MIPSnet: Modernize use platform_device API.
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
1da177e4
LT
3 * Copyright(c) 2002-2005 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4
LT
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8
AR
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7
AR
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
1da177e4
LT
53 ************************************************************************/
54
1da177e4
LT
55#include <linux/module.h>
56#include <linux/types.h>
57#include <linux/errno.h>
58#include <linux/ioport.h>
59#include <linux/pci.h>
1e7f0bd8 60#include <linux/dma-mapping.h>
1da177e4
LT
61#include <linux/kernel.h>
62#include <linux/netdevice.h>
63#include <linux/etherdevice.h>
64#include <linux/skbuff.h>
65#include <linux/init.h>
66#include <linux/delay.h>
67#include <linux/stddef.h>
68#include <linux/ioctl.h>
69#include <linux/timex.h>
1da177e4 70#include <linux/ethtool.h>
1da177e4 71#include <linux/workqueue.h>
be3a6b02 72#include <linux/if_vlan.h>
7d3d0439
RA
73#include <linux/ip.h>
74#include <linux/tcp.h>
75#include <net/tcp.h>
1da177e4 76
1da177e4
LT
77#include <asm/system.h>
78#include <asm/uaccess.h>
20346722 79#include <asm/io.h>
fe931395 80#include <asm/div64.h>
330ce0de 81#include <asm/irq.h>
1da177e4
LT
82
83/* local include */
84#include "s2io.h"
85#include "s2io-regs.h"
86
363dc367 87#define DRV_VERSION "2.0.19.1"
6c1792f4 88
1da177e4 89/* S2io Driver name & version. */
20346722 90static char s2io_driver_name[] = "Neterion";
6c1792f4 91static char s2io_driver_version[] = DRV_VERSION;
1da177e4 92
26df54bf
AB
93static int rxd_size[4] = {32,48,48,64};
94static int rxd_count[4] = {127,85,85,63};
da6971d8 95
1ee6dd77 96static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd
K
97{
98 int ret;
99
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103 return ret;
104}
105
20346722 106/*
1da177e4
LT
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
110 */
541ae68f
K
111#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
115
116#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118#define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119#define PANIC 1
120#define LOW 2
1ee6dd77 121static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
1da177e4 122{
1ee6dd77 123 struct mac_info *mac_control;
20346722
K
124
125 mac_control = &sp->mac_control;
863c11a9
AR
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
1da177e4
LT
131}
132
133/* Ethtool related variables and Macros. */
134static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135 "Register test\t(offline)",
136 "Eeprom test\t(offline)",
137 "Link test\t(online)",
138 "RLDRAM test\t(offline)",
139 "BIST Test\t(offline)"
140};
141
fa1f0cb3 142static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
143 {"tmac_frms"},
144 {"tmac_data_octets"},
145 {"tmac_drop_frms"},
146 {"tmac_mcst_frms"},
147 {"tmac_bcst_frms"},
148 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
149 {"tmac_ttl_octets"},
150 {"tmac_ucst_frms"},
151 {"tmac_nucst_frms"},
1da177e4 152 {"tmac_any_err_frms"},
bd1034f0 153 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
154 {"tmac_vld_ip_octets"},
155 {"tmac_vld_ip"},
156 {"tmac_drop_ip"},
157 {"tmac_icmp"},
158 {"tmac_rst_tcp"},
159 {"tmac_tcp"},
160 {"tmac_udp"},
161 {"rmac_vld_frms"},
162 {"rmac_data_octets"},
163 {"rmac_fcs_err_frms"},
164 {"rmac_drop_frms"},
165 {"rmac_vld_mcst_frms"},
166 {"rmac_vld_bcst_frms"},
167 {"rmac_in_rng_len_err_frms"},
bd1034f0 168 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
169 {"rmac_long_frms"},
170 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
171 {"rmac_unsup_ctrl_frms"},
172 {"rmac_ttl_octets"},
173 {"rmac_accepted_ucst_frms"},
174 {"rmac_accepted_nucst_frms"},
1da177e4 175 {"rmac_discarded_frms"},
bd1034f0
AR
176 {"rmac_drop_events"},
177 {"rmac_ttl_less_fb_octets"},
178 {"rmac_ttl_frms"},
1da177e4
LT
179 {"rmac_usized_frms"},
180 {"rmac_osized_frms"},
181 {"rmac_frag_frms"},
182 {"rmac_jabber_frms"},
bd1034f0
AR
183 {"rmac_ttl_64_frms"},
184 {"rmac_ttl_65_127_frms"},
185 {"rmac_ttl_128_255_frms"},
186 {"rmac_ttl_256_511_frms"},
187 {"rmac_ttl_512_1023_frms"},
188 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
189 {"rmac_ip"},
190 {"rmac_ip_octets"},
191 {"rmac_hdr_err_ip"},
192 {"rmac_drop_ip"},
193 {"rmac_icmp"},
194 {"rmac_tcp"},
195 {"rmac_udp"},
196 {"rmac_err_drp_udp"},
bd1034f0
AR
197 {"rmac_xgmii_err_sym"},
198 {"rmac_frms_q0"},
199 {"rmac_frms_q1"},
200 {"rmac_frms_q2"},
201 {"rmac_frms_q3"},
202 {"rmac_frms_q4"},
203 {"rmac_frms_q5"},
204 {"rmac_frms_q6"},
205 {"rmac_frms_q7"},
206 {"rmac_full_q0"},
207 {"rmac_full_q1"},
208 {"rmac_full_q2"},
209 {"rmac_full_q3"},
210 {"rmac_full_q4"},
211 {"rmac_full_q5"},
212 {"rmac_full_q6"},
213 {"rmac_full_q7"},
1da177e4 214 {"rmac_pause_cnt"},
bd1034f0
AR
215 {"rmac_xgmii_data_err_cnt"},
216 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
217 {"rmac_accepted_ip"},
218 {"rmac_err_tcp"},
bd1034f0
AR
219 {"rd_req_cnt"},
220 {"new_rd_req_cnt"},
221 {"new_rd_req_rtry_cnt"},
222 {"rd_rtry_cnt"},
223 {"wr_rtry_rd_ack_cnt"},
224 {"wr_req_cnt"},
225 {"new_wr_req_cnt"},
226 {"new_wr_req_rtry_cnt"},
227 {"wr_rtry_cnt"},
228 {"wr_disc_cnt"},
229 {"rd_rtry_wr_ack_cnt"},
230 {"txp_wr_cnt"},
231 {"txd_rd_cnt"},
232 {"txd_wr_cnt"},
233 {"rxd_rd_cnt"},
234 {"rxd_wr_cnt"},
235 {"txf_rd_cnt"},
fa1f0cb3
SS
236 {"rxf_wr_cnt"}
237};
238
239static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
240 {"rmac_ttl_1519_4095_frms"},
241 {"rmac_ttl_4096_8191_frms"},
242 {"rmac_ttl_8192_max_frms"},
243 {"rmac_ttl_gt_max_frms"},
244 {"rmac_osized_alt_frms"},
245 {"rmac_jabber_alt_frms"},
246 {"rmac_gt_max_alt_frms"},
247 {"rmac_vlan_frms"},
248 {"rmac_len_discard"},
249 {"rmac_fcs_discard"},
250 {"rmac_pf_discard"},
251 {"rmac_da_discard"},
252 {"rmac_red_discard"},
253 {"rmac_rts_discard"},
254 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
255 {"link_fault_cnt"}
256};
257
258static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac
K
259 {"\n DRIVER STATISTICS"},
260 {"single_bit_ecc_errs"},
261 {"double_bit_ecc_errs"},
bd1034f0
AR
262 {"parity_err_cnt"},
263 {"serious_err_cnt"},
264 {"soft_reset_cnt"},
265 {"fifo_full_cnt"},
266 {"ring_full_cnt"},
267 ("alarm_transceiver_temp_high"),
268 ("alarm_transceiver_temp_low"),
269 ("alarm_laser_bias_current_high"),
270 ("alarm_laser_bias_current_low"),
271 ("alarm_laser_output_power_high"),
272 ("alarm_laser_output_power_low"),
273 ("warn_transceiver_temp_high"),
274 ("warn_transceiver_temp_low"),
275 ("warn_laser_bias_current_high"),
276 ("warn_laser_bias_current_low"),
277 ("warn_laser_output_power_high"),
278 ("warn_laser_output_power_low"),
7d3d0439
RA
279 ("lro_aggregated_pkts"),
280 ("lro_flush_both_count"),
281 ("lro_out_of_sequence_pkts"),
282 ("lro_flush_due_to_max_pkts"),
283 ("lro_avg_aggr_pkts"),
1da177e4
LT
284};
285
fa1f0cb3
SS
286#define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
287#define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
288 ETH_GSTRING_LEN
289#define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
290
291#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
292#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
293
294#define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
295#define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
1da177e4
LT
296
297#define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
298#define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
299
25fff88e
K
300#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
301 init_timer(&timer); \
302 timer.function = handle; \
303 timer.data = (unsigned long) arg; \
304 mod_timer(&timer, (jiffies + exp)) \
305
be3a6b02
K
306/* Add the vlan */
307static void s2io_vlan_rx_register(struct net_device *dev,
308 struct vlan_group *grp)
309{
1ee6dd77 310 struct s2io_nic *nic = dev->priv;
be3a6b02
K
311 unsigned long flags;
312
313 spin_lock_irqsave(&nic->tx_lock, flags);
314 nic->vlgrp = grp;
315 spin_unlock_irqrestore(&nic->tx_lock, flags);
316}
317
926930b2 318/* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
7b490343 319static int vlan_strip_flag;
926930b2 320
be3a6b02
K
321/* Unregister the vlan */
322static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
323{
1ee6dd77 324 struct s2io_nic *nic = dev->priv;
be3a6b02
K
325 unsigned long flags;
326
327 spin_lock_irqsave(&nic->tx_lock, flags);
5c15bdec 328 vlan_group_set_device(nic->vlgrp, vid, NULL);
be3a6b02
K
329 spin_unlock_irqrestore(&nic->tx_lock, flags);
330}
331
20346722 332/*
1da177e4
LT
333 * Constants to be programmed into the Xena's registers, to configure
334 * the XAUI.
335 */
336
1da177e4 337#define END_SIGN 0x0
f71e1309 338static const u64 herc_act_dtx_cfg[] = {
541ae68f 339 /* Set address */
e960fc5c 340 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 341 /* Write data */
e960fc5c 342 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
343 /* Set address */
344 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
345 /* Write data */
346 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
347 /* Set address */
e960fc5c 348 0x801205150D440000ULL, 0x801205150D4400E0ULL,
349 /* Write data */
350 0x801205150D440004ULL, 0x801205150D4400E4ULL,
351 /* Set address */
541ae68f
K
352 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
353 /* Write data */
354 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
355 /* Done */
356 END_SIGN
357};
358
f71e1309 359static const u64 xena_dtx_cfg[] = {
c92ca04b 360 /* Set address */
1da177e4 361 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
362 /* Write data */
363 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
364 /* Set address */
365 0x8001051500000000ULL, 0x80010515000000E0ULL,
366 /* Write data */
367 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
368 /* Set address */
1da177e4 369 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
370 /* Write data */
371 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
372 END_SIGN
373};
374
20346722 375/*
1da177e4
LT
376 * Constants for Fixing the MacAddress problem seen mostly on
377 * Alpha machines.
378 */
f71e1309 379static const u64 fix_mac[] = {
1da177e4
LT
380 0x0060000000000000ULL, 0x0060600000000000ULL,
381 0x0040600000000000ULL, 0x0000600000000000ULL,
382 0x0020600000000000ULL, 0x0060600000000000ULL,
383 0x0020600000000000ULL, 0x0060600000000000ULL,
384 0x0020600000000000ULL, 0x0060600000000000ULL,
385 0x0020600000000000ULL, 0x0060600000000000ULL,
386 0x0020600000000000ULL, 0x0060600000000000ULL,
387 0x0020600000000000ULL, 0x0060600000000000ULL,
388 0x0020600000000000ULL, 0x0060600000000000ULL,
389 0x0020600000000000ULL, 0x0060600000000000ULL,
390 0x0020600000000000ULL, 0x0060600000000000ULL,
391 0x0020600000000000ULL, 0x0060600000000000ULL,
392 0x0020600000000000ULL, 0x0000600000000000ULL,
393 0x0040600000000000ULL, 0x0060600000000000ULL,
394 END_SIGN
395};
396
b41477f3
AR
397MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
398MODULE_LICENSE("GPL");
399MODULE_VERSION(DRV_VERSION);
400
401
1da177e4 402/* Module Loadable parameters. */
b41477f3
AR
403S2IO_PARM_INT(tx_fifo_num, 1);
404S2IO_PARM_INT(rx_ring_num, 1);
405
406
407S2IO_PARM_INT(rx_ring_mode, 1);
408S2IO_PARM_INT(use_continuous_tx_intrs, 1);
409S2IO_PARM_INT(rmac_pause_time, 0x100);
410S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
411S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
412S2IO_PARM_INT(shared_splits, 0);
413S2IO_PARM_INT(tmac_util_period, 5);
414S2IO_PARM_INT(rmac_util_period, 5);
415S2IO_PARM_INT(bimodal, 0);
416S2IO_PARM_INT(l3l4hdr_size, 128);
303bcb4b 417/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 418S2IO_PARM_INT(rxsync_frequency, 3);
cc6e7c44 419/* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
b41477f3 420S2IO_PARM_INT(intr_type, 0);
7d3d0439 421/* Large receive offload feature */
b41477f3 422S2IO_PARM_INT(lro, 0);
7d3d0439
RA
423/* Max pkts to be aggregated by LRO at one time. If not specified,
424 * aggregation happens until we hit max IP pkt size(64K)
425 */
b41477f3 426S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 427S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
428
429S2IO_PARM_INT(napi, 1);
430S2IO_PARM_INT(ufo, 0);
926930b2 431S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
432
433static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
434 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
435static unsigned int rx_ring_sz[MAX_RX_RINGS] =
436 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
437static unsigned int rts_frm_len[MAX_RX_RINGS] =
438 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
439
440module_param_array(tx_fifo_len, uint, NULL, 0);
441module_param_array(rx_ring_sz, uint, NULL, 0);
442module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 443
20346722 444/*
1da177e4 445 * S2IO device table.
20346722 446 * This table lists all the devices that this driver supports.
1da177e4
LT
447 */
448static struct pci_device_id s2io_tbl[] __devinitdata = {
449 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
450 PCI_ANY_ID, PCI_ANY_ID},
451 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
452 PCI_ANY_ID, PCI_ANY_ID},
453 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
20346722
K
454 PCI_ANY_ID, PCI_ANY_ID},
455 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
456 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
457 {0,}
458};
459
460MODULE_DEVICE_TABLE(pci, s2io_tbl);
461
462static struct pci_driver s2io_driver = {
463 .name = "S2IO",
464 .id_table = s2io_tbl,
465 .probe = s2io_init_nic,
466 .remove = __devexit_p(s2io_rem_nic),
467};
468
469/* A simplifier macro used both by init and free shared_mem Fns(). */
470#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
471
472/**
473 * init_shared_mem - Allocation and Initialization of Memory
474 * @nic: Device private variable.
20346722
K
475 * Description: The function allocates all the memory areas shared
476 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
477 * Rx descriptors and the statistics block.
478 */
479
480static int init_shared_mem(struct s2io_nic *nic)
481{
482 u32 size;
483 void *tmp_v_addr, *tmp_v_addr_next;
484 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 485 struct RxD_block *pre_rxd_blk = NULL;
372cc597 486 int i, j, blk_cnt;
1da177e4
LT
487 int lst_size, lst_per_page;
488 struct net_device *dev = nic->dev;
8ae418cf 489 unsigned long tmp;
1ee6dd77 490 struct buffAdd *ba;
1da177e4 491
1ee6dd77 492 struct mac_info *mac_control;
1da177e4
LT
493 struct config_param *config;
494
495 mac_control = &nic->mac_control;
496 config = &nic->config;
497
498
499 /* Allocation and initialization of TXDLs in FIOFs */
500 size = 0;
501 for (i = 0; i < config->tx_fifo_num; i++) {
502 size += config->tx_cfg[i].fifo_len;
503 }
504 if (size > MAX_AVAILABLE_TXDS) {
b41477f3 505 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
0b1f7ebe 506 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
b41477f3 507 return -EINVAL;
1da177e4
LT
508 }
509
1ee6dd77 510 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
511 lst_per_page = PAGE_SIZE / lst_size;
512
513 for (i = 0; i < config->tx_fifo_num; i++) {
514 int fifo_len = config->tx_cfg[i].fifo_len;
1ee6dd77 515 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
20346722
K
516 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
517 GFP_KERNEL);
518 if (!mac_control->fifos[i].list_info) {
1da177e4
LT
519 DBG_PRINT(ERR_DBG,
520 "Malloc failed for list_info\n");
521 return -ENOMEM;
522 }
20346722 523 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
1da177e4
LT
524 }
525 for (i = 0; i < config->tx_fifo_num; i++) {
526 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
527 lst_per_page);
20346722
K
528 mac_control->fifos[i].tx_curr_put_info.offset = 0;
529 mac_control->fifos[i].tx_curr_put_info.fifo_len =
1da177e4 530 config->tx_cfg[i].fifo_len - 1;
20346722
K
531 mac_control->fifos[i].tx_curr_get_info.offset = 0;
532 mac_control->fifos[i].tx_curr_get_info.fifo_len =
1da177e4 533 config->tx_cfg[i].fifo_len - 1;
20346722
K
534 mac_control->fifos[i].fifo_no = i;
535 mac_control->fifos[i].nic = nic;
fed5eccd 536 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
20346722 537
1da177e4
LT
538 for (j = 0; j < page_num; j++) {
539 int k = 0;
540 dma_addr_t tmp_p;
541 void *tmp_v;
542 tmp_v = pci_alloc_consistent(nic->pdev,
543 PAGE_SIZE, &tmp_p);
544 if (!tmp_v) {
545 DBG_PRINT(ERR_DBG,
546 "pci_alloc_consistent ");
547 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
548 return -ENOMEM;
549 }
776bd20f 550 /* If we got a zero DMA address(can happen on
551 * certain platforms like PPC), reallocate.
552 * Store virtual address of page we don't want,
553 * to be freed later.
554 */
555 if (!tmp_p) {
556 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 557 DBG_PRINT(INIT_DBG,
776bd20f 558 "%s: Zero DMA address for TxDL. ", dev->name);
6aa20a22 559 DBG_PRINT(INIT_DBG,
6b4d617d 560 "Virtual address %p\n", tmp_v);
776bd20f 561 tmp_v = pci_alloc_consistent(nic->pdev,
562 PAGE_SIZE, &tmp_p);
563 if (!tmp_v) {
564 DBG_PRINT(ERR_DBG,
565 "pci_alloc_consistent ");
566 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
567 return -ENOMEM;
568 }
569 }
1da177e4
LT
570 while (k < lst_per_page) {
571 int l = (j * lst_per_page) + k;
572 if (l == config->tx_cfg[i].fifo_len)
20346722
K
573 break;
574 mac_control->fifos[i].list_info[l].list_virt_addr =
1da177e4 575 tmp_v + (k * lst_size);
20346722 576 mac_control->fifos[i].list_info[l].list_phy_addr =
1da177e4
LT
577 tmp_p + (k * lst_size);
578 k++;
579 }
580 }
581 }
1da177e4 582
4384247b 583 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
fed5eccd
AR
584 if (!nic->ufo_in_band_v)
585 return -ENOMEM;
586
1da177e4
LT
587 /* Allocation and initialization of RXDs in Rings */
588 size = 0;
589 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
590 if (config->rx_cfg[i].num_rxd %
591 (rxd_count[nic->rxd_mode] + 1)) {
1da177e4
LT
592 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
593 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
594 i);
595 DBG_PRINT(ERR_DBG, "RxDs per Block");
596 return FAILURE;
597 }
598 size += config->rx_cfg[i].num_rxd;
20346722 599 mac_control->rings[i].block_count =
da6971d8
AR
600 config->rx_cfg[i].num_rxd /
601 (rxd_count[nic->rxd_mode] + 1 );
602 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
603 mac_control->rings[i].block_count;
1da177e4 604 }
da6971d8 605 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 606 size = (size * (sizeof(struct RxD1)));
da6971d8 607 else
1ee6dd77 608 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
609
610 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
611 mac_control->rings[i].rx_curr_get_info.block_index = 0;
612 mac_control->rings[i].rx_curr_get_info.offset = 0;
613 mac_control->rings[i].rx_curr_get_info.ring_len =
1da177e4 614 config->rx_cfg[i].num_rxd - 1;
20346722
K
615 mac_control->rings[i].rx_curr_put_info.block_index = 0;
616 mac_control->rings[i].rx_curr_put_info.offset = 0;
617 mac_control->rings[i].rx_curr_put_info.ring_len =
1da177e4 618 config->rx_cfg[i].num_rxd - 1;
20346722
K
619 mac_control->rings[i].nic = nic;
620 mac_control->rings[i].ring_no = i;
621
da6971d8
AR
622 blk_cnt = config->rx_cfg[i].num_rxd /
623 (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
624 /* Allocating all the Rx blocks */
625 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 626 struct rx_block_info *rx_blocks;
da6971d8
AR
627 int l;
628
629 rx_blocks = &mac_control->rings[i].rx_blocks[j];
630 size = SIZE_OF_BLOCK; //size is always page size
1da177e4
LT
631 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
632 &tmp_p_addr);
633 if (tmp_v_addr == NULL) {
634 /*
20346722
K
635 * In case of failure, free_shared_mem()
636 * is called, which should free any
637 * memory that was alloced till the
1da177e4
LT
638 * failure happened.
639 */
da6971d8 640 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
641 return -ENOMEM;
642 }
643 memset(tmp_v_addr, 0, size);
da6971d8
AR
644 rx_blocks->block_virt_addr = tmp_v_addr;
645 rx_blocks->block_dma_addr = tmp_p_addr;
1ee6dd77 646 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
da6971d8
AR
647 rxd_count[nic->rxd_mode],
648 GFP_KERNEL);
372cc597
SS
649 if (!rx_blocks->rxds)
650 return -ENOMEM;
da6971d8
AR
651 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
652 rx_blocks->rxds[l].virt_addr =
653 rx_blocks->block_virt_addr +
654 (rxd_size[nic->rxd_mode] * l);
655 rx_blocks->rxds[l].dma_addr =
656 rx_blocks->block_dma_addr +
657 (rxd_size[nic->rxd_mode] * l);
658 }
1da177e4
LT
659 }
660 /* Interlinking all Rx Blocks */
661 for (j = 0; j < blk_cnt; j++) {
20346722
K
662 tmp_v_addr =
663 mac_control->rings[i].rx_blocks[j].block_virt_addr;
1da177e4 664 tmp_v_addr_next =
20346722 665 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4 666 blk_cnt].block_virt_addr;
20346722
K
667 tmp_p_addr =
668 mac_control->rings[i].rx_blocks[j].block_dma_addr;
1da177e4 669 tmp_p_addr_next =
20346722 670 mac_control->rings[i].rx_blocks[(j + 1) %
1da177e4
LT
671 blk_cnt].block_dma_addr;
672
1ee6dd77 673 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
1da177e4
LT
674 pre_rxd_blk->reserved_2_pNext_RxD_block =
675 (unsigned long) tmp_v_addr_next;
1da177e4
LT
676 pre_rxd_blk->pNext_RxD_Blk_physical =
677 (u64) tmp_p_addr_next;
678 }
679 }
da6971d8
AR
680 if (nic->rxd_mode >= RXD_MODE_3A) {
681 /*
682 * Allocation of Storages for buffer addresses in 2BUFF mode
683 * and the buffers as well.
684 */
685 for (i = 0; i < config->rx_ring_num; i++) {
686 blk_cnt = config->rx_cfg[i].num_rxd /
687 (rxd_count[nic->rxd_mode]+ 1);
688 mac_control->rings[i].ba =
1ee6dd77 689 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
1da177e4 690 GFP_KERNEL);
da6971d8 691 if (!mac_control->rings[i].ba)
1da177e4 692 return -ENOMEM;
da6971d8
AR
693 for (j = 0; j < blk_cnt; j++) {
694 int k = 0;
695 mac_control->rings[i].ba[j] =
1ee6dd77 696 kmalloc((sizeof(struct buffAdd) *
da6971d8
AR
697 (rxd_count[nic->rxd_mode] + 1)),
698 GFP_KERNEL);
699 if (!mac_control->rings[i].ba[j])
1da177e4 700 return -ENOMEM;
da6971d8
AR
701 while (k != rxd_count[nic->rxd_mode]) {
702 ba = &mac_control->rings[i].ba[j][k];
703
704 ba->ba_0_org = (void *) kmalloc
705 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
706 if (!ba->ba_0_org)
707 return -ENOMEM;
708 tmp = (unsigned long)ba->ba_0_org;
709 tmp += ALIGN_SIZE;
710 tmp &= ~((unsigned long) ALIGN_SIZE);
711 ba->ba_0 = (void *) tmp;
712
713 ba->ba_1_org = (void *) kmalloc
714 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
715 if (!ba->ba_1_org)
716 return -ENOMEM;
717 tmp = (unsigned long) ba->ba_1_org;
718 tmp += ALIGN_SIZE;
719 tmp &= ~((unsigned long) ALIGN_SIZE);
720 ba->ba_1 = (void *) tmp;
721 k++;
722 }
1da177e4
LT
723 }
724 }
725 }
1da177e4
LT
726
727 /* Allocation and initialization of Statistics block */
1ee6dd77 728 size = sizeof(struct stat_block);
1da177e4
LT
729 mac_control->stats_mem = pci_alloc_consistent
730 (nic->pdev, size, &mac_control->stats_mem_phy);
731
732 if (!mac_control->stats_mem) {
20346722
K
733 /*
734 * In case of failure, free_shared_mem() is called, which
735 * should free any memory that was alloced till the
1da177e4
LT
736 * failure happened.
737 */
738 return -ENOMEM;
739 }
740 mac_control->stats_mem_sz = size;
741
742 tmp_v_addr = mac_control->stats_mem;
1ee6dd77 743 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
1da177e4 744 memset(tmp_v_addr, 0, size);
1da177e4
LT
745 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
746 (unsigned long long) tmp_p_addr);
747
748 return SUCCESS;
749}
750
20346722
K
751/**
752 * free_shared_mem - Free the allocated Memory
1da177e4
LT
753 * @nic: Device private variable.
754 * Description: This function is to free all memory locations allocated by
755 * the init_shared_mem() function and return it to the kernel.
756 */
757
758static void free_shared_mem(struct s2io_nic *nic)
759{
760 int i, j, blk_cnt, size;
761 void *tmp_v_addr;
762 dma_addr_t tmp_p_addr;
1ee6dd77 763 struct mac_info *mac_control;
1da177e4
LT
764 struct config_param *config;
765 int lst_size, lst_per_page;
776bd20f 766 struct net_device *dev = nic->dev;
1da177e4
LT
767
768 if (!nic)
769 return;
770
771 mac_control = &nic->mac_control;
772 config = &nic->config;
773
1ee6dd77 774 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
775 lst_per_page = PAGE_SIZE / lst_size;
776
777 for (i = 0; i < config->tx_fifo_num; i++) {
778 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
779 lst_per_page);
780 for (j = 0; j < page_num; j++) {
781 int mem_blks = (j * lst_per_page);
776bd20f 782 if (!mac_control->fifos[i].list_info)
6aa20a22 783 return;
776bd20f 784 if (!mac_control->fifos[i].list_info[mem_blks].
785 list_virt_addr)
1da177e4
LT
786 break;
787 pci_free_consistent(nic->pdev, PAGE_SIZE,
20346722
K
788 mac_control->fifos[i].
789 list_info[mem_blks].
1da177e4 790 list_virt_addr,
20346722
K
791 mac_control->fifos[i].
792 list_info[mem_blks].
1da177e4
LT
793 list_phy_addr);
794 }
776bd20f 795 /* If we got a zero DMA address during allocation,
796 * free the page now
797 */
798 if (mac_control->zerodma_virt_addr) {
799 pci_free_consistent(nic->pdev, PAGE_SIZE,
800 mac_control->zerodma_virt_addr,
801 (dma_addr_t)0);
6aa20a22 802 DBG_PRINT(INIT_DBG,
6b4d617d
AM
803 "%s: Freeing TxDL with zero DMA addr. ",
804 dev->name);
805 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
806 mac_control->zerodma_virt_addr);
776bd20f 807 }
20346722 808 kfree(mac_control->fifos[i].list_info);
1da177e4
LT
809 }
810
1da177e4 811 size = SIZE_OF_BLOCK;
1da177e4 812 for (i = 0; i < config->rx_ring_num; i++) {
20346722 813 blk_cnt = mac_control->rings[i].block_count;
1da177e4 814 for (j = 0; j < blk_cnt; j++) {
20346722
K
815 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
816 block_virt_addr;
817 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
818 block_dma_addr;
1da177e4
LT
819 if (tmp_v_addr == NULL)
820 break;
821 pci_free_consistent(nic->pdev, size,
822 tmp_v_addr, tmp_p_addr);
da6971d8 823 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1da177e4
LT
824 }
825 }
826
da6971d8
AR
827 if (nic->rxd_mode >= RXD_MODE_3A) {
828 /* Freeing buffer storage addresses in 2BUFF mode. */
829 for (i = 0; i < config->rx_ring_num; i++) {
830 blk_cnt = config->rx_cfg[i].num_rxd /
831 (rxd_count[nic->rxd_mode] + 1);
832 for (j = 0; j < blk_cnt; j++) {
833 int k = 0;
834 if (!mac_control->rings[i].ba[j])
835 continue;
836 while (k != rxd_count[nic->rxd_mode]) {
1ee6dd77 837 struct buffAdd *ba =
da6971d8
AR
838 &mac_control->rings[i].ba[j][k];
839 kfree(ba->ba_0_org);
840 kfree(ba->ba_1_org);
841 k++;
842 }
843 kfree(mac_control->rings[i].ba[j]);
1da177e4 844 }
da6971d8 845 kfree(mac_control->rings[i].ba);
1da177e4 846 }
1da177e4 847 }
1da177e4
LT
848
849 if (mac_control->stats_mem) {
850 pci_free_consistent(nic->pdev,
851 mac_control->stats_mem_sz,
852 mac_control->stats_mem,
853 mac_control->stats_mem_phy);
854 }
fed5eccd
AR
855 if (nic->ufo_in_band_v)
856 kfree(nic->ufo_in_band_v);
1da177e4
LT
857}
858
541ae68f
K
859/**
860 * s2io_verify_pci_mode -
861 */
862
1ee6dd77 863static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 864{
1ee6dd77 865 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
866 register u64 val64 = 0;
867 int mode;
868
869 val64 = readq(&bar0->pci_mode);
870 mode = (u8)GET_PCI_MODE(val64);
871
872 if ( val64 & PCI_MODE_UNKNOWN_MODE)
873 return -1; /* Unknown PCI mode */
874 return mode;
875}
876
c92ca04b
AR
877#define NEC_VENID 0x1033
878#define NEC_DEVID 0x0125
879static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
880{
881 struct pci_dev *tdev = NULL;
26d36b64
AC
882 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
883 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
c92ca04b 884 if (tdev->bus == s2io_pdev->bus->parent)
26d36b64 885 pci_dev_put(tdev);
c92ca04b
AR
886 return 1;
887 }
888 }
889 return 0;
890}
541ae68f 891
7b32a312 892static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
893/**
894 * s2io_print_pci_mode -
895 */
1ee6dd77 896static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 897{
1ee6dd77 898 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
899 register u64 val64 = 0;
900 int mode;
901 struct config_param *config = &nic->config;
902
903 val64 = readq(&bar0->pci_mode);
904 mode = (u8)GET_PCI_MODE(val64);
905
906 if ( val64 & PCI_MODE_UNKNOWN_MODE)
907 return -1; /* Unknown PCI mode */
908
c92ca04b
AR
909 config->bus_speed = bus_speed[mode];
910
911 if (s2io_on_nec_bridge(nic->pdev)) {
912 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
913 nic->dev->name);
914 return mode;
915 }
916
541ae68f
K
917 if (val64 & PCI_MODE_32_BITS) {
918 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
919 } else {
920 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
921 }
922
923 switch(mode) {
924 case PCI_MODE_PCI_33:
925 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
541ae68f
K
926 break;
927 case PCI_MODE_PCI_66:
928 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
541ae68f
K
929 break;
930 case PCI_MODE_PCIX_M1_66:
931 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
541ae68f
K
932 break;
933 case PCI_MODE_PCIX_M1_100:
934 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
541ae68f
K
935 break;
936 case PCI_MODE_PCIX_M1_133:
937 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
541ae68f
K
938 break;
939 case PCI_MODE_PCIX_M2_66:
940 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
541ae68f
K
941 break;
942 case PCI_MODE_PCIX_M2_100:
943 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
541ae68f
K
944 break;
945 case PCI_MODE_PCIX_M2_133:
946 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
541ae68f
K
947 break;
948 default:
949 return -1; /* Unsupported bus speed */
950 }
951
952 return mode;
953}
954
20346722
K
955/**
956 * init_nic - Initialization of hardware
1da177e4 957 * @nic: device peivate variable
20346722
K
958 * Description: The function sequentially configures every block
959 * of the H/W from their reset values.
960 * Return Value: SUCCESS on success and
1da177e4
LT
961 * '-1' on failure (endian settings incorrect).
962 */
963
964static int init_nic(struct s2io_nic *nic)
965{
1ee6dd77 966 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
967 struct net_device *dev = nic->dev;
968 register u64 val64 = 0;
969 void __iomem *add;
970 u32 time;
971 int i, j;
1ee6dd77 972 struct mac_info *mac_control;
1da177e4 973 struct config_param *config;
c92ca04b 974 int dtx_cnt = 0;
1da177e4 975 unsigned long long mem_share;
20346722 976 int mem_size;
1da177e4
LT
977
978 mac_control = &nic->mac_control;
979 config = &nic->config;
980
5e25b9dd 981 /* to set the swapper controle on the card */
20346722 982 if(s2io_set_swapper(nic)) {
1da177e4
LT
983 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
984 return -1;
985 }
986
541ae68f
K
987 /*
988 * Herc requires EOI to be removed from reset before XGXS, so..
989 */
990 if (nic->device_type & XFRAME_II_DEVICE) {
991 val64 = 0xA500000000ULL;
992 writeq(val64, &bar0->sw_reset);
993 msleep(500);
994 val64 = readq(&bar0->sw_reset);
995 }
996
1da177e4
LT
997 /* Remove XGXS from reset state */
998 val64 = 0;
999 writeq(val64, &bar0->sw_reset);
1da177e4 1000 msleep(500);
20346722 1001 val64 = readq(&bar0->sw_reset);
1da177e4
LT
1002
1003 /* Enable Receiving broadcasts */
1004 add = &bar0->mac_cfg;
1005 val64 = readq(&bar0->mac_cfg);
1006 val64 |= MAC_RMAC_BCAST_ENABLE;
1007 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1008 writel((u32) val64, add);
1009 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1010 writel((u32) (val64 >> 32), (add + 4));
1011
1012 /* Read registers in all blocks */
1013 val64 = readq(&bar0->mac_int_mask);
1014 val64 = readq(&bar0->mc_int_mask);
1015 val64 = readq(&bar0->xgxs_int_mask);
1016
1017 /* Set MTU */
1018 val64 = dev->mtu;
1019 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1020
541ae68f
K
1021 if (nic->device_type & XFRAME_II_DEVICE) {
1022 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1023 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1024 &bar0->dtx_control, UF);
541ae68f
K
1025 if (dtx_cnt & 0x1)
1026 msleep(1); /* Necessary!! */
1da177e4
LT
1027 dtx_cnt++;
1028 }
541ae68f 1029 } else {
c92ca04b
AR
1030 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1031 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1032 &bar0->dtx_control, UF);
1033 val64 = readq(&bar0->dtx_control);
1034 dtx_cnt++;
1da177e4
LT
1035 }
1036 }
1037
1038 /* Tx DMA Initialization */
1039 val64 = 0;
1040 writeq(val64, &bar0->tx_fifo_partition_0);
1041 writeq(val64, &bar0->tx_fifo_partition_1);
1042 writeq(val64, &bar0->tx_fifo_partition_2);
1043 writeq(val64, &bar0->tx_fifo_partition_3);
1044
1045
1046 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1047 val64 |=
1048 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1049 13) | vBIT(config->tx_cfg[i].fifo_priority,
1050 ((i * 32) + 5), 3);
1051
1052 if (i == (config->tx_fifo_num - 1)) {
1053 if (i % 2 == 0)
1054 i++;
1055 }
1056
1057 switch (i) {
1058 case 1:
1059 writeq(val64, &bar0->tx_fifo_partition_0);
1060 val64 = 0;
1061 break;
1062 case 3:
1063 writeq(val64, &bar0->tx_fifo_partition_1);
1064 val64 = 0;
1065 break;
1066 case 5:
1067 writeq(val64, &bar0->tx_fifo_partition_2);
1068 val64 = 0;
1069 break;
1070 case 7:
1071 writeq(val64, &bar0->tx_fifo_partition_3);
1072 break;
1073 }
1074 }
1075
5e25b9dd
K
1076 /*
1077 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1078 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1079 */
541ae68f
K
1080 if ((nic->device_type == XFRAME_I_DEVICE) &&
1081 (get_xena_rev_id(nic->pdev) < 4))
5e25b9dd
K
1082 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1083
1da177e4
LT
1084 val64 = readq(&bar0->tx_fifo_partition_0);
1085 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1086 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1087
20346722
K
1088 /*
1089 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1090 * integrity checking.
1091 */
1092 val64 = readq(&bar0->tx_pa_cfg);
1093 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1094 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1095 writeq(val64, &bar0->tx_pa_cfg);
1096
1097 /* Rx DMA intialization. */
1098 val64 = 0;
1099 for (i = 0; i < config->rx_ring_num; i++) {
1100 val64 |=
1101 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1102 3);
1103 }
1104 writeq(val64, &bar0->rx_queue_priority);
1105
20346722
K
1106 /*
1107 * Allocating equal share of memory to all the
1da177e4
LT
1108 * configured Rings.
1109 */
1110 val64 = 0;
541ae68f
K
1111 if (nic->device_type & XFRAME_II_DEVICE)
1112 mem_size = 32;
1113 else
1114 mem_size = 64;
1115
1da177e4
LT
1116 for (i = 0; i < config->rx_ring_num; i++) {
1117 switch (i) {
1118 case 0:
20346722
K
1119 mem_share = (mem_size / config->rx_ring_num +
1120 mem_size % config->rx_ring_num);
1da177e4
LT
1121 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1122 continue;
1123 case 1:
20346722 1124 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1125 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1126 continue;
1127 case 2:
20346722 1128 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1129 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1130 continue;
1131 case 3:
20346722 1132 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1133 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1134 continue;
1135 case 4:
20346722 1136 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1137 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1138 continue;
1139 case 5:
20346722 1140 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1141 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1142 continue;
1143 case 6:
20346722 1144 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1145 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1146 continue;
1147 case 7:
20346722 1148 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1149 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1150 continue;
1151 }
1152 }
1153 writeq(val64, &bar0->rx_queue_cfg);
1154
20346722 1155 /*
5e25b9dd
K
1156 * Filling Tx round robin registers
1157 * as per the number of FIFOs
1da177e4 1158 */
5e25b9dd
K
1159 switch (config->tx_fifo_num) {
1160 case 1:
1161 val64 = 0x0000000000000000ULL;
1162 writeq(val64, &bar0->tx_w_round_robin_0);
1163 writeq(val64, &bar0->tx_w_round_robin_1);
1164 writeq(val64, &bar0->tx_w_round_robin_2);
1165 writeq(val64, &bar0->tx_w_round_robin_3);
1166 writeq(val64, &bar0->tx_w_round_robin_4);
1167 break;
1168 case 2:
1169 val64 = 0x0000010000010000ULL;
1170 writeq(val64, &bar0->tx_w_round_robin_0);
1171 val64 = 0x0100000100000100ULL;
1172 writeq(val64, &bar0->tx_w_round_robin_1);
1173 val64 = 0x0001000001000001ULL;
1174 writeq(val64, &bar0->tx_w_round_robin_2);
1175 val64 = 0x0000010000010000ULL;
1176 writeq(val64, &bar0->tx_w_round_robin_3);
1177 val64 = 0x0100000000000000ULL;
1178 writeq(val64, &bar0->tx_w_round_robin_4);
1179 break;
1180 case 3:
1181 val64 = 0x0001000102000001ULL;
1182 writeq(val64, &bar0->tx_w_round_robin_0);
1183 val64 = 0x0001020000010001ULL;
1184 writeq(val64, &bar0->tx_w_round_robin_1);
1185 val64 = 0x0200000100010200ULL;
1186 writeq(val64, &bar0->tx_w_round_robin_2);
1187 val64 = 0x0001000102000001ULL;
1188 writeq(val64, &bar0->tx_w_round_robin_3);
1189 val64 = 0x0001020000000000ULL;
1190 writeq(val64, &bar0->tx_w_round_robin_4);
1191 break;
1192 case 4:
1193 val64 = 0x0001020300010200ULL;
1194 writeq(val64, &bar0->tx_w_round_robin_0);
1195 val64 = 0x0100000102030001ULL;
1196 writeq(val64, &bar0->tx_w_round_robin_1);
1197 val64 = 0x0200010000010203ULL;
1198 writeq(val64, &bar0->tx_w_round_robin_2);
1199 val64 = 0x0001020001000001ULL;
1200 writeq(val64, &bar0->tx_w_round_robin_3);
1201 val64 = 0x0203000100000000ULL;
1202 writeq(val64, &bar0->tx_w_round_robin_4);
1203 break;
1204 case 5:
1205 val64 = 0x0001000203000102ULL;
1206 writeq(val64, &bar0->tx_w_round_robin_0);
1207 val64 = 0x0001020001030004ULL;
1208 writeq(val64, &bar0->tx_w_round_robin_1);
1209 val64 = 0x0001000203000102ULL;
1210 writeq(val64, &bar0->tx_w_round_robin_2);
1211 val64 = 0x0001020001030004ULL;
1212 writeq(val64, &bar0->tx_w_round_robin_3);
1213 val64 = 0x0001000000000000ULL;
1214 writeq(val64, &bar0->tx_w_round_robin_4);
1215 break;
1216 case 6:
1217 val64 = 0x0001020304000102ULL;
1218 writeq(val64, &bar0->tx_w_round_robin_0);
1219 val64 = 0x0304050001020001ULL;
1220 writeq(val64, &bar0->tx_w_round_robin_1);
1221 val64 = 0x0203000100000102ULL;
1222 writeq(val64, &bar0->tx_w_round_robin_2);
1223 val64 = 0x0304000102030405ULL;
1224 writeq(val64, &bar0->tx_w_round_robin_3);
1225 val64 = 0x0001000200000000ULL;
1226 writeq(val64, &bar0->tx_w_round_robin_4);
1227 break;
1228 case 7:
1229 val64 = 0x0001020001020300ULL;
1230 writeq(val64, &bar0->tx_w_round_robin_0);
1231 val64 = 0x0102030400010203ULL;
1232 writeq(val64, &bar0->tx_w_round_robin_1);
1233 val64 = 0x0405060001020001ULL;
1234 writeq(val64, &bar0->tx_w_round_robin_2);
1235 val64 = 0x0304050000010200ULL;
1236 writeq(val64, &bar0->tx_w_round_robin_3);
1237 val64 = 0x0102030000000000ULL;
1238 writeq(val64, &bar0->tx_w_round_robin_4);
1239 break;
1240 case 8:
1241 val64 = 0x0001020300040105ULL;
1242 writeq(val64, &bar0->tx_w_round_robin_0);
1243 val64 = 0x0200030106000204ULL;
1244 writeq(val64, &bar0->tx_w_round_robin_1);
1245 val64 = 0x0103000502010007ULL;
1246 writeq(val64, &bar0->tx_w_round_robin_2);
1247 val64 = 0x0304010002060500ULL;
1248 writeq(val64, &bar0->tx_w_round_robin_3);
1249 val64 = 0x0103020400000000ULL;
1250 writeq(val64, &bar0->tx_w_round_robin_4);
1251 break;
1252 }
1253
b41477f3 1254 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1255 val64 = readq(&bar0->tx_fifo_partition_0);
1256 val64 |= (TX_FIFO_PARTITION_EN);
1257 writeq(val64, &bar0->tx_fifo_partition_0);
1258
5e25b9dd
K
1259 /* Filling the Rx round robin registers as per the
1260 * number of Rings and steering based on QoS.
1261 */
1262 switch (config->rx_ring_num) {
1263 case 1:
1264 val64 = 0x8080808080808080ULL;
1265 writeq(val64, &bar0->rts_qos_steering);
1266 break;
1267 case 2:
1268 val64 = 0x0000010000010000ULL;
1269 writeq(val64, &bar0->rx_w_round_robin_0);
1270 val64 = 0x0100000100000100ULL;
1271 writeq(val64, &bar0->rx_w_round_robin_1);
1272 val64 = 0x0001000001000001ULL;
1273 writeq(val64, &bar0->rx_w_round_robin_2);
1274 val64 = 0x0000010000010000ULL;
1275 writeq(val64, &bar0->rx_w_round_robin_3);
1276 val64 = 0x0100000000000000ULL;
1277 writeq(val64, &bar0->rx_w_round_robin_4);
1278
1279 val64 = 0x8080808040404040ULL;
1280 writeq(val64, &bar0->rts_qos_steering);
1281 break;
1282 case 3:
1283 val64 = 0x0001000102000001ULL;
1284 writeq(val64, &bar0->rx_w_round_robin_0);
1285 val64 = 0x0001020000010001ULL;
1286 writeq(val64, &bar0->rx_w_round_robin_1);
1287 val64 = 0x0200000100010200ULL;
1288 writeq(val64, &bar0->rx_w_round_robin_2);
1289 val64 = 0x0001000102000001ULL;
1290 writeq(val64, &bar0->rx_w_round_robin_3);
1291 val64 = 0x0001020000000000ULL;
1292 writeq(val64, &bar0->rx_w_round_robin_4);
1293
1294 val64 = 0x8080804040402020ULL;
1295 writeq(val64, &bar0->rts_qos_steering);
1296 break;
1297 case 4:
1298 val64 = 0x0001020300010200ULL;
1299 writeq(val64, &bar0->rx_w_round_robin_0);
1300 val64 = 0x0100000102030001ULL;
1301 writeq(val64, &bar0->rx_w_round_robin_1);
1302 val64 = 0x0200010000010203ULL;
1303 writeq(val64, &bar0->rx_w_round_robin_2);
6aa20a22 1304 val64 = 0x0001020001000001ULL;
5e25b9dd
K
1305 writeq(val64, &bar0->rx_w_round_robin_3);
1306 val64 = 0x0203000100000000ULL;
1307 writeq(val64, &bar0->rx_w_round_robin_4);
1308
1309 val64 = 0x8080404020201010ULL;
1310 writeq(val64, &bar0->rts_qos_steering);
1311 break;
1312 case 5:
1313 val64 = 0x0001000203000102ULL;
1314 writeq(val64, &bar0->rx_w_round_robin_0);
1315 val64 = 0x0001020001030004ULL;
1316 writeq(val64, &bar0->rx_w_round_robin_1);
1317 val64 = 0x0001000203000102ULL;
1318 writeq(val64, &bar0->rx_w_round_robin_2);
1319 val64 = 0x0001020001030004ULL;
1320 writeq(val64, &bar0->rx_w_round_robin_3);
1321 val64 = 0x0001000000000000ULL;
1322 writeq(val64, &bar0->rx_w_round_robin_4);
1323
1324 val64 = 0x8080404020201008ULL;
1325 writeq(val64, &bar0->rts_qos_steering);
1326 break;
1327 case 6:
1328 val64 = 0x0001020304000102ULL;
1329 writeq(val64, &bar0->rx_w_round_robin_0);
1330 val64 = 0x0304050001020001ULL;
1331 writeq(val64, &bar0->rx_w_round_robin_1);
1332 val64 = 0x0203000100000102ULL;
1333 writeq(val64, &bar0->rx_w_round_robin_2);
1334 val64 = 0x0304000102030405ULL;
1335 writeq(val64, &bar0->rx_w_round_robin_3);
1336 val64 = 0x0001000200000000ULL;
1337 writeq(val64, &bar0->rx_w_round_robin_4);
1338
1339 val64 = 0x8080404020100804ULL;
1340 writeq(val64, &bar0->rts_qos_steering);
1341 break;
1342 case 7:
1343 val64 = 0x0001020001020300ULL;
1344 writeq(val64, &bar0->rx_w_round_robin_0);
1345 val64 = 0x0102030400010203ULL;
1346 writeq(val64, &bar0->rx_w_round_robin_1);
1347 val64 = 0x0405060001020001ULL;
1348 writeq(val64, &bar0->rx_w_round_robin_2);
1349 val64 = 0x0304050000010200ULL;
1350 writeq(val64, &bar0->rx_w_round_robin_3);
1351 val64 = 0x0102030000000000ULL;
1352 writeq(val64, &bar0->rx_w_round_robin_4);
1353
1354 val64 = 0x8080402010080402ULL;
1355 writeq(val64, &bar0->rts_qos_steering);
1356 break;
1357 case 8:
1358 val64 = 0x0001020300040105ULL;
1359 writeq(val64, &bar0->rx_w_round_robin_0);
1360 val64 = 0x0200030106000204ULL;
1361 writeq(val64, &bar0->rx_w_round_robin_1);
1362 val64 = 0x0103000502010007ULL;
1363 writeq(val64, &bar0->rx_w_round_robin_2);
1364 val64 = 0x0304010002060500ULL;
1365 writeq(val64, &bar0->rx_w_round_robin_3);
1366 val64 = 0x0103020400000000ULL;
1367 writeq(val64, &bar0->rx_w_round_robin_4);
1368
1369 val64 = 0x8040201008040201ULL;
1370 writeq(val64, &bar0->rts_qos_steering);
1371 break;
1372 }
1da177e4
LT
1373
1374 /* UDP Fix */
1375 val64 = 0;
20346722 1376 for (i = 0; i < 8; i++)
1da177e4
LT
1377 writeq(val64, &bar0->rts_frm_len_n[i]);
1378
5e25b9dd
K
1379 /* Set the default rts frame length for the rings configured */
1380 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1381 for (i = 0 ; i < config->rx_ring_num ; i++)
1382 writeq(val64, &bar0->rts_frm_len_n[i]);
1383
1384 /* Set the frame length for the configured rings
1385 * desired by the user
1386 */
1387 for (i = 0; i < config->rx_ring_num; i++) {
1388 /* If rts_frm_len[i] == 0 then it is assumed that user not
1389 * specified frame length steering.
1390 * If the user provides the frame length then program
1391 * the rts_frm_len register for those values or else
1392 * leave it as it is.
1393 */
1394 if (rts_frm_len[i] != 0) {
1395 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1396 &bar0->rts_frm_len_n[i]);
1397 }
1398 }
926930b2 1399
9fc93a41
SS
1400 /* Disable differentiated services steering logic */
1401 for (i = 0; i < 64; i++) {
1402 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1403 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1404 dev->name);
1405 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1406 return FAILURE;
1407 }
1408 }
1409
20346722 1410 /* Program statistics memory */
1da177e4 1411 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1412
541ae68f
K
1413 if (nic->device_type == XFRAME_II_DEVICE) {
1414 val64 = STAT_BC(0x320);
1415 writeq(val64, &bar0->stat_byte_cnt);
1416 }
1417
20346722 1418 /*
1da177e4
LT
1419 * Initializing the sampling rate for the device to calculate the
1420 * bandwidth utilization.
1421 */
1422 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1423 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1424 writeq(val64, &bar0->mac_link_util);
1425
1426
20346722
K
1427 /*
1428 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1429 * Scheme.
1430 */
20346722
K
1431 /*
1432 * TTI Initialization. Default Tx timer gets us about
1da177e4
LT
1433 * 250 interrupts per sec. Continuous interrupts are enabled
1434 * by default.
1435 */
541ae68f
K
1436 if (nic->device_type == XFRAME_II_DEVICE) {
1437 int count = (nic->config.bus_speed * 125)/2;
1438 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1439 } else {
1440
1441 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1442 }
1443 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1da177e4 1444 TTI_DATA1_MEM_TX_URNG_B(0x10) |
5e25b9dd 1445 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
541ae68f
K
1446 if (use_continuous_tx_intrs)
1447 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1da177e4
LT
1448 writeq(val64, &bar0->tti_data1_mem);
1449
1450 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1451 TTI_DATA2_MEM_TX_UFC_B(0x20) |
19a60522 1452 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1da177e4
LT
1453 writeq(val64, &bar0->tti_data2_mem);
1454
1455 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1456 writeq(val64, &bar0->tti_command_mem);
1457
20346722 1458 /*
1da177e4
LT
1459 * Once the operation completes, the Strobe bit of the command
1460 * register will be reset. We poll for this particular condition
1461 * We wait for a maximum of 500ms for the operation to complete,
1462 * if it's not complete by then we return error.
1463 */
1464 time = 0;
1465 while (TRUE) {
1466 val64 = readq(&bar0->tti_command_mem);
1467 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1468 break;
1469 }
1470 if (time > 10) {
1471 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1472 dev->name);
1473 return -1;
1474 }
1475 msleep(50);
1476 time++;
1477 }
1478
b6e3f982
K
1479 if (nic->config.bimodal) {
1480 int k = 0;
1481 for (k = 0; k < config->rx_ring_num; k++) {
1482 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1483 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1484 writeq(val64, &bar0->tti_command_mem);
541ae68f 1485
541ae68f 1486 /*
b6e3f982
K
1487 * Once the operation completes, the Strobe bit of the command
1488 * register will be reset. We poll for this particular condition
1489 * We wait for a maximum of 500ms for the operation to complete,
1490 * if it's not complete by then we return error.
1491 */
1492 time = 0;
1493 while (TRUE) {
1494 val64 = readq(&bar0->tti_command_mem);
1495 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1496 break;
1497 }
1498 if (time > 10) {
1499 DBG_PRINT(ERR_DBG,
1500 "%s: TTI init Failed\n",
1501 dev->name);
1502 return -1;
1503 }
1504 time++;
1505 msleep(50);
1506 }
1507 }
541ae68f 1508 } else {
1da177e4 1509
b6e3f982
K
1510 /* RTI Initialization */
1511 if (nic->device_type == XFRAME_II_DEVICE) {
1512 /*
1513 * Programmed to generate Apprx 500 Intrs per
1514 * second
1515 */
1516 int count = (nic->config.bus_speed * 125)/4;
1517 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1518 } else {
1519 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1520 }
1521 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1522 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1523 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1da177e4 1524
b6e3f982 1525 writeq(val64, &bar0->rti_data1_mem);
1da177e4 1526
b6e3f982 1527 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
cc6e7c44
RA
1528 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1529 if (nic->intr_type == MSI_X)
1530 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1531 RTI_DATA2_MEM_RX_UFC_D(0x40));
1532 else
1533 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1534 RTI_DATA2_MEM_RX_UFC_D(0x80));
b6e3f982 1535 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1536
b6e3f982
K
1537 for (i = 0; i < config->rx_ring_num; i++) {
1538 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1539 | RTI_CMD_MEM_OFFSET(i);
1540 writeq(val64, &bar0->rti_command_mem);
1541
1542 /*
1543 * Once the operation completes, the Strobe bit of the
1544 * command register will be reset. We poll for this
1545 * particular condition. We wait for a maximum of 500ms
1546 * for the operation to complete, if it's not complete
1547 * by then we return error.
1548 */
1549 time = 0;
1550 while (TRUE) {
1551 val64 = readq(&bar0->rti_command_mem);
1552 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1553 break;
1554 }
1555 if (time > 10) {
1556 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1557 dev->name);
1558 return -1;
1559 }
1560 time++;
1561 msleep(50);
1562 }
1da177e4 1563 }
1da177e4
LT
1564 }
1565
20346722
K
1566 /*
1567 * Initializing proper values as Pause threshold into all
1da177e4
LT
1568 * the 8 Queues on Rx side.
1569 */
1570 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1571 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1572
1573 /* Disable RMAC PAD STRIPPING */
509a2671 1574 add = &bar0->mac_cfg;
1da177e4
LT
1575 val64 = readq(&bar0->mac_cfg);
1576 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1577 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1578 writel((u32) (val64), add);
1579 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1580 writel((u32) (val64 >> 32), (add + 4));
1581 val64 = readq(&bar0->mac_cfg);
1582
7d3d0439
RA
1583 /* Enable FCS stripping by adapter */
1584 add = &bar0->mac_cfg;
1585 val64 = readq(&bar0->mac_cfg);
1586 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1587 if (nic->device_type == XFRAME_II_DEVICE)
1588 writeq(val64, &bar0->mac_cfg);
1589 else {
1590 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1591 writel((u32) (val64), add);
1592 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1593 writel((u32) (val64 >> 32), (add + 4));
1594 }
1595
20346722
K
1596 /*
1597 * Set the time value to be inserted in the pause frame
1da177e4
LT
1598 * generated by xena.
1599 */
1600 val64 = readq(&bar0->rmac_pause_cfg);
1601 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1602 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1603 writeq(val64, &bar0->rmac_pause_cfg);
1604
20346722 1605 /*
1da177e4
LT
1606 * Set the Threshold Limit for Generating the pause frame
1607 * If the amount of data in any Queue exceeds ratio of
1608 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1609 * pause frame is generated
1610 */
1611 val64 = 0;
1612 for (i = 0; i < 4; i++) {
1613 val64 |=
1614 (((u64) 0xFF00 | nic->mac_control.
1615 mc_pause_threshold_q0q3)
1616 << (i * 2 * 8));
1617 }
1618 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1619
1620 val64 = 0;
1621 for (i = 0; i < 4; i++) {
1622 val64 |=
1623 (((u64) 0xFF00 | nic->mac_control.
1624 mc_pause_threshold_q4q7)
1625 << (i * 2 * 8));
1626 }
1627 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1628
20346722
K
1629 /*
1630 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1631 * exceeded the limit pointed by shared_splits
1632 */
1633 val64 = readq(&bar0->pic_control);
1634 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1635 writeq(val64, &bar0->pic_control);
1636
863c11a9
AR
1637 if (nic->config.bus_speed == 266) {
1638 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1639 writeq(0x0, &bar0->read_retry_delay);
1640 writeq(0x0, &bar0->write_retry_delay);
1641 }
1642
541ae68f
K
1643 /*
1644 * Programming the Herc to split every write transaction
1645 * that does not start on an ADB to reduce disconnects.
1646 */
1647 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1648 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1649 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1650 writeq(val64, &bar0->misc_control);
1651 val64 = readq(&bar0->pic_control2);
1652 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1653 writeq(val64, &bar0->pic_control2);
541ae68f 1654 }
c92ca04b
AR
1655 if (strstr(nic->product_name, "CX4")) {
1656 val64 = TMAC_AVG_IPG(0x17);
1657 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1658 }
1659
1da177e4
LT
1660 return SUCCESS;
1661}
a371a07d
K
1662#define LINK_UP_DOWN_INTERRUPT 1
1663#define MAC_RMAC_ERR_TIMER 2
1664
1ee6dd77 1665static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d 1666{
cc6e7c44
RA
1667 if (nic->intr_type != INTA)
1668 return MAC_RMAC_ERR_TIMER;
a371a07d
K
1669 if (nic->device_type == XFRAME_II_DEVICE)
1670 return LINK_UP_DOWN_INTERRUPT;
1671 else
1672 return MAC_RMAC_ERR_TIMER;
1673}
1da177e4 1674
20346722
K
1675/**
1676 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1677 * @nic: device private variable,
1678 * @mask: A mask indicating which Intr block must be modified and,
1679 * @flag: A flag indicating whether to enable or disable the Intrs.
1680 * Description: This function will either disable or enable the interrupts
20346722
K
1681 * depending on the flag argument. The mask argument can be used to
1682 * enable/disable any Intr block.
1da177e4
LT
1683 * Return Value: NONE.
1684 */
1685
1686static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1687{
1ee6dd77 1688 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1689 register u64 val64 = 0, temp64 = 0;
1690
1691 /* Top level interrupt classification */
1692 /* PIC Interrupts */
1693 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1694 /* Enable PIC Intrs in the general intr mask register */
a113ae06 1695 val64 = TXPIC_INT_M;
1da177e4
LT
1696 if (flag == ENABLE_INTRS) {
1697 temp64 = readq(&bar0->general_int_mask);
1698 temp64 &= ~((u64) val64);
1699 writeq(temp64, &bar0->general_int_mask);
20346722 1700 /*
a371a07d 1701 * If Hercules adapter enable GPIO otherwise
b41477f3 1702 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
1703 * interrupts for now.
1704 * TODO
1da177e4 1705 */
a371a07d
K
1706 if (s2io_link_fault_indication(nic) ==
1707 LINK_UP_DOWN_INTERRUPT ) {
1708 temp64 = readq(&bar0->pic_int_mask);
1709 temp64 &= ~((u64) PIC_INT_GPIO);
1710 writeq(temp64, &bar0->pic_int_mask);
1711 temp64 = readq(&bar0->gpio_int_mask);
1712 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1713 writeq(temp64, &bar0->gpio_int_mask);
1714 } else {
1715 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1716 }
20346722 1717 /*
1da177e4
LT
1718 * No MSI Support is available presently, so TTI and
1719 * RTI interrupts are also disabled.
1720 */
1721 } else if (flag == DISABLE_INTRS) {
20346722
K
1722 /*
1723 * Disable PIC Intrs in the general
1724 * intr mask register
1da177e4
LT
1725 */
1726 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1727 temp64 = readq(&bar0->general_int_mask);
1728 val64 |= temp64;
1729 writeq(val64, &bar0->general_int_mask);
1730 }
1731 }
1732
1da177e4
LT
1733 /* MAC Interrupts */
1734 /* Enabling/Disabling MAC interrupts */
1735 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1736 val64 = TXMAC_INT_M | RXMAC_INT_M;
1737 if (flag == ENABLE_INTRS) {
1738 temp64 = readq(&bar0->general_int_mask);
1739 temp64 &= ~((u64) val64);
1740 writeq(temp64, &bar0->general_int_mask);
20346722
K
1741 /*
1742 * All MAC block error interrupts are disabled for now
1da177e4
LT
1743 * TODO
1744 */
1da177e4 1745 } else if (flag == DISABLE_INTRS) {
20346722
K
1746 /*
1747 * Disable MAC Intrs in the general intr mask register
1da177e4
LT
1748 */
1749 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1750 writeq(DISABLE_ALL_INTRS,
1751 &bar0->mac_rmac_err_mask);
1752
1753 temp64 = readq(&bar0->general_int_mask);
1754 val64 |= temp64;
1755 writeq(val64, &bar0->general_int_mask);
1756 }
1757 }
1758
1da177e4
LT
1759 /* Tx traffic interrupts */
1760 if (mask & TX_TRAFFIC_INTR) {
1761 val64 = TXTRAFFIC_INT_M;
1762 if (flag == ENABLE_INTRS) {
1763 temp64 = readq(&bar0->general_int_mask);
1764 temp64 &= ~((u64) val64);
1765 writeq(temp64, &bar0->general_int_mask);
20346722 1766 /*
1da177e4 1767 * Enable all the Tx side interrupts
20346722 1768 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
1769 */
1770 writeq(0x0, &bar0->tx_traffic_mask);
1771 } else if (flag == DISABLE_INTRS) {
20346722
K
1772 /*
1773 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
1774 * register.
1775 */
1776 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1777 temp64 = readq(&bar0->general_int_mask);
1778 val64 |= temp64;
1779 writeq(val64, &bar0->general_int_mask);
1780 }
1781 }
1782
1783 /* Rx traffic interrupts */
1784 if (mask & RX_TRAFFIC_INTR) {
1785 val64 = RXTRAFFIC_INT_M;
1786 if (flag == ENABLE_INTRS) {
1787 temp64 = readq(&bar0->general_int_mask);
1788 temp64 &= ~((u64) val64);
1789 writeq(temp64, &bar0->general_int_mask);
1790 /* writing 0 Enables all 8 RX interrupt levels */
1791 writeq(0x0, &bar0->rx_traffic_mask);
1792 } else if (flag == DISABLE_INTRS) {
20346722
K
1793 /*
1794 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
1795 * register.
1796 */
1797 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1798 temp64 = readq(&bar0->general_int_mask);
1799 val64 |= temp64;
1800 writeq(val64, &bar0->general_int_mask);
1801 }
1802 }
1803}
1804
19a60522
SS
1805/**
1806 * verify_pcc_quiescent- Checks for PCC quiescent state
1807 * Return: 1 If PCC is quiescence
1808 * 0 If PCC is not quiescence
1809 */
1ee6dd77 1810static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 1811{
19a60522 1812 int ret = 0, herc;
1ee6dd77 1813 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
1814 u64 val64 = readq(&bar0->adapter_status);
1815
1816 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722
K
1817
1818 if (flag == FALSE) {
19a60522
SS
1819 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1820 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 1821 ret = 1;
19a60522
SS
1822 } else {
1823 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 1824 ret = 1;
20346722
K
1825 }
1826 } else {
19a60522 1827 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
5e25b9dd 1828 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 1829 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 1830 ret = 1;
5e25b9dd
K
1831 } else {
1832 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 1833 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 1834 ret = 1;
20346722
K
1835 }
1836 }
1837
1838 return ret;
1839}
1840/**
1841 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 1842 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 1843 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
1844 * differs and the calling function passes the input argument flag to
1845 * indicate this.
20346722 1846 * Return: 1 If xena is quiescence
1da177e4
LT
1847 * 0 If Xena is not quiescence
1848 */
1849
1ee6dd77 1850static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 1851{
19a60522 1852 int mode;
1ee6dd77 1853 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
1854 u64 val64 = readq(&bar0->adapter_status);
1855 mode = s2io_verify_pci_mode(sp);
1da177e4 1856
19a60522
SS
1857 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1858 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1859 return 0;
1860 }
1861 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1862 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1863 return 0;
1864 }
1865 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1866 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1867 return 0;
1868 }
1869 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1870 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1871 return 0;
1872 }
1873 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1874 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1875 return 0;
1876 }
1877 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1878 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1879 return 0;
1880 }
1881 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1882 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1883 return 0;
1884 }
1885 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1886 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1887 return 0;
1da177e4
LT
1888 }
1889
19a60522
SS
1890 /*
1891 * In PCI 33 mode, the P_PLL is not used, and therefore,
1892 * the the P_PLL_LOCK bit in the adapter_status register will
1893 * not be asserted.
1894 */
1895 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1896 sp->device_type == XFRAME_II_DEVICE && mode !=
1897 PCI_MODE_PCI_33) {
1898 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1899 return 0;
1900 }
1901 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1902 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1903 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1904 return 0;
1905 }
1906 return 1;
1da177e4
LT
1907}
1908
1909/**
1910 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1911 * @sp: Pointer to device specifc structure
20346722 1912 * Description :
1da177e4
LT
1913 * New procedure to clear mac address reading problems on Alpha platforms
1914 *
1915 */
1916
1ee6dd77 1917static void fix_mac_address(struct s2io_nic * sp)
1da177e4 1918{
1ee6dd77 1919 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
1920 u64 val64;
1921 int i = 0;
1922
1923 while (fix_mac[i] != END_SIGN) {
1924 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 1925 udelay(10);
1da177e4
LT
1926 val64 = readq(&bar0->gpio_control);
1927 }
1928}
1929
1930/**
20346722 1931 * start_nic - Turns the device on
1da177e4 1932 * @nic : device private variable.
20346722
K
1933 * Description:
1934 * This function actually turns the device on. Before this function is
1935 * called,all Registers are configured from their reset states
1936 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
1937 * calling this function, the device interrupts are cleared and the NIC is
1938 * literally switched on by writing into the adapter control register.
20346722 1939 * Return Value:
1da177e4
LT
1940 * SUCCESS on success and -1 on failure.
1941 */
1942
1943static int start_nic(struct s2io_nic *nic)
1944{
1ee6dd77 1945 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1946 struct net_device *dev = nic->dev;
1947 register u64 val64 = 0;
20346722 1948 u16 subid, i;
1ee6dd77 1949 struct mac_info *mac_control;
1da177e4
LT
1950 struct config_param *config;
1951
1952 mac_control = &nic->mac_control;
1953 config = &nic->config;
1954
1955 /* PRC Initialization and configuration */
1956 for (i = 0; i < config->rx_ring_num; i++) {
20346722 1957 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1da177e4
LT
1958 &bar0->prc_rxd0_n[i]);
1959
1960 val64 = readq(&bar0->prc_ctrl_n[i]);
b6e3f982
K
1961 if (nic->config.bimodal)
1962 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
da6971d8
AR
1963 if (nic->rxd_mode == RXD_MODE_1)
1964 val64 |= PRC_CTRL_RC_ENABLED;
1965 else
1966 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
1967 if (nic->device_type == XFRAME_II_DEVICE)
1968 val64 |= PRC_CTRL_GROUP_READS;
1969 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
1970 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
1971 writeq(val64, &bar0->prc_ctrl_n[i]);
1972 }
1973
da6971d8
AR
1974 if (nic->rxd_mode == RXD_MODE_3B) {
1975 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1976 val64 = readq(&bar0->rx_pa_cfg);
1977 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1978 writeq(val64, &bar0->rx_pa_cfg);
1979 }
1da177e4 1980
926930b2
SS
1981 if (vlan_tag_strip == 0) {
1982 val64 = readq(&bar0->rx_pa_cfg);
1983 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
1984 writeq(val64, &bar0->rx_pa_cfg);
1985 vlan_strip_flag = 0;
1986 }
1987
20346722 1988 /*
1da177e4
LT
1989 * Enabling MC-RLDRAM. After enabling the device, we timeout
1990 * for around 100ms, which is approximately the time required
1991 * for the device to be ready for operation.
1992 */
1993 val64 = readq(&bar0->mc_rldram_mrs);
1994 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1995 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1996 val64 = readq(&bar0->mc_rldram_mrs);
1997
20346722 1998 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
1999
2000 /* Enabling ECC Protection. */
2001 val64 = readq(&bar0->adapter_control);
2002 val64 &= ~ADAPTER_ECC_EN;
2003 writeq(val64, &bar0->adapter_control);
2004
20346722
K
2005 /*
2006 * Clearing any possible Link state change interrupts that
1da177e4
LT
2007 * could have popped up just before Enabling the card.
2008 */
2009 val64 = readq(&bar0->mac_rmac_err_reg);
2010 if (val64)
2011 writeq(val64, &bar0->mac_rmac_err_reg);
2012
20346722
K
2013 /*
2014 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2015 * it.
2016 */
2017 val64 = readq(&bar0->adapter_status);
19a60522 2018 if (!verify_xena_quiescence(nic)) {
1da177e4
LT
2019 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2020 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2021 (unsigned long long) val64);
2022 return FAILURE;
2023 }
2024
20346722 2025 /*
1da177e4 2026 * With some switches, link might be already up at this point.
20346722
K
2027 * Because of this weird behavior, when we enable laser,
2028 * we may not get link. We need to handle this. We cannot
2029 * figure out which switch is misbehaving. So we are forced to
2030 * make a global change.
1da177e4
LT
2031 */
2032
2033 /* Enabling Laser. */
2034 val64 = readq(&bar0->adapter_control);
2035 val64 |= ADAPTER_EOI_TX_ON;
2036 writeq(val64, &bar0->adapter_control);
2037
c92ca04b
AR
2038 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2039 /*
2040 * Dont see link state interrupts initally on some switches,
2041 * so directly scheduling the link state task here.
2042 */
2043 schedule_work(&nic->set_link_task);
2044 }
1da177e4
LT
2045 /* SXE-002: Initialize link and activity LED */
2046 subid = nic->pdev->subsystem_device;
541ae68f
K
2047 if (((subid & 0xFF) >= 0x07) &&
2048 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2049 val64 = readq(&bar0->gpio_control);
2050 val64 |= 0x0000800000000000ULL;
2051 writeq(val64, &bar0->gpio_control);
2052 val64 = 0x0411040400000000ULL;
509a2671 2053 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2054 }
2055
1da177e4
LT
2056 return SUCCESS;
2057}
fed5eccd
AR
2058/**
2059 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2060 */
1ee6dd77
RB
2061static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2062 TxD *txdlp, int get_off)
fed5eccd 2063{
1ee6dd77 2064 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2065 struct sk_buff *skb;
1ee6dd77 2066 struct TxD *txds;
fed5eccd
AR
2067 u16 j, frg_cnt;
2068
2069 txds = txdlp;
26b7625c 2070 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
fed5eccd
AR
2071 pci_unmap_single(nic->pdev, (dma_addr_t)
2072 txds->Buffer_Pointer, sizeof(u64),
2073 PCI_DMA_TODEVICE);
2074 txds++;
2075 }
2076
2077 skb = (struct sk_buff *) ((unsigned long)
2078 txds->Host_Control);
2079 if (!skb) {
1ee6dd77 2080 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2081 return NULL;
2082 }
2083 pci_unmap_single(nic->pdev, (dma_addr_t)
2084 txds->Buffer_Pointer,
2085 skb->len - skb->data_len,
2086 PCI_DMA_TODEVICE);
2087 frg_cnt = skb_shinfo(skb)->nr_frags;
2088 if (frg_cnt) {
2089 txds++;
2090 for (j = 0; j < frg_cnt; j++, txds++) {
2091 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2092 if (!txds->Buffer_Pointer)
2093 break;
6aa20a22 2094 pci_unmap_page(nic->pdev, (dma_addr_t)
fed5eccd
AR
2095 txds->Buffer_Pointer,
2096 frag->size, PCI_DMA_TODEVICE);
2097 }
2098 }
1ee6dd77 2099 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2100 return(skb);
2101}
1da177e4 2102
20346722
K
2103/**
2104 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2105 * @nic : device private variable.
20346722 2106 * Description:
1da177e4 2107 * Free all queued Tx buffers.
20346722 2108 * Return Value: void
1da177e4
LT
2109*/
2110
2111static void free_tx_buffers(struct s2io_nic *nic)
2112{
2113 struct net_device *dev = nic->dev;
2114 struct sk_buff *skb;
1ee6dd77 2115 struct TxD *txdp;
1da177e4 2116 int i, j;
1ee6dd77 2117 struct mac_info *mac_control;
1da177e4 2118 struct config_param *config;
fed5eccd 2119 int cnt = 0;
1da177e4
LT
2120
2121 mac_control = &nic->mac_control;
2122 config = &nic->config;
2123
2124 for (i = 0; i < config->tx_fifo_num; i++) {
2125 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
1ee6dd77 2126 txdp = (struct TxD *) mac_control->fifos[i].list_info[j].
1da177e4 2127 list_virt_addr;
fed5eccd
AR
2128 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2129 if (skb) {
2130 dev_kfree_skb(skb);
2131 cnt++;
1da177e4 2132 }
1da177e4
LT
2133 }
2134 DBG_PRINT(INTR_DBG,
2135 "%s:forcibly freeing %d skbs on FIFO%d\n",
2136 dev->name, cnt, i);
20346722
K
2137 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2138 mac_control->fifos[i].tx_curr_put_info.offset = 0;
1da177e4
LT
2139 }
2140}
2141
20346722
K
2142/**
2143 * stop_nic - To stop the nic
1da177e4 2144 * @nic ; device private variable.
20346722
K
2145 * Description:
2146 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2147 * function does. This function is called to stop the device.
2148 * Return Value:
2149 * void.
2150 */
2151
2152static void stop_nic(struct s2io_nic *nic)
2153{
1ee6dd77 2154 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2155 register u64 val64 = 0;
5d3213cc 2156 u16 interruptible;
1ee6dd77 2157 struct mac_info *mac_control;
1da177e4
LT
2158 struct config_param *config;
2159
2160 mac_control = &nic->mac_control;
2161 config = &nic->config;
2162
2163 /* Disable all interrupts */
e960fc5c 2164 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
a371a07d
K
2165 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2166 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1da177e4
LT
2167 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2168
5d3213cc
AR
2169 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2170 val64 = readq(&bar0->adapter_control);
2171 val64 &= ~(ADAPTER_CNTL_EN);
2172 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2173}
2174
1ee6dd77
RB
2175static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2176 sk_buff *skb)
da6971d8
AR
2177{
2178 struct net_device *dev = nic->dev;
2179 struct sk_buff *frag_list;
50eb8006 2180 void *tmp;
da6971d8
AR
2181
2182 /* Buffer-1 receives L3/L4 headers */
1ee6dd77 2183 ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
da6971d8
AR
2184 (nic->pdev, skb->data, l3l4hdr_size + 4,
2185 PCI_DMA_FROMDEVICE);
2186
2187 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2188 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2189 if (skb_shinfo(skb)->frag_list == NULL) {
2190 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2191 return -ENOMEM ;
2192 }
2193 frag_list = skb_shinfo(skb)->frag_list;
372cc597 2194 skb->truesize += frag_list->truesize;
da6971d8 2195 frag_list->next = NULL;
50eb8006
JG
2196 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2197 frag_list->data = tmp;
27a884dc 2198 skb_reset_tail_pointer(frag_list);
da6971d8
AR
2199
2200 /* Buffer-2 receives L4 data payload */
1ee6dd77 2201 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
da6971d8
AR
2202 frag_list->data, dev->mtu,
2203 PCI_DMA_FROMDEVICE);
2204 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2205 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2206
2207 return SUCCESS;
2208}
2209
20346722
K
2210/**
2211 * fill_rx_buffers - Allocates the Rx side skbs
1da177e4 2212 * @nic: device private variable
20346722
K
2213 * @ring_no: ring number
2214 * Description:
1da177e4
LT
2215 * The function allocates Rx side skbs and puts the physical
2216 * address of these buffers into the RxD buffer pointers, so that the NIC
2217 * can DMA the received frame into these locations.
2218 * The NIC supports 3 receive modes, viz
2219 * 1. single buffer,
2220 * 2. three buffer and
2221 * 3. Five buffer modes.
20346722
K
2222 * Each mode defines how many fragments the received frame will be split
2223 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2224 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2225 * is split into 3 fragments. As of now only single buffer mode is
2226 * supported.
2227 * Return Value:
2228 * SUCCESS on success or an appropriate -ve value on failure.
2229 */
2230
ac1f60db 2231static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
1da177e4
LT
2232{
2233 struct net_device *dev = nic->dev;
2234 struct sk_buff *skb;
1ee6dd77 2235 struct RxD_t *rxdp;
1da177e4 2236 int off, off1, size, block_no, block_no1;
1da177e4 2237 u32 alloc_tab = 0;
20346722 2238 u32 alloc_cnt;
1ee6dd77 2239 struct mac_info *mac_control;
1da177e4 2240 struct config_param *config;
20346722 2241 u64 tmp;
1ee6dd77 2242 struct buffAdd *ba;
1da177e4 2243 unsigned long flags;
1ee6dd77 2244 struct RxD_t *first_rxdp = NULL;
363dc367 2245 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
1da177e4
LT
2246
2247 mac_control = &nic->mac_control;
2248 config = &nic->config;
20346722
K
2249 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2250 atomic_read(&nic->rx_bufs_left[ring_no]);
1da177e4 2251
5d3213cc 2252 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
863c11a9 2253 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
1da177e4 2254 while (alloc_tab < alloc_cnt) {
20346722 2255 block_no = mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2256 block_index;
20346722 2257 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
1da177e4 2258
da6971d8
AR
2259 rxdp = mac_control->rings[ring_no].
2260 rx_blocks[block_no].rxds[off].virt_addr;
2261
2262 if ((block_no == block_no1) && (off == off1) &&
2263 (rxdp->Host_Control)) {
2264 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2265 dev->name);
1da177e4
LT
2266 DBG_PRINT(INTR_DBG, " info equated\n");
2267 goto end;
2268 }
da6971d8 2269 if (off && (off == rxd_count[nic->rxd_mode])) {
20346722 2270 mac_control->rings[ring_no].rx_curr_put_info.
1da177e4 2271 block_index++;
da6971d8
AR
2272 if (mac_control->rings[ring_no].rx_curr_put_info.
2273 block_index == mac_control->rings[ring_no].
2274 block_count)
2275 mac_control->rings[ring_no].rx_curr_put_info.
2276 block_index = 0;
2277 block_no = mac_control->rings[ring_no].
2278 rx_curr_put_info.block_index;
2279 if (off == rxd_count[nic->rxd_mode])
2280 off = 0;
20346722 2281 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8
AR
2282 offset = off;
2283 rxdp = mac_control->rings[ring_no].
2284 rx_blocks[block_no].block_virt_addr;
1da177e4
LT
2285 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2286 dev->name, rxdp);
2287 }
db874e65
SS
2288 if(!napi) {
2289 spin_lock_irqsave(&nic->put_lock, flags);
2290 mac_control->rings[ring_no].put_pos =
2291 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2292 spin_unlock_irqrestore(&nic->put_lock, flags);
2293 } else {
2294 mac_control->rings[ring_no].put_pos =
2295 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2296 }
da6971d8
AR
2297 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2298 ((nic->rxd_mode >= RXD_MODE_3A) &&
2299 (rxdp->Control_2 & BIT(0)))) {
20346722 2300 mac_control->rings[ring_no].rx_curr_put_info.
da6971d8 2301 offset = off;
1da177e4
LT
2302 goto end;
2303 }
da6971d8
AR
2304 /* calculate size of skb based on ring mode */
2305 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2306 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2307 if (nic->rxd_mode == RXD_MODE_1)
2308 size += NET_IP_ALIGN;
2309 else if (nic->rxd_mode == RXD_MODE_3B)
2310 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2311 else
2312 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2313
da6971d8
AR
2314 /* allocate skb */
2315 skb = dev_alloc_skb(size);
2316 if(!skb) {
1da177e4
LT
2317 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2318 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
303bcb4b
K
2319 if (first_rxdp) {
2320 wmb();
2321 first_rxdp->Control_1 |= RXD_OWN_XENA;
2322 }
da6971d8
AR
2323 return -ENOMEM ;
2324 }
2325 if (nic->rxd_mode == RXD_MODE_1) {
2326 /* 1 buffer mode - normal operation mode */
1ee6dd77 2327 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2328 skb_reserve(skb, NET_IP_ALIGN);
1ee6dd77 2329 ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
863c11a9
AR
2330 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2331 PCI_DMA_FROMDEVICE);
2332 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
da6971d8
AR
2333
2334 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2335 /*
2336 * 2 or 3 buffer mode -
2337 * Both 2 buffer mode and 3 buffer mode provides 128
2338 * byte aligned receive buffers.
2339 *
2340 * 3 buffer mode provides header separation where in
2341 * skb->data will have L3/L4 headers where as
2342 * skb_shinfo(skb)->frag_list will have the L4 data
2343 * payload
2344 */
2345
363dc367
RV
2346 /* save the buffer pointers to avoid frequent dma mapping */
2347 Buffer0_ptr = ((struct RxD3*)rxdp)->Buffer0_ptr;
2348 Buffer1_ptr = ((struct RxD3*)rxdp)->Buffer1_ptr;
1ee6dd77 2349 memset(rxdp, 0, sizeof(struct RxD3));
363dc367
RV
2350 /* restore the buffer pointers for dma sync*/
2351 ((struct RxD3*)rxdp)->Buffer0_ptr = Buffer0_ptr;
2352 ((struct RxD3*)rxdp)->Buffer1_ptr = Buffer1_ptr;
2353
da6971d8
AR
2354 ba = &mac_control->rings[ring_no].ba[block_no][off];
2355 skb_reserve(skb, BUF0_LEN);
2356 tmp = (u64)(unsigned long) skb->data;
2357 tmp += ALIGN_SIZE;
2358 tmp &= ~ALIGN_SIZE;
2359 skb->data = (void *) (unsigned long)tmp;
27a884dc 2360 skb_reset_tail_pointer(skb);
da6971d8 2361
1ee6dd77
RB
2362 if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2363 ((struct RxD3*)rxdp)->Buffer0_ptr =
75c30b13 2364 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
da6971d8 2365 PCI_DMA_FROMDEVICE);
75c30b13
AR
2366 else
2367 pci_dma_sync_single_for_device(nic->pdev,
1ee6dd77 2368 (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
75c30b13 2369 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8
AR
2370 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2371 if (nic->rxd_mode == RXD_MODE_3B) {
2372 /* Two buffer mode */
2373
2374 /*
6aa20a22 2375 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2376 * L4 payload
2377 */
1ee6dd77 2378 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
da6971d8
AR
2379 (nic->pdev, skb->data, dev->mtu + 4,
2380 PCI_DMA_FROMDEVICE);
2381
75c30b13 2382 /* Buffer-1 will be dummy buffer. Not used */
1ee6dd77
RB
2383 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2384 ((struct RxD3*)rxdp)->Buffer1_ptr =
6aa20a22 2385 pci_map_single(nic->pdev,
75c30b13
AR
2386 ba->ba_1, BUF1_LEN,
2387 PCI_DMA_FROMDEVICE);
2388 }
da6971d8
AR
2389 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2390 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2391 (dev->mtu + 4);
2392 } else {
2393 /* 3 buffer mode */
2394 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2395 dev_kfree_skb_irq(skb);
2396 if (first_rxdp) {
2397 wmb();
2398 first_rxdp->Control_1 |=
2399 RXD_OWN_XENA;
2400 }
2401 return -ENOMEM ;
2402 }
2403 }
2404 rxdp->Control_2 |= BIT(0);
1da177e4 2405 }
1da177e4 2406 rxdp->Host_Control = (unsigned long) (skb);
303bcb4b
K
2407 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2408 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2409 off++;
da6971d8
AR
2410 if (off == (rxd_count[nic->rxd_mode] + 1))
2411 off = 0;
20346722 2412 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
20346722 2413
da6971d8 2414 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2415 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2416 if (first_rxdp) {
2417 wmb();
2418 first_rxdp->Control_1 |= RXD_OWN_XENA;
2419 }
2420 first_rxdp = rxdp;
2421 }
1da177e4
LT
2422 atomic_inc(&nic->rx_bufs_left[ring_no]);
2423 alloc_tab++;
2424 }
2425
2426 end:
303bcb4b
K
2427 /* Transfer ownership of first descriptor to adapter just before
2428 * exiting. Before that, use memory barrier so that ownership
2429 * and other fields are seen by adapter correctly.
2430 */
2431 if (first_rxdp) {
2432 wmb();
2433 first_rxdp->Control_1 |= RXD_OWN_XENA;
2434 }
2435
1da177e4
LT
2436 return SUCCESS;
2437}
2438
da6971d8
AR
2439static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2440{
2441 struct net_device *dev = sp->dev;
2442 int j;
2443 struct sk_buff *skb;
1ee6dd77
RB
2444 struct RxD_t *rxdp;
2445 struct mac_info *mac_control;
2446 struct buffAdd *ba;
da6971d8
AR
2447
2448 mac_control = &sp->mac_control;
2449 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2450 rxdp = mac_control->rings[ring_no].
2451 rx_blocks[blk].rxds[j].virt_addr;
2452 skb = (struct sk_buff *)
2453 ((unsigned long) rxdp->Host_Control);
2454 if (!skb) {
2455 continue;
2456 }
2457 if (sp->rxd_mode == RXD_MODE_1) {
2458 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2459 ((struct RxD1*)rxdp)->Buffer0_ptr,
da6971d8
AR
2460 dev->mtu +
2461 HEADER_ETHERNET_II_802_3_SIZE
2462 + HEADER_802_2_SIZE +
2463 HEADER_SNAP_SIZE,
2464 PCI_DMA_FROMDEVICE);
1ee6dd77 2465 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8
AR
2466 } else if(sp->rxd_mode == RXD_MODE_3B) {
2467 ba = &mac_control->rings[ring_no].
2468 ba[blk][j];
2469 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2470 ((struct RxD3*)rxdp)->Buffer0_ptr,
da6971d8
AR
2471 BUF0_LEN,
2472 PCI_DMA_FROMDEVICE);
2473 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2474 ((struct RxD3*)rxdp)->Buffer1_ptr,
da6971d8
AR
2475 BUF1_LEN,
2476 PCI_DMA_FROMDEVICE);
2477 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2478 ((struct RxD3*)rxdp)->Buffer2_ptr,
da6971d8
AR
2479 dev->mtu + 4,
2480 PCI_DMA_FROMDEVICE);
1ee6dd77 2481 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8
AR
2482 } else {
2483 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2484 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
da6971d8
AR
2485 PCI_DMA_FROMDEVICE);
2486 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2487 ((struct RxD3*)rxdp)->Buffer1_ptr,
da6971d8
AR
2488 l3l4hdr_size + 4,
2489 PCI_DMA_FROMDEVICE);
2490 pci_unmap_single(sp->pdev, (dma_addr_t)
1ee6dd77 2491 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
da6971d8 2492 PCI_DMA_FROMDEVICE);
1ee6dd77 2493 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8
AR
2494 }
2495 dev_kfree_skb(skb);
2496 atomic_dec(&sp->rx_bufs_left[ring_no]);
2497 }
2498}
2499
1da177e4 2500/**
20346722 2501 * free_rx_buffers - Frees all Rx buffers
1da177e4 2502 * @sp: device private variable.
20346722 2503 * Description:
1da177e4
LT
2504 * This function will free all Rx buffers allocated by host.
2505 * Return Value:
2506 * NONE.
2507 */
2508
2509static void free_rx_buffers(struct s2io_nic *sp)
2510{
2511 struct net_device *dev = sp->dev;
da6971d8 2512 int i, blk = 0, buf_cnt = 0;
1ee6dd77 2513 struct mac_info *mac_control;
1da177e4 2514 struct config_param *config;
1da177e4
LT
2515
2516 mac_control = &sp->mac_control;
2517 config = &sp->config;
2518
2519 for (i = 0; i < config->rx_ring_num; i++) {
da6971d8
AR
2520 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2521 free_rxd_blk(sp,i,blk);
1da177e4 2522
20346722
K
2523 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2524 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2525 mac_control->rings[i].rx_curr_put_info.offset = 0;
2526 mac_control->rings[i].rx_curr_get_info.offset = 0;
1da177e4
LT
2527 atomic_set(&sp->rx_bufs_left[i], 0);
2528 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2529 dev->name, buf_cnt, i);
2530 }
2531}
2532
2533/**
2534 * s2io_poll - Rx interrupt handler for NAPI support
2535 * @dev : pointer to the device structure.
20346722 2536 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2537 * during one pass through the 'Poll" function.
2538 * Description:
2539 * Comes into picture only if NAPI support has been incorporated. It does
2540 * the same thing that rx_intr_handler does, but not in a interrupt context
2541 * also It will process only a given number of packets.
2542 * Return value:
2543 * 0 on success and 1 if there are No Rx packets to be processed.
2544 */
2545
1da177e4
LT
2546static int s2io_poll(struct net_device *dev, int *budget)
2547{
1ee6dd77 2548 struct s2io_nic *nic = dev->priv;
20346722 2549 int pkt_cnt = 0, org_pkts_to_process;
1ee6dd77 2550 struct mac_info *mac_control;
1da177e4 2551 struct config_param *config;
1ee6dd77 2552 struct XENA_dev_config __iomem *bar0 = nic->bar0;
20346722 2553 int i;
1da177e4 2554
7ba013ac 2555 atomic_inc(&nic->isr_cnt);
1da177e4
LT
2556 mac_control = &nic->mac_control;
2557 config = &nic->config;
2558
20346722
K
2559 nic->pkts_to_process = *budget;
2560 if (nic->pkts_to_process > dev->quota)
2561 nic->pkts_to_process = dev->quota;
2562 org_pkts_to_process = nic->pkts_to_process;
1da177e4 2563
19a60522
SS
2564 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2565 readl(&bar0->rx_traffic_int);
1da177e4
LT
2566
2567 for (i = 0; i < config->rx_ring_num; i++) {
20346722
K
2568 rx_intr_handler(&mac_control->rings[i]);
2569 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2570 if (!nic->pkts_to_process) {
2571 /* Quota for the current iteration has been met */
2572 goto no_rx;
1da177e4 2573 }
1da177e4
LT
2574 }
2575 if (!pkt_cnt)
2576 pkt_cnt = 1;
2577
2578 dev->quota -= pkt_cnt;
2579 *budget -= pkt_cnt;
2580 netif_rx_complete(dev);
2581
2582 for (i = 0; i < config->rx_ring_num; i++) {
2583 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2584 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2585 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2586 break;
2587 }
2588 }
2589 /* Re enable the Rx interrupts. */
c92ca04b 2590 writeq(0x0, &bar0->rx_traffic_mask);
19a60522 2591 readl(&bar0->rx_traffic_mask);
7ba013ac 2592 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2593 return 0;
2594
20346722 2595no_rx:
1da177e4
LT
2596 dev->quota -= pkt_cnt;
2597 *budget -= pkt_cnt;
2598
2599 for (i = 0; i < config->rx_ring_num; i++) {
2600 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2601 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2602 DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2603 break;
2604 }
2605 }
7ba013ac 2606 atomic_dec(&nic->isr_cnt);
1da177e4
LT
2607 return 1;
2608}
20346722 2609
b41477f3 2610#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2611/**
b41477f3 2612 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2613 * @dev : pointer to the device structure.
2614 * Description:
b41477f3
AR
2615 * This function will be called by upper layer to check for events on the
2616 * interface in situations where interrupts are disabled. It is used for
2617 * specific in-kernel networking tasks, such as remote consoles and kernel
2618 * debugging over the network (example netdump in RedHat).
612eff0e 2619 */
612eff0e
BH
2620static void s2io_netpoll(struct net_device *dev)
2621{
1ee6dd77
RB
2622 struct s2io_nic *nic = dev->priv;
2623 struct mac_info *mac_control;
612eff0e 2624 struct config_param *config;
1ee6dd77 2625 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2626 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e
BH
2627 int i;
2628
2629 disable_irq(dev->irq);
2630
2631 atomic_inc(&nic->isr_cnt);
2632 mac_control = &nic->mac_control;
2633 config = &nic->config;
2634
612eff0e 2635 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2636 writeq(val64, &bar0->tx_traffic_int);
2637
6aa20a22 2638 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2639 * run out of skbs and will fail and eventually netpoll application such
2640 * as netdump will fail.
2641 */
2642 for (i = 0; i < config->tx_fifo_num; i++)
2643 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2644
b41477f3 2645 /* check for received packet and indicate up to network */
612eff0e
BH
2646 for (i = 0; i < config->rx_ring_num; i++)
2647 rx_intr_handler(&mac_control->rings[i]);
2648
2649 for (i = 0; i < config->rx_ring_num; i++) {
2650 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2651 DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2652 DBG_PRINT(ERR_DBG, " in Rx Netpoll!!\n");
2653 break;
2654 }
2655 }
2656 atomic_dec(&nic->isr_cnt);
2657 enable_irq(dev->irq);
2658 return;
2659}
2660#endif
2661
20346722 2662/**
1da177e4
LT
2663 * rx_intr_handler - Rx interrupt handler
2664 * @nic: device private variable.
20346722
K
2665 * Description:
2666 * If the interrupt is because of a received frame or if the
1da177e4 2667 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2668 * called. It picks out the RxD at which place the last Rx processing had
2669 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2670 * the offset.
2671 * Return Value:
2672 * NONE.
2673 */
1ee6dd77 2674static void rx_intr_handler(struct ring_info *ring_data)
1da177e4 2675{
1ee6dd77 2676 struct s2io_nic *nic = ring_data->nic;
1da177e4 2677 struct net_device *dev = (struct net_device *) nic->dev;
da6971d8 2678 int get_block, put_block, put_offset;
1ee6dd77
RB
2679 struct rx_curr_get_info get_info, put_info;
2680 struct RxD_t *rxdp;
1da177e4 2681 struct sk_buff *skb;
20346722 2682 int pkt_cnt = 0;
7d3d0439
RA
2683 int i;
2684
7ba013ac
K
2685 spin_lock(&nic->rx_lock);
2686 if (atomic_read(&nic->card_state) == CARD_DOWN) {
776bd20f 2687 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
7ba013ac
K
2688 __FUNCTION__, dev->name);
2689 spin_unlock(&nic->rx_lock);
776bd20f 2690 return;
7ba013ac
K
2691 }
2692
20346722
K
2693 get_info = ring_data->rx_curr_get_info;
2694 get_block = get_info.block_index;
1ee6dd77 2695 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2696 put_block = put_info.block_index;
da6971d8 2697 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65
SS
2698 if (!napi) {
2699 spin_lock(&nic->put_lock);
2700 put_offset = ring_data->put_pos;
2701 spin_unlock(&nic->put_lock);
2702 } else
2703 put_offset = ring_data->put_pos;
2704
da6971d8 2705 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2706 /*
2707 * If your are next to put index then it's
2708 * FIFO full condition
2709 */
da6971d8
AR
2710 if ((get_block == put_block) &&
2711 (get_info.offset + 1) == put_info.offset) {
75c30b13 2712 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
da6971d8
AR
2713 break;
2714 }
20346722
K
2715 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2716 if (skb == NULL) {
2717 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2718 dev->name);
2719 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
7ba013ac 2720 spin_unlock(&nic->rx_lock);
20346722 2721 return;
1da177e4 2722 }
da6971d8
AR
2723 if (nic->rxd_mode == RXD_MODE_1) {
2724 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2725 ((struct RxD1*)rxdp)->Buffer0_ptr,
20346722
K
2726 dev->mtu +
2727 HEADER_ETHERNET_II_802_3_SIZE +
2728 HEADER_802_2_SIZE +
2729 HEADER_SNAP_SIZE,
2730 PCI_DMA_FROMDEVICE);
da6971d8 2731 } else if (nic->rxd_mode == RXD_MODE_3B) {
75c30b13 2732 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
1ee6dd77 2733 ((struct RxD3*)rxdp)->Buffer0_ptr,
20346722 2734 BUF0_LEN, PCI_DMA_FROMDEVICE);
da6971d8 2735 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2736 ((struct RxD3*)rxdp)->Buffer2_ptr,
da6971d8 2737 dev->mtu + 4,
20346722 2738 PCI_DMA_FROMDEVICE);
da6971d8 2739 } else {
75c30b13 2740 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
1ee6dd77 2741 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
da6971d8
AR
2742 PCI_DMA_FROMDEVICE);
2743 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2744 ((struct RxD3*)rxdp)->Buffer1_ptr,
da6971d8
AR
2745 l3l4hdr_size + 4,
2746 PCI_DMA_FROMDEVICE);
2747 pci_unmap_single(nic->pdev, (dma_addr_t)
1ee6dd77 2748 ((struct RxD3*)rxdp)->Buffer2_ptr,
da6971d8
AR
2749 dev->mtu, PCI_DMA_FROMDEVICE);
2750 }
863c11a9 2751 prefetch(skb->data);
20346722
K
2752 rx_osm_handler(ring_data, rxdp);
2753 get_info.offset++;
da6971d8
AR
2754 ring_data->rx_curr_get_info.offset = get_info.offset;
2755 rxdp = ring_data->rx_blocks[get_block].
2756 rxds[get_info.offset].virt_addr;
2757 if (get_info.offset == rxd_count[nic->rxd_mode]) {
20346722 2758 get_info.offset = 0;
da6971d8 2759 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 2760 get_block++;
da6971d8
AR
2761 if (get_block == ring_data->block_count)
2762 get_block = 0;
2763 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
2764 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2765 }
1da177e4 2766
20346722 2767 nic->pkts_to_process -= 1;
db874e65 2768 if ((napi) && (!nic->pkts_to_process))
20346722 2769 break;
20346722 2770 pkt_cnt++;
1da177e4
LT
2771 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2772 break;
2773 }
7d3d0439
RA
2774 if (nic->lro) {
2775 /* Clear all LRO sessions before exiting */
2776 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 2777 struct lro *lro = &nic->lro0_n[i];
7d3d0439
RA
2778 if (lro->in_use) {
2779 update_L3L4_header(nic, lro);
2780 queue_rx_frame(lro->parent);
2781 clear_lro_session(lro);
2782 }
2783 }
2784 }
2785
7ba013ac 2786 spin_unlock(&nic->rx_lock);
1da177e4 2787}
20346722
K
2788
2789/**
1da177e4
LT
2790 * tx_intr_handler - Transmit interrupt handler
2791 * @nic : device private variable
20346722
K
2792 * Description:
2793 * If an interrupt was raised to indicate DMA complete of the
2794 * Tx packet, this function is called. It identifies the last TxD
2795 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
2796 * DMA'ed into the NICs internal memory.
2797 * Return Value:
2798 * NONE
2799 */
2800
1ee6dd77 2801static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 2802{
1ee6dd77 2803 struct s2io_nic *nic = fifo_data->nic;
1da177e4 2804 struct net_device *dev = (struct net_device *) nic->dev;
1ee6dd77 2805 struct tx_curr_get_info get_info, put_info;
1da177e4 2806 struct sk_buff *skb;
1ee6dd77 2807 struct TxD *txdlp;
1da177e4 2808
20346722 2809 get_info = fifo_data->tx_curr_get_info;
1ee6dd77
RB
2810 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2811 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
20346722
K
2812 list_virt_addr;
2813 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2814 (get_info.offset != put_info.offset) &&
2815 (txdlp->Host_Control)) {
2816 /* Check for TxD errors */
2817 if (txdlp->Control_1 & TXD_T_CODE) {
2818 unsigned long long err;
2819 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0
AR
2820 if (err & 0x1) {
2821 nic->mac_control.stats_info->sw_stat.
2822 parity_err_cnt++;
2823 }
776bd20f 2824 if ((err >> 48) == 0xA) {
2825 DBG_PRINT(TX_DBG, "TxD returned due \
19a60522 2826 to loss of link\n");
776bd20f 2827 }
2828 else {
19a60522 2829 DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err);
776bd20f 2830 }
20346722 2831 }
1da177e4 2832
fed5eccd 2833 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722
K
2834 if (skb == NULL) {
2835 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2836 __FUNCTION__);
2837 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2838 return;
2839 }
2840
20346722 2841 /* Updating the statistics block */
20346722
K
2842 nic->stats.tx_bytes += skb->len;
2843 dev_kfree_skb_irq(skb);
2844
2845 get_info.offset++;
863c11a9
AR
2846 if (get_info.offset == get_info.fifo_len + 1)
2847 get_info.offset = 0;
1ee6dd77 2848 txdlp = (struct TxD *) fifo_data->list_info
20346722
K
2849 [get_info.offset].list_virt_addr;
2850 fifo_data->tx_curr_get_info.offset =
2851 get_info.offset;
1da177e4
LT
2852 }
2853
2854 spin_lock(&nic->tx_lock);
2855 if (netif_queue_stopped(dev))
2856 netif_wake_queue(dev);
2857 spin_unlock(&nic->tx_lock);
2858}
2859
bd1034f0
AR
2860/**
2861 * s2io_mdio_write - Function to write in to MDIO registers
2862 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2863 * @addr : address value
2864 * @value : data value
2865 * @dev : pointer to net_device structure
2866 * Description:
2867 * This function is used to write values to the MDIO registers
2868 * NONE
2869 */
2870static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2871{
2872 u64 val64 = 0x0;
1ee6dd77
RB
2873 struct s2io_nic *sp = dev->priv;
2874 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
2875
2876 //address transaction
2877 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2878 | MDIO_MMD_DEV_ADDR(mmd_type)
2879 | MDIO_MMS_PRT_ADDR(0x0);
2880 writeq(val64, &bar0->mdio_control);
2881 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2882 writeq(val64, &bar0->mdio_control);
2883 udelay(100);
2884
2885 //Data transaction
2886 val64 = 0x0;
2887 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2888 | MDIO_MMD_DEV_ADDR(mmd_type)
2889 | MDIO_MMS_PRT_ADDR(0x0)
2890 | MDIO_MDIO_DATA(value)
2891 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2892 writeq(val64, &bar0->mdio_control);
2893 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2894 writeq(val64, &bar0->mdio_control);
2895 udelay(100);
2896
2897 val64 = 0x0;
2898 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2899 | MDIO_MMD_DEV_ADDR(mmd_type)
2900 | MDIO_MMS_PRT_ADDR(0x0)
2901 | MDIO_OP(MDIO_OP_READ_TRANS);
2902 writeq(val64, &bar0->mdio_control);
2903 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2904 writeq(val64, &bar0->mdio_control);
2905 udelay(100);
2906
2907}
2908
2909/**
2910 * s2io_mdio_read - Function to write in to MDIO registers
2911 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2912 * @addr : address value
2913 * @dev : pointer to net_device structure
2914 * Description:
2915 * This function is used to read values to the MDIO registers
2916 * NONE
2917 */
2918static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2919{
2920 u64 val64 = 0x0;
2921 u64 rval64 = 0x0;
1ee6dd77
RB
2922 struct s2io_nic *sp = dev->priv;
2923 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
2924
2925 /* address transaction */
2926 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2927 | MDIO_MMD_DEV_ADDR(mmd_type)
2928 | MDIO_MMS_PRT_ADDR(0x0);
2929 writeq(val64, &bar0->mdio_control);
2930 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2931 writeq(val64, &bar0->mdio_control);
2932 udelay(100);
2933
2934 /* Data transaction */
2935 val64 = 0x0;
2936 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2937 | MDIO_MMD_DEV_ADDR(mmd_type)
2938 | MDIO_MMS_PRT_ADDR(0x0)
2939 | MDIO_OP(MDIO_OP_READ_TRANS);
2940 writeq(val64, &bar0->mdio_control);
2941 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2942 writeq(val64, &bar0->mdio_control);
2943 udelay(100);
2944
2945 /* Read the value from regs */
2946 rval64 = readq(&bar0->mdio_control);
2947 rval64 = rval64 & 0xFFFF0000;
2948 rval64 = rval64 >> 16;
2949 return rval64;
2950}
2951/**
2952 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2953 * @counter : couter value to be updated
2954 * @flag : flag to indicate the status
2955 * @type : counter type
2956 * Description:
2957 * This function is to check the status of the xpak counters value
2958 * NONE
2959 */
2960
2961static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2962{
2963 u64 mask = 0x3;
2964 u64 val64;
2965 int i;
2966 for(i = 0; i <index; i++)
2967 mask = mask << 0x2;
2968
2969 if(flag > 0)
2970 {
2971 *counter = *counter + 1;
2972 val64 = *regs_stat & mask;
2973 val64 = val64 >> (index * 0x2);
2974 val64 = val64 + 1;
2975 if(val64 == 3)
2976 {
2977 switch(type)
2978 {
2979 case 1:
2980 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2981 "service. Excessive temperatures may "
2982 "result in premature transceiver "
2983 "failure \n");
2984 break;
2985 case 2:
2986 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2987 "service Excessive bias currents may "
2988 "indicate imminent laser diode "
2989 "failure \n");
2990 break;
2991 case 3:
2992 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2993 "service Excessive laser output "
2994 "power may saturate far-end "
2995 "receiver\n");
2996 break;
2997 default:
2998 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
2999 "type \n");
3000 }
3001 val64 = 0x0;
3002 }
3003 val64 = val64 << (index * 0x2);
3004 *regs_stat = (*regs_stat & (~mask)) | (val64);
3005
3006 } else {
3007 *regs_stat = *regs_stat & (~mask);
3008 }
3009}
3010
3011/**
3012 * s2io_updt_xpak_counter - Function to update the xpak counters
3013 * @dev : pointer to net_device struct
3014 * Description:
3015 * This function is to upate the status of the xpak counters value
3016 * NONE
3017 */
3018static void s2io_updt_xpak_counter(struct net_device *dev)
3019{
3020 u16 flag = 0x0;
3021 u16 type = 0x0;
3022 u16 val16 = 0x0;
3023 u64 val64 = 0x0;
3024 u64 addr = 0x0;
3025
1ee6dd77
RB
3026 struct s2io_nic *sp = dev->priv;
3027 struct stat_block *stat_info = sp->mac_control.stats_info;
bd1034f0
AR
3028
3029 /* Check the communication with the MDIO slave */
3030 addr = 0x0000;
3031 val64 = 0x0;
3032 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3033 if((val64 == 0xFFFF) || (val64 == 0x0000))
3034 {
3035 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3036 "Returned %llx\n", (unsigned long long)val64);
3037 return;
3038 }
3039
3040 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3041 if(val64 != 0x2040)
3042 {
3043 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3044 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3045 (unsigned long long)val64);
3046 return;
3047 }
3048
3049 /* Loading the DOM register to MDIO register */
3050 addr = 0xA100;
3051 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3052 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3053
3054 /* Reading the Alarm flags */
3055 addr = 0xA070;
3056 val64 = 0x0;
3057 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3058
3059 flag = CHECKBIT(val64, 0x7);
3060 type = 1;
3061 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3062 &stat_info->xpak_stat.xpak_regs_stat,
3063 0x0, flag, type);
3064
3065 if(CHECKBIT(val64, 0x6))
3066 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3067
3068 flag = CHECKBIT(val64, 0x3);
3069 type = 2;
3070 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3071 &stat_info->xpak_stat.xpak_regs_stat,
3072 0x2, flag, type);
3073
3074 if(CHECKBIT(val64, 0x2))
3075 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3076
3077 flag = CHECKBIT(val64, 0x1);
3078 type = 3;
3079 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3080 &stat_info->xpak_stat.xpak_regs_stat,
3081 0x4, flag, type);
3082
3083 if(CHECKBIT(val64, 0x0))
3084 stat_info->xpak_stat.alarm_laser_output_power_low++;
3085
3086 /* Reading the Warning flags */
3087 addr = 0xA074;
3088 val64 = 0x0;
3089 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3090
3091 if(CHECKBIT(val64, 0x7))
3092 stat_info->xpak_stat.warn_transceiver_temp_high++;
3093
3094 if(CHECKBIT(val64, 0x6))
3095 stat_info->xpak_stat.warn_transceiver_temp_low++;
3096
3097 if(CHECKBIT(val64, 0x3))
3098 stat_info->xpak_stat.warn_laser_bias_current_high++;
3099
3100 if(CHECKBIT(val64, 0x2))
3101 stat_info->xpak_stat.warn_laser_bias_current_low++;
3102
3103 if(CHECKBIT(val64, 0x1))
3104 stat_info->xpak_stat.warn_laser_output_power_high++;
3105
3106 if(CHECKBIT(val64, 0x0))
3107 stat_info->xpak_stat.warn_laser_output_power_low++;
3108}
3109
20346722 3110/**
1da177e4
LT
3111 * alarm_intr_handler - Alarm Interrrupt handler
3112 * @nic: device private variable
20346722 3113 * Description: If the interrupt was neither because of Rx packet or Tx
1da177e4 3114 * complete, this function is called. If the interrupt was to indicate
20346722
K
3115 * a loss of link, the OSM link status handler is invoked for any other
3116 * alarm interrupt the block that raised the interrupt is displayed
1da177e4
LT
3117 * and a H/W reset is issued.
3118 * Return Value:
3119 * NONE
3120*/
3121
3122static void alarm_intr_handler(struct s2io_nic *nic)
3123{
3124 struct net_device *dev = (struct net_device *) nic->dev;
1ee6dd77 3125 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 3126 register u64 val64 = 0, err_reg = 0;
bd1034f0
AR
3127 u64 cnt;
3128 int i;
372cc597
SS
3129 if (atomic_read(&nic->card_state) == CARD_DOWN)
3130 return;
bd1034f0
AR
3131 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3132 /* Handling the XPAK counters update */
3133 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3134 /* waiting for an hour */
3135 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3136 } else {
3137 s2io_updt_xpak_counter(dev);
3138 /* reset the count to zero */
3139 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3140 }
1da177e4
LT
3141
3142 /* Handling link status change error Intr */
a371a07d
K
3143 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3144 err_reg = readq(&bar0->mac_rmac_err_reg);
3145 writeq(err_reg, &bar0->mac_rmac_err_reg);
3146 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3147 schedule_work(&nic->set_link_task);
3148 }
1da177e4
LT
3149 }
3150
5e25b9dd
K
3151 /* Handling Ecc errors */
3152 val64 = readq(&bar0->mc_err_reg);
3153 writeq(val64, &bar0->mc_err_reg);
3154 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3155 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
7ba013ac
K
3156 nic->mac_control.stats_info->sw_stat.
3157 double_ecc_errs++;
776bd20f 3158 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
5e25b9dd 3159 dev->name);
776bd20f 3160 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
e960fc5c 3161 if (nic->device_type != XFRAME_II_DEVICE) {
776bd20f 3162 /* Reset XframeI only if critical error */
3163 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3164 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3165 netif_stop_queue(dev);
3166 schedule_work(&nic->rst_timer_task);
bd1034f0
AR
3167 nic->mac_control.stats_info->sw_stat.
3168 soft_reset_cnt++;
776bd20f 3169 }
e960fc5c 3170 }
5e25b9dd 3171 } else {
7ba013ac
K
3172 nic->mac_control.stats_info->sw_stat.
3173 single_ecc_errs++;
5e25b9dd
K
3174 }
3175 }
3176
1da177e4
LT
3177 /* In case of a serious error, the device will be Reset. */
3178 val64 = readq(&bar0->serr_source);
3179 if (val64 & SERR_SOURCE_ANY) {
bd1034f0 3180 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
1da177e4 3181 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
6aa20a22 3182 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
776bd20f 3183 (unsigned long long)val64);
1da177e4
LT
3184 netif_stop_queue(dev);
3185 schedule_work(&nic->rst_timer_task);
bd1034f0 3186 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
3187 }
3188
3189 /*
3190 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3191 * Error occurs, the adapter will be recycled by disabling the
20346722 3192 * adapter enable bit and enabling it again after the device
1da177e4
LT
3193 * becomes Quiescent.
3194 */
3195 val64 = readq(&bar0->pcc_err_reg);
3196 writeq(val64, &bar0->pcc_err_reg);
3197 if (val64 & PCC_FB_ECC_DB_ERR) {
3198 u64 ac = readq(&bar0->adapter_control);
3199 ac &= ~(ADAPTER_CNTL_EN);
3200 writeq(ac, &bar0->adapter_control);
3201 ac = readq(&bar0->adapter_control);
3202 schedule_work(&nic->set_link_task);
3203 }
bd1034f0
AR
3204 /* Check for data parity error */
3205 val64 = readq(&bar0->pic_int_status);
3206 if (val64 & PIC_INT_GPIO) {
3207 val64 = readq(&bar0->gpio_int_reg);
3208 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3209 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3210 schedule_work(&nic->rst_timer_task);
3211 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3212 }
3213 }
3214
3215 /* Check for ring full counter */
3216 if (nic->device_type & XFRAME_II_DEVICE) {
3217 val64 = readq(&bar0->ring_bump_counter1);
3218 for (i=0; i<4; i++) {
3219 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3220 cnt >>= 64 - ((i+1)*16);
3221 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3222 += cnt;
3223 }
3224
3225 val64 = readq(&bar0->ring_bump_counter2);
3226 for (i=0; i<4; i++) {
3227 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3228 cnt >>= 64 - ((i+1)*16);
3229 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3230 += cnt;
3231 }
3232 }
1da177e4
LT
3233
3234 /* Other type of interrupts are not being handled now, TODO */
3235}
3236
20346722 3237/**
1da177e4 3238 * wait_for_cmd_complete - waits for a command to complete.
20346722 3239 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3240 * s2io_nic structure.
20346722
K
3241 * Description: Function that waits for a command to Write into RMAC
3242 * ADDR DATA registers to be completed and returns either success or
3243 * error depending on whether the command was complete or not.
1da177e4
LT
3244 * Return value:
3245 * SUCCESS on success and FAILURE on failure.
3246 */
3247
9fc93a41
SS
3248static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3249 int bit_state)
1da177e4 3250{
9fc93a41 3251 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3252 u64 val64;
3253
9fc93a41
SS
3254 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3255 return FAILURE;
3256
3257 do {
c92ca04b 3258 val64 = readq(addr);
9fc93a41
SS
3259 if (bit_state == S2IO_BIT_RESET) {
3260 if (!(val64 & busy_bit)) {
3261 ret = SUCCESS;
3262 break;
3263 }
3264 } else {
3265 if (!(val64 & busy_bit)) {
3266 ret = SUCCESS;
3267 break;
3268 }
1da177e4 3269 }
c92ca04b
AR
3270
3271 if(in_interrupt())
9fc93a41 3272 mdelay(delay);
c92ca04b 3273 else
9fc93a41 3274 msleep(delay);
c92ca04b 3275
9fc93a41
SS
3276 if (++cnt >= 10)
3277 delay = 50;
3278 } while (cnt < 20);
1da177e4
LT
3279 return ret;
3280}
19a60522
SS
3281/*
3282 * check_pci_device_id - Checks if the device id is supported
3283 * @id : device id
3284 * Description: Function to check if the pci device id is supported by driver.
3285 * Return value: Actual device id if supported else PCI_ANY_ID
3286 */
3287static u16 check_pci_device_id(u16 id)
3288{
3289 switch (id) {
3290 case PCI_DEVICE_ID_HERC_WIN:
3291 case PCI_DEVICE_ID_HERC_UNI:
3292 return XFRAME_II_DEVICE;
3293 case PCI_DEVICE_ID_S2IO_UNI:
3294 case PCI_DEVICE_ID_S2IO_WIN:
3295 return XFRAME_I_DEVICE;
3296 default:
3297 return PCI_ANY_ID;
3298 }
3299}
1da177e4 3300
20346722
K
3301/**
3302 * s2io_reset - Resets the card.
1da177e4
LT
3303 * @sp : private member of the device structure.
3304 * Description: Function to Reset the card. This function then also
20346722 3305 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3306 * the card reset also resets the configuration space.
3307 * Return value:
3308 * void.
3309 */
3310
1ee6dd77 3311static void s2io_reset(struct s2io_nic * sp)
1da177e4 3312{
1ee6dd77 3313 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3314 u64 val64;
5e25b9dd 3315 u16 subid, pci_cmd;
19a60522
SS
3316 int i;
3317 u16 val16;
363dc367 3318 unsigned long long reset_cnt = 0;
19a60522
SS
3319 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3320 __FUNCTION__, sp->dev->name);
1da177e4 3321
0b1f7ebe 3322 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3323 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3324
19a60522
SS
3325 if (sp->device_type == XFRAME_II_DEVICE) {
3326 int ret;
3327 ret = pci_set_power_state(sp->pdev, 3);
3328 if (!ret)
3329 ret = pci_set_power_state(sp->pdev, 0);
3330 else {
3331 DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3332 __FUNCTION__);
3333 goto old_way;
3334 }
3335 msleep(20);
3336 goto new_way;
3337 }
3338old_way:
1da177e4
LT
3339 val64 = SW_RESET_ALL;
3340 writeq(val64, &bar0->sw_reset);
19a60522 3341new_way:
c92ca04b
AR
3342 if (strstr(sp->product_name, "CX4")) {
3343 msleep(750);
3344 }
19a60522
SS
3345 msleep(250);
3346 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3347
19a60522
SS
3348 /* Restore the PCI state saved during initialization. */
3349 pci_restore_state(sp->pdev);
3350 pci_read_config_word(sp->pdev, 0x2, &val16);
3351 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3352 break;
3353 msleep(200);
3354 }
1da177e4 3355
19a60522
SS
3356 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3357 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3358 }
3359
3360 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3361
3362 s2io_init_pci(sp);
1da177e4 3363
20346722
K
3364 /* Set swapper to enable I/O register access */
3365 s2io_set_swapper(sp);
3366
cc6e7c44
RA
3367 /* Restore the MSIX table entries from local variables */
3368 restore_xmsi_data(sp);
3369
5e25b9dd 3370 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3371 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3372 /* Clear "detected parity error" bit */
303bcb4b 3373 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3374
303bcb4b
K
3375 /* Clearing PCIX Ecc status register */
3376 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3377
303bcb4b
K
3378 /* Clearing PCI_STATUS error reflected here */
3379 writeq(BIT(62), &bar0->txpic_int_reg);
3380 }
5e25b9dd 3381
20346722
K
3382 /* Reset device statistics maintained by OS */
3383 memset(&sp->stats, 0, sizeof (struct net_device_stats));
363dc367
RV
3384 /* save reset count */
3385 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3386 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3387 /* restore reset count */
3388 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
20346722 3389
1da177e4
LT
3390 /* SXE-002: Configure link and activity LED to turn it off */
3391 subid = sp->pdev->subsystem_device;
541ae68f
K
3392 if (((subid & 0xFF) >= 0x07) &&
3393 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3394 val64 = readq(&bar0->gpio_control);
3395 val64 |= 0x0000800000000000ULL;
3396 writeq(val64, &bar0->gpio_control);
3397 val64 = 0x0411040400000000ULL;
509a2671 3398 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3399 }
3400
541ae68f
K
3401 /*
3402 * Clear spurious ECC interrupts that would have occured on
3403 * XFRAME II cards after reset.
3404 */
3405 if (sp->device_type == XFRAME_II_DEVICE) {
3406 val64 = readq(&bar0->pcc_err_reg);
3407 writeq(val64, &bar0->pcc_err_reg);
3408 }
3409
d8d70caf
SS
3410 /* restore the previously assigned mac address */
3411 s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3412
1da177e4
LT
3413 sp->device_enabled_once = FALSE;
3414}
3415
3416/**
20346722
K
3417 * s2io_set_swapper - to set the swapper controle on the card
3418 * @sp : private member of the device structure,
1da177e4 3419 * pointer to the s2io_nic structure.
20346722 3420 * Description: Function to set the swapper control on the card
1da177e4
LT
3421 * correctly depending on the 'endianness' of the system.
3422 * Return value:
3423 * SUCCESS on success and FAILURE on failure.
3424 */
3425
1ee6dd77 3426static int s2io_set_swapper(struct s2io_nic * sp)
1da177e4
LT
3427{
3428 struct net_device *dev = sp->dev;
1ee6dd77 3429 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3430 u64 val64, valt, valr;
3431
20346722 3432 /*
1da177e4
LT
3433 * Set proper endian settings and verify the same by reading
3434 * the PIF Feed-back register.
3435 */
3436
3437 val64 = readq(&bar0->pif_rd_swapper_fb);
3438 if (val64 != 0x0123456789ABCDEFULL) {
3439 int i = 0;
3440 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3441 0x8100008181000081ULL, /* FE=1, SE=0 */
3442 0x4200004242000042ULL, /* FE=0, SE=1 */
3443 0}; /* FE=0, SE=0 */
3444
3445 while(i<4) {
3446 writeq(value[i], &bar0->swapper_ctrl);
3447 val64 = readq(&bar0->pif_rd_swapper_fb);
3448 if (val64 == 0x0123456789ABCDEFULL)
3449 break;
3450 i++;
3451 }
3452 if (i == 4) {
3453 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3454 dev->name);
3455 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3456 (unsigned long long) val64);
3457 return FAILURE;
3458 }
3459 valr = value[i];
3460 } else {
3461 valr = readq(&bar0->swapper_ctrl);
3462 }
3463
3464 valt = 0x0123456789ABCDEFULL;
3465 writeq(valt, &bar0->xmsi_address);
3466 val64 = readq(&bar0->xmsi_address);
3467
3468 if(val64 != valt) {
3469 int i = 0;
3470 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3471 0x0081810000818100ULL, /* FE=1, SE=0 */
3472 0x0042420000424200ULL, /* FE=0, SE=1 */
3473 0}; /* FE=0, SE=0 */
3474
3475 while(i<4) {
3476 writeq((value[i] | valr), &bar0->swapper_ctrl);
3477 writeq(valt, &bar0->xmsi_address);
3478 val64 = readq(&bar0->xmsi_address);
3479 if(val64 == valt)
3480 break;
3481 i++;
3482 }
3483 if(i == 4) {
20346722 3484 unsigned long long x = val64;
1da177e4 3485 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
20346722 3486 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
1da177e4
LT
3487 return FAILURE;
3488 }
3489 }
3490 val64 = readq(&bar0->swapper_ctrl);
3491 val64 &= 0xFFFF000000000000ULL;
3492
3493#ifdef __BIG_ENDIAN
20346722
K
3494 /*
3495 * The device by default set to a big endian format, so a
1da177e4
LT
3496 * big endian driver need not set anything.
3497 */
3498 val64 |= (SWAPPER_CTRL_TXP_FE |
3499 SWAPPER_CTRL_TXP_SE |
3500 SWAPPER_CTRL_TXD_R_FE |
3501 SWAPPER_CTRL_TXD_W_FE |
3502 SWAPPER_CTRL_TXF_R_FE |
3503 SWAPPER_CTRL_RXD_R_FE |
3504 SWAPPER_CTRL_RXD_W_FE |
3505 SWAPPER_CTRL_RXF_W_FE |
3506 SWAPPER_CTRL_XMSI_FE |
1da177e4 3507 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
92383340 3508 if (sp->intr_type == INTA)
cc6e7c44 3509 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3510 writeq(val64, &bar0->swapper_ctrl);
3511#else
20346722 3512 /*
1da177e4 3513 * Initially we enable all bits to make it accessible by the
20346722 3514 * driver, then we selectively enable only those bits that
1da177e4
LT
3515 * we want to set.
3516 */
3517 val64 |= (SWAPPER_CTRL_TXP_FE |
3518 SWAPPER_CTRL_TXP_SE |
3519 SWAPPER_CTRL_TXD_R_FE |
3520 SWAPPER_CTRL_TXD_R_SE |
3521 SWAPPER_CTRL_TXD_W_FE |
3522 SWAPPER_CTRL_TXD_W_SE |
3523 SWAPPER_CTRL_TXF_R_FE |
3524 SWAPPER_CTRL_RXD_R_FE |
3525 SWAPPER_CTRL_RXD_R_SE |
3526 SWAPPER_CTRL_RXD_W_FE |
3527 SWAPPER_CTRL_RXD_W_SE |
3528 SWAPPER_CTRL_RXF_W_FE |
3529 SWAPPER_CTRL_XMSI_FE |
1da177e4 3530 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
cc6e7c44
RA
3531 if (sp->intr_type == INTA)
3532 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3533 writeq(val64, &bar0->swapper_ctrl);
3534#endif
3535 val64 = readq(&bar0->swapper_ctrl);
3536
20346722
K
3537 /*
3538 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3539 * feedback register.
3540 */
3541 val64 = readq(&bar0->pif_rd_swapper_fb);
3542 if (val64 != 0x0123456789ABCDEFULL) {
3543 /* Endian settings are incorrect, calls for another dekko. */
3544 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3545 dev->name);
3546 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3547 (unsigned long long) val64);
3548 return FAILURE;
3549 }
3550
3551 return SUCCESS;
3552}
3553
1ee6dd77 3554static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3555{
1ee6dd77 3556 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3557 u64 val64;
3558 int ret = 0, cnt = 0;
3559
3560 do {
3561 val64 = readq(&bar0->xmsi_access);
3562 if (!(val64 & BIT(15)))
3563 break;
3564 mdelay(1);
3565 cnt++;
3566 } while(cnt < 5);
3567 if (cnt == 5) {
3568 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3569 ret = 1;
3570 }
3571
3572 return ret;
3573}
3574
1ee6dd77 3575static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3576{
1ee6dd77 3577 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3578 u64 val64;
3579 int i;
3580
75c30b13 3581 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3582 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3583 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3584 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3585 writeq(val64, &bar0->xmsi_access);
3586 if (wait_for_msix_trans(nic, i)) {
3587 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3588 continue;
3589 }
3590 }
3591}
3592
1ee6dd77 3593static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3594{
1ee6dd77 3595 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3596 u64 val64, addr, data;
3597 int i;
3598
3599 /* Store and display */
75c30b13 3600 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
cc6e7c44
RA
3601 val64 = (BIT(15) | vBIT(i, 26, 6));
3602 writeq(val64, &bar0->xmsi_access);
3603 if (wait_for_msix_trans(nic, i)) {
3604 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3605 continue;
3606 }
3607 addr = readq(&bar0->xmsi_address);
3608 data = readq(&bar0->xmsi_data);
3609 if (addr && data) {
3610 nic->msix_info[i].addr = addr;
3611 nic->msix_info[i].data = data;
3612 }
3613 }
3614}
3615
1ee6dd77 3616int s2io_enable_msi(struct s2io_nic *nic)
cc6e7c44 3617{
1ee6dd77 3618 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3619 u16 msi_ctrl, msg_val;
3620 struct config_param *config = &nic->config;
3621 struct net_device *dev = nic->dev;
3622 u64 val64, tx_mat, rx_mat;
3623 int i, err;
3624
3625 val64 = readq(&bar0->pic_control);
3626 val64 &= ~BIT(1);
3627 writeq(val64, &bar0->pic_control);
3628
3629 err = pci_enable_msi(nic->pdev);
3630 if (err) {
3631 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3632 nic->dev->name);
3633 return err;
3634 }
3635
3636 /*
3637 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3638 * for interrupt handling.
3639 */
3640 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3641 msg_val ^= 0x1;
3642 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3643 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3644
3645 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3646 msi_ctrl |= 0x10;
3647 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3648
3649 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3650 tx_mat = readq(&bar0->tx_mat0_n[0]);
3651 for (i=0; i<config->tx_fifo_num; i++) {
3652 tx_mat |= TX_MAT_SET(i, 1);
3653 }
3654 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3655
3656 rx_mat = readq(&bar0->rx_mat);
3657 for (i=0; i<config->rx_ring_num; i++) {
3658 rx_mat |= RX_MAT_SET(i, 1);
3659 }
3660 writeq(rx_mat, &bar0->rx_mat);
3661
3662 dev->irq = nic->pdev->irq;
3663 return 0;
3664}
3665
1ee6dd77 3666static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3667{
1ee6dd77 3668 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3669 u64 tx_mat, rx_mat;
3670 u16 msi_control; /* Temp variable */
3671 int ret, i, j, msix_indx = 1;
3672
3673 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3674 GFP_KERNEL);
3675 if (nic->entries == NULL) {
3676 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3677 return -ENOMEM;
3678 }
3679 memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3680
3681 nic->s2io_entries =
3682 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3683 GFP_KERNEL);
3684 if (nic->s2io_entries == NULL) {
3685 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3686 kfree(nic->entries);
3687 return -ENOMEM;
3688 }
3689 memset(nic->s2io_entries, 0,
3690 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3691
3692 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3693 nic->entries[i].entry = i;
3694 nic->s2io_entries[i].entry = i;
3695 nic->s2io_entries[i].arg = NULL;
3696 nic->s2io_entries[i].in_use = 0;
3697 }
3698
3699 tx_mat = readq(&bar0->tx_mat0_n[0]);
3700 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3701 tx_mat |= TX_MAT_SET(i, msix_indx);
3702 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3703 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3704 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3705 }
3706 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3707
3708 if (!nic->config.bimodal) {
3709 rx_mat = readq(&bar0->rx_mat);
3710 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3711 rx_mat |= RX_MAT_SET(j, msix_indx);
3712 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3713 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3714 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3715 }
3716 writeq(rx_mat, &bar0->rx_mat);
3717 } else {
3718 tx_mat = readq(&bar0->tx_mat0_n[7]);
3719 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3720 tx_mat |= TX_MAT_SET(i, msix_indx);
3721 nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3722 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3723 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3724 }
3725 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3726 }
3727
c92ca04b 3728 nic->avail_msix_vectors = 0;
cc6e7c44 3729 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
c92ca04b
AR
3730 /* We fail init if error or we get less vectors than min required */
3731 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3732 nic->avail_msix_vectors = ret;
3733 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3734 }
cc6e7c44
RA
3735 if (ret) {
3736 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3737 kfree(nic->entries);
3738 kfree(nic->s2io_entries);
3739 nic->entries = NULL;
3740 nic->s2io_entries = NULL;
c92ca04b 3741 nic->avail_msix_vectors = 0;
cc6e7c44
RA
3742 return -ENOMEM;
3743 }
c92ca04b
AR
3744 if (!nic->avail_msix_vectors)
3745 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
cc6e7c44
RA
3746
3747 /*
3748 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3749 * in the herc NIC. (Temp change, needs to be removed later)
3750 */
3751 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3752 msi_control |= 0x1; /* Enable MSI */
3753 pci_write_config_word(nic->pdev, 0x42, msi_control);
3754
3755 return 0;
3756}
3757
1da177e4
LT
3758/* ********************************************************* *
3759 * Functions defined below concern the OS part of the driver *
3760 * ********************************************************* */
3761
20346722 3762/**
1da177e4
LT
3763 * s2io_open - open entry point of the driver
3764 * @dev : pointer to the device structure.
3765 * Description:
3766 * This function is the open entry point of the driver. It mainly calls a
3767 * function to allocate Rx buffers and inserts them into the buffer
20346722 3768 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3769 * Return value:
3770 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3771 * file on failure.
3772 */
3773
ac1f60db 3774static int s2io_open(struct net_device *dev)
1da177e4 3775{
1ee6dd77 3776 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3777 int err = 0;
3778
20346722
K
3779 /*
3780 * Make sure you have link off by default every time
1da177e4
LT
3781 * Nic is initialized
3782 */
3783 netif_carrier_off(dev);
0b1f7ebe 3784 sp->last_link_state = 0;
1da177e4
LT
3785
3786 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3787 err = s2io_card_up(sp);
3788 if (err) {
1da177e4
LT
3789 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3790 dev->name);
e6a8fee2 3791 goto hw_init_failed;
1da177e4
LT
3792 }
3793
3794 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3795 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 3796 s2io_card_down(sp);
20346722 3797 err = -ENODEV;
e6a8fee2 3798 goto hw_init_failed;
1da177e4
LT
3799 }
3800
3801 netif_start_queue(dev);
3802 return 0;
20346722 3803
20346722 3804hw_init_failed:
cc6e7c44
RA
3805 if (sp->intr_type == MSI_X) {
3806 if (sp->entries)
3807 kfree(sp->entries);
3808 if (sp->s2io_entries)
3809 kfree(sp->s2io_entries);
3810 }
20346722 3811 return err;
1da177e4
LT
3812}
3813
3814/**
3815 * s2io_close -close entry point of the driver
3816 * @dev : device pointer.
3817 * Description:
3818 * This is the stop entry point of the driver. It needs to undo exactly
3819 * whatever was done by the open entry point,thus it's usually referred to
3820 * as the close function.Among other things this function mainly stops the
3821 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3822 * Return value:
3823 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3824 * file on failure.
3825 */
3826
ac1f60db 3827static int s2io_close(struct net_device *dev)
1da177e4 3828{
1ee6dd77 3829 struct s2io_nic *sp = dev->priv;
cc6e7c44 3830
1da177e4
LT
3831 netif_stop_queue(dev);
3832 /* Reset card, kill tasklet and free Tx and Rx buffers. */
e6a8fee2 3833 s2io_card_down(sp);
cc6e7c44 3834
1da177e4
LT
3835 sp->device_close_flag = TRUE; /* Device is shut down. */
3836 return 0;
3837}
3838
3839/**
3840 * s2io_xmit - Tx entry point of te driver
3841 * @skb : the socket buffer containing the Tx data.
3842 * @dev : device pointer.
3843 * Description :
3844 * This function is the Tx entry point of the driver. S2IO NIC supports
3845 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3846 * NOTE: when device cant queue the pkt,just the trans_start variable will
3847 * not be upadted.
3848 * Return value:
3849 * 0 on success & 1 on failure.
3850 */
3851
ac1f60db 3852static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 3853{
1ee6dd77 3854 struct s2io_nic *sp = dev->priv;
1da177e4
LT
3855 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3856 register u64 val64;
1ee6dd77
RB
3857 struct TxD *txdp;
3858 struct TxFIFO_element __iomem *tx_fifo;
1da177e4 3859 unsigned long flags;
be3a6b02
K
3860 u16 vlan_tag = 0;
3861 int vlan_priority = 0;
1ee6dd77 3862 struct mac_info *mac_control;
1da177e4 3863 struct config_param *config;
75c30b13 3864 int offload_type;
1da177e4
LT
3865
3866 mac_control = &sp->mac_control;
3867 config = &sp->config;
3868
20346722 3869 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
1da177e4 3870 spin_lock_irqsave(&sp->tx_lock, flags);
1da177e4 3871 if (atomic_read(&sp->card_state) == CARD_DOWN) {
20346722 3872 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4
LT
3873 dev->name);
3874 spin_unlock_irqrestore(&sp->tx_lock, flags);
20346722
K
3875 dev_kfree_skb(skb);
3876 return 0;
1da177e4
LT
3877 }
3878
3879 queue = 0;
1da177e4 3880
be3a6b02
K
3881 /* Get Fifo number to Transmit based on vlan priority */
3882 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3883 vlan_tag = vlan_tx_tag_get(skb);
3884 vlan_priority = vlan_tag >> 13;
3885 queue = config->fifo_mapping[vlan_priority];
3886 }
3887
20346722
K
3888 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3889 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
1ee6dd77 3890 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
20346722
K
3891 list_virt_addr;
3892
3893 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
1da177e4 3894 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9
AR
3895 if (txdp->Host_Control ||
3896 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 3897 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
1da177e4
LT
3898 netif_stop_queue(dev);
3899 dev_kfree_skb(skb);
3900 spin_unlock_irqrestore(&sp->tx_lock, flags);
3901 return 0;
3902 }
0b1f7ebe
K
3903
3904 /* A buffer with no data will be dropped */
3905 if (!skb->len) {
3906 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3907 dev_kfree_skb(skb);
3908 spin_unlock_irqrestore(&sp->tx_lock, flags);
3909 return 0;
3910 }
3911
75c30b13 3912 offload_type = s2io_offload_type(skb);
75c30b13 3913 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 3914 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 3915 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 3916 }
84fa7933 3917 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1da177e4
LT
3918 txdp->Control_2 |=
3919 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3920 TXD_TX_CKO_UDP_EN);
3921 }
fed5eccd
AR
3922 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3923 txdp->Control_1 |= TXD_LIST_OWN_XENA;
1da177e4 3924 txdp->Control_2 |= config->tx_intr_type;
d8892c6e 3925
be3a6b02
K
3926 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3927 txdp->Control_2 |= TXD_VLAN_ENABLE;
3928 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3929 }
3930
fed5eccd 3931 frg_len = skb->len - skb->data_len;
75c30b13 3932 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
3933 int ufo_size;
3934
75c30b13 3935 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
3936 ufo_size &= ~7;
3937 txdp->Control_1 |= TXD_UFO_EN;
3938 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3939 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3940#ifdef __BIG_ENDIAN
3941 sp->ufo_in_band_v[put_off] =
3942 (u64)skb_shinfo(skb)->ip6_frag_id;
3943#else
3944 sp->ufo_in_band_v[put_off] =
3945 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3946#endif
3947 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3948 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3949 sp->ufo_in_band_v,
3950 sizeof(u64), PCI_DMA_TODEVICE);
3951 txdp++;
fed5eccd 3952 }
1da177e4 3953
fed5eccd
AR
3954 txdp->Buffer_Pointer = pci_map_single
3955 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3956 txdp->Host_Control = (unsigned long) skb;
3957 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 3958 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
3959 txdp->Control_1 |= TXD_UFO_EN;
3960
3961 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
3962 /* For fragmented SKB. */
3963 for (i = 0; i < frg_cnt; i++) {
3964 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
3965 /* A '0' length fragment will be ignored */
3966 if (!frag->size)
3967 continue;
1da177e4
LT
3968 txdp++;
3969 txdp->Buffer_Pointer = (u64) pci_map_page
3970 (sp->pdev, frag->page, frag->page_offset,
3971 frag->size, PCI_DMA_TODEVICE);
efd51b5c 3972 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 3973 if (offload_type == SKB_GSO_UDP)
fed5eccd 3974 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
3975 }
3976 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3977
75c30b13 3978 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
3979 frg_cnt++; /* as Txd0 was used for inband header */
3980
1da177e4 3981 tx_fifo = mac_control->tx_FIFO_start[queue];
20346722 3982 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
1da177e4
LT
3983 writeq(val64, &tx_fifo->TxDL_Pointer);
3984
3985 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3986 TX_FIFO_LAST_LIST);
75c30b13 3987 if (offload_type)
fed5eccd 3988 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 3989
1da177e4
LT
3990 writeq(val64, &tx_fifo->List_Control);
3991
303bcb4b
K
3992 mmiowb();
3993
1da177e4 3994 put_off++;
863c11a9
AR
3995 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
3996 put_off = 0;
20346722 3997 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
1da177e4
LT
3998
3999 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4000 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
bd1034f0 4001 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
1da177e4
LT
4002 DBG_PRINT(TX_DBG,
4003 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4004 put_off, get_off);
4005 netif_stop_queue(dev);
4006 }
4007
4008 dev->trans_start = jiffies;
4009 spin_unlock_irqrestore(&sp->tx_lock, flags);
4010
4011 return 0;
4012}
4013
25fff88e
K
4014static void
4015s2io_alarm_handle(unsigned long data)
4016{
1ee6dd77 4017 struct s2io_nic *sp = (struct s2io_nic *)data;
25fff88e
K
4018
4019 alarm_intr_handler(sp);
4020 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4021}
4022
1ee6dd77 4023static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
75c30b13
AR
4024{
4025 int rxb_size, level;
4026
4027 if (!sp->lro) {
4028 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4029 level = rx_buffer_level(sp, rxb_size, rng_n);
4030
4031 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4032 int ret;
4033 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4034 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4035 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4036 DBG_PRINT(ERR_DBG, "Out of memory in %s",
4037 __FUNCTION__);
4038 clear_bit(0, (&sp->tasklet_status));
4039 return -1;
4040 }
4041 clear_bit(0, (&sp->tasklet_status));
4042 } else if (level == LOW)
4043 tasklet_schedule(&sp->task);
4044
4045 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4046 DBG_PRINT(ERR_DBG, "%s:Out of memory", sp->dev->name);
4047 DBG_PRINT(ERR_DBG, " in Rx Intr!!\n");
4048 }
4049 return 0;
4050}
4051
7d12e780 4052static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
cc6e7c44
RA
4053{
4054 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77 4055 struct s2io_nic *sp = dev->priv;
cc6e7c44 4056 int i;
1ee6dd77 4057 struct mac_info *mac_control;
cc6e7c44
RA
4058 struct config_param *config;
4059
4060 atomic_inc(&sp->isr_cnt);
4061 mac_control = &sp->mac_control;
4062 config = &sp->config;
4063 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4064
4065 /* If Intr is because of Rx Traffic */
4066 for (i = 0; i < config->rx_ring_num; i++)
4067 rx_intr_handler(&mac_control->rings[i]);
4068
4069 /* If Intr is because of Tx Traffic */
4070 for (i = 0; i < config->tx_fifo_num; i++)
4071 tx_intr_handler(&mac_control->fifos[i]);
4072
4073 /*
4074 * If the Rx buffer count is below the panic threshold then
4075 * reallocate the buffers from the interrupt handler itself,
4076 * else schedule a tasklet to reallocate the buffers.
4077 */
75c30b13
AR
4078 for (i = 0; i < config->rx_ring_num; i++)
4079 s2io_chk_rx_buffers(sp, i);
cc6e7c44
RA
4080
4081 atomic_dec(&sp->isr_cnt);
4082 return IRQ_HANDLED;
4083}
4084
7d12e780 4085static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4086{
1ee6dd77
RB
4087 struct ring_info *ring = (struct ring_info *)dev_id;
4088 struct s2io_nic *sp = ring->nic;
cc6e7c44
RA
4089
4090 atomic_inc(&sp->isr_cnt);
cc6e7c44 4091
75c30b13
AR
4092 rx_intr_handler(ring);
4093 s2io_chk_rx_buffers(sp, ring->ring_no);
7d3d0439 4094
cc6e7c44 4095 atomic_dec(&sp->isr_cnt);
cc6e7c44
RA
4096 return IRQ_HANDLED;
4097}
4098
7d12e780 4099static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4100{
1ee6dd77
RB
4101 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4102 struct s2io_nic *sp = fifo->nic;
cc6e7c44
RA
4103
4104 atomic_inc(&sp->isr_cnt);
4105 tx_intr_handler(fifo);
4106 atomic_dec(&sp->isr_cnt);
4107 return IRQ_HANDLED;
4108}
1ee6dd77 4109static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4110{
1ee6dd77 4111 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d
K
4112 u64 val64;
4113
4114 val64 = readq(&bar0->pic_int_status);
4115 if (val64 & PIC_INT_GPIO) {
4116 val64 = readq(&bar0->gpio_int_reg);
4117 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4118 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4119 /*
4120 * This is unstable state so clear both up/down
4121 * interrupt and adapter to re-evaluate the link state.
4122 */
a371a07d
K
4123 val64 |= GPIO_INT_REG_LINK_DOWN;
4124 val64 |= GPIO_INT_REG_LINK_UP;
4125 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4126 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4127 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4128 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4129 writeq(val64, &bar0->gpio_int_mask);
a371a07d 4130 }
c92ca04b
AR
4131 else if (val64 & GPIO_INT_REG_LINK_UP) {
4132 val64 = readq(&bar0->adapter_status);
c92ca04b 4133 /* Enable Adapter */
19a60522
SS
4134 val64 = readq(&bar0->adapter_control);
4135 val64 |= ADAPTER_CNTL_EN;
4136 writeq(val64, &bar0->adapter_control);
4137 val64 |= ADAPTER_LED_ON;
4138 writeq(val64, &bar0->adapter_control);
4139 if (!sp->device_enabled_once)
4140 sp->device_enabled_once = 1;
c92ca04b 4141
19a60522
SS
4142 s2io_link(sp, LINK_UP);
4143 /*
4144 * unmask link down interrupt and mask link-up
4145 * intr
4146 */
4147 val64 = readq(&bar0->gpio_int_mask);
4148 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4149 val64 |= GPIO_INT_MASK_LINK_UP;
4150 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4151
c92ca04b
AR
4152 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4153 val64 = readq(&bar0->adapter_status);
19a60522
SS
4154 s2io_link(sp, LINK_DOWN);
4155 /* Link is down so unmaks link up interrupt */
4156 val64 = readq(&bar0->gpio_int_mask);
4157 val64 &= ~GPIO_INT_MASK_LINK_UP;
4158 val64 |= GPIO_INT_MASK_LINK_DOWN;
4159 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4160
4161 /* turn off LED */
4162 val64 = readq(&bar0->adapter_control);
4163 val64 = val64 &(~ADAPTER_LED_ON);
4164 writeq(val64, &bar0->adapter_control);
a371a07d
K
4165 }
4166 }
c92ca04b 4167 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4168}
4169
1da177e4
LT
4170/**
4171 * s2io_isr - ISR handler of the device .
4172 * @irq: the irq of the device.
4173 * @dev_id: a void pointer to the dev structure of the NIC.
20346722
K
4174 * Description: This function is the ISR handler of the device. It
4175 * identifies the reason for the interrupt and calls the relevant
4176 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4177 * recv buffers, if their numbers are below the panic value which is
4178 * presently set to 25% of the original number of rcv buffers allocated.
4179 * Return value:
20346722 4180 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4181 * IRQ_NONE: will be returned if interrupt is not from our device
4182 */
7d12e780 4183static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4
LT
4184{
4185 struct net_device *dev = (struct net_device *) dev_id;
1ee6dd77
RB
4186 struct s2io_nic *sp = dev->priv;
4187 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4188 int i;
19a60522 4189 u64 reason = 0;
1ee6dd77 4190 struct mac_info *mac_control;
1da177e4
LT
4191 struct config_param *config;
4192
7ba013ac 4193 atomic_inc(&sp->isr_cnt);
1da177e4
LT
4194 mac_control = &sp->mac_control;
4195 config = &sp->config;
4196
20346722 4197 /*
1da177e4
LT
4198 * Identify the cause for interrupt and call the appropriate
4199 * interrupt handler. Causes for the interrupt could be;
4200 * 1. Rx of packet.
4201 * 2. Tx complete.
4202 * 3. Link down.
20346722 4203 * 4. Error in any functional blocks of the NIC.
1da177e4
LT
4204 */
4205 reason = readq(&bar0->general_int_status);
4206
4207 if (!reason) {
19a60522
SS
4208 /* The interrupt was not raised by us. */
4209 atomic_dec(&sp->isr_cnt);
4210 return IRQ_NONE;
4211 }
4212 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4213 /* Disable device and get out */
7ba013ac 4214 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4215 return IRQ_NONE;
4216 }
5d3213cc 4217
db874e65
SS
4218 if (napi) {
4219 if (reason & GEN_INTR_RXTRAFFIC) {
19a60522 4220 if ( likely ( netif_rx_schedule_prep(dev)) ) {
db874e65 4221 __netif_rx_schedule(dev);
19a60522 4222 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
db874e65 4223 }
19a60522
SS
4224 else
4225 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
db874e65
SS
4226 }
4227 } else {
4228 /*
4229 * Rx handler is called by default, without checking for the
4230 * cause of interrupt.
4231 * rx_traffic_int reg is an R1 register, writing all 1's
4232 * will ensure that the actual interrupt causing bit get's
4233 * cleared and hence a read can be avoided.
4234 */
19a60522
SS
4235 if (reason & GEN_INTR_RXTRAFFIC)
4236 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4237
db874e65
SS
4238 for (i = 0; i < config->rx_ring_num; i++) {
4239 rx_intr_handler(&mac_control->rings[i]);
1da177e4
LT
4240 }
4241 }
1da177e4 4242
863c11a9
AR
4243 /*
4244 * tx_traffic_int reg is an R1 register, writing all 1's
4245 * will ensure that the actual interrupt causing bit get's
4246 * cleared and hence a read can be avoided.
4247 */
19a60522
SS
4248 if (reason & GEN_INTR_TXTRAFFIC)
4249 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
fe113638 4250
863c11a9
AR
4251 for (i = 0; i < config->tx_fifo_num; i++)
4252 tx_intr_handler(&mac_control->fifos[i]);
20346722 4253
a371a07d
K
4254 if (reason & GEN_INTR_TXPIC)
4255 s2io_txpic_intr_handle(sp);
20346722
K
4256 /*
4257 * If the Rx buffer count is below the panic threshold then
4258 * reallocate the buffers from the interrupt handler itself,
1da177e4
LT
4259 * else schedule a tasklet to reallocate the buffers.
4260 */
db874e65
SS
4261 if (!napi) {
4262 for (i = 0; i < config->rx_ring_num; i++)
4263 s2io_chk_rx_buffers(sp, i);
4264 }
4265
4266 writeq(0, &bar0->general_int_mask);
4267 readl(&bar0->general_int_status);
4268
7ba013ac 4269 atomic_dec(&sp->isr_cnt);
1da177e4
LT
4270 return IRQ_HANDLED;
4271}
4272
7ba013ac
K
4273/**
4274 * s2io_updt_stats -
4275 */
1ee6dd77 4276static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4277{
1ee6dd77 4278 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac
K
4279 u64 val64;
4280 int cnt = 0;
4281
4282 if (atomic_read(&sp->card_state) == CARD_UP) {
4283 /* Apprx 30us on a 133 MHz bus */
4284 val64 = SET_UPDT_CLICKS(10) |
4285 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4286 writeq(val64, &bar0->stat_cfg);
4287 do {
4288 udelay(100);
4289 val64 = readq(&bar0->stat_cfg);
4290 if (!(val64 & BIT(0)))
4291 break;
4292 cnt++;
4293 if (cnt == 5)
4294 break; /* Updt failed */
4295 } while(1);
363dc367 4296 }
7ba013ac
K
4297}
4298
1da177e4 4299/**
20346722 4300 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4301 * @dev : pointer to the device structure.
4302 * Description:
20346722 4303 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4304 * structure and returns a pointer to the same.
4305 * Return value:
4306 * pointer to the updated net_device_stats structure.
4307 */
4308
ac1f60db 4309static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4310{
1ee6dd77
RB
4311 struct s2io_nic *sp = dev->priv;
4312 struct mac_info *mac_control;
1da177e4
LT
4313 struct config_param *config;
4314
20346722 4315
1da177e4
LT
4316 mac_control = &sp->mac_control;
4317 config = &sp->config;
4318
7ba013ac
K
4319 /* Configure Stats for immediate updt */
4320 s2io_updt_stats(sp);
4321
4322 sp->stats.tx_packets =
4323 le32_to_cpu(mac_control->stats_info->tmac_frms);
20346722
K
4324 sp->stats.tx_errors =
4325 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4326 sp->stats.rx_errors =
ee705dba 4327 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
20346722
K
4328 sp->stats.multicast =
4329 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
1da177e4 4330 sp->stats.rx_length_errors =
ee705dba 4331 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
1da177e4
LT
4332
4333 return (&sp->stats);
4334}
4335
4336/**
4337 * s2io_set_multicast - entry point for multicast address enable/disable.
4338 * @dev : pointer to the device structure
4339 * Description:
20346722
K
4340 * This function is a driver entry point which gets called by the kernel
4341 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4342 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4343 * determine, if multicast address must be enabled or if promiscuous mode
4344 * is to be disabled etc.
4345 * Return value:
4346 * void.
4347 */
4348
4349static void s2io_set_multicast(struct net_device *dev)
4350{
4351 int i, j, prev_cnt;
4352 struct dev_mc_list *mclist;
1ee6dd77
RB
4353 struct s2io_nic *sp = dev->priv;
4354 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4355 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4356 0xfeffffffffffULL;
4357 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4358 void __iomem *add;
4359
4360 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4361 /* Enable all Multicast addresses */
4362 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4363 &bar0->rmac_addr_data0_mem);
4364 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4365 &bar0->rmac_addr_data1_mem);
4366 val64 = RMAC_ADDR_CMD_MEM_WE |
4367 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4368 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4369 writeq(val64, &bar0->rmac_addr_cmd_mem);
4370 /* Wait till command completes */
c92ca04b 4371 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4372 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4373 S2IO_BIT_RESET);
1da177e4
LT
4374
4375 sp->m_cast_flg = 1;
4376 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4377 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4378 /* Disable all Multicast addresses */
4379 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4380 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4381 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4382 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4383 val64 = RMAC_ADDR_CMD_MEM_WE |
4384 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4385 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4386 writeq(val64, &bar0->rmac_addr_cmd_mem);
4387 /* Wait till command completes */
c92ca04b 4388 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4389 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4390 S2IO_BIT_RESET);
1da177e4
LT
4391
4392 sp->m_cast_flg = 0;
4393 sp->all_multi_pos = 0;
4394 }
4395
4396 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4397 /* Put the NIC into promiscuous mode */
4398 add = &bar0->mac_cfg;
4399 val64 = readq(&bar0->mac_cfg);
4400 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4401
4402 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4403 writel((u32) val64, add);
4404 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4405 writel((u32) (val64 >> 32), (add + 4));
4406
926930b2
SS
4407 if (vlan_tag_strip != 1) {
4408 val64 = readq(&bar0->rx_pa_cfg);
4409 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4410 writeq(val64, &bar0->rx_pa_cfg);
4411 vlan_strip_flag = 0;
4412 }
4413
1da177e4
LT
4414 val64 = readq(&bar0->mac_cfg);
4415 sp->promisc_flg = 1;
776bd20f 4416 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
4417 dev->name);
4418 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4419 /* Remove the NIC from promiscuous mode */
4420 add = &bar0->mac_cfg;
4421 val64 = readq(&bar0->mac_cfg);
4422 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4423
4424 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4425 writel((u32) val64, add);
4426 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4427 writel((u32) (val64 >> 32), (add + 4));
4428
926930b2
SS
4429 if (vlan_tag_strip != 0) {
4430 val64 = readq(&bar0->rx_pa_cfg);
4431 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4432 writeq(val64, &bar0->rx_pa_cfg);
4433 vlan_strip_flag = 1;
4434 }
4435
1da177e4
LT
4436 val64 = readq(&bar0->mac_cfg);
4437 sp->promisc_flg = 0;
776bd20f 4438 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
1da177e4
LT
4439 dev->name);
4440 }
4441
4442 /* Update individual M_CAST address list */
4443 if ((!sp->m_cast_flg) && dev->mc_count) {
4444 if (dev->mc_count >
4445 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4446 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4447 dev->name);
4448 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4449 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4450 return;
4451 }
4452
4453 prev_cnt = sp->mc_addr_count;
4454 sp->mc_addr_count = dev->mc_count;
4455
4456 /* Clear out the previous list of Mc in the H/W. */
4457 for (i = 0; i < prev_cnt; i++) {
4458 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4459 &bar0->rmac_addr_data0_mem);
4460 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4461 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4462 val64 = RMAC_ADDR_CMD_MEM_WE |
4463 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4464 RMAC_ADDR_CMD_MEM_OFFSET
4465 (MAC_MC_ADDR_START_OFFSET + i);
4466 writeq(val64, &bar0->rmac_addr_cmd_mem);
4467
4468 /* Wait for command completes */
c92ca04b 4469 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4470 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4471 S2IO_BIT_RESET)) {
1da177e4
LT
4472 DBG_PRINT(ERR_DBG, "%s: Adding ",
4473 dev->name);
4474 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4475 return;
4476 }
4477 }
4478
4479 /* Create the new Rx filter list and update the same in H/W. */
4480 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4481 i++, mclist = mclist->next) {
4482 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4483 ETH_ALEN);
a7a80d5a 4484 mac_addr = 0;
1da177e4
LT
4485 for (j = 0; j < ETH_ALEN; j++) {
4486 mac_addr |= mclist->dmi_addr[j];
4487 mac_addr <<= 8;
4488 }
4489 mac_addr >>= 8;
4490 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4491 &bar0->rmac_addr_data0_mem);
4492 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
20346722 4493 &bar0->rmac_addr_data1_mem);
1da177e4
LT
4494 val64 = RMAC_ADDR_CMD_MEM_WE |
4495 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4496 RMAC_ADDR_CMD_MEM_OFFSET
4497 (i + MAC_MC_ADDR_START_OFFSET);
4498 writeq(val64, &bar0->rmac_addr_cmd_mem);
4499
4500 /* Wait for command completes */
c92ca04b 4501 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41
SS
4502 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4503 S2IO_BIT_RESET)) {
1da177e4
LT
4504 DBG_PRINT(ERR_DBG, "%s: Adding ",
4505 dev->name);
4506 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4507 return;
4508 }
4509 }
4510 }
4511}
4512
4513/**
20346722 4514 * s2io_set_mac_addr - Programs the Xframe mac address
1da177e4
LT
4515 * @dev : pointer to the device structure.
4516 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 4517 * Description : This procedure will program the Xframe to receive
1da177e4 4518 * frames with new Mac Address
20346722 4519 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
4520 * as defined in errno.h file on failure.
4521 */
4522
26df54bf 4523static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
1da177e4 4524{
1ee6dd77
RB
4525 struct s2io_nic *sp = dev->priv;
4526 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4527 register u64 val64, mac_addr = 0;
4528 int i;
d8d70caf 4529 u64 old_mac_addr = 0;
1da177e4 4530
20346722 4531 /*
1da177e4
LT
4532 * Set the new MAC address as the new unicast filter and reflect this
4533 * change on the device address registered with the OS. It will be
20346722 4534 * at offset 0.
1da177e4
LT
4535 */
4536 for (i = 0; i < ETH_ALEN; i++) {
4537 mac_addr <<= 8;
4538 mac_addr |= addr[i];
d8d70caf
SS
4539 old_mac_addr <<= 8;
4540 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4541 }
4542
4543 if(0 == mac_addr)
4544 return SUCCESS;
4545
4546 /* Update the internal structure with this new mac address */
4547 if(mac_addr != old_mac_addr) {
4548 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4549 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4550 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4551 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4552 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4553 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4554 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
1da177e4
LT
4555 }
4556
4557 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4558 &bar0->rmac_addr_data0_mem);
4559
4560 val64 =
4561 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4562 RMAC_ADDR_CMD_MEM_OFFSET(0);
4563 writeq(val64, &bar0->rmac_addr_cmd_mem);
4564 /* Wait till command completes */
c92ca04b 4565 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 4566 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
1da177e4
LT
4567 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4568 return FAILURE;
4569 }
4570
4571 return SUCCESS;
4572}
4573
4574/**
20346722 4575 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
4576 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4577 * @info: pointer to the structure with parameters given by ethtool to set
4578 * link information.
4579 * Description:
20346722 4580 * The function sets different link parameters provided by the user onto
1da177e4
LT
4581 * the NIC.
4582 * Return value:
4583 * 0 on success.
4584*/
4585
4586static int s2io_ethtool_sset(struct net_device *dev,
4587 struct ethtool_cmd *info)
4588{
1ee6dd77 4589 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4590 if ((info->autoneg == AUTONEG_ENABLE) ||
4591 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4592 return -EINVAL;
4593 else {
4594 s2io_close(sp->dev);
4595 s2io_open(sp->dev);
4596 }
4597
4598 return 0;
4599}
4600
4601/**
20346722 4602 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
4603 * @sp : private member of the device structure, pointer to the
4604 * s2io_nic structure.
4605 * @info : pointer to the structure with parameters given by ethtool
4606 * to return link information.
4607 * Description:
4608 * Returns link specific information like speed, duplex etc.. to ethtool.
4609 * Return value :
4610 * return 0 on success.
4611 */
4612
4613static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4614{
1ee6dd77 4615 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4616 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4617 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4618 info->port = PORT_FIBRE;
4619 /* info->transceiver?? TODO */
4620
4621 if (netif_carrier_ok(sp->dev)) {
4622 info->speed = 10000;
4623 info->duplex = DUPLEX_FULL;
4624 } else {
4625 info->speed = -1;
4626 info->duplex = -1;
4627 }
4628
4629 info->autoneg = AUTONEG_DISABLE;
4630 return 0;
4631}
4632
4633/**
20346722
K
4634 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4635 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4636 * s2io_nic structure.
4637 * @info : pointer to the structure with parameters given by ethtool to
4638 * return driver information.
4639 * Description:
4640 * Returns driver specefic information like name, version etc.. to ethtool.
4641 * Return value:
4642 * void
4643 */
4644
4645static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4646 struct ethtool_drvinfo *info)
4647{
1ee6dd77 4648 struct s2io_nic *sp = dev->priv;
1da177e4 4649
dbc2309d
JL
4650 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4651 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4652 strncpy(info->fw_version, "", sizeof(info->fw_version));
4653 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
4654 info->regdump_len = XENA_REG_SPACE;
4655 info->eedump_len = XENA_EEPROM_SPACE;
4656 info->testinfo_len = S2IO_TEST_LEN;
fa1f0cb3
SS
4657
4658 if (sp->device_type == XFRAME_I_DEVICE)
4659 info->n_stats = XFRAME_I_STAT_LEN;
4660 else
4661 info->n_stats = XFRAME_II_STAT_LEN;
1da177e4
LT
4662}
4663
4664/**
4665 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 4666 * @sp: private member of the device structure, which is a pointer to the
1da177e4 4667 * s2io_nic structure.
20346722 4668 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
4669 * dumping the registers.
4670 * @reg_space: The input argumnet into which all the registers are dumped.
4671 * Description:
4672 * Dumps the entire register space of xFrame NIC into the user given
4673 * buffer area.
4674 * Return value :
4675 * void .
4676*/
4677
4678static void s2io_ethtool_gregs(struct net_device *dev,
4679 struct ethtool_regs *regs, void *space)
4680{
4681 int i;
4682 u64 reg;
4683 u8 *reg_space = (u8 *) space;
1ee6dd77 4684 struct s2io_nic *sp = dev->priv;
1da177e4
LT
4685
4686 regs->len = XENA_REG_SPACE;
4687 regs->version = sp->pdev->subsystem_device;
4688
4689 for (i = 0; i < regs->len; i += 8) {
4690 reg = readq(sp->bar0 + i);
4691 memcpy((reg_space + i), &reg, 8);
4692 }
4693}
4694
4695/**
4696 * s2io_phy_id - timer function that alternates adapter LED.
20346722 4697 * @data : address of the private member of the device structure, which
1da177e4 4698 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
4699 * Description: This is actually the timer function that alternates the
4700 * adapter LED bit of the adapter control bit to set/reset every time on
4701 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4
LT
4702 * once every second.
4703*/
4704static void s2io_phy_id(unsigned long data)
4705{
1ee6dd77
RB
4706 struct s2io_nic *sp = (struct s2io_nic *) data;
4707 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4708 u64 val64 = 0;
4709 u16 subid;
4710
4711 subid = sp->pdev->subsystem_device;
541ae68f
K
4712 if ((sp->device_type == XFRAME_II_DEVICE) ||
4713 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
4714 val64 = readq(&bar0->gpio_control);
4715 val64 ^= GPIO_CTRL_GPIO_0;
4716 writeq(val64, &bar0->gpio_control);
4717 } else {
4718 val64 = readq(&bar0->adapter_control);
4719 val64 ^= ADAPTER_LED_ON;
4720 writeq(val64, &bar0->adapter_control);
4721 }
4722
4723 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4724}
4725
4726/**
4727 * s2io_ethtool_idnic - To physically identify the nic on the system.
4728 * @sp : private member of the device structure, which is a pointer to the
4729 * s2io_nic structure.
20346722 4730 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
4731 * ethtool.
4732 * Description: Used to physically identify the NIC on the system.
20346722 4733 * The Link LED will blink for a time specified by the user for
1da177e4 4734 * identification.
20346722 4735 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
4736 * identification is possible only if it's link is up.
4737 * Return value:
4738 * int , returns 0 on success
4739 */
4740
4741static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4742{
4743 u64 val64 = 0, last_gpio_ctrl_val;
1ee6dd77
RB
4744 struct s2io_nic *sp = dev->priv;
4745 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4746 u16 subid;
4747
4748 subid = sp->pdev->subsystem_device;
4749 last_gpio_ctrl_val = readq(&bar0->gpio_control);
541ae68f
K
4750 if ((sp->device_type == XFRAME_I_DEVICE) &&
4751 ((subid & 0xFF) < 0x07)) {
1da177e4
LT
4752 val64 = readq(&bar0->adapter_control);
4753 if (!(val64 & ADAPTER_CNTL_EN)) {
4754 printk(KERN_ERR
4755 "Adapter Link down, cannot blink LED\n");
4756 return -EFAULT;
4757 }
4758 }
4759 if (sp->id_timer.function == NULL) {
4760 init_timer(&sp->id_timer);
4761 sp->id_timer.function = s2io_phy_id;
4762 sp->id_timer.data = (unsigned long) sp;
4763 }
4764 mod_timer(&sp->id_timer, jiffies);
4765 if (data)
20346722 4766 msleep_interruptible(data * HZ);
1da177e4 4767 else
20346722 4768 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
4769 del_timer_sync(&sp->id_timer);
4770
541ae68f 4771 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
4772 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4773 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4774 }
4775
4776 return 0;
4777}
4778
4779/**
4780 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
4781 * @sp : private member of the device structure, which is a pointer to the
4782 * s2io_nic structure.
1da177e4
LT
4783 * @ep : pointer to the structure with pause parameters given by ethtool.
4784 * Description:
4785 * Returns the Pause frame generation and reception capability of the NIC.
4786 * Return value:
4787 * void
4788 */
4789static void s2io_ethtool_getpause_data(struct net_device *dev,
4790 struct ethtool_pauseparam *ep)
4791{
4792 u64 val64;
1ee6dd77
RB
4793 struct s2io_nic *sp = dev->priv;
4794 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4795
4796 val64 = readq(&bar0->rmac_pause_cfg);
4797 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4798 ep->tx_pause = TRUE;
4799 if (val64 & RMAC_PAUSE_RX_ENABLE)
4800 ep->rx_pause = TRUE;
4801 ep->autoneg = FALSE;
4802}
4803
4804/**
4805 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 4806 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4807 * s2io_nic structure.
4808 * @ep : pointer to the structure with pause parameters given by ethtool.
4809 * Description:
4810 * It can be used to set or reset Pause frame generation or reception
4811 * support of the NIC.
4812 * Return value:
4813 * int, returns 0 on Success
4814 */
4815
4816static int s2io_ethtool_setpause_data(struct net_device *dev,
20346722 4817 struct ethtool_pauseparam *ep)
1da177e4
LT
4818{
4819 u64 val64;
1ee6dd77
RB
4820 struct s2io_nic *sp = dev->priv;
4821 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
4822
4823 val64 = readq(&bar0->rmac_pause_cfg);
4824 if (ep->tx_pause)
4825 val64 |= RMAC_PAUSE_GEN_ENABLE;
4826 else
4827 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4828 if (ep->rx_pause)
4829 val64 |= RMAC_PAUSE_RX_ENABLE;
4830 else
4831 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4832 writeq(val64, &bar0->rmac_pause_cfg);
4833 return 0;
4834}
4835
4836/**
4837 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 4838 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
4839 * s2io_nic structure.
4840 * @off : offset at which the data must be written
4841 * @data : Its an output parameter where the data read at the given
20346722 4842 * offset is stored.
1da177e4 4843 * Description:
20346722 4844 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
4845 * read data.
4846 * NOTE: Will allow to read only part of the EEPROM visible through the
4847 * I2C bus.
4848 * Return value:
4849 * -1 on failure and 0 on success.
4850 */
4851
4852#define S2IO_DEV_ID 5
1ee6dd77 4853static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
1da177e4
LT
4854{
4855 int ret = -1;
4856 u32 exit_cnt = 0;
4857 u64 val64;
1ee6dd77 4858 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 4859
ad4ebed0 4860 if (sp->device_type == XFRAME_I_DEVICE) {
4861 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4862 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4863 I2C_CONTROL_CNTL_START;
4864 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 4865
ad4ebed0 4866 while (exit_cnt < 5) {
4867 val64 = readq(&bar0->i2c_control);
4868 if (I2C_CONTROL_CNTL_END(val64)) {
4869 *data = I2C_CONTROL_GET_DATA(val64);
4870 ret = 0;
4871 break;
4872 }
4873 msleep(50);
4874 exit_cnt++;
1da177e4 4875 }
1da177e4
LT
4876 }
4877
ad4ebed0 4878 if (sp->device_type == XFRAME_II_DEVICE) {
4879 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 4880 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 4881 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4882 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4883 val64 |= SPI_CONTROL_REQ;
4884 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4885 while (exit_cnt < 5) {
4886 val64 = readq(&bar0->spi_control);
4887 if (val64 & SPI_CONTROL_NACK) {
4888 ret = 1;
4889 break;
4890 } else if (val64 & SPI_CONTROL_DONE) {
4891 *data = readq(&bar0->spi_data);
4892 *data &= 0xffffff;
4893 ret = 0;
4894 break;
4895 }
4896 msleep(50);
4897 exit_cnt++;
4898 }
4899 }
1da177e4
LT
4900 return ret;
4901}
4902
4903/**
4904 * write_eeprom - actually writes the relevant part of the data value.
4905 * @sp : private member of the device structure, which is a pointer to the
4906 * s2io_nic structure.
4907 * @off : offset at which the data must be written
4908 * @data : The data that is to be written
20346722 4909 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
4910 * the Eeprom. (max of 3)
4911 * Description:
4912 * Actually writes the relevant part of the data value into the Eeprom
4913 * through the I2C bus.
4914 * Return value:
4915 * 0 on success, -1 on failure.
4916 */
4917
1ee6dd77 4918static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
1da177e4
LT
4919{
4920 int exit_cnt = 0, ret = -1;
4921 u64 val64;
1ee6dd77 4922 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 4923
ad4ebed0 4924 if (sp->device_type == XFRAME_I_DEVICE) {
4925 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4926 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4927 I2C_CONTROL_CNTL_START;
4928 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4929
4930 while (exit_cnt < 5) {
4931 val64 = readq(&bar0->i2c_control);
4932 if (I2C_CONTROL_CNTL_END(val64)) {
4933 if (!(val64 & I2C_CONTROL_NACK))
4934 ret = 0;
4935 break;
4936 }
4937 msleep(50);
4938 exit_cnt++;
4939 }
4940 }
1da177e4 4941
ad4ebed0 4942 if (sp->device_type == XFRAME_II_DEVICE) {
4943 int write_cnt = (cnt == 8) ? 0 : cnt;
4944 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4945
4946 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 4947 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 4948 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4949 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4950 val64 |= SPI_CONTROL_REQ;
4951 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4952 while (exit_cnt < 5) {
4953 val64 = readq(&bar0->spi_control);
4954 if (val64 & SPI_CONTROL_NACK) {
4955 ret = 1;
4956 break;
4957 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 4958 ret = 0;
ad4ebed0 4959 break;
4960 }
4961 msleep(50);
4962 exit_cnt++;
1da177e4 4963 }
1da177e4 4964 }
1da177e4
LT
4965 return ret;
4966}
1ee6dd77 4967static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 4968{
b41477f3
AR
4969 u8 *vpd_data;
4970 u8 data;
9dc737a7
AR
4971 int i=0, cnt, fail = 0;
4972 int vpd_addr = 0x80;
4973
4974 if (nic->device_type == XFRAME_II_DEVICE) {
4975 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
4976 vpd_addr = 0x80;
4977 }
4978 else {
4979 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
4980 vpd_addr = 0x50;
4981 }
19a60522 4982 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 4983
b41477f3
AR
4984 vpd_data = kmalloc(256, GFP_KERNEL);
4985 if (!vpd_data)
4986 return;
4987
9dc737a7
AR
4988 for (i = 0; i < 256; i +=4 ) {
4989 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
4990 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
4991 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
4992 for (cnt = 0; cnt <5; cnt++) {
4993 msleep(2);
4994 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
4995 if (data == 0x80)
4996 break;
4997 }
4998 if (cnt >= 5) {
4999 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5000 fail = 1;
5001 break;
5002 }
5003 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5004 (u32 *)&vpd_data[i]);
5005 }
19a60522
SS
5006
5007 if(!fail) {
5008 /* read serial number of adapter */
5009 for (cnt = 0; cnt < 256; cnt++) {
5010 if ((vpd_data[cnt] == 'S') &&
5011 (vpd_data[cnt+1] == 'N') &&
5012 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5013 memset(nic->serial_num, 0, VPD_STRING_LEN);
5014 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5015 vpd_data[cnt+2]);
5016 break;
5017 }
5018 }
5019 }
5020
5021 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5022 memset(nic->product_name, 0, vpd_data[1]);
5023 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5024 }
b41477f3 5025 kfree(vpd_data);
9dc737a7
AR
5026}
5027
1da177e4
LT
5028/**
5029 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5030 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5031 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5032 * containing all relevant information.
5033 * @data_buf : user defined value to be written into Eeprom.
5034 * Description: Reads the values stored in the Eeprom at given offset
5035 * for a given length. Stores these values int the input argument data
5036 * buffer 'data_buf' and returns these to the caller (ethtool.)
5037 * Return value:
5038 * int 0 on success
5039 */
5040
5041static int s2io_ethtool_geeprom(struct net_device *dev,
20346722 5042 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5043{
ad4ebed0 5044 u32 i, valid;
5045 u64 data;
1ee6dd77 5046 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5047
5048 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5049
5050 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5051 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5052
5053 for (i = 0; i < eeprom->len; i += 4) {
5054 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5055 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5056 return -EFAULT;
5057 }
5058 valid = INV(data);
5059 memcpy((data_buf + i), &valid, 4);
5060 }
5061 return 0;
5062}
5063
5064/**
5065 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5066 * @sp : private member of the device structure, which is a pointer to the
5067 * s2io_nic structure.
20346722 5068 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5069 * containing all relevant information.
5070 * @data_buf ; user defined value to be written into Eeprom.
5071 * Description:
5072 * Tries to write the user provided value in the Eeprom, at the offset
5073 * given by the user.
5074 * Return value:
5075 * 0 on success, -EFAULT on failure.
5076 */
5077
5078static int s2io_ethtool_seeprom(struct net_device *dev,
5079 struct ethtool_eeprom *eeprom,
5080 u8 * data_buf)
5081{
5082 int len = eeprom->len, cnt = 0;
ad4ebed0 5083 u64 valid = 0, data;
1ee6dd77 5084 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5085
5086 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5087 DBG_PRINT(ERR_DBG,
5088 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5089 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5090 eeprom->magic);
5091 return -EFAULT;
5092 }
5093
5094 while (len) {
5095 data = (u32) data_buf[cnt] & 0x000000FF;
5096 if (data) {
5097 valid = (u32) (data << 24);
5098 } else
5099 valid = data;
5100
5101 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5102 DBG_PRINT(ERR_DBG,
5103 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5104 DBG_PRINT(ERR_DBG,
5105 "write into the specified offset\n");
5106 return -EFAULT;
5107 }
5108 cnt++;
5109 len--;
5110 }
5111
5112 return 0;
5113}
5114
5115/**
20346722
K
5116 * s2io_register_test - reads and writes into all clock domains.
5117 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5118 * s2io_nic structure.
5119 * @data : variable that returns the result of each of the test conducted b
5120 * by the driver.
5121 * Description:
5122 * Read and write into all clock domains. The NIC has 3 clock domains,
5123 * see that registers in all the three regions are accessible.
5124 * Return value:
5125 * 0 on success.
5126 */
5127
1ee6dd77 5128static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5129{
1ee6dd77 5130 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5131 u64 val64 = 0, exp_val;
1da177e4
LT
5132 int fail = 0;
5133
20346722
K
5134 val64 = readq(&bar0->pif_rd_swapper_fb);
5135 if (val64 != 0x123456789abcdefULL) {
1da177e4
LT
5136 fail = 1;
5137 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5138 }
5139
5140 val64 = readq(&bar0->rmac_pause_cfg);
5141 if (val64 != 0xc000ffff00000000ULL) {
5142 fail = 1;
5143 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5144 }
5145
5146 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5147 if (sp->device_type == XFRAME_II_DEVICE)
5148 exp_val = 0x0404040404040404ULL;
5149 else
5150 exp_val = 0x0808080808080808ULL;
5151 if (val64 != exp_val) {
1da177e4
LT
5152 fail = 1;
5153 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5154 }
5155
5156 val64 = readq(&bar0->xgxs_efifo_cfg);
5157 if (val64 != 0x000000001923141EULL) {
5158 fail = 1;
5159 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5160 }
5161
5162 val64 = 0x5A5A5A5A5A5A5A5AULL;
5163 writeq(val64, &bar0->xmsi_data);
5164 val64 = readq(&bar0->xmsi_data);
5165 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5166 fail = 1;
5167 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5168 }
5169
5170 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5171 writeq(val64, &bar0->xmsi_data);
5172 val64 = readq(&bar0->xmsi_data);
5173 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5174 fail = 1;
5175 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5176 }
5177
5178 *data = fail;
ad4ebed0 5179 return fail;
1da177e4
LT
5180}
5181
5182/**
20346722 5183 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5184 * @sp : private member of the device structure, which is a pointer to the
5185 * s2io_nic structure.
5186 * @data:variable that returns the result of each of the test conducted by
5187 * the driver.
5188 * Description:
20346722 5189 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5190 * register.
5191 * Return value:
5192 * 0 on success.
5193 */
5194
1ee6dd77 5195static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5196{
5197 int fail = 0;
ad4ebed0 5198 u64 ret_data, org_4F0, org_7F0;
5199 u8 saved_4F0 = 0, saved_7F0 = 0;
5200 struct net_device *dev = sp->dev;
1da177e4
LT
5201
5202 /* Test Write Error at offset 0 */
ad4ebed0 5203 /* Note that SPI interface allows write access to all areas
5204 * of EEPROM. Hence doing all negative testing only for Xframe I.
5205 */
5206 if (sp->device_type == XFRAME_I_DEVICE)
5207 if (!write_eeprom(sp, 0, 0, 3))
5208 fail = 1;
5209
5210 /* Save current values at offsets 0x4F0 and 0x7F0 */
5211 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5212 saved_4F0 = 1;
5213 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5214 saved_7F0 = 1;
1da177e4
LT
5215
5216 /* Test Write at offset 4f0 */
ad4ebed0 5217 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
5218 fail = 1;
5219 if (read_eeprom(sp, 0x4F0, &ret_data))
5220 fail = 1;
5221
ad4ebed0 5222 if (ret_data != 0x012345) {
26b7625c
AM
5223 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5224 "Data written %llx Data read %llx\n",
5225 dev->name, (unsigned long long)0x12345,
5226 (unsigned long long)ret_data);
1da177e4 5227 fail = 1;
ad4ebed0 5228 }
1da177e4
LT
5229
5230 /* Reset the EEPROM data go FFFF */
ad4ebed0 5231 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
5232
5233 /* Test Write Request Error at offset 0x7c */
ad4ebed0 5234 if (sp->device_type == XFRAME_I_DEVICE)
5235 if (!write_eeprom(sp, 0x07C, 0, 3))
5236 fail = 1;
1da177e4 5237
ad4ebed0 5238 /* Test Write Request at offset 0x7f0 */
5239 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 5240 fail = 1;
ad4ebed0 5241 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
5242 fail = 1;
5243
ad4ebed0 5244 if (ret_data != 0x012345) {
26b7625c
AM
5245 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5246 "Data written %llx Data read %llx\n",
5247 dev->name, (unsigned long long)0x12345,
5248 (unsigned long long)ret_data);
1da177e4 5249 fail = 1;
ad4ebed0 5250 }
1da177e4
LT
5251
5252 /* Reset the EEPROM data go FFFF */
ad4ebed0 5253 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 5254
ad4ebed0 5255 if (sp->device_type == XFRAME_I_DEVICE) {
5256 /* Test Write Error at offset 0x80 */
5257 if (!write_eeprom(sp, 0x080, 0, 3))
5258 fail = 1;
1da177e4 5259
ad4ebed0 5260 /* Test Write Error at offset 0xfc */
5261 if (!write_eeprom(sp, 0x0FC, 0, 3))
5262 fail = 1;
1da177e4 5263
ad4ebed0 5264 /* Test Write Error at offset 0x100 */
5265 if (!write_eeprom(sp, 0x100, 0, 3))
5266 fail = 1;
1da177e4 5267
ad4ebed0 5268 /* Test Write Error at offset 4ec */
5269 if (!write_eeprom(sp, 0x4EC, 0, 3))
5270 fail = 1;
5271 }
5272
5273 /* Restore values at offsets 0x4F0 and 0x7F0 */
5274 if (saved_4F0)
5275 write_eeprom(sp, 0x4F0, org_4F0, 3);
5276 if (saved_7F0)
5277 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
5278
5279 *data = fail;
ad4ebed0 5280 return fail;
1da177e4
LT
5281}
5282
5283/**
5284 * s2io_bist_test - invokes the MemBist test of the card .
20346722 5285 * @sp : private member of the device structure, which is a pointer to the
1da177e4 5286 * s2io_nic structure.
20346722 5287 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
5288 * the driver.
5289 * Description:
5290 * This invokes the MemBist test of the card. We give around
5291 * 2 secs time for the Test to complete. If it's still not complete
20346722 5292 * within this peiod, we consider that the test failed.
1da177e4
LT
5293 * Return value:
5294 * 0 on success and -1 on failure.
5295 */
5296
1ee6dd77 5297static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
1da177e4
LT
5298{
5299 u8 bist = 0;
5300 int cnt = 0, ret = -1;
5301
5302 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5303 bist |= PCI_BIST_START;
5304 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5305
5306 while (cnt < 20) {
5307 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5308 if (!(bist & PCI_BIST_START)) {
5309 *data = (bist & PCI_BIST_CODE_MASK);
5310 ret = 0;
5311 break;
5312 }
5313 msleep(100);
5314 cnt++;
5315 }
5316
5317 return ret;
5318}
5319
5320/**
20346722
K
5321 * s2io-link_test - verifies the link state of the nic
5322 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
5323 * s2io_nic structure.
5324 * @data: variable that returns the result of each of the test conducted by
5325 * the driver.
5326 * Description:
20346722 5327 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
5328 * argument 'data' appropriately.
5329 * Return value:
5330 * 0 on success.
5331 */
5332
1ee6dd77 5333static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5334{
1ee6dd77 5335 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5336 u64 val64;
5337
5338 val64 = readq(&bar0->adapter_status);
c92ca04b 5339 if(!(LINK_IS_UP(val64)))
1da177e4 5340 *data = 1;
c92ca04b
AR
5341 else
5342 *data = 0;
1da177e4 5343
b41477f3 5344 return *data;
1da177e4
LT
5345}
5346
5347/**
20346722
K
5348 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5349 * @sp - private member of the device structure, which is a pointer to the
1da177e4 5350 * s2io_nic structure.
20346722 5351 * @data - variable that returns the result of each of the test
1da177e4
LT
5352 * conducted by the driver.
5353 * Description:
20346722 5354 * This is one of the offline test that tests the read and write
1da177e4
LT
5355 * access to the RldRam chip on the NIC.
5356 * Return value:
5357 * 0 on success.
5358 */
5359
1ee6dd77 5360static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
1da177e4 5361{
1ee6dd77 5362 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5363 u64 val64;
ad4ebed0 5364 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
5365
5366 val64 = readq(&bar0->adapter_control);
5367 val64 &= ~ADAPTER_ECC_EN;
5368 writeq(val64, &bar0->adapter_control);
5369
5370 val64 = readq(&bar0->mc_rldram_test_ctrl);
5371 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 5372 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5373
5374 val64 = readq(&bar0->mc_rldram_mrs);
5375 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5376 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5377
5378 val64 |= MC_RLDRAM_MRS_ENABLE;
5379 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5380
5381 while (iteration < 2) {
5382 val64 = 0x55555555aaaa0000ULL;
5383 if (iteration == 1) {
5384 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5385 }
5386 writeq(val64, &bar0->mc_rldram_test_d0);
5387
5388 val64 = 0xaaaa5a5555550000ULL;
5389 if (iteration == 1) {
5390 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5391 }
5392 writeq(val64, &bar0->mc_rldram_test_d1);
5393
5394 val64 = 0x55aaaaaaaa5a0000ULL;
5395 if (iteration == 1) {
5396 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5397 }
5398 writeq(val64, &bar0->mc_rldram_test_d2);
5399
ad4ebed0 5400 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
5401 writeq(val64, &bar0->mc_rldram_test_add);
5402
ad4ebed0 5403 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5404 MC_RLDRAM_TEST_GO;
5405 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5406
5407 for (cnt = 0; cnt < 5; cnt++) {
5408 val64 = readq(&bar0->mc_rldram_test_ctrl);
5409 if (val64 & MC_RLDRAM_TEST_DONE)
5410 break;
5411 msleep(200);
5412 }
5413
5414 if (cnt == 5)
5415 break;
5416
ad4ebed0 5417 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5418 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
5419
5420 for (cnt = 0; cnt < 5; cnt++) {
5421 val64 = readq(&bar0->mc_rldram_test_ctrl);
5422 if (val64 & MC_RLDRAM_TEST_DONE)
5423 break;
5424 msleep(500);
5425 }
5426
5427 if (cnt == 5)
5428 break;
5429
5430 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 5431 if (!(val64 & MC_RLDRAM_TEST_PASS))
5432 test_fail = 1;
1da177e4
LT
5433
5434 iteration++;
5435 }
5436
ad4ebed0 5437 *data = test_fail;
1da177e4 5438
ad4ebed0 5439 /* Bring the adapter out of test mode */
5440 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5441
5442 return test_fail;
1da177e4
LT
5443}
5444
5445/**
5446 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5447 * @sp : private member of the device structure, which is a pointer to the
5448 * s2io_nic structure.
5449 * @ethtest : pointer to a ethtool command specific structure that will be
5450 * returned to the user.
20346722 5451 * @data : variable that returns the result of each of the test
1da177e4
LT
5452 * conducted by the driver.
5453 * Description:
5454 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5455 * the health of the card.
5456 * Return value:
5457 * void
5458 */
5459
5460static void s2io_ethtool_test(struct net_device *dev,
5461 struct ethtool_test *ethtest,
5462 uint64_t * data)
5463{
1ee6dd77 5464 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5465 int orig_state = netif_running(sp->dev);
5466
5467 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5468 /* Offline Tests. */
20346722 5469 if (orig_state)
1da177e4 5470 s2io_close(sp->dev);
1da177e4
LT
5471
5472 if (s2io_register_test(sp, &data[0]))
5473 ethtest->flags |= ETH_TEST_FL_FAILED;
5474
5475 s2io_reset(sp);
1da177e4
LT
5476
5477 if (s2io_rldram_test(sp, &data[3]))
5478 ethtest->flags |= ETH_TEST_FL_FAILED;
5479
5480 s2io_reset(sp);
1da177e4
LT
5481
5482 if (s2io_eeprom_test(sp, &data[1]))
5483 ethtest->flags |= ETH_TEST_FL_FAILED;
5484
5485 if (s2io_bist_test(sp, &data[4]))
5486 ethtest->flags |= ETH_TEST_FL_FAILED;
5487
5488 if (orig_state)
5489 s2io_open(sp->dev);
5490
5491 data[2] = 0;
5492 } else {
5493 /* Online Tests. */
5494 if (!orig_state) {
5495 DBG_PRINT(ERR_DBG,
5496 "%s: is not up, cannot run test\n",
5497 dev->name);
5498 data[0] = -1;
5499 data[1] = -1;
5500 data[2] = -1;
5501 data[3] = -1;
5502 data[4] = -1;
5503 }
5504
5505 if (s2io_link_test(sp, &data[2]))
5506 ethtest->flags |= ETH_TEST_FL_FAILED;
5507
5508 data[0] = 0;
5509 data[1] = 0;
5510 data[3] = 0;
5511 data[4] = 0;
5512 }
5513}
5514
5515static void s2io_get_ethtool_stats(struct net_device *dev,
5516 struct ethtool_stats *estats,
5517 u64 * tmp_stats)
5518{
5519 int i = 0;
1ee6dd77
RB
5520 struct s2io_nic *sp = dev->priv;
5521 struct stat_block *stat_info = sp->mac_control.stats_info;
1da177e4 5522
7ba013ac 5523 s2io_updt_stats(sp);
541ae68f
K
5524 tmp_stats[i++] =
5525 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5526 le32_to_cpu(stat_info->tmac_frms);
5527 tmp_stats[i++] =
5528 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5529 le32_to_cpu(stat_info->tmac_data_octets);
1da177e4 5530 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
541ae68f
K
5531 tmp_stats[i++] =
5532 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5533 le32_to_cpu(stat_info->tmac_mcst_frms);
5534 tmp_stats[i++] =
5535 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5536 le32_to_cpu(stat_info->tmac_bcst_frms);
1da177e4 5537 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
bd1034f0
AR
5538 tmp_stats[i++] =
5539 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5540 le32_to_cpu(stat_info->tmac_ttl_octets);
5541 tmp_stats[i++] =
5542 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5543 le32_to_cpu(stat_info->tmac_ucst_frms);
5544 tmp_stats[i++] =
5545 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5546 le32_to_cpu(stat_info->tmac_nucst_frms);
541ae68f
K
5547 tmp_stats[i++] =
5548 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5549 le32_to_cpu(stat_info->tmac_any_err_frms);
bd1034f0 5550 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
1da177e4 5551 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
541ae68f
K
5552 tmp_stats[i++] =
5553 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5554 le32_to_cpu(stat_info->tmac_vld_ip);
5555 tmp_stats[i++] =
5556 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5557 le32_to_cpu(stat_info->tmac_drop_ip);
5558 tmp_stats[i++] =
5559 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5560 le32_to_cpu(stat_info->tmac_icmp);
5561 tmp_stats[i++] =
5562 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5563 le32_to_cpu(stat_info->tmac_rst_tcp);
1da177e4 5564 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
541ae68f
K
5565 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5566 le32_to_cpu(stat_info->tmac_udp);
5567 tmp_stats[i++] =
5568 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5569 le32_to_cpu(stat_info->rmac_vld_frms);
5570 tmp_stats[i++] =
5571 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5572 le32_to_cpu(stat_info->rmac_data_octets);
1da177e4
LT
5573 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5574 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
541ae68f
K
5575 tmp_stats[i++] =
5576 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5577 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5578 tmp_stats[i++] =
5579 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5580 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
1da177e4 5581 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
bd1034f0 5582 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
1da177e4
LT
5583 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5584 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
bd1034f0
AR
5585 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5586 tmp_stats[i++] =
5587 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5588 le32_to_cpu(stat_info->rmac_ttl_octets);
5589 tmp_stats[i++] =
5590 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5591 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5592 tmp_stats[i++] =
5593 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5594 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
541ae68f
K
5595 tmp_stats[i++] =
5596 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5597 le32_to_cpu(stat_info->rmac_discarded_frms);
bd1034f0
AR
5598 tmp_stats[i++] =
5599 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5600 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5601 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5602 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
541ae68f
K
5603 tmp_stats[i++] =
5604 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5605 le32_to_cpu(stat_info->rmac_usized_frms);
5606 tmp_stats[i++] =
5607 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5608 le32_to_cpu(stat_info->rmac_osized_frms);
5609 tmp_stats[i++] =
5610 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5611 le32_to_cpu(stat_info->rmac_frag_frms);
5612 tmp_stats[i++] =
5613 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5614 le32_to_cpu(stat_info->rmac_jabber_frms);
bd1034f0
AR
5615 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5616 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5617 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5618 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5619 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5620 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5621 tmp_stats[i++] =
5622 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
541ae68f 5623 le32_to_cpu(stat_info->rmac_ip);
1da177e4
LT
5624 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5625 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
bd1034f0
AR
5626 tmp_stats[i++] =
5627 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
541ae68f 5628 le32_to_cpu(stat_info->rmac_drop_ip);
bd1034f0
AR
5629 tmp_stats[i++] =
5630 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
541ae68f 5631 le32_to_cpu(stat_info->rmac_icmp);
1da177e4 5632 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
bd1034f0
AR
5633 tmp_stats[i++] =
5634 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
541ae68f
K
5635 le32_to_cpu(stat_info->rmac_udp);
5636 tmp_stats[i++] =
5637 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5638 le32_to_cpu(stat_info->rmac_err_drp_udp);
bd1034f0
AR
5639 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5640 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5641 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5642 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5643 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5644 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5645 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5646 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5647 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5648 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5649 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5650 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5651 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5652 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5653 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5654 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5655 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
541ae68f
K
5656 tmp_stats[i++] =
5657 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5658 le32_to_cpu(stat_info->rmac_pause_cnt);
bd1034f0
AR
5659 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5660 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
541ae68f
K
5661 tmp_stats[i++] =
5662 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5663 le32_to_cpu(stat_info->rmac_accepted_ip);
1da177e4 5664 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
bd1034f0
AR
5665 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5666 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5667 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5668 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5669 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5670 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5671 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5672 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5673 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5674 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5675 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5676 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5677 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5678 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5679 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5680 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5681 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5682 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
fa1f0cb3
SS
5683
5684 /* Enhanced statistics exist only for Hercules */
5685 if(sp->device_type == XFRAME_II_DEVICE) {
5686 tmp_stats[i++] =
5687 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5688 tmp_stats[i++] =
5689 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5690 tmp_stats[i++] =
5691 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5692 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5693 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5694 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5695 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5696 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5697 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5698 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5699 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5700 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5701 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5702 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5703 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5704 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5705 }
5706
7ba013ac
K
5707 tmp_stats[i++] = 0;
5708 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5709 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
bd1034f0
AR
5710 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5711 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5712 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5713 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5714 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5715 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5716 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5717 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5718 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5719 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5720 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5721 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5722 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5723 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5724 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5725 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5726 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
7d3d0439
RA
5727 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5728 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5729 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5730 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
fe931395 5731 if (stat_info->sw_stat.num_aggregations) {
bd1034f0
AR
5732 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5733 int count = 0;
6aa20a22 5734 /*
bd1034f0
AR
5735 * Since 64-bit divide does not work on all platforms,
5736 * do repeated subtraction.
5737 */
5738 while (tmp >= stat_info->sw_stat.num_aggregations) {
5739 tmp -= stat_info->sw_stat.num_aggregations;
5740 count++;
5741 }
5742 tmp_stats[i++] = count;
fe931395 5743 }
bd1034f0
AR
5744 else
5745 tmp_stats[i++] = 0;
1da177e4
LT
5746}
5747
ac1f60db 5748static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4
LT
5749{
5750 return (XENA_REG_SPACE);
5751}
5752
5753
ac1f60db 5754static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
1da177e4 5755{
1ee6dd77 5756 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5757
5758 return (sp->rx_csum);
5759}
ac1f60db
AB
5760
5761static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 5762{
1ee6dd77 5763 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5764
5765 if (data)
5766 sp->rx_csum = 1;
5767 else
5768 sp->rx_csum = 0;
5769
5770 return 0;
5771}
ac1f60db
AB
5772
5773static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4
LT
5774{
5775 return (XENA_EEPROM_SPACE);
5776}
5777
ac1f60db 5778static int s2io_ethtool_self_test_count(struct net_device *dev)
1da177e4
LT
5779{
5780 return (S2IO_TEST_LEN);
5781}
ac1f60db
AB
5782
5783static void s2io_ethtool_get_strings(struct net_device *dev,
5784 u32 stringset, u8 * data)
1da177e4 5785{
fa1f0cb3
SS
5786 int stat_size = 0;
5787 struct s2io_nic *sp = dev->priv;
5788
1da177e4
LT
5789 switch (stringset) {
5790 case ETH_SS_TEST:
5791 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5792 break;
5793 case ETH_SS_STATS:
fa1f0cb3
SS
5794 stat_size = sizeof(ethtool_xena_stats_keys);
5795 memcpy(data, &ethtool_xena_stats_keys,stat_size);
5796 if(sp->device_type == XFRAME_II_DEVICE) {
5797 memcpy(data + stat_size,
5798 &ethtool_enhanced_stats_keys,
5799 sizeof(ethtool_enhanced_stats_keys));
5800 stat_size += sizeof(ethtool_enhanced_stats_keys);
5801 }
5802
5803 memcpy(data + stat_size, &ethtool_driver_stats_keys,
5804 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
5805 }
5806}
1da177e4
LT
5807static int s2io_ethtool_get_stats_count(struct net_device *dev)
5808{
fa1f0cb3
SS
5809 struct s2io_nic *sp = dev->priv;
5810 int stat_count = 0;
5811 switch(sp->device_type) {
5812 case XFRAME_I_DEVICE:
5813 stat_count = XFRAME_I_STAT_LEN;
5814 break;
5815
5816 case XFRAME_II_DEVICE:
5817 stat_count = XFRAME_II_STAT_LEN;
5818 break;
5819 }
5820
5821 return stat_count;
1da177e4
LT
5822}
5823
ac1f60db 5824static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
5825{
5826 if (data)
5827 dev->features |= NETIF_F_IP_CSUM;
5828 else
5829 dev->features &= ~NETIF_F_IP_CSUM;
5830
5831 return 0;
5832}
5833
75c30b13
AR
5834static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5835{
5836 return (dev->features & NETIF_F_TSO) != 0;
5837}
5838static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5839{
5840 if (data)
5841 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5842 else
5843 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5844
5845 return 0;
5846}
1da177e4 5847
7282d491 5848static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
5849 .get_settings = s2io_ethtool_gset,
5850 .set_settings = s2io_ethtool_sset,
5851 .get_drvinfo = s2io_ethtool_gdrvinfo,
5852 .get_regs_len = s2io_ethtool_get_regs_len,
5853 .get_regs = s2io_ethtool_gregs,
5854 .get_link = ethtool_op_get_link,
5855 .get_eeprom_len = s2io_get_eeprom_len,
5856 .get_eeprom = s2io_ethtool_geeprom,
5857 .set_eeprom = s2io_ethtool_seeprom,
5858 .get_pauseparam = s2io_ethtool_getpause_data,
5859 .set_pauseparam = s2io_ethtool_setpause_data,
5860 .get_rx_csum = s2io_ethtool_get_rx_csum,
5861 .set_rx_csum = s2io_ethtool_set_rx_csum,
5862 .get_tx_csum = ethtool_op_get_tx_csum,
5863 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5864 .get_sg = ethtool_op_get_sg,
5865 .set_sg = ethtool_op_set_sg,
75c30b13
AR
5866 .get_tso = s2io_ethtool_op_get_tso,
5867 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd
AR
5868 .get_ufo = ethtool_op_get_ufo,
5869 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
5870 .self_test_count = s2io_ethtool_self_test_count,
5871 .self_test = s2io_ethtool_test,
5872 .get_strings = s2io_ethtool_get_strings,
5873 .phys_id = s2io_ethtool_idnic,
5874 .get_stats_count = s2io_ethtool_get_stats_count,
5875 .get_ethtool_stats = s2io_get_ethtool_stats
5876};
5877
5878/**
20346722 5879 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
5880 * @dev : Device pointer.
5881 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5882 * a proprietary structure used to pass information to the driver.
5883 * @cmd : This is used to distinguish between the different commands that
5884 * can be passed to the IOCTL functions.
5885 * Description:
20346722
K
5886 * Currently there are no special functionality supported in IOCTL, hence
5887 * function always return EOPNOTSUPPORTED
1da177e4
LT
5888 */
5889
ac1f60db 5890static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
5891{
5892 return -EOPNOTSUPP;
5893}
5894
5895/**
5896 * s2io_change_mtu - entry point to change MTU size for the device.
5897 * @dev : device pointer.
5898 * @new_mtu : the new MTU size for the device.
5899 * Description: A driver entry point to change MTU size for the device.
5900 * Before changing the MTU the device must be stopped.
5901 * Return value:
5902 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5903 * file on failure.
5904 */
5905
ac1f60db 5906static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 5907{
1ee6dd77 5908 struct s2io_nic *sp = dev->priv;
1da177e4
LT
5909
5910 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5911 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5912 dev->name);
5913 return -EPERM;
5914 }
5915
1da177e4 5916 dev->mtu = new_mtu;
d8892c6e 5917 if (netif_running(dev)) {
e6a8fee2 5918 s2io_card_down(sp);
d8892c6e
K
5919 netif_stop_queue(dev);
5920 if (s2io_card_up(sp)) {
5921 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5922 __FUNCTION__);
5923 }
5924 if (netif_queue_stopped(dev))
5925 netif_wake_queue(dev);
5926 } else { /* Device is down */
1ee6dd77 5927 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e
K
5928 u64 val64 = new_mtu;
5929
5930 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5931 }
1da177e4
LT
5932
5933 return 0;
5934}
5935
5936/**
5937 * s2io_tasklet - Bottom half of the ISR.
5938 * @dev_adr : address of the device structure in dma_addr_t format.
5939 * Description:
5940 * This is the tasklet or the bottom half of the ISR. This is
20346722 5941 * an extension of the ISR which is scheduled by the scheduler to be run
1da177e4 5942 * when the load on the CPU is low. All low priority tasks of the ISR can
20346722 5943 * be pushed into the tasklet. For now the tasklet is used only to
1da177e4
LT
5944 * replenish the Rx buffers in the Rx buffer descriptors.
5945 * Return value:
5946 * void.
5947 */
5948
5949static void s2io_tasklet(unsigned long dev_addr)
5950{
5951 struct net_device *dev = (struct net_device *) dev_addr;
1ee6dd77 5952 struct s2io_nic *sp = dev->priv;
1da177e4 5953 int i, ret;
1ee6dd77 5954 struct mac_info *mac_control;
1da177e4
LT
5955 struct config_param *config;
5956
5957 mac_control = &sp->mac_control;
5958 config = &sp->config;
5959
5960 if (!TASKLET_IN_USE) {
5961 for (i = 0; i < config->rx_ring_num; i++) {
5962 ret = fill_rx_buffers(sp, i);
5963 if (ret == -ENOMEM) {
5964 DBG_PRINT(ERR_DBG, "%s: Out of ",
5965 dev->name);
5966 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
5967 break;
5968 } else if (ret == -EFILL) {
5969 DBG_PRINT(ERR_DBG,
5970 "%s: Rx Ring %d is full\n",
5971 dev->name, i);
5972 break;
5973 }
5974 }
5975 clear_bit(0, (&sp->tasklet_status));
5976 }
5977}
5978
5979/**
5980 * s2io_set_link - Set the LInk status
5981 * @data: long pointer to device private structue
5982 * Description: Sets the link status for the adapter
5983 */
5984
c4028958 5985static void s2io_set_link(struct work_struct *work)
1da177e4 5986{
1ee6dd77 5987 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
1da177e4 5988 struct net_device *dev = nic->dev;
1ee6dd77 5989 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
5990 register u64 val64;
5991 u16 subid;
5992
22747d6b
FR
5993 rtnl_lock();
5994
5995 if (!netif_running(dev))
5996 goto out_unlock;
5997
1da177e4
LT
5998 if (test_and_set_bit(0, &(nic->link_state))) {
5999 /* The card is being reset, no point doing anything */
22747d6b 6000 goto out_unlock;
1da177e4
LT
6001 }
6002
6003 subid = nic->pdev->subsystem_device;
a371a07d
K
6004 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6005 /*
6006 * Allow a small delay for the NICs self initiated
6007 * cleanup to complete.
6008 */
6009 msleep(100);
6010 }
1da177e4
LT
6011
6012 val64 = readq(&bar0->adapter_status);
19a60522
SS
6013 if (LINK_IS_UP(val64)) {
6014 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6015 if (verify_xena_quiescence(nic)) {
6016 val64 = readq(&bar0->adapter_control);
6017 val64 |= ADAPTER_CNTL_EN;
1da177e4 6018 writeq(val64, &bar0->adapter_control);
19a60522
SS
6019 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6020 nic->device_type, subid)) {
6021 val64 = readq(&bar0->gpio_control);
6022 val64 |= GPIO_CTRL_GPIO_0;
6023 writeq(val64, &bar0->gpio_control);
6024 val64 = readq(&bar0->gpio_control);
6025 } else {
6026 val64 |= ADAPTER_LED_ON;
6027 writeq(val64, &bar0->adapter_control);
a371a07d 6028 }
1da177e4 6029 nic->device_enabled_once = TRUE;
19a60522
SS
6030 } else {
6031 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6032 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6033 netif_stop_queue(dev);
1da177e4 6034 }
19a60522
SS
6035 }
6036 val64 = readq(&bar0->adapter_status);
6037 if (!LINK_IS_UP(val64)) {
6038 DBG_PRINT(ERR_DBG, "%s:", dev->name);
6039 DBG_PRINT(ERR_DBG, " Link down after enabling ");
6040 DBG_PRINT(ERR_DBG, "device \n");
6041 } else
1da177e4 6042 s2io_link(nic, LINK_UP);
19a60522
SS
6043 } else {
6044 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6045 subid)) {
6046 val64 = readq(&bar0->gpio_control);
6047 val64 &= ~GPIO_CTRL_GPIO_0;
6048 writeq(val64, &bar0->gpio_control);
6049 val64 = readq(&bar0->gpio_control);
1da177e4 6050 }
19a60522 6051 s2io_link(nic, LINK_DOWN);
1da177e4
LT
6052 }
6053 clear_bit(0, &(nic->link_state));
22747d6b
FR
6054
6055out_unlock:
d8d70caf 6056 rtnl_unlock();
1da177e4
LT
6057}
6058
1ee6dd77
RB
6059static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6060 struct buffAdd *ba,
6061 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6062 u64 *temp2, int size)
5d3213cc
AR
6063{
6064 struct net_device *dev = sp->dev;
6065 struct sk_buff *frag_list;
6066
6067 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6068 /* allocate skb */
6069 if (*skb) {
6070 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6071 /*
6072 * As Rx frame are not going to be processed,
6073 * using same mapped address for the Rxd
6074 * buffer pointer
6075 */
1ee6dd77 6076 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
5d3213cc
AR
6077 } else {
6078 *skb = dev_alloc_skb(size);
6079 if (!(*skb)) {
6080 DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
6081 DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
6082 return -ENOMEM ;
6083 }
6084 /* storing the mapped addr in a temp variable
6085 * such it will be used for next rxd whose
6086 * Host Control is NULL
6087 */
1ee6dd77 6088 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
5d3213cc
AR
6089 pci_map_single( sp->pdev, (*skb)->data,
6090 size - NET_IP_ALIGN,
6091 PCI_DMA_FROMDEVICE);
6092 rxdp->Host_Control = (unsigned long) (*skb);
6093 }
6094 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6095 /* Two buffer Mode */
6096 if (*skb) {
1ee6dd77
RB
6097 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6098 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6099 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
5d3213cc
AR
6100 } else {
6101 *skb = dev_alloc_skb(size);
2ceaac75
DR
6102 if (!(*skb)) {
6103 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
19a60522 6104 dev->name);
2ceaac75
DR
6105 return -ENOMEM;
6106 }
1ee6dd77 6107 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
5d3213cc
AR
6108 pci_map_single(sp->pdev, (*skb)->data,
6109 dev->mtu + 4,
6110 PCI_DMA_FROMDEVICE);
1ee6dd77 6111 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5d3213cc
AR
6112 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6113 PCI_DMA_FROMDEVICE);
6114 rxdp->Host_Control = (unsigned long) (*skb);
6115
6116 /* Buffer-1 will be dummy buffer not used */
1ee6dd77 6117 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5d3213cc
AR
6118 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6119 PCI_DMA_FROMDEVICE);
6120 }
6121 } else if ((rxdp->Host_Control == 0)) {
6122 /* Three buffer mode */
6123 if (*skb) {
1ee6dd77
RB
6124 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6125 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6126 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
5d3213cc
AR
6127 } else {
6128 *skb = dev_alloc_skb(size);
2ceaac75
DR
6129 if (!(*skb)) {
6130 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n",
6131 dev->name);
6132 return -ENOMEM;
6133 }
1ee6dd77 6134 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
5d3213cc
AR
6135 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6136 PCI_DMA_FROMDEVICE);
6137 /* Buffer-1 receives L3/L4 headers */
1ee6dd77 6138 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
5d3213cc
AR
6139 pci_map_single( sp->pdev, (*skb)->data,
6140 l3l4hdr_size + 4,
6141 PCI_DMA_FROMDEVICE);
6142 /*
6143 * skb_shinfo(skb)->frag_list will have L4
6144 * data payload
6145 */
6146 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6147 ALIGN_SIZE);
6148 if (skb_shinfo(*skb)->frag_list == NULL) {
6149 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6150 failed\n ", dev->name);
6151 return -ENOMEM ;
6152 }
6153 frag_list = skb_shinfo(*skb)->frag_list;
6154 frag_list->next = NULL;
6155 /*
6156 * Buffer-2 receives L4 data payload
6157 */
1ee6dd77 6158 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
5d3213cc
AR
6159 pci_map_single( sp->pdev, frag_list->data,
6160 dev->mtu, PCI_DMA_FROMDEVICE);
6161 }
6162 }
6163 return 0;
6164}
1ee6dd77
RB
6165static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6166 int size)
5d3213cc
AR
6167{
6168 struct net_device *dev = sp->dev;
6169 if (sp->rxd_mode == RXD_MODE_1) {
6170 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6171 } else if (sp->rxd_mode == RXD_MODE_3B) {
6172 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6173 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6174 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6175 } else {
6176 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6177 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6178 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6179 }
6180}
6181
1ee6dd77 6182static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6183{
6184 int i, j, k, blk_cnt = 0, size;
1ee6dd77 6185 struct mac_info * mac_control = &sp->mac_control;
5d3213cc
AR
6186 struct config_param *config = &sp->config;
6187 struct net_device *dev = sp->dev;
1ee6dd77 6188 struct RxD_t *rxdp = NULL;
5d3213cc 6189 struct sk_buff *skb = NULL;
1ee6dd77 6190 struct buffAdd *ba = NULL;
5d3213cc
AR
6191 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6192
6193 /* Calculate the size based on ring mode */
6194 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6195 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6196 if (sp->rxd_mode == RXD_MODE_1)
6197 size += NET_IP_ALIGN;
6198 else if (sp->rxd_mode == RXD_MODE_3B)
6199 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6200 else
6201 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6202
6203 for (i = 0; i < config->rx_ring_num; i++) {
6204 blk_cnt = config->rx_cfg[i].num_rxd /
6205 (rxd_count[sp->rxd_mode] +1);
6206
6207 for (j = 0; j < blk_cnt; j++) {
6208 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6209 rxdp = mac_control->rings[i].
6210 rx_blocks[j].rxds[k].virt_addr;
6211 if(sp->rxd_mode >= RXD_MODE_3A)
6212 ba = &mac_control->rings[i].ba[j][k];
ac1f90d6 6213 if (set_rxd_buffer_pointer(sp, rxdp, ba,
5d3213cc
AR
6214 &skb,(u64 *)&temp0_64,
6215 (u64 *)&temp1_64,
ac1f90d6
SS
6216 (u64 *)&temp2_64,
6217 size) == ENOMEM) {
6218 return 0;
6219 }
5d3213cc
AR
6220
6221 set_rxd_buffer_size(sp, rxdp, size);
6222 wmb();
6223 /* flip the Ownership bit to Hardware */
6224 rxdp->Control_1 |= RXD_OWN_XENA;
6225 }
6226 }
6227 }
6228 return 0;
6229
6230}
6231
1ee6dd77 6232static int s2io_add_isr(struct s2io_nic * sp)
1da177e4 6233{
e6a8fee2 6234 int ret = 0;
c92ca04b 6235 struct net_device *dev = sp->dev;
e6a8fee2 6236 int err = 0;
1da177e4 6237
e6a8fee2
AR
6238 if (sp->intr_type == MSI)
6239 ret = s2io_enable_msi(sp);
6240 else if (sp->intr_type == MSI_X)
6241 ret = s2io_enable_msi_x(sp);
6242 if (ret) {
6243 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6244 sp->intr_type = INTA;
20346722 6245 }
1da177e4 6246
1ee6dd77 6247 /* Store the values of the MSIX table in the struct s2io_nic structure */
e6a8fee2 6248 store_xmsi_data(sp);
c92ca04b 6249
e6a8fee2
AR
6250 /* After proper initialization of H/W, register ISR */
6251 if (sp->intr_type == MSI) {
6252 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6253 IRQF_SHARED, sp->name, dev);
6254 if (err) {
6255 pci_disable_msi(sp->pdev);
6256 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6257 dev->name);
6258 return -1;
6259 }
6260 }
6261 if (sp->intr_type == MSI_X) {
fb6a825b 6262 int i, msix_tx_cnt=0,msix_rx_cnt=0;
c92ca04b 6263
e6a8fee2
AR
6264 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6265 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6266 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6267 dev->name, i);
6268 err = request_irq(sp->entries[i].vector,
6269 s2io_msix_fifo_handle, 0, sp->desc[i],
6270 sp->s2io_entries[i].arg);
fb6a825b
SS
6271 /* If either data or addr is zero print it */
6272 if(!(sp->msix_info[i].addr &&
6273 sp->msix_info[i].data)) {
6274 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6275 "Data:0x%lx\n",sp->desc[i],
6276 (unsigned long long)
6277 sp->msix_info[i].addr,
6278 (unsigned long)
6279 ntohl(sp->msix_info[i].data));
6280 } else {
6281 msix_tx_cnt++;
6282 }
e6a8fee2
AR
6283 } else {
6284 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6285 dev->name, i);
6286 err = request_irq(sp->entries[i].vector,
6287 s2io_msix_ring_handle, 0, sp->desc[i],
6288 sp->s2io_entries[i].arg);
fb6a825b
SS
6289 /* If either data or addr is zero print it */
6290 if(!(sp->msix_info[i].addr &&
6291 sp->msix_info[i].data)) {
6292 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6293 "Data:0x%lx\n",sp->desc[i],
6294 (unsigned long long)
6295 sp->msix_info[i].addr,
6296 (unsigned long)
6297 ntohl(sp->msix_info[i].data));
6298 } else {
6299 msix_rx_cnt++;
6300 }
c92ca04b 6301 }
e6a8fee2
AR
6302 if (err) {
6303 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6304 "failed\n", dev->name, i);
6305 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6306 return -1;
6307 }
6308 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6309 }
fb6a825b
SS
6310 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6311 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
e6a8fee2
AR
6312 }
6313 if (sp->intr_type == INTA) {
6314 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6315 sp->name, dev);
6316 if (err) {
6317 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6318 dev->name);
6319 return -1;
6320 }
6321 }
6322 return 0;
6323}
1ee6dd77 6324static void s2io_rem_isr(struct s2io_nic * sp)
e6a8fee2
AR
6325{
6326 int cnt = 0;
6327 struct net_device *dev = sp->dev;
6328
6329 if (sp->intr_type == MSI_X) {
6330 int i;
6331 u16 msi_control;
6332
6333 for (i=1; (sp->s2io_entries[i].in_use ==
6334 MSIX_REGISTERED_SUCCESS); i++) {
6335 int vector = sp->entries[i].vector;
6336 void *arg = sp->s2io_entries[i].arg;
6337
6338 free_irq(vector, arg);
6339 }
6340 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6341 msi_control &= 0xFFFE; /* Disable MSI */
6342 pci_write_config_word(sp->pdev, 0x42, msi_control);
6343
6344 pci_disable_msix(sp->pdev);
6345 } else {
6346 free_irq(sp->pdev->irq, dev);
6347 if (sp->intr_type == MSI) {
6348 u16 val;
6349
6350 pci_disable_msi(sp->pdev);
6351 pci_read_config_word(sp->pdev, 0x4c, &val);
6352 val ^= 0x1;
6353 pci_write_config_word(sp->pdev, 0x4c, val);
c92ca04b
AR
6354 }
6355 }
6356 /* Waiting till all Interrupt handlers are complete */
6357 cnt = 0;
6358 do {
6359 msleep(10);
6360 if (!atomic_read(&sp->isr_cnt))
6361 break;
6362 cnt++;
6363 } while(cnt < 5);
e6a8fee2
AR
6364}
6365
1ee6dd77 6366static void s2io_card_down(struct s2io_nic * sp)
e6a8fee2
AR
6367{
6368 int cnt = 0;
1ee6dd77 6369 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2
AR
6370 unsigned long flags;
6371 register u64 val64 = 0;
6372
6373 del_timer_sync(&sp->alarm_timer);
6374 /* If s2io_set_link task is executing, wait till it completes. */
6375 while (test_and_set_bit(0, &(sp->link_state))) {
6376 msleep(50);
6377 }
6378 atomic_set(&sp->card_state, CARD_DOWN);
6379
6380 /* disable Tx and Rx traffic on the NIC */
6381 stop_nic(sp);
6382
6383 s2io_rem_isr(sp);
1da177e4
LT
6384
6385 /* Kill tasklet. */
6386 tasklet_kill(&sp->task);
6387
6388 /* Check if the device is Quiescent and then Reset the NIC */
6389 do {
5d3213cc
AR
6390 /* As per the HW requirement we need to replenish the
6391 * receive buffer to avoid the ring bump. Since there is
6392 * no intention of processing the Rx frame at this pointwe are
6393 * just settting the ownership bit of rxd in Each Rx
6394 * ring to HW and set the appropriate buffer size
6395 * based on the ring mode
6396 */
6397 rxd_owner_bit_reset(sp);
6398
1da177e4 6399 val64 = readq(&bar0->adapter_status);
19a60522
SS
6400 if (verify_xena_quiescence(sp)) {
6401 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
1da177e4
LT
6402 break;
6403 }
6404
6405 msleep(50);
6406 cnt++;
6407 if (cnt == 10) {
6408 DBG_PRINT(ERR_DBG,
6409 "s2io_close:Device not Quiescent ");
6410 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6411 (unsigned long long) val64);
6412 break;
6413 }
6414 } while (1);
1da177e4
LT
6415 s2io_reset(sp);
6416
7ba013ac
K
6417 spin_lock_irqsave(&sp->tx_lock, flags);
6418 /* Free all Tx buffers */
1da177e4 6419 free_tx_buffers(sp);
7ba013ac
K
6420 spin_unlock_irqrestore(&sp->tx_lock, flags);
6421
6422 /* Free all Rx buffers */
6423 spin_lock_irqsave(&sp->rx_lock, flags);
1da177e4 6424 free_rx_buffers(sp);
7ba013ac 6425 spin_unlock_irqrestore(&sp->rx_lock, flags);
1da177e4 6426
1da177e4
LT
6427 clear_bit(0, &(sp->link_state));
6428}
6429
1ee6dd77 6430static int s2io_card_up(struct s2io_nic * sp)
1da177e4 6431{
cc6e7c44 6432 int i, ret = 0;
1ee6dd77 6433 struct mac_info *mac_control;
1da177e4
LT
6434 struct config_param *config;
6435 struct net_device *dev = (struct net_device *) sp->dev;
e6a8fee2 6436 u16 interruptible;
1da177e4
LT
6437
6438 /* Initialize the H/W I/O registers */
6439 if (init_nic(sp) != 0) {
6440 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6441 dev->name);
e6a8fee2 6442 s2io_reset(sp);
1da177e4
LT
6443 return -ENODEV;
6444 }
6445
20346722
K
6446 /*
6447 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
6448 * Rx ring and initializing buffers into 30 Rx blocks
6449 */
6450 mac_control = &sp->mac_control;
6451 config = &sp->config;
6452
6453 for (i = 0; i < config->rx_ring_num; i++) {
6454 if ((ret = fill_rx_buffers(sp, i))) {
6455 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6456 dev->name);
6457 s2io_reset(sp);
6458 free_rx_buffers(sp);
6459 return -ENOMEM;
6460 }
6461 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6462 atomic_read(&sp->rx_bufs_left[i]));
6463 }
19a60522
SS
6464 /* Maintain the state prior to the open */
6465 if (sp->promisc_flg)
6466 sp->promisc_flg = 0;
6467 if (sp->m_cast_flg) {
6468 sp->m_cast_flg = 0;
6469 sp->all_multi_pos= 0;
6470 }
1da177e4
LT
6471
6472 /* Setting its receive mode */
6473 s2io_set_multicast(dev);
6474
7d3d0439 6475 if (sp->lro) {
b41477f3 6476 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439
RA
6477 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6478 /* Check if we can use(if specified) user provided value */
6479 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6480 sp->lro_max_aggr_per_sess = lro_max_pkts;
6481 }
6482
1da177e4
LT
6483 /* Enable Rx Traffic and interrupts on the NIC */
6484 if (start_nic(sp)) {
6485 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 6486 s2io_reset(sp);
e6a8fee2
AR
6487 free_rx_buffers(sp);
6488 return -ENODEV;
6489 }
6490
6491 /* Add interrupt service routine */
6492 if (s2io_add_isr(sp) != 0) {
6493 if (sp->intr_type == MSI_X)
6494 s2io_rem_isr(sp);
6495 s2io_reset(sp);
1da177e4
LT
6496 free_rx_buffers(sp);
6497 return -ENODEV;
6498 }
6499
25fff88e
K
6500 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6501
e6a8fee2
AR
6502 /* Enable tasklet for the device */
6503 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6504
6505 /* Enable select interrupts */
6506 if (sp->intr_type != INTA)
6507 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6508 else {
6509 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6510 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6511 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6512 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6513 }
6514
6515
1da177e4
LT
6516 atomic_set(&sp->card_state, CARD_UP);
6517 return 0;
6518}
6519
20346722 6520/**
1da177e4
LT
6521 * s2io_restart_nic - Resets the NIC.
6522 * @data : long pointer to the device private structure
6523 * Description:
6524 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 6525 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
6526 * the run time of the watch dog routine which is run holding a
6527 * spin lock.
6528 */
6529
c4028958 6530static void s2io_restart_nic(struct work_struct *work)
1da177e4 6531{
1ee6dd77 6532 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 6533 struct net_device *dev = sp->dev;
1da177e4 6534
22747d6b
FR
6535 rtnl_lock();
6536
6537 if (!netif_running(dev))
6538 goto out_unlock;
6539
e6a8fee2 6540 s2io_card_down(sp);
1da177e4
LT
6541 if (s2io_card_up(sp)) {
6542 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6543 dev->name);
6544 }
6545 netif_wake_queue(dev);
6546 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6547 dev->name);
22747d6b
FR
6548out_unlock:
6549 rtnl_unlock();
1da177e4
LT
6550}
6551
20346722
K
6552/**
6553 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
6554 * @dev : Pointer to net device structure
6555 * Description:
6556 * This function is triggered if the Tx Queue is stopped
6557 * for a pre-defined amount of time when the Interface is still up.
6558 * If the Interface is jammed in such a situation, the hardware is
6559 * reset (by s2io_close) and restarted again (by s2io_open) to
6560 * overcome any problem that might have been caused in the hardware.
6561 * Return value:
6562 * void
6563 */
6564
6565static void s2io_tx_watchdog(struct net_device *dev)
6566{
1ee6dd77 6567 struct s2io_nic *sp = dev->priv;
1da177e4
LT
6568
6569 if (netif_carrier_ok(dev)) {
6570 schedule_work(&sp->rst_timer_task);
bd1034f0 6571 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
1da177e4
LT
6572 }
6573}
6574
6575/**
6576 * rx_osm_handler - To perform some OS related operations on SKB.
6577 * @sp: private member of the device structure,pointer to s2io_nic structure.
6578 * @skb : the socket buffer pointer.
6579 * @len : length of the packet
6580 * @cksum : FCS checksum of the frame.
6581 * @ring_no : the ring from which this RxD was extracted.
20346722 6582 * Description:
b41477f3 6583 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
6584 * some OS related operations on the SKB before passing it to the upper
6585 * layers. It mainly checks if the checksum is OK, if so adds it to the
6586 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6587 * to the upper layer. If the checksum is wrong, it increments the Rx
6588 * packet error count, frees the SKB and returns error.
6589 * Return value:
6590 * SUCCESS on success and -1 on failure.
6591 */
1ee6dd77 6592static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 6593{
1ee6dd77 6594 struct s2io_nic *sp = ring_data->nic;
1da177e4 6595 struct net_device *dev = (struct net_device *) sp->dev;
20346722
K
6596 struct sk_buff *skb = (struct sk_buff *)
6597 ((unsigned long) rxdp->Host_Control);
6598 int ring_no = ring_data->ring_no;
1da177e4 6599 u16 l3_csum, l4_csum;
863c11a9 6600 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
1ee6dd77 6601 struct lro *lro;
da6971d8 6602
20346722 6603 skb->dev = dev;
c92ca04b 6604
863c11a9 6605 if (err) {
bd1034f0
AR
6606 /* Check for parity error */
6607 if (err & 0x1) {
6608 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6609 }
6610
863c11a9
AR
6611 /*
6612 * Drop the packet if bad transfer code. Exception being
6613 * 0x5, which could be due to unsupported IPv6 extension header.
6614 * In this case, we let stack handle the packet.
6615 * Note that in this case, since checksum will be incorrect,
6616 * stack will validate the same.
6617 */
6618 if (err && ((err >> 48) != 0x5)) {
6619 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6620 dev->name, err);
6621 sp->stats.rx_crc_errors++;
6622 dev_kfree_skb(skb);
6623 atomic_dec(&sp->rx_bufs_left[ring_no]);
6624 rxdp->Host_Control = 0;
6625 return 0;
6626 }
20346722 6627 }
1da177e4 6628
20346722
K
6629 /* Updating statistics */
6630 rxdp->Host_Control = 0;
6631 sp->rx_pkt_count++;
6632 sp->stats.rx_packets++;
da6971d8
AR
6633 if (sp->rxd_mode == RXD_MODE_1) {
6634 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 6635
da6971d8
AR
6636 sp->stats.rx_bytes += len;
6637 skb_put(skb, len);
6638
6639 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6640 int get_block = ring_data->rx_curr_get_info.block_index;
6641 int get_off = ring_data->rx_curr_get_info.offset;
6642 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6643 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6644 unsigned char *buff = skb_push(skb, buf0_len);
6645
1ee6dd77 6646 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
da6971d8
AR
6647 sp->stats.rx_bytes += buf0_len + buf2_len;
6648 memcpy(buff, ba->ba_0, buf0_len);
6649
6650 if (sp->rxd_mode == RXD_MODE_3A) {
6651 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6652
6653 skb_put(skb, buf1_len);
6654 skb->len += buf2_len;
6655 skb->data_len += buf2_len;
da6971d8
AR
6656 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6657 sp->stats.rx_bytes += buf1_len;
6658
6659 } else
6660 skb_put(skb, buf2_len);
6661 }
20346722 6662
7d3d0439
RA
6663 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6664 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
6665 (sp->rx_csum)) {
6666 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
6667 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6668 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 6669 /*
1da177e4
LT
6670 * NIC verifies if the Checksum of the received
6671 * frame is Ok or not and accordingly returns
6672 * a flag in the RxD.
6673 */
6674 skb->ip_summed = CHECKSUM_UNNECESSARY;
7d3d0439
RA
6675 if (sp->lro) {
6676 u32 tcp_len;
6677 u8 *tcp;
6678 int ret = 0;
6679
6680 ret = s2io_club_tcp_session(skb->data, &tcp,
6681 &tcp_len, &lro, rxdp, sp);
6682 switch (ret) {
6683 case 3: /* Begin anew */
6684 lro->parent = skb;
6685 goto aggregate;
6686 case 1: /* Aggregate */
6687 {
6688 lro_append_pkt(sp, lro,
6689 skb, tcp_len);
6690 goto aggregate;
6691 }
6692 case 4: /* Flush session */
6693 {
6694 lro_append_pkt(sp, lro,
6695 skb, tcp_len);
6696 queue_rx_frame(lro->parent);
6697 clear_lro_session(lro);
6698 sp->mac_control.stats_info->
6699 sw_stat.flush_max_pkts++;
6700 goto aggregate;
6701 }
6702 case 2: /* Flush both */
6703 lro->parent->data_len =
6704 lro->frags_len;
6705 sp->mac_control.stats_info->
6706 sw_stat.sending_both++;
6707 queue_rx_frame(lro->parent);
6708 clear_lro_session(lro);
6709 goto send_up;
6710 case 0: /* sessions exceeded */
c92ca04b
AR
6711 case -1: /* non-TCP or not
6712 * L2 aggregatable
6713 */
7d3d0439
RA
6714 case 5: /*
6715 * First pkt in session not
6716 * L3/L4 aggregatable
6717 */
6718 break;
6719 default:
6720 DBG_PRINT(ERR_DBG,
6721 "%s: Samadhana!!\n",
6722 __FUNCTION__);
6723 BUG();
6724 }
6725 }
1da177e4 6726 } else {
20346722
K
6727 /*
6728 * Packet with erroneous checksum, let the
1da177e4
LT
6729 * upper layers deal with it.
6730 */
6731 skb->ip_summed = CHECKSUM_NONE;
6732 }
6733 } else {
6734 skb->ip_summed = CHECKSUM_NONE;
6735 }
6736
7d3d0439
RA
6737 if (!sp->lro) {
6738 skb->protocol = eth_type_trans(skb, dev);
926930b2
SS
6739 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
6740 vlan_strip_flag)) {
7d3d0439 6741 /* Queueing the vlan frame to the upper layer */
db874e65
SS
6742 if (napi)
6743 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6744 RXD_GET_VLAN_TAG(rxdp->Control_2));
6745 else
6746 vlan_hwaccel_rx(skb, sp->vlgrp,
6747 RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 6748 } else {
db874e65
SS
6749 if (napi)
6750 netif_receive_skb(skb);
6751 else
6752 netif_rx(skb);
7d3d0439 6753 }
7d3d0439
RA
6754 } else {
6755send_up:
6756 queue_rx_frame(skb);
6aa20a22 6757 }
1da177e4 6758 dev->last_rx = jiffies;
7d3d0439 6759aggregate:
1da177e4 6760 atomic_dec(&sp->rx_bufs_left[ring_no]);
1da177e4
LT
6761 return SUCCESS;
6762}
6763
6764/**
6765 * s2io_link - stops/starts the Tx queue.
6766 * @sp : private member of the device structure, which is a pointer to the
6767 * s2io_nic structure.
6768 * @link : inidicates whether link is UP/DOWN.
6769 * Description:
6770 * This function stops/starts the Tx queue depending on whether the link
20346722
K
6771 * status of the NIC is is down or up. This is called by the Alarm
6772 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
6773 * Return value:
6774 * void.
6775 */
6776
1ee6dd77 6777static void s2io_link(struct s2io_nic * sp, int link)
1da177e4
LT
6778{
6779 struct net_device *dev = (struct net_device *) sp->dev;
6780
6781 if (link != sp->last_link_state) {
6782 if (link == LINK_DOWN) {
6783 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6784 netif_carrier_off(dev);
6785 } else {
6786 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6787 netif_carrier_on(dev);
6788 }
6789 }
6790 sp->last_link_state = link;
6791}
6792
6793/**
20346722
K
6794 * get_xena_rev_id - to identify revision ID of xena.
6795 * @pdev : PCI Dev structure
6796 * Description:
6797 * Function to identify the Revision ID of xena.
6798 * Return value:
6799 * returns the revision ID of the device.
6800 */
6801
26df54bf 6802static int get_xena_rev_id(struct pci_dev *pdev)
20346722
K
6803{
6804 u8 id = 0;
6805 int ret;
6806 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6807 return id;
6808}
6809
6810/**
6811 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6812 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
6813 * s2io_nic structure.
6814 * Description:
6815 * This function initializes a few of the PCI and PCI-X configuration registers
6816 * with recommended values.
6817 * Return value:
6818 * void
6819 */
6820
1ee6dd77 6821static void s2io_init_pci(struct s2io_nic * sp)
1da177e4 6822{
20346722 6823 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
6824
6825 /* Enable Data Parity Error Recovery in PCI-X command register. */
6826 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6827 &(pcix_cmd));
1da177e4 6828 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6829 (pcix_cmd | 1));
1da177e4 6830 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 6831 &(pcix_cmd));
1da177e4
LT
6832
6833 /* Set the PErr Response bit in PCI command register. */
6834 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6835 pci_write_config_word(sp->pdev, PCI_COMMAND,
6836 (pci_cmd | PCI_COMMAND_PARITY));
6837 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
6838}
6839
9dc737a7
AR
6840static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6841{
6842 if ( tx_fifo_num > 8) {
6843 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6844 "supported\n");
6845 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6846 tx_fifo_num = 8;
6847 }
6848 if ( rx_ring_num > 8) {
6849 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6850 "supported\n");
6851 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6852 rx_ring_num = 8;
6853 }
db874e65
SS
6854 if (*dev_intr_type != INTA)
6855 napi = 0;
6856
9dc737a7
AR
6857#ifndef CONFIG_PCI_MSI
6858 if (*dev_intr_type != INTA) {
6859 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6860 "MSI/MSI-X. Defaulting to INTA\n");
6861 *dev_intr_type = INTA;
6862 }
6863#else
6864 if (*dev_intr_type > MSI_X) {
6865 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6866 "Defaulting to INTA\n");
6867 *dev_intr_type = INTA;
6868 }
6869#endif
6870 if ((*dev_intr_type == MSI_X) &&
6871 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6872 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6aa20a22 6873 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
9dc737a7
AR
6874 "Defaulting to INTA\n");
6875 *dev_intr_type = INTA;
6876 }
fb6a825b 6877
9dc737a7
AR
6878 if (rx_ring_mode > 3) {
6879 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6880 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6881 rx_ring_mode = 3;
6882 }
6883 return SUCCESS;
6884}
6885
9fc93a41
SS
6886/**
6887 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
6888 * or Traffic class respectively.
6889 * @nic: device peivate variable
6890 * Description: The function configures the receive steering to
6891 * desired receive ring.
6892 * Return Value: SUCCESS on success and
6893 * '-1' on failure (endian settings incorrect).
6894 */
6895static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
6896{
6897 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6898 register u64 val64 = 0;
6899
6900 if (ds_codepoint > 63)
6901 return FAILURE;
6902
6903 val64 = RTS_DS_MEM_DATA(ring);
6904 writeq(val64, &bar0->rts_ds_mem_data);
6905
6906 val64 = RTS_DS_MEM_CTRL_WE |
6907 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
6908 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
6909
6910 writeq(val64, &bar0->rts_ds_mem_ctrl);
6911
6912 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
6913 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
6914 S2IO_BIT_RESET);
6915}
6916
1da177e4 6917/**
20346722 6918 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
6919 * @pdev : structure containing the PCI related information of the device.
6920 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6921 * Description:
6922 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
6923 * All OS related initialization including memory and device structure and
6924 * initlaization of the device private variable is done. Also the swapper
6925 * control register is initialized to enable read and write into the I/O
1da177e4
LT
6926 * registers of the device.
6927 * Return value:
6928 * returns 0 on success and negative on failure.
6929 */
6930
6931static int __devinit
6932s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6933{
1ee6dd77 6934 struct s2io_nic *sp;
1da177e4 6935 struct net_device *dev;
1da177e4
LT
6936 int i, j, ret;
6937 int dma_flag = FALSE;
6938 u32 mac_up, mac_down;
6939 u64 val64 = 0, tmp64 = 0;
1ee6dd77 6940 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 6941 u16 subid;
1ee6dd77 6942 struct mac_info *mac_control;
1da177e4 6943 struct config_param *config;
541ae68f 6944 int mode;
cc6e7c44 6945 u8 dev_intr_type = intr_type;
1da177e4 6946
9dc737a7
AR
6947 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
6948 return ret;
1da177e4
LT
6949
6950 if ((ret = pci_enable_device(pdev))) {
6951 DBG_PRINT(ERR_DBG,
6952 "s2io_init_nic: pci_enable_device failed\n");
6953 return ret;
6954 }
6955
1e7f0bd8 6956 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
1da177e4
LT
6957 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
6958 dma_flag = TRUE;
1da177e4 6959 if (pci_set_consistent_dma_mask
1e7f0bd8 6960 (pdev, DMA_64BIT_MASK)) {
1da177e4
LT
6961 DBG_PRINT(ERR_DBG,
6962 "Unable to obtain 64bit DMA for \
6963 consistent allocations\n");
6964 pci_disable_device(pdev);
6965 return -ENOMEM;
6966 }
1e7f0bd8 6967 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1da177e4
LT
6968 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
6969 } else {
6970 pci_disable_device(pdev);
6971 return -ENOMEM;
6972 }
cc6e7c44
RA
6973 if (dev_intr_type != MSI_X) {
6974 if (pci_request_regions(pdev, s2io_driver_name)) {
b41477f3
AR
6975 DBG_PRINT(ERR_DBG, "Request Regions failed\n");
6976 pci_disable_device(pdev);
cc6e7c44
RA
6977 return -ENODEV;
6978 }
6979 }
6980 else {
6981 if (!(request_mem_region(pci_resource_start(pdev, 0),
6982 pci_resource_len(pdev, 0), s2io_driver_name))) {
6983 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
6984 pci_disable_device(pdev);
6985 return -ENODEV;
6986 }
6987 if (!(request_mem_region(pci_resource_start(pdev, 2),
6988 pci_resource_len(pdev, 2), s2io_driver_name))) {
6989 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
6990 release_mem_region(pci_resource_start(pdev, 0),
6991 pci_resource_len(pdev, 0));
6992 pci_disable_device(pdev);
6993 return -ENODEV;
6994 }
1da177e4
LT
6995 }
6996
1ee6dd77 6997 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
6998 if (dev == NULL) {
6999 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7000 pci_disable_device(pdev);
7001 pci_release_regions(pdev);
7002 return -ENODEV;
7003 }
7004
7005 pci_set_master(pdev);
7006 pci_set_drvdata(pdev, dev);
7007 SET_MODULE_OWNER(dev);
7008 SET_NETDEV_DEV(dev, &pdev->dev);
7009
7010 /* Private member variable initialized to s2io NIC structure */
7011 sp = dev->priv;
1ee6dd77 7012 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7013 sp->dev = dev;
7014 sp->pdev = pdev;
1da177e4 7015 sp->high_dma_flag = dma_flag;
1da177e4 7016 sp->device_enabled_once = FALSE;
da6971d8
AR
7017 if (rx_ring_mode == 1)
7018 sp->rxd_mode = RXD_MODE_1;
7019 if (rx_ring_mode == 2)
7020 sp->rxd_mode = RXD_MODE_3B;
7021 if (rx_ring_mode == 3)
7022 sp->rxd_mode = RXD_MODE_3A;
7023
cc6e7c44 7024 sp->intr_type = dev_intr_type;
1da177e4 7025
541ae68f
K
7026 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7027 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7028 sp->device_type = XFRAME_II_DEVICE;
7029 else
7030 sp->device_type = XFRAME_I_DEVICE;
7031
7d3d0439 7032 sp->lro = lro;
6aa20a22 7033
1da177e4
LT
7034 /* Initialize some PCI/PCI-X fields of the NIC. */
7035 s2io_init_pci(sp);
7036
20346722 7037 /*
1da177e4 7038 * Setting the device configuration parameters.
20346722
K
7039 * Most of these parameters can be specified by the user during
7040 * module insertion as they are module loadable parameters. If
7041 * these parameters are not not specified during load time, they
1da177e4
LT
7042 * are initialized with default values.
7043 */
7044 mac_control = &sp->mac_control;
7045 config = &sp->config;
7046
7047 /* Tx side parameters. */
1da177e4
LT
7048 config->tx_fifo_num = tx_fifo_num;
7049 for (i = 0; i < MAX_TX_FIFOS; i++) {
7050 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7051 config->tx_cfg[i].fifo_priority = i;
7052 }
7053
20346722
K
7054 /* mapping the QoS priority to the configured fifos */
7055 for (i = 0; i < MAX_TX_FIFOS; i++)
7056 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7057
1da177e4
LT
7058 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7059 for (i = 0; i < config->tx_fifo_num; i++) {
7060 config->tx_cfg[i].f_no_snoop =
7061 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7062 if (config->tx_cfg[i].fifo_len < 65) {
7063 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7064 break;
7065 }
7066 }
fed5eccd
AR
7067 /* + 2 because one Txd for skb->data and one Txd for UFO */
7068 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7069
7070 /* Rx side parameters. */
1da177e4
LT
7071 config->rx_ring_num = rx_ring_num;
7072 for (i = 0; i < MAX_RX_RINGS; i++) {
7073 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
da6971d8 7074 (rxd_count[sp->rxd_mode] + 1);
1da177e4
LT
7075 config->rx_cfg[i].ring_priority = i;
7076 }
7077
7078 for (i = 0; i < rx_ring_num; i++) {
7079 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7080 config->rx_cfg[i].f_no_snoop =
7081 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7082 }
7083
7084 /* Setting Mac Control parameters */
7085 mac_control->rmac_pause_time = rmac_pause_time;
7086 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7087 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7088
7089
7090 /* Initialize Ring buffer parameters. */
7091 for (i = 0; i < config->rx_ring_num; i++)
7092 atomic_set(&sp->rx_bufs_left[i], 0);
7093
7ba013ac
K
7094 /* Initialize the number of ISRs currently running */
7095 atomic_set(&sp->isr_cnt, 0);
7096
1da177e4
LT
7097 /* initialize the shared memory used by the NIC and the host */
7098 if (init_shared_mem(sp)) {
7099 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
b41477f3 7100 dev->name);
1da177e4
LT
7101 ret = -ENOMEM;
7102 goto mem_alloc_failed;
7103 }
7104
7105 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7106 pci_resource_len(pdev, 0));
7107 if (!sp->bar0) {
19a60522 7108 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7109 dev->name);
7110 ret = -ENOMEM;
7111 goto bar0_remap_failed;
7112 }
7113
7114 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7115 pci_resource_len(pdev, 2));
7116 if (!sp->bar1) {
19a60522 7117 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7118 dev->name);
7119 ret = -ENOMEM;
7120 goto bar1_remap_failed;
7121 }
7122
7123 dev->irq = pdev->irq;
7124 dev->base_addr = (unsigned long) sp->bar0;
7125
7126 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7127 for (j = 0; j < MAX_TX_FIFOS; j++) {
1ee6dd77 7128 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
1da177e4
LT
7129 (sp->bar1 + (j * 0x00020000));
7130 }
7131
7132 /* Driver entry points */
7133 dev->open = &s2io_open;
7134 dev->stop = &s2io_close;
7135 dev->hard_start_xmit = &s2io_xmit;
7136 dev->get_stats = &s2io_get_stats;
7137 dev->set_multicast_list = &s2io_set_multicast;
7138 dev->do_ioctl = &s2io_ioctl;
7139 dev->change_mtu = &s2io_change_mtu;
7140 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02
K
7141 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7142 dev->vlan_rx_register = s2io_vlan_rx_register;
7143 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
20346722 7144
1da177e4
LT
7145 /*
7146 * will use eth_mac_addr() for dev->set_mac_address
7147 * mac address will be set every time dev->open() is called
7148 */
1da177e4 7149 dev->poll = s2io_poll;
20346722 7150 dev->weight = 32;
1da177e4 7151
612eff0e
BH
7152#ifdef CONFIG_NET_POLL_CONTROLLER
7153 dev->poll_controller = s2io_netpoll;
7154#endif
7155
1da177e4
LT
7156 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7157 if (sp->high_dma_flag == TRUE)
7158 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7159 dev->features |= NETIF_F_TSO;
f83ef8c0 7160 dev->features |= NETIF_F_TSO6;
db874e65 7161 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
7162 dev->features |= NETIF_F_UFO;
7163 dev->features |= NETIF_F_HW_CSUM;
7164 }
1da177e4
LT
7165
7166 dev->tx_timeout = &s2io_tx_watchdog;
7167 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7168 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7169 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7170
e960fc5c 7171 pci_save_state(sp->pdev);
1da177e4
LT
7172
7173 /* Setting swapper control on the NIC, for proper reset operation */
7174 if (s2io_set_swapper(sp)) {
7175 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7176 dev->name);
7177 ret = -EAGAIN;
7178 goto set_swap_failed;
7179 }
7180
541ae68f
K
7181 /* Verify if the Herc works on the slot its placed into */
7182 if (sp->device_type & XFRAME_II_DEVICE) {
7183 mode = s2io_verify_pci_mode(sp);
7184 if (mode < 0) {
7185 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7186 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7187 ret = -EBADSLT;
7188 goto set_swap_failed;
7189 }
7190 }
7191
7192 /* Not needed for Herc */
7193 if (sp->device_type & XFRAME_I_DEVICE) {
7194 /*
7195 * Fix for all "FFs" MAC address problems observed on
7196 * Alpha platforms
7197 */
7198 fix_mac_address(sp);
7199 s2io_reset(sp);
7200 }
1da177e4
LT
7201
7202 /*
1da177e4
LT
7203 * MAC address initialization.
7204 * For now only one mac address will be read and used.
7205 */
7206 bar0 = sp->bar0;
7207 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7208 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7209 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 7210 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
9fc93a41 7211 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
1da177e4
LT
7212 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7213 mac_down = (u32) tmp64;
7214 mac_up = (u32) (tmp64 >> 32);
7215
1da177e4
LT
7216 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7217 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7218 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7219 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7220 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7221 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7222
1da177e4
LT
7223 /* Set the factory defined MAC address initially */
7224 dev->addr_len = ETH_ALEN;
7225 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7226
b41477f3
AR
7227 /* reset Nic and bring it to known state */
7228 s2io_reset(sp);
7229
1da177e4 7230 /*
20346722 7231 * Initialize the tasklet status and link state flags
541ae68f 7232 * and the card state parameter
1da177e4
LT
7233 */
7234 atomic_set(&(sp->card_state), 0);
7235 sp->tasklet_status = 0;
7236 sp->link_state = 0;
7237
1da177e4
LT
7238 /* Initialize spinlocks */
7239 spin_lock_init(&sp->tx_lock);
db874e65
SS
7240
7241 if (!napi)
7242 spin_lock_init(&sp->put_lock);
7ba013ac 7243 spin_lock_init(&sp->rx_lock);
1da177e4 7244
20346722
K
7245 /*
7246 * SXE-002: Configure link and activity LED to init state
7247 * on driver load.
1da177e4
LT
7248 */
7249 subid = sp->pdev->subsystem_device;
7250 if ((subid & 0xFF) >= 0x07) {
7251 val64 = readq(&bar0->gpio_control);
7252 val64 |= 0x0000800000000000ULL;
7253 writeq(val64, &bar0->gpio_control);
7254 val64 = 0x0411040400000000ULL;
7255 writeq(val64, (void __iomem *) bar0 + 0x2700);
7256 val64 = readq(&bar0->gpio_control);
7257 }
7258
7259 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7260
7261 if (register_netdev(dev)) {
7262 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7263 ret = -ENODEV;
7264 goto register_failed;
7265 }
9dc737a7 7266 s2io_vpd_read(sp);
9dc737a7 7267 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2005 Neterion Inc.\n");
b41477f3
AR
7268 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7269 sp->product_name, get_xena_rev_id(sp->pdev));
7270 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7271 s2io_driver_version);
9dc737a7 7272 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
19a60522 7273 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
541ae68f
K
7274 sp->def_mac_addr[0].mac_addr[0],
7275 sp->def_mac_addr[0].mac_addr[1],
7276 sp->def_mac_addr[0].mac_addr[2],
7277 sp->def_mac_addr[0].mac_addr[3],
7278 sp->def_mac_addr[0].mac_addr[4],
7279 sp->def_mac_addr[0].mac_addr[5]);
19a60522 7280 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
9dc737a7 7281 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 7282 mode = s2io_print_pci_mode(sp);
541ae68f 7283 if (mode < 0) {
9dc737a7 7284 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
541ae68f 7285 ret = -EBADSLT;
9dc737a7 7286 unregister_netdev(dev);
541ae68f
K
7287 goto set_swap_failed;
7288 }
541ae68f 7289 }
9dc737a7
AR
7290 switch(sp->rxd_mode) {
7291 case RXD_MODE_1:
7292 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7293 dev->name);
7294 break;
7295 case RXD_MODE_3B:
7296 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7297 dev->name);
7298 break;
7299 case RXD_MODE_3A:
7300 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7301 dev->name);
7302 break;
7303 }
db874e65
SS
7304
7305 if (napi)
7306 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
9dc737a7
AR
7307 switch(sp->intr_type) {
7308 case INTA:
7309 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7310 break;
7311 case MSI:
7312 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7313 break;
7314 case MSI_X:
7315 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7316 break;
7317 }
7d3d0439
RA
7318 if (sp->lro)
7319 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 7320 dev->name);
db874e65
SS
7321 if (ufo)
7322 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7323 " enabled\n", dev->name);
7ba013ac 7324 /* Initialize device name */
9dc737a7 7325 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 7326
b6e3f982
K
7327 /* Initialize bimodal Interrupts */
7328 sp->config.bimodal = bimodal;
7329 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7330 sp->config.bimodal = 0;
7331 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7332 dev->name);
7333 }
7334
20346722
K
7335 /*
7336 * Make Link state as off at this point, when the Link change
7337 * interrupt comes the state will be automatically changed to
1da177e4
LT
7338 * the right state.
7339 */
7340 netif_carrier_off(dev);
1da177e4
LT
7341
7342 return 0;
7343
7344 register_failed:
7345 set_swap_failed:
7346 iounmap(sp->bar1);
7347 bar1_remap_failed:
7348 iounmap(sp->bar0);
7349 bar0_remap_failed:
7350 mem_alloc_failed:
7351 free_shared_mem(sp);
7352 pci_disable_device(pdev);
cc6e7c44
RA
7353 if (dev_intr_type != MSI_X)
7354 pci_release_regions(pdev);
7355 else {
7356 release_mem_region(pci_resource_start(pdev, 0),
7357 pci_resource_len(pdev, 0));
7358 release_mem_region(pci_resource_start(pdev, 2),
7359 pci_resource_len(pdev, 2));
7360 }
1da177e4
LT
7361 pci_set_drvdata(pdev, NULL);
7362 free_netdev(dev);
7363
7364 return ret;
7365}
7366
7367/**
20346722 7368 * s2io_rem_nic - Free the PCI device
1da177e4 7369 * @pdev: structure containing the PCI related information of the device.
20346722 7370 * Description: This function is called by the Pci subsystem to release a
1da177e4 7371 * PCI device and free up all resource held up by the device. This could
20346722 7372 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
7373 * from memory.
7374 */
7375
7376static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7377{
7378 struct net_device *dev =
7379 (struct net_device *) pci_get_drvdata(pdev);
1ee6dd77 7380 struct s2io_nic *sp;
1da177e4
LT
7381
7382 if (dev == NULL) {
7383 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7384 return;
7385 }
7386
22747d6b
FR
7387 flush_scheduled_work();
7388
1da177e4
LT
7389 sp = dev->priv;
7390 unregister_netdev(dev);
7391
7392 free_shared_mem(sp);
7393 iounmap(sp->bar0);
7394 iounmap(sp->bar1);
cc6e7c44
RA
7395 if (sp->intr_type != MSI_X)
7396 pci_release_regions(pdev);
7397 else {
7398 release_mem_region(pci_resource_start(pdev, 0),
7399 pci_resource_len(pdev, 0));
7400 release_mem_region(pci_resource_start(pdev, 2),
7401 pci_resource_len(pdev, 2));
7402 }
1da177e4 7403 pci_set_drvdata(pdev, NULL);
1da177e4 7404 free_netdev(dev);
19a60522 7405 pci_disable_device(pdev);
1da177e4
LT
7406}
7407
7408/**
7409 * s2io_starter - Entry point for the driver
7410 * Description: This function is the entry point for the driver. It verifies
7411 * the module loadable parameters and initializes PCI configuration space.
7412 */
7413
7414int __init s2io_starter(void)
7415{
29917620 7416 return pci_register_driver(&s2io_driver);
1da177e4
LT
7417}
7418
7419/**
20346722 7420 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
7421 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7422 */
7423
372cc597 7424static __exit void s2io_closer(void)
1da177e4
LT
7425{
7426 pci_unregister_driver(&s2io_driver);
7427 DBG_PRINT(INIT_DBG, "cleanup done\n");
7428}
7429
7430module_init(s2io_starter);
7431module_exit(s2io_closer);
7d3d0439 7432
6aa20a22 7433static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
1ee6dd77 7434 struct tcphdr **tcp, struct RxD_t *rxdp)
7d3d0439
RA
7435{
7436 int ip_off;
7437 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7438
7439 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7440 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7441 __FUNCTION__);
7442 return -1;
7443 }
7444
7445 /* TODO:
7446 * By default the VLAN field in the MAC is stripped by the card, if this
7447 * feature is turned off in rx_pa_cfg register, then the ip_off field
7448 * has to be shifted by a further 2 bytes
7449 */
7450 switch (l2_type) {
7451 case 0: /* DIX type */
7452 case 4: /* DIX type with VLAN */
7453 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7454 break;
7455 /* LLC, SNAP etc are considered non-mergeable */
7456 default:
7457 return -1;
7458 }
7459
7460 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7461 ip_len = (u8)((*ip)->ihl);
7462 ip_len <<= 2;
7463 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7464
7465 return 0;
7466}
7467
1ee6dd77 7468static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
7469 struct tcphdr *tcp)
7470{
7471 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7472 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7473 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7474 return -1;
7475 return 0;
7476}
7477
7478static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7479{
7480 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7481}
7482
1ee6dd77 7483static void initiate_new_session(struct lro *lro, u8 *l2h,
7d3d0439
RA
7484 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7485{
7486 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7487 lro->l2h = l2h;
7488 lro->iph = ip;
7489 lro->tcph = tcp;
7490 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7491 lro->tcp_ack = ntohl(tcp->ack_seq);
7492 lro->sg_num = 1;
7493 lro->total_len = ntohs(ip->tot_len);
7494 lro->frags_len = 0;
6aa20a22 7495 /*
7d3d0439
RA
7496 * check if we saw TCP timestamp. Other consistency checks have
7497 * already been done.
7498 */
7499 if (tcp->doff == 8) {
7500 u32 *ptr;
7501 ptr = (u32 *)(tcp+1);
7502 lro->saw_ts = 1;
7503 lro->cur_tsval = *(ptr+1);
7504 lro->cur_tsecr = *(ptr+2);
7505 }
7506 lro->in_use = 1;
7507}
7508
1ee6dd77 7509static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
7510{
7511 struct iphdr *ip = lro->iph;
7512 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 7513 __sum16 nchk;
1ee6dd77 7514 struct stat_block *statinfo = sp->mac_control.stats_info;
7d3d0439
RA
7515 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7516
7517 /* Update L3 header */
7518 ip->tot_len = htons(lro->total_len);
7519 ip->check = 0;
7520 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7521 ip->check = nchk;
7522
7523 /* Update L4 header */
7524 tcp->ack_seq = lro->tcp_ack;
7525 tcp->window = lro->window;
7526
7527 /* Update tsecr field if this session has timestamps enabled */
7528 if (lro->saw_ts) {
7529 u32 *ptr = (u32 *)(tcp + 1);
7530 *(ptr+2) = lro->cur_tsecr;
7531 }
7532
7533 /* Update counters required for calculation of
7534 * average no. of packets aggregated.
7535 */
7536 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7537 statinfo->sw_stat.num_aggregations++;
7538}
7539
1ee6dd77 7540static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
7541 struct tcphdr *tcp, u32 l4_pyld)
7542{
7543 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7544 lro->total_len += l4_pyld;
7545 lro->frags_len += l4_pyld;
7546 lro->tcp_next_seq += l4_pyld;
7547 lro->sg_num++;
7548
7549 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7550 lro->tcp_ack = tcp->ack_seq;
7551 lro->window = tcp->window;
6aa20a22 7552
7d3d0439
RA
7553 if (lro->saw_ts) {
7554 u32 *ptr;
7555 /* Update tsecr and tsval from this packet */
7556 ptr = (u32 *) (tcp + 1);
6aa20a22 7557 lro->cur_tsval = *(ptr + 1);
7d3d0439
RA
7558 lro->cur_tsecr = *(ptr + 2);
7559 }
7560}
7561
1ee6dd77 7562static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
7563 struct tcphdr *tcp, u32 tcp_pyld_len)
7564{
7d3d0439
RA
7565 u8 *ptr;
7566
79dc1901
AM
7567 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7568
7d3d0439
RA
7569 if (!tcp_pyld_len) {
7570 /* Runt frame or a pure ack */
7571 return -1;
7572 }
7573
7574 if (ip->ihl != 5) /* IP has options */
7575 return -1;
7576
75c30b13
AR
7577 /* If we see CE codepoint in IP header, packet is not mergeable */
7578 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7579 return -1;
7580
7581 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7d3d0439 7582 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
75c30b13 7583 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
7584 /*
7585 * Currently recognize only the ack control word and
7586 * any other control field being set would result in
7587 * flushing the LRO session
7588 */
7589 return -1;
7590 }
7591
6aa20a22 7592 /*
7d3d0439
RA
7593 * Allow only one TCP timestamp option. Don't aggregate if
7594 * any other options are detected.
7595 */
7596 if (tcp->doff != 5 && tcp->doff != 8)
7597 return -1;
7598
7599 if (tcp->doff == 8) {
6aa20a22 7600 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
7601 while (*ptr == TCPOPT_NOP)
7602 ptr++;
7603 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7604 return -1;
7605
7606 /* Ensure timestamp value increases monotonically */
7607 if (l_lro)
7608 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7609 return -1;
7610
7611 /* timestamp echo reply should be non-zero */
6aa20a22 7612 if (*((u32 *)(ptr+6)) == 0)
7d3d0439
RA
7613 return -1;
7614 }
7615
7616 return 0;
7617}
7618
7619static int
1ee6dd77
RB
7620s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7621 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
7622{
7623 struct iphdr *ip;
7624 struct tcphdr *tcph;
7625 int ret = 0, i;
7626
7627 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7628 rxdp))) {
7629 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7630 ip->saddr, ip->daddr);
7631 } else {
7632 return ret;
7633 }
7634
7635 tcph = (struct tcphdr *)*tcp;
7636 *tcp_len = get_l4_pyld_length(ip, tcph);
7637 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 7638 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
7639 if (l_lro->in_use) {
7640 if (check_for_socket_match(l_lro, ip, tcph))
7641 continue;
7642 /* Sock pair matched */
7643 *lro = l_lro;
7644
7645 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7646 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7647 "0x%x, actual 0x%x\n", __FUNCTION__,
7648 (*lro)->tcp_next_seq,
7649 ntohl(tcph->seq));
7650
7651 sp->mac_control.stats_info->
7652 sw_stat.outof_sequence_pkts++;
7653 ret = 2;
7654 break;
7655 }
7656
7657 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7658 ret = 1; /* Aggregate */
7659 else
7660 ret = 2; /* Flush both */
7661 break;
7662 }
7663 }
7664
7665 if (ret == 0) {
7666 /* Before searching for available LRO objects,
7667 * check if the pkt is L3/L4 aggregatable. If not
7668 * don't create new LRO session. Just send this
7669 * packet up.
7670 */
7671 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7672 return 5;
7673 }
7674
7675 for (i=0; i<MAX_LRO_SESSIONS; i++) {
1ee6dd77 7676 struct lro *l_lro = &sp->lro0_n[i];
7d3d0439
RA
7677 if (!(l_lro->in_use)) {
7678 *lro = l_lro;
7679 ret = 3; /* Begin anew */
7680 break;
7681 }
7682 }
7683 }
7684
7685 if (ret == 0) { /* sessions exceeded */
7686 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7687 __FUNCTION__);
7688 *lro = NULL;
7689 return ret;
7690 }
7691
7692 switch (ret) {
7693 case 3:
7694 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7695 break;
7696 case 2:
7697 update_L3L4_header(sp, *lro);
7698 break;
7699 case 1:
7700 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7701 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7702 update_L3L4_header(sp, *lro);
7703 ret = 4; /* Flush the LRO */
7704 }
7705 break;
7706 default:
7707 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7708 __FUNCTION__);
7709 break;
7710 }
7711
7712 return ret;
7713}
7714
1ee6dd77 7715static void clear_lro_session(struct lro *lro)
7d3d0439 7716{
1ee6dd77 7717 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
7718
7719 memset(lro, 0, lro_struct_size);
7720}
7721
7722static void queue_rx_frame(struct sk_buff *skb)
7723{
7724 struct net_device *dev = skb->dev;
7725
7726 skb->protocol = eth_type_trans(skb, dev);
db874e65
SS
7727 if (napi)
7728 netif_receive_skb(skb);
7729 else
7730 netif_rx(skb);
7d3d0439
RA
7731}
7732
1ee6dd77
RB
7733static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7734 struct sk_buff *skb,
7d3d0439
RA
7735 u32 tcp_len)
7736{
75c30b13 7737 struct sk_buff *first = lro->parent;
7d3d0439
RA
7738
7739 first->len += tcp_len;
7740 first->data_len = lro->frags_len;
7741 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
7742 if (skb_shinfo(first)->frag_list)
7743 lro->last_frag->next = skb;
7d3d0439
RA
7744 else
7745 skb_shinfo(first)->frag_list = skb;
372cc597 7746 first->truesize += skb->truesize;
75c30b13 7747 lro->last_frag = skb;
7d3d0439
RA
7748 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7749 return;
7750}