qlge: Fix RX multicast filter settings.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / qlge / qlge_main.c
CommitLineData
c4e84bde
RM
1/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
c4e84bde 37#include <linux/if_vlan.h>
c4e84bde
RM
38#include <linux/delay.h>
39#include <linux/mm.h>
40#include <linux/vmalloc.h>
b7c6bfb7 41#include <net/ip6_checksum.h>
c4e84bde
RM
42
43#include "qlge.h"
44
45char qlge_driver_name[] = DRV_NAME;
46const char qlge_driver_version[] = DRV_VERSION;
47
48MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
49MODULE_DESCRIPTION(DRV_STRING " ");
50MODULE_LICENSE("GPL");
51MODULE_VERSION(DRV_VERSION);
52
53static const u32 default_msg =
54 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
55/* NETIF_MSG_TIMER | */
56 NETIF_MSG_IFDOWN |
57 NETIF_MSG_IFUP |
58 NETIF_MSG_RX_ERR |
59 NETIF_MSG_TX_ERR |
4974097a
RM
60/* NETIF_MSG_TX_QUEUED | */
61/* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
c4e84bde
RM
62/* NETIF_MSG_PKTDATA | */
63 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
64
65static int debug = 0x00007fff; /* defaults above */
66module_param(debug, int, 0);
67MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
68
69#define MSIX_IRQ 0
70#define MSI_IRQ 1
71#define LEG_IRQ 2
72static int irq_type = MSIX_IRQ;
73module_param(irq_type, int, MSIX_IRQ);
74MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
75
76static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
b0c2aadf 77 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
cdca8d02 78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
c4e84bde
RM
79 /* required last entry */
80 {0,}
81};
82
83MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85/* This hardware semaphore causes exclusive access to
86 * resources shared between the NIC driver, MPI firmware,
87 * FCOE firmware and the FC driver.
88 */
89static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90{
91 u32 sem_bits = 0;
92
93 switch (sem_mask) {
94 case SEM_XGMAC0_MASK:
95 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96 break;
97 case SEM_XGMAC1_MASK:
98 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99 break;
100 case SEM_ICB_MASK:
101 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102 break;
103 case SEM_MAC_ADDR_MASK:
104 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105 break;
106 case SEM_FLASH_MASK:
107 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108 break;
109 case SEM_PROBE_MASK:
110 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111 break;
112 case SEM_RT_IDX_MASK:
113 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114 break;
115 case SEM_PROC_REG_MASK:
116 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117 break;
118 default:
119 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120 return -EINVAL;
121 }
122
123 ql_write32(qdev, SEM, sem_bits | sem_mask);
124 return !(ql_read32(qdev, SEM) & sem_bits);
125}
126
127int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128{
0857e9d7 129 unsigned int wait_count = 30;
c4e84bde
RM
130 do {
131 if (!ql_sem_trylock(qdev, sem_mask))
132 return 0;
0857e9d7
RM
133 udelay(100);
134 } while (--wait_count);
c4e84bde
RM
135 return -ETIMEDOUT;
136}
137
138void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139{
140 ql_write32(qdev, SEM, sem_mask);
141 ql_read32(qdev, SEM); /* flush */
142}
143
144/* This function waits for a specific bit to come ready
145 * in a given register. It is used mostly by the initialize
146 * process, but is also used in kernel thread API such as
147 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148 */
149int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150{
151 u32 temp;
152 int count = UDELAY_COUNT;
153
154 while (count) {
155 temp = ql_read32(qdev, reg);
156
157 /* check for errors */
158 if (temp & err_bit) {
159 QPRINTK(qdev, PROBE, ALERT,
160 "register 0x%.08x access error, value = 0x%.08x!.\n",
161 reg, temp);
162 return -EIO;
163 } else if (temp & bit)
164 return 0;
165 udelay(UDELAY_DELAY);
166 count--;
167 }
168 QPRINTK(qdev, PROBE, ALERT,
169 "Timed out waiting for reg %x to come ready.\n", reg);
170 return -ETIMEDOUT;
171}
172
173/* The CFG register is used to download TX and RX control blocks
174 * to the chip. This function waits for an operation to complete.
175 */
176static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177{
178 int count = UDELAY_COUNT;
179 u32 temp;
180
181 while (count) {
182 temp = ql_read32(qdev, CFG);
183 if (temp & CFG_LE)
184 return -EIO;
185 if (!(temp & bit))
186 return 0;
187 udelay(UDELAY_DELAY);
188 count--;
189 }
190 return -ETIMEDOUT;
191}
192
193
194/* Used to issue init control blocks to hw. Maps control block,
195 * sets address, triggers download, waits for completion.
196 */
197int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198 u16 q_id)
199{
200 u64 map;
201 int status = 0;
202 int direction;
203 u32 mask;
204 u32 value;
205
206 direction =
207 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208 PCI_DMA_FROMDEVICE;
209
210 map = pci_map_single(qdev->pdev, ptr, size, direction);
211 if (pci_dma_mapping_error(qdev->pdev, map)) {
212 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213 return -ENOMEM;
214 }
215
4322c5be
RM
216 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
217 if (status)
218 return status;
219
c4e84bde
RM
220 status = ql_wait_cfg(qdev, bit);
221 if (status) {
222 QPRINTK(qdev, IFUP, ERR,
223 "Timed out waiting for CFG to come ready.\n");
224 goto exit;
225 }
226
c4e84bde
RM
227 ql_write32(qdev, ICB_L, (u32) map);
228 ql_write32(qdev, ICB_H, (u32) (map >> 32));
c4e84bde
RM
229
230 mask = CFG_Q_MASK | (bit << 16);
231 value = bit | (q_id << CFG_Q_SHIFT);
232 ql_write32(qdev, CFG, (mask | value));
233
234 /*
235 * Wait for the bit to clear after signaling hw.
236 */
237 status = ql_wait_cfg(qdev, bit);
238exit:
4322c5be 239 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
c4e84bde
RM
240 pci_unmap_single(qdev->pdev, map, size, direction);
241 return status;
242}
243
244/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
245int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246 u32 *value)
247{
248 u32 offset = 0;
249 int status;
250
c4e84bde
RM
251 switch (type) {
252 case MAC_ADDR_TYPE_MULTI_MAC:
253 case MAC_ADDR_TYPE_CAM_MAC:
254 {
255 status =
256 ql_wait_reg_rdy(qdev,
939678f8 257 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
258 if (status)
259 goto exit;
260 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
261 (index << MAC_ADDR_IDX_SHIFT) | /* index */
262 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
263 status =
264 ql_wait_reg_rdy(qdev,
939678f8 265 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
266 if (status)
267 goto exit;
268 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
269 status =
270 ql_wait_reg_rdy(qdev,
939678f8 271 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
272 if (status)
273 goto exit;
274 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
275 (index << MAC_ADDR_IDX_SHIFT) | /* index */
276 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
277 status =
278 ql_wait_reg_rdy(qdev,
939678f8 279 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
c4e84bde
RM
280 if (status)
281 goto exit;
282 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
283 if (type == MAC_ADDR_TYPE_CAM_MAC) {
284 status =
285 ql_wait_reg_rdy(qdev,
939678f8 286 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
287 if (status)
288 goto exit;
289 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
290 (index << MAC_ADDR_IDX_SHIFT) | /* index */
291 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
292 status =
293 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
939678f8 294 MAC_ADDR_MR, 0);
c4e84bde
RM
295 if (status)
296 goto exit;
297 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
298 }
299 break;
300 }
301 case MAC_ADDR_TYPE_VLAN:
302 case MAC_ADDR_TYPE_MULTI_FLTR:
303 default:
304 QPRINTK(qdev, IFUP, CRIT,
305 "Address type %d not yet supported.\n", type);
306 status = -EPERM;
307 }
308exit:
c4e84bde
RM
309 return status;
310}
311
312/* Set up a MAC, multicast or VLAN address for the
313 * inbound frame matching.
314 */
315static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
316 u16 index)
317{
318 u32 offset = 0;
319 int status = 0;
320
c4e84bde
RM
321 switch (type) {
322 case MAC_ADDR_TYPE_MULTI_MAC:
76b26694
RM
323 {
324 u32 upper = (addr[0] << 8) | addr[1];
325 u32 lower = (addr[2] << 24) | (addr[3] << 16) |
326 (addr[4] << 8) | (addr[5]);
327
328 status =
329 ql_wait_reg_rdy(qdev,
330 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
331 if (status)
332 goto exit;
333 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
334 (index << MAC_ADDR_IDX_SHIFT) |
335 type | MAC_ADDR_E);
336 ql_write32(qdev, MAC_ADDR_DATA, lower);
337 status =
338 ql_wait_reg_rdy(qdev,
339 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
340 if (status)
341 goto exit;
342 ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
343 (index << MAC_ADDR_IDX_SHIFT) |
344 type | MAC_ADDR_E);
345
346 ql_write32(qdev, MAC_ADDR_DATA, upper);
347 status =
348 ql_wait_reg_rdy(qdev,
349 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
350 if (status)
351 goto exit;
352 break;
353 }
c4e84bde
RM
354 case MAC_ADDR_TYPE_CAM_MAC:
355 {
356 u32 cam_output;
357 u32 upper = (addr[0] << 8) | addr[1];
358 u32 lower =
359 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
360 (addr[5]);
361
4974097a 362 QPRINTK(qdev, IFUP, DEBUG,
7c510e4b 363 "Adding %s address %pM"
c4e84bde
RM
364 " at index %d in the CAM.\n",
365 ((type ==
366 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
7c510e4b 367 "UNICAST"), addr, index);
c4e84bde
RM
368
369 status =
370 ql_wait_reg_rdy(qdev,
939678f8 371 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
372 if (status)
373 goto exit;
374 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
375 (index << MAC_ADDR_IDX_SHIFT) | /* index */
376 type); /* type */
377 ql_write32(qdev, MAC_ADDR_DATA, lower);
378 status =
379 ql_wait_reg_rdy(qdev,
939678f8 380 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
381 if (status)
382 goto exit;
383 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384 (index << MAC_ADDR_IDX_SHIFT) | /* index */
385 type); /* type */
386 ql_write32(qdev, MAC_ADDR_DATA, upper);
387 status =
388 ql_wait_reg_rdy(qdev,
939678f8 389 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
390 if (status)
391 goto exit;
392 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
393 (index << MAC_ADDR_IDX_SHIFT) | /* index */
394 type); /* type */
395 /* This field should also include the queue id
396 and possibly the function id. Right now we hardcode
397 the route field to NIC core.
398 */
76b26694
RM
399 cam_output = (CAM_OUT_ROUTE_NIC |
400 (qdev->
401 func << CAM_OUT_FUNC_SHIFT) |
402 (0 << CAM_OUT_CQ_ID_SHIFT));
403 if (qdev->vlgrp)
404 cam_output |= CAM_OUT_RV;
405 /* route to NIC core */
406 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
c4e84bde
RM
407 break;
408 }
409 case MAC_ADDR_TYPE_VLAN:
410 {
411 u32 enable_bit = *((u32 *) &addr[0]);
412 /* For VLAN, the addr actually holds a bit that
413 * either enables or disables the vlan id we are
414 * addressing. It's either MAC_ADDR_E on or off.
415 * That's bit-27 we're talking about.
416 */
417 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
418 (enable_bit ? "Adding" : "Removing"),
419 index, (enable_bit ? "to" : "from"));
420
421 status =
422 ql_wait_reg_rdy(qdev,
939678f8 423 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
c4e84bde
RM
424 if (status)
425 goto exit;
426 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
427 (index << MAC_ADDR_IDX_SHIFT) | /* index */
428 type | /* type */
429 enable_bit); /* enable/disable */
430 break;
431 }
432 case MAC_ADDR_TYPE_MULTI_FLTR:
433 default:
434 QPRINTK(qdev, IFUP, CRIT,
435 "Address type %d not yet supported.\n", type);
436 status = -EPERM;
437 }
438exit:
c4e84bde
RM
439 return status;
440}
441
7fab3bfe
RM
442/* Set or clear MAC address in hardware. We sometimes
443 * have to clear it to prevent wrong frame routing
444 * especially in a bonding environment.
445 */
446static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
447{
448 int status;
449 char zero_mac_addr[ETH_ALEN];
450 char *addr;
451
452 if (set) {
453 addr = &qdev->ndev->dev_addr[0];
454 QPRINTK(qdev, IFUP, DEBUG,
455 "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
456 addr[0], addr[1], addr[2], addr[3],
457 addr[4], addr[5]);
458 } else {
459 memset(zero_mac_addr, 0, ETH_ALEN);
460 addr = &zero_mac_addr[0];
461 QPRINTK(qdev, IFUP, DEBUG,
462 "Clearing MAC address on %s\n",
463 qdev->ndev->name);
464 }
465 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
466 if (status)
467 return status;
468 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
469 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
470 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
471 if (status)
472 QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
473 "address.\n");
474 return status;
475}
476
6a473308
RM
477void ql_link_on(struct ql_adapter *qdev)
478{
479 QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
480 qdev->ndev->name);
481 netif_carrier_on(qdev->ndev);
482 ql_set_mac_addr(qdev, 1);
483}
484
485void ql_link_off(struct ql_adapter *qdev)
486{
487 QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
488 qdev->ndev->name);
489 netif_carrier_off(qdev->ndev);
490 ql_set_mac_addr(qdev, 0);
491}
492
c4e84bde
RM
493/* Get a specific frame routing value from the CAM.
494 * Used for debug and reg dump.
495 */
496int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497{
498 int status = 0;
499
939678f8 500 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
c4e84bde
RM
501 if (status)
502 goto exit;
503
504 ql_write32(qdev, RT_IDX,
505 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
939678f8 506 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
c4e84bde
RM
507 if (status)
508 goto exit;
509 *value = ql_read32(qdev, RT_DATA);
510exit:
c4e84bde
RM
511 return status;
512}
513
514/* The NIC function for this chip has 16 routing indexes. Each one can be used
515 * to route different frame types to various inbound queues. We send broadcast/
516 * multicast/error frames to the default queue for slow handling,
517 * and CAM hit/RSS frames to the fast handling queues.
518 */
519static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520 int enable)
521{
8587ea35 522 int status = -EINVAL; /* Return error if no mask match. */
c4e84bde
RM
523 u32 value = 0;
524
c4e84bde
RM
525 QPRINTK(qdev, IFUP, DEBUG,
526 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
527 (enable ? "Adding" : "Removing"),
528 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
529 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
530 ((index ==
531 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
532 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
533 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
534 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
535 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
536 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
537 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
538 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
539 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
540 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
541 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
542 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
543 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
544 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
545 (enable ? "to" : "from"));
546
547 switch (mask) {
548 case RT_IDX_CAM_HIT:
549 {
550 value = RT_IDX_DST_CAM_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
553 break;
554 }
555 case RT_IDX_VALID: /* Promiscuous Mode frames. */
556 {
557 value = RT_IDX_DST_DFLT_Q | /* dest */
558 RT_IDX_TYPE_NICQ | /* type */
559 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
560 break;
561 }
562 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
563 {
564 value = RT_IDX_DST_DFLT_Q | /* dest */
565 RT_IDX_TYPE_NICQ | /* type */
566 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
567 break;
568 }
569 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
570 {
571 value = RT_IDX_DST_DFLT_Q | /* dest */
572 RT_IDX_TYPE_NICQ | /* type */
573 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
574 break;
575 }
576 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
577 {
e163d7f2 578 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
579 RT_IDX_TYPE_NICQ | /* type */
580 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
581 break;
582 }
583 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
584 {
e163d7f2 585 value = RT_IDX_DST_DFLT_Q | /* dest */
c4e84bde
RM
586 RT_IDX_TYPE_NICQ | /* type */
587 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
588 break;
589 }
590 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
591 {
592 value = RT_IDX_DST_RSS | /* dest */
593 RT_IDX_TYPE_NICQ | /* type */
594 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
595 break;
596 }
597 case 0: /* Clear the E-bit on an entry. */
598 {
599 value = RT_IDX_DST_DFLT_Q | /* dest */
600 RT_IDX_TYPE_NICQ | /* type */
601 (index << RT_IDX_IDX_SHIFT);/* index */
602 break;
603 }
604 default:
605 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
606 mask);
607 status = -EPERM;
608 goto exit;
609 }
610
611 if (value) {
612 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
613 if (status)
614 goto exit;
615 value |= (enable ? RT_IDX_E : 0);
616 ql_write32(qdev, RT_IDX, value);
617 ql_write32(qdev, RT_DATA, enable ? mask : 0);
618 }
619exit:
c4e84bde
RM
620 return status;
621}
622
623static void ql_enable_interrupts(struct ql_adapter *qdev)
624{
625 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
626}
627
628static void ql_disable_interrupts(struct ql_adapter *qdev)
629{
630 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
631}
632
633/* If we're running with multiple MSI-X vectors then we enable on the fly.
634 * Otherwise, we may have multiple outstanding workers and don't want to
635 * enable until the last one finishes. In this case, the irq_cnt gets
636 * incremented everytime we queue a worker and decremented everytime
637 * a worker finishes. Once it hits zero we enable the interrupt.
638 */
bb0d215c 639u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
c4e84bde 640{
bb0d215c
RM
641 u32 var = 0;
642 unsigned long hw_flags = 0;
643 struct intr_context *ctx = qdev->intr_context + intr;
644
645 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
646 /* Always enable if we're MSIX multi interrupts and
647 * it's not the default (zeroeth) interrupt.
648 */
c4e84bde 649 ql_write32(qdev, INTR_EN,
bb0d215c
RM
650 ctx->intr_en_mask);
651 var = ql_read32(qdev, STS);
652 return var;
c4e84bde 653 }
bb0d215c
RM
654
655 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
656 if (atomic_dec_and_test(&ctx->irq_cnt)) {
657 ql_write32(qdev, INTR_EN,
658 ctx->intr_en_mask);
659 var = ql_read32(qdev, STS);
660 }
661 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
662 return var;
c4e84bde
RM
663}
664
665static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
666{
667 u32 var = 0;
bb0d215c 668 struct intr_context *ctx;
c4e84bde 669
bb0d215c
RM
670 /* HW disables for us if we're MSIX multi interrupts and
671 * it's not the default (zeroeth) interrupt.
672 */
673 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
674 return 0;
675
676 ctx = qdev->intr_context + intr;
08b1bc8f 677 spin_lock(&qdev->hw_lock);
bb0d215c 678 if (!atomic_read(&ctx->irq_cnt)) {
c4e84bde 679 ql_write32(qdev, INTR_EN,
bb0d215c 680 ctx->intr_dis_mask);
c4e84bde
RM
681 var = ql_read32(qdev, STS);
682 }
bb0d215c 683 atomic_inc(&ctx->irq_cnt);
08b1bc8f 684 spin_unlock(&qdev->hw_lock);
c4e84bde
RM
685 return var;
686}
687
688static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
689{
690 int i;
691 for (i = 0; i < qdev->intr_count; i++) {
692 /* The enable call does a atomic_dec_and_test
693 * and enables only if the result is zero.
694 * So we precharge it here.
695 */
bb0d215c
RM
696 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
697 i == 0))
698 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
c4e84bde
RM
699 ql_enable_completion_interrupt(qdev, i);
700 }
701
702}
703
b0c2aadf
RM
704static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
705{
706 int status, i;
707 u16 csum = 0;
708 __le16 *flash = (__le16 *)&qdev->flash;
709
710 status = strncmp((char *)&qdev->flash, str, 4);
711 if (status) {
712 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
713 return status;
714 }
715
716 for (i = 0; i < size; i++)
717 csum += le16_to_cpu(*flash++);
718
719 if (csum)
720 QPRINTK(qdev, IFUP, ERR,
721 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
722
723 return csum;
724}
725
26351479 726static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
c4e84bde
RM
727{
728 int status = 0;
729 /* wait for reg to come ready */
730 status = ql_wait_reg_rdy(qdev,
731 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
732 if (status)
733 goto exit;
734 /* set up for reg read */
735 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
736 /* wait for reg to come ready */
737 status = ql_wait_reg_rdy(qdev,
738 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
739 if (status)
740 goto exit;
26351479
RM
741 /* This data is stored on flash as an array of
742 * __le32. Since ql_read32() returns cpu endian
743 * we need to swap it back.
744 */
745 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
c4e84bde
RM
746exit:
747 return status;
748}
749
cdca8d02
RM
750static int ql_get_8000_flash_params(struct ql_adapter *qdev)
751{
752 u32 i, size;
753 int status;
754 __le32 *p = (__le32 *)&qdev->flash;
755 u32 offset;
542512e4 756 u8 mac_addr[6];
cdca8d02
RM
757
758 /* Get flash offset for function and adjust
759 * for dword access.
760 */
e4552f51 761 if (!qdev->port)
cdca8d02
RM
762 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
763 else
764 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
765
766 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
767 return -ETIMEDOUT;
768
769 size = sizeof(struct flash_params_8000) / sizeof(u32);
770 for (i = 0; i < size; i++, p++) {
771 status = ql_read_flash_word(qdev, i+offset, p);
772 if (status) {
773 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
774 goto exit;
775 }
776 }
777
778 status = ql_validate_flash(qdev,
779 sizeof(struct flash_params_8000) / sizeof(u16),
780 "8000");
781 if (status) {
782 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
783 status = -EINVAL;
784 goto exit;
785 }
786
542512e4
RM
787 /* Extract either manufacturer or BOFM modified
788 * MAC address.
789 */
790 if (qdev->flash.flash_params_8000.data_type1 == 2)
791 memcpy(mac_addr,
792 qdev->flash.flash_params_8000.mac_addr1,
793 qdev->ndev->addr_len);
794 else
795 memcpy(mac_addr,
796 qdev->flash.flash_params_8000.mac_addr,
797 qdev->ndev->addr_len);
798
799 if (!is_valid_ether_addr(mac_addr)) {
cdca8d02
RM
800 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
801 status = -EINVAL;
802 goto exit;
803 }
804
805 memcpy(qdev->ndev->dev_addr,
542512e4 806 mac_addr,
cdca8d02
RM
807 qdev->ndev->addr_len);
808
809exit:
810 ql_sem_unlock(qdev, SEM_FLASH_MASK);
811 return status;
812}
813
b0c2aadf 814static int ql_get_8012_flash_params(struct ql_adapter *qdev)
c4e84bde
RM
815{
816 int i;
817 int status;
26351479 818 __le32 *p = (__le32 *)&qdev->flash;
e78f5fa7 819 u32 offset = 0;
b0c2aadf 820 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
e78f5fa7
RM
821
822 /* Second function's parameters follow the first
823 * function's.
824 */
e4552f51 825 if (qdev->port)
b0c2aadf 826 offset = size;
c4e84bde
RM
827
828 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
829 return -ETIMEDOUT;
830
b0c2aadf 831 for (i = 0; i < size; i++, p++) {
e78f5fa7 832 status = ql_read_flash_word(qdev, i+offset, p);
c4e84bde
RM
833 if (status) {
834 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
835 goto exit;
836 }
837
838 }
b0c2aadf
RM
839
840 status = ql_validate_flash(qdev,
841 sizeof(struct flash_params_8012) / sizeof(u16),
842 "8012");
843 if (status) {
844 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
845 status = -EINVAL;
846 goto exit;
847 }
848
849 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
850 status = -EINVAL;
851 goto exit;
852 }
853
854 memcpy(qdev->ndev->dev_addr,
855 qdev->flash.flash_params_8012.mac_addr,
856 qdev->ndev->addr_len);
857
c4e84bde
RM
858exit:
859 ql_sem_unlock(qdev, SEM_FLASH_MASK);
860 return status;
861}
862
863/* xgmac register are located behind the xgmac_addr and xgmac_data
864 * register pair. Each read/write requires us to wait for the ready
865 * bit before reading/writing the data.
866 */
867static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
868{
869 int status;
870 /* wait for reg to come ready */
871 status = ql_wait_reg_rdy(qdev,
872 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
873 if (status)
874 return status;
875 /* write the data to the data reg */
876 ql_write32(qdev, XGMAC_DATA, data);
877 /* trigger the write */
878 ql_write32(qdev, XGMAC_ADDR, reg);
879 return status;
880}
881
882/* xgmac register are located behind the xgmac_addr and xgmac_data
883 * register pair. Each read/write requires us to wait for the ready
884 * bit before reading/writing the data.
885 */
886int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
887{
888 int status = 0;
889 /* wait for reg to come ready */
890 status = ql_wait_reg_rdy(qdev,
891 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
892 if (status)
893 goto exit;
894 /* set up for reg read */
895 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
896 /* wait for reg to come ready */
897 status = ql_wait_reg_rdy(qdev,
898 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
899 if (status)
900 goto exit;
901 /* get the data */
902 *data = ql_read32(qdev, XGMAC_DATA);
903exit:
904 return status;
905}
906
907/* This is used for reading the 64-bit statistics regs. */
908int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
909{
910 int status = 0;
911 u32 hi = 0;
912 u32 lo = 0;
913
914 status = ql_read_xgmac_reg(qdev, reg, &lo);
915 if (status)
916 goto exit;
917
918 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
919 if (status)
920 goto exit;
921
922 *data = (u64) lo | ((u64) hi << 32);
923
924exit:
925 return status;
926}
927
cdca8d02
RM
928static int ql_8000_port_initialize(struct ql_adapter *qdev)
929{
bcc2cb3b 930 int status;
cfec0cbc
RM
931 /*
932 * Get MPI firmware version for driver banner
933 * and ethool info.
934 */
935 status = ql_mb_about_fw(qdev);
936 if (status)
937 goto exit;
bcc2cb3b
RM
938 status = ql_mb_get_fw_state(qdev);
939 if (status)
940 goto exit;
941 /* Wake up a worker to get/set the TX/RX frame sizes. */
942 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
943exit:
944 return status;
cdca8d02
RM
945}
946
c4e84bde
RM
947/* Take the MAC Core out of reset.
948 * Enable statistics counting.
949 * Take the transmitter/receiver out of reset.
950 * This functionality may be done in the MPI firmware at a
951 * later date.
952 */
b0c2aadf 953static int ql_8012_port_initialize(struct ql_adapter *qdev)
c4e84bde
RM
954{
955 int status = 0;
956 u32 data;
957
958 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
959 /* Another function has the semaphore, so
960 * wait for the port init bit to come ready.
961 */
962 QPRINTK(qdev, LINK, INFO,
963 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
964 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
965 if (status) {
966 QPRINTK(qdev, LINK, CRIT,
967 "Port initialize timed out.\n");
968 }
969 return status;
970 }
971
972 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
973 /* Set the core reset. */
974 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
975 if (status)
976 goto end;
977 data |= GLOBAL_CFG_RESET;
978 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
979 if (status)
980 goto end;
981
982 /* Clear the core reset and turn on jumbo for receiver. */
983 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
984 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
985 data |= GLOBAL_CFG_TX_STAT_EN;
986 data |= GLOBAL_CFG_RX_STAT_EN;
987 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
988 if (status)
989 goto end;
990
991 /* Enable transmitter, and clear it's reset. */
992 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
993 if (status)
994 goto end;
995 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
996 data |= TX_CFG_EN; /* Enable the transmitter. */
997 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
998 if (status)
999 goto end;
1000
1001 /* Enable receiver and clear it's reset. */
1002 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1003 if (status)
1004 goto end;
1005 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
1006 data |= RX_CFG_EN; /* Enable the receiver. */
1007 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1008 if (status)
1009 goto end;
1010
1011 /* Turn on jumbo. */
1012 status =
1013 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1014 if (status)
1015 goto end;
1016 status =
1017 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1018 if (status)
1019 goto end;
1020
1021 /* Signal to the world that the port is enabled. */
1022 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1023end:
1024 ql_sem_unlock(qdev, qdev->xg_sem_mask);
1025 return status;
1026}
1027
1028/* Get the next large buffer. */
8668ae92 1029static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1030{
1031 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1032 rx_ring->lbq_curr_idx++;
1033 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1034 rx_ring->lbq_curr_idx = 0;
1035 rx_ring->lbq_free_cnt++;
1036 return lbq_desc;
1037}
1038
1039/* Get the next small buffer. */
8668ae92 1040static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
c4e84bde
RM
1041{
1042 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1043 rx_ring->sbq_curr_idx++;
1044 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1045 rx_ring->sbq_curr_idx = 0;
1046 rx_ring->sbq_free_cnt++;
1047 return sbq_desc;
1048}
1049
1050/* Update an rx ring index. */
1051static void ql_update_cq(struct rx_ring *rx_ring)
1052{
1053 rx_ring->cnsmr_idx++;
1054 rx_ring->curr_entry++;
1055 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1056 rx_ring->cnsmr_idx = 0;
1057 rx_ring->curr_entry = rx_ring->cq_base;
1058 }
1059}
1060
1061static void ql_write_cq_idx(struct rx_ring *rx_ring)
1062{
1063 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1064}
1065
1066/* Process (refill) a large buffer queue. */
1067static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1068{
49f2186d
RM
1069 u32 clean_idx = rx_ring->lbq_clean_idx;
1070 u32 start_idx = clean_idx;
c4e84bde 1071 struct bq_desc *lbq_desc;
c4e84bde
RM
1072 u64 map;
1073 int i;
1074
1075 while (rx_ring->lbq_free_cnt > 16) {
1076 for (i = 0; i < 16; i++) {
1077 QPRINTK(qdev, RX_STATUS, DEBUG,
1078 "lbq: try cleaning clean_idx = %d.\n",
1079 clean_idx);
1080 lbq_desc = &rx_ring->lbq[clean_idx];
c4e84bde
RM
1081 if (lbq_desc->p.lbq_page == NULL) {
1082 QPRINTK(qdev, RX_STATUS, DEBUG,
1083 "lbq: getting new page for index %d.\n",
1084 lbq_desc->index);
1085 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
1086 if (lbq_desc->p.lbq_page == NULL) {
79d2b29e 1087 rx_ring->lbq_clean_idx = clean_idx;
c4e84bde
RM
1088 QPRINTK(qdev, RX_STATUS, ERR,
1089 "Couldn't get a page.\n");
1090 return;
1091 }
1092 map = pci_map_page(qdev->pdev,
1093 lbq_desc->p.lbq_page,
1094 0, PAGE_SIZE,
1095 PCI_DMA_FROMDEVICE);
1096 if (pci_dma_mapping_error(qdev->pdev, map)) {
79d2b29e 1097 rx_ring->lbq_clean_idx = clean_idx;
f2603c2c
RM
1098 put_page(lbq_desc->p.lbq_page);
1099 lbq_desc->p.lbq_page = NULL;
c4e84bde
RM
1100 QPRINTK(qdev, RX_STATUS, ERR,
1101 "PCI mapping failed.\n");
1102 return;
1103 }
1104 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1105 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2c9a0d41 1106 *lbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1107 }
1108 clean_idx++;
1109 if (clean_idx == rx_ring->lbq_len)
1110 clean_idx = 0;
1111 }
1112
1113 rx_ring->lbq_clean_idx = clean_idx;
1114 rx_ring->lbq_prod_idx += 16;
1115 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1116 rx_ring->lbq_prod_idx = 0;
49f2186d
RM
1117 rx_ring->lbq_free_cnt -= 16;
1118 }
1119
1120 if (start_idx != clean_idx) {
c4e84bde
RM
1121 QPRINTK(qdev, RX_STATUS, DEBUG,
1122 "lbq: updating prod idx = %d.\n",
1123 rx_ring->lbq_prod_idx);
1124 ql_write_db_reg(rx_ring->lbq_prod_idx,
1125 rx_ring->lbq_prod_idx_db_reg);
c4e84bde
RM
1126 }
1127}
1128
1129/* Process (refill) a small buffer queue. */
1130static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1131{
49f2186d
RM
1132 u32 clean_idx = rx_ring->sbq_clean_idx;
1133 u32 start_idx = clean_idx;
c4e84bde 1134 struct bq_desc *sbq_desc;
c4e84bde
RM
1135 u64 map;
1136 int i;
1137
1138 while (rx_ring->sbq_free_cnt > 16) {
1139 for (i = 0; i < 16; i++) {
1140 sbq_desc = &rx_ring->sbq[clean_idx];
1141 QPRINTK(qdev, RX_STATUS, DEBUG,
1142 "sbq: try cleaning clean_idx = %d.\n",
1143 clean_idx);
c4e84bde
RM
1144 if (sbq_desc->p.skb == NULL) {
1145 QPRINTK(qdev, RX_STATUS, DEBUG,
1146 "sbq: getting new skb for index %d.\n",
1147 sbq_desc->index);
1148 sbq_desc->p.skb =
1149 netdev_alloc_skb(qdev->ndev,
1150 rx_ring->sbq_buf_size);
1151 if (sbq_desc->p.skb == NULL) {
1152 QPRINTK(qdev, PROBE, ERR,
1153 "Couldn't get an skb.\n");
1154 rx_ring->sbq_clean_idx = clean_idx;
1155 return;
1156 }
1157 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1158 map = pci_map_single(qdev->pdev,
1159 sbq_desc->p.skb->data,
1160 rx_ring->sbq_buf_size /
1161 2, PCI_DMA_FROMDEVICE);
c907a35a
RM
1162 if (pci_dma_mapping_error(qdev->pdev, map)) {
1163 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1164 rx_ring->sbq_clean_idx = clean_idx;
06a3d510
RM
1165 dev_kfree_skb_any(sbq_desc->p.skb);
1166 sbq_desc->p.skb = NULL;
c907a35a
RM
1167 return;
1168 }
c4e84bde
RM
1169 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1170 pci_unmap_len_set(sbq_desc, maplen,
1171 rx_ring->sbq_buf_size / 2);
2c9a0d41 1172 *sbq_desc->addr = cpu_to_le64(map);
c4e84bde
RM
1173 }
1174
1175 clean_idx++;
1176 if (clean_idx == rx_ring->sbq_len)
1177 clean_idx = 0;
1178 }
1179 rx_ring->sbq_clean_idx = clean_idx;
1180 rx_ring->sbq_prod_idx += 16;
1181 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1182 rx_ring->sbq_prod_idx = 0;
49f2186d
RM
1183 rx_ring->sbq_free_cnt -= 16;
1184 }
1185
1186 if (start_idx != clean_idx) {
c4e84bde
RM
1187 QPRINTK(qdev, RX_STATUS, DEBUG,
1188 "sbq: updating prod idx = %d.\n",
1189 rx_ring->sbq_prod_idx);
1190 ql_write_db_reg(rx_ring->sbq_prod_idx,
1191 rx_ring->sbq_prod_idx_db_reg);
c4e84bde
RM
1192 }
1193}
1194
1195static void ql_update_buffer_queues(struct ql_adapter *qdev,
1196 struct rx_ring *rx_ring)
1197{
1198 ql_update_sbq(qdev, rx_ring);
1199 ql_update_lbq(qdev, rx_ring);
1200}
1201
1202/* Unmaps tx buffers. Can be called from send() if a pci mapping
1203 * fails at some stage, or from the interrupt when a tx completes.
1204 */
1205static void ql_unmap_send(struct ql_adapter *qdev,
1206 struct tx_ring_desc *tx_ring_desc, int mapped)
1207{
1208 int i;
1209 for (i = 0; i < mapped; i++) {
1210 if (i == 0 || (i == 7 && mapped > 7)) {
1211 /*
1212 * Unmap the skb->data area, or the
1213 * external sglist (AKA the Outbound
1214 * Address List (OAL)).
1215 * If its the zeroeth element, then it's
1216 * the skb->data area. If it's the 7th
1217 * element and there is more than 6 frags,
1218 * then its an OAL.
1219 */
1220 if (i == 7) {
1221 QPRINTK(qdev, TX_DONE, DEBUG,
1222 "unmapping OAL area.\n");
1223 }
1224 pci_unmap_single(qdev->pdev,
1225 pci_unmap_addr(&tx_ring_desc->map[i],
1226 mapaddr),
1227 pci_unmap_len(&tx_ring_desc->map[i],
1228 maplen),
1229 PCI_DMA_TODEVICE);
1230 } else {
1231 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1232 i);
1233 pci_unmap_page(qdev->pdev,
1234 pci_unmap_addr(&tx_ring_desc->map[i],
1235 mapaddr),
1236 pci_unmap_len(&tx_ring_desc->map[i],
1237 maplen), PCI_DMA_TODEVICE);
1238 }
1239 }
1240
1241}
1242
1243/* Map the buffers for this transmit. This will return
1244 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1245 */
1246static int ql_map_send(struct ql_adapter *qdev,
1247 struct ob_mac_iocb_req *mac_iocb_ptr,
1248 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1249{
1250 int len = skb_headlen(skb);
1251 dma_addr_t map;
1252 int frag_idx, err, map_idx = 0;
1253 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1254 int frag_cnt = skb_shinfo(skb)->nr_frags;
1255
1256 if (frag_cnt) {
1257 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1258 }
1259 /*
1260 * Map the skb buffer first.
1261 */
1262 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1263
1264 err = pci_dma_mapping_error(qdev->pdev, map);
1265 if (err) {
1266 QPRINTK(qdev, TX_QUEUED, ERR,
1267 "PCI mapping failed with error: %d\n", err);
1268
1269 return NETDEV_TX_BUSY;
1270 }
1271
1272 tbd->len = cpu_to_le32(len);
1273 tbd->addr = cpu_to_le64(map);
1274 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1275 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1276 map_idx++;
1277
1278 /*
1279 * This loop fills the remainder of the 8 address descriptors
1280 * in the IOCB. If there are more than 7 fragments, then the
1281 * eighth address desc will point to an external list (OAL).
1282 * When this happens, the remainder of the frags will be stored
1283 * in this list.
1284 */
1285 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1286 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1287 tbd++;
1288 if (frag_idx == 6 && frag_cnt > 7) {
1289 /* Let's tack on an sglist.
1290 * Our control block will now
1291 * look like this:
1292 * iocb->seg[0] = skb->data
1293 * iocb->seg[1] = frag[0]
1294 * iocb->seg[2] = frag[1]
1295 * iocb->seg[3] = frag[2]
1296 * iocb->seg[4] = frag[3]
1297 * iocb->seg[5] = frag[4]
1298 * iocb->seg[6] = frag[5]
1299 * iocb->seg[7] = ptr to OAL (external sglist)
1300 * oal->seg[0] = frag[6]
1301 * oal->seg[1] = frag[7]
1302 * oal->seg[2] = frag[8]
1303 * oal->seg[3] = frag[9]
1304 * oal->seg[4] = frag[10]
1305 * etc...
1306 */
1307 /* Tack on the OAL in the eighth segment of IOCB. */
1308 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1309 sizeof(struct oal),
1310 PCI_DMA_TODEVICE);
1311 err = pci_dma_mapping_error(qdev->pdev, map);
1312 if (err) {
1313 QPRINTK(qdev, TX_QUEUED, ERR,
1314 "PCI mapping outbound address list with error: %d\n",
1315 err);
1316 goto map_error;
1317 }
1318
1319 tbd->addr = cpu_to_le64(map);
1320 /*
1321 * The length is the number of fragments
1322 * that remain to be mapped times the length
1323 * of our sglist (OAL).
1324 */
1325 tbd->len =
1326 cpu_to_le32((sizeof(struct tx_buf_desc) *
1327 (frag_cnt - frag_idx)) | TX_DESC_C);
1328 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1329 map);
1330 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1331 sizeof(struct oal));
1332 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1333 map_idx++;
1334 }
1335
1336 map =
1337 pci_map_page(qdev->pdev, frag->page,
1338 frag->page_offset, frag->size,
1339 PCI_DMA_TODEVICE);
1340
1341 err = pci_dma_mapping_error(qdev->pdev, map);
1342 if (err) {
1343 QPRINTK(qdev, TX_QUEUED, ERR,
1344 "PCI mapping frags failed with error: %d.\n",
1345 err);
1346 goto map_error;
1347 }
1348
1349 tbd->addr = cpu_to_le64(map);
1350 tbd->len = cpu_to_le32(frag->size);
1351 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1352 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1353 frag->size);
1354
1355 }
1356 /* Save the number of segments we've mapped. */
1357 tx_ring_desc->map_cnt = map_idx;
1358 /* Terminate the last segment. */
1359 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1360 return NETDEV_TX_OK;
1361
1362map_error:
1363 /*
1364 * If the first frag mapping failed, then i will be zero.
1365 * This causes the unmap of the skb->data area. Otherwise
1366 * we pass in the number of frags that mapped successfully
1367 * so they can be umapped.
1368 */
1369 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1370 return NETDEV_TX_BUSY;
1371}
1372
8668ae92 1373static void ql_realign_skb(struct sk_buff *skb, int len)
c4e84bde
RM
1374{
1375 void *temp_addr = skb->data;
1376
1377 /* Undo the skb_reserve(skb,32) we did before
1378 * giving to hardware, and realign data on
1379 * a 2-byte boundary.
1380 */
1381 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1382 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1383 skb_copy_to_linear_data(skb, temp_addr,
1384 (unsigned int)len);
1385}
1386
1387/*
1388 * This function builds an skb for the given inbound
1389 * completion. It will be rewritten for readability in the near
1390 * future, but for not it works well.
1391 */
1392static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1393 struct rx_ring *rx_ring,
1394 struct ib_mac_iocb_rsp *ib_mac_rsp)
1395{
1396 struct bq_desc *lbq_desc;
1397 struct bq_desc *sbq_desc;
1398 struct sk_buff *skb = NULL;
1399 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1400 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1401
1402 /*
1403 * Handle the header buffer if present.
1404 */
1405 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1406 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1407 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1408 /*
1409 * Headers fit nicely into a small buffer.
1410 */
1411 sbq_desc = ql_get_curr_sbuf(rx_ring);
1412 pci_unmap_single(qdev->pdev,
1413 pci_unmap_addr(sbq_desc, mapaddr),
1414 pci_unmap_len(sbq_desc, maplen),
1415 PCI_DMA_FROMDEVICE);
1416 skb = sbq_desc->p.skb;
1417 ql_realign_skb(skb, hdr_len);
1418 skb_put(skb, hdr_len);
1419 sbq_desc->p.skb = NULL;
1420 }
1421
1422 /*
1423 * Handle the data buffer(s).
1424 */
1425 if (unlikely(!length)) { /* Is there data too? */
1426 QPRINTK(qdev, RX_STATUS, DEBUG,
1427 "No Data buffer in this packet.\n");
1428 return skb;
1429 }
1430
1431 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1432 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1433 QPRINTK(qdev, RX_STATUS, DEBUG,
1434 "Headers in small, data of %d bytes in small, combine them.\n", length);
1435 /*
1436 * Data is less than small buffer size so it's
1437 * stuffed in a small buffer.
1438 * For this case we append the data
1439 * from the "data" small buffer to the "header" small
1440 * buffer.
1441 */
1442 sbq_desc = ql_get_curr_sbuf(rx_ring);
1443 pci_dma_sync_single_for_cpu(qdev->pdev,
1444 pci_unmap_addr
1445 (sbq_desc, mapaddr),
1446 pci_unmap_len
1447 (sbq_desc, maplen),
1448 PCI_DMA_FROMDEVICE);
1449 memcpy(skb_put(skb, length),
1450 sbq_desc->p.skb->data, length);
1451 pci_dma_sync_single_for_device(qdev->pdev,
1452 pci_unmap_addr
1453 (sbq_desc,
1454 mapaddr),
1455 pci_unmap_len
1456 (sbq_desc,
1457 maplen),
1458 PCI_DMA_FROMDEVICE);
1459 } else {
1460 QPRINTK(qdev, RX_STATUS, DEBUG,
1461 "%d bytes in a single small buffer.\n", length);
1462 sbq_desc = ql_get_curr_sbuf(rx_ring);
1463 skb = sbq_desc->p.skb;
1464 ql_realign_skb(skb, length);
1465 skb_put(skb, length);
1466 pci_unmap_single(qdev->pdev,
1467 pci_unmap_addr(sbq_desc,
1468 mapaddr),
1469 pci_unmap_len(sbq_desc,
1470 maplen),
1471 PCI_DMA_FROMDEVICE);
1472 sbq_desc->p.skb = NULL;
1473 }
1474 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1475 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1476 QPRINTK(qdev, RX_STATUS, DEBUG,
1477 "Header in small, %d bytes in large. Chain large to small!\n", length);
1478 /*
1479 * The data is in a single large buffer. We
1480 * chain it to the header buffer's skb and let
1481 * it rip.
1482 */
1483 lbq_desc = ql_get_curr_lbuf(rx_ring);
1484 pci_unmap_page(qdev->pdev,
1485 pci_unmap_addr(lbq_desc,
1486 mapaddr),
1487 pci_unmap_len(lbq_desc, maplen),
1488 PCI_DMA_FROMDEVICE);
1489 QPRINTK(qdev, RX_STATUS, DEBUG,
1490 "Chaining page to skb.\n");
1491 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1492 0, length);
1493 skb->len += length;
1494 skb->data_len += length;
1495 skb->truesize += length;
1496 lbq_desc->p.lbq_page = NULL;
1497 } else {
1498 /*
1499 * The headers and data are in a single large buffer. We
1500 * copy it to a new skb and let it go. This can happen with
1501 * jumbo mtu on a non-TCP/UDP frame.
1502 */
1503 lbq_desc = ql_get_curr_lbuf(rx_ring);
1504 skb = netdev_alloc_skb(qdev->ndev, length);
1505 if (skb == NULL) {
1506 QPRINTK(qdev, PROBE, DEBUG,
1507 "No skb available, drop the packet.\n");
1508 return NULL;
1509 }
4055c7d4
RM
1510 pci_unmap_page(qdev->pdev,
1511 pci_unmap_addr(lbq_desc,
1512 mapaddr),
1513 pci_unmap_len(lbq_desc, maplen),
1514 PCI_DMA_FROMDEVICE);
c4e84bde
RM
1515 skb_reserve(skb, NET_IP_ALIGN);
1516 QPRINTK(qdev, RX_STATUS, DEBUG,
1517 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1518 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1519 0, length);
1520 skb->len += length;
1521 skb->data_len += length;
1522 skb->truesize += length;
1523 length -= length;
1524 lbq_desc->p.lbq_page = NULL;
1525 __pskb_pull_tail(skb,
1526 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1527 VLAN_ETH_HLEN : ETH_HLEN);
1528 }
1529 } else {
1530 /*
1531 * The data is in a chain of large buffers
1532 * pointed to by a small buffer. We loop
1533 * thru and chain them to the our small header
1534 * buffer's skb.
1535 * frags: There are 18 max frags and our small
1536 * buffer will hold 32 of them. The thing is,
1537 * we'll use 3 max for our 9000 byte jumbo
1538 * frames. If the MTU goes up we could
1539 * eventually be in trouble.
1540 */
1541 int size, offset, i = 0;
2c9a0d41 1542 __le64 *bq, bq_array[8];
c4e84bde
RM
1543 sbq_desc = ql_get_curr_sbuf(rx_ring);
1544 pci_unmap_single(qdev->pdev,
1545 pci_unmap_addr(sbq_desc, mapaddr),
1546 pci_unmap_len(sbq_desc, maplen),
1547 PCI_DMA_FROMDEVICE);
1548 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1549 /*
1550 * This is an non TCP/UDP IP frame, so
1551 * the headers aren't split into a small
1552 * buffer. We have to use the small buffer
1553 * that contains our sg list as our skb to
1554 * send upstairs. Copy the sg list here to
1555 * a local buffer and use it to find the
1556 * pages to chain.
1557 */
1558 QPRINTK(qdev, RX_STATUS, DEBUG,
1559 "%d bytes of headers & data in chain of large.\n", length);
1560 skb = sbq_desc->p.skb;
1561 bq = &bq_array[0];
1562 memcpy(bq, skb->data, sizeof(bq_array));
1563 sbq_desc->p.skb = NULL;
1564 skb_reserve(skb, NET_IP_ALIGN);
1565 } else {
1566 QPRINTK(qdev, RX_STATUS, DEBUG,
1567 "Headers in small, %d bytes of data in chain of large.\n", length);
2c9a0d41 1568 bq = (__le64 *)sbq_desc->p.skb->data;
c4e84bde
RM
1569 }
1570 while (length > 0) {
1571 lbq_desc = ql_get_curr_lbuf(rx_ring);
c4e84bde
RM
1572 pci_unmap_page(qdev->pdev,
1573 pci_unmap_addr(lbq_desc,
1574 mapaddr),
1575 pci_unmap_len(lbq_desc,
1576 maplen),
1577 PCI_DMA_FROMDEVICE);
1578 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1579 offset = 0;
1580
1581 QPRINTK(qdev, RX_STATUS, DEBUG,
1582 "Adding page %d to skb for %d bytes.\n",
1583 i, size);
1584 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1585 offset, size);
1586 skb->len += size;
1587 skb->data_len += size;
1588 skb->truesize += size;
1589 length -= size;
1590 lbq_desc->p.lbq_page = NULL;
1591 bq++;
1592 i++;
1593 }
1594 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1595 VLAN_ETH_HLEN : ETH_HLEN);
1596 }
1597 return skb;
1598}
1599
1600/* Process an inbound completion from an rx ring. */
1601static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1602 struct rx_ring *rx_ring,
1603 struct ib_mac_iocb_rsp *ib_mac_rsp)
1604{
1605 struct net_device *ndev = qdev->ndev;
1606 struct sk_buff *skb = NULL;
22bdd4f5
RM
1607 u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1608 IB_MAC_IOCB_RSP_VLAN_MASK)
c4e84bde
RM
1609
1610 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1611
1612 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1613 if (unlikely(!skb)) {
1614 QPRINTK(qdev, RX_STATUS, DEBUG,
1615 "No skb available, drop packet.\n");
1616 return;
1617 }
1618
a32959cd
RM
1619 /* Frame error, so drop the packet. */
1620 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1621 QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
1622 ib_mac_rsp->flags2);
1623 dev_kfree_skb_any(skb);
1624 return;
1625 }
ec33a491
RM
1626
1627 /* The max framesize filter on this chip is set higher than
1628 * MTU since FCoE uses 2k frames.
1629 */
1630 if (skb->len > ndev->mtu + ETH_HLEN) {
1631 dev_kfree_skb_any(skb);
1632 return;
1633 }
1634
c4e84bde
RM
1635 prefetch(skb->data);
1636 skb->dev = ndev;
1637 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1638 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1639 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1640 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1641 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1642 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1643 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1644 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1645 }
1646 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1647 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1648 }
d555f592 1649
d555f592
RM
1650 skb->protocol = eth_type_trans(skb, ndev);
1651 skb->ip_summed = CHECKSUM_NONE;
1652
1653 /* If rx checksum is on, and there are no
1654 * csum or frame errors.
1655 */
1656 if (qdev->rx_csum &&
d555f592
RM
1657 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1658 /* TCP frame. */
1659 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1660 QPRINTK(qdev, RX_STATUS, DEBUG,
1661 "TCP checksum done!\n");
1662 skb->ip_summed = CHECKSUM_UNNECESSARY;
1663 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1664 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1665 /* Unfragmented ipv4 UDP frame. */
1666 struct iphdr *iph = (struct iphdr *) skb->data;
1667 if (!(iph->frag_off &
1668 cpu_to_be16(IP_MF|IP_OFFSET))) {
1669 skb->ip_summed = CHECKSUM_UNNECESSARY;
1670 QPRINTK(qdev, RX_STATUS, DEBUG,
1671 "TCP checksum done!\n");
1672 }
1673 }
c4e84bde 1674 }
d555f592 1675
c4e84bde
RM
1676 qdev->stats.rx_packets++;
1677 qdev->stats.rx_bytes += skb->len;
b2014ff8 1678 skb_record_rx_queue(skb, rx_ring->cq_id);
22bdd4f5
RM
1679 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1680 if (qdev->vlgrp &&
1681 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1682 (vlan_id != 0))
1683 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1684 vlan_id, skb);
1685 else
1686 napi_gro_receive(&rx_ring->napi, skb);
c4e84bde 1687 } else {
22bdd4f5
RM
1688 if (qdev->vlgrp &&
1689 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1690 (vlan_id != 0))
1691 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1692 else
1693 netif_receive_skb(skb);
c4e84bde 1694 }
c4e84bde
RM
1695}
1696
1697/* Process an outbound completion from an rx ring. */
1698static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1699 struct ob_mac_iocb_rsp *mac_rsp)
1700{
1701 struct tx_ring *tx_ring;
1702 struct tx_ring_desc *tx_ring_desc;
1703
1704 QL_DUMP_OB_MAC_RSP(mac_rsp);
1705 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1706 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1707 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
13cfd5be 1708 qdev->stats.tx_bytes += (tx_ring_desc->skb)->len;
c4e84bde
RM
1709 qdev->stats.tx_packets++;
1710 dev_kfree_skb(tx_ring_desc->skb);
1711 tx_ring_desc->skb = NULL;
1712
1713 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1714 OB_MAC_IOCB_RSP_S |
1715 OB_MAC_IOCB_RSP_L |
1716 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1717 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1718 QPRINTK(qdev, TX_DONE, WARNING,
1719 "Total descriptor length did not match transfer length.\n");
1720 }
1721 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1722 QPRINTK(qdev, TX_DONE, WARNING,
1723 "Frame too short to be legal, not sent.\n");
1724 }
1725 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1726 QPRINTK(qdev, TX_DONE, WARNING,
1727 "Frame too long, but sent anyway.\n");
1728 }
1729 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1730 QPRINTK(qdev, TX_DONE, WARNING,
1731 "PCI backplane error. Frame not sent.\n");
1732 }
1733 }
1734 atomic_inc(&tx_ring->tx_count);
1735}
1736
1737/* Fire up a handler to reset the MPI processor. */
1738void ql_queue_fw_error(struct ql_adapter *qdev)
1739{
6a473308 1740 ql_link_off(qdev);
c4e84bde
RM
1741 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1742}
1743
1744void ql_queue_asic_error(struct ql_adapter *qdev)
1745{
6a473308 1746 ql_link_off(qdev);
c4e84bde 1747 ql_disable_interrupts(qdev);
6497b607
RM
1748 /* Clear adapter up bit to signal the recovery
1749 * process that it shouldn't kill the reset worker
1750 * thread
1751 */
1752 clear_bit(QL_ADAPTER_UP, &qdev->flags);
c4e84bde
RM
1753 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1754}
1755
1756static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1757 struct ib_ae_iocb_rsp *ib_ae_rsp)
1758{
1759 switch (ib_ae_rsp->event) {
1760 case MGMT_ERR_EVENT:
1761 QPRINTK(qdev, RX_ERR, ERR,
1762 "Management Processor Fatal Error.\n");
1763 ql_queue_fw_error(qdev);
1764 return;
1765
1766 case CAM_LOOKUP_ERR_EVENT:
1767 QPRINTK(qdev, LINK, ERR,
1768 "Multiple CAM hits lookup occurred.\n");
1769 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1770 ql_queue_asic_error(qdev);
1771 return;
1772
1773 case SOFT_ECC_ERROR_EVENT:
1774 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1775 ql_queue_asic_error(qdev);
1776 break;
1777
1778 case PCI_ERR_ANON_BUF_RD:
1779 QPRINTK(qdev, RX_ERR, ERR,
1780 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1781 ib_ae_rsp->q_id);
1782 ql_queue_asic_error(qdev);
1783 break;
1784
1785 default:
1786 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1787 ib_ae_rsp->event);
1788 ql_queue_asic_error(qdev);
1789 break;
1790 }
1791}
1792
1793static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1794{
1795 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1796 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1797 struct ob_mac_iocb_rsp *net_rsp = NULL;
1798 int count = 0;
1799
1e213303 1800 struct tx_ring *tx_ring;
c4e84bde
RM
1801 /* While there are entries in the completion queue. */
1802 while (prod != rx_ring->cnsmr_idx) {
1803
1804 QPRINTK(qdev, RX_STATUS, DEBUG,
1805 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1806 prod, rx_ring->cnsmr_idx);
1807
1808 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1809 rmb();
1810 switch (net_rsp->opcode) {
1811
1812 case OPCODE_OB_MAC_TSO_IOCB:
1813 case OPCODE_OB_MAC_IOCB:
1814 ql_process_mac_tx_intr(qdev, net_rsp);
1815 break;
1816 default:
1817 QPRINTK(qdev, RX_STATUS, DEBUG,
1818 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1819 net_rsp->opcode);
1820 }
1821 count++;
1822 ql_update_cq(rx_ring);
ba7cd3ba 1823 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1824 }
1825 ql_write_cq_idx(rx_ring);
1e213303
RM
1826 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1827 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1828 net_rsp != NULL) {
c4e84bde
RM
1829 if (atomic_read(&tx_ring->queue_stopped) &&
1830 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1831 /*
1832 * The queue got stopped because the tx_ring was full.
1833 * Wake it up, because it's now at least 25% empty.
1834 */
1e213303 1835 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
c4e84bde
RM
1836 }
1837
1838 return count;
1839}
1840
1841static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1842{
1843 struct ql_adapter *qdev = rx_ring->qdev;
ba7cd3ba 1844 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1845 struct ql_net_rsp_iocb *net_rsp;
1846 int count = 0;
1847
1848 /* While there are entries in the completion queue. */
1849 while (prod != rx_ring->cnsmr_idx) {
1850
1851 QPRINTK(qdev, RX_STATUS, DEBUG,
1852 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1853 prod, rx_ring->cnsmr_idx);
1854
1855 net_rsp = rx_ring->curr_entry;
1856 rmb();
1857 switch (net_rsp->opcode) {
1858 case OPCODE_IB_MAC_IOCB:
1859 ql_process_mac_rx_intr(qdev, rx_ring,
1860 (struct ib_mac_iocb_rsp *)
1861 net_rsp);
1862 break;
1863
1864 case OPCODE_IB_AE_IOCB:
1865 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1866 net_rsp);
1867 break;
1868 default:
1869 {
1870 QPRINTK(qdev, RX_STATUS, DEBUG,
1871 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1872 net_rsp->opcode);
1873 }
1874 }
1875 count++;
1876 ql_update_cq(rx_ring);
ba7cd3ba 1877 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
c4e84bde
RM
1878 if (count == budget)
1879 break;
1880 }
1881 ql_update_buffer_queues(qdev, rx_ring);
1882 ql_write_cq_idx(rx_ring);
1883 return count;
1884}
1885
1886static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1887{
1888 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1889 struct ql_adapter *qdev = rx_ring->qdev;
39aa8165
RM
1890 struct rx_ring *trx_ring;
1891 int i, work_done = 0;
1892 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
c4e84bde
RM
1893
1894 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1895 rx_ring->cq_id);
1896
39aa8165
RM
1897 /* Service the TX rings first. They start
1898 * right after the RSS rings. */
1899 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
1900 trx_ring = &qdev->rx_ring[i];
1901 /* If this TX completion ring belongs to this vector and
1902 * it's not empty then service it.
1903 */
1904 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
1905 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
1906 trx_ring->cnsmr_idx)) {
1907 QPRINTK(qdev, INTR, DEBUG,
1908 "%s: Servicing TX completion ring %d.\n",
1909 __func__, trx_ring->cq_id);
1910 ql_clean_outbound_rx_ring(trx_ring);
1911 }
1912 }
1913
1914 /*
1915 * Now service the RSS ring if it's active.
1916 */
1917 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1918 rx_ring->cnsmr_idx) {
1919 QPRINTK(qdev, INTR, DEBUG,
1920 "%s: Servicing RX completion ring %d.\n",
1921 __func__, rx_ring->cq_id);
1922 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1923 }
1924
c4e84bde 1925 if (work_done < budget) {
22bdd4f5 1926 napi_complete(napi);
c4e84bde
RM
1927 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1928 }
1929 return work_done;
1930}
1931
1932static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1933{
1934 struct ql_adapter *qdev = netdev_priv(ndev);
1935
1936 qdev->vlgrp = grp;
1937 if (grp) {
1938 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1939 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1940 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1941 } else {
1942 QPRINTK(qdev, IFUP, DEBUG,
1943 "Turning off VLAN in NIC_RCV_CFG.\n");
1944 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1945 }
1946}
1947
1948static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1949{
1950 struct ql_adapter *qdev = netdev_priv(ndev);
1951 u32 enable_bit = MAC_ADDR_E;
cc288f54 1952 int status;
c4e84bde 1953
cc288f54
RM
1954 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1955 if (status)
1956 return;
c4e84bde
RM
1957 if (ql_set_mac_addr_reg
1958 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1959 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1960 }
cc288f54 1961 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
1962}
1963
1964static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1965{
1966 struct ql_adapter *qdev = netdev_priv(ndev);
1967 u32 enable_bit = 0;
cc288f54
RM
1968 int status;
1969
1970 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1971 if (status)
1972 return;
c4e84bde 1973
c4e84bde
RM
1974 if (ql_set_mac_addr_reg
1975 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1976 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1977 }
cc288f54 1978 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
1979
1980}
1981
c4e84bde
RM
1982/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1983static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1984{
1985 struct rx_ring *rx_ring = dev_id;
288379f0 1986 napi_schedule(&rx_ring->napi);
c4e84bde
RM
1987 return IRQ_HANDLED;
1988}
1989
c4e84bde
RM
1990/* This handles a fatal error, MPI activity, and the default
1991 * rx_ring in an MSI-X multiple vector environment.
1992 * In MSI/Legacy environment it also process the rest of
1993 * the rx_rings.
1994 */
1995static irqreturn_t qlge_isr(int irq, void *dev_id)
1996{
1997 struct rx_ring *rx_ring = dev_id;
1998 struct ql_adapter *qdev = rx_ring->qdev;
1999 struct intr_context *intr_context = &qdev->intr_context[0];
2000 u32 var;
c4e84bde
RM
2001 int work_done = 0;
2002
bb0d215c
RM
2003 spin_lock(&qdev->hw_lock);
2004 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2005 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
2006 spin_unlock(&qdev->hw_lock);
2007 return IRQ_NONE;
c4e84bde 2008 }
bb0d215c 2009 spin_unlock(&qdev->hw_lock);
c4e84bde 2010
bb0d215c 2011 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2012
2013 /*
2014 * Check for fatal error.
2015 */
2016 if (var & STS_FE) {
2017 ql_queue_asic_error(qdev);
2018 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
2019 var = ql_read32(qdev, ERR_STS);
2020 QPRINTK(qdev, INTR, ERR,
2021 "Resetting chip. Error Status Register = 0x%x\n", var);
2022 return IRQ_HANDLED;
2023 }
2024
2025 /*
2026 * Check MPI processor activity.
2027 */
5ee22a5a
RM
2028 if ((var & STS_PI) &&
2029 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
c4e84bde
RM
2030 /*
2031 * We've got an async event or mailbox completion.
2032 * Handle it and clear the source of the interrupt.
2033 */
2034 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
2035 ql_disable_completion_interrupt(qdev, intr_context->intr);
5ee22a5a
RM
2036 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2037 queue_delayed_work_on(smp_processor_id(),
2038 qdev->workqueue, &qdev->mpi_work, 0);
c4e84bde
RM
2039 work_done++;
2040 }
2041
2042 /*
39aa8165
RM
2043 * Get the bit-mask that shows the active queues for this
2044 * pass. Compare it to the queues that this irq services
2045 * and call napi if there's a match.
c4e84bde 2046 */
39aa8165
RM
2047 var = ql_read32(qdev, ISR1);
2048 if (var & intr_context->irq_mask) {
c4e84bde 2049 QPRINTK(qdev, INTR, INFO,
39aa8165
RM
2050 "Waking handler for rx_ring[0].\n");
2051 ql_disable_completion_interrupt(qdev, intr_context->intr);
288379f0 2052 napi_schedule(&rx_ring->napi);
c4e84bde
RM
2053 work_done++;
2054 }
bb0d215c 2055 ql_enable_completion_interrupt(qdev, intr_context->intr);
c4e84bde
RM
2056 return work_done ? IRQ_HANDLED : IRQ_NONE;
2057}
2058
2059static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2060{
2061
2062 if (skb_is_gso(skb)) {
2063 int err;
2064 if (skb_header_cloned(skb)) {
2065 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2066 if (err)
2067 return err;
2068 }
2069
2070 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2071 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2072 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2073 mac_iocb_ptr->total_hdrs_len =
2074 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2075 mac_iocb_ptr->net_trans_offset =
2076 cpu_to_le16(skb_network_offset(skb) |
2077 skb_transport_offset(skb)
2078 << OB_MAC_TRANSPORT_HDR_SHIFT);
2079 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2080 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2081 if (likely(skb->protocol == htons(ETH_P_IP))) {
2082 struct iphdr *iph = ip_hdr(skb);
2083 iph->check = 0;
2084 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2085 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2086 iph->daddr, 0,
2087 IPPROTO_TCP,
2088 0);
2089 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2090 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2091 tcp_hdr(skb)->check =
2092 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2093 &ipv6_hdr(skb)->daddr,
2094 0, IPPROTO_TCP, 0);
2095 }
2096 return 1;
2097 }
2098 return 0;
2099}
2100
2101static void ql_hw_csum_setup(struct sk_buff *skb,
2102 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2103{
2104 int len;
2105 struct iphdr *iph = ip_hdr(skb);
fd2df4f7 2106 __sum16 *check;
c4e84bde
RM
2107 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2108 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2109 mac_iocb_ptr->net_trans_offset =
2110 cpu_to_le16(skb_network_offset(skb) |
2111 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2112
2113 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2114 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2115 if (likely(iph->protocol == IPPROTO_TCP)) {
2116 check = &(tcp_hdr(skb)->check);
2117 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2118 mac_iocb_ptr->total_hdrs_len =
2119 cpu_to_le16(skb_transport_offset(skb) +
2120 (tcp_hdr(skb)->doff << 2));
2121 } else {
2122 check = &(udp_hdr(skb)->check);
2123 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2124 mac_iocb_ptr->total_hdrs_len =
2125 cpu_to_le16(skb_transport_offset(skb) +
2126 sizeof(struct udphdr));
2127 }
2128 *check = ~csum_tcpudp_magic(iph->saddr,
2129 iph->daddr, len, iph->protocol, 0);
2130}
2131
61357325 2132static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
c4e84bde
RM
2133{
2134 struct tx_ring_desc *tx_ring_desc;
2135 struct ob_mac_iocb_req *mac_iocb_ptr;
2136 struct ql_adapter *qdev = netdev_priv(ndev);
2137 int tso;
2138 struct tx_ring *tx_ring;
1e213303 2139 u32 tx_ring_idx = (u32) skb->queue_mapping;
c4e84bde
RM
2140
2141 tx_ring = &qdev->tx_ring[tx_ring_idx];
2142
74c50b4b
RM
2143 if (skb_padto(skb, ETH_ZLEN))
2144 return NETDEV_TX_OK;
2145
c4e84bde
RM
2146 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2147 QPRINTK(qdev, TX_QUEUED, INFO,
2148 "%s: shutting down tx queue %d du to lack of resources.\n",
2149 __func__, tx_ring_idx);
1e213303 2150 netif_stop_subqueue(ndev, tx_ring->wq_id);
c4e84bde
RM
2151 atomic_inc(&tx_ring->queue_stopped);
2152 return NETDEV_TX_BUSY;
2153 }
2154 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2155 mac_iocb_ptr = tx_ring_desc->queue_entry;
e332471c 2156 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
c4e84bde
RM
2157
2158 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2159 mac_iocb_ptr->tid = tx_ring_desc->index;
2160 /* We use the upper 32-bits to store the tx queue for this IO.
2161 * When we get the completion we can use it to establish the context.
2162 */
2163 mac_iocb_ptr->txq_idx = tx_ring_idx;
2164 tx_ring_desc->skb = skb;
2165
2166 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2167
2168 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2169 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2170 vlan_tx_tag_get(skb));
2171 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2172 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2173 }
2174 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2175 if (tso < 0) {
2176 dev_kfree_skb_any(skb);
2177 return NETDEV_TX_OK;
2178 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2179 ql_hw_csum_setup(skb,
2180 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2181 }
0d979f74
RM
2182 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2183 NETDEV_TX_OK) {
2184 QPRINTK(qdev, TX_QUEUED, ERR,
2185 "Could not map the segments.\n");
2186 return NETDEV_TX_BUSY;
2187 }
c4e84bde
RM
2188 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2189 tx_ring->prod_idx++;
2190 if (tx_ring->prod_idx == tx_ring->wq_len)
2191 tx_ring->prod_idx = 0;
2192 wmb();
2193
2194 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
c4e84bde
RM
2195 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2196 tx_ring->prod_idx, skb->len);
2197
2198 atomic_dec(&tx_ring->tx_count);
2199 return NETDEV_TX_OK;
2200}
2201
2202static void ql_free_shadow_space(struct ql_adapter *qdev)
2203{
2204 if (qdev->rx_ring_shadow_reg_area) {
2205 pci_free_consistent(qdev->pdev,
2206 PAGE_SIZE,
2207 qdev->rx_ring_shadow_reg_area,
2208 qdev->rx_ring_shadow_reg_dma);
2209 qdev->rx_ring_shadow_reg_area = NULL;
2210 }
2211 if (qdev->tx_ring_shadow_reg_area) {
2212 pci_free_consistent(qdev->pdev,
2213 PAGE_SIZE,
2214 qdev->tx_ring_shadow_reg_area,
2215 qdev->tx_ring_shadow_reg_dma);
2216 qdev->tx_ring_shadow_reg_area = NULL;
2217 }
2218}
2219
2220static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2221{
2222 qdev->rx_ring_shadow_reg_area =
2223 pci_alloc_consistent(qdev->pdev,
2224 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2225 if (qdev->rx_ring_shadow_reg_area == NULL) {
2226 QPRINTK(qdev, IFUP, ERR,
2227 "Allocation of RX shadow space failed.\n");
2228 return -ENOMEM;
2229 }
b25215d0 2230 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2231 qdev->tx_ring_shadow_reg_area =
2232 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2233 &qdev->tx_ring_shadow_reg_dma);
2234 if (qdev->tx_ring_shadow_reg_area == NULL) {
2235 QPRINTK(qdev, IFUP, ERR,
2236 "Allocation of TX shadow space failed.\n");
2237 goto err_wqp_sh_area;
2238 }
b25215d0 2239 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
c4e84bde
RM
2240 return 0;
2241
2242err_wqp_sh_area:
2243 pci_free_consistent(qdev->pdev,
2244 PAGE_SIZE,
2245 qdev->rx_ring_shadow_reg_area,
2246 qdev->rx_ring_shadow_reg_dma);
2247 return -ENOMEM;
2248}
2249
2250static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2251{
2252 struct tx_ring_desc *tx_ring_desc;
2253 int i;
2254 struct ob_mac_iocb_req *mac_iocb_ptr;
2255
2256 mac_iocb_ptr = tx_ring->wq_base;
2257 tx_ring_desc = tx_ring->q;
2258 for (i = 0; i < tx_ring->wq_len; i++) {
2259 tx_ring_desc->index = i;
2260 tx_ring_desc->skb = NULL;
2261 tx_ring_desc->queue_entry = mac_iocb_ptr;
2262 mac_iocb_ptr++;
2263 tx_ring_desc++;
2264 }
2265 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2266 atomic_set(&tx_ring->queue_stopped, 0);
2267}
2268
2269static void ql_free_tx_resources(struct ql_adapter *qdev,
2270 struct tx_ring *tx_ring)
2271{
2272 if (tx_ring->wq_base) {
2273 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2274 tx_ring->wq_base, tx_ring->wq_base_dma);
2275 tx_ring->wq_base = NULL;
2276 }
2277 kfree(tx_ring->q);
2278 tx_ring->q = NULL;
2279}
2280
2281static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2282 struct tx_ring *tx_ring)
2283{
2284 tx_ring->wq_base =
2285 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2286 &tx_ring->wq_base_dma);
2287
2288 if ((tx_ring->wq_base == NULL)
88c55e3c 2289 || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
c4e84bde
RM
2290 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2291 return -ENOMEM;
2292 }
2293 tx_ring->q =
2294 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2295 if (tx_ring->q == NULL)
2296 goto err;
2297
2298 return 0;
2299err:
2300 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2301 tx_ring->wq_base, tx_ring->wq_base_dma);
2302 return -ENOMEM;
2303}
2304
8668ae92 2305static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2306{
2307 int i;
2308 struct bq_desc *lbq_desc;
2309
2310 for (i = 0; i < rx_ring->lbq_len; i++) {
2311 lbq_desc = &rx_ring->lbq[i];
2312 if (lbq_desc->p.lbq_page) {
2313 pci_unmap_page(qdev->pdev,
2314 pci_unmap_addr(lbq_desc, mapaddr),
2315 pci_unmap_len(lbq_desc, maplen),
2316 PCI_DMA_FROMDEVICE);
2317
2318 put_page(lbq_desc->p.lbq_page);
2319 lbq_desc->p.lbq_page = NULL;
2320 }
c4e84bde
RM
2321 }
2322}
2323
8668ae92 2324static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
c4e84bde
RM
2325{
2326 int i;
2327 struct bq_desc *sbq_desc;
2328
2329 for (i = 0; i < rx_ring->sbq_len; i++) {
2330 sbq_desc = &rx_ring->sbq[i];
2331 if (sbq_desc == NULL) {
2332 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2333 return;
2334 }
2335 if (sbq_desc->p.skb) {
2336 pci_unmap_single(qdev->pdev,
2337 pci_unmap_addr(sbq_desc, mapaddr),
2338 pci_unmap_len(sbq_desc, maplen),
2339 PCI_DMA_FROMDEVICE);
2340 dev_kfree_skb(sbq_desc->p.skb);
2341 sbq_desc->p.skb = NULL;
2342 }
c4e84bde
RM
2343 }
2344}
2345
4545a3f2
RM
2346/* Free all large and small rx buffers associated
2347 * with the completion queues for this device.
2348 */
2349static void ql_free_rx_buffers(struct ql_adapter *qdev)
2350{
2351 int i;
2352 struct rx_ring *rx_ring;
2353
2354 for (i = 0; i < qdev->rx_ring_count; i++) {
2355 rx_ring = &qdev->rx_ring[i];
2356 if (rx_ring->lbq)
2357 ql_free_lbq_buffers(qdev, rx_ring);
2358 if (rx_ring->sbq)
2359 ql_free_sbq_buffers(qdev, rx_ring);
2360 }
2361}
2362
2363static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2364{
2365 struct rx_ring *rx_ring;
2366 int i;
2367
2368 for (i = 0; i < qdev->rx_ring_count; i++) {
2369 rx_ring = &qdev->rx_ring[i];
2370 if (rx_ring->type != TX_Q)
2371 ql_update_buffer_queues(qdev, rx_ring);
2372 }
2373}
2374
2375static void ql_init_lbq_ring(struct ql_adapter *qdev,
2376 struct rx_ring *rx_ring)
2377{
2378 int i;
2379 struct bq_desc *lbq_desc;
2380 __le64 *bq = rx_ring->lbq_base;
2381
2382 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2383 for (i = 0; i < rx_ring->lbq_len; i++) {
2384 lbq_desc = &rx_ring->lbq[i];
2385 memset(lbq_desc, 0, sizeof(*lbq_desc));
2386 lbq_desc->index = i;
2387 lbq_desc->addr = bq;
2388 bq++;
2389 }
2390}
2391
2392static void ql_init_sbq_ring(struct ql_adapter *qdev,
c4e84bde
RM
2393 struct rx_ring *rx_ring)
2394{
2395 int i;
2396 struct bq_desc *sbq_desc;
2c9a0d41 2397 __le64 *bq = rx_ring->sbq_base;
c4e84bde 2398
4545a3f2 2399 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
c4e84bde
RM
2400 for (i = 0; i < rx_ring->sbq_len; i++) {
2401 sbq_desc = &rx_ring->sbq[i];
4545a3f2 2402 memset(sbq_desc, 0, sizeof(*sbq_desc));
c4e84bde 2403 sbq_desc->index = i;
2c9a0d41 2404 sbq_desc->addr = bq;
c4e84bde
RM
2405 bq++;
2406 }
c4e84bde
RM
2407}
2408
2409static void ql_free_rx_resources(struct ql_adapter *qdev,
2410 struct rx_ring *rx_ring)
2411{
c4e84bde
RM
2412 /* Free the small buffer queue. */
2413 if (rx_ring->sbq_base) {
2414 pci_free_consistent(qdev->pdev,
2415 rx_ring->sbq_size,
2416 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2417 rx_ring->sbq_base = NULL;
2418 }
2419
2420 /* Free the small buffer queue control blocks. */
2421 kfree(rx_ring->sbq);
2422 rx_ring->sbq = NULL;
2423
2424 /* Free the large buffer queue. */
2425 if (rx_ring->lbq_base) {
2426 pci_free_consistent(qdev->pdev,
2427 rx_ring->lbq_size,
2428 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2429 rx_ring->lbq_base = NULL;
2430 }
2431
2432 /* Free the large buffer queue control blocks. */
2433 kfree(rx_ring->lbq);
2434 rx_ring->lbq = NULL;
2435
2436 /* Free the rx queue. */
2437 if (rx_ring->cq_base) {
2438 pci_free_consistent(qdev->pdev,
2439 rx_ring->cq_size,
2440 rx_ring->cq_base, rx_ring->cq_base_dma);
2441 rx_ring->cq_base = NULL;
2442 }
2443}
2444
2445/* Allocate queues and buffers for this completions queue based
2446 * on the values in the parameter structure. */
2447static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2448 struct rx_ring *rx_ring)
2449{
2450
2451 /*
2452 * Allocate the completion queue for this rx_ring.
2453 */
2454 rx_ring->cq_base =
2455 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2456 &rx_ring->cq_base_dma);
2457
2458 if (rx_ring->cq_base == NULL) {
2459 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2460 return -ENOMEM;
2461 }
2462
2463 if (rx_ring->sbq_len) {
2464 /*
2465 * Allocate small buffer queue.
2466 */
2467 rx_ring->sbq_base =
2468 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2469 &rx_ring->sbq_base_dma);
2470
2471 if (rx_ring->sbq_base == NULL) {
2472 QPRINTK(qdev, IFUP, ERR,
2473 "Small buffer queue allocation failed.\n");
2474 goto err_mem;
2475 }
2476
2477 /*
2478 * Allocate small buffer queue control blocks.
2479 */
2480 rx_ring->sbq =
2481 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2482 GFP_KERNEL);
2483 if (rx_ring->sbq == NULL) {
2484 QPRINTK(qdev, IFUP, ERR,
2485 "Small buffer queue control block allocation failed.\n");
2486 goto err_mem;
2487 }
2488
4545a3f2 2489 ql_init_sbq_ring(qdev, rx_ring);
c4e84bde
RM
2490 }
2491
2492 if (rx_ring->lbq_len) {
2493 /*
2494 * Allocate large buffer queue.
2495 */
2496 rx_ring->lbq_base =
2497 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2498 &rx_ring->lbq_base_dma);
2499
2500 if (rx_ring->lbq_base == NULL) {
2501 QPRINTK(qdev, IFUP, ERR,
2502 "Large buffer queue allocation failed.\n");
2503 goto err_mem;
2504 }
2505 /*
2506 * Allocate large buffer queue control blocks.
2507 */
2508 rx_ring->lbq =
2509 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2510 GFP_KERNEL);
2511 if (rx_ring->lbq == NULL) {
2512 QPRINTK(qdev, IFUP, ERR,
2513 "Large buffer queue control block allocation failed.\n");
2514 goto err_mem;
2515 }
2516
4545a3f2 2517 ql_init_lbq_ring(qdev, rx_ring);
c4e84bde
RM
2518 }
2519
2520 return 0;
2521
2522err_mem:
2523 ql_free_rx_resources(qdev, rx_ring);
2524 return -ENOMEM;
2525}
2526
2527static void ql_tx_ring_clean(struct ql_adapter *qdev)
2528{
2529 struct tx_ring *tx_ring;
2530 struct tx_ring_desc *tx_ring_desc;
2531 int i, j;
2532
2533 /*
2534 * Loop through all queues and free
2535 * any resources.
2536 */
2537 for (j = 0; j < qdev->tx_ring_count; j++) {
2538 tx_ring = &qdev->tx_ring[j];
2539 for (i = 0; i < tx_ring->wq_len; i++) {
2540 tx_ring_desc = &tx_ring->q[i];
2541 if (tx_ring_desc && tx_ring_desc->skb) {
2542 QPRINTK(qdev, IFDOWN, ERR,
2543 "Freeing lost SKB %p, from queue %d, index %d.\n",
2544 tx_ring_desc->skb, j,
2545 tx_ring_desc->index);
2546 ql_unmap_send(qdev, tx_ring_desc,
2547 tx_ring_desc->map_cnt);
2548 dev_kfree_skb(tx_ring_desc->skb);
2549 tx_ring_desc->skb = NULL;
2550 }
2551 }
2552 }
2553}
2554
c4e84bde
RM
2555static void ql_free_mem_resources(struct ql_adapter *qdev)
2556{
2557 int i;
2558
2559 for (i = 0; i < qdev->tx_ring_count; i++)
2560 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2561 for (i = 0; i < qdev->rx_ring_count; i++)
2562 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2563 ql_free_shadow_space(qdev);
2564}
2565
2566static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2567{
2568 int i;
2569
2570 /* Allocate space for our shadow registers and such. */
2571 if (ql_alloc_shadow_space(qdev))
2572 return -ENOMEM;
2573
2574 for (i = 0; i < qdev->rx_ring_count; i++) {
2575 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2576 QPRINTK(qdev, IFUP, ERR,
2577 "RX resource allocation failed.\n");
2578 goto err_mem;
2579 }
2580 }
2581 /* Allocate tx queue resources */
2582 for (i = 0; i < qdev->tx_ring_count; i++) {
2583 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2584 QPRINTK(qdev, IFUP, ERR,
2585 "TX resource allocation failed.\n");
2586 goto err_mem;
2587 }
2588 }
2589 return 0;
2590
2591err_mem:
2592 ql_free_mem_resources(qdev);
2593 return -ENOMEM;
2594}
2595
2596/* Set up the rx ring control block and pass it to the chip.
2597 * The control block is defined as
2598 * "Completion Queue Initialization Control Block", or cqicb.
2599 */
2600static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2601{
2602 struct cqicb *cqicb = &rx_ring->cqicb;
2603 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
b8facca0 2604 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde 2605 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
b8facca0 2606 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
c4e84bde
RM
2607 void __iomem *doorbell_area =
2608 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2609 int err = 0;
2610 u16 bq_len;
d4a4aba6 2611 u64 tmp;
b8facca0
RM
2612 __le64 *base_indirect_ptr;
2613 int page_entries;
c4e84bde
RM
2614
2615 /* Set up the shadow registers for this ring. */
2616 rx_ring->prod_idx_sh_reg = shadow_reg;
2617 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2618 shadow_reg += sizeof(u64);
2619 shadow_reg_dma += sizeof(u64);
2620 rx_ring->lbq_base_indirect = shadow_reg;
2621 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
b8facca0
RM
2622 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2623 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
c4e84bde
RM
2624 rx_ring->sbq_base_indirect = shadow_reg;
2625 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2626
2627 /* PCI doorbell mem area + 0x00 for consumer index register */
8668ae92 2628 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2629 rx_ring->cnsmr_idx = 0;
2630 rx_ring->curr_entry = rx_ring->cq_base;
2631
2632 /* PCI doorbell mem area + 0x04 for valid register */
2633 rx_ring->valid_db_reg = doorbell_area + 0x04;
2634
2635 /* PCI doorbell mem area + 0x18 for large buffer consumer */
8668ae92 2636 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
c4e84bde
RM
2637
2638 /* PCI doorbell mem area + 0x1c */
8668ae92 2639 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
c4e84bde
RM
2640
2641 memset((void *)cqicb, 0, sizeof(struct cqicb));
2642 cqicb->msix_vect = rx_ring->irq;
2643
459caf5a
RM
2644 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2645 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
c4e84bde 2646
97345524 2647 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
c4e84bde 2648
97345524 2649 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
c4e84bde
RM
2650
2651 /*
2652 * Set up the control block load flags.
2653 */
2654 cqicb->flags = FLAGS_LC | /* Load queue base address */
2655 FLAGS_LV | /* Load MSI-X vector */
2656 FLAGS_LI; /* Load irq delay values */
2657 if (rx_ring->lbq_len) {
2658 cqicb->flags |= FLAGS_LL; /* Load lbq values */
a419aef8 2659 tmp = (u64)rx_ring->lbq_base_dma;
b8facca0
RM
2660 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
2661 page_entries = 0;
2662 do {
2663 *base_indirect_ptr = cpu_to_le64(tmp);
2664 tmp += DB_PAGE_SIZE;
2665 base_indirect_ptr++;
2666 page_entries++;
2667 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
97345524
RM
2668 cqicb->lbq_addr =
2669 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
459caf5a
RM
2670 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2671 (u16) rx_ring->lbq_buf_size;
2672 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2673 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2674 (u16) rx_ring->lbq_len;
c4e84bde 2675 cqicb->lbq_len = cpu_to_le16(bq_len);
4545a3f2 2676 rx_ring->lbq_prod_idx = 0;
c4e84bde 2677 rx_ring->lbq_curr_idx = 0;
4545a3f2
RM
2678 rx_ring->lbq_clean_idx = 0;
2679 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
c4e84bde
RM
2680 }
2681 if (rx_ring->sbq_len) {
2682 cqicb->flags |= FLAGS_LS; /* Load sbq values */
a419aef8 2683 tmp = (u64)rx_ring->sbq_base_dma;
b8facca0
RM
2684 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
2685 page_entries = 0;
2686 do {
2687 *base_indirect_ptr = cpu_to_le64(tmp);
2688 tmp += DB_PAGE_SIZE;
2689 base_indirect_ptr++;
2690 page_entries++;
2691 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
97345524
RM
2692 cqicb->sbq_addr =
2693 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
c4e84bde 2694 cqicb->sbq_buf_size =
d4a4aba6 2695 cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
459caf5a
RM
2696 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2697 (u16) rx_ring->sbq_len;
c4e84bde 2698 cqicb->sbq_len = cpu_to_le16(bq_len);
4545a3f2 2699 rx_ring->sbq_prod_idx = 0;
c4e84bde 2700 rx_ring->sbq_curr_idx = 0;
4545a3f2
RM
2701 rx_ring->sbq_clean_idx = 0;
2702 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
c4e84bde
RM
2703 }
2704 switch (rx_ring->type) {
2705 case TX_Q:
c4e84bde
RM
2706 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2707 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2708 break;
c4e84bde
RM
2709 case RX_Q:
2710 /* Inbound completion handling rx_rings run in
2711 * separate NAPI contexts.
2712 */
2713 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2714 64);
2715 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2716 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2717 break;
2718 default:
2719 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2720 rx_ring->type);
2721 }
4974097a 2722 QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
c4e84bde
RM
2723 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2724 CFG_LCQ, rx_ring->cq_id);
2725 if (err) {
2726 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2727 return err;
2728 }
c4e84bde
RM
2729 return err;
2730}
2731
2732static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2733{
2734 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2735 void __iomem *doorbell_area =
2736 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2737 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2738 (tx_ring->wq_id * sizeof(u64));
2739 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2740 (tx_ring->wq_id * sizeof(u64));
2741 int err = 0;
2742
2743 /*
2744 * Assign doorbell registers for this tx_ring.
2745 */
2746 /* TX PCI doorbell mem area for tx producer index */
8668ae92 2747 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
c4e84bde
RM
2748 tx_ring->prod_idx = 0;
2749 /* TX PCI doorbell mem area + 0x04 */
2750 tx_ring->valid_db_reg = doorbell_area + 0x04;
2751
2752 /*
2753 * Assign shadow registers for this tx_ring.
2754 */
2755 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2756 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2757
2758 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2759 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2760 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2761 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2762 wqicb->rid = 0;
97345524 2763 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
c4e84bde 2764
97345524 2765 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
c4e84bde
RM
2766
2767 ql_init_tx_ring(qdev, tx_ring);
2768
e332471c 2769 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
c4e84bde
RM
2770 (u16) tx_ring->wq_id);
2771 if (err) {
2772 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2773 return err;
2774 }
4974097a 2775 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
c4e84bde
RM
2776 return err;
2777}
2778
2779static void ql_disable_msix(struct ql_adapter *qdev)
2780{
2781 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2782 pci_disable_msix(qdev->pdev);
2783 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2784 kfree(qdev->msi_x_entry);
2785 qdev->msi_x_entry = NULL;
2786 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2787 pci_disable_msi(qdev->pdev);
2788 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2789 }
2790}
2791
a4ab6137
RM
2792/* We start by trying to get the number of vectors
2793 * stored in qdev->intr_count. If we don't get that
2794 * many then we reduce the count and try again.
2795 */
c4e84bde
RM
2796static void ql_enable_msix(struct ql_adapter *qdev)
2797{
a4ab6137 2798 int i, err;
c4e84bde 2799
c4e84bde
RM
2800 /* Get the MSIX vectors. */
2801 if (irq_type == MSIX_IRQ) {
2802 /* Try to alloc space for the msix struct,
2803 * if it fails then go to MSI/legacy.
2804 */
a4ab6137 2805 qdev->msi_x_entry = kcalloc(qdev->intr_count,
c4e84bde
RM
2806 sizeof(struct msix_entry),
2807 GFP_KERNEL);
2808 if (!qdev->msi_x_entry) {
2809 irq_type = MSI_IRQ;
2810 goto msi;
2811 }
2812
a4ab6137 2813 for (i = 0; i < qdev->intr_count; i++)
c4e84bde
RM
2814 qdev->msi_x_entry[i].entry = i;
2815
a4ab6137
RM
2816 /* Loop to get our vectors. We start with
2817 * what we want and settle for what we get.
2818 */
2819 do {
2820 err = pci_enable_msix(qdev->pdev,
2821 qdev->msi_x_entry, qdev->intr_count);
2822 if (err > 0)
2823 qdev->intr_count = err;
2824 } while (err > 0);
2825
2826 if (err < 0) {
c4e84bde
RM
2827 kfree(qdev->msi_x_entry);
2828 qdev->msi_x_entry = NULL;
2829 QPRINTK(qdev, IFUP, WARNING,
2830 "MSI-X Enable failed, trying MSI.\n");
a4ab6137 2831 qdev->intr_count = 1;
c4e84bde 2832 irq_type = MSI_IRQ;
a4ab6137
RM
2833 } else if (err == 0) {
2834 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2835 QPRINTK(qdev, IFUP, INFO,
2836 "MSI-X Enabled, got %d vectors.\n",
2837 qdev->intr_count);
2838 return;
c4e84bde
RM
2839 }
2840 }
2841msi:
a4ab6137 2842 qdev->intr_count = 1;
c4e84bde
RM
2843 if (irq_type == MSI_IRQ) {
2844 if (!pci_enable_msi(qdev->pdev)) {
2845 set_bit(QL_MSI_ENABLED, &qdev->flags);
2846 QPRINTK(qdev, IFUP, INFO,
2847 "Running with MSI interrupts.\n");
2848 return;
2849 }
2850 }
2851 irq_type = LEG_IRQ;
c4e84bde
RM
2852 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2853}
2854
39aa8165
RM
2855/* Each vector services 1 RSS ring and and 1 or more
2856 * TX completion rings. This function loops through
2857 * the TX completion rings and assigns the vector that
2858 * will service it. An example would be if there are
2859 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
2860 * This would mean that vector 0 would service RSS ring 0
2861 * and TX competion rings 0,1,2 and 3. Vector 1 would
2862 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
2863 */
2864static void ql_set_tx_vect(struct ql_adapter *qdev)
2865{
2866 int i, j, vect;
2867 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
2868
2869 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2870 /* Assign irq vectors to TX rx_rings.*/
2871 for (vect = 0, j = 0, i = qdev->rss_ring_count;
2872 i < qdev->rx_ring_count; i++) {
2873 if (j == tx_rings_per_vector) {
2874 vect++;
2875 j = 0;
2876 }
2877 qdev->rx_ring[i].irq = vect;
2878 j++;
2879 }
2880 } else {
2881 /* For single vector all rings have an irq
2882 * of zero.
2883 */
2884 for (i = 0; i < qdev->rx_ring_count; i++)
2885 qdev->rx_ring[i].irq = 0;
2886 }
2887}
2888
2889/* Set the interrupt mask for this vector. Each vector
2890 * will service 1 RSS ring and 1 or more TX completion
2891 * rings. This function sets up a bit mask per vector
2892 * that indicates which rings it services.
2893 */
2894static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
2895{
2896 int j, vect = ctx->intr;
2897 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
2898
2899 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2900 /* Add the RSS ring serviced by this vector
2901 * to the mask.
2902 */
2903 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
2904 /* Add the TX ring(s) serviced by this vector
2905 * to the mask. */
2906 for (j = 0; j < tx_rings_per_vector; j++) {
2907 ctx->irq_mask |=
2908 (1 << qdev->rx_ring[qdev->rss_ring_count +
2909 (vect * tx_rings_per_vector) + j].cq_id);
2910 }
2911 } else {
2912 /* For single vector we just shift each queue's
2913 * ID into the mask.
2914 */
2915 for (j = 0; j < qdev->rx_ring_count; j++)
2916 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
2917 }
2918}
2919
c4e84bde
RM
2920/*
2921 * Here we build the intr_context structures based on
2922 * our rx_ring count and intr vector count.
2923 * The intr_context structure is used to hook each vector
2924 * to possibly different handlers.
2925 */
2926static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2927{
2928 int i = 0;
2929 struct intr_context *intr_context = &qdev->intr_context[0];
2930
c4e84bde
RM
2931 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2932 /* Each rx_ring has it's
2933 * own intr_context since we have separate
2934 * vectors for each queue.
c4e84bde
RM
2935 */
2936 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2937 qdev->rx_ring[i].irq = i;
2938 intr_context->intr = i;
2939 intr_context->qdev = qdev;
39aa8165
RM
2940 /* Set up this vector's bit-mask that indicates
2941 * which queues it services.
2942 */
2943 ql_set_irq_mask(qdev, intr_context);
c4e84bde
RM
2944 /*
2945 * We set up each vectors enable/disable/read bits so
2946 * there's no bit/mask calculations in the critical path.
2947 */
2948 intr_context->intr_en_mask =
2949 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2950 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2951 | i;
2952 intr_context->intr_dis_mask =
2953 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2954 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2955 INTR_EN_IHD | i;
2956 intr_context->intr_read_mask =
2957 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2958 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2959 i;
39aa8165
RM
2960 if (i == 0) {
2961 /* The first vector/queue handles
2962 * broadcast/multicast, fatal errors,
2963 * and firmware events. This in addition
2964 * to normal inbound NAPI processing.
c4e84bde 2965 */
39aa8165 2966 intr_context->handler = qlge_isr;
b2014ff8
RM
2967 sprintf(intr_context->name, "%s-rx-%d",
2968 qdev->ndev->name, i);
2969 } else {
c4e84bde 2970 /*
39aa8165 2971 * Inbound queues handle unicast frames only.
c4e84bde 2972 */
39aa8165
RM
2973 intr_context->handler = qlge_msix_rx_isr;
2974 sprintf(intr_context->name, "%s-rx-%d",
c4e84bde 2975 qdev->ndev->name, i);
c4e84bde
RM
2976 }
2977 }
2978 } else {
2979 /*
2980 * All rx_rings use the same intr_context since
2981 * there is only one vector.
2982 */
2983 intr_context->intr = 0;
2984 intr_context->qdev = qdev;
2985 /*
2986 * We set up each vectors enable/disable/read bits so
2987 * there's no bit/mask calculations in the critical path.
2988 */
2989 intr_context->intr_en_mask =
2990 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2991 intr_context->intr_dis_mask =
2992 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2993 INTR_EN_TYPE_DISABLE;
2994 intr_context->intr_read_mask =
2995 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2996 /*
2997 * Single interrupt means one handler for all rings.
2998 */
2999 intr_context->handler = qlge_isr;
3000 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
39aa8165
RM
3001 /* Set up this vector's bit-mask that indicates
3002 * which queues it services. In this case there is
3003 * a single vector so it will service all RSS and
3004 * TX completion rings.
3005 */
3006 ql_set_irq_mask(qdev, intr_context);
c4e84bde 3007 }
39aa8165
RM
3008 /* Tell the TX completion rings which MSIx vector
3009 * they will be using.
3010 */
3011 ql_set_tx_vect(qdev);
c4e84bde
RM
3012}
3013
3014static void ql_free_irq(struct ql_adapter *qdev)
3015{
3016 int i;
3017 struct intr_context *intr_context = &qdev->intr_context[0];
3018
3019 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3020 if (intr_context->hooked) {
3021 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3022 free_irq(qdev->msi_x_entry[i].vector,
3023 &qdev->rx_ring[i]);
4974097a 3024 QPRINTK(qdev, IFDOWN, DEBUG,
c4e84bde
RM
3025 "freeing msix interrupt %d.\n", i);
3026 } else {
3027 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
4974097a 3028 QPRINTK(qdev, IFDOWN, DEBUG,
c4e84bde
RM
3029 "freeing msi interrupt %d.\n", i);
3030 }
3031 }
3032 }
3033 ql_disable_msix(qdev);
3034}
3035
3036static int ql_request_irq(struct ql_adapter *qdev)
3037{
3038 int i;
3039 int status = 0;
3040 struct pci_dev *pdev = qdev->pdev;
3041 struct intr_context *intr_context = &qdev->intr_context[0];
3042
3043 ql_resolve_queues_to_irqs(qdev);
3044
3045 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3046 atomic_set(&intr_context->irq_cnt, 0);
3047 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3048 status = request_irq(qdev->msi_x_entry[i].vector,
3049 intr_context->handler,
3050 0,
3051 intr_context->name,
3052 &qdev->rx_ring[i]);
3053 if (status) {
3054 QPRINTK(qdev, IFUP, ERR,
3055 "Failed request for MSIX interrupt %d.\n",
3056 i);
3057 goto err_irq;
3058 } else {
4974097a 3059 QPRINTK(qdev, IFUP, DEBUG,
c4e84bde
RM
3060 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3061 i,
3062 qdev->rx_ring[i].type ==
3063 DEFAULT_Q ? "DEFAULT_Q" : "",
3064 qdev->rx_ring[i].type ==
3065 TX_Q ? "TX_Q" : "",
3066 qdev->rx_ring[i].type ==
3067 RX_Q ? "RX_Q" : "", intr_context->name);
3068 }
3069 } else {
3070 QPRINTK(qdev, IFUP, DEBUG,
3071 "trying msi or legacy interrupts.\n");
3072 QPRINTK(qdev, IFUP, DEBUG,
3073 "%s: irq = %d.\n", __func__, pdev->irq);
3074 QPRINTK(qdev, IFUP, DEBUG,
3075 "%s: context->name = %s.\n", __func__,
3076 intr_context->name);
3077 QPRINTK(qdev, IFUP, DEBUG,
3078 "%s: dev_id = 0x%p.\n", __func__,
3079 &qdev->rx_ring[0]);
3080 status =
3081 request_irq(pdev->irq, qlge_isr,
3082 test_bit(QL_MSI_ENABLED,
3083 &qdev->
3084 flags) ? 0 : IRQF_SHARED,
3085 intr_context->name, &qdev->rx_ring[0]);
3086 if (status)
3087 goto err_irq;
3088
3089 QPRINTK(qdev, IFUP, ERR,
3090 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3091 i,
3092 qdev->rx_ring[0].type ==
3093 DEFAULT_Q ? "DEFAULT_Q" : "",
3094 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
3095 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3096 intr_context->name);
3097 }
3098 intr_context->hooked = 1;
3099 }
3100 return status;
3101err_irq:
3102 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
3103 ql_free_irq(qdev);
3104 return status;
3105}
3106
3107static int ql_start_rss(struct ql_adapter *qdev)
3108{
541ae28c
RM
3109 u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3110 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f,
3111 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b,
3112 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80,
3113 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b,
3114 0xbe, 0xac, 0x01, 0xfa};
c4e84bde
RM
3115 struct ricb *ricb = &qdev->ricb;
3116 int status = 0;
3117 int i;
3118 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3119
e332471c 3120 memset((void *)ricb, 0, sizeof(*ricb));
c4e84bde 3121
b2014ff8 3122 ricb->base_cq = RSS_L4K;
c4e84bde 3123 ricb->flags =
541ae28c
RM
3124 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3125 ricb->mask = cpu_to_le16((u16)(0x3ff));
c4e84bde
RM
3126
3127 /*
3128 * Fill out the Indirection Table.
3129 */
541ae28c
RM
3130 for (i = 0; i < 1024; i++)
3131 hash_id[i] = (i & (qdev->rss_ring_count - 1));
c4e84bde 3132
541ae28c
RM
3133 memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3134 memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
c4e84bde 3135
4974097a 3136 QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
c4e84bde 3137
e332471c 3138 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
c4e84bde
RM
3139 if (status) {
3140 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
3141 return status;
3142 }
4974097a 3143 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
c4e84bde
RM
3144 return status;
3145}
3146
a5f59dc9 3147static int ql_clear_routing_entries(struct ql_adapter *qdev)
c4e84bde 3148{
a5f59dc9 3149 int i, status = 0;
c4e84bde 3150
8587ea35
RM
3151 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3152 if (status)
3153 return status;
c4e84bde
RM
3154 /* Clear all the entries in the routing table. */
3155 for (i = 0; i < 16; i++) {
3156 status = ql_set_routing_reg(qdev, i, 0, 0);
3157 if (status) {
3158 QPRINTK(qdev, IFUP, ERR,
a5f59dc9
RM
3159 "Failed to init routing register for CAM "
3160 "packets.\n");
3161 break;
c4e84bde
RM
3162 }
3163 }
a5f59dc9
RM
3164 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3165 return status;
3166}
3167
3168/* Initialize the frame-to-queue routing. */
3169static int ql_route_initialize(struct ql_adapter *qdev)
3170{
3171 int status = 0;
3172
fd21cf52
RM
3173 /* Clear all the entries in the routing table. */
3174 status = ql_clear_routing_entries(qdev);
a5f59dc9
RM
3175 if (status)
3176 return status;
3177
fd21cf52 3178 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
a5f59dc9 3179 if (status)
fd21cf52 3180 return status;
c4e84bde
RM
3181
3182 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3183 if (status) {
3184 QPRINTK(qdev, IFUP, ERR,
3185 "Failed to init routing register for error packets.\n");
8587ea35 3186 goto exit;
c4e84bde
RM
3187 }
3188 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3189 if (status) {
3190 QPRINTK(qdev, IFUP, ERR,
3191 "Failed to init routing register for broadcast packets.\n");
8587ea35 3192 goto exit;
c4e84bde
RM
3193 }
3194 /* If we have more than one inbound queue, then turn on RSS in the
3195 * routing block.
3196 */
3197 if (qdev->rss_ring_count > 1) {
3198 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3199 RT_IDX_RSS_MATCH, 1);
3200 if (status) {
3201 QPRINTK(qdev, IFUP, ERR,
3202 "Failed to init routing register for MATCH RSS packets.\n");
8587ea35 3203 goto exit;
c4e84bde
RM
3204 }
3205 }
3206
3207 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3208 RT_IDX_CAM_HIT, 1);
8587ea35 3209 if (status)
c4e84bde
RM
3210 QPRINTK(qdev, IFUP, ERR,
3211 "Failed to init routing register for CAM packets.\n");
8587ea35
RM
3212exit:
3213 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3214 return status;
3215}
3216
2ee1e272 3217int ql_cam_route_initialize(struct ql_adapter *qdev)
bb58b5b6 3218{
7fab3bfe 3219 int status, set;
bb58b5b6 3220
7fab3bfe
RM
3221 /* If check if the link is up and use to
3222 * determine if we are setting or clearing
3223 * the MAC address in the CAM.
3224 */
3225 set = ql_read32(qdev, STS);
3226 set &= qdev->port_link_up;
3227 status = ql_set_mac_addr(qdev, set);
bb58b5b6
RM
3228 if (status) {
3229 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3230 return status;
3231 }
3232
3233 status = ql_route_initialize(qdev);
3234 if (status)
3235 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3236
3237 return status;
3238}
3239
c4e84bde
RM
3240static int ql_adapter_initialize(struct ql_adapter *qdev)
3241{
3242 u32 value, mask;
3243 int i;
3244 int status = 0;
3245
3246 /*
3247 * Set up the System register to halt on errors.
3248 */
3249 value = SYS_EFE | SYS_FAE;
3250 mask = value << 16;
3251 ql_write32(qdev, SYS, mask | value);
3252
c9cf0a04
RM
3253 /* Set the default queue, and VLAN behavior. */
3254 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3255 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
c4e84bde
RM
3256 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3257
3258 /* Set the MPI interrupt to enabled. */
3259 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3260
3261 /* Enable the function, set pagesize, enable error checking. */
3262 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3263 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3264
3265 /* Set/clear header splitting. */
3266 mask = FSC_VM_PAGESIZE_MASK |
3267 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3268 ql_write32(qdev, FSC, mask | value);
3269
3270 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3271 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3272
a3b71939
RM
3273 /* Set RX packet routing to use port/pci function on which the
3274 * packet arrived on in addition to usual frame routing.
3275 * This is helpful on bonding where both interfaces can have
3276 * the same MAC address.
3277 */
3278 ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3279
c4e84bde
RM
3280 /* Start up the rx queues. */
3281 for (i = 0; i < qdev->rx_ring_count; i++) {
3282 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3283 if (status) {
3284 QPRINTK(qdev, IFUP, ERR,
3285 "Failed to start rx ring[%d].\n", i);
3286 return status;
3287 }
3288 }
3289
3290 /* If there is more than one inbound completion queue
3291 * then download a RICB to configure RSS.
3292 */
3293 if (qdev->rss_ring_count > 1) {
3294 status = ql_start_rss(qdev);
3295 if (status) {
3296 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3297 return status;
3298 }
3299 }
3300
3301 /* Start up the tx queues. */
3302 for (i = 0; i < qdev->tx_ring_count; i++) {
3303 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3304 if (status) {
3305 QPRINTK(qdev, IFUP, ERR,
3306 "Failed to start tx ring[%d].\n", i);
3307 return status;
3308 }
3309 }
3310
b0c2aadf
RM
3311 /* Initialize the port and set the max framesize. */
3312 status = qdev->nic_ops->port_initialize(qdev);
3313 if (status) {
3314 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3315 return status;
3316 }
c4e84bde 3317
bb58b5b6
RM
3318 /* Set up the MAC address and frame routing filter. */
3319 status = ql_cam_route_initialize(qdev);
c4e84bde 3320 if (status) {
bb58b5b6
RM
3321 QPRINTK(qdev, IFUP, ERR,
3322 "Failed to init CAM/Routing tables.\n");
c4e84bde
RM
3323 return status;
3324 }
3325
3326 /* Start NAPI for the RSS queues. */
b2014ff8 3327 for (i = 0; i < qdev->rss_ring_count; i++) {
4974097a 3328 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
c4e84bde
RM
3329 i);
3330 napi_enable(&qdev->rx_ring[i].napi);
3331 }
3332
3333 return status;
3334}
3335
3336/* Issue soft reset to chip. */
3337static int ql_adapter_reset(struct ql_adapter *qdev)
3338{
3339 u32 value;
c4e84bde 3340 int status = 0;
a5f59dc9 3341 unsigned long end_jiffies;
c4e84bde 3342
a5f59dc9
RM
3343 /* Clear all the entries in the routing table. */
3344 status = ql_clear_routing_entries(qdev);
3345 if (status) {
3346 QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
3347 return status;
3348 }
3349
3350 end_jiffies = jiffies +
3351 max((unsigned long)1, usecs_to_jiffies(30));
c4e84bde 3352 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
a75ee7f1 3353
c4e84bde
RM
3354 do {
3355 value = ql_read32(qdev, RST_FO);
3356 if ((value & RST_FO_FR) == 0)
3357 break;
a75ee7f1
RM
3358 cpu_relax();
3359 } while (time_before(jiffies, end_jiffies));
c4e84bde 3360
c4e84bde 3361 if (value & RST_FO_FR) {
c4e84bde 3362 QPRINTK(qdev, IFDOWN, ERR,
3ac49a1c 3363 "ETIMEDOUT!!! errored out of resetting the chip!\n");
a75ee7f1 3364 status = -ETIMEDOUT;
c4e84bde
RM
3365 }
3366
3367 return status;
3368}
3369
3370static void ql_display_dev_info(struct net_device *ndev)
3371{
3372 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3373
3374 QPRINTK(qdev, PROBE, INFO,
e4552f51 3375 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
c4e84bde
RM
3376 "XG Roll = %d, XG Rev = %d.\n",
3377 qdev->func,
e4552f51 3378 qdev->port,
c4e84bde
RM
3379 qdev->chip_rev_id & 0x0000000f,
3380 qdev->chip_rev_id >> 4 & 0x0000000f,
3381 qdev->chip_rev_id >> 8 & 0x0000000f,
3382 qdev->chip_rev_id >> 12 & 0x0000000f);
7c510e4b 3383 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
c4e84bde
RM
3384}
3385
3386static int ql_adapter_down(struct ql_adapter *qdev)
3387{
c4e84bde 3388 int i, status = 0;
c4e84bde 3389
6a473308 3390 ql_link_off(qdev);
c4e84bde 3391
6497b607
RM
3392 /* Don't kill the reset worker thread if we
3393 * are in the process of recovery.
3394 */
3395 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3396 cancel_delayed_work_sync(&qdev->asic_reset_work);
c4e84bde
RM
3397 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3398 cancel_delayed_work_sync(&qdev->mpi_work);
2ee1e272 3399 cancel_delayed_work_sync(&qdev->mpi_idc_work);
bcc2cb3b 3400 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
c4e84bde 3401
39aa8165
RM
3402 for (i = 0; i < qdev->rss_ring_count; i++)
3403 napi_disable(&qdev->rx_ring[i].napi);
c4e84bde
RM
3404
3405 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3406
3407 ql_disable_interrupts(qdev);
3408
3409 ql_tx_ring_clean(qdev);
3410
6b318cb3
RM
3411 /* Call netif_napi_del() from common point.
3412 */
b2014ff8 3413 for (i = 0; i < qdev->rss_ring_count; i++)
6b318cb3
RM
3414 netif_napi_del(&qdev->rx_ring[i].napi);
3415
4545a3f2 3416 ql_free_rx_buffers(qdev);
2d6a5e95 3417
c4e84bde
RM
3418 status = ql_adapter_reset(qdev);
3419 if (status)
3420 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3421 qdev->func);
c4e84bde
RM
3422 return status;
3423}
3424
3425static int ql_adapter_up(struct ql_adapter *qdev)
3426{
3427 int err = 0;
3428
c4e84bde
RM
3429 err = ql_adapter_initialize(qdev);
3430 if (err) {
3431 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
c4e84bde
RM
3432 goto err_init;
3433 }
c4e84bde 3434 set_bit(QL_ADAPTER_UP, &qdev->flags);
4545a3f2 3435 ql_alloc_rx_buffers(qdev);
8b007de1
RM
3436 /* If the port is initialized and the
3437 * link is up the turn on the carrier.
3438 */
3439 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3440 (ql_read32(qdev, STS) & qdev->port_link_up))
6a473308 3441 ql_link_on(qdev);
c4e84bde
RM
3442 ql_enable_interrupts(qdev);
3443 ql_enable_all_completion_interrupts(qdev);
1e213303 3444 netif_tx_start_all_queues(qdev->ndev);
c4e84bde
RM
3445
3446 return 0;
3447err_init:
3448 ql_adapter_reset(qdev);
3449 return err;
3450}
3451
c4e84bde
RM
3452static void ql_release_adapter_resources(struct ql_adapter *qdev)
3453{
3454 ql_free_mem_resources(qdev);
3455 ql_free_irq(qdev);
3456}
3457
3458static int ql_get_adapter_resources(struct ql_adapter *qdev)
3459{
3460 int status = 0;
3461
3462 if (ql_alloc_mem_resources(qdev)) {
3463 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3464 return -ENOMEM;
3465 }
3466 status = ql_request_irq(qdev);
c4e84bde
RM
3467 return status;
3468}
3469
3470static int qlge_close(struct net_device *ndev)
3471{
3472 struct ql_adapter *qdev = netdev_priv(ndev);
3473
3474 /*
3475 * Wait for device to recover from a reset.
3476 * (Rarely happens, but possible.)
3477 */
3478 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3479 msleep(1);
3480 ql_adapter_down(qdev);
3481 ql_release_adapter_resources(qdev);
c4e84bde
RM
3482 return 0;
3483}
3484
3485static int ql_configure_rings(struct ql_adapter *qdev)
3486{
3487 int i;
3488 struct rx_ring *rx_ring;
3489 struct tx_ring *tx_ring;
a4ab6137
RM
3490 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
3491
3492 /* In a perfect world we have one RSS ring for each CPU
3493 * and each has it's own vector. To do that we ask for
3494 * cpu_cnt vectors. ql_enable_msix() will adjust the
3495 * vector count to what we actually get. We then
3496 * allocate an RSS ring for each.
3497 * Essentially, we are doing min(cpu_count, msix_vector_count).
c4e84bde 3498 */
a4ab6137
RM
3499 qdev->intr_count = cpu_cnt;
3500 ql_enable_msix(qdev);
3501 /* Adjust the RSS ring count to the actual vector count. */
3502 qdev->rss_ring_count = qdev->intr_count;
c4e84bde 3503 qdev->tx_ring_count = cpu_cnt;
b2014ff8 3504 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
c4e84bde 3505
c4e84bde
RM
3506 for (i = 0; i < qdev->tx_ring_count; i++) {
3507 tx_ring = &qdev->tx_ring[i];
e332471c 3508 memset((void *)tx_ring, 0, sizeof(*tx_ring));
c4e84bde
RM
3509 tx_ring->qdev = qdev;
3510 tx_ring->wq_id = i;
3511 tx_ring->wq_len = qdev->tx_ring_size;
3512 tx_ring->wq_size =
3513 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3514
3515 /*
3516 * The completion queue ID for the tx rings start
39aa8165 3517 * immediately after the rss rings.
c4e84bde 3518 */
39aa8165 3519 tx_ring->cq_id = qdev->rss_ring_count + i;
c4e84bde
RM
3520 }
3521
3522 for (i = 0; i < qdev->rx_ring_count; i++) {
3523 rx_ring = &qdev->rx_ring[i];
e332471c 3524 memset((void *)rx_ring, 0, sizeof(*rx_ring));
c4e84bde
RM
3525 rx_ring->qdev = qdev;
3526 rx_ring->cq_id = i;
3527 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
b2014ff8 3528 if (i < qdev->rss_ring_count) {
39aa8165
RM
3529 /*
3530 * Inbound (RSS) queues.
3531 */
c4e84bde
RM
3532 rx_ring->cq_len = qdev->rx_ring_size;
3533 rx_ring->cq_size =
3534 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3535 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3536 rx_ring->lbq_size =
2c9a0d41 3537 rx_ring->lbq_len * sizeof(__le64);
c4e84bde
RM
3538 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3539 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3540 rx_ring->sbq_size =
2c9a0d41 3541 rx_ring->sbq_len * sizeof(__le64);
c4e84bde 3542 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
b2014ff8
RM
3543 rx_ring->type = RX_Q;
3544 } else {
c4e84bde
RM
3545 /*
3546 * Outbound queue handles outbound completions only.
3547 */
3548 /* outbound cq is same size as tx_ring it services. */
3549 rx_ring->cq_len = qdev->tx_ring_size;
3550 rx_ring->cq_size =
3551 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3552 rx_ring->lbq_len = 0;
3553 rx_ring->lbq_size = 0;
3554 rx_ring->lbq_buf_size = 0;
3555 rx_ring->sbq_len = 0;
3556 rx_ring->sbq_size = 0;
3557 rx_ring->sbq_buf_size = 0;
3558 rx_ring->type = TX_Q;
c4e84bde
RM
3559 }
3560 }
3561 return 0;
3562}
3563
3564static int qlge_open(struct net_device *ndev)
3565{
3566 int err = 0;
3567 struct ql_adapter *qdev = netdev_priv(ndev);
3568
3569 err = ql_configure_rings(qdev);
3570 if (err)
3571 return err;
3572
3573 err = ql_get_adapter_resources(qdev);
3574 if (err)
3575 goto error_up;
3576
3577 err = ql_adapter_up(qdev);
3578 if (err)
3579 goto error_up;
3580
3581 return err;
3582
3583error_up:
3584 ql_release_adapter_resources(qdev);
c4e84bde
RM
3585 return err;
3586}
3587
3588static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3589{
3590 struct ql_adapter *qdev = netdev_priv(ndev);
3591
3592 if (ndev->mtu == 1500 && new_mtu == 9000) {
3593 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
bcc2cb3b
RM
3594 queue_delayed_work(qdev->workqueue,
3595 &qdev->mpi_port_cfg_work, 0);
c4e84bde
RM
3596 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3597 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3598 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3599 (ndev->mtu == 9000 && new_mtu == 9000)) {
3600 return 0;
3601 } else
3602 return -EINVAL;
3603 ndev->mtu = new_mtu;
3604 return 0;
3605}
3606
3607static struct net_device_stats *qlge_get_stats(struct net_device
3608 *ndev)
3609{
3610 struct ql_adapter *qdev = netdev_priv(ndev);
3611 return &qdev->stats;
3612}
3613
3614static void qlge_set_multicast_list(struct net_device *ndev)
3615{
3616 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3617 struct dev_mc_list *mc_ptr;
cc288f54 3618 int i, status;
c4e84bde 3619
cc288f54
RM
3620 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3621 if (status)
3622 return;
c4e84bde
RM
3623 /*
3624 * Set or clear promiscuous mode if a
3625 * transition is taking place.
3626 */
3627 if (ndev->flags & IFF_PROMISC) {
3628 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3629 if (ql_set_routing_reg
3630 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3631 QPRINTK(qdev, HW, ERR,
3632 "Failed to set promiscous mode.\n");
3633 } else {
3634 set_bit(QL_PROMISCUOUS, &qdev->flags);
3635 }
3636 }
3637 } else {
3638 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3639 if (ql_set_routing_reg
3640 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3641 QPRINTK(qdev, HW, ERR,
3642 "Failed to clear promiscous mode.\n");
3643 } else {
3644 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3645 }
3646 }
3647 }
3648
3649 /*
3650 * Set or clear all multicast mode if a
3651 * transition is taking place.
3652 */
3653 if ((ndev->flags & IFF_ALLMULTI) ||
3654 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3655 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3656 if (ql_set_routing_reg
3657 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3658 QPRINTK(qdev, HW, ERR,
3659 "Failed to set all-multi mode.\n");
3660 } else {
3661 set_bit(QL_ALLMULTI, &qdev->flags);
3662 }
3663 }
3664 } else {
3665 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3666 if (ql_set_routing_reg
3667 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3668 QPRINTK(qdev, HW, ERR,
3669 "Failed to clear all-multi mode.\n");
3670 } else {
3671 clear_bit(QL_ALLMULTI, &qdev->flags);
3672 }
3673 }
3674 }
3675
3676 if (ndev->mc_count) {
cc288f54
RM
3677 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3678 if (status)
3679 goto exit;
c4e84bde
RM
3680 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3681 i++, mc_ptr = mc_ptr->next)
3682 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3683 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3684 QPRINTK(qdev, HW, ERR,
3685 "Failed to loadmulticast address.\n");
cc288f54 3686 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3687 goto exit;
3688 }
cc288f54 3689 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
c4e84bde
RM
3690 if (ql_set_routing_reg
3691 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3692 QPRINTK(qdev, HW, ERR,
3693 "Failed to set multicast match mode.\n");
3694 } else {
3695 set_bit(QL_ALLMULTI, &qdev->flags);
3696 }
3697 }
3698exit:
8587ea35 3699 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
c4e84bde
RM
3700}
3701
3702static int qlge_set_mac_address(struct net_device *ndev, void *p)
3703{
3704 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3705 struct sockaddr *addr = p;
cc288f54 3706 int status;
c4e84bde
RM
3707
3708 if (netif_running(ndev))
3709 return -EBUSY;
3710
3711 if (!is_valid_ether_addr(addr->sa_data))
3712 return -EADDRNOTAVAIL;
3713 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3714
cc288f54
RM
3715 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3716 if (status)
3717 return status;
cc288f54
RM
3718 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3719 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
cc288f54
RM
3720 if (status)
3721 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3722 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3723 return status;
c4e84bde
RM
3724}
3725
3726static void qlge_tx_timeout(struct net_device *ndev)
3727{
3728 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
6497b607 3729 ql_queue_asic_error(qdev);
c4e84bde
RM
3730}
3731
3732static void ql_asic_reset_work(struct work_struct *work)
3733{
3734 struct ql_adapter *qdev =
3735 container_of(work, struct ql_adapter, asic_reset_work.work);
db98812f 3736 int status;
f2c0d8df 3737 rtnl_lock();
db98812f
RM
3738 status = ql_adapter_down(qdev);
3739 if (status)
3740 goto error;
3741
3742 status = ql_adapter_up(qdev);
3743 if (status)
3744 goto error;
f2c0d8df 3745 rtnl_unlock();
db98812f
RM
3746 return;
3747error:
3748 QPRINTK(qdev, IFUP, ALERT,
3749 "Driver up/down cycle failed, closing device\n");
f2c0d8df 3750
db98812f
RM
3751 set_bit(QL_ADAPTER_UP, &qdev->flags);
3752 dev_close(qdev->ndev);
3753 rtnl_unlock();
c4e84bde
RM
3754}
3755
b0c2aadf
RM
3756static struct nic_operations qla8012_nic_ops = {
3757 .get_flash = ql_get_8012_flash_params,
3758 .port_initialize = ql_8012_port_initialize,
3759};
3760
cdca8d02
RM
3761static struct nic_operations qla8000_nic_ops = {
3762 .get_flash = ql_get_8000_flash_params,
3763 .port_initialize = ql_8000_port_initialize,
3764};
3765
e4552f51
RM
3766/* Find the pcie function number for the other NIC
3767 * on this chip. Since both NIC functions share a
3768 * common firmware we have the lowest enabled function
3769 * do any common work. Examples would be resetting
3770 * after a fatal firmware error, or doing a firmware
3771 * coredump.
3772 */
3773static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
3774{
3775 int status = 0;
3776 u32 temp;
3777 u32 nic_func1, nic_func2;
3778
3779 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
3780 &temp);
3781 if (status)
3782 return status;
3783
3784 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
3785 MPI_TEST_NIC_FUNC_MASK);
3786 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
3787 MPI_TEST_NIC_FUNC_MASK);
3788
3789 if (qdev->func == nic_func1)
3790 qdev->alt_func = nic_func2;
3791 else if (qdev->func == nic_func2)
3792 qdev->alt_func = nic_func1;
3793 else
3794 status = -EIO;
3795
3796 return status;
3797}
b0c2aadf 3798
e4552f51 3799static int ql_get_board_info(struct ql_adapter *qdev)
c4e84bde 3800{
e4552f51 3801 int status;
c4e84bde
RM
3802 qdev->func =
3803 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
e4552f51
RM
3804 if (qdev->func > 3)
3805 return -EIO;
3806
3807 status = ql_get_alt_pcie_func(qdev);
3808 if (status)
3809 return status;
3810
3811 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
3812 if (qdev->port) {
c4e84bde
RM
3813 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3814 qdev->port_link_up = STS_PL1;
3815 qdev->port_init = STS_PI1;
3816 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3817 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3818 } else {
3819 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3820 qdev->port_link_up = STS_PL0;
3821 qdev->port_init = STS_PI0;
3822 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3823 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3824 }
3825 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
b0c2aadf
RM
3826 qdev->device_id = qdev->pdev->device;
3827 if (qdev->device_id == QLGE_DEVICE_ID_8012)
3828 qdev->nic_ops = &qla8012_nic_ops;
cdca8d02
RM
3829 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
3830 qdev->nic_ops = &qla8000_nic_ops;
e4552f51 3831 return status;
c4e84bde
RM
3832}
3833
3834static void ql_release_all(struct pci_dev *pdev)
3835{
3836 struct net_device *ndev = pci_get_drvdata(pdev);
3837 struct ql_adapter *qdev = netdev_priv(ndev);
3838
3839 if (qdev->workqueue) {
3840 destroy_workqueue(qdev->workqueue);
3841 qdev->workqueue = NULL;
3842 }
39aa8165 3843
c4e84bde 3844 if (qdev->reg_base)
8668ae92 3845 iounmap(qdev->reg_base);
c4e84bde
RM
3846 if (qdev->doorbell_area)
3847 iounmap(qdev->doorbell_area);
3848 pci_release_regions(pdev);
3849 pci_set_drvdata(pdev, NULL);
3850}
3851
3852static int __devinit ql_init_device(struct pci_dev *pdev,
3853 struct net_device *ndev, int cards_found)
3854{
3855 struct ql_adapter *qdev = netdev_priv(ndev);
3856 int pos, err = 0;
3857 u16 val16;
3858
e332471c 3859 memset((void *)qdev, 0, sizeof(*qdev));
c4e84bde
RM
3860 err = pci_enable_device(pdev);
3861 if (err) {
3862 dev_err(&pdev->dev, "PCI device enable failed.\n");
3863 return err;
3864 }
3865
ebd6e774
RM
3866 qdev->ndev = ndev;
3867 qdev->pdev = pdev;
3868 pci_set_drvdata(pdev, ndev);
c4e84bde
RM
3869 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3870 if (pos <= 0) {
3871 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3872 "aborting.\n");
ebd6e774 3873 return pos;
c4e84bde
RM
3874 } else {
3875 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3876 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3877 val16 |= (PCI_EXP_DEVCTL_CERE |
3878 PCI_EXP_DEVCTL_NFERE |
3879 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3880 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3881 }
3882
3883 err = pci_request_regions(pdev, DRV_NAME);
3884 if (err) {
3885 dev_err(&pdev->dev, "PCI region request failed.\n");
ebd6e774 3886 return err;
c4e84bde
RM
3887 }
3888
3889 pci_set_master(pdev);
6a35528a 3890 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
c4e84bde 3891 set_bit(QL_DMA64, &qdev->flags);
6a35528a 3892 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
c4e84bde 3893 } else {
284901a9 3894 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde 3895 if (!err)
284901a9 3896 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
c4e84bde
RM
3897 }
3898
3899 if (err) {
3900 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3901 goto err_out;
3902 }
3903
c4e84bde
RM
3904 qdev->reg_base =
3905 ioremap_nocache(pci_resource_start(pdev, 1),
3906 pci_resource_len(pdev, 1));
3907 if (!qdev->reg_base) {
3908 dev_err(&pdev->dev, "Register mapping failed.\n");
3909 err = -ENOMEM;
3910 goto err_out;
3911 }
3912
3913 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3914 qdev->doorbell_area =
3915 ioremap_nocache(pci_resource_start(pdev, 3),
3916 pci_resource_len(pdev, 3));
3917 if (!qdev->doorbell_area) {
3918 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3919 err = -ENOMEM;
3920 goto err_out;
3921 }
3922
e4552f51
RM
3923 err = ql_get_board_info(qdev);
3924 if (err) {
3925 dev_err(&pdev->dev, "Register access failed.\n");
3926 err = -EIO;
3927 goto err_out;
3928 }
c4e84bde
RM
3929 qdev->msg_enable = netif_msg_init(debug, default_msg);
3930 spin_lock_init(&qdev->hw_lock);
3931 spin_lock_init(&qdev->stats_lock);
3932
3933 /* make sure the EEPROM is good */
b0c2aadf 3934 err = qdev->nic_ops->get_flash(qdev);
c4e84bde
RM
3935 if (err) {
3936 dev_err(&pdev->dev, "Invalid FLASH.\n");
3937 goto err_out;
3938 }
3939
c4e84bde
RM
3940 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3941
3942 /* Set up the default ring sizes. */
3943 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3944 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3945
3946 /* Set up the coalescing parameters. */
3947 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3948 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3949 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3950 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3951
3952 /*
3953 * Set up the operating parameters.
3954 */
3955 qdev->rx_csum = 1;
c4e84bde
RM
3956 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3957 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3958 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3959 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
bcc2cb3b 3960 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
2ee1e272 3961 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
bcc2cb3b 3962 init_completion(&qdev->ide_completion);
c4e84bde
RM
3963
3964 if (!cards_found) {
3965 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3966 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3967 DRV_NAME, DRV_VERSION);
3968 }
3969 return 0;
3970err_out:
3971 ql_release_all(pdev);
3972 pci_disable_device(pdev);
3973 return err;
3974}
3975
25ed7849
SH
3976
3977static const struct net_device_ops qlge_netdev_ops = {
3978 .ndo_open = qlge_open,
3979 .ndo_stop = qlge_close,
3980 .ndo_start_xmit = qlge_send,
3981 .ndo_change_mtu = qlge_change_mtu,
3982 .ndo_get_stats = qlge_get_stats,
3983 .ndo_set_multicast_list = qlge_set_multicast_list,
3984 .ndo_set_mac_address = qlge_set_mac_address,
3985 .ndo_validate_addr = eth_validate_addr,
3986 .ndo_tx_timeout = qlge_tx_timeout,
3987 .ndo_vlan_rx_register = ql_vlan_rx_register,
3988 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3989 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3990};
3991
c4e84bde
RM
3992static int __devinit qlge_probe(struct pci_dev *pdev,
3993 const struct pci_device_id *pci_entry)
3994{
3995 struct net_device *ndev = NULL;
3996 struct ql_adapter *qdev = NULL;
3997 static int cards_found = 0;
3998 int err = 0;
3999
1e213303
RM
4000 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4001 min(MAX_CPUS, (int)num_online_cpus()));
c4e84bde
RM
4002 if (!ndev)
4003 return -ENOMEM;
4004
4005 err = ql_init_device(pdev, ndev, cards_found);
4006 if (err < 0) {
4007 free_netdev(ndev);
4008 return err;
4009 }
4010
4011 qdev = netdev_priv(ndev);
4012 SET_NETDEV_DEV(ndev, &pdev->dev);
4013 ndev->features = (0
4014 | NETIF_F_IP_CSUM
4015 | NETIF_F_SG
4016 | NETIF_F_TSO
4017 | NETIF_F_TSO6
4018 | NETIF_F_TSO_ECN
4019 | NETIF_F_HW_VLAN_TX
4020 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
22bdd4f5 4021 ndev->features |= NETIF_F_GRO;
c4e84bde
RM
4022
4023 if (test_bit(QL_DMA64, &qdev->flags))
4024 ndev->features |= NETIF_F_HIGHDMA;
4025
4026 /*
4027 * Set up net_device structure.
4028 */
4029 ndev->tx_queue_len = qdev->tx_ring_size;
4030 ndev->irq = pdev->irq;
25ed7849
SH
4031
4032 ndev->netdev_ops = &qlge_netdev_ops;
c4e84bde 4033 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
c4e84bde 4034 ndev->watchdog_timeo = 10 * HZ;
25ed7849 4035
c4e84bde
RM
4036 err = register_netdev(ndev);
4037 if (err) {
4038 dev_err(&pdev->dev, "net device registration failed.\n");
4039 ql_release_all(pdev);
4040 pci_disable_device(pdev);
4041 return err;
4042 }
6a473308 4043 ql_link_off(qdev);
c4e84bde
RM
4044 ql_display_dev_info(ndev);
4045 cards_found++;
4046 return 0;
4047}
4048
4049static void __devexit qlge_remove(struct pci_dev *pdev)
4050{
4051 struct net_device *ndev = pci_get_drvdata(pdev);
4052 unregister_netdev(ndev);
4053 ql_release_all(pdev);
4054 pci_disable_device(pdev);
4055 free_netdev(ndev);
4056}
4057
4058/*
4059 * This callback is called by the PCI subsystem whenever
4060 * a PCI bus error is detected.
4061 */
4062static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4063 enum pci_channel_state state)
4064{
4065 struct net_device *ndev = pci_get_drvdata(pdev);
4066 struct ql_adapter *qdev = netdev_priv(ndev);
4067
fbc663ce
DN
4068 netif_device_detach(ndev);
4069
4070 if (state == pci_channel_io_perm_failure)
4071 return PCI_ERS_RESULT_DISCONNECT;
4072
c4e84bde
RM
4073 if (netif_running(ndev))
4074 ql_adapter_down(qdev);
4075
4076 pci_disable_device(pdev);
4077
4078 /* Request a slot reset. */
4079 return PCI_ERS_RESULT_NEED_RESET;
4080}
4081
4082/*
4083 * This callback is called after the PCI buss has been reset.
4084 * Basically, this tries to restart the card from scratch.
4085 * This is a shortened version of the device probe/discovery code,
4086 * it resembles the first-half of the () routine.
4087 */
4088static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4089{
4090 struct net_device *ndev = pci_get_drvdata(pdev);
4091 struct ql_adapter *qdev = netdev_priv(ndev);
4092
4093 if (pci_enable_device(pdev)) {
4094 QPRINTK(qdev, IFUP, ERR,
4095 "Cannot re-enable PCI device after reset.\n");
4096 return PCI_ERS_RESULT_DISCONNECT;
4097 }
4098
4099 pci_set_master(pdev);
4100
4101 netif_carrier_off(ndev);
c4e84bde
RM
4102 ql_adapter_reset(qdev);
4103
4104 /* Make sure the EEPROM is good */
4105 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4106
4107 if (!is_valid_ether_addr(ndev->perm_addr)) {
4108 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
4109 return PCI_ERS_RESULT_DISCONNECT;
4110 }
4111
4112 return PCI_ERS_RESULT_RECOVERED;
4113}
4114
4115static void qlge_io_resume(struct pci_dev *pdev)
4116{
4117 struct net_device *ndev = pci_get_drvdata(pdev);
4118 struct ql_adapter *qdev = netdev_priv(ndev);
4119
4120 pci_set_master(pdev);
4121
4122 if (netif_running(ndev)) {
4123 if (ql_adapter_up(qdev)) {
4124 QPRINTK(qdev, IFUP, ERR,
4125 "Device initialization failed after reset.\n");
4126 return;
4127 }
4128 }
4129
4130 netif_device_attach(ndev);
4131}
4132
4133static struct pci_error_handlers qlge_err_handler = {
4134 .error_detected = qlge_io_error_detected,
4135 .slot_reset = qlge_io_slot_reset,
4136 .resume = qlge_io_resume,
4137};
4138
4139static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4140{
4141 struct net_device *ndev = pci_get_drvdata(pdev);
4142 struct ql_adapter *qdev = netdev_priv(ndev);
6b318cb3 4143 int err;
c4e84bde
RM
4144
4145 netif_device_detach(ndev);
4146
4147 if (netif_running(ndev)) {
4148 err = ql_adapter_down(qdev);
4149 if (!err)
4150 return err;
4151 }
4152
4153 err = pci_save_state(pdev);
4154 if (err)
4155 return err;
4156
4157 pci_disable_device(pdev);
4158
4159 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4160
4161 return 0;
4162}
4163
04da2cf9 4164#ifdef CONFIG_PM
c4e84bde
RM
4165static int qlge_resume(struct pci_dev *pdev)
4166{
4167 struct net_device *ndev = pci_get_drvdata(pdev);
4168 struct ql_adapter *qdev = netdev_priv(ndev);
4169 int err;
4170
4171 pci_set_power_state(pdev, PCI_D0);
4172 pci_restore_state(pdev);
4173 err = pci_enable_device(pdev);
4174 if (err) {
4175 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4176 return err;
4177 }
4178 pci_set_master(pdev);
4179
4180 pci_enable_wake(pdev, PCI_D3hot, 0);
4181 pci_enable_wake(pdev, PCI_D3cold, 0);
4182
4183 if (netif_running(ndev)) {
4184 err = ql_adapter_up(qdev);
4185 if (err)
4186 return err;
4187 }
4188
4189 netif_device_attach(ndev);
4190
4191 return 0;
4192}
04da2cf9 4193#endif /* CONFIG_PM */
c4e84bde
RM
4194
4195static void qlge_shutdown(struct pci_dev *pdev)
4196{
4197 qlge_suspend(pdev, PMSG_SUSPEND);
4198}
4199
4200static struct pci_driver qlge_driver = {
4201 .name = DRV_NAME,
4202 .id_table = qlge_pci_tbl,
4203 .probe = qlge_probe,
4204 .remove = __devexit_p(qlge_remove),
4205#ifdef CONFIG_PM
4206 .suspend = qlge_suspend,
4207 .resume = qlge_resume,
4208#endif
4209 .shutdown = qlge_shutdown,
4210 .err_handler = &qlge_err_handler
4211};
4212
4213static int __init qlge_init_module(void)
4214{
4215 return pci_register_driver(&qlge_driver);
4216}
4217
4218static void __exit qlge_exit(void)
4219{
4220 pci_unregister_driver(&qlge_driver);
4221}
4222
4223module_init(qlge_init_module);
4224module_exit(qlge_exit);