ath9k: Fix channelFlags for 2GHZ
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
0c61ed5f 3 * Copyright(c) 2002-2007 Neterion Inc.
d44570e4 4 *
1da177e4
LT
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4 27 * The module loadable parameters that are supported by the driver and a brief
a2a20aef 28 * explanation of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
43b7c451 41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
9dc737a7
AR
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
926930b2
SS
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
3a3d5756
SH
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
1da177e4
LT
55 ************************************************************************/
56
6cef2b8e
JP
57#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
1da177e4
LT
59#include <linux/module.h>
60#include <linux/types.h>
61#include <linux/errno.h>
62#include <linux/ioport.h>
63#include <linux/pci.h>
1e7f0bd8 64#include <linux/dma-mapping.h>
1da177e4
LT
65#include <linux/kernel.h>
66#include <linux/netdevice.h>
67#include <linux/etherdevice.h>
40239396 68#include <linux/mdio.h>
1da177e4
LT
69#include <linux/skbuff.h>
70#include <linux/init.h>
71#include <linux/delay.h>
72#include <linux/stddef.h>
73#include <linux/ioctl.h>
74#include <linux/timex.h>
1da177e4 75#include <linux/ethtool.h>
1da177e4 76#include <linux/workqueue.h>
be3a6b02 77#include <linux/if_vlan.h>
7d3d0439
RA
78#include <linux/ip.h>
79#include <linux/tcp.h>
d44570e4
JP
80#include <linux/uaccess.h>
81#include <linux/io.h>
7d3d0439 82#include <net/tcp.h>
1da177e4 83
1da177e4 84#include <asm/system.h>
fe931395 85#include <asm/div64.h>
330ce0de 86#include <asm/irq.h>
1da177e4
LT
87
88/* local include */
89#include "s2io.h"
90#include "s2io-regs.h"
91
29d0a2b0 92#define DRV_VERSION "2.0.26.25"
6c1792f4 93
1da177e4 94/* S2io Driver name & version. */
20346722 95static char s2io_driver_name[] = "Neterion";
6c1792f4 96static char s2io_driver_version[] = DRV_VERSION;
1da177e4 97
d44570e4
JP
98static int rxd_size[2] = {32, 48};
99static int rxd_count[2] = {127, 85};
da6971d8 100
1ee6dd77 101static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd
K
102{
103 int ret;
104
105 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
d44570e4 106 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
5e25b9dd
K
107
108 return ret;
109}
110
20346722 111/*
1da177e4
LT
112 * Cards with following subsystem_id have a link state indication
113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
114 * macro below identifies these cards given the subsystem_id.
115 */
d44570e4
JP
116#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
117 (dev_type == XFRAME_I_DEVICE) ? \
118 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
119 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
120
121#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
122 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
1da177e4 123
d44570e4 124static inline int is_s2io_card_up(const struct s2io_nic *sp)
92b84437
SS
125{
126 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
127}
128
1da177e4 129/* Ethtool related variables and Macros. */
6fce365d 130static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
1da177e4
LT
131 "Register test\t(offline)",
132 "Eeprom test\t(offline)",
133 "Link test\t(online)",
134 "RLDRAM test\t(offline)",
135 "BIST Test\t(offline)"
136};
137
6fce365d 138static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
139 {"tmac_frms"},
140 {"tmac_data_octets"},
141 {"tmac_drop_frms"},
142 {"tmac_mcst_frms"},
143 {"tmac_bcst_frms"},
144 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
145 {"tmac_ttl_octets"},
146 {"tmac_ucst_frms"},
147 {"tmac_nucst_frms"},
1da177e4 148 {"tmac_any_err_frms"},
bd1034f0 149 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
150 {"tmac_vld_ip_octets"},
151 {"tmac_vld_ip"},
152 {"tmac_drop_ip"},
153 {"tmac_icmp"},
154 {"tmac_rst_tcp"},
155 {"tmac_tcp"},
156 {"tmac_udp"},
157 {"rmac_vld_frms"},
158 {"rmac_data_octets"},
159 {"rmac_fcs_err_frms"},
160 {"rmac_drop_frms"},
161 {"rmac_vld_mcst_frms"},
162 {"rmac_vld_bcst_frms"},
163 {"rmac_in_rng_len_err_frms"},
bd1034f0 164 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
165 {"rmac_long_frms"},
166 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
167 {"rmac_unsup_ctrl_frms"},
168 {"rmac_ttl_octets"},
169 {"rmac_accepted_ucst_frms"},
170 {"rmac_accepted_nucst_frms"},
1da177e4 171 {"rmac_discarded_frms"},
bd1034f0
AR
172 {"rmac_drop_events"},
173 {"rmac_ttl_less_fb_octets"},
174 {"rmac_ttl_frms"},
1da177e4
LT
175 {"rmac_usized_frms"},
176 {"rmac_osized_frms"},
177 {"rmac_frag_frms"},
178 {"rmac_jabber_frms"},
bd1034f0
AR
179 {"rmac_ttl_64_frms"},
180 {"rmac_ttl_65_127_frms"},
181 {"rmac_ttl_128_255_frms"},
182 {"rmac_ttl_256_511_frms"},
183 {"rmac_ttl_512_1023_frms"},
184 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
185 {"rmac_ip"},
186 {"rmac_ip_octets"},
187 {"rmac_hdr_err_ip"},
188 {"rmac_drop_ip"},
189 {"rmac_icmp"},
190 {"rmac_tcp"},
191 {"rmac_udp"},
192 {"rmac_err_drp_udp"},
bd1034f0
AR
193 {"rmac_xgmii_err_sym"},
194 {"rmac_frms_q0"},
195 {"rmac_frms_q1"},
196 {"rmac_frms_q2"},
197 {"rmac_frms_q3"},
198 {"rmac_frms_q4"},
199 {"rmac_frms_q5"},
200 {"rmac_frms_q6"},
201 {"rmac_frms_q7"},
202 {"rmac_full_q0"},
203 {"rmac_full_q1"},
204 {"rmac_full_q2"},
205 {"rmac_full_q3"},
206 {"rmac_full_q4"},
207 {"rmac_full_q5"},
208 {"rmac_full_q6"},
209 {"rmac_full_q7"},
1da177e4 210 {"rmac_pause_cnt"},
bd1034f0
AR
211 {"rmac_xgmii_data_err_cnt"},
212 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
213 {"rmac_accepted_ip"},
214 {"rmac_err_tcp"},
bd1034f0
AR
215 {"rd_req_cnt"},
216 {"new_rd_req_cnt"},
217 {"new_rd_req_rtry_cnt"},
218 {"rd_rtry_cnt"},
219 {"wr_rtry_rd_ack_cnt"},
220 {"wr_req_cnt"},
221 {"new_wr_req_cnt"},
222 {"new_wr_req_rtry_cnt"},
223 {"wr_rtry_cnt"},
224 {"wr_disc_cnt"},
225 {"rd_rtry_wr_ack_cnt"},
226 {"txp_wr_cnt"},
227 {"txd_rd_cnt"},
228 {"txd_wr_cnt"},
229 {"rxd_rd_cnt"},
230 {"rxd_wr_cnt"},
231 {"txf_rd_cnt"},
fa1f0cb3
SS
232 {"rxf_wr_cnt"}
233};
234
6fce365d 235static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
236 {"rmac_ttl_1519_4095_frms"},
237 {"rmac_ttl_4096_8191_frms"},
238 {"rmac_ttl_8192_max_frms"},
239 {"rmac_ttl_gt_max_frms"},
240 {"rmac_osized_alt_frms"},
241 {"rmac_jabber_alt_frms"},
242 {"rmac_gt_max_alt_frms"},
243 {"rmac_vlan_frms"},
244 {"rmac_len_discard"},
245 {"rmac_fcs_discard"},
246 {"rmac_pf_discard"},
247 {"rmac_da_discard"},
248 {"rmac_red_discard"},
249 {"rmac_rts_discard"},
250 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
251 {"link_fault_cnt"}
252};
253
6fce365d 254static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac
K
255 {"\n DRIVER STATISTICS"},
256 {"single_bit_ecc_errs"},
257 {"double_bit_ecc_errs"},
bd1034f0
AR
258 {"parity_err_cnt"},
259 {"serious_err_cnt"},
260 {"soft_reset_cnt"},
261 {"fifo_full_cnt"},
8116f3cf
SS
262 {"ring_0_full_cnt"},
263 {"ring_1_full_cnt"},
264 {"ring_2_full_cnt"},
265 {"ring_3_full_cnt"},
266 {"ring_4_full_cnt"},
267 {"ring_5_full_cnt"},
268 {"ring_6_full_cnt"},
269 {"ring_7_full_cnt"},
43b7c451
SH
270 {"alarm_transceiver_temp_high"},
271 {"alarm_transceiver_temp_low"},
272 {"alarm_laser_bias_current_high"},
273 {"alarm_laser_bias_current_low"},
274 {"alarm_laser_output_power_high"},
275 {"alarm_laser_output_power_low"},
276 {"warn_transceiver_temp_high"},
277 {"warn_transceiver_temp_low"},
278 {"warn_laser_bias_current_high"},
279 {"warn_laser_bias_current_low"},
280 {"warn_laser_output_power_high"},
281 {"warn_laser_output_power_low"},
282 {"lro_aggregated_pkts"},
283 {"lro_flush_both_count"},
284 {"lro_out_of_sequence_pkts"},
285 {"lro_flush_due_to_max_pkts"},
286 {"lro_avg_aggr_pkts"},
287 {"mem_alloc_fail_cnt"},
288 {"pci_map_fail_cnt"},
289 {"watchdog_timer_cnt"},
290 {"mem_allocated"},
291 {"mem_freed"},
292 {"link_up_cnt"},
293 {"link_down_cnt"},
294 {"link_up_time"},
295 {"link_down_time"},
296 {"tx_tcode_buf_abort_cnt"},
297 {"tx_tcode_desc_abort_cnt"},
298 {"tx_tcode_parity_err_cnt"},
299 {"tx_tcode_link_loss_cnt"},
300 {"tx_tcode_list_proc_err_cnt"},
301 {"rx_tcode_parity_err_cnt"},
302 {"rx_tcode_abort_cnt"},
303 {"rx_tcode_parity_abort_cnt"},
304 {"rx_tcode_rda_fail_cnt"},
305 {"rx_tcode_unkn_prot_cnt"},
306 {"rx_tcode_fcs_err_cnt"},
307 {"rx_tcode_buf_size_err_cnt"},
308 {"rx_tcode_rxd_corrupt_cnt"},
309 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
310 {"tda_err_cnt"},
311 {"pfc_err_cnt"},
312 {"pcc_err_cnt"},
313 {"tti_err_cnt"},
314 {"tpa_err_cnt"},
315 {"sm_err_cnt"},
316 {"lso_err_cnt"},
317 {"mac_tmac_err_cnt"},
318 {"mac_rmac_err_cnt"},
319 {"xgxs_txgxs_err_cnt"},
320 {"xgxs_rxgxs_err_cnt"},
321 {"rc_err_cnt"},
322 {"prc_pcix_err_cnt"},
323 {"rpa_err_cnt"},
324 {"rda_err_cnt"},
325 {"rti_err_cnt"},
326 {"mc_err_cnt"}
1da177e4
LT
327};
328
4c3616cd
AMR
329#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
330#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
331#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
fa1f0cb3 332
d44570e4
JP
333#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
334#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
fa1f0cb3 335
d44570e4
JP
336#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
337#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
1da177e4 338
4c3616cd 339#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
d44570e4 340#define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
1da177e4 341
d44570e4
JP
342#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
343 init_timer(&timer); \
344 timer.function = handle; \
345 timer.data = (unsigned long)arg; \
346 mod_timer(&timer, (jiffies + exp)) \
25fff88e 347
2fd37688
SS
348/* copy mac addr to def_mac_addr array */
349static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
350{
351 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
352 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
353 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
354 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
355 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
356 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
357}
04025095 358
be3a6b02
K
359/* Add the vlan */
360static void s2io_vlan_rx_register(struct net_device *dev,
04025095 361 struct vlan_group *grp)
be3a6b02 362{
2fda096d 363 int i;
4cf1653a 364 struct s2io_nic *nic = netdev_priv(dev);
2fda096d 365 unsigned long flags[MAX_TX_FIFOS];
2fda096d 366 struct config_param *config = &nic->config;
ffb5df6c 367 struct mac_info *mac_control = &nic->mac_control;
2fda096d 368
13d866a9
JP
369 for (i = 0; i < config->tx_fifo_num; i++) {
370 struct fifo_info *fifo = &mac_control->fifos[i];
371
372 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
373 }
be3a6b02 374
be3a6b02 375 nic->vlgrp = grp;
13d866a9
JP
376
377 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
378 struct fifo_info *fifo = &mac_control->fifos[i];
379
380 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
381 }
be3a6b02
K
382}
383
cdb5bf02 384/* Unregister the vlan */
04025095 385static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
cdb5bf02
SH
386{
387 int i;
4cf1653a 388 struct s2io_nic *nic = netdev_priv(dev);
cdb5bf02 389 unsigned long flags[MAX_TX_FIFOS];
cdb5bf02 390 struct config_param *config = &nic->config;
ffb5df6c 391 struct mac_info *mac_control = &nic->mac_control;
cdb5bf02 392
13d866a9
JP
393 for (i = 0; i < config->tx_fifo_num; i++) {
394 struct fifo_info *fifo = &mac_control->fifos[i];
395
396 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
397 }
cdb5bf02
SH
398
399 if (nic->vlgrp)
400 vlan_group_set_device(nic->vlgrp, vid, NULL);
401
13d866a9
JP
402 for (i = config->tx_fifo_num - 1; i >= 0; i--) {
403 struct fifo_info *fifo = &mac_control->fifos[i];
404
405 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
406 }
cdb5bf02
SH
407}
408
20346722 409/*
1da177e4
LT
410 * Constants to be programmed into the Xena's registers, to configure
411 * the XAUI.
412 */
413
1da177e4 414#define END_SIGN 0x0
f71e1309 415static const u64 herc_act_dtx_cfg[] = {
541ae68f 416 /* Set address */
e960fc5c 417 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 418 /* Write data */
e960fc5c 419 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
420 /* Set address */
421 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
422 /* Write data */
423 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
424 /* Set address */
e960fc5c 425 0x801205150D440000ULL, 0x801205150D4400E0ULL,
426 /* Write data */
427 0x801205150D440004ULL, 0x801205150D4400E4ULL,
428 /* Set address */
541ae68f
K
429 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
430 /* Write data */
431 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
432 /* Done */
433 END_SIGN
434};
435
f71e1309 436static const u64 xena_dtx_cfg[] = {
c92ca04b 437 /* Set address */
1da177e4 438 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
439 /* Write data */
440 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
441 /* Set address */
442 0x8001051500000000ULL, 0x80010515000000E0ULL,
443 /* Write data */
444 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
445 /* Set address */
1da177e4 446 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
447 /* Write data */
448 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
449 END_SIGN
450};
451
20346722 452/*
1da177e4
LT
453 * Constants for Fixing the MacAddress problem seen mostly on
454 * Alpha machines.
455 */
f71e1309 456static const u64 fix_mac[] = {
1da177e4
LT
457 0x0060000000000000ULL, 0x0060600000000000ULL,
458 0x0040600000000000ULL, 0x0000600000000000ULL,
459 0x0020600000000000ULL, 0x0060600000000000ULL,
460 0x0020600000000000ULL, 0x0060600000000000ULL,
461 0x0020600000000000ULL, 0x0060600000000000ULL,
462 0x0020600000000000ULL, 0x0060600000000000ULL,
463 0x0020600000000000ULL, 0x0060600000000000ULL,
464 0x0020600000000000ULL, 0x0060600000000000ULL,
465 0x0020600000000000ULL, 0x0060600000000000ULL,
466 0x0020600000000000ULL, 0x0060600000000000ULL,
467 0x0020600000000000ULL, 0x0060600000000000ULL,
468 0x0020600000000000ULL, 0x0060600000000000ULL,
469 0x0020600000000000ULL, 0x0000600000000000ULL,
470 0x0040600000000000ULL, 0x0060600000000000ULL,
471 END_SIGN
472};
473
b41477f3
AR
474MODULE_LICENSE("GPL");
475MODULE_VERSION(DRV_VERSION);
476
477
1da177e4 478/* Module Loadable parameters. */
6cfc482b 479S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
b41477f3 480S2IO_PARM_INT(rx_ring_num, 1);
3a3d5756 481S2IO_PARM_INT(multiq, 0);
b41477f3
AR
482S2IO_PARM_INT(rx_ring_mode, 1);
483S2IO_PARM_INT(use_continuous_tx_intrs, 1);
484S2IO_PARM_INT(rmac_pause_time, 0x100);
485S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
486S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
487S2IO_PARM_INT(shared_splits, 0);
488S2IO_PARM_INT(tmac_util_period, 5);
489S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 490S2IO_PARM_INT(l3l4hdr_size, 128);
6cfc482b
SH
491/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
492S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
303bcb4b 493/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 494S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 495/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 496S2IO_PARM_INT(intr_type, 2);
7d3d0439 497/* Large receive offload feature */
43b7c451
SH
498static unsigned int lro_enable;
499module_param_named(lro, lro_enable, uint, 0);
500
7d3d0439
RA
501/* Max pkts to be aggregated by LRO at one time. If not specified,
502 * aggregation happens until we hit max IP pkt size(64K)
503 */
b41477f3 504S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 505S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
506
507S2IO_PARM_INT(napi, 1);
508S2IO_PARM_INT(ufo, 0);
926930b2 509S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
510
511static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
d44570e4 512{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
b41477f3 513static unsigned int rx_ring_sz[MAX_RX_RINGS] =
d44570e4 514{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
b41477f3 515static unsigned int rts_frm_len[MAX_RX_RINGS] =
d44570e4 516{[0 ...(MAX_RX_RINGS - 1)] = 0 };
b41477f3
AR
517
518module_param_array(tx_fifo_len, uint, NULL, 0);
519module_param_array(rx_ring_sz, uint, NULL, 0);
520module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 521
20346722 522/*
1da177e4 523 * S2IO device table.
20346722 524 * This table lists all the devices that this driver supports.
1da177e4
LT
525 */
526static struct pci_device_id s2io_tbl[] __devinitdata = {
527 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
528 PCI_ANY_ID, PCI_ANY_ID},
529 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
530 PCI_ANY_ID, PCI_ANY_ID},
531 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
d44570e4
JP
532 PCI_ANY_ID, PCI_ANY_ID},
533 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
534 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
535 {0,}
536};
537
538MODULE_DEVICE_TABLE(pci, s2io_tbl);
539
d796fdb7
LV
540static struct pci_error_handlers s2io_err_handler = {
541 .error_detected = s2io_io_error_detected,
542 .slot_reset = s2io_io_slot_reset,
543 .resume = s2io_io_resume,
544};
545
1da177e4 546static struct pci_driver s2io_driver = {
d44570e4
JP
547 .name = "S2IO",
548 .id_table = s2io_tbl,
549 .probe = s2io_init_nic,
550 .remove = __devexit_p(s2io_rem_nic),
551 .err_handler = &s2io_err_handler,
1da177e4
LT
552};
553
554/* A simplifier macro used both by init and free shared_mem Fns(). */
555#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
556
3a3d5756
SH
557/* netqueue manipulation helper functions */
558static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
559{
fd2ea0a7
DM
560 if (!sp->config.multiq) {
561 int i;
562
3a3d5756
SH
563 for (i = 0; i < sp->config.tx_fifo_num; i++)
564 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
3a3d5756 565 }
fd2ea0a7 566 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
567}
568
569static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
570{
fd2ea0a7 571 if (!sp->config.multiq)
3a3d5756
SH
572 sp->mac_control.fifos[fifo_no].queue_state =
573 FIFO_QUEUE_STOP;
fd2ea0a7
DM
574
575 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
576}
577
578static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
579{
fd2ea0a7
DM
580 if (!sp->config.multiq) {
581 int i;
582
3a3d5756
SH
583 for (i = 0; i < sp->config.tx_fifo_num; i++)
584 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 585 }
fd2ea0a7 586 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
587}
588
589static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
590{
fd2ea0a7 591 if (!sp->config.multiq)
3a3d5756
SH
592 sp->mac_control.fifos[fifo_no].queue_state =
593 FIFO_QUEUE_START;
fd2ea0a7
DM
594
595 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
596}
597
598static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
599{
fd2ea0a7
DM
600 if (!sp->config.multiq) {
601 int i;
602
3a3d5756
SH
603 for (i = 0; i < sp->config.tx_fifo_num; i++)
604 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 605 }
fd2ea0a7 606 netif_tx_wake_all_queues(sp->dev);
3a3d5756
SH
607}
608
609static inline void s2io_wake_tx_queue(
610 struct fifo_info *fifo, int cnt, u8 multiq)
611{
612
3a3d5756
SH
613 if (multiq) {
614 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
615 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
b19fa1fa 616 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
617 if (netif_queue_stopped(fifo->dev)) {
618 fifo->queue_state = FIFO_QUEUE_START;
619 netif_wake_queue(fifo->dev);
620 }
621 }
622}
623
1da177e4
LT
624/**
625 * init_shared_mem - Allocation and Initialization of Memory
626 * @nic: Device private variable.
20346722
K
627 * Description: The function allocates all the memory areas shared
628 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
629 * Rx descriptors and the statistics block.
630 */
631
632static int init_shared_mem(struct s2io_nic *nic)
633{
634 u32 size;
635 void *tmp_v_addr, *tmp_v_addr_next;
636 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 637 struct RxD_block *pre_rxd_blk = NULL;
372cc597 638 int i, j, blk_cnt;
1da177e4
LT
639 int lst_size, lst_per_page;
640 struct net_device *dev = nic->dev;
8ae418cf 641 unsigned long tmp;
1ee6dd77 642 struct buffAdd *ba;
ffb5df6c
JP
643 struct config_param *config = &nic->config;
644 struct mac_info *mac_control = &nic->mac_control;
491976b2 645 unsigned long long mem_allocated = 0;
1da177e4 646
13d866a9 647 /* Allocation and initialization of TXDLs in FIFOs */
1da177e4
LT
648 size = 0;
649 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
650 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
651
652 size += tx_cfg->fifo_len;
1da177e4
LT
653 }
654 if (size > MAX_AVAILABLE_TXDS) {
9e39f7c5
JP
655 DBG_PRINT(ERR_DBG,
656 "Too many TxDs requested: %d, max supported: %d\n",
657 size, MAX_AVAILABLE_TXDS);
b41477f3 658 return -EINVAL;
1da177e4
LT
659 }
660
2fda096d
SR
661 size = 0;
662 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
663 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
664
665 size = tx_cfg->fifo_len;
2fda096d
SR
666 /*
667 * Legal values are from 2 to 8192
668 */
669 if (size < 2) {
9e39f7c5
JP
670 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
671 "Valid lengths are 2 through 8192\n",
672 i, size);
2fda096d
SR
673 return -EINVAL;
674 }
675 }
676
1ee6dd77 677 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
678 lst_per_page = PAGE_SIZE / lst_size;
679
680 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
681 struct fifo_info *fifo = &mac_control->fifos[i];
682 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
683 int fifo_len = tx_cfg->fifo_len;
1ee6dd77 684 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
13d866a9
JP
685
686 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
687 if (!fifo->list_info) {
d44570e4 688 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
1da177e4
LT
689 return -ENOMEM;
690 }
491976b2 691 mem_allocated += list_holder_size;
1da177e4
LT
692 }
693 for (i = 0; i < config->tx_fifo_num; i++) {
694 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
695 lst_per_page);
13d866a9
JP
696 struct fifo_info *fifo = &mac_control->fifos[i];
697 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
698
699 fifo->tx_curr_put_info.offset = 0;
700 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
701 fifo->tx_curr_get_info.offset = 0;
702 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
703 fifo->fifo_no = i;
704 fifo->nic = nic;
705 fifo->max_txds = MAX_SKB_FRAGS + 2;
706 fifo->dev = dev;
20346722 707
1da177e4
LT
708 for (j = 0; j < page_num; j++) {
709 int k = 0;
710 dma_addr_t tmp_p;
711 void *tmp_v;
712 tmp_v = pci_alloc_consistent(nic->pdev,
713 PAGE_SIZE, &tmp_p);
714 if (!tmp_v) {
9e39f7c5
JP
715 DBG_PRINT(INFO_DBG,
716 "pci_alloc_consistent failed for TxDL\n");
1da177e4
LT
717 return -ENOMEM;
718 }
776bd20f 719 /* If we got a zero DMA address(can happen on
720 * certain platforms like PPC), reallocate.
721 * Store virtual address of page we don't want,
722 * to be freed later.
723 */
724 if (!tmp_p) {
725 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 726 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
727 "%s: Zero DMA address for TxDL. "
728 "Virtual address %p\n",
729 dev->name, tmp_v);
776bd20f 730 tmp_v = pci_alloc_consistent(nic->pdev,
d44570e4 731 PAGE_SIZE, &tmp_p);
776bd20f 732 if (!tmp_v) {
0c61ed5f 733 DBG_PRINT(INFO_DBG,
9e39f7c5 734 "pci_alloc_consistent failed for TxDL\n");
776bd20f 735 return -ENOMEM;
736 }
491976b2 737 mem_allocated += PAGE_SIZE;
776bd20f 738 }
1da177e4
LT
739 while (k < lst_per_page) {
740 int l = (j * lst_per_page) + k;
13d866a9 741 if (l == tx_cfg->fifo_len)
20346722 742 break;
13d866a9 743 fifo->list_info[l].list_virt_addr =
d44570e4 744 tmp_v + (k * lst_size);
13d866a9 745 fifo->list_info[l].list_phy_addr =
d44570e4 746 tmp_p + (k * lst_size);
1da177e4
LT
747 k++;
748 }
749 }
750 }
1da177e4 751
2fda096d 752 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
753 struct fifo_info *fifo = &mac_control->fifos[i];
754 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
755
756 size = tx_cfg->fifo_len;
757 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
758 if (!fifo->ufo_in_band_v)
2fda096d
SR
759 return -ENOMEM;
760 mem_allocated += (size * sizeof(u64));
761 }
fed5eccd 762
1da177e4
LT
763 /* Allocation and initialization of RXDs in Rings */
764 size = 0;
765 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
766 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
767 struct ring_info *ring = &mac_control->rings[i];
768
769 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
9e39f7c5
JP
770 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
771 "multiple of RxDs per Block\n",
772 dev->name, i);
1da177e4
LT
773 return FAILURE;
774 }
13d866a9
JP
775 size += rx_cfg->num_rxd;
776 ring->block_count = rx_cfg->num_rxd /
d44570e4 777 (rxd_count[nic->rxd_mode] + 1);
13d866a9 778 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
1da177e4 779 }
da6971d8 780 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 781 size = (size * (sizeof(struct RxD1)));
da6971d8 782 else
1ee6dd77 783 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
784
785 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
786 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
787 struct ring_info *ring = &mac_control->rings[i];
788
789 ring->rx_curr_get_info.block_index = 0;
790 ring->rx_curr_get_info.offset = 0;
791 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
792 ring->rx_curr_put_info.block_index = 0;
793 ring->rx_curr_put_info.offset = 0;
794 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
795 ring->nic = nic;
796 ring->ring_no = i;
797 ring->lro = lro_enable;
798
799 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
800 /* Allocating all the Rx blocks */
801 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 802 struct rx_block_info *rx_blocks;
da6971d8
AR
803 int l;
804
13d866a9 805 rx_blocks = &ring->rx_blocks[j];
d44570e4 806 size = SIZE_OF_BLOCK; /* size is always page size */
1da177e4
LT
807 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
808 &tmp_p_addr);
809 if (tmp_v_addr == NULL) {
810 /*
20346722
K
811 * In case of failure, free_shared_mem()
812 * is called, which should free any
813 * memory that was alloced till the
1da177e4
LT
814 * failure happened.
815 */
da6971d8 816 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
817 return -ENOMEM;
818 }
491976b2 819 mem_allocated += size;
1da177e4 820 memset(tmp_v_addr, 0, size);
4f870320
JP
821
822 size = sizeof(struct rxd_info) *
823 rxd_count[nic->rxd_mode];
da6971d8
AR
824 rx_blocks->block_virt_addr = tmp_v_addr;
825 rx_blocks->block_dma_addr = tmp_p_addr;
4f870320 826 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
372cc597
SS
827 if (!rx_blocks->rxds)
828 return -ENOMEM;
4f870320 829 mem_allocated += size;
d44570e4 830 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
da6971d8
AR
831 rx_blocks->rxds[l].virt_addr =
832 rx_blocks->block_virt_addr +
833 (rxd_size[nic->rxd_mode] * l);
834 rx_blocks->rxds[l].dma_addr =
835 rx_blocks->block_dma_addr +
836 (rxd_size[nic->rxd_mode] * l);
837 }
1da177e4
LT
838 }
839 /* Interlinking all Rx Blocks */
840 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
841 int next = (j + 1) % blk_cnt;
842 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
843 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
844 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
845 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
1da177e4 846
d44570e4 847 pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
1da177e4 848 pre_rxd_blk->reserved_2_pNext_RxD_block =
d44570e4 849 (unsigned long)tmp_v_addr_next;
1da177e4 850 pre_rxd_blk->pNext_RxD_Blk_physical =
d44570e4 851 (u64)tmp_p_addr_next;
1da177e4
LT
852 }
853 }
6d517a27 854 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
855 /*
856 * Allocation of Storages for buffer addresses in 2BUFF mode
857 * and the buffers as well.
858 */
859 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
860 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
861 struct ring_info *ring = &mac_control->rings[i];
862
863 blk_cnt = rx_cfg->num_rxd /
d44570e4 864 (rxd_count[nic->rxd_mode] + 1);
4f870320
JP
865 size = sizeof(struct buffAdd *) * blk_cnt;
866 ring->ba = kmalloc(size, GFP_KERNEL);
13d866a9 867 if (!ring->ba)
1da177e4 868 return -ENOMEM;
4f870320 869 mem_allocated += size;
da6971d8
AR
870 for (j = 0; j < blk_cnt; j++) {
871 int k = 0;
4f870320
JP
872
873 size = sizeof(struct buffAdd) *
874 (rxd_count[nic->rxd_mode] + 1);
875 ring->ba[j] = kmalloc(size, GFP_KERNEL);
13d866a9 876 if (!ring->ba[j])
1da177e4 877 return -ENOMEM;
4f870320 878 mem_allocated += size;
da6971d8 879 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 880 ba = &ring->ba[j][k];
4f870320
JP
881 size = BUF0_LEN + ALIGN_SIZE;
882 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
883 if (!ba->ba_0_org)
884 return -ENOMEM;
4f870320 885 mem_allocated += size;
da6971d8
AR
886 tmp = (unsigned long)ba->ba_0_org;
887 tmp += ALIGN_SIZE;
d44570e4
JP
888 tmp &= ~((unsigned long)ALIGN_SIZE);
889 ba->ba_0 = (void *)tmp;
da6971d8 890
4f870320
JP
891 size = BUF1_LEN + ALIGN_SIZE;
892 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
893 if (!ba->ba_1_org)
894 return -ENOMEM;
4f870320 895 mem_allocated += size;
d44570e4 896 tmp = (unsigned long)ba->ba_1_org;
da6971d8 897 tmp += ALIGN_SIZE;
d44570e4
JP
898 tmp &= ~((unsigned long)ALIGN_SIZE);
899 ba->ba_1 = (void *)tmp;
da6971d8
AR
900 k++;
901 }
1da177e4
LT
902 }
903 }
904 }
1da177e4
LT
905
906 /* Allocation and initialization of Statistics block */
1ee6dd77 907 size = sizeof(struct stat_block);
d44570e4
JP
908 mac_control->stats_mem =
909 pci_alloc_consistent(nic->pdev, size,
910 &mac_control->stats_mem_phy);
1da177e4
LT
911
912 if (!mac_control->stats_mem) {
20346722
K
913 /*
914 * In case of failure, free_shared_mem() is called, which
915 * should free any memory that was alloced till the
1da177e4
LT
916 * failure happened.
917 */
918 return -ENOMEM;
919 }
491976b2 920 mem_allocated += size;
1da177e4
LT
921 mac_control->stats_mem_sz = size;
922
923 tmp_v_addr = mac_control->stats_mem;
d44570e4 924 mac_control->stats_info = (struct stat_block *)tmp_v_addr;
1da177e4 925 memset(tmp_v_addr, 0, size);
9e39f7c5 926 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n", dev->name,
d44570e4 927 (unsigned long long)tmp_p_addr);
491976b2 928 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
929 return SUCCESS;
930}
931
20346722
K
932/**
933 * free_shared_mem - Free the allocated Memory
1da177e4
LT
934 * @nic: Device private variable.
935 * Description: This function is to free all memory locations allocated by
936 * the init_shared_mem() function and return it to the kernel.
937 */
938
939static void free_shared_mem(struct s2io_nic *nic)
940{
941 int i, j, blk_cnt, size;
942 void *tmp_v_addr;
943 dma_addr_t tmp_p_addr;
1da177e4 944 int lst_size, lst_per_page;
8910b49f 945 struct net_device *dev;
491976b2 946 int page_num = 0;
ffb5df6c
JP
947 struct config_param *config;
948 struct mac_info *mac_control;
949 struct stat_block *stats;
950 struct swStat *swstats;
1da177e4
LT
951
952 if (!nic)
953 return;
954
8910b49f
MG
955 dev = nic->dev;
956
1da177e4 957 config = &nic->config;
ffb5df6c
JP
958 mac_control = &nic->mac_control;
959 stats = mac_control->stats_info;
960 swstats = &stats->sw_stat;
1da177e4 961
d44570e4 962 lst_size = sizeof(struct TxD) * config->max_txds;
1da177e4
LT
963 lst_per_page = PAGE_SIZE / lst_size;
964
965 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
966 struct fifo_info *fifo = &mac_control->fifos[i];
967 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
968
969 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
1da177e4
LT
970 for (j = 0; j < page_num; j++) {
971 int mem_blks = (j * lst_per_page);
13d866a9
JP
972 struct list_info_hold *fli;
973
974 if (!fifo->list_info)
6aa20a22 975 return;
13d866a9
JP
976
977 fli = &fifo->list_info[mem_blks];
978 if (!fli->list_virt_addr)
1da177e4
LT
979 break;
980 pci_free_consistent(nic->pdev, PAGE_SIZE,
13d866a9
JP
981 fli->list_virt_addr,
982 fli->list_phy_addr);
ffb5df6c 983 swstats->mem_freed += PAGE_SIZE;
1da177e4 984 }
776bd20f 985 /* If we got a zero DMA address during allocation,
986 * free the page now
987 */
988 if (mac_control->zerodma_virt_addr) {
989 pci_free_consistent(nic->pdev, PAGE_SIZE,
990 mac_control->zerodma_virt_addr,
991 (dma_addr_t)0);
6aa20a22 992 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
993 "%s: Freeing TxDL with zero DMA address. "
994 "Virtual address %p\n",
995 dev->name, mac_control->zerodma_virt_addr);
ffb5df6c 996 swstats->mem_freed += PAGE_SIZE;
776bd20f 997 }
13d866a9 998 kfree(fifo->list_info);
82c2d023 999 swstats->mem_freed += tx_cfg->fifo_len *
d44570e4 1000 sizeof(struct list_info_hold);
1da177e4
LT
1001 }
1002
1da177e4 1003 size = SIZE_OF_BLOCK;
1da177e4 1004 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1005 struct ring_info *ring = &mac_control->rings[i];
1006
1007 blk_cnt = ring->block_count;
1da177e4 1008 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
1009 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1010 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1da177e4
LT
1011 if (tmp_v_addr == NULL)
1012 break;
1013 pci_free_consistent(nic->pdev, size,
1014 tmp_v_addr, tmp_p_addr);
ffb5df6c 1015 swstats->mem_freed += size;
13d866a9 1016 kfree(ring->rx_blocks[j].rxds);
ffb5df6c
JP
1017 swstats->mem_freed += sizeof(struct rxd_info) *
1018 rxd_count[nic->rxd_mode];
1da177e4
LT
1019 }
1020 }
1021
6d517a27 1022 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
1023 /* Freeing buffer storage addresses in 2BUFF mode. */
1024 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1025 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1026 struct ring_info *ring = &mac_control->rings[i];
1027
1028 blk_cnt = rx_cfg->num_rxd /
1029 (rxd_count[nic->rxd_mode] + 1);
da6971d8
AR
1030 for (j = 0; j < blk_cnt; j++) {
1031 int k = 0;
13d866a9 1032 if (!ring->ba[j])
da6971d8
AR
1033 continue;
1034 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 1035 struct buffAdd *ba = &ring->ba[j][k];
da6971d8 1036 kfree(ba->ba_0_org);
ffb5df6c
JP
1037 swstats->mem_freed +=
1038 BUF0_LEN + ALIGN_SIZE;
da6971d8 1039 kfree(ba->ba_1_org);
ffb5df6c
JP
1040 swstats->mem_freed +=
1041 BUF1_LEN + ALIGN_SIZE;
da6971d8
AR
1042 k++;
1043 }
13d866a9 1044 kfree(ring->ba[j]);
ffb5df6c
JP
1045 swstats->mem_freed += sizeof(struct buffAdd) *
1046 (rxd_count[nic->rxd_mode] + 1);
1da177e4 1047 }
13d866a9 1048 kfree(ring->ba);
ffb5df6c
JP
1049 swstats->mem_freed += sizeof(struct buffAdd *) *
1050 blk_cnt;
1da177e4 1051 }
1da177e4 1052 }
1da177e4 1053
2fda096d 1054 for (i = 0; i < nic->config.tx_fifo_num; i++) {
13d866a9
JP
1055 struct fifo_info *fifo = &mac_control->fifos[i];
1056 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1057
1058 if (fifo->ufo_in_band_v) {
ffb5df6c
JP
1059 swstats->mem_freed += tx_cfg->fifo_len *
1060 sizeof(u64);
13d866a9 1061 kfree(fifo->ufo_in_band_v);
2fda096d
SR
1062 }
1063 }
1064
1da177e4 1065 if (mac_control->stats_mem) {
ffb5df6c 1066 swstats->mem_freed += mac_control->stats_mem_sz;
1da177e4
LT
1067 pci_free_consistent(nic->pdev,
1068 mac_control->stats_mem_sz,
1069 mac_control->stats_mem,
1070 mac_control->stats_mem_phy);
491976b2 1071 }
1da177e4
LT
1072}
1073
541ae68f
K
1074/**
1075 * s2io_verify_pci_mode -
1076 */
1077
1ee6dd77 1078static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 1079{
1ee6dd77 1080 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1081 register u64 val64 = 0;
1082 int mode;
1083
1084 val64 = readq(&bar0->pci_mode);
1085 mode = (u8)GET_PCI_MODE(val64);
1086
d44570e4 1087 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f
K
1088 return -1; /* Unknown PCI mode */
1089 return mode;
1090}
1091
c92ca04b
AR
1092#define NEC_VENID 0x1033
1093#define NEC_DEVID 0x0125
1094static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1095{
1096 struct pci_dev *tdev = NULL;
26d36b64
AC
1097 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1098 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
7ad62dbc 1099 if (tdev->bus == s2io_pdev->bus->parent) {
26d36b64 1100 pci_dev_put(tdev);
c92ca04b 1101 return 1;
7ad62dbc 1102 }
c92ca04b
AR
1103 }
1104 }
1105 return 0;
1106}
541ae68f 1107
7b32a312 1108static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
1109/**
1110 * s2io_print_pci_mode -
1111 */
1ee6dd77 1112static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 1113{
1ee6dd77 1114 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1115 register u64 val64 = 0;
1116 int mode;
1117 struct config_param *config = &nic->config;
9e39f7c5 1118 const char *pcimode;
541ae68f
K
1119
1120 val64 = readq(&bar0->pci_mode);
1121 mode = (u8)GET_PCI_MODE(val64);
1122
d44570e4 1123 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f
K
1124 return -1; /* Unknown PCI mode */
1125
c92ca04b
AR
1126 config->bus_speed = bus_speed[mode];
1127
1128 if (s2io_on_nec_bridge(nic->pdev)) {
1129 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
d44570e4 1130 nic->dev->name);
c92ca04b
AR
1131 return mode;
1132 }
1133
d44570e4
JP
1134 switch (mode) {
1135 case PCI_MODE_PCI_33:
9e39f7c5 1136 pcimode = "33MHz PCI bus";
d44570e4
JP
1137 break;
1138 case PCI_MODE_PCI_66:
9e39f7c5 1139 pcimode = "66MHz PCI bus";
d44570e4
JP
1140 break;
1141 case PCI_MODE_PCIX_M1_66:
9e39f7c5 1142 pcimode = "66MHz PCIX(M1) bus";
d44570e4
JP
1143 break;
1144 case PCI_MODE_PCIX_M1_100:
9e39f7c5 1145 pcimode = "100MHz PCIX(M1) bus";
d44570e4
JP
1146 break;
1147 case PCI_MODE_PCIX_M1_133:
9e39f7c5 1148 pcimode = "133MHz PCIX(M1) bus";
d44570e4
JP
1149 break;
1150 case PCI_MODE_PCIX_M2_66:
9e39f7c5 1151 pcimode = "133MHz PCIX(M2) bus";
d44570e4
JP
1152 break;
1153 case PCI_MODE_PCIX_M2_100:
9e39f7c5 1154 pcimode = "200MHz PCIX(M2) bus";
d44570e4
JP
1155 break;
1156 case PCI_MODE_PCIX_M2_133:
9e39f7c5 1157 pcimode = "266MHz PCIX(M2) bus";
d44570e4
JP
1158 break;
1159 default:
9e39f7c5
JP
1160 pcimode = "unsupported bus!";
1161 mode = -1;
541ae68f
K
1162 }
1163
9e39f7c5
JP
1164 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1165 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1166
541ae68f
K
1167 return mode;
1168}
1169
b7c5678f
RV
1170/**
1171 * init_tti - Initialization transmit traffic interrupt scheme
1172 * @nic: device private variable
1173 * @link: link status (UP/DOWN) used to enable/disable continuous
1174 * transmit interrupts
1175 * Description: The function configures transmit traffic interrupts
1176 * Return Value: SUCCESS on success and
1177 * '-1' on failure
1178 */
1179
0d66afe7 1180static int init_tti(struct s2io_nic *nic, int link)
b7c5678f
RV
1181{
1182 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1183 register u64 val64 = 0;
1184 int i;
ffb5df6c 1185 struct config_param *config = &nic->config;
b7c5678f
RV
1186
1187 for (i = 0; i < config->tx_fifo_num; i++) {
1188 /*
1189 * TTI Initialization. Default Tx timer gets us about
1190 * 250 interrupts per sec. Continuous interrupts are enabled
1191 * by default.
1192 */
1193 if (nic->device_type == XFRAME_II_DEVICE) {
1194 int count = (nic->config.bus_speed * 125)/2;
1195 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1196 } else
1197 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1198
1199 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
d44570e4
JP
1200 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1201 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1202 TTI_DATA1_MEM_TX_TIMER_AC_EN;
ac731ab6
SH
1203 if (i == 0)
1204 if (use_continuous_tx_intrs && (link == LINK_UP))
1205 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
b7c5678f
RV
1206 writeq(val64, &bar0->tti_data1_mem);
1207
ac731ab6
SH
1208 if (nic->config.intr_type == MSI_X) {
1209 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1210 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1211 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1212 TTI_DATA2_MEM_TX_UFC_D(0x300);
1213 } else {
1214 if ((nic->config.tx_steering_type ==
d44570e4
JP
1215 TX_DEFAULT_STEERING) &&
1216 (config->tx_fifo_num > 1) &&
1217 (i >= nic->udp_fifo_idx) &&
1218 (i < (nic->udp_fifo_idx +
1219 nic->total_udp_fifos)))
ac731ab6
SH
1220 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1221 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1222 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1223 TTI_DATA2_MEM_TX_UFC_D(0x120);
1224 else
1225 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1226 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1227 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1228 TTI_DATA2_MEM_TX_UFC_D(0x80);
1229 }
b7c5678f
RV
1230
1231 writeq(val64, &bar0->tti_data2_mem);
1232
d44570e4
JP
1233 val64 = TTI_CMD_MEM_WE |
1234 TTI_CMD_MEM_STROBE_NEW_CMD |
1235 TTI_CMD_MEM_OFFSET(i);
b7c5678f
RV
1236 writeq(val64, &bar0->tti_command_mem);
1237
1238 if (wait_for_cmd_complete(&bar0->tti_command_mem,
d44570e4
JP
1239 TTI_CMD_MEM_STROBE_NEW_CMD,
1240 S2IO_BIT_RESET) != SUCCESS)
b7c5678f
RV
1241 return FAILURE;
1242 }
1243
1244 return SUCCESS;
1245}
1246
20346722
K
1247/**
1248 * init_nic - Initialization of hardware
b7c5678f 1249 * @nic: device private variable
20346722
K
1250 * Description: The function sequentially configures every block
1251 * of the H/W from their reset values.
1252 * Return Value: SUCCESS on success and
1da177e4
LT
1253 * '-1' on failure (endian settings incorrect).
1254 */
1255
1256static int init_nic(struct s2io_nic *nic)
1257{
1ee6dd77 1258 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1259 struct net_device *dev = nic->dev;
1260 register u64 val64 = 0;
1261 void __iomem *add;
1262 u32 time;
1263 int i, j;
c92ca04b 1264 int dtx_cnt = 0;
1da177e4 1265 unsigned long long mem_share;
20346722 1266 int mem_size;
ffb5df6c
JP
1267 struct config_param *config = &nic->config;
1268 struct mac_info *mac_control = &nic->mac_control;
1da177e4 1269
5e25b9dd 1270 /* to set the swapper controle on the card */
d44570e4
JP
1271 if (s2io_set_swapper(nic)) {
1272 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
9f74ffde 1273 return -EIO;
1da177e4
LT
1274 }
1275
541ae68f
K
1276 /*
1277 * Herc requires EOI to be removed from reset before XGXS, so..
1278 */
1279 if (nic->device_type & XFRAME_II_DEVICE) {
1280 val64 = 0xA500000000ULL;
1281 writeq(val64, &bar0->sw_reset);
1282 msleep(500);
1283 val64 = readq(&bar0->sw_reset);
1284 }
1285
1da177e4
LT
1286 /* Remove XGXS from reset state */
1287 val64 = 0;
1288 writeq(val64, &bar0->sw_reset);
1da177e4 1289 msleep(500);
20346722 1290 val64 = readq(&bar0->sw_reset);
1da177e4 1291
7962024e
SH
1292 /* Ensure that it's safe to access registers by checking
1293 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1294 */
1295 if (nic->device_type == XFRAME_II_DEVICE) {
1296 for (i = 0; i < 50; i++) {
1297 val64 = readq(&bar0->adapter_status);
1298 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1299 break;
1300 msleep(10);
1301 }
1302 if (i == 50)
1303 return -ENODEV;
1304 }
1305
1da177e4
LT
1306 /* Enable Receiving broadcasts */
1307 add = &bar0->mac_cfg;
1308 val64 = readq(&bar0->mac_cfg);
1309 val64 |= MAC_RMAC_BCAST_ENABLE;
1310 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 1311 writel((u32)val64, add);
1da177e4
LT
1312 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1313 writel((u32) (val64 >> 32), (add + 4));
1314
1315 /* Read registers in all blocks */
1316 val64 = readq(&bar0->mac_int_mask);
1317 val64 = readq(&bar0->mc_int_mask);
1318 val64 = readq(&bar0->xgxs_int_mask);
1319
1320 /* Set MTU */
1321 val64 = dev->mtu;
1322 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1323
541ae68f
K
1324 if (nic->device_type & XFRAME_II_DEVICE) {
1325 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1326 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1327 &bar0->dtx_control, UF);
541ae68f
K
1328 if (dtx_cnt & 0x1)
1329 msleep(1); /* Necessary!! */
1da177e4
LT
1330 dtx_cnt++;
1331 }
541ae68f 1332 } else {
c92ca04b
AR
1333 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1334 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1335 &bar0->dtx_control, UF);
1336 val64 = readq(&bar0->dtx_control);
1337 dtx_cnt++;
1da177e4
LT
1338 }
1339 }
1340
1341 /* Tx DMA Initialization */
1342 val64 = 0;
1343 writeq(val64, &bar0->tx_fifo_partition_0);
1344 writeq(val64, &bar0->tx_fifo_partition_1);
1345 writeq(val64, &bar0->tx_fifo_partition_2);
1346 writeq(val64, &bar0->tx_fifo_partition_3);
1347
1da177e4 1348 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
1349 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1350
1351 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1352 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1da177e4
LT
1353
1354 if (i == (config->tx_fifo_num - 1)) {
1355 if (i % 2 == 0)
1356 i++;
1357 }
1358
1359 switch (i) {
1360 case 1:
1361 writeq(val64, &bar0->tx_fifo_partition_0);
1362 val64 = 0;
b7c5678f 1363 j = 0;
1da177e4
LT
1364 break;
1365 case 3:
1366 writeq(val64, &bar0->tx_fifo_partition_1);
1367 val64 = 0;
b7c5678f 1368 j = 0;
1da177e4
LT
1369 break;
1370 case 5:
1371 writeq(val64, &bar0->tx_fifo_partition_2);
1372 val64 = 0;
b7c5678f 1373 j = 0;
1da177e4
LT
1374 break;
1375 case 7:
1376 writeq(val64, &bar0->tx_fifo_partition_3);
b7c5678f
RV
1377 val64 = 0;
1378 j = 0;
1379 break;
1380 default:
1381 j++;
1da177e4
LT
1382 break;
1383 }
1384 }
1385
5e25b9dd
K
1386 /*
1387 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1388 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1389 */
d44570e4 1390 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
5e25b9dd
K
1391 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1392
1da177e4
LT
1393 val64 = readq(&bar0->tx_fifo_partition_0);
1394 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
d44570e4 1395 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1da177e4 1396
20346722
K
1397 /*
1398 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1399 * integrity checking.
1400 */
1401 val64 = readq(&bar0->tx_pa_cfg);
d44570e4
JP
1402 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1403 TX_PA_CFG_IGNORE_SNAP_OUI |
1404 TX_PA_CFG_IGNORE_LLC_CTRL |
1405 TX_PA_CFG_IGNORE_L2_ERR;
1da177e4
LT
1406 writeq(val64, &bar0->tx_pa_cfg);
1407
1408 /* Rx DMA intialization. */
1409 val64 = 0;
1410 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1411 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1412
1413 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1da177e4
LT
1414 }
1415 writeq(val64, &bar0->rx_queue_priority);
1416
20346722
K
1417 /*
1418 * Allocating equal share of memory to all the
1da177e4
LT
1419 * configured Rings.
1420 */
1421 val64 = 0;
541ae68f
K
1422 if (nic->device_type & XFRAME_II_DEVICE)
1423 mem_size = 32;
1424 else
1425 mem_size = 64;
1426
1da177e4
LT
1427 for (i = 0; i < config->rx_ring_num; i++) {
1428 switch (i) {
1429 case 0:
20346722
K
1430 mem_share = (mem_size / config->rx_ring_num +
1431 mem_size % config->rx_ring_num);
1da177e4
LT
1432 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1433 continue;
1434 case 1:
20346722 1435 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1436 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1437 continue;
1438 case 2:
20346722 1439 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1440 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1441 continue;
1442 case 3:
20346722 1443 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1444 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1445 continue;
1446 case 4:
20346722 1447 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1448 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1449 continue;
1450 case 5:
20346722 1451 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1452 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1453 continue;
1454 case 6:
20346722 1455 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1456 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1457 continue;
1458 case 7:
20346722 1459 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1460 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1461 continue;
1462 }
1463 }
1464 writeq(val64, &bar0->rx_queue_cfg);
1465
20346722 1466 /*
5e25b9dd 1467 * Filling Tx round robin registers
b7c5678f 1468 * as per the number of FIFOs for equal scheduling priority
1da177e4 1469 */
5e25b9dd
K
1470 switch (config->tx_fifo_num) {
1471 case 1:
b7c5678f 1472 val64 = 0x0;
5e25b9dd
K
1473 writeq(val64, &bar0->tx_w_round_robin_0);
1474 writeq(val64, &bar0->tx_w_round_robin_1);
1475 writeq(val64, &bar0->tx_w_round_robin_2);
1476 writeq(val64, &bar0->tx_w_round_robin_3);
1477 writeq(val64, &bar0->tx_w_round_robin_4);
1478 break;
1479 case 2:
b7c5678f 1480 val64 = 0x0001000100010001ULL;
5e25b9dd 1481 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1482 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1483 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1484 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1485 val64 = 0x0001000100000000ULL;
5e25b9dd
K
1486 writeq(val64, &bar0->tx_w_round_robin_4);
1487 break;
1488 case 3:
b7c5678f 1489 val64 = 0x0001020001020001ULL;
5e25b9dd 1490 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1491 val64 = 0x0200010200010200ULL;
5e25b9dd 1492 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1493 val64 = 0x0102000102000102ULL;
5e25b9dd 1494 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1495 val64 = 0x0001020001020001ULL;
5e25b9dd 1496 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1497 val64 = 0x0200010200000000ULL;
5e25b9dd
K
1498 writeq(val64, &bar0->tx_w_round_robin_4);
1499 break;
1500 case 4:
b7c5678f 1501 val64 = 0x0001020300010203ULL;
5e25b9dd 1502 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1503 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1504 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1505 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1506 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1507 writeq(val64, &bar0->tx_w_round_robin_4);
1508 break;
1509 case 5:
b7c5678f 1510 val64 = 0x0001020304000102ULL;
5e25b9dd 1511 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1512 val64 = 0x0304000102030400ULL;
5e25b9dd 1513 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1514 val64 = 0x0102030400010203ULL;
5e25b9dd 1515 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1516 val64 = 0x0400010203040001ULL;
5e25b9dd 1517 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1518 val64 = 0x0203040000000000ULL;
5e25b9dd
K
1519 writeq(val64, &bar0->tx_w_round_robin_4);
1520 break;
1521 case 6:
b7c5678f 1522 val64 = 0x0001020304050001ULL;
5e25b9dd 1523 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1524 val64 = 0x0203040500010203ULL;
5e25b9dd 1525 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1526 val64 = 0x0405000102030405ULL;
5e25b9dd 1527 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1528 val64 = 0x0001020304050001ULL;
5e25b9dd 1529 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1530 val64 = 0x0203040500000000ULL;
5e25b9dd
K
1531 writeq(val64, &bar0->tx_w_round_robin_4);
1532 break;
1533 case 7:
b7c5678f 1534 val64 = 0x0001020304050600ULL;
5e25b9dd 1535 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1536 val64 = 0x0102030405060001ULL;
5e25b9dd 1537 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1538 val64 = 0x0203040506000102ULL;
5e25b9dd 1539 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1540 val64 = 0x0304050600010203ULL;
5e25b9dd 1541 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1542 val64 = 0x0405060000000000ULL;
5e25b9dd
K
1543 writeq(val64, &bar0->tx_w_round_robin_4);
1544 break;
1545 case 8:
b7c5678f 1546 val64 = 0x0001020304050607ULL;
5e25b9dd 1547 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1548 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1549 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1550 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1551 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1552 writeq(val64, &bar0->tx_w_round_robin_4);
1553 break;
1554 }
1555
b41477f3 1556 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1557 val64 = readq(&bar0->tx_fifo_partition_0);
1558 val64 |= (TX_FIFO_PARTITION_EN);
1559 writeq(val64, &bar0->tx_fifo_partition_0);
1560
5e25b9dd 1561 /* Filling the Rx round robin registers as per the
0425b46a
SH
1562 * number of Rings and steering based on QoS with
1563 * equal priority.
1564 */
5e25b9dd
K
1565 switch (config->rx_ring_num) {
1566 case 1:
0425b46a
SH
1567 val64 = 0x0;
1568 writeq(val64, &bar0->rx_w_round_robin_0);
1569 writeq(val64, &bar0->rx_w_round_robin_1);
1570 writeq(val64, &bar0->rx_w_round_robin_2);
1571 writeq(val64, &bar0->rx_w_round_robin_3);
1572 writeq(val64, &bar0->rx_w_round_robin_4);
1573
5e25b9dd
K
1574 val64 = 0x8080808080808080ULL;
1575 writeq(val64, &bar0->rts_qos_steering);
1576 break;
1577 case 2:
0425b46a 1578 val64 = 0x0001000100010001ULL;
5e25b9dd 1579 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1580 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1581 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1582 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1583 val64 = 0x0001000100000000ULL;
5e25b9dd
K
1584 writeq(val64, &bar0->rx_w_round_robin_4);
1585
1586 val64 = 0x8080808040404040ULL;
1587 writeq(val64, &bar0->rts_qos_steering);
1588 break;
1589 case 3:
0425b46a 1590 val64 = 0x0001020001020001ULL;
5e25b9dd 1591 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1592 val64 = 0x0200010200010200ULL;
5e25b9dd 1593 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1594 val64 = 0x0102000102000102ULL;
5e25b9dd 1595 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1596 val64 = 0x0001020001020001ULL;
5e25b9dd 1597 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1598 val64 = 0x0200010200000000ULL;
5e25b9dd
K
1599 writeq(val64, &bar0->rx_w_round_robin_4);
1600
1601 val64 = 0x8080804040402020ULL;
1602 writeq(val64, &bar0->rts_qos_steering);
1603 break;
1604 case 4:
0425b46a 1605 val64 = 0x0001020300010203ULL;
5e25b9dd 1606 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1607 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1608 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1609 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1610 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1611 writeq(val64, &bar0->rx_w_round_robin_4);
1612
1613 val64 = 0x8080404020201010ULL;
1614 writeq(val64, &bar0->rts_qos_steering);
1615 break;
1616 case 5:
0425b46a 1617 val64 = 0x0001020304000102ULL;
5e25b9dd 1618 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1619 val64 = 0x0304000102030400ULL;
5e25b9dd 1620 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1621 val64 = 0x0102030400010203ULL;
5e25b9dd 1622 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1623 val64 = 0x0400010203040001ULL;
5e25b9dd 1624 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1625 val64 = 0x0203040000000000ULL;
5e25b9dd
K
1626 writeq(val64, &bar0->rx_w_round_robin_4);
1627
1628 val64 = 0x8080404020201008ULL;
1629 writeq(val64, &bar0->rts_qos_steering);
1630 break;
1631 case 6:
0425b46a 1632 val64 = 0x0001020304050001ULL;
5e25b9dd 1633 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1634 val64 = 0x0203040500010203ULL;
5e25b9dd 1635 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1636 val64 = 0x0405000102030405ULL;
5e25b9dd 1637 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1638 val64 = 0x0001020304050001ULL;
5e25b9dd 1639 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1640 val64 = 0x0203040500000000ULL;
5e25b9dd
K
1641 writeq(val64, &bar0->rx_w_round_robin_4);
1642
1643 val64 = 0x8080404020100804ULL;
1644 writeq(val64, &bar0->rts_qos_steering);
1645 break;
1646 case 7:
0425b46a 1647 val64 = 0x0001020304050600ULL;
5e25b9dd 1648 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1649 val64 = 0x0102030405060001ULL;
5e25b9dd 1650 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1651 val64 = 0x0203040506000102ULL;
5e25b9dd 1652 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1653 val64 = 0x0304050600010203ULL;
5e25b9dd 1654 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1655 val64 = 0x0405060000000000ULL;
5e25b9dd
K
1656 writeq(val64, &bar0->rx_w_round_robin_4);
1657
1658 val64 = 0x8080402010080402ULL;
1659 writeq(val64, &bar0->rts_qos_steering);
1660 break;
1661 case 8:
0425b46a 1662 val64 = 0x0001020304050607ULL;
5e25b9dd 1663 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1664 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1665 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1666 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1667 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1668 writeq(val64, &bar0->rx_w_round_robin_4);
1669
1670 val64 = 0x8040201008040201ULL;
1671 writeq(val64, &bar0->rts_qos_steering);
1672 break;
1673 }
1da177e4
LT
1674
1675 /* UDP Fix */
1676 val64 = 0;
20346722 1677 for (i = 0; i < 8; i++)
1da177e4
LT
1678 writeq(val64, &bar0->rts_frm_len_n[i]);
1679
5e25b9dd
K
1680 /* Set the default rts frame length for the rings configured */
1681 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1682 for (i = 0 ; i < config->rx_ring_num ; i++)
1683 writeq(val64, &bar0->rts_frm_len_n[i]);
1684
1685 /* Set the frame length for the configured rings
1686 * desired by the user
1687 */
1688 for (i = 0; i < config->rx_ring_num; i++) {
1689 /* If rts_frm_len[i] == 0 then it is assumed that user not
1690 * specified frame length steering.
1691 * If the user provides the frame length then program
1692 * the rts_frm_len register for those values or else
1693 * leave it as it is.
1694 */
1695 if (rts_frm_len[i] != 0) {
1696 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
d44570e4 1697 &bar0->rts_frm_len_n[i]);
5e25b9dd
K
1698 }
1699 }
8a4bdbaa 1700
9fc93a41
SS
1701 /* Disable differentiated services steering logic */
1702 for (i = 0; i < 64; i++) {
1703 if (rts_ds_steer(nic, i, 0) == FAILURE) {
9e39f7c5
JP
1704 DBG_PRINT(ERR_DBG,
1705 "%s: rts_ds_steer failed on codepoint %d\n",
1706 dev->name, i);
9f74ffde 1707 return -ENODEV;
9fc93a41
SS
1708 }
1709 }
1710
20346722 1711 /* Program statistics memory */
1da177e4 1712 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1713
541ae68f
K
1714 if (nic->device_type == XFRAME_II_DEVICE) {
1715 val64 = STAT_BC(0x320);
1716 writeq(val64, &bar0->stat_byte_cnt);
1717 }
1718
20346722 1719 /*
1da177e4
LT
1720 * Initializing the sampling rate for the device to calculate the
1721 * bandwidth utilization.
1722 */
1723 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
d44570e4 1724 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1da177e4
LT
1725 writeq(val64, &bar0->mac_link_util);
1726
20346722
K
1727 /*
1728 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1729 * Scheme.
1730 */
1da177e4 1731
b7c5678f
RV
1732 /* Initialize TTI */
1733 if (SUCCESS != init_tti(nic, nic->last_link_state))
1734 return -ENODEV;
1da177e4 1735
8a4bdbaa
SS
1736 /* RTI Initialization */
1737 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1738 /*
8a4bdbaa
SS
1739 * Programmed to generate Apprx 500 Intrs per
1740 * second
1741 */
1742 int count = (nic->config.bus_speed * 125)/4;
1743 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1744 } else
1745 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1746 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
d44570e4
JP
1747 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1748 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1749 RTI_DATA1_MEM_RX_TIMER_AC_EN;
8a4bdbaa
SS
1750
1751 writeq(val64, &bar0->rti_data1_mem);
1752
1753 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1754 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1755 if (nic->config.intr_type == MSI_X)
d44570e4
JP
1756 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1757 RTI_DATA2_MEM_RX_UFC_D(0x40));
8a4bdbaa 1758 else
d44570e4
JP
1759 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1760 RTI_DATA2_MEM_RX_UFC_D(0x80));
8a4bdbaa 1761 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1762
8a4bdbaa 1763 for (i = 0; i < config->rx_ring_num; i++) {
d44570e4
JP
1764 val64 = RTI_CMD_MEM_WE |
1765 RTI_CMD_MEM_STROBE_NEW_CMD |
1766 RTI_CMD_MEM_OFFSET(i);
8a4bdbaa 1767 writeq(val64, &bar0->rti_command_mem);
1da177e4 1768
8a4bdbaa
SS
1769 /*
1770 * Once the operation completes, the Strobe bit of the
1771 * command register will be reset. We poll for this
1772 * particular condition. We wait for a maximum of 500ms
1773 * for the operation to complete, if it's not complete
1774 * by then we return error.
1775 */
1776 time = 0;
f957bcf0 1777 while (true) {
8a4bdbaa
SS
1778 val64 = readq(&bar0->rti_command_mem);
1779 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1780 break;
b6e3f982 1781
8a4bdbaa 1782 if (time > 10) {
9e39f7c5 1783 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
8a4bdbaa 1784 dev->name);
9f74ffde 1785 return -ENODEV;
b6e3f982 1786 }
8a4bdbaa
SS
1787 time++;
1788 msleep(50);
1da177e4 1789 }
1da177e4
LT
1790 }
1791
20346722
K
1792 /*
1793 * Initializing proper values as Pause threshold into all
1da177e4
LT
1794 * the 8 Queues on Rx side.
1795 */
1796 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1797 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1798
1799 /* Disable RMAC PAD STRIPPING */
509a2671 1800 add = &bar0->mac_cfg;
1da177e4
LT
1801 val64 = readq(&bar0->mac_cfg);
1802 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1803 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1804 writel((u32) (val64), add);
1805 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806 writel((u32) (val64 >> 32), (add + 4));
1807 val64 = readq(&bar0->mac_cfg);
1808
7d3d0439
RA
1809 /* Enable FCS stripping by adapter */
1810 add = &bar0->mac_cfg;
1811 val64 = readq(&bar0->mac_cfg);
1812 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1813 if (nic->device_type == XFRAME_II_DEVICE)
1814 writeq(val64, &bar0->mac_cfg);
1815 else {
1816 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1817 writel((u32) (val64), add);
1818 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1819 writel((u32) (val64 >> 32), (add + 4));
1820 }
1821
20346722
K
1822 /*
1823 * Set the time value to be inserted in the pause frame
1da177e4
LT
1824 * generated by xena.
1825 */
1826 val64 = readq(&bar0->rmac_pause_cfg);
1827 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1828 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1829 writeq(val64, &bar0->rmac_pause_cfg);
1830
20346722 1831 /*
1da177e4
LT
1832 * Set the Threshold Limit for Generating the pause frame
1833 * If the amount of data in any Queue exceeds ratio of
1834 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1835 * pause frame is generated
1836 */
1837 val64 = 0;
1838 for (i = 0; i < 4; i++) {
d44570e4
JP
1839 val64 |= (((u64)0xFF00 |
1840 nic->mac_control.mc_pause_threshold_q0q3)
1841 << (i * 2 * 8));
1da177e4
LT
1842 }
1843 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1844
1845 val64 = 0;
1846 for (i = 0; i < 4; i++) {
d44570e4
JP
1847 val64 |= (((u64)0xFF00 |
1848 nic->mac_control.mc_pause_threshold_q4q7)
1849 << (i * 2 * 8));
1da177e4
LT
1850 }
1851 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1852
20346722
K
1853 /*
1854 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1855 * exceeded the limit pointed by shared_splits
1856 */
1857 val64 = readq(&bar0->pic_control);
1858 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1859 writeq(val64, &bar0->pic_control);
1860
863c11a9
AR
1861 if (nic->config.bus_speed == 266) {
1862 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1863 writeq(0x0, &bar0->read_retry_delay);
1864 writeq(0x0, &bar0->write_retry_delay);
1865 }
1866
541ae68f
K
1867 /*
1868 * Programming the Herc to split every write transaction
1869 * that does not start on an ADB to reduce disconnects.
1870 */
1871 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1872 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1873 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1874 writeq(val64, &bar0->misc_control);
1875 val64 = readq(&bar0->pic_control2);
b7b5a128 1876 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1877 writeq(val64, &bar0->pic_control2);
541ae68f 1878 }
c92ca04b
AR
1879 if (strstr(nic->product_name, "CX4")) {
1880 val64 = TMAC_AVG_IPG(0x17);
1881 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1882 }
1883
1da177e4
LT
1884 return SUCCESS;
1885}
a371a07d
K
1886#define LINK_UP_DOWN_INTERRUPT 1
1887#define MAC_RMAC_ERR_TIMER 2
1888
1ee6dd77 1889static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d
K
1890{
1891 if (nic->device_type == XFRAME_II_DEVICE)
1892 return LINK_UP_DOWN_INTERRUPT;
1893 else
1894 return MAC_RMAC_ERR_TIMER;
1895}
8116f3cf 1896
9caab458
SS
1897/**
1898 * do_s2io_write_bits - update alarm bits in alarm register
1899 * @value: alarm bits
1900 * @flag: interrupt status
1901 * @addr: address value
1902 * Description: update alarm bits in alarm register
1903 * Return Value:
1904 * NONE.
1905 */
1906static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1907{
1908 u64 temp64;
1909
1910 temp64 = readq(addr);
1911
d44570e4
JP
1912 if (flag == ENABLE_INTRS)
1913 temp64 &= ~((u64)value);
9caab458 1914 else
d44570e4 1915 temp64 |= ((u64)value);
9caab458
SS
1916 writeq(temp64, addr);
1917}
1da177e4 1918
43b7c451 1919static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1920{
1921 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1922 register u64 gen_int_mask = 0;
01e16faa 1923 u64 interruptible;
9caab458 1924
01e16faa 1925 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
9caab458 1926 if (mask & TX_DMA_INTR) {
9caab458
SS
1927 gen_int_mask |= TXDMA_INT_M;
1928
1929 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
d44570e4
JP
1930 TXDMA_PCC_INT | TXDMA_TTI_INT |
1931 TXDMA_LSO_INT | TXDMA_TPA_INT |
1932 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
9caab458
SS
1933
1934 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
d44570e4
JP
1935 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1936 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1937 &bar0->pfc_err_mask);
9caab458
SS
1938
1939 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
d44570e4
JP
1940 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1941 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
9caab458
SS
1942
1943 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
d44570e4
JP
1944 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1945 PCC_N_SERR | PCC_6_COF_OV_ERR |
1946 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1947 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1948 PCC_TXB_ECC_SG_ERR,
1949 flag, &bar0->pcc_err_mask);
9caab458
SS
1950
1951 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
d44570e4 1952 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
9caab458
SS
1953
1954 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
d44570e4
JP
1955 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1956 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1957 flag, &bar0->lso_err_mask);
9caab458
SS
1958
1959 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
d44570e4 1960 flag, &bar0->tpa_err_mask);
9caab458
SS
1961
1962 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
9caab458
SS
1963 }
1964
1965 if (mask & TX_MAC_INTR) {
1966 gen_int_mask |= TXMAC_INT_M;
1967 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
d44570e4 1968 &bar0->mac_int_mask);
9caab458 1969 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
d44570e4
JP
1970 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1971 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1972 flag, &bar0->mac_tmac_err_mask);
9caab458
SS
1973 }
1974
1975 if (mask & TX_XGXS_INTR) {
1976 gen_int_mask |= TXXGXS_INT_M;
1977 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
d44570e4 1978 &bar0->xgxs_int_mask);
9caab458 1979 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
d44570e4
JP
1980 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1981 flag, &bar0->xgxs_txgxs_err_mask);
9caab458
SS
1982 }
1983
1984 if (mask & RX_DMA_INTR) {
1985 gen_int_mask |= RXDMA_INT_M;
1986 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
d44570e4
JP
1987 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1988 flag, &bar0->rxdma_int_mask);
9caab458 1989 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
d44570e4
JP
1990 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1991 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1992 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
9caab458 1993 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
d44570e4
JP
1994 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1995 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1996 &bar0->prc_pcix_err_mask);
9caab458 1997 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
d44570e4
JP
1998 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1999 &bar0->rpa_err_mask);
9caab458 2000 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
d44570e4
JP
2001 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2002 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2003 RDA_FRM_ECC_SG_ERR |
2004 RDA_MISC_ERR|RDA_PCIX_ERR,
2005 flag, &bar0->rda_err_mask);
9caab458 2006 do_s2io_write_bits(RTI_SM_ERR_ALARM |
d44570e4
JP
2007 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2008 flag, &bar0->rti_err_mask);
9caab458
SS
2009 }
2010
2011 if (mask & RX_MAC_INTR) {
2012 gen_int_mask |= RXMAC_INT_M;
2013 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
d44570e4
JP
2014 &bar0->mac_int_mask);
2015 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2016 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2017 RMAC_DOUBLE_ECC_ERR);
01e16faa
SH
2018 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2019 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2020 do_s2io_write_bits(interruptible,
d44570e4 2021 flag, &bar0->mac_rmac_err_mask);
9caab458
SS
2022 }
2023
d44570e4 2024 if (mask & RX_XGXS_INTR) {
9caab458
SS
2025 gen_int_mask |= RXXGXS_INT_M;
2026 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
d44570e4 2027 &bar0->xgxs_int_mask);
9caab458 2028 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
d44570e4 2029 &bar0->xgxs_rxgxs_err_mask);
9caab458
SS
2030 }
2031
2032 if (mask & MC_INTR) {
2033 gen_int_mask |= MC_INT_M;
d44570e4
JP
2034 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2035 flag, &bar0->mc_int_mask);
9caab458 2036 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
d44570e4
JP
2037 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2038 &bar0->mc_err_mask);
9caab458
SS
2039 }
2040 nic->general_int_mask = gen_int_mask;
2041
2042 /* Remove this line when alarm interrupts are enabled */
2043 nic->general_int_mask = 0;
2044}
d44570e4 2045
20346722
K
2046/**
2047 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
2048 * @nic: device private variable,
2049 * @mask: A mask indicating which Intr block must be modified and,
2050 * @flag: A flag indicating whether to enable or disable the Intrs.
2051 * Description: This function will either disable or enable the interrupts
20346722
K
2052 * depending on the flag argument. The mask argument can be used to
2053 * enable/disable any Intr block.
1da177e4
LT
2054 * Return Value: NONE.
2055 */
2056
2057static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2058{
1ee6dd77 2059 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
2060 register u64 temp64 = 0, intr_mask = 0;
2061
2062 intr_mask = nic->general_int_mask;
1da177e4
LT
2063
2064 /* Top level interrupt classification */
2065 /* PIC Interrupts */
9caab458 2066 if (mask & TX_PIC_INTR) {
1da177e4 2067 /* Enable PIC Intrs in the general intr mask register */
9caab458 2068 intr_mask |= TXPIC_INT_M;
1da177e4 2069 if (flag == ENABLE_INTRS) {
20346722 2070 /*
a371a07d 2071 * If Hercules adapter enable GPIO otherwise
b41477f3 2072 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
2073 * interrupts for now.
2074 * TODO
1da177e4 2075 */
a371a07d 2076 if (s2io_link_fault_indication(nic) ==
d44570e4 2077 LINK_UP_DOWN_INTERRUPT) {
9caab458 2078 do_s2io_write_bits(PIC_INT_GPIO, flag,
d44570e4 2079 &bar0->pic_int_mask);
9caab458 2080 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
d44570e4 2081 &bar0->gpio_int_mask);
9caab458 2082 } else
a371a07d 2083 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 2084 } else if (flag == DISABLE_INTRS) {
20346722
K
2085 /*
2086 * Disable PIC Intrs in the general
2087 * intr mask register
1da177e4
LT
2088 */
2089 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
2090 }
2091 }
2092
1da177e4
LT
2093 /* Tx traffic interrupts */
2094 if (mask & TX_TRAFFIC_INTR) {
9caab458 2095 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 2096 if (flag == ENABLE_INTRS) {
20346722 2097 /*
1da177e4 2098 * Enable all the Tx side interrupts
20346722 2099 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
2100 */
2101 writeq(0x0, &bar0->tx_traffic_mask);
2102 } else if (flag == DISABLE_INTRS) {
20346722
K
2103 /*
2104 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
2105 * register.
2106 */
2107 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
2108 }
2109 }
2110
2111 /* Rx traffic interrupts */
2112 if (mask & RX_TRAFFIC_INTR) {
9caab458 2113 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 2114 if (flag == ENABLE_INTRS) {
1da177e4
LT
2115 /* writing 0 Enables all 8 RX interrupt levels */
2116 writeq(0x0, &bar0->rx_traffic_mask);
2117 } else if (flag == DISABLE_INTRS) {
20346722
K
2118 /*
2119 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
2120 * register.
2121 */
2122 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
2123 }
2124 }
9caab458
SS
2125
2126 temp64 = readq(&bar0->general_int_mask);
2127 if (flag == ENABLE_INTRS)
d44570e4 2128 temp64 &= ~((u64)intr_mask);
9caab458
SS
2129 else
2130 temp64 = DISABLE_ALL_INTRS;
2131 writeq(temp64, &bar0->general_int_mask);
2132
2133 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
2134}
2135
19a60522
SS
2136/**
2137 * verify_pcc_quiescent- Checks for PCC quiescent state
2138 * Return: 1 If PCC is quiescence
2139 * 0 If PCC is not quiescence
2140 */
1ee6dd77 2141static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2142{
19a60522 2143 int ret = 0, herc;
1ee6dd77 2144 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 2145 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2146
19a60522 2147 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722 2148
f957bcf0 2149 if (flag == false) {
44c10138 2150 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2151 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2152 ret = 1;
19a60522
SS
2153 } else {
2154 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2155 ret = 1;
20346722
K
2156 }
2157 } else {
44c10138 2158 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2159 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2160 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2161 ret = 1;
5e25b9dd
K
2162 } else {
2163 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2164 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2165 ret = 1;
20346722
K
2166 }
2167 }
2168
2169 return ret;
2170}
2171/**
2172 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2173 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2174 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2175 * differs and the calling function passes the input argument flag to
2176 * indicate this.
20346722 2177 * Return: 1 If xena is quiescence
1da177e4
LT
2178 * 0 If Xena is not quiescence
2179 */
2180
1ee6dd77 2181static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2182{
19a60522 2183 int mode;
1ee6dd77 2184 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2185 u64 val64 = readq(&bar0->adapter_status);
2186 mode = s2io_verify_pci_mode(sp);
1da177e4 2187
19a60522 2188 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
9e39f7c5 2189 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
19a60522
SS
2190 return 0;
2191 }
2192 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
9e39f7c5 2193 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
19a60522
SS
2194 return 0;
2195 }
2196 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
9e39f7c5 2197 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
19a60522
SS
2198 return 0;
2199 }
2200 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
9e39f7c5 2201 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
19a60522
SS
2202 return 0;
2203 }
2204 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
9e39f7c5 2205 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
19a60522
SS
2206 return 0;
2207 }
2208 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
9e39f7c5 2209 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
19a60522
SS
2210 return 0;
2211 }
2212 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
9e39f7c5 2213 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
19a60522
SS
2214 return 0;
2215 }
2216 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
9e39f7c5 2217 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
19a60522 2218 return 0;
1da177e4
LT
2219 }
2220
19a60522
SS
2221 /*
2222 * In PCI 33 mode, the P_PLL is not used, and therefore,
2223 * the the P_PLL_LOCK bit in the adapter_status register will
2224 * not be asserted.
2225 */
2226 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
d44570e4
JP
2227 sp->device_type == XFRAME_II_DEVICE &&
2228 mode != PCI_MODE_PCI_33) {
9e39f7c5 2229 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
19a60522
SS
2230 return 0;
2231 }
2232 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
d44570e4 2233 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
9e39f7c5 2234 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
19a60522
SS
2235 return 0;
2236 }
2237 return 1;
1da177e4
LT
2238}
2239
2240/**
2241 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2242 * @sp: Pointer to device specifc structure
20346722 2243 * Description :
1da177e4
LT
2244 * New procedure to clear mac address reading problems on Alpha platforms
2245 *
2246 */
2247
d44570e4 2248static void fix_mac_address(struct s2io_nic *sp)
1da177e4 2249{
1ee6dd77 2250 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2251 u64 val64;
2252 int i = 0;
2253
2254 while (fix_mac[i] != END_SIGN) {
2255 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2256 udelay(10);
1da177e4
LT
2257 val64 = readq(&bar0->gpio_control);
2258 }
2259}
2260
2261/**
20346722 2262 * start_nic - Turns the device on
1da177e4 2263 * @nic : device private variable.
20346722
K
2264 * Description:
2265 * This function actually turns the device on. Before this function is
2266 * called,all Registers are configured from their reset states
2267 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2268 * calling this function, the device interrupts are cleared and the NIC is
2269 * literally switched on by writing into the adapter control register.
20346722 2270 * Return Value:
1da177e4
LT
2271 * SUCCESS on success and -1 on failure.
2272 */
2273
2274static int start_nic(struct s2io_nic *nic)
2275{
1ee6dd77 2276 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2277 struct net_device *dev = nic->dev;
2278 register u64 val64 = 0;
20346722 2279 u16 subid, i;
ffb5df6c
JP
2280 struct config_param *config = &nic->config;
2281 struct mac_info *mac_control = &nic->mac_control;
1da177e4
LT
2282
2283 /* PRC Initialization and configuration */
2284 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2285 struct ring_info *ring = &mac_control->rings[i];
2286
d44570e4 2287 writeq((u64)ring->rx_blocks[0].block_dma_addr,
1da177e4
LT
2288 &bar0->prc_rxd0_n[i]);
2289
2290 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2291 if (nic->rxd_mode == RXD_MODE_1)
2292 val64 |= PRC_CTRL_RC_ENABLED;
2293 else
2294 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2295 if (nic->device_type == XFRAME_II_DEVICE)
2296 val64 |= PRC_CTRL_GROUP_READS;
2297 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2298 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2299 writeq(val64, &bar0->prc_ctrl_n[i]);
2300 }
2301
da6971d8
AR
2302 if (nic->rxd_mode == RXD_MODE_3B) {
2303 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2304 val64 = readq(&bar0->rx_pa_cfg);
2305 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2306 writeq(val64, &bar0->rx_pa_cfg);
2307 }
1da177e4 2308
926930b2
SS
2309 if (vlan_tag_strip == 0) {
2310 val64 = readq(&bar0->rx_pa_cfg);
2311 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2312 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 2313 nic->vlan_strip_flag = 0;
926930b2
SS
2314 }
2315
20346722 2316 /*
1da177e4
LT
2317 * Enabling MC-RLDRAM. After enabling the device, we timeout
2318 * for around 100ms, which is approximately the time required
2319 * for the device to be ready for operation.
2320 */
2321 val64 = readq(&bar0->mc_rldram_mrs);
2322 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2323 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2324 val64 = readq(&bar0->mc_rldram_mrs);
2325
20346722 2326 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2327
2328 /* Enabling ECC Protection. */
2329 val64 = readq(&bar0->adapter_control);
2330 val64 &= ~ADAPTER_ECC_EN;
2331 writeq(val64, &bar0->adapter_control);
2332
20346722
K
2333 /*
2334 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2335 * it.
2336 */
2337 val64 = readq(&bar0->adapter_status);
19a60522 2338 if (!verify_xena_quiescence(nic)) {
9e39f7c5
JP
2339 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2340 "Adapter status reads: 0x%llx\n",
2341 dev->name, (unsigned long long)val64);
1da177e4
LT
2342 return FAILURE;
2343 }
2344
20346722 2345 /*
1da177e4 2346 * With some switches, link might be already up at this point.
20346722
K
2347 * Because of this weird behavior, when we enable laser,
2348 * we may not get link. We need to handle this. We cannot
2349 * figure out which switch is misbehaving. So we are forced to
2350 * make a global change.
1da177e4
LT
2351 */
2352
2353 /* Enabling Laser. */
2354 val64 = readq(&bar0->adapter_control);
2355 val64 |= ADAPTER_EOI_TX_ON;
2356 writeq(val64, &bar0->adapter_control);
2357
c92ca04b
AR
2358 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2359 /*
2360 * Dont see link state interrupts initally on some switches,
2361 * so directly scheduling the link state task here.
2362 */
2363 schedule_work(&nic->set_link_task);
2364 }
1da177e4
LT
2365 /* SXE-002: Initialize link and activity LED */
2366 subid = nic->pdev->subsystem_device;
541ae68f
K
2367 if (((subid & 0xFF) >= 0x07) &&
2368 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2369 val64 = readq(&bar0->gpio_control);
2370 val64 |= 0x0000800000000000ULL;
2371 writeq(val64, &bar0->gpio_control);
2372 val64 = 0x0411040400000000ULL;
509a2671 2373 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2374 }
2375
1da177e4
LT
2376 return SUCCESS;
2377}
fed5eccd
AR
2378/**
2379 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2380 */
d44570e4
JP
2381static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2382 struct TxD *txdlp, int get_off)
fed5eccd 2383{
1ee6dd77 2384 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2385 struct sk_buff *skb;
1ee6dd77 2386 struct TxD *txds;
fed5eccd
AR
2387 u16 j, frg_cnt;
2388
2389 txds = txdlp;
2fda096d 2390 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
d44570e4
JP
2391 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2392 sizeof(u64), PCI_DMA_TODEVICE);
fed5eccd
AR
2393 txds++;
2394 }
2395
d44570e4 2396 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
fed5eccd 2397 if (!skb) {
1ee6dd77 2398 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2399 return NULL;
2400 }
d44570e4
JP
2401 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2402 skb->len - skb->data_len, PCI_DMA_TODEVICE);
fed5eccd
AR
2403 frg_cnt = skb_shinfo(skb)->nr_frags;
2404 if (frg_cnt) {
2405 txds++;
2406 for (j = 0; j < frg_cnt; j++, txds++) {
2407 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2408 if (!txds->Buffer_Pointer)
2409 break;
d44570e4
JP
2410 pci_unmap_page(nic->pdev,
2411 (dma_addr_t)txds->Buffer_Pointer,
fed5eccd
AR
2412 frag->size, PCI_DMA_TODEVICE);
2413 }
2414 }
d44570e4
JP
2415 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2416 return skb;
fed5eccd 2417}
1da177e4 2418
20346722
K
2419/**
2420 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2421 * @nic : device private variable.
20346722 2422 * Description:
1da177e4 2423 * Free all queued Tx buffers.
20346722 2424 * Return Value: void
d44570e4 2425 */
1da177e4
LT
2426
2427static void free_tx_buffers(struct s2io_nic *nic)
2428{
2429 struct net_device *dev = nic->dev;
2430 struct sk_buff *skb;
1ee6dd77 2431 struct TxD *txdp;
1da177e4 2432 int i, j;
fed5eccd 2433 int cnt = 0;
ffb5df6c
JP
2434 struct config_param *config = &nic->config;
2435 struct mac_info *mac_control = &nic->mac_control;
2436 struct stat_block *stats = mac_control->stats_info;
2437 struct swStat *swstats = &stats->sw_stat;
1da177e4
LT
2438
2439 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
2440 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2441 struct fifo_info *fifo = &mac_control->fifos[i];
2fda096d 2442 unsigned long flags;
13d866a9
JP
2443
2444 spin_lock_irqsave(&fifo->tx_lock, flags);
2445 for (j = 0; j < tx_cfg->fifo_len; j++) {
2446 txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
fed5eccd
AR
2447 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2448 if (skb) {
ffb5df6c 2449 swstats->mem_freed += skb->truesize;
fed5eccd
AR
2450 dev_kfree_skb(skb);
2451 cnt++;
1da177e4 2452 }
1da177e4
LT
2453 }
2454 DBG_PRINT(INTR_DBG,
9e39f7c5 2455 "%s: forcibly freeing %d skbs on FIFO%d\n",
1da177e4 2456 dev->name, cnt, i);
13d866a9
JP
2457 fifo->tx_curr_get_info.offset = 0;
2458 fifo->tx_curr_put_info.offset = 0;
2459 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
2460 }
2461}
2462
20346722
K
2463/**
2464 * stop_nic - To stop the nic
1da177e4 2465 * @nic ; device private variable.
20346722
K
2466 * Description:
2467 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2468 * function does. This function is called to stop the device.
2469 * Return Value:
2470 * void.
2471 */
2472
2473static void stop_nic(struct s2io_nic *nic)
2474{
1ee6dd77 2475 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2476 register u64 val64 = 0;
5d3213cc 2477 u16 interruptible;
1da177e4
LT
2478
2479 /* Disable all interrupts */
9caab458 2480 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2481 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2482 interruptible |= TX_PIC_INTR;
1da177e4
LT
2483 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2484
5d3213cc
AR
2485 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2486 val64 = readq(&bar0->adapter_control);
2487 val64 &= ~(ADAPTER_CNTL_EN);
2488 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2489}
2490
20346722
K
2491/**
2492 * fill_rx_buffers - Allocates the Rx side skbs
0425b46a 2493 * @ring_info: per ring structure
3f78d885
SH
2494 * @from_card_up: If this is true, we will map the buffer to get
2495 * the dma address for buf0 and buf1 to give it to the card.
2496 * Else we will sync the already mapped buffer to give it to the card.
20346722 2497 * Description:
1da177e4
LT
2498 * The function allocates Rx side skbs and puts the physical
2499 * address of these buffers into the RxD buffer pointers, so that the NIC
2500 * can DMA the received frame into these locations.
2501 * The NIC supports 3 receive modes, viz
2502 * 1. single buffer,
2503 * 2. three buffer and
2504 * 3. Five buffer modes.
20346722
K
2505 * Each mode defines how many fragments the received frame will be split
2506 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2507 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2508 * is split into 3 fragments. As of now only single buffer mode is
2509 * supported.
2510 * Return Value:
2511 * SUCCESS on success or an appropriate -ve value on failure.
2512 */
8d8bb39b 2513static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
d44570e4 2514 int from_card_up)
1da177e4 2515{
1da177e4 2516 struct sk_buff *skb;
1ee6dd77 2517 struct RxD_t *rxdp;
0425b46a 2518 int off, size, block_no, block_no1;
1da177e4 2519 u32 alloc_tab = 0;
20346722 2520 u32 alloc_cnt;
20346722 2521 u64 tmp;
1ee6dd77 2522 struct buffAdd *ba;
1ee6dd77 2523 struct RxD_t *first_rxdp = NULL;
363dc367 2524 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
0425b46a 2525 int rxd_index = 0;
6d517a27
VP
2526 struct RxD1 *rxdp1;
2527 struct RxD3 *rxdp3;
ffb5df6c 2528 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
1da177e4 2529
0425b46a 2530 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
1da177e4 2531
0425b46a 2532 block_no1 = ring->rx_curr_get_info.block_index;
1da177e4 2533 while (alloc_tab < alloc_cnt) {
0425b46a 2534 block_no = ring->rx_curr_put_info.block_index;
1da177e4 2535
0425b46a
SH
2536 off = ring->rx_curr_put_info.offset;
2537
2538 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2539
2540 rxd_index = off + 1;
2541 if (block_no)
2542 rxd_index += (block_no * ring->rxd_count);
da6971d8 2543
7d2e3cb7 2544 if ((block_no == block_no1) &&
d44570e4
JP
2545 (off == ring->rx_curr_get_info.offset) &&
2546 (rxdp->Host_Control)) {
9e39f7c5
JP
2547 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2548 ring->dev->name);
1da177e4
LT
2549 goto end;
2550 }
0425b46a
SH
2551 if (off && (off == ring->rxd_count)) {
2552 ring->rx_curr_put_info.block_index++;
2553 if (ring->rx_curr_put_info.block_index ==
d44570e4 2554 ring->block_count)
0425b46a
SH
2555 ring->rx_curr_put_info.block_index = 0;
2556 block_no = ring->rx_curr_put_info.block_index;
2557 off = 0;
2558 ring->rx_curr_put_info.offset = off;
2559 rxdp = ring->rx_blocks[block_no].block_virt_addr;
1da177e4 2560 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
0425b46a
SH
2561 ring->dev->name, rxdp);
2562
1da177e4 2563 }
c9fcbf47 2564
da6971d8 2565 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
d44570e4
JP
2566 ((ring->rxd_mode == RXD_MODE_3B) &&
2567 (rxdp->Control_2 & s2BIT(0)))) {
0425b46a 2568 ring->rx_curr_put_info.offset = off;
1da177e4
LT
2569 goto end;
2570 }
da6971d8 2571 /* calculate size of skb based on ring mode */
d44570e4
JP
2572 size = ring->mtu +
2573 HEADER_ETHERNET_II_802_3_SIZE +
2574 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
0425b46a 2575 if (ring->rxd_mode == RXD_MODE_1)
da6971d8 2576 size += NET_IP_ALIGN;
da6971d8 2577 else
0425b46a 2578 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2579
da6971d8
AR
2580 /* allocate skb */
2581 skb = dev_alloc_skb(size);
d44570e4 2582 if (!skb) {
9e39f7c5
JP
2583 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2584 ring->dev->name);
303bcb4b
K
2585 if (first_rxdp) {
2586 wmb();
2587 first_rxdp->Control_1 |= RXD_OWN_XENA;
2588 }
ffb5df6c 2589 swstats->mem_alloc_fail_cnt++;
7d2e3cb7 2590
da6971d8
AR
2591 return -ENOMEM ;
2592 }
ffb5df6c 2593 swstats->mem_allocated += skb->truesize;
0425b46a
SH
2594
2595 if (ring->rxd_mode == RXD_MODE_1) {
da6971d8 2596 /* 1 buffer mode - normal operation mode */
d44570e4 2597 rxdp1 = (struct RxD1 *)rxdp;
1ee6dd77 2598 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2599 skb_reserve(skb, NET_IP_ALIGN);
d44570e4
JP
2600 rxdp1->Buffer0_ptr =
2601 pci_map_single(ring->pdev, skb->data,
2602 size - NET_IP_ALIGN,
2603 PCI_DMA_FROMDEVICE);
8d8bb39b 2604 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2605 rxdp1->Buffer0_ptr))
491abf25
VP
2606 goto pci_map_failed;
2607
8a4bdbaa 2608 rxdp->Control_2 =
491976b2 2609 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
d44570e4 2610 rxdp->Host_Control = (unsigned long)skb;
0425b46a 2611 } else if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8 2612 /*
6d517a27
VP
2613 * 2 buffer mode -
2614 * 2 buffer mode provides 128
da6971d8 2615 * byte aligned receive buffers.
da6971d8
AR
2616 */
2617
d44570e4 2618 rxdp3 = (struct RxD3 *)rxdp;
491976b2 2619 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2620 Buffer0_ptr = rxdp3->Buffer0_ptr;
2621 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2622 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2623 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2624 rxdp3->Buffer0_ptr = Buffer0_ptr;
2625 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2626
0425b46a 2627 ba = &ring->ba[block_no][off];
da6971d8 2628 skb_reserve(skb, BUF0_LEN);
d44570e4 2629 tmp = (u64)(unsigned long)skb->data;
da6971d8
AR
2630 tmp += ALIGN_SIZE;
2631 tmp &= ~ALIGN_SIZE;
2632 skb->data = (void *) (unsigned long)tmp;
27a884dc 2633 skb_reset_tail_pointer(skb);
da6971d8 2634
3f78d885 2635 if (from_card_up) {
6d517a27 2636 rxdp3->Buffer0_ptr =
d44570e4
JP
2637 pci_map_single(ring->pdev, ba->ba_0,
2638 BUF0_LEN,
2639 PCI_DMA_FROMDEVICE);
2640 if (pci_dma_mapping_error(nic->pdev,
2641 rxdp3->Buffer0_ptr))
3f78d885
SH
2642 goto pci_map_failed;
2643 } else
0425b46a 2644 pci_dma_sync_single_for_device(ring->pdev,
d44570e4
JP
2645 (dma_addr_t)rxdp3->Buffer0_ptr,
2646 BUF0_LEN,
2647 PCI_DMA_FROMDEVICE);
491abf25 2648
da6971d8 2649 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
0425b46a 2650 if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
2651 /* Two buffer mode */
2652
2653 /*
6aa20a22 2654 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2655 * L4 payload
2656 */
d44570e4
JP
2657 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2658 skb->data,
2659 ring->mtu + 4,
2660 PCI_DMA_FROMDEVICE);
da6971d8 2661
8d8bb39b 2662 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2663 rxdp3->Buffer2_ptr))
491abf25
VP
2664 goto pci_map_failed;
2665
3f78d885 2666 if (from_card_up) {
0425b46a
SH
2667 rxdp3->Buffer1_ptr =
2668 pci_map_single(ring->pdev,
d44570e4
JP
2669 ba->ba_1,
2670 BUF1_LEN,
2671 PCI_DMA_FROMDEVICE);
0425b46a 2672
8d8bb39b 2673 if (pci_dma_mapping_error(nic->pdev,
d44570e4
JP
2674 rxdp3->Buffer1_ptr)) {
2675 pci_unmap_single(ring->pdev,
2676 (dma_addr_t)(unsigned long)
2677 skb->data,
2678 ring->mtu + 4,
2679 PCI_DMA_FROMDEVICE);
3f78d885
SH
2680 goto pci_map_failed;
2681 }
75c30b13 2682 }
da6971d8
AR
2683 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2684 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
d44570e4 2685 (ring->mtu + 4);
da6971d8 2686 }
b7b5a128 2687 rxdp->Control_2 |= s2BIT(0);
0425b46a 2688 rxdp->Host_Control = (unsigned long) (skb);
1da177e4 2689 }
303bcb4b
K
2690 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2691 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2692 off++;
0425b46a 2693 if (off == (ring->rxd_count + 1))
da6971d8 2694 off = 0;
0425b46a 2695 ring->rx_curr_put_info.offset = off;
20346722 2696
da6971d8 2697 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2698 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2699 if (first_rxdp) {
2700 wmb();
2701 first_rxdp->Control_1 |= RXD_OWN_XENA;
2702 }
2703 first_rxdp = rxdp;
2704 }
0425b46a 2705 ring->rx_bufs_left += 1;
1da177e4
LT
2706 alloc_tab++;
2707 }
2708
d44570e4 2709end:
303bcb4b
K
2710 /* Transfer ownership of first descriptor to adapter just before
2711 * exiting. Before that, use memory barrier so that ownership
2712 * and other fields are seen by adapter correctly.
2713 */
2714 if (first_rxdp) {
2715 wmb();
2716 first_rxdp->Control_1 |= RXD_OWN_XENA;
2717 }
2718
1da177e4 2719 return SUCCESS;
d44570e4 2720
491abf25 2721pci_map_failed:
ffb5df6c
JP
2722 swstats->pci_map_fail_cnt++;
2723 swstats->mem_freed += skb->truesize;
491abf25
VP
2724 dev_kfree_skb_irq(skb);
2725 return -ENOMEM;
1da177e4
LT
2726}
2727
da6971d8
AR
2728static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2729{
2730 struct net_device *dev = sp->dev;
2731 int j;
2732 struct sk_buff *skb;
1ee6dd77 2733 struct RxD_t *rxdp;
1ee6dd77 2734 struct buffAdd *ba;
6d517a27
VP
2735 struct RxD1 *rxdp1;
2736 struct RxD3 *rxdp3;
ffb5df6c
JP
2737 struct mac_info *mac_control = &sp->mac_control;
2738 struct stat_block *stats = mac_control->stats_info;
2739 struct swStat *swstats = &stats->sw_stat;
da6971d8 2740
da6971d8
AR
2741 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2742 rxdp = mac_control->rings[ring_no].
d44570e4
JP
2743 rx_blocks[blk].rxds[j].virt_addr;
2744 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2745 if (!skb)
da6971d8 2746 continue;
da6971d8 2747 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4
JP
2748 rxdp1 = (struct RxD1 *)rxdp;
2749 pci_unmap_single(sp->pdev,
2750 (dma_addr_t)rxdp1->Buffer0_ptr,
2751 dev->mtu +
2752 HEADER_ETHERNET_II_802_3_SIZE +
2753 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2754 PCI_DMA_FROMDEVICE);
1ee6dd77 2755 memset(rxdp, 0, sizeof(struct RxD1));
d44570e4
JP
2756 } else if (sp->rxd_mode == RXD_MODE_3B) {
2757 rxdp3 = (struct RxD3 *)rxdp;
2758 ba = &mac_control->rings[ring_no].ba[blk][j];
2759 pci_unmap_single(sp->pdev,
2760 (dma_addr_t)rxdp3->Buffer0_ptr,
2761 BUF0_LEN,
2762 PCI_DMA_FROMDEVICE);
2763 pci_unmap_single(sp->pdev,
2764 (dma_addr_t)rxdp3->Buffer1_ptr,
2765 BUF1_LEN,
2766 PCI_DMA_FROMDEVICE);
2767 pci_unmap_single(sp->pdev,
2768 (dma_addr_t)rxdp3->Buffer2_ptr,
2769 dev->mtu + 4,
2770 PCI_DMA_FROMDEVICE);
1ee6dd77 2771 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2772 }
ffb5df6c 2773 swstats->mem_freed += skb->truesize;
da6971d8 2774 dev_kfree_skb(skb);
0425b46a 2775 mac_control->rings[ring_no].rx_bufs_left -= 1;
da6971d8
AR
2776 }
2777}
2778
1da177e4 2779/**
20346722 2780 * free_rx_buffers - Frees all Rx buffers
1da177e4 2781 * @sp: device private variable.
20346722 2782 * Description:
1da177e4
LT
2783 * This function will free all Rx buffers allocated by host.
2784 * Return Value:
2785 * NONE.
2786 */
2787
2788static void free_rx_buffers(struct s2io_nic *sp)
2789{
2790 struct net_device *dev = sp->dev;
da6971d8 2791 int i, blk = 0, buf_cnt = 0;
ffb5df6c
JP
2792 struct config_param *config = &sp->config;
2793 struct mac_info *mac_control = &sp->mac_control;
1da177e4
LT
2794
2795 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2796 struct ring_info *ring = &mac_control->rings[i];
2797
da6971d8 2798 for (blk = 0; blk < rx_ring_sz[i]; blk++)
d44570e4 2799 free_rxd_blk(sp, i, blk);
1da177e4 2800
13d866a9
JP
2801 ring->rx_curr_put_info.block_index = 0;
2802 ring->rx_curr_get_info.block_index = 0;
2803 ring->rx_curr_put_info.offset = 0;
2804 ring->rx_curr_get_info.offset = 0;
2805 ring->rx_bufs_left = 0;
9e39f7c5 2806 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
1da177e4
LT
2807 dev->name, buf_cnt, i);
2808 }
2809}
2810
8d8bb39b 2811static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
f61e0a35 2812{
8d8bb39b 2813 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2814 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2815 ring->dev->name);
f61e0a35
SH
2816 }
2817 return 0;
2818}
2819
1da177e4
LT
2820/**
2821 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2822 * @napi : pointer to the napi structure.
20346722 2823 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2824 * during one pass through the 'Poll" function.
2825 * Description:
2826 * Comes into picture only if NAPI support has been incorporated. It does
2827 * the same thing that rx_intr_handler does, but not in a interrupt context
2828 * also It will process only a given number of packets.
2829 * Return value:
2830 * 0 on success and 1 if there are No Rx packets to be processed.
2831 */
2832
f61e0a35 2833static int s2io_poll_msix(struct napi_struct *napi, int budget)
1da177e4 2834{
f61e0a35
SH
2835 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2836 struct net_device *dev = ring->dev;
f61e0a35 2837 int pkts_processed = 0;
1a79d1c3
AV
2838 u8 __iomem *addr = NULL;
2839 u8 val8 = 0;
4cf1653a 2840 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2841 struct XENA_dev_config __iomem *bar0 = nic->bar0;
f61e0a35 2842 int budget_org = budget;
1da177e4 2843
f61e0a35
SH
2844 if (unlikely(!is_s2io_card_up(nic)))
2845 return 0;
1da177e4 2846
f61e0a35 2847 pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2848 s2io_chk_rx_buffers(nic, ring);
1da177e4 2849
f61e0a35 2850 if (pkts_processed < budget_org) {
288379f0 2851 napi_complete(napi);
f61e0a35 2852 /*Re Enable MSI-Rx Vector*/
1a79d1c3 2853 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
2854 addr += 7 - ring->ring_no;
2855 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2856 writeb(val8, addr);
2857 val8 = readb(addr);
1da177e4 2858 }
f61e0a35
SH
2859 return pkts_processed;
2860}
d44570e4 2861
f61e0a35
SH
2862static int s2io_poll_inta(struct napi_struct *napi, int budget)
2863{
2864 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
f61e0a35
SH
2865 int pkts_processed = 0;
2866 int ring_pkts_processed, i;
2867 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2868 int budget_org = budget;
ffb5df6c
JP
2869 struct config_param *config = &nic->config;
2870 struct mac_info *mac_control = &nic->mac_control;
1da177e4 2871
f61e0a35
SH
2872 if (unlikely(!is_s2io_card_up(nic)))
2873 return 0;
1da177e4 2874
1da177e4 2875 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9 2876 struct ring_info *ring = &mac_control->rings[i];
f61e0a35 2877 ring_pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2878 s2io_chk_rx_buffers(nic, ring);
f61e0a35
SH
2879 pkts_processed += ring_pkts_processed;
2880 budget -= ring_pkts_processed;
2881 if (budget <= 0)
1da177e4 2882 break;
1da177e4 2883 }
f61e0a35 2884 if (pkts_processed < budget_org) {
288379f0 2885 napi_complete(napi);
f61e0a35
SH
2886 /* Re enable the Rx interrupts for the ring */
2887 writeq(0, &bar0->rx_traffic_mask);
2888 readl(&bar0->rx_traffic_mask);
2889 }
2890 return pkts_processed;
1da177e4 2891}
20346722 2892
b41477f3 2893#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2894/**
b41477f3 2895 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2896 * @dev : pointer to the device structure.
2897 * Description:
b41477f3
AR
2898 * This function will be called by upper layer to check for events on the
2899 * interface in situations where interrupts are disabled. It is used for
2900 * specific in-kernel networking tasks, such as remote consoles and kernel
2901 * debugging over the network (example netdump in RedHat).
612eff0e 2902 */
612eff0e
BH
2903static void s2io_netpoll(struct net_device *dev)
2904{
4cf1653a 2905 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2906 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2907 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e 2908 int i;
ffb5df6c
JP
2909 struct config_param *config = &nic->config;
2910 struct mac_info *mac_control = &nic->mac_control;
612eff0e 2911
d796fdb7
LV
2912 if (pci_channel_offline(nic->pdev))
2913 return;
2914
612eff0e
BH
2915 disable_irq(dev->irq);
2916
612eff0e 2917 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2918 writeq(val64, &bar0->tx_traffic_int);
2919
6aa20a22 2920 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2921 * run out of skbs and will fail and eventually netpoll application such
2922 * as netdump will fail.
2923 */
2924 for (i = 0; i < config->tx_fifo_num; i++)
2925 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2926
b41477f3 2927 /* check for received packet and indicate up to network */
13d866a9
JP
2928 for (i = 0; i < config->rx_ring_num; i++) {
2929 struct ring_info *ring = &mac_control->rings[i];
2930
2931 rx_intr_handler(ring, 0);
2932 }
612eff0e
BH
2933
2934 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2935 struct ring_info *ring = &mac_control->rings[i];
2936
2937 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2938 DBG_PRINT(INFO_DBG,
2939 "%s: Out of memory in Rx Netpoll!!\n",
2940 dev->name);
612eff0e
BH
2941 break;
2942 }
2943 }
612eff0e
BH
2944 enable_irq(dev->irq);
2945 return;
2946}
2947#endif
2948
20346722 2949/**
1da177e4 2950 * rx_intr_handler - Rx interrupt handler
f61e0a35
SH
2951 * @ring_info: per ring structure.
2952 * @budget: budget for napi processing.
20346722
K
2953 * Description:
2954 * If the interrupt is because of a received frame or if the
1da177e4 2955 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2956 * called. It picks out the RxD at which place the last Rx processing had
2957 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2958 * the offset.
2959 * Return Value:
f61e0a35 2960 * No. of napi packets processed.
1da177e4 2961 */
f61e0a35 2962static int rx_intr_handler(struct ring_info *ring_data, int budget)
1da177e4 2963{
c9fcbf47 2964 int get_block, put_block;
1ee6dd77
RB
2965 struct rx_curr_get_info get_info, put_info;
2966 struct RxD_t *rxdp;
1da177e4 2967 struct sk_buff *skb;
f61e0a35 2968 int pkt_cnt = 0, napi_pkts = 0;
7d3d0439 2969 int i;
d44570e4
JP
2970 struct RxD1 *rxdp1;
2971 struct RxD3 *rxdp3;
7d3d0439 2972
20346722
K
2973 get_info = ring_data->rx_curr_get_info;
2974 get_block = get_info.block_index;
1ee6dd77 2975 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2976 put_block = put_info.block_index;
da6971d8 2977 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65 2978
da6971d8 2979 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2980 /*
2981 * If your are next to put index then it's
2982 * FIFO full condition
2983 */
da6971d8
AR
2984 if ((get_block == put_block) &&
2985 (get_info.offset + 1) == put_info.offset) {
0425b46a 2986 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
d44570e4 2987 ring_data->dev->name);
da6971d8
AR
2988 break;
2989 }
d44570e4 2990 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
20346722 2991 if (skb == NULL) {
9e39f7c5 2992 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
0425b46a 2993 ring_data->dev->name);
f61e0a35 2994 return 0;
1da177e4 2995 }
0425b46a 2996 if (ring_data->rxd_mode == RXD_MODE_1) {
d44570e4 2997 rxdp1 = (struct RxD1 *)rxdp;
0425b46a 2998 pci_unmap_single(ring_data->pdev, (dma_addr_t)
d44570e4
JP
2999 rxdp1->Buffer0_ptr,
3000 ring_data->mtu +
3001 HEADER_ETHERNET_II_802_3_SIZE +
3002 HEADER_802_2_SIZE +
3003 HEADER_SNAP_SIZE,
3004 PCI_DMA_FROMDEVICE);
0425b46a 3005 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
d44570e4
JP
3006 rxdp3 = (struct RxD3 *)rxdp;
3007 pci_dma_sync_single_for_cpu(ring_data->pdev,
3008 (dma_addr_t)rxdp3->Buffer0_ptr,
3009 BUF0_LEN,
3010 PCI_DMA_FROMDEVICE);
3011 pci_unmap_single(ring_data->pdev,
3012 (dma_addr_t)rxdp3->Buffer2_ptr,
3013 ring_data->mtu + 4,
3014 PCI_DMA_FROMDEVICE);
da6971d8 3015 }
863c11a9 3016 prefetch(skb->data);
20346722
K
3017 rx_osm_handler(ring_data, rxdp);
3018 get_info.offset++;
da6971d8
AR
3019 ring_data->rx_curr_get_info.offset = get_info.offset;
3020 rxdp = ring_data->rx_blocks[get_block].
d44570e4 3021 rxds[get_info.offset].virt_addr;
0425b46a 3022 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
20346722 3023 get_info.offset = 0;
da6971d8 3024 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 3025 get_block++;
da6971d8
AR
3026 if (get_block == ring_data->block_count)
3027 get_block = 0;
3028 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
3029 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3030 }
1da177e4 3031
f61e0a35
SH
3032 if (ring_data->nic->config.napi) {
3033 budget--;
3034 napi_pkts++;
3035 if (!budget)
0425b46a
SH
3036 break;
3037 }
20346722 3038 pkt_cnt++;
1da177e4
LT
3039 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3040 break;
3041 }
0425b46a 3042 if (ring_data->lro) {
7d3d0439 3043 /* Clear all LRO sessions before exiting */
d44570e4 3044 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 3045 struct lro *lro = &ring_data->lro0_n[i];
7d3d0439 3046 if (lro->in_use) {
0425b46a 3047 update_L3L4_header(ring_data->nic, lro);
cdb5bf02 3048 queue_rx_frame(lro->parent, lro->vlan_tag);
7d3d0439
RA
3049 clear_lro_session(lro);
3050 }
3051 }
3052 }
d44570e4 3053 return napi_pkts;
1da177e4 3054}
20346722
K
3055
3056/**
1da177e4
LT
3057 * tx_intr_handler - Transmit interrupt handler
3058 * @nic : device private variable
20346722
K
3059 * Description:
3060 * If an interrupt was raised to indicate DMA complete of the
3061 * Tx packet, this function is called. It identifies the last TxD
3062 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
3063 * DMA'ed into the NICs internal memory.
3064 * Return Value:
3065 * NONE
3066 */
3067
1ee6dd77 3068static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 3069{
1ee6dd77 3070 struct s2io_nic *nic = fifo_data->nic;
1ee6dd77 3071 struct tx_curr_get_info get_info, put_info;
3a3d5756 3072 struct sk_buff *skb = NULL;
1ee6dd77 3073 struct TxD *txdlp;
3a3d5756 3074 int pkt_cnt = 0;
2fda096d 3075 unsigned long flags = 0;
f9046eb3 3076 u8 err_mask;
ffb5df6c
JP
3077 struct stat_block *stats = nic->mac_control.stats_info;
3078 struct swStat *swstats = &stats->sw_stat;
1da177e4 3079
2fda096d 3080 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
d44570e4 3081 return;
2fda096d 3082
20346722 3083 get_info = fifo_data->tx_curr_get_info;
1ee6dd77 3084 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
d44570e4
JP
3085 txdlp = (struct TxD *)
3086 fifo_data->list_info[get_info.offset].list_virt_addr;
20346722
K
3087 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3088 (get_info.offset != put_info.offset) &&
3089 (txdlp->Host_Control)) {
3090 /* Check for TxD errors */
3091 if (txdlp->Control_1 & TXD_T_CODE) {
3092 unsigned long long err;
3093 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0 3094 if (err & 0x1) {
ffb5df6c 3095 swstats->parity_err_cnt++;
bd1034f0 3096 }
491976b2
SH
3097
3098 /* update t_code statistics */
f9046eb3 3099 err_mask = err >> 48;
d44570e4
JP
3100 switch (err_mask) {
3101 case 2:
ffb5df6c 3102 swstats->tx_buf_abort_cnt++;
491976b2
SH
3103 break;
3104
d44570e4 3105 case 3:
ffb5df6c 3106 swstats->tx_desc_abort_cnt++;
491976b2
SH
3107 break;
3108
d44570e4 3109 case 7:
ffb5df6c 3110 swstats->tx_parity_err_cnt++;
491976b2
SH
3111 break;
3112
d44570e4 3113 case 10:
ffb5df6c 3114 swstats->tx_link_loss_cnt++;
491976b2
SH
3115 break;
3116
d44570e4 3117 case 15:
ffb5df6c 3118 swstats->tx_list_proc_err_cnt++;
491976b2 3119 break;
d44570e4 3120 }
20346722 3121 }
1da177e4 3122
fed5eccd 3123 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 3124 if (skb == NULL) {
2fda096d 3125 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
9e39f7c5
JP
3126 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3127 __func__);
20346722
K
3128 return;
3129 }
3a3d5756 3130 pkt_cnt++;
20346722 3131
20346722 3132 /* Updating the statistics block */
dc56e634 3133 nic->dev->stats.tx_bytes += skb->len;
ffb5df6c 3134 swstats->mem_freed += skb->truesize;
20346722
K
3135 dev_kfree_skb_irq(skb);
3136
3137 get_info.offset++;
863c11a9
AR
3138 if (get_info.offset == get_info.fifo_len + 1)
3139 get_info.offset = 0;
d44570e4
JP
3140 txdlp = (struct TxD *)
3141 fifo_data->list_info[get_info.offset].list_virt_addr;
3142 fifo_data->tx_curr_get_info.offset = get_info.offset;
1da177e4
LT
3143 }
3144
3a3d5756 3145 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
2fda096d
SR
3146
3147 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
1da177e4
LT
3148}
3149
bd1034f0
AR
3150/**
3151 * s2io_mdio_write - Function to write in to MDIO registers
3152 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3153 * @addr : address value
3154 * @value : data value
3155 * @dev : pointer to net_device structure
3156 * Description:
3157 * This function is used to write values to the MDIO registers
3158 * NONE
3159 */
d44570e4
JP
3160static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3161 struct net_device *dev)
bd1034f0 3162{
d44570e4 3163 u64 val64;
4cf1653a 3164 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3165 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0 3166
d44570e4
JP
3167 /* address transaction */
3168 val64 = MDIO_MMD_INDX_ADDR(addr) |
3169 MDIO_MMD_DEV_ADDR(mmd_type) |
3170 MDIO_MMS_PRT_ADDR(0x0);
bd1034f0
AR
3171 writeq(val64, &bar0->mdio_control);
3172 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3173 writeq(val64, &bar0->mdio_control);
3174 udelay(100);
3175
d44570e4
JP
3176 /* Data transaction */
3177 val64 = MDIO_MMD_INDX_ADDR(addr) |
3178 MDIO_MMD_DEV_ADDR(mmd_type) |
3179 MDIO_MMS_PRT_ADDR(0x0) |
3180 MDIO_MDIO_DATA(value) |
3181 MDIO_OP(MDIO_OP_WRITE_TRANS);
bd1034f0
AR
3182 writeq(val64, &bar0->mdio_control);
3183 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3184 writeq(val64, &bar0->mdio_control);
3185 udelay(100);
3186
d44570e4
JP
3187 val64 = MDIO_MMD_INDX_ADDR(addr) |
3188 MDIO_MMD_DEV_ADDR(mmd_type) |
3189 MDIO_MMS_PRT_ADDR(0x0) |
3190 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3191 writeq(val64, &bar0->mdio_control);
3192 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3193 writeq(val64, &bar0->mdio_control);
3194 udelay(100);
bd1034f0
AR
3195}
3196
3197/**
3198 * s2io_mdio_read - Function to write in to MDIO registers
3199 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3200 * @addr : address value
3201 * @dev : pointer to net_device structure
3202 * Description:
3203 * This function is used to read values to the MDIO registers
3204 * NONE
3205 */
3206static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3207{
3208 u64 val64 = 0x0;
3209 u64 rval64 = 0x0;
4cf1653a 3210 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3211 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3212
3213 /* address transaction */
d44570e4
JP
3214 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3215 | MDIO_MMD_DEV_ADDR(mmd_type)
3216 | MDIO_MMS_PRT_ADDR(0x0));
bd1034f0
AR
3217 writeq(val64, &bar0->mdio_control);
3218 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3219 writeq(val64, &bar0->mdio_control);
3220 udelay(100);
3221
3222 /* Data transaction */
d44570e4
JP
3223 val64 = MDIO_MMD_INDX_ADDR(addr) |
3224 MDIO_MMD_DEV_ADDR(mmd_type) |
3225 MDIO_MMS_PRT_ADDR(0x0) |
3226 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3227 writeq(val64, &bar0->mdio_control);
3228 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3229 writeq(val64, &bar0->mdio_control);
3230 udelay(100);
3231
3232 /* Read the value from regs */
3233 rval64 = readq(&bar0->mdio_control);
3234 rval64 = rval64 & 0xFFFF0000;
3235 rval64 = rval64 >> 16;
3236 return rval64;
3237}
d44570e4 3238
bd1034f0
AR
3239/**
3240 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3241 * @counter : couter value to be updated
3242 * @flag : flag to indicate the status
3243 * @type : counter type
3244 * Description:
3245 * This function is to check the status of the xpak counters value
3246 * NONE
3247 */
3248
d44570e4
JP
3249static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3250 u16 flag, u16 type)
bd1034f0
AR
3251{
3252 u64 mask = 0x3;
3253 u64 val64;
3254 int i;
d44570e4 3255 for (i = 0; i < index; i++)
bd1034f0
AR
3256 mask = mask << 0x2;
3257
d44570e4 3258 if (flag > 0) {
bd1034f0
AR
3259 *counter = *counter + 1;
3260 val64 = *regs_stat & mask;
3261 val64 = val64 >> (index * 0x2);
3262 val64 = val64 + 1;
d44570e4
JP
3263 if (val64 == 3) {
3264 switch (type) {
bd1034f0 3265 case 1:
9e39f7c5
JP
3266 DBG_PRINT(ERR_DBG,
3267 "Take Xframe NIC out of service.\n");
3268 DBG_PRINT(ERR_DBG,
3269"Excessive temperatures may result in premature transceiver failure.\n");
d44570e4 3270 break;
bd1034f0 3271 case 2:
9e39f7c5
JP
3272 DBG_PRINT(ERR_DBG,
3273 "Take Xframe NIC out of service.\n");
3274 DBG_PRINT(ERR_DBG,
3275"Excessive bias currents may indicate imminent laser diode failure.\n");
d44570e4 3276 break;
bd1034f0 3277 case 3:
9e39f7c5
JP
3278 DBG_PRINT(ERR_DBG,
3279 "Take Xframe NIC out of service.\n");
3280 DBG_PRINT(ERR_DBG,
3281"Excessive laser output power may saturate far-end receiver.\n");
d44570e4 3282 break;
bd1034f0 3283 default:
d44570e4
JP
3284 DBG_PRINT(ERR_DBG,
3285 "Incorrect XPAK Alarm type\n");
bd1034f0
AR
3286 }
3287 val64 = 0x0;
3288 }
3289 val64 = val64 << (index * 0x2);
3290 *regs_stat = (*regs_stat & (~mask)) | (val64);
3291
3292 } else {
3293 *regs_stat = *regs_stat & (~mask);
3294 }
3295}
3296
3297/**
3298 * s2io_updt_xpak_counter - Function to update the xpak counters
3299 * @dev : pointer to net_device struct
3300 * Description:
3301 * This function is to upate the status of the xpak counters value
3302 * NONE
3303 */
3304static void s2io_updt_xpak_counter(struct net_device *dev)
3305{
3306 u16 flag = 0x0;
3307 u16 type = 0x0;
3308 u16 val16 = 0x0;
3309 u64 val64 = 0x0;
3310 u64 addr = 0x0;
3311
4cf1653a 3312 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
3313 struct stat_block *stats = sp->mac_control.stats_info;
3314 struct xpakStat *xstats = &stats->xpak_stat;
bd1034f0
AR
3315
3316 /* Check the communication with the MDIO slave */
40239396 3317 addr = MDIO_CTRL1;
bd1034f0 3318 val64 = 0x0;
40239396 3319 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
d44570e4 3320 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
9e39f7c5
JP
3321 DBG_PRINT(ERR_DBG,
3322 "ERR: MDIO slave access failed - Returned %llx\n",
3323 (unsigned long long)val64);
bd1034f0
AR
3324 return;
3325 }
3326
40239396 3327 /* Check for the expected value of control reg 1 */
d44570e4 3328 if (val64 != MDIO_CTRL1_SPEED10G) {
9e39f7c5
JP
3329 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3330 "Returned: %llx- Expected: 0x%x\n",
40239396 3331 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
bd1034f0
AR
3332 return;
3333 }
3334
3335 /* Loading the DOM register to MDIO register */
3336 addr = 0xA100;
40239396
BH
3337 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3338 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3339
3340 /* Reading the Alarm flags */
3341 addr = 0xA070;
3342 val64 = 0x0;
40239396 3343 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3344
3345 flag = CHECKBIT(val64, 0x7);
3346 type = 1;
ffb5df6c
JP
3347 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3348 &xstats->xpak_regs_stat,
d44570e4 3349 0x0, flag, type);
bd1034f0 3350
d44570e4 3351 if (CHECKBIT(val64, 0x6))
ffb5df6c 3352 xstats->alarm_transceiver_temp_low++;
bd1034f0
AR
3353
3354 flag = CHECKBIT(val64, 0x3);
3355 type = 2;
ffb5df6c
JP
3356 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3357 &xstats->xpak_regs_stat,
d44570e4 3358 0x2, flag, type);
bd1034f0 3359
d44570e4 3360 if (CHECKBIT(val64, 0x2))
ffb5df6c 3361 xstats->alarm_laser_bias_current_low++;
bd1034f0
AR
3362
3363 flag = CHECKBIT(val64, 0x1);
3364 type = 3;
ffb5df6c
JP
3365 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3366 &xstats->xpak_regs_stat,
d44570e4 3367 0x4, flag, type);
bd1034f0 3368
d44570e4 3369 if (CHECKBIT(val64, 0x0))
ffb5df6c 3370 xstats->alarm_laser_output_power_low++;
bd1034f0
AR
3371
3372 /* Reading the Warning flags */
3373 addr = 0xA074;
3374 val64 = 0x0;
40239396 3375 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0 3376
d44570e4 3377 if (CHECKBIT(val64, 0x7))
ffb5df6c 3378 xstats->warn_transceiver_temp_high++;
bd1034f0 3379
d44570e4 3380 if (CHECKBIT(val64, 0x6))
ffb5df6c 3381 xstats->warn_transceiver_temp_low++;
bd1034f0 3382
d44570e4 3383 if (CHECKBIT(val64, 0x3))
ffb5df6c 3384 xstats->warn_laser_bias_current_high++;
bd1034f0 3385
d44570e4 3386 if (CHECKBIT(val64, 0x2))
ffb5df6c 3387 xstats->warn_laser_bias_current_low++;
bd1034f0 3388
d44570e4 3389 if (CHECKBIT(val64, 0x1))
ffb5df6c 3390 xstats->warn_laser_output_power_high++;
bd1034f0 3391
d44570e4 3392 if (CHECKBIT(val64, 0x0))
ffb5df6c 3393 xstats->warn_laser_output_power_low++;
bd1034f0
AR
3394}
3395
20346722 3396/**
1da177e4 3397 * wait_for_cmd_complete - waits for a command to complete.
20346722 3398 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3399 * s2io_nic structure.
20346722
K
3400 * Description: Function that waits for a command to Write into RMAC
3401 * ADDR DATA registers to be completed and returns either success or
3402 * error depending on whether the command was complete or not.
1da177e4
LT
3403 * Return value:
3404 * SUCCESS on success and FAILURE on failure.
3405 */
3406
9fc93a41 3407static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
d44570e4 3408 int bit_state)
1da177e4 3409{
9fc93a41 3410 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3411 u64 val64;
3412
9fc93a41
SS
3413 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3414 return FAILURE;
3415
3416 do {
c92ca04b 3417 val64 = readq(addr);
9fc93a41
SS
3418 if (bit_state == S2IO_BIT_RESET) {
3419 if (!(val64 & busy_bit)) {
3420 ret = SUCCESS;
3421 break;
3422 }
3423 } else {
3424 if (!(val64 & busy_bit)) {
3425 ret = SUCCESS;
3426 break;
3427 }
1da177e4 3428 }
c92ca04b 3429
d44570e4 3430 if (in_interrupt())
9fc93a41 3431 mdelay(delay);
c92ca04b 3432 else
9fc93a41 3433 msleep(delay);
c92ca04b 3434
9fc93a41
SS
3435 if (++cnt >= 10)
3436 delay = 50;
3437 } while (cnt < 20);
1da177e4
LT
3438 return ret;
3439}
19a60522
SS
3440/*
3441 * check_pci_device_id - Checks if the device id is supported
3442 * @id : device id
3443 * Description: Function to check if the pci device id is supported by driver.
3444 * Return value: Actual device id if supported else PCI_ANY_ID
3445 */
3446static u16 check_pci_device_id(u16 id)
3447{
3448 switch (id) {
3449 case PCI_DEVICE_ID_HERC_WIN:
3450 case PCI_DEVICE_ID_HERC_UNI:
3451 return XFRAME_II_DEVICE;
3452 case PCI_DEVICE_ID_S2IO_UNI:
3453 case PCI_DEVICE_ID_S2IO_WIN:
3454 return XFRAME_I_DEVICE;
3455 default:
3456 return PCI_ANY_ID;
3457 }
3458}
1da177e4 3459
20346722
K
3460/**
3461 * s2io_reset - Resets the card.
1da177e4
LT
3462 * @sp : private member of the device structure.
3463 * Description: Function to Reset the card. This function then also
20346722 3464 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3465 * the card reset also resets the configuration space.
3466 * Return value:
3467 * void.
3468 */
3469
d44570e4 3470static void s2io_reset(struct s2io_nic *sp)
1da177e4 3471{
1ee6dd77 3472 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3473 u64 val64;
5e25b9dd 3474 u16 subid, pci_cmd;
19a60522
SS
3475 int i;
3476 u16 val16;
491976b2
SH
3477 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3478 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
ffb5df6c
JP
3479 struct stat_block *stats;
3480 struct swStat *swstats;
491976b2 3481
9e39f7c5 3482 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
d44570e4 3483 __func__, sp->dev->name);
1da177e4 3484
0b1f7ebe 3485 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3486 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3487
1da177e4
LT
3488 val64 = SW_RESET_ALL;
3489 writeq(val64, &bar0->sw_reset);
d44570e4 3490 if (strstr(sp->product_name, "CX4"))
c92ca04b 3491 msleep(750);
19a60522
SS
3492 msleep(250);
3493 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3494
19a60522
SS
3495 /* Restore the PCI state saved during initialization. */
3496 pci_restore_state(sp->pdev);
3497 pci_read_config_word(sp->pdev, 0x2, &val16);
3498 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3499 break;
3500 msleep(200);
3501 }
1da177e4 3502
d44570e4
JP
3503 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3504 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
19a60522
SS
3505
3506 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3507
3508 s2io_init_pci(sp);
1da177e4 3509
20346722
K
3510 /* Set swapper to enable I/O register access */
3511 s2io_set_swapper(sp);
3512
faa4f796
SH
3513 /* restore mac_addr entries */
3514 do_s2io_restore_unicast_mc(sp);
3515
cc6e7c44
RA
3516 /* Restore the MSIX table entries from local variables */
3517 restore_xmsi_data(sp);
3518
5e25b9dd 3519 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3520 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3521 /* Clear "detected parity error" bit */
303bcb4b 3522 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3523
303bcb4b
K
3524 /* Clearing PCIX Ecc status register */
3525 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3526
303bcb4b 3527 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3528 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3529 }
5e25b9dd 3530
20346722 3531 /* Reset device statistics maintained by OS */
d44570e4 3532 memset(&sp->stats, 0, sizeof(struct net_device_stats));
8a4bdbaa 3533
ffb5df6c
JP
3534 stats = sp->mac_control.stats_info;
3535 swstats = &stats->sw_stat;
3536
491976b2 3537 /* save link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3538 up_cnt = swstats->link_up_cnt;
3539 down_cnt = swstats->link_down_cnt;
3540 up_time = swstats->link_up_time;
3541 down_time = swstats->link_down_time;
3542 reset_cnt = swstats->soft_reset_cnt;
3543 mem_alloc_cnt = swstats->mem_allocated;
3544 mem_free_cnt = swstats->mem_freed;
3545 watchdog_cnt = swstats->watchdog_timer_cnt;
3546
3547 memset(stats, 0, sizeof(struct stat_block));
3548
491976b2 3549 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3550 swstats->link_up_cnt = up_cnt;
3551 swstats->link_down_cnt = down_cnt;
3552 swstats->link_up_time = up_time;
3553 swstats->link_down_time = down_time;
3554 swstats->soft_reset_cnt = reset_cnt;
3555 swstats->mem_allocated = mem_alloc_cnt;
3556 swstats->mem_freed = mem_free_cnt;
3557 swstats->watchdog_timer_cnt = watchdog_cnt;
20346722 3558
1da177e4
LT
3559 /* SXE-002: Configure link and activity LED to turn it off */
3560 subid = sp->pdev->subsystem_device;
541ae68f
K
3561 if (((subid & 0xFF) >= 0x07) &&
3562 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3563 val64 = readq(&bar0->gpio_control);
3564 val64 |= 0x0000800000000000ULL;
3565 writeq(val64, &bar0->gpio_control);
3566 val64 = 0x0411040400000000ULL;
509a2671 3567 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3568 }
3569
541ae68f
K
3570 /*
3571 * Clear spurious ECC interrupts that would have occured on
3572 * XFRAME II cards after reset.
3573 */
3574 if (sp->device_type == XFRAME_II_DEVICE) {
3575 val64 = readq(&bar0->pcc_err_reg);
3576 writeq(val64, &bar0->pcc_err_reg);
3577 }
3578
f957bcf0 3579 sp->device_enabled_once = false;
1da177e4
LT
3580}
3581
3582/**
20346722
K
3583 * s2io_set_swapper - to set the swapper controle on the card
3584 * @sp : private member of the device structure,
1da177e4 3585 * pointer to the s2io_nic structure.
20346722 3586 * Description: Function to set the swapper control on the card
1da177e4
LT
3587 * correctly depending on the 'endianness' of the system.
3588 * Return value:
3589 * SUCCESS on success and FAILURE on failure.
3590 */
3591
d44570e4 3592static int s2io_set_swapper(struct s2io_nic *sp)
1da177e4
LT
3593{
3594 struct net_device *dev = sp->dev;
1ee6dd77 3595 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3596 u64 val64, valt, valr;
3597
20346722 3598 /*
1da177e4
LT
3599 * Set proper endian settings and verify the same by reading
3600 * the PIF Feed-back register.
3601 */
3602
3603 val64 = readq(&bar0->pif_rd_swapper_fb);
3604 if (val64 != 0x0123456789ABCDEFULL) {
3605 int i = 0;
3606 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3607 0x8100008181000081ULL, /* FE=1, SE=0 */
3608 0x4200004242000042ULL, /* FE=0, SE=1 */
3609 0}; /* FE=0, SE=0 */
3610
d44570e4 3611 while (i < 4) {
1da177e4
LT
3612 writeq(value[i], &bar0->swapper_ctrl);
3613 val64 = readq(&bar0->pif_rd_swapper_fb);
3614 if (val64 == 0x0123456789ABCDEFULL)
3615 break;
3616 i++;
3617 }
3618 if (i == 4) {
9e39f7c5
JP
3619 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3620 "feedback read %llx\n",
3621 dev->name, (unsigned long long)val64);
1da177e4
LT
3622 return FAILURE;
3623 }
3624 valr = value[i];
3625 } else {
3626 valr = readq(&bar0->swapper_ctrl);
3627 }
3628
3629 valt = 0x0123456789ABCDEFULL;
3630 writeq(valt, &bar0->xmsi_address);
3631 val64 = readq(&bar0->xmsi_address);
3632
d44570e4 3633 if (val64 != valt) {
1da177e4
LT
3634 int i = 0;
3635 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3636 0x0081810000818100ULL, /* FE=1, SE=0 */
3637 0x0042420000424200ULL, /* FE=0, SE=1 */
3638 0}; /* FE=0, SE=0 */
3639
d44570e4 3640 while (i < 4) {
1da177e4
LT
3641 writeq((value[i] | valr), &bar0->swapper_ctrl);
3642 writeq(valt, &bar0->xmsi_address);
3643 val64 = readq(&bar0->xmsi_address);
d44570e4 3644 if (val64 == valt)
1da177e4
LT
3645 break;
3646 i++;
3647 }
d44570e4 3648 if (i == 4) {
20346722 3649 unsigned long long x = val64;
9e39f7c5
JP
3650 DBG_PRINT(ERR_DBG,
3651 "Write failed, Xmsi_addr reads:0x%llx\n", x);
1da177e4
LT
3652 return FAILURE;
3653 }
3654 }
3655 val64 = readq(&bar0->swapper_ctrl);
3656 val64 &= 0xFFFF000000000000ULL;
3657
d44570e4 3658#ifdef __BIG_ENDIAN
20346722
K
3659 /*
3660 * The device by default set to a big endian format, so a
1da177e4
LT
3661 * big endian driver need not set anything.
3662 */
3663 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3664 SWAPPER_CTRL_TXP_SE |
3665 SWAPPER_CTRL_TXD_R_FE |
3666 SWAPPER_CTRL_TXD_W_FE |
3667 SWAPPER_CTRL_TXF_R_FE |
3668 SWAPPER_CTRL_RXD_R_FE |
3669 SWAPPER_CTRL_RXD_W_FE |
3670 SWAPPER_CTRL_RXF_W_FE |
3671 SWAPPER_CTRL_XMSI_FE |
3672 SWAPPER_CTRL_STATS_FE |
3673 SWAPPER_CTRL_STATS_SE);
eaae7f72 3674 if (sp->config.intr_type == INTA)
cc6e7c44 3675 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3676 writeq(val64, &bar0->swapper_ctrl);
3677#else
20346722 3678 /*
1da177e4 3679 * Initially we enable all bits to make it accessible by the
20346722 3680 * driver, then we selectively enable only those bits that
1da177e4
LT
3681 * we want to set.
3682 */
3683 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3684 SWAPPER_CTRL_TXP_SE |
3685 SWAPPER_CTRL_TXD_R_FE |
3686 SWAPPER_CTRL_TXD_R_SE |
3687 SWAPPER_CTRL_TXD_W_FE |
3688 SWAPPER_CTRL_TXD_W_SE |
3689 SWAPPER_CTRL_TXF_R_FE |
3690 SWAPPER_CTRL_RXD_R_FE |
3691 SWAPPER_CTRL_RXD_R_SE |
3692 SWAPPER_CTRL_RXD_W_FE |
3693 SWAPPER_CTRL_RXD_W_SE |
3694 SWAPPER_CTRL_RXF_W_FE |
3695 SWAPPER_CTRL_XMSI_FE |
3696 SWAPPER_CTRL_STATS_FE |
3697 SWAPPER_CTRL_STATS_SE);
eaae7f72 3698 if (sp->config.intr_type == INTA)
cc6e7c44 3699 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3700 writeq(val64, &bar0->swapper_ctrl);
3701#endif
3702 val64 = readq(&bar0->swapper_ctrl);
3703
20346722
K
3704 /*
3705 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3706 * feedback register.
3707 */
3708 val64 = readq(&bar0->pif_rd_swapper_fb);
3709 if (val64 != 0x0123456789ABCDEFULL) {
3710 /* Endian settings are incorrect, calls for another dekko. */
9e39f7c5
JP
3711 DBG_PRINT(ERR_DBG,
3712 "%s: Endian settings are wrong, feedback read %llx\n",
3713 dev->name, (unsigned long long)val64);
1da177e4
LT
3714 return FAILURE;
3715 }
3716
3717 return SUCCESS;
3718}
3719
1ee6dd77 3720static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3721{
1ee6dd77 3722 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3723 u64 val64;
3724 int ret = 0, cnt = 0;
3725
3726 do {
3727 val64 = readq(&bar0->xmsi_access);
b7b5a128 3728 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3729 break;
3730 mdelay(1);
3731 cnt++;
d44570e4 3732 } while (cnt < 5);
cc6e7c44
RA
3733 if (cnt == 5) {
3734 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3735 ret = 1;
3736 }
3737
3738 return ret;
3739}
3740
1ee6dd77 3741static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3742{
1ee6dd77 3743 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3744 u64 val64;
f61e0a35
SH
3745 int i, msix_index;
3746
f61e0a35
SH
3747 if (nic->device_type == XFRAME_I_DEVICE)
3748 return;
cc6e7c44 3749
d44570e4
JP
3750 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3751 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
cc6e7c44
RA
3752 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3753 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
f61e0a35 3754 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3755 writeq(val64, &bar0->xmsi_access);
f61e0a35 3756 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3757 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3758 __func__, msix_index);
cc6e7c44
RA
3759 continue;
3760 }
3761 }
3762}
3763
1ee6dd77 3764static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3765{
1ee6dd77 3766 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3767 u64 val64, addr, data;
f61e0a35
SH
3768 int i, msix_index;
3769
3770 if (nic->device_type == XFRAME_I_DEVICE)
3771 return;
cc6e7c44
RA
3772
3773 /* Store and display */
d44570e4
JP
3774 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3775 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
f61e0a35 3776 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3777 writeq(val64, &bar0->xmsi_access);
f61e0a35 3778 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3779 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3780 __func__, msix_index);
cc6e7c44
RA
3781 continue;
3782 }
3783 addr = readq(&bar0->xmsi_address);
3784 data = readq(&bar0->xmsi_data);
3785 if (addr && data) {
3786 nic->msix_info[i].addr = addr;
3787 nic->msix_info[i].data = data;
3788 }
3789 }
3790}
3791
1ee6dd77 3792static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3793{
1ee6dd77 3794 struct XENA_dev_config __iomem *bar0 = nic->bar0;
ac731ab6 3795 u64 rx_mat;
cc6e7c44
RA
3796 u16 msi_control; /* Temp variable */
3797 int ret, i, j, msix_indx = 1;
4f870320 3798 int size;
ffb5df6c
JP
3799 struct stat_block *stats = nic->mac_control.stats_info;
3800 struct swStat *swstats = &stats->sw_stat;
cc6e7c44 3801
4f870320 3802 size = nic->num_entries * sizeof(struct msix_entry);
44364a03 3803 nic->entries = kzalloc(size, GFP_KERNEL);
bd684e43 3804 if (!nic->entries) {
d44570e4
JP
3805 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3806 __func__);
ffb5df6c 3807 swstats->mem_alloc_fail_cnt++;
cc6e7c44
RA
3808 return -ENOMEM;
3809 }
ffb5df6c 3810 swstats->mem_allocated += size;
f61e0a35 3811
4f870320 3812 size = nic->num_entries * sizeof(struct s2io_msix_entry);
44364a03 3813 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
bd684e43 3814 if (!nic->s2io_entries) {
8a4bdbaa 3815 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
d44570e4 3816 __func__);
ffb5df6c 3817 swstats->mem_alloc_fail_cnt++;
cc6e7c44 3818 kfree(nic->entries);
ffb5df6c 3819 swstats->mem_freed
f61e0a35 3820 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3821 return -ENOMEM;
3822 }
ffb5df6c 3823 swstats->mem_allocated += size;
cc6e7c44 3824
ac731ab6
SH
3825 nic->entries[0].entry = 0;
3826 nic->s2io_entries[0].entry = 0;
3827 nic->s2io_entries[0].in_use = MSIX_FLG;
3828 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3829 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3830
f61e0a35
SH
3831 for (i = 1; i < nic->num_entries; i++) {
3832 nic->entries[i].entry = ((i - 1) * 8) + 1;
3833 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
cc6e7c44
RA
3834 nic->s2io_entries[i].arg = NULL;
3835 nic->s2io_entries[i].in_use = 0;
3836 }
3837
8a4bdbaa 3838 rx_mat = readq(&bar0->rx_mat);
f61e0a35 3839 for (j = 0; j < nic->config.rx_ring_num; j++) {
8a4bdbaa 3840 rx_mat |= RX_MAT_SET(j, msix_indx);
f61e0a35
SH
3841 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3842 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3843 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3844 msix_indx += 8;
cc6e7c44 3845 }
8a4bdbaa 3846 writeq(rx_mat, &bar0->rx_mat);
f61e0a35 3847 readq(&bar0->rx_mat);
cc6e7c44 3848
f61e0a35 3849 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
c92ca04b 3850 /* We fail init if error or we get less vectors than min required */
cc6e7c44 3851 if (ret) {
9e39f7c5 3852 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
cc6e7c44 3853 kfree(nic->entries);
ffb5df6c
JP
3854 swstats->mem_freed += nic->num_entries *
3855 sizeof(struct msix_entry);
cc6e7c44 3856 kfree(nic->s2io_entries);
ffb5df6c
JP
3857 swstats->mem_freed += nic->num_entries *
3858 sizeof(struct s2io_msix_entry);
cc6e7c44
RA
3859 nic->entries = NULL;
3860 nic->s2io_entries = NULL;
3861 return -ENOMEM;
3862 }
3863
3864 /*
3865 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3866 * in the herc NIC. (Temp change, needs to be removed later)
3867 */
3868 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3869 msi_control |= 0x1; /* Enable MSI */
3870 pci_write_config_word(nic->pdev, 0x42, msi_control);
3871
3872 return 0;
3873}
3874
8abc4d5b 3875/* Handle software interrupt used during MSI(X) test */
33390a70 3876static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3877{
3878 struct s2io_nic *sp = dev_id;
3879
3880 sp->msi_detected = 1;
3881 wake_up(&sp->msi_wait);
3882
3883 return IRQ_HANDLED;
3884}
3885
3886/* Test interrupt path by forcing a a software IRQ */
33390a70 3887static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3888{
3889 struct pci_dev *pdev = sp->pdev;
3890 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3891 int err;
3892 u64 val64, saved64;
3893
3894 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
d44570e4 3895 sp->name, sp);
8abc4d5b
SS
3896 if (err) {
3897 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
d44570e4 3898 sp->dev->name, pci_name(pdev), pdev->irq);
8abc4d5b
SS
3899 return err;
3900 }
3901
d44570e4 3902 init_waitqueue_head(&sp->msi_wait);
8abc4d5b
SS
3903 sp->msi_detected = 0;
3904
3905 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3906 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3907 val64 |= SCHED_INT_CTRL_TIMER_EN;
3908 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3909 writeq(val64, &bar0->scheduled_int_ctrl);
3910
3911 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3912
3913 if (!sp->msi_detected) {
3914 /* MSI(X) test failed, go back to INTx mode */
2450022a 3915 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
9e39f7c5
JP
3916 "using MSI(X) during test\n",
3917 sp->dev->name, pci_name(pdev));
8abc4d5b
SS
3918
3919 err = -EOPNOTSUPP;
3920 }
3921
3922 free_irq(sp->entries[1].vector, sp);
3923
3924 writeq(saved64, &bar0->scheduled_int_ctrl);
3925
3926 return err;
3927}
18b2b7bd
SH
3928
3929static void remove_msix_isr(struct s2io_nic *sp)
3930{
3931 int i;
3932 u16 msi_control;
3933
f61e0a35 3934 for (i = 0; i < sp->num_entries; i++) {
d44570e4 3935 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
18b2b7bd
SH
3936 int vector = sp->entries[i].vector;
3937 void *arg = sp->s2io_entries[i].arg;
3938 free_irq(vector, arg);
3939 }
3940 }
3941
3942 kfree(sp->entries);
3943 kfree(sp->s2io_entries);
3944 sp->entries = NULL;
3945 sp->s2io_entries = NULL;
3946
3947 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3948 msi_control &= 0xFFFE; /* Disable MSI */
3949 pci_write_config_word(sp->pdev, 0x42, msi_control);
3950
3951 pci_disable_msix(sp->pdev);
3952}
3953
3954static void remove_inta_isr(struct s2io_nic *sp)
3955{
3956 struct net_device *dev = sp->dev;
3957
3958 free_irq(sp->pdev->irq, dev);
3959}
3960
1da177e4
LT
3961/* ********************************************************* *
3962 * Functions defined below concern the OS part of the driver *
3963 * ********************************************************* */
3964
20346722 3965/**
1da177e4
LT
3966 * s2io_open - open entry point of the driver
3967 * @dev : pointer to the device structure.
3968 * Description:
3969 * This function is the open entry point of the driver. It mainly calls a
3970 * function to allocate Rx buffers and inserts them into the buffer
20346722 3971 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3972 * Return value:
3973 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3974 * file on failure.
3975 */
3976
ac1f60db 3977static int s2io_open(struct net_device *dev)
1da177e4 3978{
4cf1653a 3979 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 3980 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
3981 int err = 0;
3982
20346722
K
3983 /*
3984 * Make sure you have link off by default every time
1da177e4
LT
3985 * Nic is initialized
3986 */
3987 netif_carrier_off(dev);
0b1f7ebe 3988 sp->last_link_state = 0;
1da177e4
LT
3989
3990 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3991 err = s2io_card_up(sp);
3992 if (err) {
1da177e4
LT
3993 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3994 dev->name);
e6a8fee2 3995 goto hw_init_failed;
1da177e4
LT
3996 }
3997
2fd37688 3998 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 3999 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 4000 s2io_card_down(sp);
20346722 4001 err = -ENODEV;
e6a8fee2 4002 goto hw_init_failed;
1da177e4 4003 }
3a3d5756 4004 s2io_start_all_tx_queue(sp);
1da177e4 4005 return 0;
20346722 4006
20346722 4007hw_init_failed:
eaae7f72 4008 if (sp->config.intr_type == MSI_X) {
491976b2 4009 if (sp->entries) {
cc6e7c44 4010 kfree(sp->entries);
ffb5df6c
JP
4011 swstats->mem_freed += sp->num_entries *
4012 sizeof(struct msix_entry);
491976b2
SH
4013 }
4014 if (sp->s2io_entries) {
cc6e7c44 4015 kfree(sp->s2io_entries);
ffb5df6c
JP
4016 swstats->mem_freed += sp->num_entries *
4017 sizeof(struct s2io_msix_entry);
491976b2 4018 }
cc6e7c44 4019 }
20346722 4020 return err;
1da177e4
LT
4021}
4022
4023/**
4024 * s2io_close -close entry point of the driver
4025 * @dev : device pointer.
4026 * Description:
4027 * This is the stop entry point of the driver. It needs to undo exactly
4028 * whatever was done by the open entry point,thus it's usually referred to
4029 * as the close function.Among other things this function mainly stops the
4030 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4031 * Return value:
4032 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4033 * file on failure.
4034 */
4035
ac1f60db 4036static int s2io_close(struct net_device *dev)
1da177e4 4037{
4cf1653a 4038 struct s2io_nic *sp = netdev_priv(dev);
faa4f796
SH
4039 struct config_param *config = &sp->config;
4040 u64 tmp64;
4041 int offset;
cc6e7c44 4042
9f74ffde 4043 /* Return if the device is already closed *
d44570e4
JP
4044 * Can happen when s2io_card_up failed in change_mtu *
4045 */
9f74ffde
SH
4046 if (!is_s2io_card_up(sp))
4047 return 0;
4048
3a3d5756 4049 s2io_stop_all_tx_queue(sp);
faa4f796
SH
4050 /* delete all populated mac entries */
4051 for (offset = 1; offset < config->max_mc_addr; offset++) {
4052 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4053 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4054 do_s2io_delete_unicast_mc(sp, tmp64);
4055 }
4056
e6a8fee2 4057 s2io_card_down(sp);
cc6e7c44 4058
1da177e4
LT
4059 return 0;
4060}
4061
4062/**
4063 * s2io_xmit - Tx entry point of te driver
4064 * @skb : the socket buffer containing the Tx data.
4065 * @dev : device pointer.
4066 * Description :
4067 * This function is the Tx entry point of the driver. S2IO NIC supports
4068 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4069 * NOTE: when device cant queue the pkt,just the trans_start variable will
4070 * not be upadted.
4071 * Return value:
4072 * 0 on success & 1 on failure.
4073 */
4074
61357325 4075static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 4076{
4cf1653a 4077 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
4078 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4079 register u64 val64;
1ee6dd77
RB
4080 struct TxD *txdp;
4081 struct TxFIFO_element __iomem *tx_fifo;
2fda096d 4082 unsigned long flags = 0;
be3a6b02 4083 u16 vlan_tag = 0;
2fda096d 4084 struct fifo_info *fifo = NULL;
6cfc482b 4085 int do_spin_lock = 1;
75c30b13 4086 int offload_type;
6cfc482b 4087 int enable_per_list_interrupt = 0;
ffb5df6c
JP
4088 struct config_param *config = &sp->config;
4089 struct mac_info *mac_control = &sp->mac_control;
4090 struct stat_block *stats = mac_control->stats_info;
4091 struct swStat *swstats = &stats->sw_stat;
1da177e4 4092
20346722 4093 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4094
4095 if (unlikely(skb->len <= 0)) {
9e39f7c5 4096 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
491976b2 4097 dev_kfree_skb_any(skb);
6ed10654 4098 return NETDEV_TX_OK;
2fda096d 4099 }
491976b2 4100
92b84437 4101 if (!is_s2io_card_up(sp)) {
20346722 4102 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4 4103 dev->name);
20346722 4104 dev_kfree_skb(skb);
6ed10654 4105 return NETDEV_TX_OK;
1da177e4
LT
4106 }
4107
4108 queue = 0;
3a3d5756 4109 if (sp->vlgrp && vlan_tx_tag_present(skb))
be3a6b02 4110 vlan_tag = vlan_tx_tag_get(skb);
6cfc482b
SH
4111 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4112 if (skb->protocol == htons(ETH_P_IP)) {
4113 struct iphdr *ip;
4114 struct tcphdr *th;
4115 ip = ip_hdr(skb);
4116
4117 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4118 th = (struct tcphdr *)(((unsigned char *)ip) +
d44570e4 4119 ip->ihl*4);
6cfc482b
SH
4120
4121 if (ip->protocol == IPPROTO_TCP) {
4122 queue_len = sp->total_tcp_fifos;
4123 queue = (ntohs(th->source) +
d44570e4
JP
4124 ntohs(th->dest)) &
4125 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4126 if (queue >= queue_len)
4127 queue = queue_len - 1;
4128 } else if (ip->protocol == IPPROTO_UDP) {
4129 queue_len = sp->total_udp_fifos;
4130 queue = (ntohs(th->source) +
d44570e4
JP
4131 ntohs(th->dest)) &
4132 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4133 if (queue >= queue_len)
4134 queue = queue_len - 1;
4135 queue += sp->udp_fifo_idx;
4136 if (skb->len > 1024)
4137 enable_per_list_interrupt = 1;
4138 do_spin_lock = 0;
4139 }
4140 }
4141 }
4142 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4143 /* get fifo number based on skb->priority value */
4144 queue = config->fifo_mapping
d44570e4 4145 [skb->priority & (MAX_TX_FIFOS - 1)];
6cfc482b 4146 fifo = &mac_control->fifos[queue];
3a3d5756 4147
6cfc482b
SH
4148 if (do_spin_lock)
4149 spin_lock_irqsave(&fifo->tx_lock, flags);
4150 else {
4151 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4152 return NETDEV_TX_LOCKED;
4153 }
be3a6b02 4154
3a3d5756
SH
4155 if (sp->config.multiq) {
4156 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4157 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4158 return NETDEV_TX_BUSY;
4159 }
b19fa1fa 4160 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
4161 if (netif_queue_stopped(dev)) {
4162 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4163 return NETDEV_TX_BUSY;
4164 }
4165 }
4166
d44570e4
JP
4167 put_off = (u16)fifo->tx_curr_put_info.offset;
4168 get_off = (u16)fifo->tx_curr_get_info.offset;
4169 txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
20346722 4170
2fda096d 4171 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
1da177e4 4172 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4173 if (txdp->Host_Control ||
d44570e4 4174 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4175 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3a3d5756 4176 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4177 dev_kfree_skb(skb);
2fda096d 4178 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4179 return NETDEV_TX_OK;
1da177e4 4180 }
0b1f7ebe 4181
75c30b13 4182 offload_type = s2io_offload_type(skb);
75c30b13 4183 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4184 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4185 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4186 }
84fa7933 4187 if (skb->ip_summed == CHECKSUM_PARTIAL) {
d44570e4
JP
4188 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4189 TXD_TX_CKO_TCP_EN |
4190 TXD_TX_CKO_UDP_EN);
1da177e4 4191 }
fed5eccd
AR
4192 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4193 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2fda096d 4194 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
6cfc482b
SH
4195 if (enable_per_list_interrupt)
4196 if (put_off & (queue_len >> 5))
4197 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
3a3d5756 4198 if (vlan_tag) {
be3a6b02
K
4199 txdp->Control_2 |= TXD_VLAN_ENABLE;
4200 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4201 }
4202
fed5eccd 4203 frg_len = skb->len - skb->data_len;
75c30b13 4204 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4205 int ufo_size;
4206
75c30b13 4207 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4208 ufo_size &= ~7;
4209 txdp->Control_1 |= TXD_UFO_EN;
4210 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4211 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4212#ifdef __BIG_ENDIAN
3459feb8 4213 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
2fda096d 4214 fifo->ufo_in_band_v[put_off] =
d44570e4 4215 (__force u64)skb_shinfo(skb)->ip6_frag_id;
fed5eccd 4216#else
2fda096d 4217 fifo->ufo_in_band_v[put_off] =
d44570e4 4218 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
fed5eccd 4219#endif
2fda096d 4220 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
fed5eccd 4221 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
d44570e4
JP
4222 fifo->ufo_in_band_v,
4223 sizeof(u64),
4224 PCI_DMA_TODEVICE);
8d8bb39b 4225 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25 4226 goto pci_map_failed;
fed5eccd 4227 txdp++;
fed5eccd 4228 }
1da177e4 4229
d44570e4
JP
4230 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4231 frg_len, PCI_DMA_TODEVICE);
8d8bb39b 4232 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25
VP
4233 goto pci_map_failed;
4234
d44570e4 4235 txdp->Host_Control = (unsigned long)skb;
fed5eccd 4236 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4237 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4238 txdp->Control_1 |= TXD_UFO_EN;
4239
4240 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4241 /* For fragmented SKB. */
4242 for (i = 0; i < frg_cnt; i++) {
4243 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe
K
4244 /* A '0' length fragment will be ignored */
4245 if (!frag->size)
4246 continue;
1da177e4 4247 txdp++;
d44570e4
JP
4248 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4249 frag->page_offset,
4250 frag->size,
4251 PCI_DMA_TODEVICE);
efd51b5c 4252 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
75c30b13 4253 if (offload_type == SKB_GSO_UDP)
fed5eccd 4254 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4255 }
4256 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4257
75c30b13 4258 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4259 frg_cnt++; /* as Txd0 was used for inband header */
4260
1da177e4 4261 tx_fifo = mac_control->tx_FIFO_start[queue];
2fda096d 4262 val64 = fifo->list_info[put_off].list_phy_addr;
1da177e4
LT
4263 writeq(val64, &tx_fifo->TxDL_Pointer);
4264
4265 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4266 TX_FIFO_LAST_LIST);
75c30b13 4267 if (offload_type)
fed5eccd 4268 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4269
1da177e4
LT
4270 writeq(val64, &tx_fifo->List_Control);
4271
303bcb4b
K
4272 mmiowb();
4273
1da177e4 4274 put_off++;
2fda096d 4275 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
863c11a9 4276 put_off = 0;
2fda096d 4277 fifo->tx_curr_put_info.offset = put_off;
1da177e4
LT
4278
4279 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4280 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
ffb5df6c 4281 swstats->fifo_full_cnt++;
1da177e4
LT
4282 DBG_PRINT(TX_DBG,
4283 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4284 put_off, get_off);
3a3d5756 4285 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4286 }
ffb5df6c 4287 swstats->mem_allocated += skb->truesize;
2fda096d 4288 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4 4289
f6f4bfa3
SH
4290 if (sp->config.intr_type == MSI_X)
4291 tx_intr_handler(fifo);
4292
6ed10654 4293 return NETDEV_TX_OK;
ffb5df6c 4294
491abf25 4295pci_map_failed:
ffb5df6c 4296 swstats->pci_map_fail_cnt++;
3a3d5756 4297 s2io_stop_tx_queue(sp, fifo->fifo_no);
ffb5df6c 4298 swstats->mem_freed += skb->truesize;
491abf25 4299 dev_kfree_skb(skb);
2fda096d 4300 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4301 return NETDEV_TX_OK;
1da177e4
LT
4302}
4303
25fff88e
K
4304static void
4305s2io_alarm_handle(unsigned long data)
4306{
1ee6dd77 4307 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4308 struct net_device *dev = sp->dev;
25fff88e 4309
8116f3cf 4310 s2io_handle_errors(dev);
25fff88e
K
4311 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4312}
4313
7d12e780 4314static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4315{
1ee6dd77
RB
4316 struct ring_info *ring = (struct ring_info *)dev_id;
4317 struct s2io_nic *sp = ring->nic;
f61e0a35 4318 struct XENA_dev_config __iomem *bar0 = sp->bar0;
cc6e7c44 4319
f61e0a35 4320 if (unlikely(!is_s2io_card_up(sp)))
92b84437 4321 return IRQ_HANDLED;
92b84437 4322
f61e0a35 4323 if (sp->config.napi) {
1a79d1c3
AV
4324 u8 __iomem *addr = NULL;
4325 u8 val8 = 0;
f61e0a35 4326
1a79d1c3 4327 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
4328 addr += (7 - ring->ring_no);
4329 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4330 writeb(val8, addr);
4331 val8 = readb(addr);
288379f0 4332 napi_schedule(&ring->napi);
f61e0a35
SH
4333 } else {
4334 rx_intr_handler(ring, 0);
8d8bb39b 4335 s2io_chk_rx_buffers(sp, ring);
f61e0a35 4336 }
7d3d0439 4337
cc6e7c44
RA
4338 return IRQ_HANDLED;
4339}
4340
7d12e780 4341static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4342{
ac731ab6
SH
4343 int i;
4344 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4345 struct s2io_nic *sp = fifos->nic;
4346 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4347 struct config_param *config = &sp->config;
4348 u64 reason;
cc6e7c44 4349
ac731ab6
SH
4350 if (unlikely(!is_s2io_card_up(sp)))
4351 return IRQ_NONE;
4352
4353 reason = readq(&bar0->general_int_status);
4354 if (unlikely(reason == S2IO_MINUS_ONE))
4355 /* Nothing much can be done. Get out */
92b84437 4356 return IRQ_HANDLED;
92b84437 4357
01e16faa
SH
4358 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4359 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
ac731ab6 4360
01e16faa
SH
4361 if (reason & GEN_INTR_TXPIC)
4362 s2io_txpic_intr_handle(sp);
ac731ab6 4363
01e16faa
SH
4364 if (reason & GEN_INTR_TXTRAFFIC)
4365 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
ac731ab6 4366
01e16faa
SH
4367 for (i = 0; i < config->tx_fifo_num; i++)
4368 tx_intr_handler(&fifos[i]);
ac731ab6 4369
01e16faa
SH
4370 writeq(sp->general_int_mask, &bar0->general_int_mask);
4371 readl(&bar0->general_int_status);
4372 return IRQ_HANDLED;
4373 }
4374 /* The interrupt was not raised by us */
4375 return IRQ_NONE;
cc6e7c44 4376}
ac731ab6 4377
1ee6dd77 4378static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4379{
1ee6dd77 4380 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d
K
4381 u64 val64;
4382
4383 val64 = readq(&bar0->pic_int_status);
4384 if (val64 & PIC_INT_GPIO) {
4385 val64 = readq(&bar0->gpio_int_reg);
4386 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4387 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4388 /*
4389 * This is unstable state so clear both up/down
4390 * interrupt and adapter to re-evaluate the link state.
4391 */
d44570e4 4392 val64 |= GPIO_INT_REG_LINK_DOWN;
a371a07d
K
4393 val64 |= GPIO_INT_REG_LINK_UP;
4394 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4395 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4396 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4397 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4398 writeq(val64, &bar0->gpio_int_mask);
d44570e4 4399 } else if (val64 & GPIO_INT_REG_LINK_UP) {
c92ca04b 4400 val64 = readq(&bar0->adapter_status);
d44570e4 4401 /* Enable Adapter */
19a60522
SS
4402 val64 = readq(&bar0->adapter_control);
4403 val64 |= ADAPTER_CNTL_EN;
4404 writeq(val64, &bar0->adapter_control);
4405 val64 |= ADAPTER_LED_ON;
4406 writeq(val64, &bar0->adapter_control);
4407 if (!sp->device_enabled_once)
4408 sp->device_enabled_once = 1;
c92ca04b 4409
19a60522
SS
4410 s2io_link(sp, LINK_UP);
4411 /*
4412 * unmask link down interrupt and mask link-up
4413 * intr
4414 */
4415 val64 = readq(&bar0->gpio_int_mask);
4416 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4417 val64 |= GPIO_INT_MASK_LINK_UP;
4418 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4419
d44570e4 4420 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
c92ca04b 4421 val64 = readq(&bar0->adapter_status);
19a60522
SS
4422 s2io_link(sp, LINK_DOWN);
4423 /* Link is down so unmaks link up interrupt */
4424 val64 = readq(&bar0->gpio_int_mask);
4425 val64 &= ~GPIO_INT_MASK_LINK_UP;
4426 val64 |= GPIO_INT_MASK_LINK_DOWN;
4427 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4428
4429 /* turn off LED */
4430 val64 = readq(&bar0->adapter_control);
d44570e4 4431 val64 = val64 & (~ADAPTER_LED_ON);
ac1f90d6 4432 writeq(val64, &bar0->adapter_control);
a371a07d
K
4433 }
4434 }
c92ca04b 4435 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4436}
4437
8116f3cf
SS
4438/**
4439 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4440 * @value: alarm bits
4441 * @addr: address value
4442 * @cnt: counter variable
4443 * Description: Check for alarm and increment the counter
4444 * Return Value:
4445 * 1 - if alarm bit set
4446 * 0 - if alarm bit is not set
4447 */
d44570e4
JP
4448static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4449 unsigned long long *cnt)
8116f3cf
SS
4450{
4451 u64 val64;
4452 val64 = readq(addr);
d44570e4 4453 if (val64 & value) {
8116f3cf
SS
4454 writeq(val64, addr);
4455 (*cnt)++;
4456 return 1;
4457 }
4458 return 0;
4459
4460}
4461
4462/**
4463 * s2io_handle_errors - Xframe error indication handler
4464 * @nic: device private variable
4465 * Description: Handle alarms such as loss of link, single or
4466 * double ECC errors, critical and serious errors.
4467 * Return Value:
4468 * NONE
4469 */
d44570e4 4470static void s2io_handle_errors(void *dev_id)
8116f3cf 4471{
d44570e4 4472 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4473 struct s2io_nic *sp = netdev_priv(dev);
8116f3cf 4474 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d44570e4 4475 u64 temp64 = 0, val64 = 0;
8116f3cf
SS
4476 int i = 0;
4477
4478 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4479 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4480
92b84437 4481 if (!is_s2io_card_up(sp))
8116f3cf
SS
4482 return;
4483
4484 if (pci_channel_offline(sp->pdev))
4485 return;
4486
4487 memset(&sw_stat->ring_full_cnt, 0,
d44570e4 4488 sizeof(sw_stat->ring_full_cnt));
8116f3cf
SS
4489
4490 /* Handling the XPAK counters update */
d44570e4 4491 if (stats->xpak_timer_count < 72000) {
8116f3cf
SS
4492 /* waiting for an hour */
4493 stats->xpak_timer_count++;
4494 } else {
4495 s2io_updt_xpak_counter(dev);
4496 /* reset the count to zero */
4497 stats->xpak_timer_count = 0;
4498 }
4499
4500 /* Handling link status change error Intr */
4501 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4502 val64 = readq(&bar0->mac_rmac_err_reg);
4503 writeq(val64, &bar0->mac_rmac_err_reg);
4504 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4505 schedule_work(&sp->set_link_task);
4506 }
4507
4508 /* In case of a serious error, the device will be Reset. */
4509 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
d44570e4 4510 &sw_stat->serious_err_cnt))
8116f3cf
SS
4511 goto reset;
4512
4513 /* Check for data parity error */
4514 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
d44570e4 4515 &sw_stat->parity_err_cnt))
8116f3cf
SS
4516 goto reset;
4517
4518 /* Check for ring full counter */
4519 if (sp->device_type == XFRAME_II_DEVICE) {
4520 val64 = readq(&bar0->ring_bump_counter1);
d44570e4
JP
4521 for (i = 0; i < 4; i++) {
4522 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf
SS
4523 temp64 >>= 64 - ((i+1)*16);
4524 sw_stat->ring_full_cnt[i] += temp64;
4525 }
4526
4527 val64 = readq(&bar0->ring_bump_counter2);
d44570e4
JP
4528 for (i = 0; i < 4; i++) {
4529 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf 4530 temp64 >>= 64 - ((i+1)*16);
d44570e4 4531 sw_stat->ring_full_cnt[i+4] += temp64;
8116f3cf
SS
4532 }
4533 }
4534
4535 val64 = readq(&bar0->txdma_int_status);
4536 /*check for pfc_err*/
4537 if (val64 & TXDMA_PFC_INT) {
d44570e4
JP
4538 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4539 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4540 PFC_PCIX_ERR,
4541 &bar0->pfc_err_reg,
4542 &sw_stat->pfc_err_cnt))
8116f3cf 4543 goto reset;
d44570e4
JP
4544 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4545 &bar0->pfc_err_reg,
4546 &sw_stat->pfc_err_cnt);
8116f3cf
SS
4547 }
4548
4549 /*check for tda_err*/
4550 if (val64 & TXDMA_TDA_INT) {
d44570e4
JP
4551 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4552 TDA_SM0_ERR_ALARM |
4553 TDA_SM1_ERR_ALARM,
4554 &bar0->tda_err_reg,
4555 &sw_stat->tda_err_cnt))
8116f3cf
SS
4556 goto reset;
4557 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
d44570e4
JP
4558 &bar0->tda_err_reg,
4559 &sw_stat->tda_err_cnt);
8116f3cf
SS
4560 }
4561 /*check for pcc_err*/
4562 if (val64 & TXDMA_PCC_INT) {
d44570e4
JP
4563 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4564 PCC_N_SERR | PCC_6_COF_OV_ERR |
4565 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4566 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4567 PCC_TXB_ECC_DB_ERR,
4568 &bar0->pcc_err_reg,
4569 &sw_stat->pcc_err_cnt))
8116f3cf
SS
4570 goto reset;
4571 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
d44570e4
JP
4572 &bar0->pcc_err_reg,
4573 &sw_stat->pcc_err_cnt);
8116f3cf
SS
4574 }
4575
4576 /*check for tti_err*/
4577 if (val64 & TXDMA_TTI_INT) {
d44570e4
JP
4578 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4579 &bar0->tti_err_reg,
4580 &sw_stat->tti_err_cnt))
8116f3cf
SS
4581 goto reset;
4582 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
d44570e4
JP
4583 &bar0->tti_err_reg,
4584 &sw_stat->tti_err_cnt);
8116f3cf
SS
4585 }
4586
4587 /*check for lso_err*/
4588 if (val64 & TXDMA_LSO_INT) {
d44570e4
JP
4589 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4590 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4591 &bar0->lso_err_reg,
4592 &sw_stat->lso_err_cnt))
8116f3cf
SS
4593 goto reset;
4594 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
d44570e4
JP
4595 &bar0->lso_err_reg,
4596 &sw_stat->lso_err_cnt);
8116f3cf
SS
4597 }
4598
4599 /*check for tpa_err*/
4600 if (val64 & TXDMA_TPA_INT) {
d44570e4
JP
4601 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4602 &bar0->tpa_err_reg,
4603 &sw_stat->tpa_err_cnt))
8116f3cf 4604 goto reset;
d44570e4
JP
4605 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4606 &bar0->tpa_err_reg,
4607 &sw_stat->tpa_err_cnt);
8116f3cf
SS
4608 }
4609
4610 /*check for sm_err*/
4611 if (val64 & TXDMA_SM_INT) {
d44570e4
JP
4612 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4613 &bar0->sm_err_reg,
4614 &sw_stat->sm_err_cnt))
8116f3cf
SS
4615 goto reset;
4616 }
4617
4618 val64 = readq(&bar0->mac_int_status);
4619 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4620 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
d44570e4
JP
4621 &bar0->mac_tmac_err_reg,
4622 &sw_stat->mac_tmac_err_cnt))
8116f3cf 4623 goto reset;
d44570e4
JP
4624 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4625 TMAC_DESC_ECC_SG_ERR |
4626 TMAC_DESC_ECC_DB_ERR,
4627 &bar0->mac_tmac_err_reg,
4628 &sw_stat->mac_tmac_err_cnt);
8116f3cf
SS
4629 }
4630
4631 val64 = readq(&bar0->xgxs_int_status);
4632 if (val64 & XGXS_INT_STATUS_TXGXS) {
4633 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
d44570e4
JP
4634 &bar0->xgxs_txgxs_err_reg,
4635 &sw_stat->xgxs_txgxs_err_cnt))
8116f3cf
SS
4636 goto reset;
4637 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
d44570e4
JP
4638 &bar0->xgxs_txgxs_err_reg,
4639 &sw_stat->xgxs_txgxs_err_cnt);
8116f3cf
SS
4640 }
4641
4642 val64 = readq(&bar0->rxdma_int_status);
4643 if (val64 & RXDMA_INT_RC_INT_M) {
d44570e4
JP
4644 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4645 RC_FTC_ECC_DB_ERR |
4646 RC_PRCn_SM_ERR_ALARM |
4647 RC_FTC_SM_ERR_ALARM,
4648 &bar0->rc_err_reg,
4649 &sw_stat->rc_err_cnt))
8116f3cf 4650 goto reset;
d44570e4
JP
4651 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4652 RC_FTC_ECC_SG_ERR |
4653 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4654 &sw_stat->rc_err_cnt);
4655 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4656 PRC_PCI_AB_WR_Rn |
4657 PRC_PCI_AB_F_WR_Rn,
4658 &bar0->prc_pcix_err_reg,
4659 &sw_stat->prc_pcix_err_cnt))
8116f3cf 4660 goto reset;
d44570e4
JP
4661 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4662 PRC_PCI_DP_WR_Rn |
4663 PRC_PCI_DP_F_WR_Rn,
4664 &bar0->prc_pcix_err_reg,
4665 &sw_stat->prc_pcix_err_cnt);
8116f3cf
SS
4666 }
4667
4668 if (val64 & RXDMA_INT_RPA_INT_M) {
4669 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
d44570e4
JP
4670 &bar0->rpa_err_reg,
4671 &sw_stat->rpa_err_cnt))
8116f3cf
SS
4672 goto reset;
4673 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
d44570e4
JP
4674 &bar0->rpa_err_reg,
4675 &sw_stat->rpa_err_cnt);
8116f3cf
SS
4676 }
4677
4678 if (val64 & RXDMA_INT_RDA_INT_M) {
d44570e4
JP
4679 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4680 RDA_FRM_ECC_DB_N_AERR |
4681 RDA_SM1_ERR_ALARM |
4682 RDA_SM0_ERR_ALARM |
4683 RDA_RXD_ECC_DB_SERR,
4684 &bar0->rda_err_reg,
4685 &sw_stat->rda_err_cnt))
8116f3cf 4686 goto reset;
d44570e4
JP
4687 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4688 RDA_FRM_ECC_SG_ERR |
4689 RDA_MISC_ERR |
4690 RDA_PCIX_ERR,
4691 &bar0->rda_err_reg,
4692 &sw_stat->rda_err_cnt);
8116f3cf
SS
4693 }
4694
4695 if (val64 & RXDMA_INT_RTI_INT_M) {
d44570e4
JP
4696 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4697 &bar0->rti_err_reg,
4698 &sw_stat->rti_err_cnt))
8116f3cf
SS
4699 goto reset;
4700 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
d44570e4
JP
4701 &bar0->rti_err_reg,
4702 &sw_stat->rti_err_cnt);
8116f3cf
SS
4703 }
4704
4705 val64 = readq(&bar0->mac_int_status);
4706 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4707 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
d44570e4
JP
4708 &bar0->mac_rmac_err_reg,
4709 &sw_stat->mac_rmac_err_cnt))
8116f3cf 4710 goto reset;
d44570e4
JP
4711 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4712 RMAC_SINGLE_ECC_ERR |
4713 RMAC_DOUBLE_ECC_ERR,
4714 &bar0->mac_rmac_err_reg,
4715 &sw_stat->mac_rmac_err_cnt);
8116f3cf
SS
4716 }
4717
4718 val64 = readq(&bar0->xgxs_int_status);
4719 if (val64 & XGXS_INT_STATUS_RXGXS) {
4720 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
d44570e4
JP
4721 &bar0->xgxs_rxgxs_err_reg,
4722 &sw_stat->xgxs_rxgxs_err_cnt))
8116f3cf
SS
4723 goto reset;
4724 }
4725
4726 val64 = readq(&bar0->mc_int_status);
d44570e4
JP
4727 if (val64 & MC_INT_STATUS_MC_INT) {
4728 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4729 &bar0->mc_err_reg,
4730 &sw_stat->mc_err_cnt))
8116f3cf
SS
4731 goto reset;
4732
4733 /* Handling Ecc errors */
4734 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4735 writeq(val64, &bar0->mc_err_reg);
4736 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4737 sw_stat->double_ecc_errs++;
4738 if (sp->device_type != XFRAME_II_DEVICE) {
4739 /*
4740 * Reset XframeI only if critical error
4741 */
4742 if (val64 &
d44570e4
JP
4743 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4744 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4745 goto reset;
4746 }
8116f3cf
SS
4747 } else
4748 sw_stat->single_ecc_errs++;
4749 }
4750 }
4751 return;
4752
4753reset:
3a3d5756 4754 s2io_stop_all_tx_queue(sp);
8116f3cf
SS
4755 schedule_work(&sp->rst_timer_task);
4756 sw_stat->soft_reset_cnt++;
4757 return;
4758}
4759
1da177e4
LT
4760/**
4761 * s2io_isr - ISR handler of the device .
4762 * @irq: the irq of the device.
4763 * @dev_id: a void pointer to the dev structure of the NIC.
20346722
K
4764 * Description: This function is the ISR handler of the device. It
4765 * identifies the reason for the interrupt and calls the relevant
4766 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4767 * recv buffers, if their numbers are below the panic value which is
4768 * presently set to 25% of the original number of rcv buffers allocated.
4769 * Return value:
20346722 4770 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4771 * IRQ_NONE: will be returned if interrupt is not from our device
4772 */
7d12e780 4773static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4 4774{
d44570e4 4775 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4776 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4777 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4778 int i;
19a60522 4779 u64 reason = 0;
1ee6dd77 4780 struct mac_info *mac_control;
1da177e4
LT
4781 struct config_param *config;
4782
d796fdb7
LV
4783 /* Pretend we handled any irq's from a disconnected card */
4784 if (pci_channel_offline(sp->pdev))
4785 return IRQ_NONE;
4786
596c5c97 4787 if (!is_s2io_card_up(sp))
92b84437 4788 return IRQ_NONE;
92b84437 4789
1da177e4 4790 config = &sp->config;
ffb5df6c 4791 mac_control = &sp->mac_control;
1da177e4 4792
20346722 4793 /*
1da177e4
LT
4794 * Identify the cause for interrupt and call the appropriate
4795 * interrupt handler. Causes for the interrupt could be;
4796 * 1. Rx of packet.
4797 * 2. Tx complete.
4798 * 3. Link down.
1da177e4
LT
4799 */
4800 reason = readq(&bar0->general_int_status);
4801
d44570e4
JP
4802 if (unlikely(reason == S2IO_MINUS_ONE))
4803 return IRQ_HANDLED; /* Nothing much can be done. Get out */
5d3213cc 4804
d44570e4
JP
4805 if (reason &
4806 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
596c5c97
SS
4807 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4808
4809 if (config->napi) {
4810 if (reason & GEN_INTR_RXTRAFFIC) {
288379f0 4811 napi_schedule(&sp->napi);
f61e0a35
SH
4812 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4813 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4814 readl(&bar0->rx_traffic_int);
db874e65 4815 }
596c5c97
SS
4816 } else {
4817 /*
4818 * rx_traffic_int reg is an R1 register, writing all 1's
4819 * will ensure that the actual interrupt causing bit
4820 * get's cleared and hence a read can be avoided.
4821 */
4822 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4823 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97 4824
13d866a9
JP
4825 for (i = 0; i < config->rx_ring_num; i++) {
4826 struct ring_info *ring = &mac_control->rings[i];
4827
4828 rx_intr_handler(ring, 0);
4829 }
db874e65 4830 }
596c5c97 4831
db874e65 4832 /*
596c5c97 4833 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4834 * will ensure that the actual interrupt causing bit get's
4835 * cleared and hence a read can be avoided.
4836 */
596c5c97
SS
4837 if (reason & GEN_INTR_TXTRAFFIC)
4838 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4839
596c5c97
SS
4840 for (i = 0; i < config->tx_fifo_num; i++)
4841 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4842
596c5c97
SS
4843 if (reason & GEN_INTR_TXPIC)
4844 s2io_txpic_intr_handle(sp);
fe113638 4845
596c5c97
SS
4846 /*
4847 * Reallocate the buffers from the interrupt handler itself.
4848 */
4849 if (!config->napi) {
13d866a9
JP
4850 for (i = 0; i < config->rx_ring_num; i++) {
4851 struct ring_info *ring = &mac_control->rings[i];
4852
4853 s2io_chk_rx_buffers(sp, ring);
4854 }
596c5c97
SS
4855 }
4856 writeq(sp->general_int_mask, &bar0->general_int_mask);
4857 readl(&bar0->general_int_status);
20346722 4858
596c5c97 4859 return IRQ_HANDLED;
db874e65 4860
d44570e4 4861 } else if (!reason) {
596c5c97
SS
4862 /* The interrupt was not raised by us */
4863 return IRQ_NONE;
4864 }
db874e65 4865
1da177e4
LT
4866 return IRQ_HANDLED;
4867}
4868
7ba013ac
K
4869/**
4870 * s2io_updt_stats -
4871 */
1ee6dd77 4872static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4873{
1ee6dd77 4874 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac
K
4875 u64 val64;
4876 int cnt = 0;
4877
92b84437 4878 if (is_s2io_card_up(sp)) {
7ba013ac
K
4879 /* Apprx 30us on a 133 MHz bus */
4880 val64 = SET_UPDT_CLICKS(10) |
4881 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4882 writeq(val64, &bar0->stat_cfg);
4883 do {
4884 udelay(100);
4885 val64 = readq(&bar0->stat_cfg);
b7b5a128 4886 if (!(val64 & s2BIT(0)))
7ba013ac
K
4887 break;
4888 cnt++;
4889 if (cnt == 5)
4890 break; /* Updt failed */
d44570e4 4891 } while (1);
8a4bdbaa 4892 }
7ba013ac
K
4893}
4894
1da177e4 4895/**
20346722 4896 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4897 * @dev : pointer to the device structure.
4898 * Description:
20346722 4899 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4900 * structure and returns a pointer to the same.
4901 * Return value:
4902 * pointer to the updated net_device_stats structure.
4903 */
4904
ac1f60db 4905static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4906{
4cf1653a 4907 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
4908 struct config_param *config = &sp->config;
4909 struct mac_info *mac_control = &sp->mac_control;
4910 struct stat_block *stats = mac_control->stats_info;
0425b46a 4911 int i;
1da177e4 4912
7ba013ac
K
4913 /* Configure Stats for immediate updt */
4914 s2io_updt_stats(sp);
4915
dc56e634
BL
4916 /* Using sp->stats as a staging area, because reset (due to mtu
4917 change, for example) will clear some hardware counters */
ffb5df6c 4918 dev->stats.tx_packets += le32_to_cpu(stats->tmac_frms) -
dc56e634 4919 sp->stats.tx_packets;
ffb5df6c
JP
4920 sp->stats.tx_packets = le32_to_cpu(stats->tmac_frms);
4921
4922 dev->stats.tx_errors += le32_to_cpu(stats->tmac_any_err_frms) -
dc56e634 4923 sp->stats.tx_errors;
ffb5df6c
JP
4924 sp->stats.tx_errors = le32_to_cpu(stats->tmac_any_err_frms);
4925
4926 dev->stats.rx_errors += le64_to_cpu(stats->rmac_drop_frms) -
dc56e634 4927 sp->stats.rx_errors;
ffb5df6c
JP
4928 sp->stats.rx_errors = le64_to_cpu(stats->rmac_drop_frms);
4929
4930 dev->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms) -
dc56e634 4931 sp->stats.multicast;
ffb5df6c
JP
4932 sp->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms);
4933
4934 dev->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms) -
dc56e634 4935 sp->stats.rx_length_errors;
ffb5df6c 4936 sp->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms);
1da177e4 4937
0425b46a 4938 /* collect per-ring rx_packets and rx_bytes */
dc56e634 4939 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
0425b46a 4940 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
4941 struct ring_info *ring = &mac_control->rings[i];
4942
4943 dev->stats.rx_packets += ring->rx_packets;
4944 dev->stats.rx_bytes += ring->rx_bytes;
0425b46a
SH
4945 }
4946
d44570e4 4947 return &dev->stats;
1da177e4
LT
4948}
4949
4950/**
4951 * s2io_set_multicast - entry point for multicast address enable/disable.
4952 * @dev : pointer to the device structure
4953 * Description:
20346722
K
4954 * This function is a driver entry point which gets called by the kernel
4955 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4956 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4957 * determine, if multicast address must be enabled or if promiscuous mode
4958 * is to be disabled etc.
4959 * Return value:
4960 * void.
4961 */
4962
4963static void s2io_set_multicast(struct net_device *dev)
4964{
4965 int i, j, prev_cnt;
4966 struct dev_mc_list *mclist;
4cf1653a 4967 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4968 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 4969 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
d44570e4 4970 0xfeffffffffffULL;
faa4f796 4971 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
1da177e4 4972 void __iomem *add;
faa4f796 4973 struct config_param *config = &sp->config;
1da177e4
LT
4974
4975 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4976 /* Enable all Multicast addresses */
4977 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4978 &bar0->rmac_addr_data0_mem);
4979 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4980 &bar0->rmac_addr_data1_mem);
4981 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
4982 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4983 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
1da177e4
LT
4984 writeq(val64, &bar0->rmac_addr_cmd_mem);
4985 /* Wait till command completes */
c92ca04b 4986 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
4987 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4988 S2IO_BIT_RESET);
1da177e4
LT
4989
4990 sp->m_cast_flg = 1;
faa4f796 4991 sp->all_multi_pos = config->max_mc_addr - 1;
1da177e4
LT
4992 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4993 /* Disable all Multicast addresses */
4994 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4995 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4996 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4997 &bar0->rmac_addr_data1_mem);
1da177e4 4998 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
4999 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5000 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
1da177e4
LT
5001 writeq(val64, &bar0->rmac_addr_cmd_mem);
5002 /* Wait till command completes */
c92ca04b 5003 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5004 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5005 S2IO_BIT_RESET);
1da177e4
LT
5006
5007 sp->m_cast_flg = 0;
5008 sp->all_multi_pos = 0;
5009 }
5010
5011 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5012 /* Put the NIC into promiscuous mode */
5013 add = &bar0->mac_cfg;
5014 val64 = readq(&bar0->mac_cfg);
5015 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5016
5017 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 5018 writel((u32)val64, add);
1da177e4
LT
5019 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5020 writel((u32) (val64 >> 32), (add + 4));
5021
926930b2
SS
5022 if (vlan_tag_strip != 1) {
5023 val64 = readq(&bar0->rx_pa_cfg);
5024 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5025 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5026 sp->vlan_strip_flag = 0;
926930b2
SS
5027 }
5028
1da177e4
LT
5029 val64 = readq(&bar0->mac_cfg);
5030 sp->promisc_flg = 1;
776bd20f 5031 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
5032 dev->name);
5033 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5034 /* Remove the NIC from promiscuous mode */
5035 add = &bar0->mac_cfg;
5036 val64 = readq(&bar0->mac_cfg);
5037 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5038
5039 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 5040 writel((u32)val64, add);
1da177e4
LT
5041 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5042 writel((u32) (val64 >> 32), (add + 4));
5043
926930b2
SS
5044 if (vlan_tag_strip != 0) {
5045 val64 = readq(&bar0->rx_pa_cfg);
5046 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5047 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5048 sp->vlan_strip_flag = 1;
926930b2
SS
5049 }
5050
1da177e4
LT
5051 val64 = readq(&bar0->mac_cfg);
5052 sp->promisc_flg = 0;
9e39f7c5 5053 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
1da177e4
LT
5054 }
5055
5056 /* Update individual M_CAST address list */
5057 if ((!sp->m_cast_flg) && dev->mc_count) {
5058 if (dev->mc_count >
faa4f796 5059 (config->max_mc_addr - config->max_mac_addr)) {
9e39f7c5
JP
5060 DBG_PRINT(ERR_DBG,
5061 "%s: No more Rx filters can be added - "
5062 "please enable ALL_MULTI instead\n",
1da177e4 5063 dev->name);
1da177e4
LT
5064 return;
5065 }
5066
5067 prev_cnt = sp->mc_addr_count;
5068 sp->mc_addr_count = dev->mc_count;
5069
5070 /* Clear out the previous list of Mc in the H/W. */
5071 for (i = 0; i < prev_cnt; i++) {
5072 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5073 &bar0->rmac_addr_data0_mem);
5074 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5075 &bar0->rmac_addr_data1_mem);
1da177e4 5076 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5077 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5078 RMAC_ADDR_CMD_MEM_OFFSET
5079 (config->mc_start_offset + i);
1da177e4
LT
5080 writeq(val64, &bar0->rmac_addr_cmd_mem);
5081
5082 /* Wait for command completes */
c92ca04b 5083 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5084 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5085 S2IO_BIT_RESET)) {
9e39f7c5
JP
5086 DBG_PRINT(ERR_DBG,
5087 "%s: Adding Multicasts failed\n",
5088 dev->name);
1da177e4
LT
5089 return;
5090 }
5091 }
5092
5093 /* Create the new Rx filter list and update the same in H/W. */
5094 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5095 i++, mclist = mclist->next) {
5096 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5097 ETH_ALEN);
a7a80d5a 5098 mac_addr = 0;
1da177e4
LT
5099 for (j = 0; j < ETH_ALEN; j++) {
5100 mac_addr |= mclist->dmi_addr[j];
5101 mac_addr <<= 8;
5102 }
5103 mac_addr >>= 8;
5104 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5105 &bar0->rmac_addr_data0_mem);
5106 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5107 &bar0->rmac_addr_data1_mem);
1da177e4 5108 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5109 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5110 RMAC_ADDR_CMD_MEM_OFFSET
5111 (i + config->mc_start_offset);
1da177e4
LT
5112 writeq(val64, &bar0->rmac_addr_cmd_mem);
5113
5114 /* Wait for command completes */
c92ca04b 5115 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5116 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5117 S2IO_BIT_RESET)) {
9e39f7c5
JP
5118 DBG_PRINT(ERR_DBG,
5119 "%s: Adding Multicasts failed\n",
5120 dev->name);
1da177e4
LT
5121 return;
5122 }
5123 }
5124 }
5125}
5126
faa4f796
SH
5127/* read from CAM unicast & multicast addresses and store it in
5128 * def_mac_addr structure
5129 */
dac499f9 5130static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
faa4f796
SH
5131{
5132 int offset;
5133 u64 mac_addr = 0x0;
5134 struct config_param *config = &sp->config;
5135
5136 /* store unicast & multicast mac addresses */
5137 for (offset = 0; offset < config->max_mc_addr; offset++) {
5138 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5139 /* if read fails disable the entry */
5140 if (mac_addr == FAILURE)
5141 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5142 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5143 }
5144}
5145
5146/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5147static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5148{
5149 int offset;
5150 struct config_param *config = &sp->config;
5151 /* restore unicast mac address */
5152 for (offset = 0; offset < config->max_mac_addr; offset++)
5153 do_s2io_prog_unicast(sp->dev,
d44570e4 5154 sp->def_mac_addr[offset].mac_addr);
faa4f796
SH
5155
5156 /* restore multicast mac address */
5157 for (offset = config->mc_start_offset;
d44570e4 5158 offset < config->max_mc_addr; offset++)
faa4f796
SH
5159 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5160}
5161
5162/* add a multicast MAC address to CAM */
5163static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5164{
5165 int i;
5166 u64 mac_addr = 0;
5167 struct config_param *config = &sp->config;
5168
5169 for (i = 0; i < ETH_ALEN; i++) {
5170 mac_addr <<= 8;
5171 mac_addr |= addr[i];
5172 }
5173 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5174 return SUCCESS;
5175
5176 /* check if the multicast mac already preset in CAM */
5177 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5178 u64 tmp64;
5179 tmp64 = do_s2io_read_unicast_mc(sp, i);
5180 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5181 break;
5182
5183 if (tmp64 == mac_addr)
5184 return SUCCESS;
5185 }
5186 if (i == config->max_mc_addr) {
5187 DBG_PRINT(ERR_DBG,
d44570e4 5188 "CAM full no space left for multicast MAC\n");
faa4f796
SH
5189 return FAILURE;
5190 }
5191 /* Update the internal structure with this new mac address */
5192 do_s2io_copy_mac_addr(sp, i, mac_addr);
5193
d44570e4 5194 return do_s2io_add_mac(sp, mac_addr, i);
faa4f796
SH
5195}
5196
5197/* add MAC address to CAM */
5198static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
2fd37688
SS
5199{
5200 u64 val64;
5201 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5202
5203 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
d44570e4 5204 &bar0->rmac_addr_data0_mem);
2fd37688 5205
d44570e4 5206 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
2fd37688
SS
5207 RMAC_ADDR_CMD_MEM_OFFSET(off);
5208 writeq(val64, &bar0->rmac_addr_cmd_mem);
5209
5210 /* Wait till command completes */
5211 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5212 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5213 S2IO_BIT_RESET)) {
faa4f796 5214 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
2fd37688
SS
5215 return FAILURE;
5216 }
5217 return SUCCESS;
5218}
faa4f796
SH
5219/* deletes a specified unicast/multicast mac entry from CAM */
5220static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5221{
5222 int offset;
5223 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5224 struct config_param *config = &sp->config;
5225
5226 for (offset = 1;
d44570e4 5227 offset < config->max_mc_addr; offset++) {
faa4f796
SH
5228 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5229 if (tmp64 == addr) {
5230 /* disable the entry by writing 0xffffffffffffULL */
5231 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5232 return FAILURE;
5233 /* store the new mac list from CAM */
5234 do_s2io_store_unicast_mc(sp);
5235 return SUCCESS;
5236 }
5237 }
5238 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
d44570e4 5239 (unsigned long long)addr);
faa4f796
SH
5240 return FAILURE;
5241}
5242
5243/* read mac entries from CAM */
5244static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5245{
5246 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5247 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5248
5249 /* read mac addr */
d44570e4 5250 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796
SH
5251 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5252 writeq(val64, &bar0->rmac_addr_cmd_mem);
5253
5254 /* Wait till command completes */
5255 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5256 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5257 S2IO_BIT_RESET)) {
faa4f796
SH
5258 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5259 return FAILURE;
5260 }
5261 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4
JP
5262
5263 return tmp64 >> 16;
faa4f796 5264}
2fd37688
SS
5265
5266/**
5267 * s2io_set_mac_addr driver entry point
5268 */
faa4f796 5269
2fd37688
SS
5270static int s2io_set_mac_addr(struct net_device *dev, void *p)
5271{
5272 struct sockaddr *addr = p;
5273
5274 if (!is_valid_ether_addr(addr->sa_data))
5275 return -EINVAL;
5276
5277 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5278
5279 /* store the MAC address in CAM */
d44570e4 5280 return do_s2io_prog_unicast(dev, dev->dev_addr);
2fd37688 5281}
1da177e4 5282/**
2fd37688 5283 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
5284 * @dev : pointer to the device structure.
5285 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 5286 * Description : This procedure will program the Xframe to receive
1da177e4 5287 * frames with new Mac Address
20346722 5288 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
5289 * as defined in errno.h file on failure.
5290 */
faa4f796 5291
2fd37688 5292static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 5293{
4cf1653a 5294 struct s2io_nic *sp = netdev_priv(dev);
2fd37688 5295 register u64 mac_addr = 0, perm_addr = 0;
1da177e4 5296 int i;
faa4f796
SH
5297 u64 tmp64;
5298 struct config_param *config = &sp->config;
1da177e4 5299
20346722 5300 /*
d44570e4
JP
5301 * Set the new MAC address as the new unicast filter and reflect this
5302 * change on the device address registered with the OS. It will be
5303 * at offset 0.
5304 */
1da177e4
LT
5305 for (i = 0; i < ETH_ALEN; i++) {
5306 mac_addr <<= 8;
5307 mac_addr |= addr[i];
2fd37688
SS
5308 perm_addr <<= 8;
5309 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
5310 }
5311
2fd37688
SS
5312 /* check if the dev_addr is different than perm_addr */
5313 if (mac_addr == perm_addr)
d8d70caf
SS
5314 return SUCCESS;
5315
faa4f796
SH
5316 /* check if the mac already preset in CAM */
5317 for (i = 1; i < config->max_mac_addr; i++) {
5318 tmp64 = do_s2io_read_unicast_mc(sp, i);
5319 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5320 break;
5321
5322 if (tmp64 == mac_addr) {
5323 DBG_PRINT(INFO_DBG,
d44570e4
JP
5324 "MAC addr:0x%llx already present in CAM\n",
5325 (unsigned long long)mac_addr);
faa4f796
SH
5326 return SUCCESS;
5327 }
5328 }
5329 if (i == config->max_mac_addr) {
5330 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5331 return FAILURE;
5332 }
d8d70caf 5333 /* Update the internal structure with this new mac address */
faa4f796 5334 do_s2io_copy_mac_addr(sp, i, mac_addr);
d44570e4
JP
5335
5336 return do_s2io_add_mac(sp, mac_addr, i);
1da177e4
LT
5337}
5338
5339/**
20346722 5340 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
5341 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5342 * @info: pointer to the structure with parameters given by ethtool to set
5343 * link information.
5344 * Description:
20346722 5345 * The function sets different link parameters provided by the user onto
1da177e4
LT
5346 * the NIC.
5347 * Return value:
5348 * 0 on success.
d44570e4 5349 */
1da177e4
LT
5350
5351static int s2io_ethtool_sset(struct net_device *dev,
5352 struct ethtool_cmd *info)
5353{
4cf1653a 5354 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5355 if ((info->autoneg == AUTONEG_ENABLE) ||
d44570e4
JP
5356 (info->speed != SPEED_10000) ||
5357 (info->duplex != DUPLEX_FULL))
1da177e4
LT
5358 return -EINVAL;
5359 else {
5360 s2io_close(sp->dev);
5361 s2io_open(sp->dev);
5362 }
5363
5364 return 0;
5365}
5366
5367/**
20346722 5368 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5369 * @sp : private member of the device structure, pointer to the
5370 * s2io_nic structure.
5371 * @info : pointer to the structure with parameters given by ethtool
5372 * to return link information.
5373 * Description:
5374 * Returns link specific information like speed, duplex etc.. to ethtool.
5375 * Return value :
5376 * return 0 on success.
5377 */
5378
5379static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5380{
4cf1653a 5381 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5382 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5383 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5384 info->port = PORT_FIBRE;
1a7eb72b
SS
5385
5386 /* info->transceiver */
5387 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5388
5389 if (netif_carrier_ok(sp->dev)) {
5390 info->speed = 10000;
5391 info->duplex = DUPLEX_FULL;
5392 } else {
5393 info->speed = -1;
5394 info->duplex = -1;
5395 }
5396
5397 info->autoneg = AUTONEG_DISABLE;
5398 return 0;
5399}
5400
5401/**
20346722
K
5402 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5403 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5404 * s2io_nic structure.
5405 * @info : pointer to the structure with parameters given by ethtool to
5406 * return driver information.
5407 * Description:
5408 * Returns driver specefic information like name, version etc.. to ethtool.
5409 * Return value:
5410 * void
5411 */
5412
5413static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5414 struct ethtool_drvinfo *info)
5415{
4cf1653a 5416 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5417
dbc2309d
JL
5418 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5419 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5420 strncpy(info->fw_version, "", sizeof(info->fw_version));
5421 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5422 info->regdump_len = XENA_REG_SPACE;
5423 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5424}
5425
5426/**
5427 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5428 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5429 * s2io_nic structure.
20346722 5430 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5431 * dumping the registers.
5432 * @reg_space: The input argumnet into which all the registers are dumped.
5433 * Description:
5434 * Dumps the entire register space of xFrame NIC into the user given
5435 * buffer area.
5436 * Return value :
5437 * void .
d44570e4 5438 */
1da177e4
LT
5439
5440static void s2io_ethtool_gregs(struct net_device *dev,
5441 struct ethtool_regs *regs, void *space)
5442{
5443 int i;
5444 u64 reg;
d44570e4 5445 u8 *reg_space = (u8 *)space;
4cf1653a 5446 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5447
5448 regs->len = XENA_REG_SPACE;
5449 regs->version = sp->pdev->subsystem_device;
5450
5451 for (i = 0; i < regs->len; i += 8) {
5452 reg = readq(sp->bar0 + i);
5453 memcpy((reg_space + i), &reg, 8);
5454 }
5455}
5456
5457/**
5458 * s2io_phy_id - timer function that alternates adapter LED.
20346722 5459 * @data : address of the private member of the device structure, which
1da177e4 5460 * is a pointer to the s2io_nic structure, provided as an u32.
20346722
K
5461 * Description: This is actually the timer function that alternates the
5462 * adapter LED bit of the adapter control bit to set/reset every time on
5463 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
1da177e4 5464 * once every second.
d44570e4 5465 */
1da177e4
LT
5466static void s2io_phy_id(unsigned long data)
5467{
d44570e4 5468 struct s2io_nic *sp = (struct s2io_nic *)data;
1ee6dd77 5469 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5470 u64 val64 = 0;
5471 u16 subid;
5472
5473 subid = sp->pdev->subsystem_device;
541ae68f 5474 if ((sp->device_type == XFRAME_II_DEVICE) ||
d44570e4 5475 ((subid & 0xFF) >= 0x07)) {
1da177e4
LT
5476 val64 = readq(&bar0->gpio_control);
5477 val64 ^= GPIO_CTRL_GPIO_0;
5478 writeq(val64, &bar0->gpio_control);
5479 } else {
5480 val64 = readq(&bar0->adapter_control);
5481 val64 ^= ADAPTER_LED_ON;
5482 writeq(val64, &bar0->adapter_control);
5483 }
5484
5485 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5486}
5487
5488/**
5489 * s2io_ethtool_idnic - To physically identify the nic on the system.
5490 * @sp : private member of the device structure, which is a pointer to the
5491 * s2io_nic structure.
20346722 5492 * @id : pointer to the structure with identification parameters given by
1da177e4
LT
5493 * ethtool.
5494 * Description: Used to physically identify the NIC on the system.
20346722 5495 * The Link LED will blink for a time specified by the user for
1da177e4 5496 * identification.
20346722 5497 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4
LT
5498 * identification is possible only if it's link is up.
5499 * Return value:
5500 * int , returns 0 on success
5501 */
5502
5503static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5504{
5505 u64 val64 = 0, last_gpio_ctrl_val;
4cf1653a 5506 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5507 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5508 u16 subid;
5509
5510 subid = sp->pdev->subsystem_device;
5511 last_gpio_ctrl_val = readq(&bar0->gpio_control);
d44570e4 5512 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
1da177e4
LT
5513 val64 = readq(&bar0->adapter_control);
5514 if (!(val64 & ADAPTER_CNTL_EN)) {
6cef2b8e 5515 pr_err("Adapter Link down, cannot blink LED\n");
1da177e4
LT
5516 return -EFAULT;
5517 }
5518 }
5519 if (sp->id_timer.function == NULL) {
5520 init_timer(&sp->id_timer);
5521 sp->id_timer.function = s2io_phy_id;
d44570e4 5522 sp->id_timer.data = (unsigned long)sp;
1da177e4
LT
5523 }
5524 mod_timer(&sp->id_timer, jiffies);
5525 if (data)
20346722 5526 msleep_interruptible(data * HZ);
1da177e4 5527 else
20346722 5528 msleep_interruptible(MAX_FLICKER_TIME);
1da177e4
LT
5529 del_timer_sync(&sp->id_timer);
5530
541ae68f 5531 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
1da177e4
LT
5532 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5533 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5534 }
5535
5536 return 0;
5537}
5538
0cec35eb 5539static void s2io_ethtool_gringparam(struct net_device *dev,
d44570e4 5540 struct ethtool_ringparam *ering)
0cec35eb 5541{
4cf1653a 5542 struct s2io_nic *sp = netdev_priv(dev);
d44570e4 5543 int i, tx_desc_count = 0, rx_desc_count = 0;
0cec35eb
SH
5544
5545 if (sp->rxd_mode == RXD_MODE_1)
5546 ering->rx_max_pending = MAX_RX_DESC_1;
5547 else if (sp->rxd_mode == RXD_MODE_3B)
5548 ering->rx_max_pending = MAX_RX_DESC_2;
0cec35eb
SH
5549
5550 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5551 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
0cec35eb 5552 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
8a4bdbaa 5553
9e39f7c5 5554 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
0cec35eb
SH
5555 ering->tx_pending = tx_desc_count;
5556 rx_desc_count = 0;
8a4bdbaa 5557 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
0cec35eb 5558 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
b6627672 5559
0cec35eb
SH
5560 ering->rx_pending = rx_desc_count;
5561
5562 ering->rx_mini_max_pending = 0;
5563 ering->rx_mini_pending = 0;
d44570e4 5564 if (sp->rxd_mode == RXD_MODE_1)
0cec35eb
SH
5565 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5566 else if (sp->rxd_mode == RXD_MODE_3B)
5567 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5568 ering->rx_jumbo_pending = rx_desc_count;
5569}
5570
1da177e4
LT
5571/**
5572 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
5573 * @sp : private member of the device structure, which is a pointer to the
5574 * s2io_nic structure.
1da177e4
LT
5575 * @ep : pointer to the structure with pause parameters given by ethtool.
5576 * Description:
5577 * Returns the Pause frame generation and reception capability of the NIC.
5578 * Return value:
5579 * void
5580 */
5581static void s2io_ethtool_getpause_data(struct net_device *dev,
5582 struct ethtool_pauseparam *ep)
5583{
5584 u64 val64;
4cf1653a 5585 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5586 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5587
5588 val64 = readq(&bar0->rmac_pause_cfg);
5589 if (val64 & RMAC_PAUSE_GEN_ENABLE)
f957bcf0 5590 ep->tx_pause = true;
1da177e4 5591 if (val64 & RMAC_PAUSE_RX_ENABLE)
f957bcf0
TK
5592 ep->rx_pause = true;
5593 ep->autoneg = false;
1da177e4
LT
5594}
5595
5596/**
5597 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5598 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5599 * s2io_nic structure.
5600 * @ep : pointer to the structure with pause parameters given by ethtool.
5601 * Description:
5602 * It can be used to set or reset Pause frame generation or reception
5603 * support of the NIC.
5604 * Return value:
5605 * int, returns 0 on Success
5606 */
5607
5608static int s2io_ethtool_setpause_data(struct net_device *dev,
d44570e4 5609 struct ethtool_pauseparam *ep)
1da177e4
LT
5610{
5611 u64 val64;
4cf1653a 5612 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5613 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5614
5615 val64 = readq(&bar0->rmac_pause_cfg);
5616 if (ep->tx_pause)
5617 val64 |= RMAC_PAUSE_GEN_ENABLE;
5618 else
5619 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5620 if (ep->rx_pause)
5621 val64 |= RMAC_PAUSE_RX_ENABLE;
5622 else
5623 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5624 writeq(val64, &bar0->rmac_pause_cfg);
5625 return 0;
5626}
5627
5628/**
5629 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5630 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5631 * s2io_nic structure.
5632 * @off : offset at which the data must be written
5633 * @data : Its an output parameter where the data read at the given
20346722 5634 * offset is stored.
1da177e4 5635 * Description:
20346722 5636 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5637 * read data.
5638 * NOTE: Will allow to read only part of the EEPROM visible through the
5639 * I2C bus.
5640 * Return value:
5641 * -1 on failure and 0 on success.
5642 */
5643
5644#define S2IO_DEV_ID 5
d44570e4 5645static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
1da177e4
LT
5646{
5647 int ret = -1;
5648 u32 exit_cnt = 0;
5649 u64 val64;
1ee6dd77 5650 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5651
ad4ebed0 5652 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5653 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5654 I2C_CONTROL_ADDR(off) |
5655 I2C_CONTROL_BYTE_CNT(0x3) |
5656 I2C_CONTROL_READ |
5657 I2C_CONTROL_CNTL_START;
ad4ebed0 5658 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5659
ad4ebed0 5660 while (exit_cnt < 5) {
5661 val64 = readq(&bar0->i2c_control);
5662 if (I2C_CONTROL_CNTL_END(val64)) {
5663 *data = I2C_CONTROL_GET_DATA(val64);
5664 ret = 0;
5665 break;
5666 }
5667 msleep(50);
5668 exit_cnt++;
1da177e4 5669 }
1da177e4
LT
5670 }
5671
ad4ebed0 5672 if (sp->device_type == XFRAME_II_DEVICE) {
5673 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5674 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5675 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5676 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5677 val64 |= SPI_CONTROL_REQ;
5678 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5679 while (exit_cnt < 5) {
5680 val64 = readq(&bar0->spi_control);
5681 if (val64 & SPI_CONTROL_NACK) {
5682 ret = 1;
5683 break;
5684 } else if (val64 & SPI_CONTROL_DONE) {
5685 *data = readq(&bar0->spi_data);
5686 *data &= 0xffffff;
5687 ret = 0;
5688 break;
5689 }
5690 msleep(50);
5691 exit_cnt++;
5692 }
5693 }
1da177e4
LT
5694 return ret;
5695}
5696
5697/**
5698 * write_eeprom - actually writes the relevant part of the data value.
5699 * @sp : private member of the device structure, which is a pointer to the
5700 * s2io_nic structure.
5701 * @off : offset at which the data must be written
5702 * @data : The data that is to be written
20346722 5703 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5704 * the Eeprom. (max of 3)
5705 * Description:
5706 * Actually writes the relevant part of the data value into the Eeprom
5707 * through the I2C bus.
5708 * Return value:
5709 * 0 on success, -1 on failure.
5710 */
5711
d44570e4 5712static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
1da177e4
LT
5713{
5714 int exit_cnt = 0, ret = -1;
5715 u64 val64;
1ee6dd77 5716 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5717
ad4ebed0 5718 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5719 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5720 I2C_CONTROL_ADDR(off) |
5721 I2C_CONTROL_BYTE_CNT(cnt) |
5722 I2C_CONTROL_SET_DATA((u32)data) |
5723 I2C_CONTROL_CNTL_START;
ad4ebed0 5724 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5725
5726 while (exit_cnt < 5) {
5727 val64 = readq(&bar0->i2c_control);
5728 if (I2C_CONTROL_CNTL_END(val64)) {
5729 if (!(val64 & I2C_CONTROL_NACK))
5730 ret = 0;
5731 break;
5732 }
5733 msleep(50);
5734 exit_cnt++;
5735 }
5736 }
1da177e4 5737
ad4ebed0 5738 if (sp->device_type == XFRAME_II_DEVICE) {
5739 int write_cnt = (cnt == 8) ? 0 : cnt;
d44570e4 5740 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
ad4ebed0 5741
5742 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5743 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5744 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5745 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5746 val64 |= SPI_CONTROL_REQ;
5747 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5748 while (exit_cnt < 5) {
5749 val64 = readq(&bar0->spi_control);
5750 if (val64 & SPI_CONTROL_NACK) {
5751 ret = 1;
5752 break;
5753 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5754 ret = 0;
ad4ebed0 5755 break;
5756 }
5757 msleep(50);
5758 exit_cnt++;
1da177e4 5759 }
1da177e4 5760 }
1da177e4
LT
5761 return ret;
5762}
1ee6dd77 5763static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5764{
b41477f3
AR
5765 u8 *vpd_data;
5766 u8 data;
d44570e4 5767 int i = 0, cnt, fail = 0;
9dc737a7 5768 int vpd_addr = 0x80;
ffb5df6c 5769 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
9dc737a7
AR
5770
5771 if (nic->device_type == XFRAME_II_DEVICE) {
5772 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5773 vpd_addr = 0x80;
d44570e4 5774 } else {
9dc737a7
AR
5775 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5776 vpd_addr = 0x50;
5777 }
19a60522 5778 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5779
b41477f3 5780 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945 5781 if (!vpd_data) {
ffb5df6c 5782 swstats->mem_alloc_fail_cnt++;
b41477f3 5783 return;
c53d4945 5784 }
ffb5df6c 5785 swstats->mem_allocated += 256;
b41477f3 5786
d44570e4 5787 for (i = 0; i < 256; i += 4) {
9dc737a7
AR
5788 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5789 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5790 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
d44570e4 5791 for (cnt = 0; cnt < 5; cnt++) {
9dc737a7
AR
5792 msleep(2);
5793 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5794 if (data == 0x80)
5795 break;
5796 }
5797 if (cnt >= 5) {
5798 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5799 fail = 1;
5800 break;
5801 }
5802 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5803 (u32 *)&vpd_data[i]);
5804 }
19a60522 5805
d44570e4 5806 if (!fail) {
19a60522
SS
5807 /* read serial number of adapter */
5808 for (cnt = 0; cnt < 256; cnt++) {
d44570e4
JP
5809 if ((vpd_data[cnt] == 'S') &&
5810 (vpd_data[cnt+1] == 'N') &&
5811 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
19a60522
SS
5812 memset(nic->serial_num, 0, VPD_STRING_LEN);
5813 memcpy(nic->serial_num, &vpd_data[cnt + 3],
d44570e4 5814 vpd_data[cnt+2]);
19a60522
SS
5815 break;
5816 }
5817 }
5818 }
5819
5820 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
9dc737a7
AR
5821 memset(nic->product_name, 0, vpd_data[1]);
5822 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5823 }
b41477f3 5824 kfree(vpd_data);
ffb5df6c 5825 swstats->mem_freed += 256;
9dc737a7
AR
5826}
5827
1da177e4
LT
5828/**
5829 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5830 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5831 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5832 * containing all relevant information.
5833 * @data_buf : user defined value to be written into Eeprom.
5834 * Description: Reads the values stored in the Eeprom at given offset
5835 * for a given length. Stores these values int the input argument data
5836 * buffer 'data_buf' and returns these to the caller (ethtool.)
5837 * Return value:
5838 * int 0 on success
5839 */
5840
5841static int s2io_ethtool_geeprom(struct net_device *dev,
d44570e4 5842 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5843{
ad4ebed0 5844 u32 i, valid;
5845 u64 data;
4cf1653a 5846 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5847
5848 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5849
5850 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5851 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5852
5853 for (i = 0; i < eeprom->len; i += 4) {
5854 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5855 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5856 return -EFAULT;
5857 }
5858 valid = INV(data);
5859 memcpy((data_buf + i), &valid, 4);
5860 }
5861 return 0;
5862}
5863
5864/**
5865 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5866 * @sp : private member of the device structure, which is a pointer to the
5867 * s2io_nic structure.
20346722 5868 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5869 * containing all relevant information.
5870 * @data_buf ; user defined value to be written into Eeprom.
5871 * Description:
5872 * Tries to write the user provided value in the Eeprom, at the offset
5873 * given by the user.
5874 * Return value:
5875 * 0 on success, -EFAULT on failure.
5876 */
5877
5878static int s2io_ethtool_seeprom(struct net_device *dev,
5879 struct ethtool_eeprom *eeprom,
d44570e4 5880 u8 *data_buf)
1da177e4
LT
5881{
5882 int len = eeprom->len, cnt = 0;
ad4ebed0 5883 u64 valid = 0, data;
4cf1653a 5884 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5885
5886 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5887 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5888 "ETHTOOL_WRITE_EEPROM Err: "
5889 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5890 (sp->pdev->vendor | (sp->pdev->device << 16)),
5891 eeprom->magic);
1da177e4
LT
5892 return -EFAULT;
5893 }
5894
5895 while (len) {
d44570e4
JP
5896 data = (u32)data_buf[cnt] & 0x000000FF;
5897 if (data)
5898 valid = (u32)(data << 24);
5899 else
1da177e4
LT
5900 valid = data;
5901
5902 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5903 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5904 "ETHTOOL_WRITE_EEPROM Err: "
5905 "Cannot write into the specified offset\n");
1da177e4
LT
5906 return -EFAULT;
5907 }
5908 cnt++;
5909 len--;
5910 }
5911
5912 return 0;
5913}
5914
5915/**
20346722
K
5916 * s2io_register_test - reads and writes into all clock domains.
5917 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5918 * s2io_nic structure.
5919 * @data : variable that returns the result of each of the test conducted b
5920 * by the driver.
5921 * Description:
5922 * Read and write into all clock domains. The NIC has 3 clock domains,
5923 * see that registers in all the three regions are accessible.
5924 * Return value:
5925 * 0 on success.
5926 */
5927
d44570e4 5928static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 5929{
1ee6dd77 5930 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5931 u64 val64 = 0, exp_val;
1da177e4
LT
5932 int fail = 0;
5933
20346722
K
5934 val64 = readq(&bar0->pif_rd_swapper_fb);
5935 if (val64 != 0x123456789abcdefULL) {
1da177e4 5936 fail = 1;
9e39f7c5 5937 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
1da177e4
LT
5938 }
5939
5940 val64 = readq(&bar0->rmac_pause_cfg);
5941 if (val64 != 0xc000ffff00000000ULL) {
5942 fail = 1;
9e39f7c5 5943 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
1da177e4
LT
5944 }
5945
5946 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5947 if (sp->device_type == XFRAME_II_DEVICE)
5948 exp_val = 0x0404040404040404ULL;
5949 else
5950 exp_val = 0x0808080808080808ULL;
5951 if (val64 != exp_val) {
1da177e4 5952 fail = 1;
9e39f7c5 5953 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
1da177e4
LT
5954 }
5955
5956 val64 = readq(&bar0->xgxs_efifo_cfg);
5957 if (val64 != 0x000000001923141EULL) {
5958 fail = 1;
9e39f7c5 5959 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
1da177e4
LT
5960 }
5961
5962 val64 = 0x5A5A5A5A5A5A5A5AULL;
5963 writeq(val64, &bar0->xmsi_data);
5964 val64 = readq(&bar0->xmsi_data);
5965 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5966 fail = 1;
9e39f7c5 5967 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
1da177e4
LT
5968 }
5969
5970 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5971 writeq(val64, &bar0->xmsi_data);
5972 val64 = readq(&bar0->xmsi_data);
5973 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5974 fail = 1;
9e39f7c5 5975 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
1da177e4
LT
5976 }
5977
5978 *data = fail;
ad4ebed0 5979 return fail;
1da177e4
LT
5980}
5981
5982/**
20346722 5983 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5984 * @sp : private member of the device structure, which is a pointer to the
5985 * s2io_nic structure.
5986 * @data:variable that returns the result of each of the test conducted by
5987 * the driver.
5988 * Description:
20346722 5989 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5990 * register.
5991 * Return value:
5992 * 0 on success.
5993 */
5994
d44570e4 5995static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
5996{
5997 int fail = 0;
ad4ebed0 5998 u64 ret_data, org_4F0, org_7F0;
5999 u8 saved_4F0 = 0, saved_7F0 = 0;
6000 struct net_device *dev = sp->dev;
1da177e4
LT
6001
6002 /* Test Write Error at offset 0 */
ad4ebed0 6003 /* Note that SPI interface allows write access to all areas
6004 * of EEPROM. Hence doing all negative testing only for Xframe I.
6005 */
6006 if (sp->device_type == XFRAME_I_DEVICE)
6007 if (!write_eeprom(sp, 0, 0, 3))
6008 fail = 1;
6009
6010 /* Save current values at offsets 0x4F0 and 0x7F0 */
6011 if (!read_eeprom(sp, 0x4F0, &org_4F0))
6012 saved_4F0 = 1;
6013 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6014 saved_7F0 = 1;
1da177e4
LT
6015
6016 /* Test Write at offset 4f0 */
ad4ebed0 6017 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
6018 fail = 1;
6019 if (read_eeprom(sp, 0x4F0, &ret_data))
6020 fail = 1;
6021
ad4ebed0 6022 if (ret_data != 0x012345) {
26b7625c 6023 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
d44570e4
JP
6024 "Data written %llx Data read %llx\n",
6025 dev->name, (unsigned long long)0x12345,
6026 (unsigned long long)ret_data);
1da177e4 6027 fail = 1;
ad4ebed0 6028 }
1da177e4
LT
6029
6030 /* Reset the EEPROM data go FFFF */
ad4ebed0 6031 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
6032
6033 /* Test Write Request Error at offset 0x7c */
ad4ebed0 6034 if (sp->device_type == XFRAME_I_DEVICE)
6035 if (!write_eeprom(sp, 0x07C, 0, 3))
6036 fail = 1;
1da177e4 6037
ad4ebed0 6038 /* Test Write Request at offset 0x7f0 */
6039 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 6040 fail = 1;
ad4ebed0 6041 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
6042 fail = 1;
6043
ad4ebed0 6044 if (ret_data != 0x012345) {
26b7625c 6045 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
d44570e4
JP
6046 "Data written %llx Data read %llx\n",
6047 dev->name, (unsigned long long)0x12345,
6048 (unsigned long long)ret_data);
1da177e4 6049 fail = 1;
ad4ebed0 6050 }
1da177e4
LT
6051
6052 /* Reset the EEPROM data go FFFF */
ad4ebed0 6053 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 6054
ad4ebed0 6055 if (sp->device_type == XFRAME_I_DEVICE) {
6056 /* Test Write Error at offset 0x80 */
6057 if (!write_eeprom(sp, 0x080, 0, 3))
6058 fail = 1;
1da177e4 6059
ad4ebed0 6060 /* Test Write Error at offset 0xfc */
6061 if (!write_eeprom(sp, 0x0FC, 0, 3))
6062 fail = 1;
1da177e4 6063
ad4ebed0 6064 /* Test Write Error at offset 0x100 */
6065 if (!write_eeprom(sp, 0x100, 0, 3))
6066 fail = 1;
1da177e4 6067
ad4ebed0 6068 /* Test Write Error at offset 4ec */
6069 if (!write_eeprom(sp, 0x4EC, 0, 3))
6070 fail = 1;
6071 }
6072
6073 /* Restore values at offsets 0x4F0 and 0x7F0 */
6074 if (saved_4F0)
6075 write_eeprom(sp, 0x4F0, org_4F0, 3);
6076 if (saved_7F0)
6077 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
6078
6079 *data = fail;
ad4ebed0 6080 return fail;
1da177e4
LT
6081}
6082
6083/**
6084 * s2io_bist_test - invokes the MemBist test of the card .
20346722 6085 * @sp : private member of the device structure, which is a pointer to the
1da177e4 6086 * s2io_nic structure.
20346722 6087 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
6088 * the driver.
6089 * Description:
6090 * This invokes the MemBist test of the card. We give around
6091 * 2 secs time for the Test to complete. If it's still not complete
20346722 6092 * within this peiod, we consider that the test failed.
1da177e4
LT
6093 * Return value:
6094 * 0 on success and -1 on failure.
6095 */
6096
d44570e4 6097static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
6098{
6099 u8 bist = 0;
6100 int cnt = 0, ret = -1;
6101
6102 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6103 bist |= PCI_BIST_START;
6104 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6105
6106 while (cnt < 20) {
6107 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6108 if (!(bist & PCI_BIST_START)) {
6109 *data = (bist & PCI_BIST_CODE_MASK);
6110 ret = 0;
6111 break;
6112 }
6113 msleep(100);
6114 cnt++;
6115 }
6116
6117 return ret;
6118}
6119
6120/**
20346722
K
6121 * s2io-link_test - verifies the link state of the nic
6122 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
6123 * s2io_nic structure.
6124 * @data: variable that returns the result of each of the test conducted by
6125 * the driver.
6126 * Description:
20346722 6127 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
6128 * argument 'data' appropriately.
6129 * Return value:
6130 * 0 on success.
6131 */
6132
d44570e4 6133static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6134{
1ee6dd77 6135 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
6136 u64 val64;
6137
6138 val64 = readq(&bar0->adapter_status);
d44570e4 6139 if (!(LINK_IS_UP(val64)))
1da177e4 6140 *data = 1;
c92ca04b
AR
6141 else
6142 *data = 0;
1da177e4 6143
b41477f3 6144 return *data;
1da177e4
LT
6145}
6146
6147/**
20346722
K
6148 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6149 * @sp - private member of the device structure, which is a pointer to the
1da177e4 6150 * s2io_nic structure.
20346722 6151 * @data - variable that returns the result of each of the test
1da177e4
LT
6152 * conducted by the driver.
6153 * Description:
20346722 6154 * This is one of the offline test that tests the read and write
1da177e4
LT
6155 * access to the RldRam chip on the NIC.
6156 * Return value:
6157 * 0 on success.
6158 */
6159
d44570e4 6160static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6161{
1ee6dd77 6162 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 6163 u64 val64;
ad4ebed0 6164 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
6165
6166 val64 = readq(&bar0->adapter_control);
6167 val64 &= ~ADAPTER_ECC_EN;
6168 writeq(val64, &bar0->adapter_control);
6169
6170 val64 = readq(&bar0->mc_rldram_test_ctrl);
6171 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 6172 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6173
6174 val64 = readq(&bar0->mc_rldram_mrs);
6175 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6176 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6177
6178 val64 |= MC_RLDRAM_MRS_ENABLE;
6179 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6180
6181 while (iteration < 2) {
6182 val64 = 0x55555555aaaa0000ULL;
d44570e4 6183 if (iteration == 1)
1da177e4 6184 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6185 writeq(val64, &bar0->mc_rldram_test_d0);
6186
6187 val64 = 0xaaaa5a5555550000ULL;
d44570e4 6188 if (iteration == 1)
1da177e4 6189 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6190 writeq(val64, &bar0->mc_rldram_test_d1);
6191
6192 val64 = 0x55aaaaaaaa5a0000ULL;
d44570e4 6193 if (iteration == 1)
1da177e4 6194 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6195 writeq(val64, &bar0->mc_rldram_test_d2);
6196
ad4ebed0 6197 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
6198 writeq(val64, &bar0->mc_rldram_test_add);
6199
d44570e4
JP
6200 val64 = MC_RLDRAM_TEST_MODE |
6201 MC_RLDRAM_TEST_WRITE |
6202 MC_RLDRAM_TEST_GO;
ad4ebed0 6203 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6204
6205 for (cnt = 0; cnt < 5; cnt++) {
6206 val64 = readq(&bar0->mc_rldram_test_ctrl);
6207 if (val64 & MC_RLDRAM_TEST_DONE)
6208 break;
6209 msleep(200);
6210 }
6211
6212 if (cnt == 5)
6213 break;
6214
ad4ebed0 6215 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6216 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6217
6218 for (cnt = 0; cnt < 5; cnt++) {
6219 val64 = readq(&bar0->mc_rldram_test_ctrl);
6220 if (val64 & MC_RLDRAM_TEST_DONE)
6221 break;
6222 msleep(500);
6223 }
6224
6225 if (cnt == 5)
6226 break;
6227
6228 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 6229 if (!(val64 & MC_RLDRAM_TEST_PASS))
6230 test_fail = 1;
1da177e4
LT
6231
6232 iteration++;
6233 }
6234
ad4ebed0 6235 *data = test_fail;
1da177e4 6236
ad4ebed0 6237 /* Bring the adapter out of test mode */
6238 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6239
6240 return test_fail;
1da177e4
LT
6241}
6242
6243/**
6244 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6245 * @sp : private member of the device structure, which is a pointer to the
6246 * s2io_nic structure.
6247 * @ethtest : pointer to a ethtool command specific structure that will be
6248 * returned to the user.
20346722 6249 * @data : variable that returns the result of each of the test
1da177e4
LT
6250 * conducted by the driver.
6251 * Description:
6252 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6253 * the health of the card.
6254 * Return value:
6255 * void
6256 */
6257
6258static void s2io_ethtool_test(struct net_device *dev,
6259 struct ethtool_test *ethtest,
d44570e4 6260 uint64_t *data)
1da177e4 6261{
4cf1653a 6262 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6263 int orig_state = netif_running(sp->dev);
6264
6265 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6266 /* Offline Tests. */
20346722 6267 if (orig_state)
1da177e4 6268 s2io_close(sp->dev);
1da177e4
LT
6269
6270 if (s2io_register_test(sp, &data[0]))
6271 ethtest->flags |= ETH_TEST_FL_FAILED;
6272
6273 s2io_reset(sp);
1da177e4
LT
6274
6275 if (s2io_rldram_test(sp, &data[3]))
6276 ethtest->flags |= ETH_TEST_FL_FAILED;
6277
6278 s2io_reset(sp);
1da177e4
LT
6279
6280 if (s2io_eeprom_test(sp, &data[1]))
6281 ethtest->flags |= ETH_TEST_FL_FAILED;
6282
6283 if (s2io_bist_test(sp, &data[4]))
6284 ethtest->flags |= ETH_TEST_FL_FAILED;
6285
6286 if (orig_state)
6287 s2io_open(sp->dev);
6288
6289 data[2] = 0;
6290 } else {
6291 /* Online Tests. */
6292 if (!orig_state) {
d44570e4 6293 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
1da177e4
LT
6294 dev->name);
6295 data[0] = -1;
6296 data[1] = -1;
6297 data[2] = -1;
6298 data[3] = -1;
6299 data[4] = -1;
6300 }
6301
6302 if (s2io_link_test(sp, &data[2]))
6303 ethtest->flags |= ETH_TEST_FL_FAILED;
6304
6305 data[0] = 0;
6306 data[1] = 0;
6307 data[3] = 0;
6308 data[4] = 0;
6309 }
6310}
6311
6312static void s2io_get_ethtool_stats(struct net_device *dev,
6313 struct ethtool_stats *estats,
d44570e4 6314 u64 *tmp_stats)
1da177e4 6315{
8116f3cf 6316 int i = 0, k;
4cf1653a 6317 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
6318 struct stat_block *stats = sp->mac_control.stats_info;
6319 struct swStat *swstats = &stats->sw_stat;
6320 struct xpakStat *xstats = &stats->xpak_stat;
1da177e4 6321
7ba013ac 6322 s2io_updt_stats(sp);
541ae68f 6323 tmp_stats[i++] =
ffb5df6c
JP
6324 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6325 le32_to_cpu(stats->tmac_frms);
541ae68f 6326 tmp_stats[i++] =
ffb5df6c
JP
6327 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6328 le32_to_cpu(stats->tmac_data_octets);
6329 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
541ae68f 6330 tmp_stats[i++] =
ffb5df6c
JP
6331 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6332 le32_to_cpu(stats->tmac_mcst_frms);
541ae68f 6333 tmp_stats[i++] =
ffb5df6c
JP
6334 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6335 le32_to_cpu(stats->tmac_bcst_frms);
6336 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
bd1034f0 6337 tmp_stats[i++] =
ffb5df6c
JP
6338 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6339 le32_to_cpu(stats->tmac_ttl_octets);
bd1034f0 6340 tmp_stats[i++] =
ffb5df6c
JP
6341 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6342 le32_to_cpu(stats->tmac_ucst_frms);
d44570e4 6343 tmp_stats[i++] =
ffb5df6c
JP
6344 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6345 le32_to_cpu(stats->tmac_nucst_frms);
541ae68f 6346 tmp_stats[i++] =
ffb5df6c
JP
6347 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6348 le32_to_cpu(stats->tmac_any_err_frms);
6349 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6350 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
541ae68f 6351 tmp_stats[i++] =
ffb5df6c
JP
6352 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6353 le32_to_cpu(stats->tmac_vld_ip);
541ae68f 6354 tmp_stats[i++] =
ffb5df6c
JP
6355 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6356 le32_to_cpu(stats->tmac_drop_ip);
541ae68f 6357 tmp_stats[i++] =
ffb5df6c
JP
6358 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6359 le32_to_cpu(stats->tmac_icmp);
541ae68f 6360 tmp_stats[i++] =
ffb5df6c
JP
6361 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6362 le32_to_cpu(stats->tmac_rst_tcp);
6363 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6364 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6365 le32_to_cpu(stats->tmac_udp);
541ae68f 6366 tmp_stats[i++] =
ffb5df6c
JP
6367 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6368 le32_to_cpu(stats->rmac_vld_frms);
541ae68f 6369 tmp_stats[i++] =
ffb5df6c
JP
6370 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6371 le32_to_cpu(stats->rmac_data_octets);
6372 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6373 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
541ae68f 6374 tmp_stats[i++] =
ffb5df6c
JP
6375 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6376 le32_to_cpu(stats->rmac_vld_mcst_frms);
541ae68f 6377 tmp_stats[i++] =
ffb5df6c
JP
6378 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6379 le32_to_cpu(stats->rmac_vld_bcst_frms);
6380 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6381 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6382 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6383 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6384 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
d44570e4 6385 tmp_stats[i++] =
ffb5df6c
JP
6386 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6387 le32_to_cpu(stats->rmac_ttl_octets);
bd1034f0 6388 tmp_stats[i++] =
ffb5df6c
JP
6389 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6390 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
d44570e4 6391 tmp_stats[i++] =
ffb5df6c
JP
6392 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6393 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
541ae68f 6394 tmp_stats[i++] =
ffb5df6c
JP
6395 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6396 le32_to_cpu(stats->rmac_discarded_frms);
d44570e4 6397 tmp_stats[i++] =
ffb5df6c
JP
6398 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6399 << 32 | le32_to_cpu(stats->rmac_drop_events);
6400 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6401 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
541ae68f 6402 tmp_stats[i++] =
ffb5df6c
JP
6403 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6404 le32_to_cpu(stats->rmac_usized_frms);
541ae68f 6405 tmp_stats[i++] =
ffb5df6c
JP
6406 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6407 le32_to_cpu(stats->rmac_osized_frms);
541ae68f 6408 tmp_stats[i++] =
ffb5df6c
JP
6409 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6410 le32_to_cpu(stats->rmac_frag_frms);
541ae68f 6411 tmp_stats[i++] =
ffb5df6c
JP
6412 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6413 le32_to_cpu(stats->rmac_jabber_frms);
6414 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6417 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6418 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6419 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
bd1034f0 6420 tmp_stats[i++] =
ffb5df6c
JP
6421 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6422 le32_to_cpu(stats->rmac_ip);
6423 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6424 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
bd1034f0 6425 tmp_stats[i++] =
ffb5df6c
JP
6426 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6427 le32_to_cpu(stats->rmac_drop_ip);
bd1034f0 6428 tmp_stats[i++] =
ffb5df6c
JP
6429 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6430 le32_to_cpu(stats->rmac_icmp);
6431 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
bd1034f0 6432 tmp_stats[i++] =
ffb5df6c
JP
6433 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6434 le32_to_cpu(stats->rmac_udp);
541ae68f 6435 tmp_stats[i++] =
ffb5df6c
JP
6436 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6437 le32_to_cpu(stats->rmac_err_drp_udp);
6438 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6439 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6440 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6441 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6442 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6443 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6444 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6445 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6446 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6447 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6448 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6449 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6450 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6451 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6452 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6453 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6454 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
541ae68f 6455 tmp_stats[i++] =
ffb5df6c
JP
6456 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6457 le32_to_cpu(stats->rmac_pause_cnt);
6458 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6459 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
541ae68f 6460 tmp_stats[i++] =
ffb5df6c
JP
6461 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6462 le32_to_cpu(stats->rmac_accepted_ip);
6463 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6464 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6465 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6466 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6467 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6468 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6469 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6470 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6471 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6472 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6473 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6474 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6475 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6476 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6477 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6478 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6479 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6480 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6481 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
fa1f0cb3
SS
6482
6483 /* Enhanced statistics exist only for Hercules */
d44570e4 6484 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6485 tmp_stats[i++] =
ffb5df6c 6486 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
fa1f0cb3 6487 tmp_stats[i++] =
ffb5df6c 6488 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
fa1f0cb3 6489 tmp_stats[i++] =
ffb5df6c
JP
6490 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6491 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6492 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6493 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6494 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6495 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6496 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6497 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6498 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6499 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6500 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6501 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6502 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6503 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
fa1f0cb3
SS
6504 }
6505
7ba013ac 6506 tmp_stats[i++] = 0;
ffb5df6c
JP
6507 tmp_stats[i++] = swstats->single_ecc_errs;
6508 tmp_stats[i++] = swstats->double_ecc_errs;
6509 tmp_stats[i++] = swstats->parity_err_cnt;
6510 tmp_stats[i++] = swstats->serious_err_cnt;
6511 tmp_stats[i++] = swstats->soft_reset_cnt;
6512 tmp_stats[i++] = swstats->fifo_full_cnt;
8116f3cf 6513 for (k = 0; k < MAX_RX_RINGS; k++)
ffb5df6c
JP
6514 tmp_stats[i++] = swstats->ring_full_cnt[k];
6515 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6516 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6517 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6518 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6519 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6520 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6521 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6522 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6523 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6524 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6525 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6526 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6527 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6528 tmp_stats[i++] = swstats->sending_both;
6529 tmp_stats[i++] = swstats->outof_sequence_pkts;
6530 tmp_stats[i++] = swstats->flush_max_pkts;
6531 if (swstats->num_aggregations) {
6532 u64 tmp = swstats->sum_avg_pkts_aggregated;
bd1034f0 6533 int count = 0;
6aa20a22 6534 /*
bd1034f0
AR
6535 * Since 64-bit divide does not work on all platforms,
6536 * do repeated subtraction.
6537 */
ffb5df6c
JP
6538 while (tmp >= swstats->num_aggregations) {
6539 tmp -= swstats->num_aggregations;
bd1034f0
AR
6540 count++;
6541 }
6542 tmp_stats[i++] = count;
d44570e4 6543 } else
bd1034f0 6544 tmp_stats[i++] = 0;
ffb5df6c
JP
6545 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6546 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6547 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6548 tmp_stats[i++] = swstats->mem_allocated;
6549 tmp_stats[i++] = swstats->mem_freed;
6550 tmp_stats[i++] = swstats->link_up_cnt;
6551 tmp_stats[i++] = swstats->link_down_cnt;
6552 tmp_stats[i++] = swstats->link_up_time;
6553 tmp_stats[i++] = swstats->link_down_time;
6554
6555 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6556 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6557 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6558 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6559 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6560
6561 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6562 tmp_stats[i++] = swstats->rx_abort_cnt;
6563 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6564 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6565 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6566 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6567 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6568 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6569 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6570 tmp_stats[i++] = swstats->tda_err_cnt;
6571 tmp_stats[i++] = swstats->pfc_err_cnt;
6572 tmp_stats[i++] = swstats->pcc_err_cnt;
6573 tmp_stats[i++] = swstats->tti_err_cnt;
6574 tmp_stats[i++] = swstats->tpa_err_cnt;
6575 tmp_stats[i++] = swstats->sm_err_cnt;
6576 tmp_stats[i++] = swstats->lso_err_cnt;
6577 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6578 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6579 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6580 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6581 tmp_stats[i++] = swstats->rc_err_cnt;
6582 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6583 tmp_stats[i++] = swstats->rpa_err_cnt;
6584 tmp_stats[i++] = swstats->rda_err_cnt;
6585 tmp_stats[i++] = swstats->rti_err_cnt;
6586 tmp_stats[i++] = swstats->mc_err_cnt;
1da177e4
LT
6587}
6588
ac1f60db 6589static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4 6590{
d44570e4 6591 return XENA_REG_SPACE;
1da177e4
LT
6592}
6593
6594
d44570e4 6595static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
1da177e4 6596{
4cf1653a 6597 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 6598
d44570e4 6599 return sp->rx_csum;
1da177e4 6600}
ac1f60db
AB
6601
6602static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
1da177e4 6603{
4cf1653a 6604 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6605
6606 if (data)
6607 sp->rx_csum = 1;
6608 else
6609 sp->rx_csum = 0;
6610
6611 return 0;
6612}
ac1f60db
AB
6613
6614static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4 6615{
d44570e4 6616 return XENA_EEPROM_SPACE;
1da177e4
LT
6617}
6618
b9f2c044 6619static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6620{
4cf1653a 6621 struct s2io_nic *sp = netdev_priv(dev);
b9f2c044
JG
6622
6623 switch (sset) {
6624 case ETH_SS_TEST:
6625 return S2IO_TEST_LEN;
6626 case ETH_SS_STATS:
d44570e4 6627 switch (sp->device_type) {
b9f2c044
JG
6628 case XFRAME_I_DEVICE:
6629 return XFRAME_I_STAT_LEN;
6630 case XFRAME_II_DEVICE:
6631 return XFRAME_II_STAT_LEN;
6632 default:
6633 return 0;
6634 }
6635 default:
6636 return -EOPNOTSUPP;
6637 }
1da177e4 6638}
ac1f60db
AB
6639
6640static void s2io_ethtool_get_strings(struct net_device *dev,
d44570e4 6641 u32 stringset, u8 *data)
1da177e4 6642{
fa1f0cb3 6643 int stat_size = 0;
4cf1653a 6644 struct s2io_nic *sp = netdev_priv(dev);
fa1f0cb3 6645
1da177e4
LT
6646 switch (stringset) {
6647 case ETH_SS_TEST:
6648 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6649 break;
6650 case ETH_SS_STATS:
fa1f0cb3 6651 stat_size = sizeof(ethtool_xena_stats_keys);
d44570e4
JP
6652 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6653 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6654 memcpy(data + stat_size,
d44570e4
JP
6655 &ethtool_enhanced_stats_keys,
6656 sizeof(ethtool_enhanced_stats_keys));
fa1f0cb3
SS
6657 stat_size += sizeof(ethtool_enhanced_stats_keys);
6658 }
6659
6660 memcpy(data + stat_size, &ethtool_driver_stats_keys,
d44570e4 6661 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6662 }
6663}
1da177e4 6664
ac1f60db 6665static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
1da177e4
LT
6666{
6667 if (data)
6668 dev->features |= NETIF_F_IP_CSUM;
6669 else
6670 dev->features &= ~NETIF_F_IP_CSUM;
6671
6672 return 0;
6673}
6674
75c30b13
AR
6675static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6676{
6677 return (dev->features & NETIF_F_TSO) != 0;
6678}
6679static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6680{
6681 if (data)
6682 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6683 else
6684 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6685
6686 return 0;
6687}
1da177e4 6688
7282d491 6689static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6690 .get_settings = s2io_ethtool_gset,
6691 .set_settings = s2io_ethtool_sset,
6692 .get_drvinfo = s2io_ethtool_gdrvinfo,
6693 .get_regs_len = s2io_ethtool_get_regs_len,
6694 .get_regs = s2io_ethtool_gregs,
6695 .get_link = ethtool_op_get_link,
6696 .get_eeprom_len = s2io_get_eeprom_len,
6697 .get_eeprom = s2io_ethtool_geeprom,
6698 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6699 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6700 .get_pauseparam = s2io_ethtool_getpause_data,
6701 .set_pauseparam = s2io_ethtool_setpause_data,
6702 .get_rx_csum = s2io_ethtool_get_rx_csum,
6703 .set_rx_csum = s2io_ethtool_set_rx_csum,
1da177e4 6704 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
1da177e4 6705 .set_sg = ethtool_op_set_sg,
75c30b13
AR
6706 .get_tso = s2io_ethtool_op_get_tso,
6707 .set_tso = s2io_ethtool_op_set_tso,
fed5eccd 6708 .set_ufo = ethtool_op_set_ufo,
1da177e4
LT
6709 .self_test = s2io_ethtool_test,
6710 .get_strings = s2io_ethtool_get_strings,
6711 .phys_id = s2io_ethtool_idnic,
b9f2c044
JG
6712 .get_ethtool_stats = s2io_get_ethtool_stats,
6713 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6714};
6715
6716/**
20346722 6717 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6718 * @dev : Device pointer.
6719 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6720 * a proprietary structure used to pass information to the driver.
6721 * @cmd : This is used to distinguish between the different commands that
6722 * can be passed to the IOCTL functions.
6723 * Description:
20346722
K
6724 * Currently there are no special functionality supported in IOCTL, hence
6725 * function always return EOPNOTSUPPORTED
1da177e4
LT
6726 */
6727
ac1f60db 6728static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6729{
6730 return -EOPNOTSUPP;
6731}
6732
6733/**
6734 * s2io_change_mtu - entry point to change MTU size for the device.
6735 * @dev : device pointer.
6736 * @new_mtu : the new MTU size for the device.
6737 * Description: A driver entry point to change MTU size for the device.
6738 * Before changing the MTU the device must be stopped.
6739 * Return value:
6740 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6741 * file on failure.
6742 */
6743
ac1f60db 6744static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6745{
4cf1653a 6746 struct s2io_nic *sp = netdev_priv(dev);
9f74ffde 6747 int ret = 0;
1da177e4
LT
6748
6749 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
d44570e4 6750 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
1da177e4
LT
6751 return -EPERM;
6752 }
6753
1da177e4 6754 dev->mtu = new_mtu;
d8892c6e 6755 if (netif_running(dev)) {
3a3d5756 6756 s2io_stop_all_tx_queue(sp);
e6a8fee2 6757 s2io_card_down(sp);
9f74ffde
SH
6758 ret = s2io_card_up(sp);
6759 if (ret) {
d8892c6e 6760 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
b39d66a8 6761 __func__);
9f74ffde 6762 return ret;
d8892c6e 6763 }
3a3d5756 6764 s2io_wake_all_tx_queue(sp);
d8892c6e 6765 } else { /* Device is down */
1ee6dd77 6766 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e
K
6767 u64 val64 = new_mtu;
6768
6769 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6770 }
1da177e4 6771
9f74ffde 6772 return ret;
1da177e4
LT
6773}
6774
1da177e4
LT
6775/**
6776 * s2io_set_link - Set the LInk status
6777 * @data: long pointer to device private structue
6778 * Description: Sets the link status for the adapter
6779 */
6780
c4028958 6781static void s2io_set_link(struct work_struct *work)
1da177e4 6782{
d44570e4
JP
6783 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6784 set_link_task);
1da177e4 6785 struct net_device *dev = nic->dev;
1ee6dd77 6786 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6787 register u64 val64;
6788 u16 subid;
6789
22747d6b
FR
6790 rtnl_lock();
6791
6792 if (!netif_running(dev))
6793 goto out_unlock;
6794
92b84437 6795 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6796 /* The card is being reset, no point doing anything */
22747d6b 6797 goto out_unlock;
1da177e4
LT
6798 }
6799
6800 subid = nic->pdev->subsystem_device;
a371a07d
K
6801 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6802 /*
6803 * Allow a small delay for the NICs self initiated
6804 * cleanup to complete.
6805 */
6806 msleep(100);
6807 }
1da177e4
LT
6808
6809 val64 = readq(&bar0->adapter_status);
19a60522
SS
6810 if (LINK_IS_UP(val64)) {
6811 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6812 if (verify_xena_quiescence(nic)) {
6813 val64 = readq(&bar0->adapter_control);
6814 val64 |= ADAPTER_CNTL_EN;
1da177e4 6815 writeq(val64, &bar0->adapter_control);
19a60522 6816 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
d44570e4 6817 nic->device_type, subid)) {
19a60522
SS
6818 val64 = readq(&bar0->gpio_control);
6819 val64 |= GPIO_CTRL_GPIO_0;
6820 writeq(val64, &bar0->gpio_control);
6821 val64 = readq(&bar0->gpio_control);
6822 } else {
6823 val64 |= ADAPTER_LED_ON;
6824 writeq(val64, &bar0->adapter_control);
a371a07d 6825 }
f957bcf0 6826 nic->device_enabled_once = true;
19a60522 6827 } else {
9e39f7c5
JP
6828 DBG_PRINT(ERR_DBG,
6829 "%s: Error: device is not Quiescent\n",
6830 dev->name);
3a3d5756 6831 s2io_stop_all_tx_queue(nic);
1da177e4 6832 }
19a60522 6833 }
92c48799
SS
6834 val64 = readq(&bar0->adapter_control);
6835 val64 |= ADAPTER_LED_ON;
6836 writeq(val64, &bar0->adapter_control);
6837 s2io_link(nic, LINK_UP);
19a60522
SS
6838 } else {
6839 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6840 subid)) {
6841 val64 = readq(&bar0->gpio_control);
6842 val64 &= ~GPIO_CTRL_GPIO_0;
6843 writeq(val64, &bar0->gpio_control);
6844 val64 = readq(&bar0->gpio_control);
1da177e4 6845 }
92c48799
SS
6846 /* turn off LED */
6847 val64 = readq(&bar0->adapter_control);
d44570e4 6848 val64 = val64 & (~ADAPTER_LED_ON);
92c48799 6849 writeq(val64, &bar0->adapter_control);
19a60522 6850 s2io_link(nic, LINK_DOWN);
1da177e4 6851 }
92b84437 6852 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6853
6854out_unlock:
d8d70caf 6855 rtnl_unlock();
1da177e4
LT
6856}
6857
1ee6dd77 6858static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
d44570e4
JP
6859 struct buffAdd *ba,
6860 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6861 u64 *temp2, int size)
5d3213cc
AR
6862{
6863 struct net_device *dev = sp->dev;
491abf25 6864 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6865
6866 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6867 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6868 /* allocate skb */
6869 if (*skb) {
6870 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6871 /*
6872 * As Rx frame are not going to be processed,
6873 * using same mapped address for the Rxd
6874 * buffer pointer
6875 */
6d517a27 6876 rxdp1->Buffer0_ptr = *temp0;
5d3213cc
AR
6877 } else {
6878 *skb = dev_alloc_skb(size);
6879 if (!(*skb)) {
9e39f7c5
JP
6880 DBG_PRINT(INFO_DBG,
6881 "%s: Out of memory to allocate %s\n",
6882 dev->name, "1 buf mode SKBs");
ffb5df6c 6883 stats->mem_alloc_fail_cnt++;
5d3213cc
AR
6884 return -ENOMEM ;
6885 }
ffb5df6c 6886 stats->mem_allocated += (*skb)->truesize;
5d3213cc
AR
6887 /* storing the mapped addr in a temp variable
6888 * such it will be used for next rxd whose
6889 * Host Control is NULL
6890 */
6d517a27 6891 rxdp1->Buffer0_ptr = *temp0 =
d44570e4
JP
6892 pci_map_single(sp->pdev, (*skb)->data,
6893 size - NET_IP_ALIGN,
6894 PCI_DMA_FROMDEVICE);
8d8bb39b 6895 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
491abf25 6896 goto memalloc_failed;
5d3213cc
AR
6897 rxdp->Host_Control = (unsigned long) (*skb);
6898 }
6899 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6900 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6901 /* Two buffer Mode */
6902 if (*skb) {
6d517a27
VP
6903 rxdp3->Buffer2_ptr = *temp2;
6904 rxdp3->Buffer0_ptr = *temp0;
6905 rxdp3->Buffer1_ptr = *temp1;
5d3213cc
AR
6906 } else {
6907 *skb = dev_alloc_skb(size);
2ceaac75 6908 if (!(*skb)) {
9e39f7c5
JP
6909 DBG_PRINT(INFO_DBG,
6910 "%s: Out of memory to allocate %s\n",
6911 dev->name,
6912 "2 buf mode SKBs");
ffb5df6c 6913 stats->mem_alloc_fail_cnt++;
2ceaac75
DR
6914 return -ENOMEM;
6915 }
ffb5df6c 6916 stats->mem_allocated += (*skb)->truesize;
6d517a27 6917 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6918 pci_map_single(sp->pdev, (*skb)->data,
6919 dev->mtu + 4,
6920 PCI_DMA_FROMDEVICE);
8d8bb39b 6921 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
491abf25 6922 goto memalloc_failed;
6d517a27 6923 rxdp3->Buffer0_ptr = *temp0 =
d44570e4
JP
6924 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6925 PCI_DMA_FROMDEVICE);
8d8bb39b 6926 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
6927 rxdp3->Buffer0_ptr)) {
6928 pci_unmap_single(sp->pdev,
6929 (dma_addr_t)rxdp3->Buffer2_ptr,
6930 dev->mtu + 4,
6931 PCI_DMA_FROMDEVICE);
491abf25
VP
6932 goto memalloc_failed;
6933 }
5d3213cc
AR
6934 rxdp->Host_Control = (unsigned long) (*skb);
6935
6936 /* Buffer-1 will be dummy buffer not used */
6d517a27 6937 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6938 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
d44570e4 6939 PCI_DMA_FROMDEVICE);
8d8bb39b 6940 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
6941 rxdp3->Buffer1_ptr)) {
6942 pci_unmap_single(sp->pdev,
6943 (dma_addr_t)rxdp3->Buffer0_ptr,
6944 BUF0_LEN, PCI_DMA_FROMDEVICE);
6945 pci_unmap_single(sp->pdev,
6946 (dma_addr_t)rxdp3->Buffer2_ptr,
6947 dev->mtu + 4,
6948 PCI_DMA_FROMDEVICE);
491abf25
VP
6949 goto memalloc_failed;
6950 }
5d3213cc
AR
6951 }
6952 }
6953 return 0;
d44570e4
JP
6954
6955memalloc_failed:
6956 stats->pci_map_fail_cnt++;
6957 stats->mem_freed += (*skb)->truesize;
6958 dev_kfree_skb(*skb);
6959 return -ENOMEM;
5d3213cc 6960}
491abf25 6961
1ee6dd77
RB
6962static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6963 int size)
5d3213cc
AR
6964{
6965 struct net_device *dev = sp->dev;
6966 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4 6967 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
5d3213cc
AR
6968 } else if (sp->rxd_mode == RXD_MODE_3B) {
6969 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6970 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
d44570e4 6971 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
5d3213cc
AR
6972 }
6973}
6974
1ee6dd77 6975static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6976{
6977 int i, j, k, blk_cnt = 0, size;
5d3213cc 6978 struct config_param *config = &sp->config;
ffb5df6c 6979 struct mac_info *mac_control = &sp->mac_control;
5d3213cc 6980 struct net_device *dev = sp->dev;
1ee6dd77 6981 struct RxD_t *rxdp = NULL;
5d3213cc 6982 struct sk_buff *skb = NULL;
1ee6dd77 6983 struct buffAdd *ba = NULL;
5d3213cc
AR
6984 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6985
6986 /* Calculate the size based on ring mode */
6987 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6988 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6989 if (sp->rxd_mode == RXD_MODE_1)
6990 size += NET_IP_ALIGN;
6991 else if (sp->rxd_mode == RXD_MODE_3B)
6992 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
6993
6994 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
6995 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6996 struct ring_info *ring = &mac_control->rings[i];
6997
d44570e4 6998 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
5d3213cc
AR
6999
7000 for (j = 0; j < blk_cnt; j++) {
7001 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
d44570e4
JP
7002 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7003 if (sp->rxd_mode == RXD_MODE_3B)
13d866a9 7004 ba = &ring->ba[j][k];
d44570e4
JP
7005 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7006 (u64 *)&temp0_64,
7007 (u64 *)&temp1_64,
7008 (u64 *)&temp2_64,
7009 size) == -ENOMEM) {
ac1f90d6
SS
7010 return 0;
7011 }
5d3213cc
AR
7012
7013 set_rxd_buffer_size(sp, rxdp, size);
7014 wmb();
7015 /* flip the Ownership bit to Hardware */
7016 rxdp->Control_1 |= RXD_OWN_XENA;
7017 }
7018 }
7019 }
7020 return 0;
7021
7022}
7023
d44570e4 7024static int s2io_add_isr(struct s2io_nic *sp)
1da177e4 7025{
e6a8fee2 7026 int ret = 0;
c92ca04b 7027 struct net_device *dev = sp->dev;
e6a8fee2 7028 int err = 0;
1da177e4 7029
eaae7f72 7030 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7031 ret = s2io_enable_msi_x(sp);
7032 if (ret) {
7033 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 7034 sp->config.intr_type = INTA;
20346722 7035 }
1da177e4 7036
d44570e4
JP
7037 /*
7038 * Store the values of the MSIX table in
7039 * the struct s2io_nic structure
7040 */
e6a8fee2 7041 store_xmsi_data(sp);
c92ca04b 7042
e6a8fee2 7043 /* After proper initialization of H/W, register ISR */
eaae7f72 7044 if (sp->config.intr_type == MSI_X) {
ac731ab6
SH
7045 int i, msix_rx_cnt = 0;
7046
f61e0a35
SH
7047 for (i = 0; i < sp->num_entries; i++) {
7048 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7049 if (sp->s2io_entries[i].type ==
d44570e4 7050 MSIX_RING_TYPE) {
ac731ab6
SH
7051 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7052 dev->name, i);
7053 err = request_irq(sp->entries[i].vector,
d44570e4
JP
7054 s2io_msix_ring_handle,
7055 0,
7056 sp->desc[i],
7057 sp->s2io_entries[i].arg);
ac731ab6 7058 } else if (sp->s2io_entries[i].type ==
d44570e4 7059 MSIX_ALARM_TYPE) {
ac731ab6 7060 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
d44570e4 7061 dev->name, i);
ac731ab6 7062 err = request_irq(sp->entries[i].vector,
d44570e4
JP
7063 s2io_msix_fifo_handle,
7064 0,
7065 sp->desc[i],
7066 sp->s2io_entries[i].arg);
ac731ab6 7067
fb6a825b 7068 }
ac731ab6
SH
7069 /* if either data or addr is zero print it. */
7070 if (!(sp->msix_info[i].addr &&
d44570e4 7071 sp->msix_info[i].data)) {
ac731ab6 7072 DBG_PRINT(ERR_DBG,
d44570e4
JP
7073 "%s @Addr:0x%llx Data:0x%llx\n",
7074 sp->desc[i],
7075 (unsigned long long)
7076 sp->msix_info[i].addr,
7077 (unsigned long long)
7078 ntohl(sp->msix_info[i].data));
ac731ab6 7079 } else
fb6a825b 7080 msix_rx_cnt++;
ac731ab6
SH
7081 if (err) {
7082 remove_msix_isr(sp);
7083
7084 DBG_PRINT(ERR_DBG,
d44570e4
JP
7085 "%s:MSI-X-%d registration "
7086 "failed\n", dev->name, i);
ac731ab6
SH
7087
7088 DBG_PRINT(ERR_DBG,
d44570e4
JP
7089 "%s: Defaulting to INTA\n",
7090 dev->name);
ac731ab6
SH
7091 sp->config.intr_type = INTA;
7092 break;
fb6a825b 7093 }
ac731ab6
SH
7094 sp->s2io_entries[i].in_use =
7095 MSIX_REGISTERED_SUCCESS;
c92ca04b 7096 }
e6a8fee2 7097 }
18b2b7bd 7098 if (!err) {
6cef2b8e 7099 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
9e39f7c5
JP
7100 DBG_PRINT(INFO_DBG,
7101 "MSI-X-TX entries enabled through alarm vector\n");
18b2b7bd 7102 }
e6a8fee2 7103 }
eaae7f72 7104 if (sp->config.intr_type == INTA) {
d44570e4
JP
7105 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7106 sp->name, dev);
e6a8fee2
AR
7107 if (err) {
7108 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7109 dev->name);
7110 return -1;
7111 }
7112 }
7113 return 0;
7114}
d44570e4
JP
7115
7116static void s2io_rem_isr(struct s2io_nic *sp)
e6a8fee2 7117{
18b2b7bd
SH
7118 if (sp->config.intr_type == MSI_X)
7119 remove_msix_isr(sp);
7120 else
7121 remove_inta_isr(sp);
e6a8fee2
AR
7122}
7123
d44570e4 7124static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
e6a8fee2
AR
7125{
7126 int cnt = 0;
1ee6dd77 7127 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2 7128 register u64 val64 = 0;
5f490c96
SH
7129 struct config_param *config;
7130 config = &sp->config;
e6a8fee2 7131
9f74ffde
SH
7132 if (!is_s2io_card_up(sp))
7133 return;
7134
e6a8fee2
AR
7135 del_timer_sync(&sp->alarm_timer);
7136 /* If s2io_set_link task is executing, wait till it completes. */
d44570e4 7137 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
e6a8fee2 7138 msleep(50);
92b84437 7139 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2 7140
5f490c96 7141 /* Disable napi */
f61e0a35
SH
7142 if (sp->config.napi) {
7143 int off = 0;
7144 if (config->intr_type == MSI_X) {
7145 for (; off < sp->config.rx_ring_num; off++)
7146 napi_disable(&sp->mac_control.rings[off].napi);
d44570e4 7147 }
f61e0a35
SH
7148 else
7149 napi_disable(&sp->napi);
7150 }
5f490c96 7151
e6a8fee2 7152 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
7153 if (do_io)
7154 stop_nic(sp);
e6a8fee2
AR
7155
7156 s2io_rem_isr(sp);
1da177e4 7157
01e16faa
SH
7158 /* stop the tx queue, indicate link down */
7159 s2io_link(sp, LINK_DOWN);
7160
1da177e4 7161 /* Check if the device is Quiescent and then Reset the NIC */
d44570e4 7162 while (do_io) {
5d3213cc
AR
7163 /* As per the HW requirement we need to replenish the
7164 * receive buffer to avoid the ring bump. Since there is
7165 * no intention of processing the Rx frame at this pointwe are
7166 * just settting the ownership bit of rxd in Each Rx
7167 * ring to HW and set the appropriate buffer size
7168 * based on the ring mode
7169 */
7170 rxd_owner_bit_reset(sp);
7171
1da177e4 7172 val64 = readq(&bar0->adapter_status);
19a60522 7173 if (verify_xena_quiescence(sp)) {
d44570e4
JP
7174 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7175 break;
1da177e4
LT
7176 }
7177
7178 msleep(50);
7179 cnt++;
7180 if (cnt == 10) {
9e39f7c5
JP
7181 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7182 "adapter status reads 0x%llx\n",
d44570e4 7183 (unsigned long long)val64);
1da177e4
LT
7184 break;
7185 }
d796fdb7
LV
7186 }
7187 if (do_io)
7188 s2io_reset(sp);
1da177e4 7189
7ba013ac 7190 /* Free all Tx buffers */
1da177e4 7191 free_tx_buffers(sp);
7ba013ac
K
7192
7193 /* Free all Rx buffers */
1da177e4
LT
7194 free_rx_buffers(sp);
7195
92b84437 7196 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
7197}
7198
d44570e4 7199static void s2io_card_down(struct s2io_nic *sp)
d796fdb7
LV
7200{
7201 do_s2io_card_down(sp, 1);
7202}
7203
d44570e4 7204static int s2io_card_up(struct s2io_nic *sp)
1da177e4 7205{
cc6e7c44 7206 int i, ret = 0;
1da177e4 7207 struct config_param *config;
ffb5df6c 7208 struct mac_info *mac_control;
d44570e4 7209 struct net_device *dev = (struct net_device *)sp->dev;
e6a8fee2 7210 u16 interruptible;
1da177e4
LT
7211
7212 /* Initialize the H/W I/O registers */
9f74ffde
SH
7213 ret = init_nic(sp);
7214 if (ret != 0) {
1da177e4
LT
7215 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7216 dev->name);
9f74ffde
SH
7217 if (ret != -EIO)
7218 s2io_reset(sp);
7219 return ret;
1da177e4
LT
7220 }
7221
20346722
K
7222 /*
7223 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
7224 * Rx ring and initializing buffers into 30 Rx blocks
7225 */
1da177e4 7226 config = &sp->config;
ffb5df6c 7227 mac_control = &sp->mac_control;
1da177e4
LT
7228
7229 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7230 struct ring_info *ring = &mac_control->rings[i];
7231
7232 ring->mtu = dev->mtu;
7233 ret = fill_rx_buffers(sp, ring, 1);
0425b46a 7234 if (ret) {
1da177e4
LT
7235 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7236 dev->name);
7237 s2io_reset(sp);
7238 free_rx_buffers(sp);
7239 return -ENOMEM;
7240 }
7241 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
13d866a9 7242 ring->rx_bufs_left);
1da177e4 7243 }
5f490c96
SH
7244
7245 /* Initialise napi */
f61e0a35 7246 if (config->napi) {
f61e0a35
SH
7247 if (config->intr_type == MSI_X) {
7248 for (i = 0; i < sp->config.rx_ring_num; i++)
7249 napi_enable(&sp->mac_control.rings[i].napi);
7250 } else {
7251 napi_enable(&sp->napi);
7252 }
7253 }
5f490c96 7254
19a60522
SS
7255 /* Maintain the state prior to the open */
7256 if (sp->promisc_flg)
7257 sp->promisc_flg = 0;
7258 if (sp->m_cast_flg) {
7259 sp->m_cast_flg = 0;
d44570e4 7260 sp->all_multi_pos = 0;
19a60522 7261 }
1da177e4
LT
7262
7263 /* Setting its receive mode */
7264 s2io_set_multicast(dev);
7265
7d3d0439 7266 if (sp->lro) {
b41477f3 7267 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439 7268 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
d44570e4 7269 /* Check if we can use (if specified) user provided value */
7d3d0439
RA
7270 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7271 sp->lro_max_aggr_per_sess = lro_max_pkts;
7272 }
7273
1da177e4
LT
7274 /* Enable Rx Traffic and interrupts on the NIC */
7275 if (start_nic(sp)) {
7276 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 7277 s2io_reset(sp);
e6a8fee2
AR
7278 free_rx_buffers(sp);
7279 return -ENODEV;
7280 }
7281
7282 /* Add interrupt service routine */
7283 if (s2io_add_isr(sp) != 0) {
eaae7f72 7284 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7285 s2io_rem_isr(sp);
7286 s2io_reset(sp);
1da177e4
LT
7287 free_rx_buffers(sp);
7288 return -ENODEV;
7289 }
7290
25fff88e
K
7291 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7292
01e16faa
SH
7293 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7294
e6a8fee2 7295 /* Enable select interrupts */
9caab458 7296 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
01e16faa
SH
7297 if (sp->config.intr_type != INTA) {
7298 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7299 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7300 } else {
e6a8fee2 7301 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 7302 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
7303 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7304 }
7305
1da177e4
LT
7306 return 0;
7307}
7308
20346722 7309/**
1da177e4
LT
7310 * s2io_restart_nic - Resets the NIC.
7311 * @data : long pointer to the device private structure
7312 * Description:
7313 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7314 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7315 * the run time of the watch dog routine which is run holding a
7316 * spin lock.
7317 */
7318
c4028958 7319static void s2io_restart_nic(struct work_struct *work)
1da177e4 7320{
1ee6dd77 7321 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7322 struct net_device *dev = sp->dev;
1da177e4 7323
22747d6b
FR
7324 rtnl_lock();
7325
7326 if (!netif_running(dev))
7327 goto out_unlock;
7328
e6a8fee2 7329 s2io_card_down(sp);
1da177e4 7330 if (s2io_card_up(sp)) {
d44570e4 7331 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
1da177e4 7332 }
3a3d5756 7333 s2io_wake_all_tx_queue(sp);
d44570e4 7334 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
22747d6b
FR
7335out_unlock:
7336 rtnl_unlock();
1da177e4
LT
7337}
7338
20346722
K
7339/**
7340 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7341 * @dev : Pointer to net device structure
7342 * Description:
7343 * This function is triggered if the Tx Queue is stopped
7344 * for a pre-defined amount of time when the Interface is still up.
7345 * If the Interface is jammed in such a situation, the hardware is
7346 * reset (by s2io_close) and restarted again (by s2io_open) to
7347 * overcome any problem that might have been caused in the hardware.
7348 * Return value:
7349 * void
7350 */
7351
7352static void s2io_tx_watchdog(struct net_device *dev)
7353{
4cf1653a 7354 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 7355 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7356
7357 if (netif_carrier_ok(dev)) {
ffb5df6c 7358 swstats->watchdog_timer_cnt++;
1da177e4 7359 schedule_work(&sp->rst_timer_task);
ffb5df6c 7360 swstats->soft_reset_cnt++;
1da177e4
LT
7361 }
7362}
7363
7364/**
7365 * rx_osm_handler - To perform some OS related operations on SKB.
7366 * @sp: private member of the device structure,pointer to s2io_nic structure.
7367 * @skb : the socket buffer pointer.
7368 * @len : length of the packet
7369 * @cksum : FCS checksum of the frame.
7370 * @ring_no : the ring from which this RxD was extracted.
20346722 7371 * Description:
b41477f3 7372 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7373 * some OS related operations on the SKB before passing it to the upper
7374 * layers. It mainly checks if the checksum is OK, if so adds it to the
7375 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7376 * to the upper layer. If the checksum is wrong, it increments the Rx
7377 * packet error count, frees the SKB and returns error.
7378 * Return value:
7379 * SUCCESS on success and -1 on failure.
7380 */
1ee6dd77 7381static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7382{
1ee6dd77 7383 struct s2io_nic *sp = ring_data->nic;
d44570e4 7384 struct net_device *dev = (struct net_device *)ring_data->dev;
20346722 7385 struct sk_buff *skb = (struct sk_buff *)
d44570e4 7386 ((unsigned long)rxdp->Host_Control);
20346722 7387 int ring_no = ring_data->ring_no;
1da177e4 7388 u16 l3_csum, l4_csum;
863c11a9 7389 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
2e6a684b 7390 struct lro *uninitialized_var(lro);
f9046eb3 7391 u8 err_mask;
ffb5df6c 7392 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
da6971d8 7393
20346722 7394 skb->dev = dev;
c92ca04b 7395
863c11a9 7396 if (err) {
bd1034f0 7397 /* Check for parity error */
d44570e4 7398 if (err & 0x1)
ffb5df6c 7399 swstats->parity_err_cnt++;
d44570e4 7400
f9046eb3 7401 err_mask = err >> 48;
d44570e4
JP
7402 switch (err_mask) {
7403 case 1:
ffb5df6c 7404 swstats->rx_parity_err_cnt++;
491976b2
SH
7405 break;
7406
d44570e4 7407 case 2:
ffb5df6c 7408 swstats->rx_abort_cnt++;
491976b2
SH
7409 break;
7410
d44570e4 7411 case 3:
ffb5df6c 7412 swstats->rx_parity_abort_cnt++;
491976b2
SH
7413 break;
7414
d44570e4 7415 case 4:
ffb5df6c 7416 swstats->rx_rda_fail_cnt++;
491976b2
SH
7417 break;
7418
d44570e4 7419 case 5:
ffb5df6c 7420 swstats->rx_unkn_prot_cnt++;
491976b2
SH
7421 break;
7422
d44570e4 7423 case 6:
ffb5df6c 7424 swstats->rx_fcs_err_cnt++;
491976b2 7425 break;
bd1034f0 7426
d44570e4 7427 case 7:
ffb5df6c 7428 swstats->rx_buf_size_err_cnt++;
491976b2
SH
7429 break;
7430
d44570e4 7431 case 8:
ffb5df6c 7432 swstats->rx_rxd_corrupt_cnt++;
491976b2
SH
7433 break;
7434
d44570e4 7435 case 15:
ffb5df6c 7436 swstats->rx_unkn_err_cnt++;
491976b2
SH
7437 break;
7438 }
863c11a9 7439 /*
d44570e4
JP
7440 * Drop the packet if bad transfer code. Exception being
7441 * 0x5, which could be due to unsupported IPv6 extension header.
7442 * In this case, we let stack handle the packet.
7443 * Note that in this case, since checksum will be incorrect,
7444 * stack will validate the same.
7445 */
f9046eb3
OH
7446 if (err_mask != 0x5) {
7447 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
d44570e4 7448 dev->name, err_mask);
dc56e634 7449 dev->stats.rx_crc_errors++;
ffb5df6c 7450 swstats->mem_freed
491976b2 7451 += skb->truesize;
863c11a9 7452 dev_kfree_skb(skb);
0425b46a 7453 ring_data->rx_bufs_left -= 1;
863c11a9
AR
7454 rxdp->Host_Control = 0;
7455 return 0;
7456 }
20346722 7457 }
1da177e4 7458
20346722 7459 /* Updating statistics */
0425b46a 7460 ring_data->rx_packets++;
20346722 7461 rxdp->Host_Control = 0;
da6971d8
AR
7462 if (sp->rxd_mode == RXD_MODE_1) {
7463 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7464
0425b46a 7465 ring_data->rx_bytes += len;
da6971d8
AR
7466 skb_put(skb, len);
7467
6d517a27 7468 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7469 int get_block = ring_data->rx_curr_get_info.block_index;
7470 int get_off = ring_data->rx_curr_get_info.offset;
7471 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7472 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7473 unsigned char *buff = skb_push(skb, buf0_len);
7474
1ee6dd77 7475 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
0425b46a 7476 ring_data->rx_bytes += buf0_len + buf2_len;
da6971d8 7477 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7478 skb_put(skb, buf2_len);
da6971d8 7479 }
20346722 7480
d44570e4
JP
7481 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7482 ((!ring_data->lro) ||
7483 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
20346722
K
7484 (sp->rx_csum)) {
7485 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7486 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7487 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7488 /*
1da177e4
LT
7489 * NIC verifies if the Checksum of the received
7490 * frame is Ok or not and accordingly returns
7491 * a flag in the RxD.
7492 */
7493 skb->ip_summed = CHECKSUM_UNNECESSARY;
0425b46a 7494 if (ring_data->lro) {
7d3d0439
RA
7495 u32 tcp_len;
7496 u8 *tcp;
7497 int ret = 0;
7498
0425b46a 7499 ret = s2io_club_tcp_session(ring_data,
d44570e4
JP
7500 skb->data, &tcp,
7501 &tcp_len, &lro,
7502 rxdp, sp);
7d3d0439 7503 switch (ret) {
d44570e4
JP
7504 case 3: /* Begin anew */
7505 lro->parent = skb;
7506 goto aggregate;
7507 case 1: /* Aggregate */
7508 lro_append_pkt(sp, lro, skb, tcp_len);
7509 goto aggregate;
7510 case 4: /* Flush session */
7511 lro_append_pkt(sp, lro, skb, tcp_len);
7512 queue_rx_frame(lro->parent,
7513 lro->vlan_tag);
7514 clear_lro_session(lro);
ffb5df6c 7515 swstats->flush_max_pkts++;
d44570e4
JP
7516 goto aggregate;
7517 case 2: /* Flush both */
7518 lro->parent->data_len = lro->frags_len;
ffb5df6c 7519 swstats->sending_both++;
d44570e4
JP
7520 queue_rx_frame(lro->parent,
7521 lro->vlan_tag);
7522 clear_lro_session(lro);
7523 goto send_up;
7524 case 0: /* sessions exceeded */
7525 case -1: /* non-TCP or not L2 aggregatable */
7526 case 5: /*
7527 * First pkt in session not
7528 * L3/L4 aggregatable
7529 */
7530 break;
7531 default:
7532 DBG_PRINT(ERR_DBG,
7533 "%s: Samadhana!!\n",
7534 __func__);
7535 BUG();
7d3d0439
RA
7536 }
7537 }
1da177e4 7538 } else {
20346722
K
7539 /*
7540 * Packet with erroneous checksum, let the
1da177e4
LT
7541 * upper layers deal with it.
7542 */
7543 skb->ip_summed = CHECKSUM_NONE;
7544 }
cdb5bf02 7545 } else
1da177e4 7546 skb->ip_summed = CHECKSUM_NONE;
cdb5bf02 7547
ffb5df6c 7548 swstats->mem_freed += skb->truesize;
7d3d0439 7549send_up:
0c8dfc83 7550 skb_record_rx_queue(skb, ring_no);
cdb5bf02 7551 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 7552aggregate:
0425b46a 7553 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
1da177e4
LT
7554 return SUCCESS;
7555}
7556
7557/**
7558 * s2io_link - stops/starts the Tx queue.
7559 * @sp : private member of the device structure, which is a pointer to the
7560 * s2io_nic structure.
7561 * @link : inidicates whether link is UP/DOWN.
7562 * Description:
7563 * This function stops/starts the Tx queue depending on whether the link
20346722
K
7564 * status of the NIC is is down or up. This is called by the Alarm
7565 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7566 * Return value:
7567 * void.
7568 */
7569
d44570e4 7570static void s2io_link(struct s2io_nic *sp, int link)
1da177e4 7571{
d44570e4 7572 struct net_device *dev = (struct net_device *)sp->dev;
ffb5df6c 7573 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7574
7575 if (link != sp->last_link_state) {
b7c5678f 7576 init_tti(sp, link);
1da177e4
LT
7577 if (link == LINK_DOWN) {
7578 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
3a3d5756 7579 s2io_stop_all_tx_queue(sp);
1da177e4 7580 netif_carrier_off(dev);
ffb5df6c
JP
7581 if (swstats->link_up_cnt)
7582 swstats->link_up_time =
7583 jiffies - sp->start_time;
7584 swstats->link_down_cnt++;
1da177e4
LT
7585 } else {
7586 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
ffb5df6c
JP
7587 if (swstats->link_down_cnt)
7588 swstats->link_down_time =
d44570e4 7589 jiffies - sp->start_time;
ffb5df6c 7590 swstats->link_up_cnt++;
1da177e4 7591 netif_carrier_on(dev);
3a3d5756 7592 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7593 }
7594 }
7595 sp->last_link_state = link;
491976b2 7596 sp->start_time = jiffies;
1da177e4
LT
7597}
7598
20346722
K
7599/**
7600 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7601 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7602 * s2io_nic structure.
7603 * Description:
7604 * This function initializes a few of the PCI and PCI-X configuration registers
7605 * with recommended values.
7606 * Return value:
7607 * void
7608 */
7609
d44570e4 7610static void s2io_init_pci(struct s2io_nic *sp)
1da177e4 7611{
20346722 7612 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7613
7614 /* Enable Data Parity Error Recovery in PCI-X command register. */
7615 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7616 &(pcix_cmd));
1da177e4 7617 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7618 (pcix_cmd | 1));
1da177e4 7619 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7620 &(pcix_cmd));
1da177e4
LT
7621
7622 /* Set the PErr Response bit in PCI command register. */
7623 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7624 pci_write_config_word(sp->pdev, PCI_COMMAND,
7625 (pci_cmd | PCI_COMMAND_PARITY));
7626 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7627}
7628
3a3d5756 7629static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
d44570e4 7630 u8 *dev_multiq)
9dc737a7 7631{
d44570e4 7632 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
9e39f7c5 7633 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
d44570e4 7634 "(%d) not supported\n", tx_fifo_num);
6cfc482b
SH
7635
7636 if (tx_fifo_num < 1)
7637 tx_fifo_num = 1;
7638 else
7639 tx_fifo_num = MAX_TX_FIFOS;
7640
9e39f7c5 7641 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
9dc737a7 7642 }
2fda096d 7643
6cfc482b 7644 if (multiq)
3a3d5756 7645 *dev_multiq = multiq;
6cfc482b
SH
7646
7647 if (tx_steering_type && (1 == tx_fifo_num)) {
7648 if (tx_steering_type != TX_DEFAULT_STEERING)
7649 DBG_PRINT(ERR_DBG,
9e39f7c5 7650 "Tx steering is not supported with "
d44570e4 7651 "one fifo. Disabling Tx steering.\n");
6cfc482b
SH
7652 tx_steering_type = NO_STEERING;
7653 }
7654
7655 if ((tx_steering_type < NO_STEERING) ||
d44570e4
JP
7656 (tx_steering_type > TX_DEFAULT_STEERING)) {
7657 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7658 "Requested transmit steering not supported\n");
7659 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
6cfc482b 7660 tx_steering_type = NO_STEERING;
3a3d5756
SH
7661 }
7662
0425b46a 7663 if (rx_ring_num > MAX_RX_RINGS) {
d44570e4 7664 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7665 "Requested number of rx rings not supported\n");
7666 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
d44570e4 7667 MAX_RX_RINGS);
0425b46a 7668 rx_ring_num = MAX_RX_RINGS;
9dc737a7 7669 }
0425b46a 7670
eccb8628 7671 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9e39f7c5 7672 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
9dc737a7
AR
7673 "Defaulting to INTA\n");
7674 *dev_intr_type = INTA;
7675 }
596c5c97 7676
9dc737a7 7677 if ((*dev_intr_type == MSI_X) &&
d44570e4
JP
7678 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7679 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
9e39f7c5 7680 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
d44570e4 7681 "Defaulting to INTA\n");
9dc737a7
AR
7682 *dev_intr_type = INTA;
7683 }
fb6a825b 7684
6d517a27 7685 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9e39f7c5
JP
7686 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7687 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
6d517a27 7688 rx_ring_mode = 1;
9dc737a7
AR
7689 }
7690 return SUCCESS;
7691}
7692
9fc93a41
SS
7693/**
7694 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7695 * or Traffic class respectively.
b7c5678f 7696 * @nic: device private variable
9fc93a41
SS
7697 * Description: The function configures the receive steering to
7698 * desired receive ring.
7699 * Return Value: SUCCESS on success and
7700 * '-1' on failure (endian settings incorrect).
7701 */
7702static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7703{
7704 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7705 register u64 val64 = 0;
7706
7707 if (ds_codepoint > 63)
7708 return FAILURE;
7709
7710 val64 = RTS_DS_MEM_DATA(ring);
7711 writeq(val64, &bar0->rts_ds_mem_data);
7712
7713 val64 = RTS_DS_MEM_CTRL_WE |
7714 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7715 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7716
7717 writeq(val64, &bar0->rts_ds_mem_ctrl);
7718
7719 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
d44570e4
JP
7720 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7721 S2IO_BIT_RESET);
9fc93a41
SS
7722}
7723
04025095
SH
7724static const struct net_device_ops s2io_netdev_ops = {
7725 .ndo_open = s2io_open,
7726 .ndo_stop = s2io_close,
7727 .ndo_get_stats = s2io_get_stats,
7728 .ndo_start_xmit = s2io_xmit,
7729 .ndo_validate_addr = eth_validate_addr,
7730 .ndo_set_multicast_list = s2io_set_multicast,
7731 .ndo_do_ioctl = s2io_ioctl,
7732 .ndo_set_mac_address = s2io_set_mac_addr,
7733 .ndo_change_mtu = s2io_change_mtu,
7734 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7735 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7736 .ndo_tx_timeout = s2io_tx_watchdog,
7737#ifdef CONFIG_NET_POLL_CONTROLLER
7738 .ndo_poll_controller = s2io_netpoll,
7739#endif
7740};
7741
1da177e4 7742/**
20346722 7743 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7744 * @pdev : structure containing the PCI related information of the device.
7745 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7746 * Description:
7747 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
7748 * All OS related initialization including memory and device structure and
7749 * initlaization of the device private variable is done. Also the swapper
7750 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7751 * registers of the device.
7752 * Return value:
7753 * returns 0 on success and negative on failure.
7754 */
7755
7756static int __devinit
7757s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7758{
1ee6dd77 7759 struct s2io_nic *sp;
1da177e4 7760 struct net_device *dev;
1da177e4 7761 int i, j, ret;
f957bcf0 7762 int dma_flag = false;
1da177e4
LT
7763 u32 mac_up, mac_down;
7764 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7765 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7766 u16 subid;
1da177e4 7767 struct config_param *config;
ffb5df6c 7768 struct mac_info *mac_control;
541ae68f 7769 int mode;
cc6e7c44 7770 u8 dev_intr_type = intr_type;
3a3d5756 7771 u8 dev_multiq = 0;
1da177e4 7772
3a3d5756
SH
7773 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7774 if (ret)
9dc737a7 7775 return ret;
1da177e4 7776
d44570e4
JP
7777 ret = pci_enable_device(pdev);
7778 if (ret) {
1da177e4 7779 DBG_PRINT(ERR_DBG,
9e39f7c5 7780 "%s: pci_enable_device failed\n", __func__);
1da177e4
LT
7781 return ret;
7782 }
7783
6a35528a 7784 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
9e39f7c5 7785 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
f957bcf0 7786 dma_flag = true;
d44570e4 7787 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1da177e4 7788 DBG_PRINT(ERR_DBG,
d44570e4
JP
7789 "Unable to obtain 64bit DMA "
7790 "for consistent allocations\n");
1da177e4
LT
7791 pci_disable_device(pdev);
7792 return -ENOMEM;
7793 }
284901a9 7794 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
9e39f7c5 7795 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
1da177e4
LT
7796 } else {
7797 pci_disable_device(pdev);
7798 return -ENOMEM;
7799 }
d44570e4
JP
7800 ret = pci_request_regions(pdev, s2io_driver_name);
7801 if (ret) {
9e39f7c5 7802 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
d44570e4 7803 __func__, ret);
eccb8628
VP
7804 pci_disable_device(pdev);
7805 return -ENODEV;
1da177e4 7806 }
3a3d5756 7807 if (dev_multiq)
6cfc482b 7808 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
3a3d5756 7809 else
b19fa1fa 7810 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4
LT
7811 if (dev == NULL) {
7812 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7813 pci_disable_device(pdev);
7814 pci_release_regions(pdev);
7815 return -ENODEV;
7816 }
7817
7818 pci_set_master(pdev);
7819 pci_set_drvdata(pdev, dev);
1da177e4
LT
7820 SET_NETDEV_DEV(dev, &pdev->dev);
7821
7822 /* Private member variable initialized to s2io NIC structure */
4cf1653a 7823 sp = netdev_priv(dev);
1ee6dd77 7824 memset(sp, 0, sizeof(struct s2io_nic));
1da177e4
LT
7825 sp->dev = dev;
7826 sp->pdev = pdev;
1da177e4 7827 sp->high_dma_flag = dma_flag;
f957bcf0 7828 sp->device_enabled_once = false;
da6971d8
AR
7829 if (rx_ring_mode == 1)
7830 sp->rxd_mode = RXD_MODE_1;
7831 if (rx_ring_mode == 2)
7832 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7833
eaae7f72 7834 sp->config.intr_type = dev_intr_type;
1da177e4 7835
541ae68f 7836 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
d44570e4 7837 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
541ae68f
K
7838 sp->device_type = XFRAME_II_DEVICE;
7839 else
7840 sp->device_type = XFRAME_I_DEVICE;
7841
43b7c451 7842 sp->lro = lro_enable;
6aa20a22 7843
1da177e4
LT
7844 /* Initialize some PCI/PCI-X fields of the NIC. */
7845 s2io_init_pci(sp);
7846
20346722 7847 /*
1da177e4 7848 * Setting the device configuration parameters.
20346722
K
7849 * Most of these parameters can be specified by the user during
7850 * module insertion as they are module loadable parameters. If
7851 * these parameters are not not specified during load time, they
1da177e4
LT
7852 * are initialized with default values.
7853 */
1da177e4 7854 config = &sp->config;
ffb5df6c 7855 mac_control = &sp->mac_control;
1da177e4 7856
596c5c97 7857 config->napi = napi;
6cfc482b 7858 config->tx_steering_type = tx_steering_type;
596c5c97 7859
1da177e4 7860 /* Tx side parameters. */
6cfc482b
SH
7861 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7862 config->tx_fifo_num = MAX_TX_FIFOS;
7863 else
7864 config->tx_fifo_num = tx_fifo_num;
7865
7866 /* Initialize the fifos used for tx steering */
7867 if (config->tx_fifo_num < 5) {
d44570e4
JP
7868 if (config->tx_fifo_num == 1)
7869 sp->total_tcp_fifos = 1;
7870 else
7871 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7872 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7873 sp->total_udp_fifos = 1;
7874 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
6cfc482b
SH
7875 } else {
7876 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
d44570e4 7877 FIFO_OTHER_MAX_NUM);
6cfc482b
SH
7878 sp->udp_fifo_idx = sp->total_tcp_fifos;
7879 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7880 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7881 }
7882
3a3d5756 7883 config->multiq = dev_multiq;
6cfc482b 7884 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7885 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7886
7887 tx_cfg->fifo_len = tx_fifo_len[i];
7888 tx_cfg->fifo_priority = i;
1da177e4
LT
7889 }
7890
20346722
K
7891 /* mapping the QoS priority to the configured fifos */
7892 for (i = 0; i < MAX_TX_FIFOS; i++)
3a3d5756 7893 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
20346722 7894
6cfc482b
SH
7895 /* map the hashing selector table to the configured fifos */
7896 for (i = 0; i < config->tx_fifo_num; i++)
7897 sp->fifo_selector[i] = fifo_selector[i];
7898
7899
1da177e4
LT
7900 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7901 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7902 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7903
7904 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7905 if (tx_cfg->fifo_len < 65) {
1da177e4
LT
7906 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7907 break;
7908 }
7909 }
fed5eccd
AR
7910 /* + 2 because one Txd for skb->data and one Txd for UFO */
7911 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7912
7913 /* Rx side parameters. */
1da177e4 7914 config->rx_ring_num = rx_ring_num;
0425b46a 7915 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7916 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7917 struct ring_info *ring = &mac_control->rings[i];
7918
7919 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7920 rx_cfg->ring_priority = i;
7921 ring->rx_bufs_left = 0;
7922 ring->rxd_mode = sp->rxd_mode;
7923 ring->rxd_count = rxd_count[sp->rxd_mode];
7924 ring->pdev = sp->pdev;
7925 ring->dev = sp->dev;
1da177e4
LT
7926 }
7927
7928 for (i = 0; i < rx_ring_num; i++) {
13d866a9
JP
7929 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7930
7931 rx_cfg->ring_org = RING_ORG_BUFF1;
7932 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
1da177e4
LT
7933 }
7934
7935 /* Setting Mac Control parameters */
7936 mac_control->rmac_pause_time = rmac_pause_time;
7937 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7938 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7939
7940
1da177e4
LT
7941 /* initialize the shared memory used by the NIC and the host */
7942 if (init_shared_mem(sp)) {
d44570e4 7943 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
1da177e4
LT
7944 ret = -ENOMEM;
7945 goto mem_alloc_failed;
7946 }
7947
275f165f 7948 sp->bar0 = pci_ioremap_bar(pdev, 0);
1da177e4 7949 if (!sp->bar0) {
19a60522 7950 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7951 dev->name);
7952 ret = -ENOMEM;
7953 goto bar0_remap_failed;
7954 }
7955
275f165f 7956 sp->bar1 = pci_ioremap_bar(pdev, 2);
1da177e4 7957 if (!sp->bar1) {
19a60522 7958 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7959 dev->name);
7960 ret = -ENOMEM;
7961 goto bar1_remap_failed;
7962 }
7963
7964 dev->irq = pdev->irq;
d44570e4 7965 dev->base_addr = (unsigned long)sp->bar0;
1da177e4
LT
7966
7967 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7968 for (j = 0; j < MAX_TX_FIFOS; j++) {
d44570e4
JP
7969 mac_control->tx_FIFO_start[j] =
7970 (struct TxFIFO_element __iomem *)
7971 (sp->bar1 + (j * 0x00020000));
1da177e4
LT
7972 }
7973
7974 /* Driver entry points */
04025095 7975 dev->netdev_ops = &s2io_netdev_ops;
1da177e4 7976 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
be3a6b02 7977 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
612eff0e 7978
1da177e4 7979 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
f957bcf0 7980 if (sp->high_dma_flag == true)
1da177e4 7981 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7982 dev->features |= NETIF_F_TSO;
f83ef8c0 7983 dev->features |= NETIF_F_TSO6;
db874e65 7984 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
fed5eccd
AR
7985 dev->features |= NETIF_F_UFO;
7986 dev->features |= NETIF_F_HW_CSUM;
7987 }
1da177e4 7988 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7989 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7990 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7991
e960fc5c 7992 pci_save_state(sp->pdev);
1da177e4
LT
7993
7994 /* Setting swapper control on the NIC, for proper reset operation */
7995 if (s2io_set_swapper(sp)) {
9e39f7c5 7996 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
1da177e4
LT
7997 dev->name);
7998 ret = -EAGAIN;
7999 goto set_swap_failed;
8000 }
8001
541ae68f
K
8002 /* Verify if the Herc works on the slot its placed into */
8003 if (sp->device_type & XFRAME_II_DEVICE) {
8004 mode = s2io_verify_pci_mode(sp);
8005 if (mode < 0) {
9e39f7c5
JP
8006 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8007 __func__);
541ae68f
K
8008 ret = -EBADSLT;
8009 goto set_swap_failed;
8010 }
8011 }
8012
f61e0a35
SH
8013 if (sp->config.intr_type == MSI_X) {
8014 sp->num_entries = config->rx_ring_num + 1;
8015 ret = s2io_enable_msi_x(sp);
8016
8017 if (!ret) {
8018 ret = s2io_test_msi(sp);
8019 /* rollback MSI-X, will re-enable during add_isr() */
8020 remove_msix_isr(sp);
8021 }
8022 if (ret) {
8023
8024 DBG_PRINT(ERR_DBG,
9e39f7c5 8025 "MSI-X requested but failed to enable\n");
f61e0a35
SH
8026 sp->config.intr_type = INTA;
8027 }
8028 }
8029
8030 if (config->intr_type == MSI_X) {
13d866a9
JP
8031 for (i = 0; i < config->rx_ring_num ; i++) {
8032 struct ring_info *ring = &mac_control->rings[i];
8033
8034 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8035 }
f61e0a35
SH
8036 } else {
8037 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8038 }
8039
541ae68f
K
8040 /* Not needed for Herc */
8041 if (sp->device_type & XFRAME_I_DEVICE) {
8042 /*
8043 * Fix for all "FFs" MAC address problems observed on
8044 * Alpha platforms
8045 */
8046 fix_mac_address(sp);
8047 s2io_reset(sp);
8048 }
1da177e4
LT
8049
8050 /*
1da177e4
LT
8051 * MAC address initialization.
8052 * For now only one mac address will be read and used.
8053 */
8054 bar0 = sp->bar0;
8055 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
d44570e4 8056 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
1da177e4 8057 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 8058 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
8059 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8060 S2IO_BIT_RESET);
1da177e4 8061 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4 8062 mac_down = (u32)tmp64;
1da177e4
LT
8063 mac_up = (u32) (tmp64 >> 32);
8064
1da177e4
LT
8065 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8066 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8067 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8068 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8069 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8070 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8071
1da177e4
LT
8072 /* Set the factory defined MAC address initially */
8073 dev->addr_len = ETH_ALEN;
8074 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
2fd37688 8075 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
1da177e4 8076
faa4f796
SH
8077 /* initialize number of multicast & unicast MAC entries variables */
8078 if (sp->device_type == XFRAME_I_DEVICE) {
8079 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8080 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8081 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8082 } else if (sp->device_type == XFRAME_II_DEVICE) {
8083 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8084 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8085 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8086 }
8087
8088 /* store mac addresses from CAM to s2io_nic structure */
8089 do_s2io_store_unicast_mc(sp);
8090
f61e0a35
SH
8091 /* Configure MSIX vector for number of rings configured plus one */
8092 if ((sp->device_type == XFRAME_II_DEVICE) &&
d44570e4 8093 (config->intr_type == MSI_X))
f61e0a35
SH
8094 sp->num_entries = config->rx_ring_num + 1;
8095
d44570e4 8096 /* Store the values of the MSIX table in the s2io_nic structure */
c77dd43e 8097 store_xmsi_data(sp);
b41477f3
AR
8098 /* reset Nic and bring it to known state */
8099 s2io_reset(sp);
8100
1da177e4 8101 /*
99993af6 8102 * Initialize link state flags
541ae68f 8103 * and the card state parameter
1da177e4 8104 */
92b84437 8105 sp->state = 0;
1da177e4 8106
1da177e4 8107 /* Initialize spinlocks */
13d866a9
JP
8108 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8109 struct fifo_info *fifo = &mac_control->fifos[i];
8110
8111 spin_lock_init(&fifo->tx_lock);
8112 }
db874e65 8113
20346722
K
8114 /*
8115 * SXE-002: Configure link and activity LED to init state
8116 * on driver load.
1da177e4
LT
8117 */
8118 subid = sp->pdev->subsystem_device;
8119 if ((subid & 0xFF) >= 0x07) {
8120 val64 = readq(&bar0->gpio_control);
8121 val64 |= 0x0000800000000000ULL;
8122 writeq(val64, &bar0->gpio_control);
8123 val64 = 0x0411040400000000ULL;
d44570e4 8124 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
8125 val64 = readq(&bar0->gpio_control);
8126 }
8127
8128 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8129
8130 if (register_netdev(dev)) {
8131 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8132 ret = -ENODEV;
8133 goto register_failed;
8134 }
9dc737a7 8135 s2io_vpd_read(sp);
0c61ed5f 8136 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
d44570e4 8137 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
44c10138 8138 sp->product_name, pdev->revision);
b41477f3
AR
8139 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8140 s2io_driver_version);
9e39f7c5
JP
8141 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8142 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
9dc737a7 8143 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 8144 mode = s2io_print_pci_mode(sp);
541ae68f 8145 if (mode < 0) {
541ae68f 8146 ret = -EBADSLT;
9dc737a7 8147 unregister_netdev(dev);
541ae68f
K
8148 goto set_swap_failed;
8149 }
541ae68f 8150 }
d44570e4
JP
8151 switch (sp->rxd_mode) {
8152 case RXD_MODE_1:
8153 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8154 dev->name);
8155 break;
8156 case RXD_MODE_3B:
8157 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8158 dev->name);
8159 break;
9dc737a7 8160 }
db874e65 8161
f61e0a35
SH
8162 switch (sp->config.napi) {
8163 case 0:
8164 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8165 break;
8166 case 1:
db874e65 8167 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
f61e0a35
SH
8168 break;
8169 }
3a3d5756
SH
8170
8171 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
d44570e4 8172 sp->config.tx_fifo_num);
3a3d5756 8173
0425b46a
SH
8174 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8175 sp->config.rx_ring_num);
8176
d44570e4
JP
8177 switch (sp->config.intr_type) {
8178 case INTA:
8179 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8180 break;
8181 case MSI_X:
8182 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8183 break;
9dc737a7 8184 }
3a3d5756 8185 if (sp->config.multiq) {
13d866a9
JP
8186 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8187 struct fifo_info *fifo = &mac_control->fifos[i];
8188
8189 fifo->multiq = config->multiq;
8190 }
3a3d5756 8191 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
d44570e4 8192 dev->name);
3a3d5756
SH
8193 } else
8194 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
d44570e4 8195 dev->name);
3a3d5756 8196
6cfc482b
SH
8197 switch (sp->config.tx_steering_type) {
8198 case NO_STEERING:
d44570e4
JP
8199 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8200 dev->name);
8201 break;
6cfc482b 8202 case TX_PRIORITY_STEERING:
d44570e4
JP
8203 DBG_PRINT(ERR_DBG,
8204 "%s: Priority steering enabled for transmit\n",
8205 dev->name);
6cfc482b
SH
8206 break;
8207 case TX_DEFAULT_STEERING:
d44570e4
JP
8208 DBG_PRINT(ERR_DBG,
8209 "%s: Default steering enabled for transmit\n",
8210 dev->name);
6cfc482b
SH
8211 }
8212
7d3d0439
RA
8213 if (sp->lro)
8214 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
9dc737a7 8215 dev->name);
db874e65 8216 if (ufo)
d44570e4
JP
8217 DBG_PRINT(ERR_DBG,
8218 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8219 dev->name);
7ba013ac 8220 /* Initialize device name */
9dc737a7 8221 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 8222
cd0fce03
BL
8223 if (vlan_tag_strip)
8224 sp->vlan_strip_flag = 1;
8225 else
8226 sp->vlan_strip_flag = 0;
8227
20346722
K
8228 /*
8229 * Make Link state as off at this point, when the Link change
8230 * interrupt comes the state will be automatically changed to
1da177e4
LT
8231 * the right state.
8232 */
8233 netif_carrier_off(dev);
1da177e4
LT
8234
8235 return 0;
8236
d44570e4
JP
8237register_failed:
8238set_swap_failed:
1da177e4 8239 iounmap(sp->bar1);
d44570e4 8240bar1_remap_failed:
1da177e4 8241 iounmap(sp->bar0);
d44570e4
JP
8242bar0_remap_failed:
8243mem_alloc_failed:
1da177e4
LT
8244 free_shared_mem(sp);
8245 pci_disable_device(pdev);
eccb8628 8246 pci_release_regions(pdev);
1da177e4
LT
8247 pci_set_drvdata(pdev, NULL);
8248 free_netdev(dev);
8249
8250 return ret;
8251}
8252
8253/**
20346722 8254 * s2io_rem_nic - Free the PCI device
1da177e4 8255 * @pdev: structure containing the PCI related information of the device.
20346722 8256 * Description: This function is called by the Pci subsystem to release a
1da177e4 8257 * PCI device and free up all resource held up by the device. This could
20346722 8258 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
8259 * from memory.
8260 */
8261
8262static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8263{
8264 struct net_device *dev =
d44570e4 8265 (struct net_device *)pci_get_drvdata(pdev);
1ee6dd77 8266 struct s2io_nic *sp;
1da177e4
LT
8267
8268 if (dev == NULL) {
8269 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8270 return;
8271 }
8272
22747d6b
FR
8273 flush_scheduled_work();
8274
4cf1653a 8275 sp = netdev_priv(dev);
1da177e4
LT
8276 unregister_netdev(dev);
8277
8278 free_shared_mem(sp);
8279 iounmap(sp->bar0);
8280 iounmap(sp->bar1);
eccb8628 8281 pci_release_regions(pdev);
1da177e4 8282 pci_set_drvdata(pdev, NULL);
1da177e4 8283 free_netdev(dev);
19a60522 8284 pci_disable_device(pdev);
1da177e4
LT
8285}
8286
8287/**
8288 * s2io_starter - Entry point for the driver
8289 * Description: This function is the entry point for the driver. It verifies
8290 * the module loadable parameters and initializes PCI configuration space.
8291 */
8292
43b7c451 8293static int __init s2io_starter(void)
1da177e4 8294{
29917620 8295 return pci_register_driver(&s2io_driver);
1da177e4
LT
8296}
8297
8298/**
20346722 8299 * s2io_closer - Cleanup routine for the driver
1da177e4
LT
8300 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8301 */
8302
372cc597 8303static __exit void s2io_closer(void)
1da177e4
LT
8304{
8305 pci_unregister_driver(&s2io_driver);
8306 DBG_PRINT(INIT_DBG, "cleanup done\n");
8307}
8308
8309module_init(s2io_starter);
8310module_exit(s2io_closer);
7d3d0439 8311
6aa20a22 8312static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
d44570e4
JP
8313 struct tcphdr **tcp, struct RxD_t *rxdp,
8314 struct s2io_nic *sp)
7d3d0439
RA
8315{
8316 int ip_off;
8317 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8318
8319 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
d44570e4
JP
8320 DBG_PRINT(INIT_DBG,
8321 "%s: Non-TCP frames not supported for LRO\n",
b39d66a8 8322 __func__);
7d3d0439
RA
8323 return -1;
8324 }
8325
cdb5bf02 8326 /* Checking for DIX type or DIX type with VLAN */
d44570e4 8327 if ((l2_type == 0) || (l2_type == 4)) {
cdb5bf02
SH
8328 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8329 /*
8330 * If vlan stripping is disabled and the frame is VLAN tagged,
8331 * shift the offset by the VLAN header size bytes.
8332 */
cd0fce03 8333 if ((!sp->vlan_strip_flag) &&
d44570e4 8334 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
cdb5bf02
SH
8335 ip_off += HEADER_VLAN_SIZE;
8336 } else {
7d3d0439 8337 /* LLC, SNAP etc are considered non-mergeable */
cdb5bf02 8338 return -1;
7d3d0439
RA
8339 }
8340
8341 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8342 ip_len = (u8)((*ip)->ihl);
8343 ip_len <<= 2;
8344 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8345
8346 return 0;
8347}
8348
1ee6dd77 8349static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8350 struct tcphdr *tcp)
8351{
d44570e4
JP
8352 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8353 if ((lro->iph->saddr != ip->saddr) ||
8354 (lro->iph->daddr != ip->daddr) ||
8355 (lro->tcph->source != tcp->source) ||
8356 (lro->tcph->dest != tcp->dest))
7d3d0439
RA
8357 return -1;
8358 return 0;
8359}
8360
8361static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8362{
d44570e4 8363 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
7d3d0439
RA
8364}
8365
1ee6dd77 8366static void initiate_new_session(struct lro *lro, u8 *l2h,
d44570e4
JP
8367 struct iphdr *ip, struct tcphdr *tcp,
8368 u32 tcp_pyld_len, u16 vlan_tag)
7d3d0439 8369{
d44570e4 8370 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8371 lro->l2h = l2h;
8372 lro->iph = ip;
8373 lro->tcph = tcp;
8374 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
c8855953 8375 lro->tcp_ack = tcp->ack_seq;
7d3d0439
RA
8376 lro->sg_num = 1;
8377 lro->total_len = ntohs(ip->tot_len);
8378 lro->frags_len = 0;
cdb5bf02 8379 lro->vlan_tag = vlan_tag;
6aa20a22 8380 /*
d44570e4
JP
8381 * Check if we saw TCP timestamp.
8382 * Other consistency checks have already been done.
8383 */
7d3d0439 8384 if (tcp->doff == 8) {
c8855953
SR
8385 __be32 *ptr;
8386 ptr = (__be32 *)(tcp+1);
7d3d0439 8387 lro->saw_ts = 1;
c8855953 8388 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8389 lro->cur_tsecr = *(ptr+2);
8390 }
8391 lro->in_use = 1;
8392}
8393
1ee6dd77 8394static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
8395{
8396 struct iphdr *ip = lro->iph;
8397 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 8398 __sum16 nchk;
ffb5df6c
JP
8399 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8400
d44570e4 8401 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8402
8403 /* Update L3 header */
8404 ip->tot_len = htons(lro->total_len);
8405 ip->check = 0;
8406 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8407 ip->check = nchk;
8408
8409 /* Update L4 header */
8410 tcp->ack_seq = lro->tcp_ack;
8411 tcp->window = lro->window;
8412
8413 /* Update tsecr field if this session has timestamps enabled */
8414 if (lro->saw_ts) {
c8855953 8415 __be32 *ptr = (__be32 *)(tcp + 1);
7d3d0439
RA
8416 *(ptr+2) = lro->cur_tsecr;
8417 }
8418
8419 /* Update counters required for calculation of
8420 * average no. of packets aggregated.
8421 */
ffb5df6c
JP
8422 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8423 swstats->num_aggregations++;
7d3d0439
RA
8424}
8425
1ee6dd77 8426static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
d44570e4 8427 struct tcphdr *tcp, u32 l4_pyld)
7d3d0439 8428{
d44570e4 8429 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8430 lro->total_len += l4_pyld;
8431 lro->frags_len += l4_pyld;
8432 lro->tcp_next_seq += l4_pyld;
8433 lro->sg_num++;
8434
8435 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8436 lro->tcp_ack = tcp->ack_seq;
8437 lro->window = tcp->window;
6aa20a22 8438
7d3d0439 8439 if (lro->saw_ts) {
c8855953 8440 __be32 *ptr;
7d3d0439 8441 /* Update tsecr and tsval from this packet */
c8855953
SR
8442 ptr = (__be32 *)(tcp+1);
8443 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8444 lro->cur_tsecr = *(ptr + 2);
8445 }
8446}
8447
1ee6dd77 8448static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8449 struct tcphdr *tcp, u32 tcp_pyld_len)
8450{
7d3d0439
RA
8451 u8 *ptr;
8452
d44570e4 8453 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
79dc1901 8454
7d3d0439
RA
8455 if (!tcp_pyld_len) {
8456 /* Runt frame or a pure ack */
8457 return -1;
8458 }
8459
8460 if (ip->ihl != 5) /* IP has options */
8461 return -1;
8462
75c30b13
AR
8463 /* If we see CE codepoint in IP header, packet is not mergeable */
8464 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8465 return -1;
8466
8467 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
d44570e4
JP
8468 if (tcp->urg || tcp->psh || tcp->rst ||
8469 tcp->syn || tcp->fin ||
8470 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8471 /*
8472 * Currently recognize only the ack control word and
8473 * any other control field being set would result in
8474 * flushing the LRO session
8475 */
8476 return -1;
8477 }
8478
6aa20a22 8479 /*
7d3d0439
RA
8480 * Allow only one TCP timestamp option. Don't aggregate if
8481 * any other options are detected.
8482 */
8483 if (tcp->doff != 5 && tcp->doff != 8)
8484 return -1;
8485
8486 if (tcp->doff == 8) {
6aa20a22 8487 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8488 while (*ptr == TCPOPT_NOP)
8489 ptr++;
8490 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8491 return -1;
8492
8493 /* Ensure timestamp value increases monotonically */
8494 if (l_lro)
c8855953 8495 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
7d3d0439
RA
8496 return -1;
8497
8498 /* timestamp echo reply should be non-zero */
c8855953 8499 if (*((__be32 *)(ptr+6)) == 0)
7d3d0439
RA
8500 return -1;
8501 }
8502
8503 return 0;
8504}
8505
d44570e4
JP
8506static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8507 u8 **tcp, u32 *tcp_len, struct lro **lro,
8508 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
8509{
8510 struct iphdr *ip;
8511 struct tcphdr *tcph;
8512 int ret = 0, i;
cdb5bf02 8513 u16 vlan_tag = 0;
ffb5df6c 8514 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439 8515
d44570e4
JP
8516 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8517 rxdp, sp);
8518 if (ret)
7d3d0439 8519 return ret;
7d3d0439 8520
d44570e4
JP
8521 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8522
cdb5bf02 8523 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
7d3d0439
RA
8524 tcph = (struct tcphdr *)*tcp;
8525 *tcp_len = get_l4_pyld_length(ip, tcph);
d44570e4 8526 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8527 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8528 if (l_lro->in_use) {
8529 if (check_for_socket_match(l_lro, ip, tcph))
8530 continue;
8531 /* Sock pair matched */
8532 *lro = l_lro;
8533
8534 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
9e39f7c5
JP
8535 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8536 "expected 0x%x, actual 0x%x\n",
8537 __func__,
7d3d0439
RA
8538 (*lro)->tcp_next_seq,
8539 ntohl(tcph->seq));
8540
ffb5df6c 8541 swstats->outof_sequence_pkts++;
7d3d0439
RA
8542 ret = 2;
8543 break;
8544 }
8545
d44570e4
JP
8546 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8547 *tcp_len))
7d3d0439
RA
8548 ret = 1; /* Aggregate */
8549 else
8550 ret = 2; /* Flush both */
8551 break;
8552 }
8553 }
8554
8555 if (ret == 0) {
8556 /* Before searching for available LRO objects,
8557 * check if the pkt is L3/L4 aggregatable. If not
8558 * don't create new LRO session. Just send this
8559 * packet up.
8560 */
d44570e4 8561 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
7d3d0439 8562 return 5;
7d3d0439 8563
d44570e4 8564 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8565 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8566 if (!(l_lro->in_use)) {
8567 *lro = l_lro;
8568 ret = 3; /* Begin anew */
8569 break;
8570 }
8571 }
8572 }
8573
8574 if (ret == 0) { /* sessions exceeded */
9e39f7c5 8575 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
b39d66a8 8576 __func__);
7d3d0439
RA
8577 *lro = NULL;
8578 return ret;
8579 }
8580
8581 switch (ret) {
d44570e4
JP
8582 case 3:
8583 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8584 vlan_tag);
8585 break;
8586 case 2:
8587 update_L3L4_header(sp, *lro);
8588 break;
8589 case 1:
8590 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8591 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7d3d0439 8592 update_L3L4_header(sp, *lro);
d44570e4
JP
8593 ret = 4; /* Flush the LRO */
8594 }
8595 break;
8596 default:
9e39f7c5 8597 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
d44570e4 8598 break;
7d3d0439
RA
8599 }
8600
8601 return ret;
8602}
8603
1ee6dd77 8604static void clear_lro_session(struct lro *lro)
7d3d0439 8605{
1ee6dd77 8606 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8607
8608 memset(lro, 0, lro_struct_size);
8609}
8610
cdb5bf02 8611static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
7d3d0439
RA
8612{
8613 struct net_device *dev = skb->dev;
4cf1653a 8614 struct s2io_nic *sp = netdev_priv(dev);
7d3d0439
RA
8615
8616 skb->protocol = eth_type_trans(skb, dev);
d44570e4 8617 if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
cdb5bf02
SH
8618 /* Queueing the vlan frame to the upper layer */
8619 if (sp->config.napi)
8620 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8621 else
8622 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8623 } else {
8624 if (sp->config.napi)
8625 netif_receive_skb(skb);
8626 else
8627 netif_rx(skb);
8628 }
7d3d0439
RA
8629}
8630
1ee6dd77 8631static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
d44570e4 8632 struct sk_buff *skb, u32 tcp_len)
7d3d0439 8633{
75c30b13 8634 struct sk_buff *first = lro->parent;
ffb5df6c 8635 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439
RA
8636
8637 first->len += tcp_len;
8638 first->data_len = lro->frags_len;
8639 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8640 if (skb_shinfo(first)->frag_list)
8641 lro->last_frag->next = skb;
7d3d0439
RA
8642 else
8643 skb_shinfo(first)->frag_list = skb;
372cc597 8644 first->truesize += skb->truesize;
75c30b13 8645 lro->last_frag = skb;
ffb5df6c 8646 swstats->clubbed_frms_cnt++;
7d3d0439
RA
8647 return;
8648}
d796fdb7
LV
8649
8650/**
8651 * s2io_io_error_detected - called when PCI error is detected
8652 * @pdev: Pointer to PCI device
8453d43f 8653 * @state: The current pci connection state
d796fdb7
LV
8654 *
8655 * This function is called after a PCI bus error affecting
8656 * this device has been detected.
8657 */
8658static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
d44570e4 8659 pci_channel_state_t state)
d796fdb7
LV
8660{
8661 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8662 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8663
8664 netif_device_detach(netdev);
8665
1e3c8bd6
DN
8666 if (state == pci_channel_io_perm_failure)
8667 return PCI_ERS_RESULT_DISCONNECT;
8668
d796fdb7
LV
8669 if (netif_running(netdev)) {
8670 /* Bring down the card, while avoiding PCI I/O */
8671 do_s2io_card_down(sp, 0);
d796fdb7
LV
8672 }
8673 pci_disable_device(pdev);
8674
8675 return PCI_ERS_RESULT_NEED_RESET;
8676}
8677
8678/**
8679 * s2io_io_slot_reset - called after the pci bus has been reset.
8680 * @pdev: Pointer to PCI device
8681 *
8682 * Restart the card from scratch, as if from a cold-boot.
8683 * At this point, the card has exprienced a hard reset,
8684 * followed by fixups by BIOS, and has its config space
8685 * set up identically to what it was at cold boot.
8686 */
8687static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8688{
8689 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8690 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8691
8692 if (pci_enable_device(pdev)) {
6cef2b8e 8693 pr_err("Cannot re-enable PCI device after reset.\n");
d796fdb7
LV
8694 return PCI_ERS_RESULT_DISCONNECT;
8695 }
8696
8697 pci_set_master(pdev);
8698 s2io_reset(sp);
8699
8700 return PCI_ERS_RESULT_RECOVERED;
8701}
8702
8703/**
8704 * s2io_io_resume - called when traffic can start flowing again.
8705 * @pdev: Pointer to PCI device
8706 *
8707 * This callback is called when the error recovery driver tells
8708 * us that its OK to resume normal operation.
8709 */
8710static void s2io_io_resume(struct pci_dev *pdev)
8711{
8712 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8713 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8714
8715 if (netif_running(netdev)) {
8716 if (s2io_card_up(sp)) {
6cef2b8e 8717 pr_err("Can't bring device back up after reset.\n");
d796fdb7
LV
8718 return;
8719 }
8720
8721 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8722 s2io_card_down(sp);
6cef2b8e 8723 pr_err("Can't restore mac addr after reset.\n");
d796fdb7
LV
8724 return;
8725 }
8726 }
8727
8728 netif_device_attach(netdev);
fd2ea0a7 8729 netif_tx_wake_all_queues(netdev);
d796fdb7 8730}