e6a8fee2 4023 goto hw_init_failed;
1da177e4
LT
4024 }
4025
2fd37688 4026 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 4027 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 4028 s2io_card_down(sp);
20346722 4029 err = -ENODEV;
e6a8fee2 4030 goto hw_init_failed;
1da177e4 4031 }
3a3d5756 4032 s2io_start_all_tx_queue(sp);
1da177e4 4033 return 0;
20346722 4034
20346722 4035hw_init_failed:
eaae7f72 4036 if (sp->config.intr_type == MSI_X) {
491976b2 4037 if (sp->entries) {
cc6e7c44 4038 kfree(sp->entries);
8a4bdbaa 4039 sp->mac_control.stats_info->sw_stat.mem_freed
d44570e4 4040 += (sp->num_entries * sizeof(struct msix_entry));
491976b2
SH
4041 }
4042 if (sp->s2io_entries) {
cc6e7c44 4043 kfree(sp->s2io_entries);
8a4bdbaa 4044 sp->mac_control.stats_info->sw_stat.mem_freed
d44570e4 4045 += (sp->num_entries * sizeof(struct s2io_msix_entry));
491976b2 4046 }
cc6e7c44 4047 }
20346722 4048 return err;
1da177e4
LT
4049}
4050
4051/**
4052 * s2io_close -close entry point of the driver
4053 * @dev : device pointer.
4054 * Description:
4055 * This is the stop entry point of the driver. It needs to undo exactly
4056 * whatever was done by the open entry point,thus it's usually referred to
4057 * as the close function.Among other things this function mainly stops the
4058 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4059 * Return value:
4060 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4061 * file on failure.
4062 */
4063
ac1f60db 4064static int s2io_close(struct net_device *dev)
1da177e4 4065{
4cf1653a 4066 struct s2io_nic *sp = netdev_priv(dev);
faa4f796
SH
4067 struct config_param *config = &sp->config;
4068 u64 tmp64;
4069 int offset;
cc6e7c44 4070
9f74ffde 4071 /* Return if the device is already closed *
d44570e4
JP
4072 * Can happen when s2io_card_up failed in change_mtu *
4073 */
9f74ffde
SH
4074 if (!is_s2io_card_up(sp))
4075 return 0;
4076
3a3d5756 4077 s2io_stop_all_tx_queue(sp);
faa4f796
SH
4078 /* delete all populated mac entries */
4079 for (offset = 1; offset < config->max_mc_addr; offset++) {
4080 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4081 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4082 do_s2io_delete_unicast_mc(sp, tmp64);
4083 }
4084
e6a8fee2 4085 s2io_card_down(sp);
cc6e7c44 4086
1da177e4
LT
4087 return 0;
4088}
4089
4090/**
4091 * s2io_xmit - Tx entry point of te driver
4092 * @skb : the socket buffer containing the Tx data.
4093 * @dev : device pointer.
4094 * Description :
4095 * This function is the Tx entry point of the driver. S2IO NIC supports
4096 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4097 * NOTE: when device cant queue the pkt,just the trans_start variable will
4098 * not be upadted.
4099 * Return value:
4100 * 0 on success & 1 on failure.
4101 */
4102
ac1f60db 4103static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 4104{
4cf1653a 4105 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
4106 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4107 register u64 val64;
1ee6dd77
RB
4108 struct TxD *txdp;
4109 struct TxFIFO_element __iomem *tx_fifo;
2fda096d 4110 unsigned long flags = 0;
be3a6b02 4111 u16 vlan_tag = 0;
2fda096d 4112 struct fifo_info *fifo = NULL;
1ee6dd77 4113 struct mac_info *mac_control;
1da177e4 4114 struct config_param *config;
6cfc482b 4115 int do_spin_lock = 1;
75c30b13 4116 int offload_type;
6cfc482b 4117 int enable_per_list_interrupt = 0;
491abf25 4118 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
4119
4120 mac_control = &sp->mac_control;
4121 config = &sp->config;
4122
20346722 4123 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4124
4125 if (unlikely(skb->len <= 0)) {
4126 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4127 dev_kfree_skb_any(skb);
6ed10654 4128 return NETDEV_TX_OK;
2fda096d 4129 }
491976b2 4130
92b84437 4131 if (!is_s2io_card_up(sp)) {
20346722 4132 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4 4133 dev->name);
20346722 4134 dev_kfree_skb(skb);
6ed10654 4135 return NETDEV_TX_OK;
1da177e4
LT
4136 }
4137
4138 queue = 0;
3a3d5756 4139 if (sp->vlgrp && vlan_tx_tag_present(skb))
be3a6b02 4140 vlan_tag = vlan_tx_tag_get(skb);
6cfc482b
SH
4141 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4142 if (skb->protocol == htons(ETH_P_IP)) {
4143 struct iphdr *ip;
4144 struct tcphdr *th;
4145 ip = ip_hdr(skb);
4146
4147 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4148 th = (struct tcphdr *)(((unsigned char *)ip) +
d44570e4 4149 ip->ihl*4);
6cfc482b
SH
4150
4151 if (ip->protocol == IPPROTO_TCP) {
4152 queue_len = sp->total_tcp_fifos;
4153 queue = (ntohs(th->source) +
d44570e4
JP
4154 ntohs(th->dest)) &
4155 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4156 if (queue >= queue_len)
4157 queue = queue_len - 1;
4158 } else if (ip->protocol == IPPROTO_UDP) {
4159 queue_len = sp->total_udp_fifos;
4160 queue = (ntohs(th->source) +
d44570e4
JP
4161 ntohs(th->dest)) &
4162 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4163 if (queue >= queue_len)
4164 queue = queue_len - 1;
4165 queue += sp->udp_fifo_idx;
4166 if (skb->len > 1024)
4167 enable_per_list_interrupt = 1;
4168 do_spin_lock = 0;
4169 }
4170 }
4171 }
4172 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4173 /* get fifo number based on skb->priority value */
4174 queue = config->fifo_mapping
d44570e4 4175 [skb->priority & (MAX_TX_FIFOS - 1)];
6cfc482b 4176 fifo = &mac_control->fifos[queue];
3a3d5756 4177
6cfc482b
SH
4178 if (do_spin_lock)
4179 spin_lock_irqsave(&fifo->tx_lock, flags);
4180 else {
4181 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4182 return NETDEV_TX_LOCKED;
4183 }
be3a6b02 4184
3a3d5756
SH
4185 if (sp->config.multiq) {
4186 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4187 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4188 return NETDEV_TX_BUSY;
4189 }
b19fa1fa 4190 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
4191 if (netif_queue_stopped(dev)) {
4192 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4193 return NETDEV_TX_BUSY;
4194 }
4195 }
4196
d44570e4
JP
4197 put_off = (u16)fifo->tx_curr_put_info.offset;
4198 get_off = (u16)fifo->tx_curr_get_info.offset;
4199 txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
20346722 4200
2fda096d 4201 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
1da177e4 4202 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4203 if (txdp->Host_Control ||
d44570e4 4204 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4205 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3a3d5756 4206 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4207 dev_kfree_skb(skb);
2fda096d 4208 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4209 return NETDEV_TX_OK;
1da177e4 4210 }
0b1f7ebe 4211
75c30b13 4212 offload_type = s2io_offload_type(skb);
75c30b13 4213 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4214 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4215 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4216 }
84fa7933 4217 if (skb->ip_summed == CHECKSUM_PARTIAL) {
d44570e4
JP
4218 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4219 TXD_TX_CKO_TCP_EN |
4220 TXD_TX_CKO_UDP_EN);
1da177e4 4221 }
fed5eccd
AR
4222 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4223 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2fda096d 4224 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
6cfc482b
SH
4225 if (enable_per_list_interrupt)
4226 if (put_off & (queue_len >> 5))
4227 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
3a3d5756 4228 if (vlan_tag) {
be3a6b02
K
4229 txdp->Control_2 |= TXD_VLAN_ENABLE;
4230 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4231 }
4232
fed5eccd 4233 frg_len = skb->len - skb->data_len;
75c30b13 4234 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4235 int ufo_size;
4236
75c30b13 4237 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4238 ufo_size &= ~7;
4239 txdp->Control_1 |= TXD_UFO_EN;
4240 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4241 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4242#ifdef __BIG_ENDIAN
3459feb8 4243 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
2fda096d 4244 fifo->ufo_in_band_v[put_off] =
d44570e4 4245 (__force u64)skb_shinfo(skb)->ip6_frag_id;
fed5eccd 4246#else
2fda096d 4247 fifo->ufo_in_band_v[put_off] =
d44570e4 4248 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
fed5eccd 4249#endif
2fda096d 4250 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
fed5eccd 4251 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
d44570e4
JP
4252 fifo->ufo_in_band_v,
4253 sizeof(u64),
4254 PCI_DMA_TODEVICE);
8d8bb39b 4255 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25 4256 goto pci_map_failed;
fed5eccd 4257 txdp++;
fed5eccd 4258 }
1da177e4 4259
d44570e4
JP
4260 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4261 frg_len, PCI_DMA_TODEVICE);
8d8bb39b 4262 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25
VP
4263 goto pci_map_failed;
4264
d44570e4 4265 txdp->Host_Control = (unsigned long)skb;
fed5eccd 4266 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4267 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4268 txdp->Control_1 |= TXD_UFO_EN;
4269
4270 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4271 /* For fragmented SKB. */
4272 for (i = 0; i < frg_cnt; i++) {
4273 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
4274 /* A '0' length fragment will be ignored */
4275 if (!frag->size)
4276 continue;
1da177e4 4277 txdp++;
d44570e4
JP
4278 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4279 frag->page_offset,
4280 frag->size,
4281 PCI_DMA_TODEVICE);
efd51b5c 4282 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4283 if (offload_type == SKB_GSO_UDP)
fed5eccd 4284 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4285 }
4286 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4287
75c30b13 4288 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4289 frg_cnt++; /* as Txd0 was used for inband header */
4290
1da177e4 4291 tx_fifo = mac_control->tx_FIFO_start[queue];
2fda096d 4292 val64 = fifo->list_info[put_off].list_phy_addr;
1da177e4
LT
4293 writeq(val64, &tx_fifo->TxDL_Pointer);
4294
4295 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4296 TX_FIFO_LAST_LIST);
75c30b13 4297 if (offload_type)
fed5eccd 4298 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4299
1da177e4
LT
4300 writeq(val64, &tx_fifo->List_Control);
4301
303bcb4b
K
4302 mmiowb();
4303
1da177e4 4304 put_off++;
2fda096d 4305 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
863c11a9 4306 put_off = 0;
2fda096d 4307 fifo->tx_curr_put_info.offset = put_off;
1da177e4
LT
4308
4309 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4310 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 4311 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
4312 DBG_PRINT(TX_DBG,
4313 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4314 put_off, get_off);
3a3d5756 4315 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4316 }
491976b2 4317 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
2fda096d 4318 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4 4319
f6f4bfa3
SH
4320 if (sp->config.intr_type == MSI_X)
4321 tx_intr_handler(fifo);
4322
6ed10654 4323 return NETDEV_TX_OK;
491abf25
VP
4324pci_map_failed:
4325 stats->pci_map_fail_cnt++;
3a3d5756 4326 s2io_stop_tx_queue(sp, fifo->fifo_no);
491abf25
VP
4327 stats->mem_freed += skb->truesize;
4328 dev_kfree_skb(skb);
2fda096d 4329 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4330 return NETDEV_TX_OK;
1da177e4
LT
4331}
4332
25fff88e
K
4333static void
4334s2io_alarm_handle(unsigned long data)
4335{
1ee6dd77 4336 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4337 struct net_device *dev = sp->dev;
25fff88e 4338
8116f3cf 4339 s2io_handle_errors(dev);
25fff88e
K
4340 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4341}
4342
7d12e780 4343static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4344{
1ee6dd77
RB
4345 struct ring_info *ring = (struct ring_info *)dev_id;
4346 struct s2io_nic *sp = ring->nic;
f61e0a35 4347 struct XENA_dev_config __iomem *bar0 = sp->bar0;
cc6e7c44 4348
f61e0a35 4349 if (unlikely(!is_s2io_card_up(sp)))
92b84437 4350 return IRQ_HANDLED;
92b84437 4351
f61e0a35 4352 if (sp->config.napi) {
1a79d1c3
AV
4353 u8 __iomem *addr = NULL;
4354 u8 val8 = 0;
f61e0a35 4355
1a79d1c3 4356 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
4357 addr += (7 - ring->ring_no);
4358 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4359 writeb(val8, addr);
4360 val8 = readb(addr);
288379f0 4361 napi_schedule(&ring->napi);
f61e0a35
SH
4362 } else {
4363 rx_intr_handler(ring, 0);
8d8bb39b 4364 s2io_chk_rx_buffers(sp, ring);
f61e0a35 4365 }
7d3d0439 4366
cc6e7c44
RA
4367 return IRQ_HANDLED;
4368}
4369
7d12e780 4370static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4371{
ac731ab6
SH
4372 int i;
4373 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4374 struct s2io_nic *sp = fifos->nic;
4375 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4376 struct config_param *config = &sp->config;
4377 u64 reason;
cc6e7c44 4378
ac731ab6
SH
4379 if (unlikely(!is_s2io_card_up(sp)))
4380 return IRQ_NONE;
4381
4382 reason = readq(&bar0->general_int_status);
4383 if (unlikely(reason == S2IO_MINUS_ONE))
4384 /* Nothing much can be done. Get out */
92b84437 4385 return IRQ_HANDLED;
92b84437 4386
01e16faa
SH
4387 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4388 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
ac731ab6 4389
01e16faa
SH
4390 if (reason & GEN_INTR_TXPIC)
4391 s2io_txpic_intr_handle(sp);
ac731ab6 4392
01e16faa
SH
4393 if (reason & GEN_INTR_TXTRAFFIC)
4394 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
ac731ab6 4395
01e16faa
SH
4396 for (i = 0; i < config->tx_fifo_num; i++)
4397 tx_intr_handler(&fifos[i]);
ac731ab6 4398
01e16faa
SH
4399 writeq(sp->general_int_mask, &bar0->general_int_mask);
4400 readl(&bar0->general_int_status);
4401 return IRQ_HANDLED;
4402 }
4403 /* The interrupt was not raised by us */
4404 return IRQ_NONE;
cc6e7c44 4405}
ac731ab6 4406
1ee6dd77 4407static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4408{
1ee6dd77 4409 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d
K
4410 u64 val64;
4411
4412 val64 = readq(&bar0->pic_int_status);
4413 if (val64 & PIC_INT_GPIO) {
4414 val64 = readq(&bar0->gpio_int_reg);
4415 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4416 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4417 /*
4418 * This is unstable state so clear both up/down
4419 * interrupt and adapter to re-evaluate the link state.
4420 */
d44570e4 4421 val64 |= GPIO_INT_REG_LINK_DOWN;
a371a07d
K
4422 val64 |= GPIO_INT_REG_LINK_UP;
4423 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4424 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4425 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4426 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4427 writeq(val64, &bar0->gpio_int_mask);
d44570e4 4428 } else if (val64 & GPIO_INT_REG_LINK_UP) {
c92ca04b 4429 val64 = readq(&bar0->adapter_status);
d44570e4 4430 /* Enable Adapter */
19a60522
SS
4431 val64 = readq(&bar0->adapter_control);
4432 val64 |= ADAPTER_CNTL_EN;
4433 writeq(val64, &bar0->adapter_control);
4434 val64 |= ADAPTER_LED_ON;
4435 writeq(val64, &bar0->adapter_control);
4436 if (!sp->device_enabled_once)
4437 sp->device_enabled_once = 1;
c92ca04b 4438
19a60522
SS
4439 s2io_link(sp, LINK_UP);
4440 /*
4441 * unmask link down interrupt and mask link-up
4442 * intr
4443 */
4444 val64 = readq(&bar0->gpio_int_mask);
4445 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4446 val64 |= GPIO_INT_MASK_LINK_UP;
4447 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4448
d44570e4 4449 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
c92ca04b 4450 val64 = readq(&bar0->adapter_status);
19a60522
SS
4451 s2io_link(sp, LINK_DOWN);
4452 /* Link is down so unmaks link up interrupt */
4453 val64 = readq(&bar0->gpio_int_mask);
4454 val64 &= ~GPIO_INT_MASK_LINK_UP;
4455 val64 |= GPIO_INT_MASK_LINK_DOWN;
4456 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4457
4458 /* turn off LED */
4459 val64 = readq(&bar0->adapter_control);
d44570e4 4460 val64 = val64 & (~ADAPTER_LED_ON);
ac1f90d6 4461 writeq(val64, &bar0->adapter_control);
a371a07d
K
4462 }
4463 }
c92ca04b 4464 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4465}
4466
8116f3cf
SS
4467/**
4468 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4469 * @value: alarm bits
4470 * @addr: address value
4471 * @cnt: counter variable
4472 * Description: Check for alarm and increment the counter
4473 * Return Value:
4474 * 1 - if alarm bit set
4475 * 0 - if alarm bit is not set
4476 */
d44570e4
JP
4477static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4478 unsigned long long *cnt)
8116f3cf
SS
4479{
4480 u64 val64;
4481 val64 = readq(addr);
d44570e4 4482 if (val64 & value) {
8116f3cf
SS
4483 writeq(val64, addr);
4484 (*cnt)++;
4485 return 1;
4486 }
4487 return 0;
4488
4489}
4490
4491/**
4492 * s2io_handle_errors - Xframe error indication handler
4493 * @nic: device private variable
4494 * Description: Handle alarms such as loss of link, single or
4495 * double ECC errors, critical and serious errors.
4496 * Return Value:
4497 * NONE
4498 */
d44570e4 4499static void s2io_handle_errors(void *dev_id)
8116f3cf 4500{
d44570e4 4501 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4502 struct s2io_nic *sp = netdev_priv(dev);
8116f3cf 4503 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d44570e4 4504 u64 temp64 = 0, val64 = 0;
8116f3cf
SS
4505 int i = 0;
4506
4507 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4508 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4509
92b84437 4510 if (!is_s2io_card_up(sp))
8116f3cf
SS
4511 return;
4512
4513 if (pci_channel_offline(sp->pdev))
4514 return;
4515
4516 memset(&sw_stat->ring_full_cnt, 0,
d44570e4 4517 sizeof(sw_stat->ring_full_cnt));
8116f3cf
SS
4518
4519 /* Handling the XPAK counters update */
d44570e4 4520 if (stats->xpak_timer_count < 72000) {
8116f3cf
SS
4521 /* waiting for an hour */
4522 stats->xpak_timer_count++;
4523 } else {
4524 s2io_updt_xpak_counter(dev);
4525 /* reset the count to zero */
4526 stats->xpak_timer_count = 0;
4527 }
4528
4529 /* Handling link status change error Intr */
4530 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4531 val64 = readq(&bar0->mac_rmac_err_reg);
4532 writeq(val64, &bar0->mac_rmac_err_reg);
4533 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4534 schedule_work(&sp->set_link_task);
4535 }
4536
4537 /* In case of a serious error, the device will be Reset. */
4538 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
d44570e4 4539 &sw_stat->serious_err_cnt))
8116f3cf
SS
4540 goto reset;
4541
4542 /* Check for data parity error */
4543 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
d44570e4 4544 &sw_stat->parity_err_cnt))
8116f3cf
SS
4545 goto reset;
4546
4547 /* Check for ring full counter */
4548 if (sp->device_type == XFRAME_II_DEVICE) {
4549 val64 = readq(&bar0->ring_bump_counter1);
d44570e4
JP
4550 for (i = 0; i < 4; i++) {
4551 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf
SS
4552 temp64 >>= 64 - ((i+1)*16);
4553 sw_stat->ring_full_cnt[i] += temp64;
4554 }
4555
4556 val64 = readq(&bar0->ring_bump_counter2);
d44570e4
JP
4557 for (i = 0; i < 4; i++) {
4558 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf 4559 temp64 >>= 64 - ((i+1)*16);
d44570e4 4560 sw_stat->ring_full_cnt[i+4] += temp64;
8116f3cf
SS
4561 }
4562 }
4563
4564 val64 = readq(&bar0->txdma_int_status);
4565 /*check for pfc_err*/
4566 if (val64 & TXDMA_PFC_INT) {
d44570e4
JP
4567 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4568 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4569 PFC_PCIX_ERR,
4570 &bar0->pfc_err_reg,
4571 &sw_stat->pfc_err_cnt))
8116f3cf 4572 goto reset;
d44570e4
JP
4573 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4574 &bar0->pfc_err_reg,
4575 &sw_stat->pfc_err_cnt);
8116f3cf
SS
4576 }
4577
4578 /*check for tda_err*/
4579 if (val64 & TXDMA_TDA_INT) {
d44570e4
JP
4580 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4581 TDA_SM0_ERR_ALARM |
4582 TDA_SM1_ERR_ALARM,
4583 &bar0->tda_err_reg,
4584 &sw_stat->tda_err_cnt))
8116f3cf
SS
4585 goto reset;
4586 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
d44570e4
JP
4587 &bar0->tda_err_reg,
4588 &sw_stat->tda_err_cnt);
8116f3cf
SS
4589 }
4590 /*check for pcc_err*/
4591 if (val64 & TXDMA_PCC_INT) {
d44570e4
JP
4592 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4593 PCC_N_SERR | PCC_6_COF_OV_ERR |
4594 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4595 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4596 PCC_TXB_ECC_DB_ERR,
4597 &bar0->pcc_err_reg,
4598 &sw_stat->pcc_err_cnt))
8116f3cf
SS
4599 goto reset;
4600 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
d44570e4
JP
4601 &bar0->pcc_err_reg,
4602 &sw_stat->pcc_err_cnt);
8116f3cf
SS
4603 }
4604
4605 /*check for tti_err*/
4606 if (val64 & TXDMA_TTI_INT) {
d44570e4
JP
4607 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4608 &bar0->tti_err_reg,
4609 &sw_stat->tti_err_cnt))
8116f3cf
SS
4610 goto reset;
4611 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
d44570e4
JP
4612 &bar0->tti_err_reg,
4613 &sw_stat->tti_err_cnt);
8116f3cf
SS
4614 }
4615
4616 /*check for lso_err*/
4617 if (val64 & TXDMA_LSO_INT) {
d44570e4
JP
4618 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4619 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4620 &bar0->lso_err_reg,
4621 &sw_stat->lso_err_cnt))
8116f3cf
SS
4622 goto reset;
4623 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
d44570e4
JP
4624 &bar0->lso_err_reg,
4625 &sw_stat->lso_err_cnt);
8116f3cf
SS
4626 }
4627
4628 /*check for tpa_err*/
4629 if (val64 & TXDMA_TPA_INT) {
d44570e4
JP
4630 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4631 &bar0->tpa_err_reg,
4632 &sw_stat->tpa_err_cnt))
8116f3cf 4633 goto reset;
d44570e4
JP
4634 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4635 &bar0->tpa_err_reg,
4636 &sw_stat->tpa_err_cnt);
8116f3cf
SS
4637 }
4638
4639 /*check for sm_err*/
4640 if (val64 & TXDMA_SM_INT) {
d44570e4
JP
4641 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4642 &bar0->sm_err_reg,
4643 &sw_stat->sm_err_cnt))
8116f3cf
SS
4644 goto reset;
4645 }
4646
4647 val64 = readq(&bar0->mac_int_status);
4648 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4649 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
d44570e4
JP
4650 &bar0->mac_tmac_err_reg,
4651 &sw_stat->mac_tmac_err_cnt))
8116f3cf 4652 goto reset;
d44570e4
JP
4653 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4654 TMAC_DESC_ECC_SG_ERR |
4655 TMAC_DESC_ECC_DB_ERR,
4656 &bar0->mac_tmac_err_reg,
4657 &sw_stat->mac_tmac_err_cnt);
8116f3cf
SS
4658 }
4659
4660 val64 = readq(&bar0->xgxs_int_status);
4661 if (val64 & XGXS_INT_STATUS_TXGXS) {
4662 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
d44570e4
JP
4663 &bar0->xgxs_txgxs_err_reg,
4664 &sw_stat->xgxs_txgxs_err_cnt))
8116f3cf
SS
4665 goto reset;
4666 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
d44570e4
JP
4667 &bar0->xgxs_txgxs_err_reg,
4668 &sw_stat->xgxs_txgxs_err_cnt);
8116f3cf
SS
4669 }
4670
4671 val64 = readq(&bar0->rxdma_int_status);
4672 if (val64 & RXDMA_INT_RC_INT_M) {
d44570e4
JP
4673 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4674 RC_FTC_ECC_DB_ERR |
4675 RC_PRCn_SM_ERR_ALARM |
4676 RC_FTC_SM_ERR_ALARM,
4677 &bar0->rc_err_reg,
4678 &sw_stat->rc_err_cnt))
8116f3cf 4679 goto reset;
d44570e4
JP
4680 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4681 RC_FTC_ECC_SG_ERR |
4682 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4683 &sw_stat->rc_err_cnt);
4684 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4685 PRC_PCI_AB_WR_Rn |
4686 PRC_PCI_AB_F_WR_Rn,
4687 &bar0->prc_pcix_err_reg,
4688 &sw_stat->prc_pcix_err_cnt))
8116f3cf 4689 goto reset;
d44570e4
JP
4690 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4691 PRC_PCI_DP_WR_Rn |
4692 PRC_PCI_DP_F_WR_Rn,
4693 &bar0->prc_pcix_err_reg,
4694 &sw_stat->prc_pcix_err_cnt);
8116f3cf
SS
4695 }
4696
4697 if (val64 & RXDMA_INT_RPA_INT_M) {
4698 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
d44570e4
JP
4699 &bar0->rpa_err_reg,
4700 &sw_stat->rpa_err_cnt))
8116f3cf
SS
4701 goto reset;
4702 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
d44570e4
JP
4703 &bar0->rpa_err_reg,
4704 &sw_stat->rpa_err_cnt);
8116f3cf
SS
4705 }
4706
4707 if (val64 & RXDMA_INT_RDA_INT_M) {
d44570e4
JP
4708 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4709 RDA_FRM_ECC_DB_N_AERR |
4710 RDA_SM1_ERR_ALARM |
4711 RDA_SM0_ERR_ALARM |
4712 RDA_RXD_ECC_DB_SERR,
4713 &bar0->rda_err_reg,
4714 &sw_stat->rda_err_cnt))
8116f3cf 4715 goto reset;
d44570e4
JP
4716 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4717 RDA_FRM_ECC_SG_ERR |
4718 RDA_MISC_ERR |
4719 RDA_PCIX_ERR,
4720 &bar0->rda_err_reg,
4721 &sw_stat->rda_err_cnt);
8116f3cf
SS
4722 }
4723
4724 if (val64 & RXDMA_INT_RTI_INT_M) {
d44570e4
JP
4725 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4726 &bar0->rti_err_reg,
4727 &sw_stat->rti_err_cnt))
8116f3cf
SS
4728 goto reset;
4729 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
d44570e4
JP
4730 &bar0->rti_err_reg,
4731 &sw_stat->rti_err_cnt);
8116f3cf
SS
4732 }
4733
4734 val64 = readq(&bar0->mac_int_status);
4735 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4736 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
d44570e4
JP
4737 &bar0->mac_rmac_err_reg,
4738 &sw_stat->mac_rmac_err_cnt))
8116f3cf 4739 goto reset;
d44570e4
JP
4740 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4741 RMAC_SINGLE_ECC_ERR |
4742 RMAC_DOUBLE_ECC_ERR,
4743 &bar0->mac_rmac_err_reg,
4744 &sw_stat->mac_rmac_err_cnt);
8116f3cf
SS
4745 }
4746
4747 val64 = readq(&bar0->xgxs_int_status);
4748 if (val64 & XGXS_INT_STATUS_RXGXS) {
4749 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
d44570e4
JP
4750 &bar0->xgxs_rxgxs_err_reg,
4751 &sw_stat->xgxs_rxgxs_err_cnt))
8116f3cf
SS
4752 goto reset;
4753 }
4754
4755 val64 = readq(&bar0->mc_int_status);
d44570e4
JP
4756 if (val64 & MC_INT_STATUS_MC_INT) {
4757 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4758 &bar0->mc_err_reg,
4759 &sw_stat->mc_err_cnt))
8116f3cf
SS
4760 goto reset;
4761
4762 /* Handling Ecc errors */
4763 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4764 writeq(val64, &bar0->mc_err_reg);
4765 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4766 sw_stat->double_ecc_errs++;
4767 if (sp->device_type != XFRAME_II_DEVICE) {
4768 /*
4769 * Reset XframeI only if critical error
4770 */
4771 if (val64 &
d44570e4
JP
4772 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4773 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4774 goto reset;
4775 }
8116f3cf
SS
4776 } else
4777 sw_stat->single_ecc_errs++;
4778 }
4779 }
4780 return;
4781
4782reset:
3a3d5756 4783 s2io_stop_all_tx_queue(sp);
8116f3cf
SS
4784 schedule_work(&sp->rst_timer_task);
4785 sw_stat->soft_reset_cnt++;
4786 return;
4787}
4788
1da177e4
LT
4789/**
4790 * s2io_isr - ISR handler of the device .
4791 * @irq: the irq of the device.
4792 * @dev_id: a void pointer to the dev structure of the NIC.
20346722
K
4793 * Description: This function is the ISR handler of the device. It
4794 * identifies the reason for the interrupt and calls the relevant
4795 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4796 * recv buffers, if their numbers are below the panic value which is
4797 * presently set to 25% of the original number of rcv buffers allocated.
4798 * Return value:
20346722 4799 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4800 * IRQ_NONE: will be returned if interrupt is not from our device
4801 */
7d12e780 4802static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4 4803{
d44570e4 4804 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4805 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4806 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4807 int i;
19a60522 4808 u64 reason = 0;
1ee6dd77 4809 struct mac_info *mac_control;
1da177e4
LT
4810 struct config_param *config;
4811
d796fdb7
LV
4812 /* Pretend we handled any irq's from a disconnected card */
4813 if (pci_channel_offline(sp->pdev))
4814 return IRQ_NONE;
4815
596c5c97 4816 if (!is_s2io_card_up(sp))
92b84437 4817 return IRQ_NONE;
92b84437 4818
1da177e4
LT
4819 mac_control = &sp->mac_control;
4820 config = &sp->config;
4821
20346722 4822 /*
1da177e4
LT
4823 * Identify the cause for interrupt and call the appropriate
4824 * interrupt handler. Causes for the interrupt could be;
4825 * 1. Rx of packet.
4826 * 2. Tx complete.
4827 * 3. Link down.
1da177e4
LT
4828 */
4829 reason = readq(&bar0->general_int_status);
4830
d44570e4
JP
4831 if (unlikely(reason == S2IO_MINUS_ONE))
4832 return IRQ_HANDLED; /* Nothing much can be done. Get out */
5d3213cc 4833
d44570e4
JP
4834 if (reason &
4835 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
596c5c97
SS
4836 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4837
4838 if (config->napi) {
4839 if (reason & GEN_INTR_RXTRAFFIC) {
288379f0 4840 napi_schedule(&sp->napi);
f61e0a35
SH
4841 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4842 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4843 readl(&bar0->rx_traffic_int);
db874e65 4844 }
596c5c97
SS
4845 } else {
4846 /*
4847 * rx_traffic_int reg is an R1 register, writing all 1's
4848 * will ensure that the actual interrupt causing bit
4849 * get's cleared and hence a read can be avoided.
4850 */
4851 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4852 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97 4853
13d866a9
JP
4854 for (i = 0; i < config->rx_ring_num; i++) {
4855 struct ring_info *ring = &mac_control->rings[i];
4856
4857 rx_intr_handler(ring, 0);
4858 }
db874e65 4859 }
596c5c97 4860
db874e65 4861 /*
596c5c97 4862 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4863 * will ensure that the actual interrupt causing bit get's
4864 * cleared and hence a read can be avoided.
4865 */
596c5c97
SS
4866 if (reason & GEN_INTR_TXTRAFFIC)
4867 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4868
596c5c97
SS
4869 for (i = 0; i < config->tx_fifo_num; i++)
4870 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4871
596c5c97
SS
4872 if (reason & GEN_INTR_TXPIC)
4873 s2io_txpic_intr_handle(sp);
fe113638 4874
596c5c97
SS
4875 /*
4876 * Reallocate the buffers from the interrupt handler itself.
4877 */
4878 if (!config->napi) {
13d866a9
JP
4879 for (i = 0; i < config->rx_ring_num; i++) {
4880 struct ring_info *ring = &mac_control->rings[i];
4881
4882 s2io_chk_rx_buffers(sp, ring);
4883 }
596c5c97
SS
4884 }
4885 writeq(sp->general_int_mask, &bar0->general_int_mask);
4886 readl(&bar0->general_int_status);
20346722 4887
596c5c97 4888 return IRQ_HANDLED;
db874e65 4889
d44570e4 4890 } else if (!reason) {
596c5c97
SS
4891 /* The interrupt was not raised by us */
4892 return IRQ_NONE;
4893 }
db874e65 4894
1da177e4
LT
4895 return IRQ_HANDLED;
4896}
4897
7ba013ac
K
4898/**
4899 * s2io_updt_stats -
4900 */
1ee6dd77 4901static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4902{
1ee6dd77 4903 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac
K
4904 u64 val64;
4905 int cnt = 0;
4906
92b84437 4907 if (is_s2io_card_up(sp)) {
7ba013ac
K
4908 /* Apprx 30us on a 133 MHz bus */
4909 val64 = SET_UPDT_CLICKS(10) |
4910 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4911 writeq(val64, &bar0->stat_cfg);
4912 do {
4913 udelay(100);
4914 val64 = readq(&bar0->stat_cfg);
b7b5a128 4915 if (!(val64 & s2BIT(0)))
7ba013ac
K
4916 break;
4917 cnt++;
4918 if (cnt == 5)
4919 break; /* Updt failed */
d44570e4 4920 } while (1);
8a4bdbaa 4921 }
7ba013ac
K
4922}
4923
1da177e4 4924/**
20346722 4925 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4926 * @dev : pointer to the device structure.
4927 * Description:
20346722 4928 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4929 * structure and returns a pointer to the same.
4930 * Return value:
4931 * pointer to the updated net_device_stats structure.
4932 */
4933
ac1f60db 4934static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4935{
4cf1653a 4936 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4937 struct mac_info *mac_control;
1da177e4 4938 struct config_param *config;
0425b46a 4939 int i;
1da177e4 4940
20346722 4941
1da177e4
LT
4942 mac_control = &sp->mac_control;
4943 config = &sp->config;
4944
7ba013ac
K
4945 /* Configure Stats for immediate updt */
4946 s2io_updt_stats(sp);
4947
dc56e634
BL
4948 /* Using sp->stats as a staging area, because reset (due to mtu
4949 change, for example) will clear some hardware counters */
4950 dev->stats.tx_packets +=
d44570e4 4951 le32_to_cpu(mac_control->stats_info->tmac_frms) -
dc56e634 4952 sp->stats.tx_packets;
7ba013ac
K
4953 sp->stats.tx_packets =
4954 le32_to_cpu(mac_control->stats_info->tmac_frms);
dc56e634
BL
4955 dev->stats.tx_errors +=
4956 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
4957 sp->stats.tx_errors;
20346722
K
4958 sp->stats.tx_errors =
4959 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
dc56e634
BL
4960 dev->stats.rx_errors +=
4961 le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
4962 sp->stats.rx_errors;
20346722 4963 sp->stats.rx_errors =
ee705dba 4964 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
dc56e634 4965 dev->stats.multicast =
d44570e4 4966 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) -
dc56e634 4967 sp->stats.multicast;
20346722
K
4968 sp->stats.multicast =
4969 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
dc56e634 4970 dev->stats.rx_length_errors =
d44570e4 4971 le64_to_cpu(mac_control->stats_info->rmac_long_frms) -
dc56e634 4972 sp->stats.rx_length_errors;
1da177e4 4973 sp->stats.rx_length_errors =
ee705dba 4974 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4 4975
0425b46a 4976 /* collect per-ring rx_packets and rx_bytes */
dc56e634 4977 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
0425b46a 4978 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
4979 struct ring_info *ring = &mac_control->rings[i];
4980
4981 dev->stats.rx_packets += ring->rx_packets;
4982 dev->stats.rx_bytes += ring->rx_bytes;
0425b46a
SH
4983 }
4984
d44570e4 4985 return &dev->stats;
1da177e4
LT
4986}
4987
4988/**
4989 * s2io_set_multicast - entry point for multicast address enable/disable.
4990 * @dev : pointer to the device structure
4991 * Description:
20346722
K
4992 * This function is a driver entry point which gets called by the kernel
4993 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4994 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4995 * determine, if multicast address must be enabled or if promiscuous mode
4996 * is to be disabled etc.
4997 * Return value:
4998 * void.
4999 */
5000
5001static void s2io_set_multicast(struct net_device *dev)
5002{
5003 int i, j, prev_cnt;
5004 struct dev_mc_list *mclist;
4cf1653a 5005 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5006 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5007 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
d44570e4 5008 0xfeffffffffffULL;
faa4f796 5009 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
1da177e4 5010 void __iomem *add;
faa4f796 5011 struct config_param *config = &sp->config;
1da177e4
LT
5012
5013 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
5014 /* Enable all Multicast addresses */
5015 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
5016 &bar0->rmac_addr_data0_mem);
5017 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
5018 &bar0->rmac_addr_data1_mem);
5019 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5020 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5021 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
1da177e4
LT
5022 writeq(val64, &bar0->rmac_addr_cmd_mem);
5023 /* Wait till command completes */
c92ca04b 5024 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5025 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5026 S2IO_BIT_RESET);
1da177e4
LT
5027
5028 sp->m_cast_flg = 1;
faa4f796 5029 sp->all_multi_pos = config->max_mc_addr - 1;
1da177e4
LT
5030 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
5031 /* Disable all Multicast addresses */
5032 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5033 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
5034 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5035 &bar0->rmac_addr_data1_mem);
1da177e4 5036 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5037 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5038 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
1da177e4
LT
5039 writeq(val64, &bar0->rmac_addr_cmd_mem);
5040 /* Wait till command completes */
c92ca04b 5041 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5042 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5043 S2IO_BIT_RESET);
1da177e4
LT
5044
5045 sp->m_cast_flg = 0;
5046 sp->all_multi_pos = 0;
5047 }
5048
5049 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5050 /* Put the NIC into promiscuous mode */
5051 add = &bar0->mac_cfg;
5052 val64 = readq(&bar0->mac_cfg);
5053 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5054
5055 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 5056 writel((u32)val64, add);
1da177e4
LT
5057 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5058 writel((u32) (val64 >> 32), (add + 4));
5059
926930b2
SS
5060 if (vlan_tag_strip != 1) {
5061 val64 = readq(&bar0->rx_pa_cfg);
5062 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5063 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5064 sp->vlan_strip_flag = 0;
926930b2
SS
5065 }
5066
1da177e4
LT
5067 val64 = readq(&bar0->mac_cfg);
5068 sp->promisc_flg = 1;
776bd20f 5069 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
5070 dev->name);
5071 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5072 /* Remove the NIC from promiscuous mode */
5073 add = &bar0->mac_cfg;
5074 val64 = readq(&bar0->mac_cfg);
5075 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5076
5077 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 5078 writel((u32)val64, add);
1da177e4
LT
5079 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5080 writel((u32) (val64 >> 32), (add + 4));
5081
926930b2
SS
5082 if (vlan_tag_strip != 0) {
5083 val64 = readq(&bar0->rx_pa_cfg);
5084 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5085 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5086 sp->vlan_strip_flag = 1;
926930b2
SS
5087 }
5088
1da177e4
LT
5089 val64 = readq(&bar0->mac_cfg);
5090 sp->promisc_flg = 0;
776bd20f 5091 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
5092 dev->name);
5093 }
5094
5095 /* Update individual M_CAST address list */
5096 if ((!sp->m_cast_flg) && dev->mc_count) {
5097 if (dev->mc_count >
faa4f796 5098 (config->max_mc_addr - config->max_mac_addr)) {
1da177e4
LT
5099 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5100 dev->name);
5101 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5102 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5103 return;
5104 }
5105
5106 prev_cnt = sp->mc_addr_count;
5107 sp->mc_addr_count = dev->mc_count;
5108
5109 /* Clear out the previous list of Mc in the H/W. */
5110 for (i = 0; i < prev_cnt; i++) {
5111 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5112 &bar0->rmac_addr_data0_mem);
5113 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5114 &bar0->rmac_addr_data1_mem);
1da177e4 5115 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5116 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5117 RMAC_ADDR_CMD_MEM_OFFSET
5118 (config->mc_start_offset + i);
1da177e4
LT
5119 writeq(val64, &bar0->rmac_addr_cmd_mem);
5120
5121 /* Wait for command completes */
c92ca04b 5122 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5123 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5124 S2IO_BIT_RESET)) {
5125 DBG_PRINT(ERR_DBG, "%s: Adding ", dev->name);
1da177e4
LT
5126 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5127 return;
5128 }
5129 }
5130
5131 /* Create the new Rx filter list and update the same in H/W. */
5132 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5133 i++, mclist = mclist->next) {
5134 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5135 ETH_ALEN);
a7a80d5a 5136 mac_addr = 0;
1da177e4
LT
5137 for (j = 0; j < ETH_ALEN; j++) {
5138 mac_addr |= mclist->dmi_addr[j];
5139 mac_addr <<= 8;
5140 }
5141 mac_addr >>= 8;
5142 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5143 &bar0->rmac_addr_data0_mem);
5144 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5145 &bar0->rmac_addr_data1_mem);
1da177e4 5146 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5147 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5148 RMAC_ADDR_CMD_MEM_OFFSET
5149 (i + config->mc_start_offset);
1da177e4
LT
5150 writeq(val64, &bar0->rmac_addr_cmd_mem);
5151
5152 /* Wait for command completes */
c92ca04b 5153 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5154 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5155 S2IO_BIT_RESET)) {
5156 DBG_PRINT(ERR_DBG, "%s: Adding ", dev->name);
1da177e4
LT
5157 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5158 return;
5159 }
5160 }
5161 }
5162}
5163
faa4f796
SH
5164/* read from CAM unicast & multicast addresses and store it in
5165 * def_mac_addr structure
5166 */
dac499f9 5167static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
faa4f796
SH
5168{
5169 int offset;
5170 u64 mac_addr = 0x0;
5171 struct config_param *config = &sp->config;
5172
5173 /* store unicast & multicast mac addresses */
5174 for (offset = 0; offset < config->max_mc_addr; offset++) {
5175 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5176 /* if read fails disable the entry */
5177 if (mac_addr == FAILURE)
5178 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5179 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5180 }
5181}
5182
5183/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5184static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5185{
5186 int offset;
5187 struct config_param *config = &sp->config;
5188 /* restore unicast mac address */
5189 for (offset = 0; offset < config->max_mac_addr; offset++)
5190 do_s2io_prog_unicast(sp->dev,
d44570e4 5191 sp->def_mac_addr[offset].mac_addr);
faa4f796
SH
5192
5193 /* restore multicast mac address */
5194 for (offset = config->mc_start_offset;
d44570e4 5195 offset < config->max_mc_addr; offset++)
faa4f796
SH
5196 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5197}
5198
5199/* add a multicast MAC address to CAM */
5200static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5201{
5202 int i;
5203 u64 mac_addr = 0;
5204 struct config_param *config = &sp->config;
5205
5206 for (i = 0; i < ETH_ALEN; i++) {
5207 mac_addr <<= 8;
5208 mac_addr |= addr[i];
5209 }
5210 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5211 return SUCCESS;
5212
5213 /* check if the multicast mac already preset in CAM */
5214 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5215 u64 tmp64;
5216 tmp64 = do_s2io_read_unicast_mc(sp, i);
5217 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5218 break;
5219
5220 if (tmp64 == mac_addr)
5221 return SUCCESS;
5222 }
5223 if (i == config->max_mc_addr) {
5224 DBG_PRINT(ERR_DBG,
d44570e4 5225 "CAM full no space left for multicast MAC\n");
faa4f796
SH
5226 return FAILURE;
5227 }
5228 /* Update the internal structure with this new mac address */
5229 do_s2io_copy_mac_addr(sp, i, mac_addr);
5230
d44570e4 5231 return do_s2io_add_mac(sp, mac_addr, i);
faa4f796
SH
5232}
5233
5234/* add MAC address to CAM */
5235static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
2fd37688
SS
5236{
5237 u64 val64;
5238 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5239
5240 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
d44570e4 5241 &bar0->rmac_addr_data0_mem);
2fd37688 5242
d44570e4 5243 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
2fd37688
SS
5244 RMAC_ADDR_CMD_MEM_OFFSET(off);
5245 writeq(val64, &bar0->rmac_addr_cmd_mem);
5246
5247 /* Wait till command completes */
5248 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5249 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5250 S2IO_BIT_RESET)) {
faa4f796 5251 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
2fd37688
SS
5252 return FAILURE;
5253 }
5254 return SUCCESS;
5255}
faa4f796
SH
5256/* deletes a specified unicast/multicast mac entry from CAM */
5257static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5258{
5259 int offset;
5260 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5261 struct config_param *config = &sp->config;
5262
5263 for (offset = 1;
d44570e4 5264 offset < config->max_mc_addr; offset++) {
faa4f796
SH
5265 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5266 if (tmp64 == addr) {
5267 /* disable the entry by writing 0xffffffffffffULL */
5268 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5269 return FAILURE;
5270 /* store the new mac list from CAM */
5271 do_s2io_store_unicast_mc(sp);
5272 return SUCCESS;
5273 }
5274 }
5275 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
d44570e4 5276 (unsigned long long)addr);
faa4f796
SH
5277 return FAILURE;
5278}
5279
5280/* read mac entries from CAM */
5281static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5282{
5283 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5284 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5285
5286 /* read mac addr */
d44570e4 5287 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796
SH
5288 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5289 writeq(val64, &bar0->rmac_addr_cmd_mem);
5290
5291 /* Wait till command completes */
5292 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5293 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5294 S2IO_BIT_RESET)) {
faa4f796
SH
5295 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5296 return FAILURE;
5297 }
5298 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4
JP
5299
5300 return tmp64 >> 16;
faa4f796 5301}
2fd37688
SS
5302
5303/**
5304 * s2io_set_mac_addr driver entry point
5305 */
faa4f796 5306
2fd37688
SS
5307static int s2io_set_mac_addr(struct net_device *dev, void *p)
5308{
5309 struct sockaddr *addr = p;
5310
5311 if (!is_valid_ether_addr(addr->sa_data))
5312 return -EINVAL;
5313
5314 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5315
5316 /* store the MAC address in CAM */
d44570e4 5317 return do_s2io_prog_unicast(dev, dev->dev_addr);
2fd37688 5318}
1da177e4 5319/**
2fd37688 5320 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
5321 * @dev : pointer to the device structure.
5322 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 5323 * Description : This procedure will program the Xframe to receive
1da177e4 5324 * frames with new Mac Address
20346722 5325 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
5326 * as defined in errno.h file on failure.
5327 */
faa4f796 5328
2fd37688 5329static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 5330{
4cf1653a 5331 struct s2io_nic *sp = netdev_priv(dev);
2fd37688 5332 register u64 mac_addr = 0, perm_addr = 0;
1da177e4 5333 int i;
faa4f796
SH
5334 u64 tmp64;
5335 struct config_param *config = &sp->config;
1da177e4 5336
20346722 5337 /*
d44570e4
JP
5338 * Set the new MAC address as the new unicast filter and reflect this
5339 * change on the device address registered with the OS. It will be
5340 * at offset 0.
5341 */
1da177e4
LT
5342 for (i = 0; i < ETH_ALEN; i++) {
5343 mac_addr <<= 8;
5344 mac_addr |= addr[i];
2fd37688
SS
5345 perm_addr <<= 8;
5346 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
5347 }
5348
2fd37688
SS
5349 /* check if the dev_addr is different than perm_addr */
5350 if (mac_addr == perm_addr)
d8d70caf
SS
5351 return SUCCESS;
5352
faa4f796
SH
5353 /* check if the mac already preset in CAM */
5354 for (i = 1; i < config->max_mac_addr; i++) {
5355 tmp64 = do_s2io_read_unicast_mc(sp, i);
5356 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5357 break;
5358
5359 if (tmp64 == mac_addr) {
5360 DBG_PRINT(INFO_DBG,
d44570e4
JP
5361 "MAC addr:0x%llx already present in CAM\n",
5362 (unsigned long long)mac_addr);
faa4f796
SH
5363 return SUCCESS;
5364 }
5365 }
5366 if (i == config->max_mac_addr) {
5367 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5368 return FAILURE;
5369 }
d8d70caf 5370 /* Update the internal structure with this new mac address */
faa4f796 5371 do_s2io_copy_mac_addr(sp, i, mac_addr);
d44570e4
JP
5372
5373 return do_s2io_add_mac(sp, mac_addr, i);
1da177e4
LT
5374}
5375
5376/**
20346722 5377 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
5378 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5379 * @info: pointer to the structure with parameters given by ethtool to set
5380 * link information.
5381 * Description:
20346722 5382 * The function sets different link parameters provided by the user onto
1da177e4
LT
5383 * the NIC.
5384 * Return value:
5385 * 0 on success.
d44570e4 5386 */
1da177e4
LT
5387
5388static int s2io_ethtool_sset(struct net_device *dev,
5389 struct ethtool_cmd *info)
5390{
4cf1653a 5391 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5392 if ((info->autoneg == AUTONEG_ENABLE) ||
d44570e4
JP
5393 (info->speed != SPEED_10000) ||
5394 (info->duplex != DUPLEX_FULL))
1da177e4
LT
5395 return -EINVAL;
5396 else {
5397 s2io_close(sp->dev);
5398 s2io_open(sp->dev);
5399 }
5400
5401 return 0;
5402}
5403
5404/**
20346722 5405 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5406 * @sp : private member of the device structure, pointer to the
5407 * s2io_nic structure.
5408 * @info : pointer to the structure with parameters given by ethtool
5409 * to return link information.
5410 * Description:
5411 * Returns link specific information like speed, duplex etc.. to ethtool.
5412 * Return value :
5413 * return 0 on success.
5414 */
5415
5416static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5417{
4cf1653a 5418 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5419 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5420 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5421 info->port = PORT_FIBRE;
1a7eb72b
SS
5422
5423 /* info->transceiver */
5424 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5425
5426 if (netif_carrier_ok(sp->dev)) {
5427 info->speed = 10000;
5428 info->duplex = DUPLEX_FULL;
5429 } else {
5430 info->speed = -1;
5431 info->duplex = -1;
5432 }
5433
5434 info->autoneg = AUTONEG_DISABLE;
5435 return 0;
5436}
5437
5438/**
20346722
K
5439 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5440 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5441 * s2io_nic structure.
5442 * @info : pointer to the structure with parameters given by ethtool to
5443 * return driver information.
5444 * Description:
5445 * Returns driver specefic information like name, version etc.. to ethtool.
5446 * Return value:
5447 * void
5448 */
5449
5450static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5451 struct ethtool_drvinfo *info)
5452{
4cf1653a 5453 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5454
dbc2309d
JL
5455 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5456 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5457 strncpy(info->fw_version, "", sizeof(info->fw_version));
5458 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5459 info->regdump_len = XENA_REG_SPACE;
5460 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5461}
5462
5463/**
5464 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5465 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5466 * s2io_nic structure.
20346722 5467 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5468 * dumping the registers.
5469 * @reg_space: The input argumnet into which all the registers are dumped.
5470 * Description:
5471 * Dumps the entire register space of xFrame NIC into the user given
5472 * buffer area.
5473 * Return value :
5474 * void .
d44570e4 5475 */
1da177e4
LT
5476
5477static void s2io_ethtool_gregs(struct net_device *dev,
5478 struct ethtool_regs *regs, void *space)
5479{
5480 int i;
5481 u64 reg;
d44570e4 5482 u8 *reg_space = (u8 *)space;
4cf1653a 5483 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5484
5485 regs->len = XENA_REG_SPACE;
5486 regs->version = sp->pdev->subsystem_device;
5487
5488 for (i = 0; i < regs->len; i += 8) {
5489 reg = readq(sp->bar0 + i);
5490 memcpy((reg_space + i), &reg, 8);
5491 }
5492}
5493
5494/**
5495 * s2io_phy_id - timer function that alternates adapter LED.
20346722 5496 * @data : address of the private member of the device structure, which
1da177e4 5497 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
5498 * Description: This is actually the timer function that alternates the
5499 * adapter LED bit of the adapter control bit to set/reset every time on
5500 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4 5501 * once every second.
d44570e4 5502 */
1da177e4
LT
5503static void s2io_phy_id(unsigned long data)
5504{
d44570e4 5505 struct s2io_nic *sp = (struct s2io_nic *)data;
1ee6dd77 5506 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5507 u64 val64 = 0;
5508 u16 subid;
5509
5510 subid = sp->pdev->subsystem_device;
541ae68f 5511 if ((sp->device_type == XFRAME_II_DEVICE) ||
d44570e4 5512 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
5513 val64 = readq(&bar0->gpio_control);
5514 val64 ^= GPIO_CTRL_GPIO_0;
5515 writeq(val64, &bar0->gpio_control);
5516 } else {
5517 val64 = readq(&bar0->adapter_control);
5518 val64 ^= ADAPTER_LED_ON;
5519 writeq(val64, &bar0->adapter_control);
5520 }
5521
5522 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5523}
5524
5525/**
5526 * s2io_ethtool_idnic - To physically identify the nic on the system.
5527 * @sp : private member of the device structure, which is a pointer to the
5528 * s2io_nic structure.
20346722 5529 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
5530 * ethtool.
5531 * Description: Used to physically identify the NIC on the system.
20346722 5532 * The Link LED will blink for a time specified by the user for
1da177e4 5533 * identification.
20346722 5534 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
5535 * identification is possible only if it's link is up.
5536 * Return value:
5537 * int , returns 0 on success
5538 */
5539
5540static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5541{
5542 u64 val64 = 0, last_gpio_ctrl_val;
4cf1653a 5543 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5544 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5545 u16 subid;
5546
5547 subid = sp->pdev->subsystem_device;
5548 last_gpio_ctrl_val = readq(&bar0->gpio_control);
d44570e4 5549 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
1da177e4
LT
5550 val64 = readq(&bar0->adapter_control);
5551 if (!(val64 & ADAPTER_CNTL_EN)) {
6cef2b8e 5552 pr_err("Adapter Link down, cannot blink LED\n");
1da177e4
LT
5553 return -EFAULT;
5554 }
5555 }
5556 if (sp->id_timer.function == NULL) {
5557 init_timer(&sp->id_timer);
5558 sp->id_timer.function = s2io_phy_id;
d44570e4 5559 sp->id_timer.data = (unsigned long)sp;
1da177e4
LT
5560 }
5561 mod_timer(&sp->id_timer, jiffies);
5562 if (data)
20346722 5563 msleep_interruptible(data * HZ);
1da177e4 5564 else
20346722 5565 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
5566 del_timer_sync(&sp->id_timer);
5567
541ae68f 5568 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
5569 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5570 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5571 }
5572
5573 return 0;
5574}
5575
0cec35eb 5576static void s2io_ethtool_gringparam(struct net_device *dev,
d44570e4 5577 struct ethtool_ringparam *ering)
0cec35eb 5578{
4cf1653a 5579 struct s2io_nic *sp = netdev_priv(dev);
d44570e4 5580 int i, tx_desc_count = 0, rx_desc_count = 0;
0cec35eb
SH
5581
5582 if (sp->rxd_mode == RXD_MODE_1)
5583 ering->rx_max_pending = MAX_RX_DESC_1;
5584 else if (sp->rxd_mode == RXD_MODE_3B)
5585 ering->rx_max_pending = MAX_RX_DESC_2;
0cec35eb
SH
5586
5587 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5588 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
0cec35eb 5589 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
8a4bdbaa 5590
d44570e4 5591 DBG_PRINT(INFO_DBG, "\nmax txds : %d\n", sp->config.max_txds);
0cec35eb
SH
5592 ering->tx_pending = tx_desc_count;
5593 rx_desc_count = 0;
8a4bdbaa 5594 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
0cec35eb 5595 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
b6627672 5596
0cec35eb
SH
5597 ering->rx_pending = rx_desc_count;
5598
5599 ering->rx_mini_max_pending = 0;
5600 ering->rx_mini_pending = 0;
d44570e4 5601 if (sp->rxd_mode == RXD_MODE_1)
0cec35eb
SH
5602 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5603 else if (sp->rxd_mode == RXD_MODE_3B)
5604 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5605 ering->rx_jumbo_pending = rx_desc_count;
5606}
5607
1da177e4
LT
5608/**
5609 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
5610 * @sp : private member of the device structure, which is a pointer to the
5611 * s2io_nic structure.
1da177e4
LT
5612 * @ep : pointer to the structure with pause parameters given by ethtool.
5613 * Description:
5614 * Returns the Pause frame generation and reception capability of the NIC.
5615 * Return value:
5616 * void
5617 */
5618static void s2io_ethtool_getpause_data(struct net_device *dev,
5619 struct ethtool_pauseparam *ep)
5620{
5621 u64 val64;
4cf1653a 5622 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5623 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5624
5625 val64 = readq(&bar0->rmac_pause_cfg);
5626 if (val64 & RMAC_PAUSE_GEN_ENABLE)
f957bcf0 5627 ep->tx_pause = true;
1da177e4 5628 if (val64 & RMAC_PAUSE_RX_ENABLE)
f957bcf0
TK
5629 ep->rx_pause = true;
5630 ep->autoneg = false;
1da177e4
LT
5631}
5632
5633/**
5634 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5635 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5636 * s2io_nic structure.
5637 * @ep : pointer to the structure with pause parameters given by ethtool.
5638 * Description:
5639 * It can be used to set or reset Pause frame generation or reception
5640 * support of the NIC.
5641 * Return value:
5642 * int, returns 0 on Success
5643 */
5644
5645static int s2io_ethtool_setpause_data(struct net_device *dev,
d44570e4 5646 struct ethtool_pauseparam *ep)
1da177e4
LT
5647{
5648 u64 val64;
4cf1653a 5649 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5650 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5651
5652 val64 = readq(&bar0->rmac_pause_cfg);
5653 if (ep->tx_pause)
5654 val64 |= RMAC_PAUSE_GEN_ENABLE;
5655 else
5656 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5657 if (ep->rx_pause)
5658 val64 |= RMAC_PAUSE_RX_ENABLE;
5659 else
5660 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5661 writeq(val64, &bar0->rmac_pause_cfg);
5662 return 0;
5663}
5664
5665/**
5666 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5667 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5668 * s2io_nic structure.
5669 * @off : offset at which the data must be written
5670 * @data : Its an output parameter where the data read at the given
20346722 5671 * offset is stored.
1da177e4 5672 * Description:
20346722 5673 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5674 * read data.
5675 * NOTE: Will allow to read only part of the EEPROM visible through the
5676 * I2C bus.
5677 * Return value:
5678 * -1 on failure and 0 on success.
5679 */
5680
5681#define S2IO_DEV_ID 5
d44570e4 5682static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
1da177e4
LT
5683{
5684 int ret = -1;
5685 u32 exit_cnt = 0;
5686 u64 val64;
1ee6dd77 5687 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5688
ad4ebed0 5689 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5690 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5691 I2C_CONTROL_ADDR(off) |
5692 I2C_CONTROL_BYTE_CNT(0x3) |
5693 I2C_CONTROL_READ |
5694 I2C_CONTROL_CNTL_START;
ad4ebed0 5695 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5696
ad4ebed0 5697 while (exit_cnt < 5) {
5698 val64 = readq(&bar0->i2c_control);
5699 if (I2C_CONTROL_CNTL_END(val64)) {
5700 *data = I2C_CONTROL_GET_DATA(val64);
5701 ret = 0;
5702 break;
5703 }
5704 msleep(50);
5705 exit_cnt++;
1da177e4 5706 }
1da177e4
LT
5707 }
5708
ad4ebed0 5709 if (sp->device_type == XFRAME_II_DEVICE) {
5710 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5711 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5712 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5713 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5714 val64 |= SPI_CONTROL_REQ;
5715 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5716 while (exit_cnt < 5) {
5717 val64 = readq(&bar0->spi_control);
5718 if (val64 & SPI_CONTROL_NACK) {
5719 ret = 1;
5720 break;
5721 } else if (val64 & SPI_CONTROL_DONE) {
5722 *data = readq(&bar0->spi_data);
5723 *data &= 0xffffff;
5724 ret = 0;
5725 break;
5726 }
5727 msleep(50);
5728 exit_cnt++;
5729 }
5730 }
1da177e4
LT
5731 return ret;
5732}
5733
5734/**
5735 * write_eeprom - actually writes the relevant part of the data value.
5736 * @sp : private member of the device structure, which is a pointer to the
5737 * s2io_nic structure.
5738 * @off : offset at which the data must be written
5739 * @data : The data that is to be written
20346722 5740 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5741 * the Eeprom. (max of 3)
5742 * Description:
5743 * Actually writes the relevant part of the data value into the Eeprom
5744 * through the I2C bus.
5745 * Return value:
5746 * 0 on success, -1 on failure.
5747 */
5748
d44570e4 5749static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
1da177e4
LT
5750{
5751 int exit_cnt = 0, ret = -1;
5752 u64 val64;
1ee6dd77 5753 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5754
ad4ebed0 5755 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5756 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5757 I2C_CONTROL_ADDR(off) |
5758 I2C_CONTROL_BYTE_CNT(cnt) |
5759 I2C_CONTROL_SET_DATA((u32)data) |
5760 I2C_CONTROL_CNTL_START;
ad4ebed0 5761 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5762
5763 while (exit_cnt < 5) {
5764 val64 = readq(&bar0->i2c_control);
5765 if (I2C_CONTROL_CNTL_END(val64)) {
5766 if (!(val64 & I2C_CONTROL_NACK))
5767 ret = 0;
5768 break;
5769 }
5770 msleep(50);
5771 exit_cnt++;
5772 }
5773 }
1da177e4 5774
ad4ebed0 5775 if (sp->device_type == XFRAME_II_DEVICE) {
5776 int write_cnt = (cnt == 8) ? 0 : cnt;
d44570e4 5777 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
ad4ebed0 5778
5779 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5780 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5781 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5782 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5783 val64 |= SPI_CONTROL_REQ;
5784 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5785 while (exit_cnt < 5) {
5786 val64 = readq(&bar0->spi_control);
5787 if (val64 & SPI_CONTROL_NACK) {
5788 ret = 1;
5789 break;
5790 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5791 ret = 0;
ad4ebed0 5792 break;
5793 }
5794 msleep(50);
5795 exit_cnt++;
1da177e4 5796 }
1da177e4 5797 }
1da177e4
LT
5798 return ret;
5799}
1ee6dd77 5800static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5801{
b41477f3
AR
5802 u8 *vpd_data;
5803 u8 data;
d44570e4 5804 int i = 0, cnt, fail = 0;
9dc737a7
AR
5805 int vpd_addr = 0x80;
5806
5807 if (nic->device_type == XFRAME_II_DEVICE) {
5808 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5809 vpd_addr = 0x80;
d44570e4 5810 } else {
9dc737a7
AR
5811 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5812 vpd_addr = 0x50;
5813 }
19a60522 5814 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5815
b41477f3 5816 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945
SH
5817 if (!vpd_data) {
5818 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
b41477f3 5819 return;
c53d4945 5820 }
491976b2 5821 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
b41477f3 5822
d44570e4 5823 for (i = 0; i < 256; i += 4) {
9dc737a7
AR
5824 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5825 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5826 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
d44570e4 5827 for (cnt = 0; cnt < 5; cnt++) {
9dc737a7
AR
5828 msleep(2);
5829 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5830 if (data == 0x80)
5831 break;
5832 }
5833 if (cnt >= 5) {
5834 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5835 fail = 1;
5836 break;
5837 }
5838 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5839 (u32 *)&vpd_data[i]);
5840 }
19a60522 5841
d44570e4 5842 if (!fail) {
19a60522
SS
5843 /* read serial number of adapter */
5844 for (cnt = 0; cnt < 256; cnt++) {
d44570e4
JP
5845 if ((vpd_data[cnt] == 'S') &&
5846 (vpd_data[cnt+1] == 'N') &&
5847 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
19a60522
SS
5848 memset(nic->serial_num, 0, VPD_STRING_LEN);
5849 memcpy(nic->serial_num, &vpd_data[cnt + 3],
d44570e4 5850 vpd_data[cnt+2]);
19a60522
SS
5851 break;
5852 }
5853 }
5854 }
5855
5856 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5857 memset(nic->product_name, 0, vpd_data[1]);
5858 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5859 }
b41477f3 5860 kfree(vpd_data);
491976b2 5861 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
9dc737a7
AR
5862}
5863
1da177e4
LT
5864/**
5865 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5866 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5867 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5868 * containing all relevant information.
5869 * @data_buf : user defined value to be written into Eeprom.
5870 * Description: Reads the values stored in the Eeprom at given offset
5871 * for a given length. Stores these values int the input argument data
5872 * buffer 'data_buf' and returns these to the caller (ethtool.)
5873 * Return value:
5874 * int 0 on success
5875 */
5876
5877static int s2io_ethtool_geeprom(struct net_device *dev,
d44570e4 5878 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5879{
ad4ebed0 5880 u32 i, valid;
5881 u64 data;
4cf1653a 5882 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5883
5884 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5885
5886 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5887 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5888
5889 for (i = 0; i < eeprom->len; i += 4) {
5890 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5891 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5892 return -EFAULT;
5893 }
5894 valid = INV(data);
5895 memcpy((data_buf + i), &valid, 4);
5896 }
5897 return 0;
5898}
5899
5900/**
5901 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5902 * @sp : private member of the device structure, which is a pointer to the
5903 * s2io_nic structure.
20346722 5904 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5905 * containing all relevant information.
5906 * @data_buf ; user defined value to be written into Eeprom.
5907 * Description:
5908 * Tries to write the user provided value in the Eeprom, at the offset
5909 * given by the user.
5910 * Return value:
5911 * 0 on success, -EFAULT on failure.
5912 */
5913
5914static int s2io_ethtool_seeprom(struct net_device *dev,
5915 struct ethtool_eeprom *eeprom,
d44570e4 5916 u8 *data_buf)
1da177e4
LT
5917{
5918 int len = eeprom->len, cnt = 0;
ad4ebed0 5919 u64 valid = 0, data;
4cf1653a 5920 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5921
5922 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5923 DBG_PRINT(ERR_DBG,
5924 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
d44570e4 5925 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n", eeprom->magic);
1da177e4
LT
5926 return -EFAULT;
5927 }
5928
5929 while (len) {
d44570e4
JP
5930 data = (u32)data_buf[cnt] & 0x000000FF;
5931 if (data)
5932 valid = (u32)(data << 24);
5933 else
1da177e4
LT
5934 valid = data;
5935
5936 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5937 DBG_PRINT(ERR_DBG,
5938 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5939 DBG_PRINT(ERR_DBG,
5940 "write into the specified offset\n");
5941 return -EFAULT;
5942 }
5943 cnt++;
5944 len--;
5945 }
5946
5947 return 0;
5948}
5949
5950/**
20346722
K
5951 * s2io_register_test - reads and writes into all clock domains.
5952 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5953 * s2io_nic structure.
5954 * @data : variable that returns the result of each of the test conducted b
5955 * by the driver.
5956 * Description:
5957 * Read and write into all clock domains. The NIC has 3 clock domains,
5958 * see that registers in all the three regions are accessible.
5959 * Return value:
5960 * 0 on success.
5961 */
5962
d44570e4 5963static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 5964{
1ee6dd77 5965 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5966 u64 val64 = 0, exp_val;
1da177e4
LT
5967 int fail = 0;
5968
20346722
K
5969 val64 = readq(&bar0->pif_rd_swapper_fb);
5970 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5971 fail = 1;
5972 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5973 }
5974
5975 val64 = readq(&bar0->rmac_pause_cfg);
5976 if (val64 != 0xc000ffff00000000ULL) {
5977 fail = 1;
5978 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5979 }
5980
5981 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5982 if (sp->device_type == XFRAME_II_DEVICE)
5983 exp_val = 0x0404040404040404ULL;
5984 else
5985 exp_val = 0x0808080808080808ULL;
5986 if (val64 != exp_val) {
1da177e4
LT
5987 fail = 1;
5988 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5989 }
5990
5991 val64 = readq(&bar0->xgxs_efifo_cfg);
5992 if (val64 != 0x000000001923141EULL) {
5993 fail = 1;
5994 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5995 }
5996
5997 val64 = 0x5A5A5A5A5A5A5A5AULL;
5998 writeq(val64, &bar0->xmsi_data);
5999 val64 = readq(&bar0->xmsi_data);
6000 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
6001 fail = 1;
6002 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
6003 }
6004
6005 val64 = 0xA5A5A5A5A5A5A5A5ULL;
6006 writeq(val64, &bar0->xmsi_data);
6007 val64 = readq(&bar0->xmsi_data);
6008 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
6009 fail = 1;
6010 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
6011 }
6012
6013 *data = fail;
ad4ebed0 6014 return fail;
1da177e4
LT
6015}
6016
6017/**
20346722 6018 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
6019 * @sp : private member of the device structure, which is a pointer to the
6020 * s2io_nic structure.
6021 * @data:variable that returns the result of each of the test conducted by
6022 * the driver.
6023 * Description:
20346722 6024 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
6025 * register.
6026 * Return value:
6027 * 0 on success.
6028 */
6029
d44570e4 6030static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
6031{
6032 int fail = 0;
ad4ebed0 6033 u64 ret_data, org_4F0, org_7F0;
6034 u8 saved_4F0 = 0, saved_7F0 = 0;
6035 struct net_device *dev = sp->dev;
1da177e4
LT
6036
6037 /* Test Write Error at offset 0 */
ad4ebed0 6038 /* Note that SPI interface allows write access to all areas
6039 * of EEPROM. Hence doing all negative testing only for Xframe I.
6040 */
6041 if (sp->device_type == XFRAME_I_DEVICE)
6042 if (!write_eeprom(sp, 0, 0, 3))
6043 fail = 1;
6044
6045 /* Save current values at offsets 0x4F0 and 0x7F0 */
6046 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6047 saved_4F0 = 1;
6048 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6049 saved_7F0 = 1;
1da177e4
LT
6050
6051 /* Test Write at offset 4f0 */
ad4ebed0 6052 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
6053 fail = 1;
6054 if (read_eeprom(sp, 0x4F0, &ret_data))
6055 fail = 1;
6056
ad4ebed0 6057 if (ret_data != 0x012345) {
26b7625c 6058 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
d44570e4
JP
6059 "Data written %llx Data read %llx\n",
6060 dev->name, (unsigned long long)0x12345,
6061 (unsigned long long)ret_data);
1da177e4 6062 fail = 1;
ad4ebed0 6063 }
1da177e4
LT
6064
6065 /* Reset the EEPROM data go FFFF */
ad4ebed0 6066 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
6067
6068 /* Test Write Request Error at offset 0x7c */
ad4ebed0 6069 if (sp->device_type == XFRAME_I_DEVICE)
6070 if (!write_eeprom(sp, 0x07C, 0, 3))
6071 fail = 1;
1da177e4 6072
ad4ebed0 6073 /* Test Write Request at offset 0x7f0 */
6074 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 6075 fail = 1;
ad4ebed0 6076 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
6077 fail = 1;
6078
ad4ebed0 6079 if (ret_data != 0x012345) {
26b7625c 6080 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
d44570e4
JP
6081 "Data written %llx Data read %llx\n",
6082 dev->name, (unsigned long long)0x12345,
6083 (unsigned long long)ret_data);
1da177e4 6084 fail = 1;
ad4ebed0 6085 }
1da177e4
LT
6086
6087 /* Reset the EEPROM data go FFFF */
ad4ebed0 6088 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 6089
ad4ebed0 6090 if (sp->device_type == XFRAME_I_DEVICE) {
6091 /* Test Write Error at offset 0x80 */
6092 if (!write_eeprom(sp, 0x080, 0, 3))
6093 fail = 1;
1da177e4 6094
ad4ebed0 6095 /* Test Write Error at offset 0xfc */
6096 if (!write_eeprom(sp, 0x0FC, 0, 3))
6097 fail = 1;
1da177e4 6098
ad4ebed0 6099 /* Test Write Error at offset 0x100 */
6100 if (!write_eeprom(sp, 0x100, 0, 3))
6101 fail = 1;
1da177e4 6102
ad4ebed0 6103 /* Test Write Error at offset 4ec */
6104 if (!write_eeprom(sp, 0x4EC, 0, 3))
6105 fail = 1;
6106 }
6107
6108 /* Restore values at offsets 0x4F0 and 0x7F0 */
6109 if (saved_4F0)
6110 write_eeprom(sp, 0x4F0, org_4F0, 3);
6111 if (saved_7F0)
6112 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
6113
6114 *data = fail;
ad4ebed0 6115 return fail;
1da177e4
LT
6116}
6117
6118/**
6119 * s2io_bist_test - invokes the MemBist test of the card .
20346722 6120 * @sp : private member of the device structure, which is a pointer to the
1da177e4 6121 * s2io_nic structure.
20346722 6122 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
6123 * the driver.
6124 * Description:
6125 * This invokes the MemBist test of the card. We give around
6126 * 2 secs time for the Test to complete. If it's still not complete
20346722 6127 * within this peiod, we consider that the test failed.
1da177e4
LT
6128 * Return value:
6129 * 0 on success and -1 on failure.
6130 */
6131
d44570e4 6132static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
6133{
6134 u8 bist = 0;
6135 int cnt = 0, ret = -1;
6136
6137 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6138 bist |= PCI_BIST_START;
6139 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6140
6141 while (cnt < 20) {
6142 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6143 if (!(bist & PCI_BIST_START)) {
6144 *data = (bist & PCI_BIST_CODE_MASK);
6145 ret = 0;
6146 break;
6147 }
6148 msleep(100);
6149 cnt++;
6150 }
6151
6152 return ret;
6153}
6154
6155/**
20346722
K
6156 * s2io-link_test - verifies the link state of the nic
6157 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
6158 * s2io_nic structure.
6159 * @data: variable that returns the result of each of the test conducted by
6160 * the driver.
6161 * Description:
20346722 6162 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
6163 * argument 'data' appropriately.
6164 * Return value:
6165 * 0 on success.
6166 */
6167
d44570e4 6168static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6169{
1ee6dd77 6170 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
6171 u64 val64;
6172
6173 val64 = readq(&bar0->adapter_status);
d44570e4 6174 if (!(LINK_IS_UP(val64)))
1da177e4 6175 *data = 1;
c92ca04b
AR
6176 else
6177 *data = 0;
1da177e4 6178
b41477f3 6179 return *data;
1da177e4
LT
6180}
6181
6182/**
20346722
K
6183 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6184 * @sp - private member of the device structure, which is a pointer to the
1da177e4 6185 * s2io_nic structure.
20346722 6186 * @data - variable that returns the result of each of the test
1da177e4
LT
6187 * conducted by the driver.
6188 * Description:
20346722 6189 * This is one of the offline test that tests the read and write
1da177e4
LT
6190 * access to the RldRam chip on the NIC.
6191 * Return value:
6192 * 0 on success.
6193 */
6194
d44570e4 6195static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6196{
1ee6dd77 6197 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 6198 u64 val64;
ad4ebed0 6199 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
6200
6201 val64 = readq(&bar0->adapter_control);
6202 val64 &= ~ADAPTER_ECC_EN;
6203 writeq(val64, &bar0->adapter_control);
6204
6205 val64 = readq(&bar0->mc_rldram_test_ctrl);
6206 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 6207 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6208
6209 val64 = readq(&bar0->mc_rldram_mrs);
6210 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6211 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6212
6213 val64 |= MC_RLDRAM_MRS_ENABLE;
6214 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6215
6216 while (iteration < 2) {
6217 val64 = 0x55555555aaaa0000ULL;
d44570e4 6218 if (iteration == 1)
1da177e4 6219 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6220 writeq(val64, &bar0->mc_rldram_test_d0);
6221
6222 val64 = 0xaaaa5a5555550000ULL;
d44570e4 6223 if (iteration == 1)
1da177e4 6224 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6225 writeq(val64, &bar0->mc_rldram_test_d1);
6226
6227 val64 = 0x55aaaaaaaa5a0000ULL;
d44570e4 6228 if (iteration == 1)
1da177e4 6229 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6230 writeq(val64, &bar0->mc_rldram_test_d2);
6231
ad4ebed0 6232 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
6233 writeq(val64, &bar0->mc_rldram_test_add);
6234
d44570e4
JP
6235 val64 = MC_RLDRAM_TEST_MODE |
6236 MC_RLDRAM_TEST_WRITE |
6237 MC_RLDRAM_TEST_GO;
ad4ebed0 6238 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6239
6240 for (cnt = 0; cnt < 5; cnt++) {
6241 val64 = readq(&bar0->mc_rldram_test_ctrl);
6242 if (val64 & MC_RLDRAM_TEST_DONE)
6243 break;
6244 msleep(200);
6245 }
6246
6247 if (cnt == 5)
6248 break;
6249
ad4ebed0 6250 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6251 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6252
6253 for (cnt = 0; cnt < 5; cnt++) {
6254 val64 = readq(&bar0->mc_rldram_test_ctrl);
6255 if (val64 & MC_RLDRAM_TEST_DONE)
6256 break;
6257 msleep(500);
6258 }
6259
6260 if (cnt == 5)
6261 break;
6262
6263 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 6264 if (!(val64 & MC_RLDRAM_TEST_PASS))
6265 test_fail = 1;
1da177e4
LT
6266
6267 iteration++;
6268 }
6269
ad4ebed0 6270 *data = test_fail;
1da177e4 6271
ad4ebed0 6272 /* Bring the adapter out of test mode */
6273 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6274
6275 return test_fail;
1da177e4
LT
6276}
6277
6278/**
6279 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6280 * @sp : private member of the device structure, which is a pointer to the
6281 * s2io_nic structure.
6282 * @ethtest : pointer to a ethtool command specific structure that will be
6283 * returned to the user.
20346722 6284 * @data : variable that returns the result of each of the test
1da177e4
LT
6285 * conducted by the driver.
6286 * Description:
6287 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6288 * the health of the card.
6289 * Return value:
6290 * void
6291 */
6292
6293static void s2io_ethtool_test(struct net_device *dev,
6294 struct ethtool_test *ethtest,
d44570e4 6295 uint64_t *data)
1da177e4 6296{
4cf1653a 6297 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6298 int orig_state = netif_running(sp->dev);
6299
6300 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6301 /* Offline Tests. */
20346722 6302 if (orig_state)
1da177e4 6303 s2io_close(sp->dev);
1da177e4
LT
6304
6305 if (s2io_register_test(sp, &data[0]))
6306 ethtest->flags |= ETH_TEST_FL_FAILED;
6307
6308 s2io_reset(sp);
1da177e4
LT
6309
6310 if (s2io_rldram_test(sp, &data[3]))
6311 ethtest->flags |= ETH_TEST_FL_FAILED;
6312
6313 s2io_reset(sp);
1da177e4
LT
6314
6315 if (s2io_eeprom_test(sp, &data[1]))
6316 ethtest->flags |= ETH_TEST_FL_FAILED;
6317
6318 if (s2io_bist_test(sp, &data[4]))
6319 ethtest->flags |= ETH_TEST_FL_FAILED;
6320
6321 if (orig_state)
6322 s2io_open(sp->dev);
6323
6324 data[2] = 0;
6325 } else {
6326 /* Online Tests. */
6327 if (!orig_state) {
d44570e4 6328 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
1da177e4
LT
6329 dev->name);
6330 data[0] = -1;
6331 data[1] = -1;
6332 data[2] = -1;
6333 data[3] = -1;
6334 data[4] = -1;
6335 }
6336
6337 if (s2io_link_test(sp, &data[2]))
6338 ethtest->flags |= ETH_TEST_FL_FAILED;
6339
6340 data[0] = 0;
6341 data[1] = 0;
6342 data[3] = 0;
6343 data[4] = 0;
6344 }
6345}
6346
6347static void s2io_get_ethtool_stats(struct net_device *dev,
6348 struct ethtool_stats *estats,
d44570e4 6349 u64 *tmp_stats)
1da177e4 6350{
8116f3cf 6351 int i = 0, k;
4cf1653a 6352 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 6353 struct stat_block *stat_info = sp->mac_control.stats_info;
1da177e4 6354
7ba013ac 6355 s2io_updt_stats(sp);
541ae68f
K
6356 tmp_stats[i++] =
6357 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6358 le32_to_cpu(stat_info->tmac_frms);
6359 tmp_stats[i++] =
6360 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6361 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 6362 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f
K
6363 tmp_stats[i++] =
6364 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6365 le32_to_cpu(stat_info->tmac_mcst_frms);
6366 tmp_stats[i++] =
6367 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6368 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 6369 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0 6370 tmp_stats[i++] =
d44570e4
JP
6371 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6372 le32_to_cpu(stat_info->tmac_ttl_octets);
bd1034f0 6373 tmp_stats[i++] =
d44570e4
JP
6374 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6375 le32_to_cpu(stat_info->tmac_ucst_frms);
6376 tmp_stats[i++] =
6377 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6378 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f
K
6379 tmp_stats[i++] =
6380 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6381 le32_to_cpu(stat_info->tmac_any_err_frms);
d44570e4 6382 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 6383 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f
K
6384 tmp_stats[i++] =
6385 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6386 le32_to_cpu(stat_info->tmac_vld_ip);
6387 tmp_stats[i++] =
6388 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6389 le32_to_cpu(stat_info->tmac_drop_ip);
6390 tmp_stats[i++] =
6391 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6392 le32_to_cpu(stat_info->tmac_icmp);
6393 tmp_stats[i++] =
6394 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6395 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 6396 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f
K
6397 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6398 le32_to_cpu(stat_info->tmac_udp);
6399 tmp_stats[i++] =
6400 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6401 le32_to_cpu(stat_info->rmac_vld_frms);
6402 tmp_stats[i++] =
6403 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6404 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
6405 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6406 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f
K
6407 tmp_stats[i++] =
6408 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6409 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6410 tmp_stats[i++] =
6411 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6412 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 6413 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 6414 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
6415 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6416 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0 6417 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
d44570e4
JP
6418 tmp_stats[i++] =
6419 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
bd1034f0 6420 le32_to_cpu(stat_info->rmac_ttl_octets);
bd1034f0 6421 tmp_stats[i++] =
d44570e4
JP
6422 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow) << 32
6423 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6424 tmp_stats[i++] =
6425 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6426 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f
K
6427 tmp_stats[i++] =
6428 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6429 le32_to_cpu(stat_info->rmac_discarded_frms);
d44570e4
JP
6430 tmp_stats[i++] =
6431 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6432 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6433 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6434 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f
K
6435 tmp_stats[i++] =
6436 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6437 le32_to_cpu(stat_info->rmac_usized_frms);
6438 tmp_stats[i++] =
6439 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6440 le32_to_cpu(stat_info->rmac_osized_frms);
6441 tmp_stats[i++] =
6442 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6443 le32_to_cpu(stat_info->rmac_frag_frms);
6444 tmp_stats[i++] =
6445 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6446 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0 6447 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
d44570e4
JP
6448 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6449 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6450 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6451 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6452 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
bd1034f0
AR
6453 tmp_stats[i++] =
6454 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 6455 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
6456 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
6458 tmp_stats[i++] =
6459 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 6460 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
6461 tmp_stats[i++] =
6462 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 6463 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 6464 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
6465 tmp_stats[i++] =
6466 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f
K
6467 le32_to_cpu(stat_info->rmac_udp);
6468 tmp_stats[i++] =
6469 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6470 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0 6471 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
d44570e4
JP
6472 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6473 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6474 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6475 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6476 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6477 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6478 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6479 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6480 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6481 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6482 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6483 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6484 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6485 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6486 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6487 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f
K
6488 tmp_stats[i++] =
6489 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6490 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0 6491 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
d44570e4 6492 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f
K
6493 tmp_stats[i++] =
6494 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6495 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 6496 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
6497 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6498 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6499 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6500 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6501 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6502 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6503 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6504 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6505 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6506 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6507 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6508 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6509 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6510 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6511 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6512 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6513 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6514 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
fa1f0cb3
SS
6515
6516 /* Enhanced statistics exist only for Hercules */
d44570e4 6517 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6518 tmp_stats[i++] =
d44570e4 6519 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
fa1f0cb3 6520 tmp_stats[i++] =
d44570e4 6521 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
fa1f0cb3 6522 tmp_stats[i++] =
d44570e4 6523 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
fa1f0cb3
SS
6524 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6525 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6526 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6527 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6528 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6529 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6530 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6531 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6532 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6533 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6534 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6535 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6536 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6537 }
6538
7ba013ac
K
6539 tmp_stats[i++] = 0;
6540 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6541 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
6542 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6543 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6544 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6545 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
8116f3cf
SS
6546 for (k = 0; k < MAX_RX_RINGS; k++)
6547 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
bd1034f0
AR
6548 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6549 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6550 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6551 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6552 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6553 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6554 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6555 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6556 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6557 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6558 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6559 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
6560 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6562 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6563 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 6564 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
6565 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6566 int count = 0;
6aa20a22 6567 /*
bd1034f0
AR
6568 * Since 64-bit divide does not work on all platforms,
6569 * do repeated subtraction.
6570 */
6571 while (tmp >= stat_info->sw_stat.num_aggregations) {
6572 tmp -= stat_info->sw_stat.num_aggregations;
6573 count++;
6574 }
6575 tmp_stats[i++] = count;
d44570e4 6576 } else
bd1034f0 6577 tmp_stats[i++] = 0;
c53d4945 6578 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
491abf25 6579 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
c53d4945 6580 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
491976b2
SH
6581 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6582 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6583 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6584 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6585 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6586 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6587
6588 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6589 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6590 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6591 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6592 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6593
6594 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6595 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6596 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6597 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6598 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6599 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6600 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6601 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6602 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
8116f3cf
SS
6603 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6604 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6605 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6606 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6607 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6608 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6609 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6610 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6611 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6612 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6613 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6614 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6615 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6616 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6617 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6618 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6619 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
1da177e4
LT
6620}
6621
ac1f60db 6622static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4 6623{
d44570e4 6624 return XENA_REG_SPACE;
1da177e4
LT
6625}
6626
6627
d44570e4 6628static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
1da177e4 6629{
4cf1653a 6630 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 6631
d44570e4 6632 return sp->rx_csum;
1da177e4 6633}
ac1f60db
AB
6634
6635static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 6636{
4cf1653a 6637 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6638
6639 if (data)
6640 sp->rx_csum = 1;
6641 else
6642 sp->rx_csum = 0;
6643
6644 return 0;
6645}
ac1f60db
AB
6646
6647static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4 6648{
d44570e4 6649 return XENA_EEPROM_SPACE;
1da177e4
LT
6650}
6651
b9f2c044 6652static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6653{
4cf1653a 6654 struct s2io_nic *sp = netdev_priv(dev);
b9f2c044
JG
6655
6656 switch (sset) {
6657 case ETH_SS_TEST:
6658 return S2IO_TEST_LEN;
6659 case ETH_SS_STATS:
d44570e4 6660 switch (sp->device_type) {
b9f2c044
JG
6661 case XFRAME_I_DEVICE:
6662 return XFRAME_I_STAT_LEN;
6663 case XFRAME_II_DEVICE:
6664 return XFRAME_II_STAT_LEN;
6665 default:
6666 return 0;
6667 }
6668 default:
6669 return -EOPNOTSUPP;
6670 }
1da177e4 6671}
ac1f60db
AB
6672
6673static void s2io_ethtool_get_strings(struct net_device *dev,
d44570e4 6674 u32 stringset, u8 *data)
1da177e4 6675{
fa1f0cb3 6676 int stat_size = 0;
4cf1653a 6677 struct s2io_nic *sp = netdev_priv(dev);
fa1f0cb3 6678
1da177e4
LT
6679 switch (stringset) {
6680 case ETH_SS_TEST:
6681 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6682 break;
6683 case ETH_SS_STATS:
fa1f0cb3 6684 stat_size = sizeof(ethtool_xena_stats_keys);
d44570e4
JP
6685 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6686 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6687 memcpy(data + stat_size,
d44570e4
JP
6688 &ethtool_enhanced_stats_keys,
6689 sizeof(ethtool_enhanced_stats_keys));
fa1f0cb3
SS
6690 stat_size += sizeof(ethtool_enhanced_stats_keys);
6691 }
6692
6693 memcpy(data + stat_size, &ethtool_driver_stats_keys,
d44570e4 6694 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6695 }
6696}
1da177e4 6697
ac1f60db 6698static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
6699{
6700 if (data)
6701 dev->features |= NETIF_F_IP_CSUM;
6702 else
6703 dev->features &= ~NETIF_F_IP_CSUM;
6704
6705 return 0;
6706}
6707
75c30b13
AR
6708static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6709{
6710 return (dev->features & NETIF_F_TSO) != 0;
6711}
6712static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6713{
6714 if (data)
6715 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6716 else
6717 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6718
6719 return 0;
6720}
1da177e4 6721
7282d491 6722static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6723 .get_settings = s2io_ethtool_gset,
6724 .set_settings = s2io_ethtool_sset,
6725 .get_drvinfo = s2io_ethtool_gdrvinfo,
6726 .get_regs_len = s2io_ethtool_get_regs_len,
6727 .get_regs = s2io_ethtool_gregs,
6728 .get_link = ethtool_op_get_link,
6729 .get_eeprom_len = s2io_get_eeprom_len,
6730 .get_eeprom = s2io_ethtool_geeprom,
6731 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6732 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6733 .get_pauseparam = s2io_ethtool_getpause_data,
6734 .set_pauseparam = s2io_ethtool_setpause_data,
6735 .get_rx_csum = s2io_ethtool_get_rx_csum,
6736 .set_rx_csum = s2io_ethtool_set_rx_csum,
1da177e4 6737 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
1da177e4 6738 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6739 .get_tso = s2io_ethtool_op_get_tso,
6740 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd 6741 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6742 .self_test = s2io_ethtool_test,
6743 .get_strings = s2io_ethtool_get_strings,
6744 .phys_id = s2io_ethtool_idnic,
b9f2c044
JG
6745 .get_ethtool_stats = s2io_get_ethtool_stats,
6746 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6747};
6748
6749/**
20346722 6750 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6751 * @dev : Device pointer.
6752 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6753 * a proprietary structure used to pass information to the driver.
6754 * @cmd : This is used to distinguish between the different commands that
6755 * can be passed to the IOCTL functions.
6756 * Description:
20346722
K
6757 * Currently there are no special functionality supported in IOCTL, hence
6758 * function always return EOPNOTSUPPORTED
1da177e4
LT
6759 */
6760
ac1f60db 6761static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6762{
6763 return -EOPNOTSUPP;
6764}
6765
6766/**
6767 * s2io_change_mtu - entry point to change MTU size for the device.
6768 * @dev : device pointer.
6769 * @new_mtu : the new MTU size for the device.
6770 * Description: A driver entry point to change MTU size for the device.
6771 * Before changing the MTU the device must be stopped.
6772 * Return value:
6773 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6774 * file on failure.
6775 */
6776
ac1f60db 6777static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6778{
4cf1653a 6779 struct s2io_nic *sp = netdev_priv(dev);
9f74ffde 6780 int ret = 0;
1da177e4
LT
6781
6782 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
d44570e4 6783 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
1da177e4
LT
6784 return -EPERM;
6785 }
6786
1da177e4 6787 dev->mtu = new_mtu;
d8892c6e 6788 if (netif_running(dev)) {
3a3d5756 6789 s2io_stop_all_tx_queue(sp);
e6a8fee2 6790 s2io_card_down(sp);
9f74ffde
SH
6791 ret = s2io_card_up(sp);
6792 if (ret) {
d8892c6e 6793 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
b39d66a8 6794 __func__);
9f74ffde 6795 return ret;
d8892c6e 6796 }
3a3d5756 6797 s2io_wake_all_tx_queue(sp);
d8892c6e 6798 } else { /* Device is down */
1ee6dd77 6799 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e
K
6800 u64 val64 = new_mtu;
6801
6802 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6803 }
1da177e4 6804
9f74ffde 6805 return ret;
1da177e4
LT
6806}
6807
1da177e4
LT
6808/**
6809 * s2io_set_link - Set the LInk status
6810 * @data: long pointer to device private structue
6811 * Description: Sets the link status for the adapter
6812 */
6813
c4028958 6814static void s2io_set_link(struct work_struct *work)
1da177e4 6815{
d44570e4
JP
6816 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6817 set_link_task);
1da177e4 6818 struct net_device *dev = nic->dev;
1ee6dd77 6819 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6820 register u64 val64;
6821 u16 subid;
6822
22747d6b
FR
6823 rtnl_lock();
6824
6825 if (!netif_running(dev))
6826 goto out_unlock;
6827
92b84437 6828 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6829 /* The card is being reset, no point doing anything */
22747d6b 6830 goto out_unlock;
1da177e4
LT
6831 }
6832
6833 subid = nic->pdev->subsystem_device;
a371a07d
K
6834 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6835 /*
6836 * Allow a small delay for the NICs self initiated
6837 * cleanup to complete.
6838 */
6839 msleep(100);
6840 }
1da177e4
LT
6841
6842 val64 = readq(&bar0->adapter_status);
19a60522
SS
6843 if (LINK_IS_UP(val64)) {
6844 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6845 if (verify_xena_quiescence(nic)) {
6846 val64 = readq(&bar0->adapter_control);
6847 val64 |= ADAPTER_CNTL_EN;
1da177e4 6848 writeq(val64, &bar0->adapter_control);
19a60522 6849 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
d44570e4 6850 nic->device_type, subid)) {
19a60522
SS
6851 val64 = readq(&bar0->gpio_control);
6852 val64 |= GPIO_CTRL_GPIO_0;
6853 writeq(val64, &bar0->gpio_control);
6854 val64 = readq(&bar0->gpio_control);
6855 } else {
6856 val64 |= ADAPTER_LED_ON;
6857 writeq(val64, &bar0->adapter_control);
a371a07d 6858 }
f957bcf0 6859 nic->device_enabled_once = true;
19a60522
SS
6860 } else {
6861 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6862 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
3a3d5756 6863 s2io_stop_all_tx_queue(nic);
1da177e4 6864 }
19a60522 6865 }
92c48799
SS
6866 val64 = readq(&bar0->adapter_control);
6867 val64 |= ADAPTER_LED_ON;
6868 writeq(val64, &bar0->adapter_control);
6869 s2io_link(nic, LINK_UP);
19a60522
SS
6870 } else {
6871 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6872 subid)) {
6873 val64 = readq(&bar0->gpio_control);
6874 val64 &= ~GPIO_CTRL_GPIO_0;
6875 writeq(val64, &bar0->gpio_control);
6876 val64 = readq(&bar0->gpio_control);
1da177e4 6877 }
92c48799
SS
6878 /* turn off LED */
6879 val64 = readq(&bar0->adapter_control);
d44570e4 6880 val64 = val64 & (~ADAPTER_LED_ON);
92c48799 6881 writeq(val64, &bar0->adapter_control);
19a60522 6882 s2io_link(nic, LINK_DOWN);
1da177e4 6883 }
92b84437 6884 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6885
6886out_unlock:
d8d70caf 6887 rtnl_unlock();
1da177e4
LT
6888}
6889
1ee6dd77 6890static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
d44570e4
JP
6891 struct buffAdd *ba,
6892 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6893 u64 *temp2, int size)
5d3213cc
AR
6894{
6895 struct net_device *dev = sp->dev;
491abf25 6896 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6897
6898 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6899 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6900 /* allocate skb */
6901 if (*skb) {
6902 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6903 /*
6904 * As Rx frame are not going to be processed,
6905 * using same mapped address for the Rxd
6906 * buffer pointer
6907 */
6d517a27 6908 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6909 } else {
6910 *skb = dev_alloc_skb(size);
6911 if (!(*skb)) {
0c61ed5f 6912 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
c53d4945
SH
6913 DBG_PRINT(INFO_DBG, "memory to allocate ");
6914 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
d44570e4 6915 sp->mac_control.stats_info->sw_stat.
c53d4945 6916 mem_alloc_fail_cnt++;
5d3213cc
AR
6917 return -ENOMEM ;
6918 }
8a4bdbaa 6919 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6920 += (*skb)->truesize;
5d3213cc
AR
6921 /* storing the mapped addr in a temp variable
6922 * such it will be used for next rxd whose
6923 * Host Control is NULL
6924 */
6d517a27 6925 rxdp1->Buffer0_ptr = *temp0 =
d44570e4
JP
6926 pci_map_single(sp->pdev, (*skb)->data,
6927 size - NET_IP_ALIGN,
6928 PCI_DMA_FROMDEVICE);
8d8bb39b 6929 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
491abf25 6930 goto memalloc_failed;
5d3213cc
AR
6931 rxdp->Host_Control = (unsigned long) (*skb);
6932 }
6933 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6934 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6935 /* Two buffer Mode */
6936 if (*skb) {
6d517a27
VP
6937 rxdp3->Buffer2_ptr = *temp2;
6938 rxdp3->Buffer0_ptr = *temp0;
6939 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6940 } else {
6941 *skb = dev_alloc_skb(size);
2ceaac75 6942 if (!(*skb)) {
c53d4945
SH
6943 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6944 DBG_PRINT(INFO_DBG, "memory to allocate ");
6945 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
d44570e4 6946 sp->mac_control.stats_info->sw_stat.
c53d4945 6947 mem_alloc_fail_cnt++;
2ceaac75
DR
6948 return -ENOMEM;
6949 }
8a4bdbaa 6950 sp->mac_control.stats_info->sw_stat.mem_allocated
491976b2 6951 += (*skb)->truesize;
6d517a27 6952 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6953 pci_map_single(sp->pdev, (*skb)->data,
6954 dev->mtu + 4,
6955 PCI_DMA_FROMDEVICE);
8d8bb39b 6956 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
491abf25 6957 goto memalloc_failed;
6d517a27 6958 rxdp3->Buffer0_ptr = *temp0 =
d44570e4
JP
6959 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6960 PCI_DMA_FROMDEVICE);
8d8bb39b 6961 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
6962 rxdp3->Buffer0_ptr)) {
6963 pci_unmap_single(sp->pdev,
6964 (dma_addr_t)rxdp3->Buffer2_ptr,
6965 dev->mtu + 4,
6966 PCI_DMA_FROMDEVICE);
491abf25
VP
6967 goto memalloc_failed;
6968 }
5d3213cc
AR
6969 rxdp->Host_Control = (unsigned long) (*skb);
6970
6971 /* Buffer-1 will be dummy buffer not used */
6d517a27 6972 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6973 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
d44570e4 6974 PCI_DMA_FROMDEVICE);
8d8bb39b 6975 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
6976 rxdp3->Buffer1_ptr)) {
6977 pci_unmap_single(sp->pdev,
6978 (dma_addr_t)rxdp3->Buffer0_ptr,
6979 BUF0_LEN, PCI_DMA_FROMDEVICE);
6980 pci_unmap_single(sp->pdev,
6981 (dma_addr_t)rxdp3->Buffer2_ptr,
6982 dev->mtu + 4,
6983 PCI_DMA_FROMDEVICE);
491abf25
VP
6984 goto memalloc_failed;
6985 }
5d3213cc
AR
6986 }
6987 }
6988 return 0;
d44570e4
JP
6989
6990memalloc_failed:
6991 stats->pci_map_fail_cnt++;
6992 stats->mem_freed += (*skb)->truesize;
6993 dev_kfree_skb(*skb);
6994 return -ENOMEM;
5d3213cc 6995}
491abf25 6996
1ee6dd77
RB
6997static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6998 int size)
5d3213cc
AR
6999{
7000 struct net_device *dev = sp->dev;
7001 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4 7002 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
5d3213cc
AR
7003 } else if (sp->rxd_mode == RXD_MODE_3B) {
7004 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7005 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
d44570e4 7006 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
5d3213cc
AR
7007 }
7008}
7009
1ee6dd77 7010static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
7011{
7012 int i, j, k, blk_cnt = 0, size;
d44570e4 7013 struct mac_info *mac_control = &sp->mac_control;
5d3213cc
AR
7014 struct config_param *config = &sp->config;
7015 struct net_device *dev = sp->dev;
1ee6dd77 7016 struct RxD_t *rxdp = NULL;
5d3213cc 7017 struct sk_buff *skb = NULL;
1ee6dd77 7018 struct buffAdd *ba = NULL;
5d3213cc
AR
7019 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7020
7021 /* Calculate the size based on ring mode */
7022 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7023 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7024 if (sp->rxd_mode == RXD_MODE_1)
7025 size += NET_IP_ALIGN;
7026 else if (sp->rxd_mode == RXD_MODE_3B)
7027 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
7028
7029 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7030 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7031 struct ring_info *ring = &mac_control->rings[i];
7032
d44570e4 7033 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
5d3213cc
AR
7034
7035 for (j = 0; j < blk_cnt; j++) {
7036 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
d44570e4
JP
7037 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7038 if (sp->rxd_mode == RXD_MODE_3B)
13d866a9 7039 ba = &ring->ba[j][k];
d44570e4
JP
7040 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7041 (u64 *)&temp0_64,
7042 (u64 *)&temp1_64,
7043 (u64 *)&temp2_64,
7044 size) == -ENOMEM) {
ac1f90d6
SS
7045 return 0;
7046 }
5d3213cc
AR
7047
7048 set_rxd_buffer_size(sp, rxdp, size);
7049 wmb();
7050 /* flip the Ownership bit to Hardware */
7051 rxdp->Control_1 |= RXD_OWN_XENA;
7052 }
7053 }
7054 }
7055 return 0;
7056
7057}
7058
d44570e4 7059static int s2io_add_isr(struct s2io_nic *sp)
1da177e4 7060{
e6a8fee2 7061 int ret = 0;
c92ca04b 7062 struct net_device *dev = sp->dev;
e6a8fee2 7063 int err = 0;
1da177e4 7064
eaae7f72 7065 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7066 ret = s2io_enable_msi_x(sp);
7067 if (ret) {
7068 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 7069 sp->config.intr_type = INTA;
20346722 7070 }
1da177e4 7071
d44570e4
JP
7072 /*
7073 * Store the values of the MSIX table in
7074 * the struct s2io_nic structure
7075 */
e6a8fee2 7076 store_xmsi_data(sp);
c92ca04b 7077
e6a8fee2 7078 /* After proper initialization of H/W, register ISR */
eaae7f72 7079 if (sp->config.intr_type == MSI_X) {
ac731ab6
SH
7080 int i, msix_rx_cnt = 0;
7081
f61e0a35
SH
7082 for (i = 0; i < sp->num_entries; i++) {
7083 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7084 if (sp->s2io_entries[i].type ==
d44570e4 7085 MSIX_RING_TYPE) {
ac731ab6
SH
7086 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7087 dev->name, i);
7088 err = request_irq(sp->entries[i].vector,
d44570e4
JP
7089 s2io_msix_ring_handle,
7090 0,
7091 sp->desc[i],
7092 sp->s2io_entries[i].arg);
ac731ab6 7093 } else if (sp->s2io_entries[i].type ==
d44570e4 7094 MSIX_ALARM_TYPE) {
ac731ab6 7095 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
d44570e4 7096 dev->name, i);
ac731ab6 7097 err = request_irq(sp->entries[i].vector,
d44570e4
JP
7098 s2io_msix_fifo_handle,
7099 0,
7100 sp->desc[i],
7101 sp->s2io_entries[i].arg);
ac731ab6 7102
fb6a825b 7103 }
ac731ab6
SH
7104 /* if either data or addr is zero print it. */
7105 if (!(sp->msix_info[i].addr &&
d44570e4 7106 sp->msix_info[i].data)) {
ac731ab6 7107 DBG_PRINT(ERR_DBG,
d44570e4
JP
7108 "%s @Addr:0x%llx Data:0x%llx\n",
7109 sp->desc[i],
7110 (unsigned long long)
7111 sp->msix_info[i].addr,
7112 (unsigned long long)
7113 ntohl(sp->msix_info[i].data));
ac731ab6 7114 } else
fb6a825b 7115 msix_rx_cnt++;
ac731ab6
SH
7116 if (err) {
7117 remove_msix_isr(sp);
7118
7119 DBG_PRINT(ERR_DBG,
d44570e4
JP
7120 "%s:MSI-X-%d registration "
7121 "failed\n", dev->name, i);
ac731ab6
SH
7122
7123 DBG_PRINT(ERR_DBG,
d44570e4
JP
7124 "%s: Defaulting to INTA\n",
7125 dev->name);
ac731ab6
SH
7126 sp->config.intr_type = INTA;
7127 break;
fb6a825b 7128 }
ac731ab6
SH
7129 sp->s2io_entries[i].in_use =
7130 MSIX_REGISTERED_SUCCESS;
c92ca04b 7131 }
e6a8fee2 7132 }
18b2b7bd 7133 if (!err) {
6cef2b8e 7134 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
ac731ab6 7135 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
d44570e4 7136 " through alarm vector\n");
18b2b7bd 7137 }
e6a8fee2 7138 }
eaae7f72 7139 if (sp->config.intr_type == INTA) {
d44570e4
JP
7140 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7141 sp->name, dev);
e6a8fee2
AR
7142 if (err) {
7143 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7144 dev->name);
7145 return -1;
7146 }
7147 }
7148 return 0;
7149}
d44570e4
JP
7150
7151static void s2io_rem_isr(struct s2io_nic *sp)
e6a8fee2 7152{
18b2b7bd
SH
7153 if (sp->config.intr_type == MSI_X)
7154 remove_msix_isr(sp);
7155 else
7156 remove_inta_isr(sp);
e6a8fee2
AR
7157}
7158
d44570e4 7159static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
e6a8fee2
AR
7160{
7161 int cnt = 0;
1ee6dd77 7162 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2 7163 register u64 val64 = 0;
5f490c96
SH
7164 struct config_param *config;
7165 config = &sp->config;
e6a8fee2 7166
9f74ffde
SH
7167 if (!is_s2io_card_up(sp))
7168 return;
7169
e6a8fee2
AR
7170 del_timer_sync(&sp->alarm_timer);
7171 /* If s2io_set_link task is executing, wait till it completes. */
d44570e4 7172 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
e6a8fee2 7173 msleep(50);
92b84437 7174 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2 7175
5f490c96 7176 /* Disable napi */
f61e0a35
SH
7177 if (sp->config.napi) {
7178 int off = 0;
7179 if (config->intr_type == MSI_X) {
7180 for (; off < sp->config.rx_ring_num; off++)
7181 napi_disable(&sp->mac_control.rings[off].napi);
d44570e4 7182 }
f61e0a35
SH
7183 else
7184 napi_disable(&sp->napi);
7185 }
5f490c96 7186
e6a8fee2 7187 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
7188 if (do_io)
7189 stop_nic(sp);
e6a8fee2
AR
7190
7191 s2io_rem_isr(sp);
1da177e4 7192
01e16faa
SH
7193 /* stop the tx queue, indicate link down */
7194 s2io_link(sp, LINK_DOWN);
7195
1da177e4 7196 /* Check if the device is Quiescent and then Reset the NIC */
d44570e4 7197 while (do_io) {
5d3213cc
AR
7198 /* As per the HW requirement we need to replenish the
7199 * receive buffer to avoid the ring bump. Since there is
7200 * no intention of processing the Rx frame at this pointwe are
7201 * just settting the ownership bit of rxd in Each Rx
7202 * ring to HW and set the appropriate buffer size
7203 * based on the ring mode
7204 */
7205 rxd_owner_bit_reset(sp);
7206
1da177e4 7207 val64 = readq(&bar0->adapter_status);
19a60522 7208 if (verify_xena_quiescence(sp)) {
d44570e4
JP
7209 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7210 break;
1da177e4
LT
7211 }
7212
7213 msleep(50);
7214 cnt++;
7215 if (cnt == 10) {
d44570e4 7216 DBG_PRINT(ERR_DBG, "s2io_close:Device not Quiescent ");
1da177e4 7217 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
d44570e4 7218 (unsigned long long)val64);
1da177e4
LT
7219 break;
7220 }
d796fdb7
LV
7221 }
7222 if (do_io)
7223 s2io_reset(sp);
1da177e4 7224
7ba013ac 7225 /* Free all Tx buffers */
1da177e4 7226 free_tx_buffers(sp);
7ba013ac
K
7227
7228 /* Free all Rx buffers */
1da177e4
LT
7229 free_rx_buffers(sp);
7230
92b84437 7231 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
7232}
7233
d44570e4 7234static void s2io_card_down(struct s2io_nic *sp)
d796fdb7
LV
7235{
7236 do_s2io_card_down(sp, 1);
7237}
7238
d44570e4 7239static int s2io_card_up(struct s2io_nic *sp)
1da177e4 7240{
cc6e7c44 7241 int i, ret = 0;
1ee6dd77 7242 struct mac_info *mac_control;
1da177e4 7243 struct config_param *config;
d44570e4 7244 struct net_device *dev = (struct net_device *)sp->dev;
e6a8fee2 7245 u16 interruptible;
1da177e4
LT
7246
7247 /* Initialize the H/W I/O registers */
9f74ffde
SH
7248 ret = init_nic(sp);
7249 if (ret != 0) {
1da177e4
LT
7250 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7251 dev->name);
9f74ffde
SH
7252 if (ret != -EIO)
7253 s2io_reset(sp);
7254 return ret;
1da177e4
LT
7255 }
7256
20346722
K
7257 /*
7258 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
7259 * Rx ring and initializing buffers into 30 Rx blocks
7260 */
7261 mac_control = &sp->mac_control;
7262 config = &sp->config;
7263
7264 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7265 struct ring_info *ring = &mac_control->rings[i];
7266
7267 ring->mtu = dev->mtu;
7268 ret = fill_rx_buffers(sp, ring, 1);
0425b46a 7269 if (ret) {
1da177e4
LT
7270 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7271 dev->name);
7272 s2io_reset(sp);
7273 free_rx_buffers(sp);
7274 return -ENOMEM;
7275 }
7276 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
13d866a9 7277 ring->rx_bufs_left);
1da177e4 7278 }
5f490c96
SH
7279
7280 /* Initialise napi */
f61e0a35 7281 if (config->napi) {
f61e0a35
SH
7282 if (config->intr_type == MSI_X) {
7283 for (i = 0; i < sp->config.rx_ring_num; i++)
7284 napi_enable(&sp->mac_control.rings[i].napi);
7285 } else {
7286 napi_enable(&sp->napi);
7287 }
7288 }
5f490c96 7289
19a60522
SS
7290 /* Maintain the state prior to the open */
7291 if (sp->promisc_flg)
7292 sp->promisc_flg = 0;
7293 if (sp->m_cast_flg) {
7294 sp->m_cast_flg = 0;
d44570e4 7295 sp->all_multi_pos = 0;
19a60522 7296 }
1da177e4
LT
7297
7298 /* Setting its receive mode */
7299 s2io_set_multicast(dev);
7300
7d3d0439 7301 if (sp->lro) {
b41477f3 7302 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439 7303 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
d44570e4 7304 /* Check if we can use (if specified) user provided value */
7d3d0439
RA
7305 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7306 sp->lro_max_aggr_per_sess = lro_max_pkts;
7307 }
7308
1da177e4
LT
7309 /* Enable Rx Traffic and interrupts on the NIC */
7310 if (start_nic(sp)) {
7311 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 7312 s2io_reset(sp);
e6a8fee2
AR
7313 free_rx_buffers(sp);
7314 return -ENODEV;
7315 }
7316
7317 /* Add interrupt service routine */
7318 if (s2io_add_isr(sp) != 0) {
eaae7f72 7319 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7320 s2io_rem_isr(sp);
7321 s2io_reset(sp);
1da177e4
LT
7322 free_rx_buffers(sp);
7323 return -ENODEV;
7324 }
7325
25fff88e
K
7326 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7327
01e16faa
SH
7328 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7329
e6a8fee2 7330 /* Enable select interrupts */
9caab458 7331 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
01e16faa
SH
7332 if (sp->config.intr_type != INTA) {
7333 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7334 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7335 } else {
e6a8fee2 7336 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 7337 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
7338 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7339 }
7340
1da177e4
LT
7341 return 0;
7342}
7343
20346722 7344/**
1da177e4
LT
7345 * s2io_restart_nic - Resets the NIC.
7346 * @data : long pointer to the device private structure
7347 * Description:
7348 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7349 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7350 * the run time of the watch dog routine which is run holding a
7351 * spin lock.
7352 */
7353
c4028958 7354static void s2io_restart_nic(struct work_struct *work)
1da177e4 7355{
1ee6dd77 7356 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7357 struct net_device *dev = sp->dev;
1da177e4 7358
22747d6b
FR
7359 rtnl_lock();
7360
7361 if (!netif_running(dev))
7362 goto out_unlock;
7363
e6a8fee2 7364 s2io_card_down(sp);
1da177e4 7365 if (s2io_card_up(sp)) {
d44570e4 7366 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
1da177e4 7367 }
3a3d5756 7368 s2io_wake_all_tx_queue(sp);
d44570e4 7369 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
22747d6b
FR
7370out_unlock:
7371 rtnl_unlock();
1da177e4
LT
7372}
7373
20346722
K
7374/**
7375 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7376 * @dev : Pointer to net device structure
7377 * Description:
7378 * This function is triggered if the Tx Queue is stopped
7379 * for a pre-defined amount of time when the Interface is still up.
7380 * If the Interface is jammed in such a situation, the hardware is
7381 * reset (by s2io_close) and restarted again (by s2io_open) to
7382 * overcome any problem that might have been caused in the hardware.
7383 * Return value:
7384 * void
7385 */
7386
7387static void s2io_tx_watchdog(struct net_device *dev)
7388{
4cf1653a 7389 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
7390
7391 if (netif_carrier_ok(dev)) {
c53d4945 7392 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
1da177e4 7393 schedule_work(&sp->rst_timer_task);
bd1034f0 7394 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
7395 }
7396}
7397
7398/**
7399 * rx_osm_handler - To perform some OS related operations on SKB.
7400 * @sp: private member of the device structure,pointer to s2io_nic structure.
7401 * @skb : the socket buffer pointer.
7402 * @len : length of the packet
7403 * @cksum : FCS checksum of the frame.
7404 * @ring_no : the ring from which this RxD was extracted.
20346722 7405 * Description:
b41477f3 7406 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7407 * some OS related operations on the SKB before passing it to the upper
7408 * layers. It mainly checks if the checksum is OK, if so adds it to the
7409 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7410 * to the upper layer. If the checksum is wrong, it increments the Rx
7411 * packet error count, frees the SKB and returns error.
7412 * Return value:
7413 * SUCCESS on success and -1 on failure.
7414 */
1ee6dd77 7415static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7416{
1ee6dd77 7417 struct s2io_nic *sp = ring_data->nic;
d44570e4 7418 struct net_device *dev = (struct net_device *)ring_data->dev;
20346722 7419 struct sk_buff *skb = (struct sk_buff *)
d44570e4 7420 ((unsigned long)rxdp->Host_Control);
20346722 7421 int ring_no = ring_data->ring_no;
1da177e4 7422 u16 l3_csum, l4_csum;
863c11a9 7423 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
2e6a684b 7424 struct lro *uninitialized_var(lro);
f9046eb3 7425 u8 err_mask;
da6971d8 7426
20346722 7427 skb->dev = dev;
c92ca04b 7428
863c11a9 7429 if (err) {
bd1034f0 7430 /* Check for parity error */
d44570e4 7431 if (err & 0x1)
bd1034f0 7432 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
d44570e4 7433
f9046eb3 7434 err_mask = err >> 48;
d44570e4
JP
7435 switch (err_mask) {
7436 case 1:
7437 sp->mac_control.stats_info->sw_stat.rx_parity_err_cnt++;
491976b2
SH
7438 break;
7439
d44570e4
JP
7440 case 2:
7441 sp->mac_control.stats_info->sw_stat.rx_abort_cnt++;
491976b2
SH
7442 break;
7443
d44570e4
JP
7444 case 3:
7445 sp->mac_control.stats_info->sw_stat.rx_parity_abort_cnt++;
491976b2
SH
7446 break;
7447
d44570e4
JP
7448 case 4:
7449 sp->mac_control.stats_info->sw_stat.rx_rda_fail_cnt++;
491976b2
SH
7450 break;
7451
d44570e4
JP
7452 case 5:
7453 sp->mac_control.stats_info->sw_stat.rx_unkn_prot_cnt++;
491976b2
SH
7454 break;
7455
d44570e4
JP
7456 case 6:
7457 sp->mac_control.stats_info->sw_stat.rx_fcs_err_cnt++;
491976b2 7458 break;
bd1034f0 7459
d44570e4
JP
7460 case 7:
7461 sp->mac_control.stats_info->sw_stat.rx_buf_size_err_cnt++;
491976b2
SH
7462 break;
7463
d44570e4
JP
7464 case 8:
7465 sp->mac_control.stats_info->sw_stat.rx_rxd_corrupt_cnt++;
491976b2
SH
7466 break;
7467
d44570e4
JP
7468 case 15:
7469 sp->mac_control.stats_info->sw_stat.rx_unkn_err_cnt++;
491976b2
SH
7470 break;
7471 }
863c11a9 7472 /*
d44570e4
JP
7473 * Drop the packet if bad transfer code. Exception being
7474 * 0x5, which could be due to unsupported IPv6 extension header.
7475 * In this case, we let stack handle the packet.
7476 * Note that in this case, since checksum will be incorrect,
7477 * stack will validate the same.
7478 */
f9046eb3
OH
7479 if (err_mask != 0x5) {
7480 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
d44570e4 7481 dev->name, err_mask);
dc56e634 7482 dev->stats.rx_crc_errors++;
8a4bdbaa 7483 sp->mac_control.stats_info->sw_stat.mem_freed
491976b2 7484 += skb->truesize;
863c11a9 7485 dev_kfree_skb(skb);
0425b46a 7486 ring_data->rx_bufs_left -= 1;
863c11a9
AR
7487 rxdp->Host_Control = 0;
7488 return 0;
7489 }
20346722 7490 }
1da177e4 7491
20346722 7492 /* Updating statistics */
0425b46a 7493 ring_data->rx_packets++;
20346722 7494 rxdp->Host_Control = 0;
da6971d8
AR
7495 if (sp->rxd_mode == RXD_MODE_1) {
7496 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7497
0425b46a 7498 ring_data->rx_bytes += len;
da6971d8
AR
7499 skb_put(skb, len);
7500
6d517a27 7501 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7502 int get_block = ring_data->rx_curr_get_info.block_index;
7503 int get_off = ring_data->rx_curr_get_info.offset;
7504 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7505 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7506 unsigned char *buff = skb_push(skb, buf0_len);
7507
1ee6dd77 7508 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
0425b46a 7509 ring_data->rx_bytes += buf0_len + buf2_len;
da6971d8 7510 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7511 skb_put(skb, buf2_len);
da6971d8 7512 }
20346722 7513
d44570e4
JP
7514 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7515 ((!ring_data->lro) ||
7516 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
7517 (sp->rx_csum)) {
7518 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7519 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7520 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7521 /*
1da177e4
LT
7522 * NIC verifies if the Checksum of the received
7523 * frame is Ok or not and accordingly returns
7524 * a flag in the RxD.
7525 */
7526 skb->ip_summed = CHECKSUM_UNNECESSARY;
0425b46a 7527 if (ring_data->lro) {
7d3d0439
RA
7528 u32 tcp_len;
7529 u8 *tcp;
7530 int ret = 0;
7531
0425b46a 7532 ret = s2io_club_tcp_session(ring_data,
d44570e4
JP
7533 skb->data, &tcp,
7534 &tcp_len, &lro,
7535 rxdp, sp);
7d3d0439 7536 switch (ret) {
d44570e4
JP
7537 case 3: /* Begin anew */
7538 lro->parent = skb;
7539 goto aggregate;
7540 case 1: /* Aggregate */
7541 lro_append_pkt(sp, lro, skb, tcp_len);
7542 goto aggregate;
7543 case 4: /* Flush session */
7544 lro_append_pkt(sp, lro, skb, tcp_len);
7545 queue_rx_frame(lro->parent,
7546 lro->vlan_tag);
7547 clear_lro_session(lro);
7548 sp->mac_control.stats_info->
7549 sw_stat.flush_max_pkts++;
7550 goto aggregate;
7551 case 2: /* Flush both */
7552 lro->parent->data_len = lro->frags_len;
7553 sp->mac_control.stats_info->
7554 sw_stat.sending_both++;
7555 queue_rx_frame(lro->parent,
7556 lro->vlan_tag);
7557 clear_lro_session(lro);
7558 goto send_up;
7559 case 0: /* sessions exceeded */
7560 case -1: /* non-TCP or not L2 aggregatable */
7561 case 5: /*
7562 * First pkt in session not
7563 * L3/L4 aggregatable
7564 */
7565 break;
7566 default:
7567 DBG_PRINT(ERR_DBG,
7568 "%s: Samadhana!!\n",
7569 __func__);
7570 BUG();
7d3d0439
RA
7571 }
7572 }
1da177e4 7573 } else {
20346722
K
7574 /*
7575 * Packet with erroneous checksum, let the
1da177e4
LT
7576 * upper layers deal with it.
7577 */
7578 skb->ip_summed = CHECKSUM_NONE;
7579 }
cdb5bf02 7580 } else
1da177e4 7581 skb->ip_summed = CHECKSUM_NONE;
cdb5bf02 7582
491976b2 7583 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7d3d0439 7584send_up:
0c8dfc83 7585 skb_record_rx_queue(skb, ring_no);
cdb5bf02 7586 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 7587aggregate:
0425b46a 7588 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
1da177e4
LT
7589 return SUCCESS;
7590}
7591
7592/**
7593 * s2io_link - stops/starts the Tx queue.
7594 * @sp : private member of the device structure, which is a pointer to the
7595 * s2io_nic structure.
7596 * @link : inidicates whether link is UP/DOWN.
7597 * Description:
7598 * This function stops/starts the Tx queue depending on whether the link
20346722
K
7599 * status of the NIC is is down or up. This is called by the Alarm
7600 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7601 * Return value:
7602 * void.
7603 */
7604
d44570e4 7605static void s2io_link(struct s2io_nic *sp, int link)
1da177e4 7606{
d44570e4 7607 struct net_device *dev = (struct net_device *)sp->dev;
1da177e4
LT
7608
7609 if (link != sp->last_link_state) {
b7c5678f 7610 init_tti(sp, link);
1da177e4
LT
7611 if (link == LINK_DOWN) {
7612 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
3a3d5756 7613 s2io_stop_all_tx_queue(sp);
1da177e4 7614 netif_carrier_off(dev);
d44570e4
JP
7615 if (sp->mac_control.stats_info->sw_stat.link_up_cnt)
7616 sp->mac_control.stats_info->sw_stat.
7617 link_up_time = jiffies - sp->start_time;
491976b2 7618 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
1da177e4
LT
7619 } else {
7620 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
491976b2 7621 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
d44570e4
JP
7622 sp->mac_control.stats_info->
7623 sw_stat.link_down_time =
7624 jiffies - sp->start_time;
491976b2 7625 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
1da177e4 7626 netif_carrier_on(dev);
3a3d5756 7627 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7628 }
7629 }
7630 sp->last_link_state = link;
491976b2 7631 sp->start_time = jiffies;
1da177e4
LT
7632}
7633
20346722
K
7634/**
7635 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7636 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7637 * s2io_nic structure.
7638 * Description:
7639 * This function initializes a few of the PCI and PCI-X configuration registers
7640 * with recommended values.
7641 * Return value:
7642 * void
7643 */
7644
d44570e4 7645static void s2io_init_pci(struct s2io_nic *sp)
1da177e4 7646{
20346722 7647 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7648
7649 /* Enable Data Parity Error Recovery in PCI-X command register. */
7650 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7651 &(pcix_cmd));
1da177e4 7652 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7653 (pcix_cmd | 1));
1da177e4 7654 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7655 &(pcix_cmd));
1da177e4
LT
7656
7657 /* Set the PErr Response bit in PCI command register. */
7658 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7659 pci_write_config_word(sp->pdev, PCI_COMMAND,
7660 (pci_cmd | PCI_COMMAND_PARITY));
7661 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7662}
7663
3a3d5756 7664static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
d44570e4 7665 u8 *dev_multiq)
9dc737a7 7666{
d44570e4 7667 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
2fda096d 7668 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
d44570e4 7669 "(%d) not supported\n", tx_fifo_num);
6cfc482b
SH
7670
7671 if (tx_fifo_num < 1)
7672 tx_fifo_num = 1;
7673 else
7674 tx_fifo_num = MAX_TX_FIFOS;
7675
2fda096d
SR
7676 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7677 DBG_PRINT(ERR_DBG, "tx fifos\n");
9dc737a7 7678 }
2fda096d 7679
6cfc482b 7680 if (multiq)
3a3d5756 7681 *dev_multiq = multiq;
6cfc482b
SH
7682
7683 if (tx_steering_type && (1 == tx_fifo_num)) {
7684 if (tx_steering_type != TX_DEFAULT_STEERING)
7685 DBG_PRINT(ERR_DBG,
d44570e4
JP
7686 "s2io: Tx steering is not supported with "
7687 "one fifo. Disabling Tx steering.\n");
6cfc482b
SH
7688 tx_steering_type = NO_STEERING;
7689 }
7690
7691 if ((tx_steering_type < NO_STEERING) ||
d44570e4
JP
7692 (tx_steering_type > TX_DEFAULT_STEERING)) {
7693 DBG_PRINT(ERR_DBG,
7694 "s2io: Requested transmit steering not supported\n");
6cfc482b
SH
7695 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7696 tx_steering_type = NO_STEERING;
3a3d5756
SH
7697 }
7698
0425b46a 7699 if (rx_ring_num > MAX_RX_RINGS) {
d44570e4
JP
7700 DBG_PRINT(ERR_DBG,
7701 "s2io: Requested number of rx rings not supported\n");
0425b46a 7702 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
d44570e4 7703 MAX_RX_RINGS);
0425b46a 7704 rx_ring_num = MAX_RX_RINGS;
9dc737a7 7705 }
0425b46a 7706
eccb8628 7707 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9dc737a7
AR
7708 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7709 "Defaulting to INTA\n");
7710 *dev_intr_type = INTA;
7711 }
596c5c97 7712
9dc737a7 7713 if ((*dev_intr_type == MSI_X) &&
d44570e4
JP
7714 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7715 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6aa20a22 7716 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
d44570e4 7717 "Defaulting to INTA\n");
9dc737a7
AR
7718 *dev_intr_type = INTA;
7719 }
fb6a825b 7720
6d517a27 7721 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9dc737a7 7722 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6d517a27
VP
7723 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7724 rx_ring_mode = 1;
9dc737a7
AR
7725 }
7726 return SUCCESS;
7727}
7728
9fc93a41
SS
7729/**
7730 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7731 * or Traffic class respectively.
b7c5678f 7732 * @nic: device private variable
9fc93a41
SS
7733 * Description: The function configures the receive steering to
7734 * desired receive ring.
7735 * Return Value: SUCCESS on success and
7736 * '-1' on failure (endian settings incorrect).
7737 */
7738static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7739{
7740 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7741 register u64 val64 = 0;
7742
7743 if (ds_codepoint > 63)
7744 return FAILURE;
7745
7746 val64 = RTS_DS_MEM_DATA(ring);
7747 writeq(val64, &bar0->rts_ds_mem_data);
7748
7749 val64 = RTS_DS_MEM_CTRL_WE |
7750 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7751 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7752
7753 writeq(val64, &bar0->rts_ds_mem_ctrl);
7754
7755 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
d44570e4
JP
7756 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7757 S2IO_BIT_RESET);
9fc93a41
SS
7758}
7759
04025095
SH
7760static const struct net_device_ops s2io_netdev_ops = {
7761 .ndo_open = s2io_open,
7762 .ndo_stop = s2io_close,
7763 .ndo_get_stats = s2io_get_stats,
7764 .ndo_start_xmit = s2io_xmit,
7765 .ndo_validate_addr = eth_validate_addr,
7766 .ndo_set_multicast_list = s2io_set_multicast,
7767 .ndo_do_ioctl = s2io_ioctl,
7768 .ndo_set_mac_address = s2io_set_mac_addr,
7769 .ndo_change_mtu = s2io_change_mtu,
7770 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7771 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7772 .ndo_tx_timeout = s2io_tx_watchdog,
7773#ifdef CONFIG_NET_POLL_CONTROLLER
7774 .ndo_poll_controller = s2io_netpoll,
7775#endif
7776};
7777
1da177e4 7778/**
20346722 7779 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7780 * @pdev : structure containing the PCI related information of the device.
7781 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7782 * Description:
7783 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
7784 * All OS related initialization including memory and device structure and
7785 * initlaization of the device private variable is done. Also the swapper
7786 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7787 * registers of the device.
7788 * Return value:
7789 * returns 0 on success and negative on failure.
7790 */
7791
7792static int __devinit
7793s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7794{
1ee6dd77 7795 struct s2io_nic *sp;
1da177e4 7796 struct net_device *dev;
1da177e4 7797 int i, j, ret;
f957bcf0 7798 int dma_flag = false;
1da177e4
LT
7799 u32 mac_up, mac_down;
7800 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7801 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7802 u16 subid;
1ee6dd77 7803 struct mac_info *mac_control;
1da177e4 7804 struct config_param *config;
541ae68f 7805 int mode;
cc6e7c44 7806 u8 dev_intr_type = intr_type;
3a3d5756 7807 u8 dev_multiq = 0;
1da177e4 7808
3a3d5756
SH
7809 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7810 if (ret)
9dc737a7 7811 return ret;
1da177e4 7812
d44570e4
JP
7813 ret = pci_enable_device(pdev);
7814 if (ret) {
1da177e4
LT
7815 DBG_PRINT(ERR_DBG,
7816 "s2io_init_nic: pci_enable_device failed\n");
7817 return ret;
7818 }
7819
6a35528a 7820 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1da177e4 7821 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
f957bcf0 7822 dma_flag = true;
d44570e4 7823 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1da177e4 7824 DBG_PRINT(ERR_DBG,
d44570e4
JP
7825 "Unable to obtain 64bit DMA "
7826 "for consistent allocations\n");
1da177e4
LT
7827 pci_disable_device(pdev);
7828 return -ENOMEM;
7829 }
284901a9 7830 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
1da177e4
LT
7831 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7832 } else {
7833 pci_disable_device(pdev);
7834 return -ENOMEM;
7835 }
d44570e4
JP
7836 ret = pci_request_regions(pdev, s2io_driver_name);
7837 if (ret) {
7838 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n",
7839 __func__, ret);
eccb8628
VP
7840 pci_disable_device(pdev);
7841 return -ENODEV;
1da177e4 7842 }
3a3d5756 7843 if (dev_multiq)
6cfc482b 7844 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
3a3d5756 7845 else
b19fa1fa 7846 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7847 if (dev == NULL) {
7848 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7849 pci_disable_device(pdev);
7850 pci_release_regions(pdev);
7851 return -ENODEV;
7852 }
7853
7854 pci_set_master(pdev);
7855 pci_set_drvdata(pdev, dev);
1da177e4
LT
7856 SET_NETDEV_DEV(dev, &pdev->dev);
7857
7858 /* Private member variable initialized to s2io NIC structure */
4cf1653a 7859 sp = netdev_priv(dev);
1ee6dd77 7860 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7861 sp->dev = dev;
7862 sp->pdev = pdev;
1da177e4 7863 sp->high_dma_flag = dma_flag;
f957bcf0 7864 sp->device_enabled_once = false;
da6971d8
AR
7865 if (rx_ring_mode == 1)
7866 sp->rxd_mode = RXD_MODE_1;
7867 if (rx_ring_mode == 2)
7868 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7869
eaae7f72 7870 sp->config.intr_type = dev_intr_type;
1da177e4 7871
541ae68f 7872 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
d44570e4 7873 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
541ae68f
K
7874 sp->device_type = XFRAME_II_DEVICE;
7875 else
7876 sp->device_type = XFRAME_I_DEVICE;
7877
43b7c451 7878 sp->lro = lro_enable;
6aa20a22 7879
1da177e4
LT
7880 /* Initialize some PCI/PCI-X fields of the NIC. */
7881 s2io_init_pci(sp);
7882
20346722 7883 /*
1da177e4 7884 * Setting the device configuration parameters.
20346722
K
7885 * Most of these parameters can be specified by the user during
7886 * module insertion as they are module loadable parameters. If
7887 * these parameters are not not specified during load time, they
1da177e4
LT
7888 * are initialized with default values.
7889 */
7890 mac_control = &sp->mac_control;
7891 config = &sp->config;
7892
596c5c97 7893 config->napi = napi;
6cfc482b 7894 config->tx_steering_type = tx_steering_type;
596c5c97 7895
1da177e4 7896 /* Tx side parameters. */
6cfc482b
SH
7897 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7898 config->tx_fifo_num = MAX_TX_FIFOS;
7899 else
7900 config->tx_fifo_num = tx_fifo_num;
7901
7902 /* Initialize the fifos used for tx steering */
7903 if (config->tx_fifo_num < 5) {
d44570e4
JP
7904 if (config->tx_fifo_num == 1)
7905 sp->total_tcp_fifos = 1;
7906 else
7907 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7908 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7909 sp->total_udp_fifos = 1;
7910 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
6cfc482b
SH
7911 } else {
7912 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
d44570e4 7913 FIFO_OTHER_MAX_NUM);
6cfc482b
SH
7914 sp->udp_fifo_idx = sp->total_tcp_fifos;
7915 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7916 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7917 }
7918
3a3d5756 7919 config->multiq = dev_multiq;
6cfc482b 7920 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7921 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7922
7923 tx_cfg->fifo_len = tx_fifo_len[i];
7924 tx_cfg->fifo_priority = i;
1da177e4
LT
7925 }
7926
20346722
K
7927 /* mapping the QoS priority to the configured fifos */
7928 for (i = 0; i < MAX_TX_FIFOS; i++)
3a3d5756 7929 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
20346722 7930
6cfc482b
SH
7931 /* map the hashing selector table to the configured fifos */
7932 for (i = 0; i < config->tx_fifo_num; i++)
7933 sp->fifo_selector[i] = fifo_selector[i];
7934
7935
1da177e4
LT
7936 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7937 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7938 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7939
7940 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7941 if (tx_cfg->fifo_len < 65) {
1da177e4
LT
7942 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7943 break;
7944 }
7945 }
fed5eccd
AR
7946 /* + 2 because one Txd for skb->data and one Txd for UFO */
7947 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7948
7949 /* Rx side parameters. */
1da177e4 7950 config->rx_ring_num = rx_ring_num;
0425b46a 7951 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7952 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7953 struct ring_info *ring = &mac_control->rings[i];
7954
7955 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7956 rx_cfg->ring_priority = i;
7957 ring->rx_bufs_left = 0;
7958 ring->rxd_mode = sp->rxd_mode;
7959 ring->rxd_count = rxd_count[sp->rxd_mode];
7960 ring->pdev = sp->pdev;
7961 ring->dev = sp->dev;
1da177e4
LT
7962 }
7963
7964 for (i = 0; i < rx_ring_num; i++) {
13d866a9
JP
7965 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7966
7967 rx_cfg->ring_org = RING_ORG_BUFF1;
7968 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
1da177e4
LT
7969 }
7970
7971 /* Setting Mac Control parameters */
7972 mac_control->rmac_pause_time = rmac_pause_time;
7973 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7974 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7975
7976
1da177e4
LT
7977 /* initialize the shared memory used by the NIC and the host */
7978 if (init_shared_mem(sp)) {
d44570e4 7979 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
1da177e4
LT
7980 ret = -ENOMEM;
7981 goto mem_alloc_failed;
7982 }
7983
275f165f 7984 sp->bar0 = pci_ioremap_bar(pdev, 0);
1da177e4 7985 if (!sp->bar0) {
19a60522 7986 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7987 dev->name);
7988 ret = -ENOMEM;
7989 goto bar0_remap_failed;
7990 }
7991
275f165f 7992 sp->bar1 = pci_ioremap_bar(pdev, 2);
1da177e4 7993 if (!sp->bar1) {
19a60522 7994 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7995 dev->name);
7996 ret = -ENOMEM;
7997 goto bar1_remap_failed;
7998 }
7999
8000 dev->irq = pdev->irq;
d44570e4 8001 dev->base_addr = (unsigned long)sp->bar0;
1da177e4
LT
8002
8003 /* Initializing the BAR1 address as the start of the FIFO pointer. */
8004 for (j = 0; j < MAX_TX_FIFOS; j++) {
d44570e4
JP
8005 mac_control->tx_FIFO_start[j] =
8006 (struct TxFIFO_element __iomem *)
8007 (sp->bar1 + (j * 0x00020000));
1da177e4
LT
8008 }
8009
8010 /* Driver entry points */
04025095 8011 dev->netdev_ops = &s2io_netdev_ops;
1da177e4 8012 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02 8013 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
612eff0e 8014
1da177e4 8015 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
f957bcf0 8016 if (sp->high_dma_flag == true)
1da177e4 8017 dev->features |= NETIF_F_HIGHDMA;
1da177e4 8018 dev->features |= NETIF_F_TSO;
f83ef8c0 8019 dev->features |= NETIF_F_TSO6;
db874e65 8020 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
8021 dev->features |= NETIF_F_UFO;
8022 dev->features |= NETIF_F_HW_CSUM;
8023 }
1da177e4 8024 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
8025 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8026 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 8027
e960fc5c 8028 pci_save_state(sp->pdev);
1da177e4
LT
8029
8030 /* Setting swapper control on the NIC, for proper reset operation */
8031 if (s2io_set_swapper(sp)) {
8032 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
8033 dev->name);
8034 ret = -EAGAIN;
8035 goto set_swap_failed;
8036 }
8037
541ae68f
K
8038 /* Verify if the Herc works on the slot its placed into */
8039 if (sp->device_type & XFRAME_II_DEVICE) {
8040 mode = s2io_verify_pci_mode(sp);
8041 if (mode < 0) {
b39d66a8 8042 DBG_PRINT(ERR_DBG, "%s: ", __func__);
541ae68f
K
8043 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8044 ret = -EBADSLT;
8045 goto set_swap_failed;
8046 }
8047 }
8048
f61e0a35
SH
8049 if (sp->config.intr_type == MSI_X) {
8050 sp->num_entries = config->rx_ring_num + 1;
8051 ret = s2io_enable_msi_x(sp);
8052
8053 if (!ret) {
8054 ret = s2io_test_msi(sp);
8055 /* rollback MSI-X, will re-enable during add_isr() */
8056 remove_msix_isr(sp);
8057 }
8058 if (ret) {
8059
8060 DBG_PRINT(ERR_DBG,
d44570e4 8061 "s2io: MSI-X requested but failed to enable\n");
f61e0a35
SH
8062 sp->config.intr_type = INTA;
8063 }
8064 }
8065
8066 if (config->intr_type == MSI_X) {
13d866a9
JP
8067 for (i = 0; i < config->rx_ring_num ; i++) {
8068 struct ring_info *ring = &mac_control->rings[i];
8069
8070 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8071 }
f61e0a35
SH
8072 } else {
8073 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8074 }
8075
541ae68f
K
8076 /* Not needed for Herc */
8077 if (sp->device_type & XFRAME_I_DEVICE) {
8078 /*
8079 * Fix for all "FFs" MAC address problems observed on
8080 * Alpha platforms
8081 */
8082 fix_mac_address(sp);
8083 s2io_reset(sp);
8084 }
1da177e4
LT
8085
8086 /*
1da177e4
LT
8087 * MAC address initialization.
8088 * For now only one mac address will be read and used.
8089 */
8090 bar0 = sp->bar0;
8091 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
d44570e4 8092 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
1da177e4 8093 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 8094 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
8095 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8096 S2IO_BIT_RESET);
1da177e4 8097 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4 8098 mac_down = (u32)tmp64;
1da177e4
LT
8099 mac_up = (u32) (tmp64 >> 32);
8100
1da177e4
LT
8101 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8102 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8103 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8104 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8105 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8106 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8107
1da177e4
LT
8108 /* Set the factory defined MAC address initially */
8109 dev->addr_len = ETH_ALEN;
8110 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
2fd37688 8111 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
1da177e4 8112
faa4f796
SH
8113 /* initialize number of multicast & unicast MAC entries variables */
8114 if (sp->device_type == XFRAME_I_DEVICE) {
8115 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8116 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8117 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8118 } else if (sp->device_type == XFRAME_II_DEVICE) {
8119 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8120 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8121 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8122 }
8123
8124 /* store mac addresses from CAM to s2io_nic structure */
8125 do_s2io_store_unicast_mc(sp);
8126
f61e0a35
SH
8127 /* Configure MSIX vector for number of rings configured plus one */
8128 if ((sp->device_type == XFRAME_II_DEVICE) &&
d44570e4 8129 (config->intr_type == MSI_X))
f61e0a35
SH
8130 sp->num_entries = config->rx_ring_num + 1;
8131
d44570e4 8132 /* Store the values of the MSIX table in the s2io_nic structure */
c77dd43e 8133 store_xmsi_data(sp);
b41477f3
AR
8134 /* reset Nic and bring it to known state */
8135 s2io_reset(sp);
8136
1da177e4 8137 /*
99993af6 8138 * Initialize link state flags
541ae68f 8139 * and the card state parameter
1da177e4 8140 */
92b84437 8141 sp->state = 0;
1da177e4 8142
1da177e4 8143 /* Initialize spinlocks */
13d866a9
JP
8144 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8145 struct fifo_info *fifo = &mac_control->fifos[i];
8146
8147 spin_lock_init(&fifo->tx_lock);
8148 }
db874e65 8149
20346722
K
8150 /*
8151 * SXE-002: Configure link and activity LED to init state
8152 * on driver load.
1da177e4
LT
8153 */
8154 subid = sp->pdev->subsystem_device;
8155 if ((subid & 0xFF) >= 0x07) {
8156 val64 = readq(&bar0->gpio_control);
8157 val64 |= 0x0000800000000000ULL;
8158 writeq(val64, &bar0->gpio_control);
8159 val64 = 0x0411040400000000ULL;
d44570e4 8160 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
8161 val64 = readq(&bar0->gpio_control);
8162 }
8163
8164 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8165
8166 if (register_netdev(dev)) {
8167 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8168 ret = -ENODEV;
8169 goto register_failed;
8170 }
9dc737a7 8171 s2io_vpd_read(sp);
0c61ed5f 8172 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
d44570e4 8173 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
44c10138 8174 sp->product_name, pdev->revision);
b41477f3
AR
8175 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8176 s2io_driver_version);
e174961c 8177 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
19a60522 8178 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
9dc737a7 8179 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 8180 mode = s2io_print_pci_mode(sp);
541ae68f 8181 if (mode < 0) {
9dc737a7 8182 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 8183 ret = -EBADSLT;
9dc737a7 8184 unregister_netdev(dev);
541ae68f
K
8185 goto set_swap_failed;
8186 }
541ae68f 8187 }
d44570e4
JP
8188 switch (sp->rxd_mode) {
8189 case RXD_MODE_1:
8190 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8191 dev->name);
8192 break;
8193 case RXD_MODE_3B:
8194 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8195 dev->name);
8196 break;
9dc737a7 8197 }
db874e65 8198
f61e0a35
SH
8199 switch (sp->config.napi) {
8200 case 0:
8201 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8202 break;
8203 case 1:
db874e65 8204 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
f61e0a35
SH
8205 break;
8206 }
3a3d5756
SH
8207
8208 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
d44570e4 8209 sp->config.tx_fifo_num);
3a3d5756 8210
0425b46a
SH
8211 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8212 sp->config.rx_ring_num);
8213
d44570e4
JP
8214 switch (sp->config.intr_type) {
8215 case INTA:
8216 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8217 break;
8218 case MSI_X:
8219 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8220 break;
9dc737a7 8221 }
3a3d5756 8222 if (sp->config.multiq) {
13d866a9
JP
8223 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8224 struct fifo_info *fifo = &mac_control->fifos[i];
8225
8226 fifo->multiq = config->multiq;
8227 }
3a3d5756 8228 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
d44570e4 8229 dev->name);
3a3d5756
SH
8230 } else
8231 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
d44570e4 8232 dev->name);
3a3d5756 8233
6cfc482b
SH
8234 switch (sp->config.tx_steering_type) {
8235 case NO_STEERING:
d44570e4
JP
8236 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8237 dev->name);
8238 break;
6cfc482b 8239 case TX_PRIORITY_STEERING:
d44570e4
JP
8240 DBG_PRINT(ERR_DBG,
8241 "%s: Priority steering enabled for transmit\n",
8242 dev->name);
6cfc482b
SH
8243 break;
8244 case TX_DEFAULT_STEERING:
d44570e4
JP
8245 DBG_PRINT(ERR_DBG,
8246 "%s: Default steering enabled for transmit\n",
8247 dev->name);
6cfc482b
SH
8248 }
8249
7d3d0439
RA
8250 if (sp->lro)
8251 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 8252 dev->name);
db874e65 8253 if (ufo)
d44570e4
JP
8254 DBG_PRINT(ERR_DBG,
8255 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8256 dev->name);
7ba013ac 8257 /* Initialize device name */
9dc737a7 8258 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 8259
cd0fce03
BL
8260 if (vlan_tag_strip)
8261 sp->vlan_strip_flag = 1;
8262 else
8263 sp->vlan_strip_flag = 0;
8264
20346722
K
8265 /*
8266 * Make Link state as off at this point, when the Link change
8267 * interrupt comes the state will be automatically changed to
1da177e4
LT
8268 * the right state.
8269 */
8270 netif_carrier_off(dev);
1da177e4
LT
8271
8272 return 0;
8273
d44570e4
JP
8274register_failed:
8275set_swap_failed:
1da177e4 8276 iounmap(sp->bar1);
d44570e4 8277bar1_remap_failed:
1da177e4 8278 iounmap(sp->bar0);
d44570e4
JP
8279bar0_remap_failed:
8280mem_alloc_failed:
1da177e4
LT
8281 free_shared_mem(sp);
8282 pci_disable_device(pdev);
eccb8628 8283 pci_release_regions(pdev);
1da177e4
LT
8284 pci_set_drvdata(pdev, NULL);
8285 free_netdev(dev);
8286
8287 return ret;
8288}
8289
8290/**
20346722 8291 * s2io_rem_nic - Free the PCI device
1da177e4 8292 * @pdev: structure containing the PCI related information of the device.
20346722 8293 * Description: This function is called by the Pci subsystem to release a
1da177e4 8294 * PCI device and free up all resource held up by the device. This could
20346722 8295 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
8296 * from memory.
8297 */
8298
8299static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8300{
8301 struct net_device *dev =
d44570e4 8302 (struct net_device *)pci_get_drvdata(pdev);
1ee6dd77 8303 struct s2io_nic *sp;
1da177e4
LT
8304
8305 if (dev == NULL) {
8306 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8307 return;
8308 }
8309
22747d6b
FR
8310 flush_scheduled_work();
8311
4cf1653a 8312 sp = netdev_priv(dev);
1da177e4
LT
8313 unregister_netdev(dev);
8314
8315 free_shared_mem(sp);
8316 iounmap(sp->bar0);
8317 iounmap(sp->bar1);
eccb8628 8318 pci_release_regions(pdev);
1da177e4 8319 pci_set_drvdata(pdev, NULL);
1da177e4 8320 free_netdev(dev);
19a60522 8321 pci_disable_device(pdev);
1da177e4
LT
8322}
8323
8324/**
8325 * s2io_starter - Entry point for the driver
8326 * Description: This function is the entry point for the driver. It verifies
8327 * the module loadable parameters and initializes PCI configuration space.
8328 */
8329
43b7c451 8330static int __init s2io_starter(void)
1da177e4 8331{
29917620 8332 return pci_register_driver(&s2io_driver);
1da177e4
LT
8333}
8334
8335/**
20346722 8336 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
8337 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8338 */
8339
372cc597 8340static __exit void s2io_closer(void)
1da177e4
LT
8341{
8342 pci_unregister_driver(&s2io_driver);
8343 DBG_PRINT(INIT_DBG, "cleanup done\n");
8344}
8345
8346module_init(s2io_starter);
8347module_exit(s2io_closer);
7d3d0439 8348
6aa20a22 8349static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
d44570e4
JP
8350 struct tcphdr **tcp, struct RxD_t *rxdp,
8351 struct s2io_nic *sp)
7d3d0439
RA
8352{
8353 int ip_off;
8354 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8355
8356 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
d44570e4
JP
8357 DBG_PRINT(INIT_DBG,
8358 "%s: Non-TCP frames not supported for LRO\n",
b39d66a8 8359 __func__);
7d3d0439
RA
8360 return -1;
8361 }
8362
cdb5bf02 8363 /* Checking for DIX type or DIX type with VLAN */
d44570e4 8364 if ((l2_type == 0) || (l2_type == 4)) {
cdb5bf02
SH
8365 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8366 /*
8367 * If vlan stripping is disabled and the frame is VLAN tagged,
8368 * shift the offset by the VLAN header size bytes.
8369 */
cd0fce03 8370 if ((!sp->vlan_strip_flag) &&
d44570e4 8371 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
cdb5bf02
SH
8372 ip_off += HEADER_VLAN_SIZE;
8373 } else {
7d3d0439 8374 /* LLC, SNAP etc are considered non-mergeable */
cdb5bf02 8375 return -1;
7d3d0439
RA
8376 }
8377
8378 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8379 ip_len = (u8)((*ip)->ihl);
8380 ip_len <<= 2;
8381 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8382
8383 return 0;
8384}
8385
1ee6dd77 8386static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8387 struct tcphdr *tcp)
8388{
d44570e4
JP
8389 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8390 if ((lro->iph->saddr != ip->saddr) ||
8391 (lro->iph->daddr != ip->daddr) ||
8392 (lro->tcph->source != tcp->source) ||
8393 (lro->tcph->dest != tcp->dest))
7d3d0439
RA
8394 return -1;
8395 return 0;
8396}
8397
8398static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8399{
d44570e4 8400 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
7d3d0439
RA
8401}
8402
1ee6dd77 8403static void initiate_new_session(struct lro *lro, u8 *l2h,
d44570e4
JP
8404 struct iphdr *ip, struct tcphdr *tcp,
8405 u32 tcp_pyld_len, u16 vlan_tag)
7d3d0439 8406{
d44570e4 8407 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8408 lro->l2h = l2h;
8409 lro->iph = ip;
8410 lro->tcph = tcp;
8411 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
c8855953 8412 lro->tcp_ack = tcp->ack_seq;
7d3d0439
RA
8413 lro->sg_num = 1;
8414 lro->total_len = ntohs(ip->tot_len);
8415 lro->frags_len = 0;
cdb5bf02 8416 lro->vlan_tag = vlan_tag;
6aa20a22 8417 /*
d44570e4
JP
8418 * Check if we saw TCP timestamp.
8419 * Other consistency checks have already been done.
8420 */
7d3d0439 8421 if (tcp->doff == 8) {
c8855953
SR
8422 __be32 *ptr;
8423 ptr = (__be32 *)(tcp+1);
7d3d0439 8424 lro->saw_ts = 1;
c8855953 8425 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8426 lro->cur_tsecr = *(ptr+2);
8427 }
8428 lro->in_use = 1;
8429}
8430
1ee6dd77 8431static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
8432{
8433 struct iphdr *ip = lro->iph;
8434 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 8435 __sum16 nchk;
1ee6dd77 8436 struct stat_block *statinfo = sp->mac_control.stats_info;
d44570e4 8437 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8438
8439 /* Update L3 header */
8440 ip->tot_len = htons(lro->total_len);
8441 ip->check = 0;
8442 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8443 ip->check = nchk;
8444
8445 /* Update L4 header */
8446 tcp->ack_seq = lro->tcp_ack;
8447 tcp->window = lro->window;
8448
8449 /* Update tsecr field if this session has timestamps enabled */
8450 if (lro->saw_ts) {
c8855953 8451 __be32 *ptr = (__be32 *)(tcp + 1);
7d3d0439
RA
8452 *(ptr+2) = lro->cur_tsecr;
8453 }
8454
8455 /* Update counters required for calculation of
8456 * average no. of packets aggregated.
8457 */
8458 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8459 statinfo->sw_stat.num_aggregations++;
8460}
8461
1ee6dd77 8462static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
d44570e4 8463 struct tcphdr *tcp, u32 l4_pyld)
7d3d0439 8464{
d44570e4 8465 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8466 lro->total_len += l4_pyld;
8467 lro->frags_len += l4_pyld;
8468 lro->tcp_next_seq += l4_pyld;
8469 lro->sg_num++;
8470
8471 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8472 lro->tcp_ack = tcp->ack_seq;
8473 lro->window = tcp->window;
6aa20a22 8474
7d3d0439 8475 if (lro->saw_ts) {
c8855953 8476 __be32 *ptr;
7d3d0439 8477 /* Update tsecr and tsval from this packet */
c8855953
SR
8478 ptr = (__be32 *)(tcp+1);
8479 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8480 lro->cur_tsecr = *(ptr + 2);
8481 }
8482}
8483
1ee6dd77 8484static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8485 struct tcphdr *tcp, u32 tcp_pyld_len)
8486{
7d3d0439
RA
8487 u8 *ptr;
8488
d44570e4 8489 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
79dc1901 8490
7d3d0439
RA
8491 if (!tcp_pyld_len) {
8492 /* Runt frame or a pure ack */
8493 return -1;
8494 }
8495
8496 if (ip->ihl != 5) /* IP has options */
8497 return -1;
8498
75c30b13
AR
8499 /* If we see CE codepoint in IP header, packet is not mergeable */
8500 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8501 return -1;
8502
8503 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
d44570e4
JP
8504 if (tcp->urg || tcp->psh || tcp->rst ||
8505 tcp->syn || tcp->fin ||
8506 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8507 /*
8508 * Currently recognize only the ack control word and
8509 * any other control field being set would result in
8510 * flushing the LRO session
8511 */
8512 return -1;
8513 }
8514
6aa20a22 8515 /*
7d3d0439
RA
8516 * Allow only one TCP timestamp option. Don't aggregate if
8517 * any other options are detected.
8518 */
8519 if (tcp->doff != 5 && tcp->doff != 8)
8520 return -1;
8521
8522 if (tcp->doff == 8) {
6aa20a22 8523 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8524 while (*ptr == TCPOPT_NOP)
8525 ptr++;
8526 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8527 return -1;
8528
8529 /* Ensure timestamp value increases monotonically */
8530 if (l_lro)
c8855953 8531 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
7d3d0439
RA
8532 return -1;
8533
8534 /* timestamp echo reply should be non-zero */
c8855953 8535 if (*((__be32 *)(ptr+6)) == 0)
7d3d0439
RA
8536 return -1;
8537 }
8538
8539 return 0;
8540}
8541
d44570e4
JP
8542static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8543 u8 **tcp, u32 *tcp_len, struct lro **lro,
8544 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
8545{
8546 struct iphdr *ip;
8547 struct tcphdr *tcph;
8548 int ret = 0, i;
cdb5bf02 8549 u16 vlan_tag = 0;
7d3d0439 8550
d44570e4
JP
8551 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8552 rxdp, sp);
8553 if (ret)
7d3d0439 8554 return ret;
7d3d0439 8555
d44570e4
JP
8556 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8557
cdb5bf02 8558 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
7d3d0439
RA
8559 tcph = (struct tcphdr *)*tcp;
8560 *tcp_len = get_l4_pyld_length(ip, tcph);
d44570e4 8561 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8562 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8563 if (l_lro->in_use) {
8564 if (check_for_socket_match(l_lro, ip, tcph))
8565 continue;
8566 /* Sock pair matched */
8567 *lro = l_lro;
8568
8569 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8570 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
b39d66a8 8571 "0x%x, actual 0x%x\n", __func__,
7d3d0439
RA
8572 (*lro)->tcp_next_seq,
8573 ntohl(tcph->seq));
8574
8575 sp->mac_control.stats_info->
d44570e4 8576 sw_stat.outof_sequence_pkts++;
7d3d0439
RA
8577 ret = 2;
8578 break;
8579 }
8580
d44570e4
JP
8581 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8582 *tcp_len))
7d3d0439
RA
8583 ret = 1; /* Aggregate */
8584 else
8585 ret = 2; /* Flush both */
8586 break;
8587 }
8588 }
8589
8590 if (ret == 0) {
8591 /* Before searching for available LRO objects,
8592 * check if the pkt is L3/L4 aggregatable. If not
8593 * don't create new LRO session. Just send this
8594 * packet up.
8595 */
d44570e4 8596 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
7d3d0439 8597 return 5;
7d3d0439 8598
d44570e4 8599 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8600 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8601 if (!(l_lro->in_use)) {
8602 *lro = l_lro;
8603 ret = 3; /* Begin anew */
8604 break;
8605 }
8606 }
8607 }
8608
8609 if (ret == 0) { /* sessions exceeded */
d44570e4 8610 DBG_PRINT(INFO_DBG, "%s:All LRO sessions already in use\n",
b39d66a8 8611 __func__);
7d3d0439
RA
8612 *lro = NULL;
8613 return ret;
8614 }
8615
8616 switch (ret) {
d44570e4
JP
8617 case 3:
8618 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8619 vlan_tag);
8620 break;
8621 case 2:
8622 update_L3L4_header(sp, *lro);
8623 break;
8624 case 1:
8625 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8626 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7d3d0439 8627 update_L3L4_header(sp, *lro);
d44570e4
JP
8628 ret = 4; /* Flush the LRO */
8629 }
8630 break;
8631 default:
8632 DBG_PRINT(ERR_DBG, "%s:Dont know, can't say!!\n", __func__);
8633 break;
7d3d0439
RA
8634 }
8635
8636 return ret;
8637}
8638
1ee6dd77 8639static void clear_lro_session(struct lro *lro)
7d3d0439 8640{
1ee6dd77 8641 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8642
8643 memset(lro, 0, lro_struct_size);
8644}
8645
cdb5bf02 8646static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
7d3d0439
RA
8647{
8648 struct net_device *dev = skb->dev;
4cf1653a 8649 struct s2io_nic *sp = netdev_priv(dev);
7d3d0439
RA
8650
8651 skb->protocol = eth_type_trans(skb, dev);
d44570e4 8652 if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
cdb5bf02
SH
8653 /* Queueing the vlan frame to the upper layer */
8654 if (sp->config.napi)
8655 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8656 else
8657 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8658 } else {
8659 if (sp->config.napi)
8660 netif_receive_skb(skb);
8661 else
8662 netif_rx(skb);
8663 }
7d3d0439
RA
8664}
8665
1ee6dd77 8666static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
d44570e4 8667 struct sk_buff *skb, u32 tcp_len)
7d3d0439 8668{
75c30b13 8669 struct sk_buff *first = lro->parent;
7d3d0439
RA
8670
8671 first->len += tcp_len;
8672 first->data_len = lro->frags_len;
8673 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8674 if (skb_shinfo(first)->frag_list)
8675 lro->last_frag->next = skb;
7d3d0439
RA
8676 else
8677 skb_shinfo(first)->frag_list = skb;
372cc597 8678 first->truesize += skb->truesize;
75c30b13 8679 lro->last_frag = skb;
7d3d0439
RA
8680 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8681 return;
8682}
d796fdb7
LV
8683
8684/**
8685 * s2io_io_error_detected - called when PCI error is detected
8686 * @pdev: Pointer to PCI device
8453d43f 8687 * @state: The current pci connection state
d796fdb7
LV
8688 *
8689 * This function is called after a PCI bus error affecting
8690 * this device has been detected.
8691 */
8692static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
d44570e4 8693 pci_channel_state_t state)
d796fdb7
LV
8694{
8695 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8696 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8697
8698 netif_device_detach(netdev);
8699
1e3c8bd6
DN
8700 if (state == pci_channel_io_perm_failure)
8701 return PCI_ERS_RESULT_DISCONNECT;
8702
d796fdb7
LV
8703 if (netif_running(netdev)) {
8704 /* Bring down the card, while avoiding PCI I/O */
8705 do_s2io_card_down(sp, 0);
d796fdb7
LV
8706 }
8707 pci_disable_device(pdev);
8708
8709 return PCI_ERS_RESULT_NEED_RESET;
8710}
8711
8712/**
8713 * s2io_io_slot_reset - called after the pci bus has been reset.
8714 * @pdev: Pointer to PCI device
8715 *
8716 * Restart the card from scratch, as if from a cold-boot.
8717 * At this point, the card has exprienced a hard reset,
8718 * followed by fixups by BIOS, and has its config space
8719 * set up identically to what it was at cold boot.
8720 */
8721static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8722{
8723 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8724 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8725
8726 if (pci_enable_device(pdev)) {
6cef2b8e 8727 pr_err("Cannot re-enable PCI device after reset.\n");
d796fdb7
LV
8728 return PCI_ERS_RESULT_DISCONNECT;
8729 }
8730
8731 pci_set_master(pdev);
8732 s2io_reset(sp);
8733
8734 return PCI_ERS_RESULT_RECOVERED;
8735}
8736
8737/**
8738 * s2io_io_resume - called when traffic can start flowing again.
8739 * @pdev: Pointer to PCI device
8740 *
8741 * This callback is called when the error recovery driver tells
8742 * us that its OK to resume normal operation.
8743 */
8744static void s2io_io_resume(struct pci_dev *pdev)
8745{
8746 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8747 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8748
8749 if (netif_running(netdev)) {
8750 if (s2io_card_up(sp)) {
6cef2b8e 8751 pr_err("Can't bring device back up after reset.\n");
d796fdb7
LV
8752 return;
8753 }
8754
8755 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8756 s2io_card_down(sp);
6cef2b8e 8757 pr_err("Can't restore mac addr after reset.\n");
d796fdb7
LV
8758 return;
8759 }
8760 }
8761
8762 netif_device_attach(netdev);
fd2ea0a7 8763 netif_tx_wake_all_queues(netdev);
d796fdb7 8764}