igb: fix unused external references introduced with sr-iov changes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / igbvf / netdev.c
CommitLineData
d4e0fe01
AD
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/pci.h>
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/tcp.h>
37#include <linux/ipv6.h>
38#include <net/checksum.h>
39#include <net/ip6_checksum.h>
40#include <linux/mii.h>
41#include <linux/ethtool.h>
42#include <linux/if_vlan.h>
43#include <linux/pm_qos_params.h>
44
45#include "igbvf.h"
46
47#define DRV_VERSION "1.0.0-k0"
48char igbvf_driver_name[] = "igbvf";
49const char igbvf_driver_version[] = DRV_VERSION;
50static const char igbvf_driver_string[] =
51 "Intel(R) Virtual Function Network Driver";
52static const char igbvf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
53
54static int igbvf_poll(struct napi_struct *napi, int budget);
55
56static struct igbvf_info igbvf_vf_info = {
57 .mac = e1000_vfadapt,
58 .flags = FLAG_HAS_JUMBO_FRAMES
59 | FLAG_RX_CSUM_ENABLED,
60 .pba = 10,
61 .init_ops = e1000_init_function_pointers_vf,
62};
63
64static const struct igbvf_info *igbvf_info_tbl[] = {
65 [board_vf] = &igbvf_vf_info,
66};
67
68/**
69 * igbvf_desc_unused - calculate if we have unused descriptors
70 **/
71static int igbvf_desc_unused(struct igbvf_ring *ring)
72{
73 if (ring->next_to_clean > ring->next_to_use)
74 return ring->next_to_clean - ring->next_to_use - 1;
75
76 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
77}
78
79/**
80 * igbvf_receive_skb - helper function to handle Rx indications
81 * @adapter: board private structure
82 * @status: descriptor status field as written by hardware
83 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
84 * @skb: pointer to sk_buff to be indicated to stack
85 **/
86static void igbvf_receive_skb(struct igbvf_adapter *adapter,
87 struct net_device *netdev,
88 struct sk_buff *skb,
89 u32 status, u16 vlan)
90{
91 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
92 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
93 le16_to_cpu(vlan) &
94 E1000_RXD_SPC_VLAN_MASK);
95 else
96 netif_receive_skb(skb);
97
98 netdev->last_rx = jiffies;
99}
100
101static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
102 u32 status_err, struct sk_buff *skb)
103{
104 skb->ip_summed = CHECKSUM_NONE;
105
106 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
107 if ((status_err & E1000_RXD_STAT_IXSM))
108 return;
109 /* TCP/UDP checksum error bit is set */
110 if (status_err &
111 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
112 /* let the stack verify checksum errors */
113 adapter->hw_csum_err++;
114 return;
115 }
116 /* It must be a TCP or UDP packet with a valid checksum */
117 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
118 skb->ip_summed = CHECKSUM_UNNECESSARY;
119
120 adapter->hw_csum_good++;
121}
122
123/**
124 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
125 * @rx_ring: address of ring structure to repopulate
126 * @cleaned_count: number of buffers to repopulate
127 **/
128static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
129 int cleaned_count)
130{
131 struct igbvf_adapter *adapter = rx_ring->adapter;
132 struct net_device *netdev = adapter->netdev;
133 struct pci_dev *pdev = adapter->pdev;
134 union e1000_adv_rx_desc *rx_desc;
135 struct igbvf_buffer *buffer_info;
136 struct sk_buff *skb;
137 unsigned int i;
138 int bufsz;
139
140 i = rx_ring->next_to_use;
141 buffer_info = &rx_ring->buffer_info[i];
142
143 if (adapter->rx_ps_hdr_size)
144 bufsz = adapter->rx_ps_hdr_size;
145 else
146 bufsz = adapter->rx_buffer_len;
147 bufsz += NET_IP_ALIGN;
148
149 while (cleaned_count--) {
150 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
151
152 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
153 if (!buffer_info->page) {
154 buffer_info->page = alloc_page(GFP_ATOMIC);
155 if (!buffer_info->page) {
156 adapter->alloc_rx_buff_failed++;
157 goto no_buffers;
158 }
159 buffer_info->page_offset = 0;
160 } else {
161 buffer_info->page_offset ^= PAGE_SIZE / 2;
162 }
163 buffer_info->page_dma =
164 pci_map_page(pdev, buffer_info->page,
165 buffer_info->page_offset,
166 PAGE_SIZE / 2,
167 PCI_DMA_FROMDEVICE);
168 }
169
170 if (!buffer_info->skb) {
171 skb = netdev_alloc_skb(netdev, bufsz);
172 if (!skb) {
173 adapter->alloc_rx_buff_failed++;
174 goto no_buffers;
175 }
176
177 /* Make buffer alignment 2 beyond a 16 byte boundary
178 * this will result in a 16 byte aligned IP header after
179 * the 14 byte MAC header is removed
180 */
181 skb_reserve(skb, NET_IP_ALIGN);
182
183 buffer_info->skb = skb;
184 buffer_info->dma = pci_map_single(pdev, skb->data,
185 bufsz,
186 PCI_DMA_FROMDEVICE);
187 }
188 /* Refresh the desc even if buffer_addrs didn't change because
189 * each write-back erases this info. */
190 if (adapter->rx_ps_hdr_size) {
191 rx_desc->read.pkt_addr =
192 cpu_to_le64(buffer_info->page_dma);
193 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
194 } else {
195 rx_desc->read.pkt_addr =
196 cpu_to_le64(buffer_info->dma);
197 rx_desc->read.hdr_addr = 0;
198 }
199
200 i++;
201 if (i == rx_ring->count)
202 i = 0;
203 buffer_info = &rx_ring->buffer_info[i];
204 }
205
206no_buffers:
207 if (rx_ring->next_to_use != i) {
208 rx_ring->next_to_use = i;
209 if (i == 0)
210 i = (rx_ring->count - 1);
211 else
212 i--;
213
214 /* Force memory writes to complete before letting h/w
215 * know there are new descriptors to fetch. (Only
216 * applicable for weak-ordered memory model archs,
217 * such as IA-64). */
218 wmb();
219 writel(i, adapter->hw.hw_addr + rx_ring->tail);
220 }
221}
222
223/**
224 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
225 * @adapter: board private structure
226 *
227 * the return value indicates whether actual cleaning was done, there
228 * is no guarantee that everything was cleaned
229 **/
230static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
231 int *work_done, int work_to_do)
232{
233 struct igbvf_ring *rx_ring = adapter->rx_ring;
234 struct net_device *netdev = adapter->netdev;
235 struct pci_dev *pdev = adapter->pdev;
236 union e1000_adv_rx_desc *rx_desc, *next_rxd;
237 struct igbvf_buffer *buffer_info, *next_buffer;
238 struct sk_buff *skb;
239 bool cleaned = false;
240 int cleaned_count = 0;
241 unsigned int total_bytes = 0, total_packets = 0;
242 unsigned int i;
243 u32 length, hlen, staterr;
244
245 i = rx_ring->next_to_clean;
246 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
247 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
248
249 while (staterr & E1000_RXD_STAT_DD) {
250 if (*work_done >= work_to_do)
251 break;
252 (*work_done)++;
253
254 buffer_info = &rx_ring->buffer_info[i];
255
256 /* HW will not DMA in data larger than the given buffer, even
257 * if it parses the (NFS, of course) header to be larger. In
258 * that case, it fills the header buffer and spills the rest
259 * into the page.
260 */
261 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
262 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
263 if (hlen > adapter->rx_ps_hdr_size)
264 hlen = adapter->rx_ps_hdr_size;
265
266 length = le16_to_cpu(rx_desc->wb.upper.length);
267 cleaned = true;
268 cleaned_count++;
269
270 skb = buffer_info->skb;
271 prefetch(skb->data - NET_IP_ALIGN);
272 buffer_info->skb = NULL;
273 if (!adapter->rx_ps_hdr_size) {
274 pci_unmap_single(pdev, buffer_info->dma,
275 adapter->rx_buffer_len,
276 PCI_DMA_FROMDEVICE);
277 buffer_info->dma = 0;
278 skb_put(skb, length);
279 goto send_up;
280 }
281
282 if (!skb_shinfo(skb)->nr_frags) {
283 pci_unmap_single(pdev, buffer_info->dma,
284 adapter->rx_ps_hdr_size + NET_IP_ALIGN,
285 PCI_DMA_FROMDEVICE);
286 skb_put(skb, hlen);
287 }
288
289 if (length) {
290 pci_unmap_page(pdev, buffer_info->page_dma,
291 PAGE_SIZE / 2,
292 PCI_DMA_FROMDEVICE);
293 buffer_info->page_dma = 0;
294
295 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
296 buffer_info->page,
297 buffer_info->page_offset,
298 length);
299
300 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
301 (page_count(buffer_info->page) != 1))
302 buffer_info->page = NULL;
303 else
304 get_page(buffer_info->page);
305
306 skb->len += length;
307 skb->data_len += length;
308 skb->truesize += length;
309 }
310send_up:
311 i++;
312 if (i == rx_ring->count)
313 i = 0;
314 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
315 prefetch(next_rxd);
316 next_buffer = &rx_ring->buffer_info[i];
317
318 if (!(staterr & E1000_RXD_STAT_EOP)) {
319 buffer_info->skb = next_buffer->skb;
320 buffer_info->dma = next_buffer->dma;
321 next_buffer->skb = skb;
322 next_buffer->dma = 0;
323 goto next_desc;
324 }
325
326 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
327 dev_kfree_skb_irq(skb);
328 goto next_desc;
329 }
330
331 total_bytes += skb->len;
332 total_packets++;
333
334 igbvf_rx_checksum_adv(adapter, staterr, skb);
335
336 skb->protocol = eth_type_trans(skb, netdev);
337
338 igbvf_receive_skb(adapter, netdev, skb, staterr,
339 rx_desc->wb.upper.vlan);
340
341 netdev->last_rx = jiffies;
342
343next_desc:
344 rx_desc->wb.upper.status_error = 0;
345
346 /* return some buffers to hardware, one at a time is too slow */
347 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
348 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
349 cleaned_count = 0;
350 }
351
352 /* use prefetched values */
353 rx_desc = next_rxd;
354 buffer_info = next_buffer;
355
356 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
357 }
358
359 rx_ring->next_to_clean = i;
360 cleaned_count = igbvf_desc_unused(rx_ring);
361
362 if (cleaned_count)
363 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
364
365 adapter->total_rx_packets += total_packets;
366 adapter->total_rx_bytes += total_bytes;
367 adapter->net_stats.rx_bytes += total_bytes;
368 adapter->net_stats.rx_packets += total_packets;
369 return cleaned;
370}
371
372static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
373 struct igbvf_buffer *buffer_info)
374{
375 buffer_info->dma = 0;
376 if (buffer_info->skb) {
377 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
378 DMA_TO_DEVICE);
379 dev_kfree_skb_any(buffer_info->skb);
380 buffer_info->skb = NULL;
381 }
382 buffer_info->time_stamp = 0;
383}
384
385static void igbvf_print_tx_hang(struct igbvf_adapter *adapter)
386{
387 struct igbvf_ring *tx_ring = adapter->tx_ring;
388 unsigned int i = tx_ring->next_to_clean;
389 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
390 union e1000_adv_tx_desc *eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
391
392 /* detected Tx unit hang */
393 dev_err(&adapter->pdev->dev,
394 "Detected Tx Unit Hang:\n"
395 " TDH <%x>\n"
396 " TDT <%x>\n"
397 " next_to_use <%x>\n"
398 " next_to_clean <%x>\n"
399 "buffer_info[next_to_clean]:\n"
400 " time_stamp <%lx>\n"
401 " next_to_watch <%x>\n"
402 " jiffies <%lx>\n"
403 " next_to_watch.status <%x>\n",
404 readl(adapter->hw.hw_addr + tx_ring->head),
405 readl(adapter->hw.hw_addr + tx_ring->tail),
406 tx_ring->next_to_use,
407 tx_ring->next_to_clean,
408 tx_ring->buffer_info[eop].time_stamp,
409 eop,
410 jiffies,
411 eop_desc->wb.status);
412}
413
414/**
415 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
416 * @adapter: board private structure
417 *
418 * Return 0 on success, negative on failure
419 **/
420int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
421 struct igbvf_ring *tx_ring)
422{
423 struct pci_dev *pdev = adapter->pdev;
424 int size;
425
426 size = sizeof(struct igbvf_buffer) * tx_ring->count;
427 tx_ring->buffer_info = vmalloc(size);
428 if (!tx_ring->buffer_info)
429 goto err;
430 memset(tx_ring->buffer_info, 0, size);
431
432 /* round up to nearest 4K */
433 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
434 tx_ring->size = ALIGN(tx_ring->size, 4096);
435
436 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
437 &tx_ring->dma);
438
439 if (!tx_ring->desc)
440 goto err;
441
442 tx_ring->adapter = adapter;
443 tx_ring->next_to_use = 0;
444 tx_ring->next_to_clean = 0;
445
446 return 0;
447err:
448 vfree(tx_ring->buffer_info);
449 dev_err(&adapter->pdev->dev,
450 "Unable to allocate memory for the transmit descriptor ring\n");
451 return -ENOMEM;
452}
453
454/**
455 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
456 * @adapter: board private structure
457 *
458 * Returns 0 on success, negative on failure
459 **/
460int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
461 struct igbvf_ring *rx_ring)
462{
463 struct pci_dev *pdev = adapter->pdev;
464 int size, desc_len;
465
466 size = sizeof(struct igbvf_buffer) * rx_ring->count;
467 rx_ring->buffer_info = vmalloc(size);
468 if (!rx_ring->buffer_info)
469 goto err;
470 memset(rx_ring->buffer_info, 0, size);
471
472 desc_len = sizeof(union e1000_adv_rx_desc);
473
474 /* Round up to nearest 4K */
475 rx_ring->size = rx_ring->count * desc_len;
476 rx_ring->size = ALIGN(rx_ring->size, 4096);
477
478 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
479 &rx_ring->dma);
480
481 if (!rx_ring->desc)
482 goto err;
483
484 rx_ring->next_to_clean = 0;
485 rx_ring->next_to_use = 0;
486
487 rx_ring->adapter = adapter;
488
489 return 0;
490
491err:
492 vfree(rx_ring->buffer_info);
493 rx_ring->buffer_info = NULL;
494 dev_err(&adapter->pdev->dev,
495 "Unable to allocate memory for the receive descriptor ring\n");
496 return -ENOMEM;
497}
498
499/**
500 * igbvf_clean_tx_ring - Free Tx Buffers
501 * @tx_ring: ring to be cleaned
502 **/
503static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
504{
505 struct igbvf_adapter *adapter = tx_ring->adapter;
506 struct igbvf_buffer *buffer_info;
507 unsigned long size;
508 unsigned int i;
509
510 if (!tx_ring->buffer_info)
511 return;
512
513 /* Free all the Tx ring sk_buffs */
514 for (i = 0; i < tx_ring->count; i++) {
515 buffer_info = &tx_ring->buffer_info[i];
516 igbvf_put_txbuf(adapter, buffer_info);
517 }
518
519 size = sizeof(struct igbvf_buffer) * tx_ring->count;
520 memset(tx_ring->buffer_info, 0, size);
521
522 /* Zero out the descriptor ring */
523 memset(tx_ring->desc, 0, tx_ring->size);
524
525 tx_ring->next_to_use = 0;
526 tx_ring->next_to_clean = 0;
527
528 writel(0, adapter->hw.hw_addr + tx_ring->head);
529 writel(0, adapter->hw.hw_addr + tx_ring->tail);
530}
531
532/**
533 * igbvf_free_tx_resources - Free Tx Resources per Queue
534 * @tx_ring: ring to free resources from
535 *
536 * Free all transmit software resources
537 **/
538void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
539{
540 struct pci_dev *pdev = tx_ring->adapter->pdev;
541
542 igbvf_clean_tx_ring(tx_ring);
543
544 vfree(tx_ring->buffer_info);
545 tx_ring->buffer_info = NULL;
546
547 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
548
549 tx_ring->desc = NULL;
550}
551
552/**
553 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
554 * @adapter: board private structure
555 **/
556static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
557{
558 struct igbvf_adapter *adapter = rx_ring->adapter;
559 struct igbvf_buffer *buffer_info;
560 struct pci_dev *pdev = adapter->pdev;
561 unsigned long size;
562 unsigned int i;
563
564 if (!rx_ring->buffer_info)
565 return;
566
567 /* Free all the Rx ring sk_buffs */
568 for (i = 0; i < rx_ring->count; i++) {
569 buffer_info = &rx_ring->buffer_info[i];
570 if (buffer_info->dma) {
571 if (adapter->rx_ps_hdr_size){
572 pci_unmap_single(pdev, buffer_info->dma,
573 adapter->rx_ps_hdr_size,
574 PCI_DMA_FROMDEVICE);
575 } else {
576 pci_unmap_single(pdev, buffer_info->dma,
577 adapter->rx_buffer_len,
578 PCI_DMA_FROMDEVICE);
579 }
580 buffer_info->dma = 0;
581 }
582
583 if (buffer_info->skb) {
584 dev_kfree_skb(buffer_info->skb);
585 buffer_info->skb = NULL;
586 }
587
588 if (buffer_info->page) {
589 if (buffer_info->page_dma)
590 pci_unmap_page(pdev, buffer_info->page_dma,
591 PAGE_SIZE / 2,
592 PCI_DMA_FROMDEVICE);
593 put_page(buffer_info->page);
594 buffer_info->page = NULL;
595 buffer_info->page_dma = 0;
596 buffer_info->page_offset = 0;
597 }
598 }
599
600 size = sizeof(struct igbvf_buffer) * rx_ring->count;
601 memset(rx_ring->buffer_info, 0, size);
602
603 /* Zero out the descriptor ring */
604 memset(rx_ring->desc, 0, rx_ring->size);
605
606 rx_ring->next_to_clean = 0;
607 rx_ring->next_to_use = 0;
608
609 writel(0, adapter->hw.hw_addr + rx_ring->head);
610 writel(0, adapter->hw.hw_addr + rx_ring->tail);
611}
612
613/**
614 * igbvf_free_rx_resources - Free Rx Resources
615 * @rx_ring: ring to clean the resources from
616 *
617 * Free all receive software resources
618 **/
619
620void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
621{
622 struct pci_dev *pdev = rx_ring->adapter->pdev;
623
624 igbvf_clean_rx_ring(rx_ring);
625
626 vfree(rx_ring->buffer_info);
627 rx_ring->buffer_info = NULL;
628
629 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
630 rx_ring->dma);
631 rx_ring->desc = NULL;
632}
633
634/**
635 * igbvf_update_itr - update the dynamic ITR value based on statistics
636 * @adapter: pointer to adapter
637 * @itr_setting: current adapter->itr
638 * @packets: the number of packets during this measurement interval
639 * @bytes: the number of bytes during this measurement interval
640 *
641 * Stores a new ITR value based on packets and byte
642 * counts during the last interrupt. The advantage of per interrupt
643 * computation is faster updates and more accurate ITR for the current
644 * traffic pattern. Constants in this function were computed
645 * based on theoretical maximum wire speed and thresholds were set based
646 * on testing data as well as attempting to minimize response time
647 * while increasing bulk throughput. This functionality is controlled
648 * by the InterruptThrottleRate module parameter.
649 **/
650static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
651 u16 itr_setting, int packets,
652 int bytes)
653{
654 unsigned int retval = itr_setting;
655
656 if (packets == 0)
657 goto update_itr_done;
658
659 switch (itr_setting) {
660 case lowest_latency:
661 /* handle TSO and jumbo frames */
662 if (bytes/packets > 8000)
663 retval = bulk_latency;
664 else if ((packets < 5) && (bytes > 512))
665 retval = low_latency;
666 break;
667 case low_latency: /* 50 usec aka 20000 ints/s */
668 if (bytes > 10000) {
669 /* this if handles the TSO accounting */
670 if (bytes/packets > 8000)
671 retval = bulk_latency;
672 else if ((packets < 10) || ((bytes/packets) > 1200))
673 retval = bulk_latency;
674 else if ((packets > 35))
675 retval = lowest_latency;
676 } else if (bytes/packets > 2000) {
677 retval = bulk_latency;
678 } else if (packets <= 2 && bytes < 512) {
679 retval = lowest_latency;
680 }
681 break;
682 case bulk_latency: /* 250 usec aka 4000 ints/s */
683 if (bytes > 25000) {
684 if (packets > 35)
685 retval = low_latency;
686 } else if (bytes < 6000) {
687 retval = low_latency;
688 }
689 break;
690 }
691
692update_itr_done:
693 return retval;
694}
695
696static void igbvf_set_itr(struct igbvf_adapter *adapter)
697{
698 struct e1000_hw *hw = &adapter->hw;
699 u16 current_itr;
700 u32 new_itr = adapter->itr;
701
702 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
703 adapter->total_tx_packets,
704 adapter->total_tx_bytes);
705 /* conservative mode (itr 3) eliminates the lowest_latency setting */
706 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
707 adapter->tx_itr = low_latency;
708
709 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
710 adapter->total_rx_packets,
711 adapter->total_rx_bytes);
712 /* conservative mode (itr 3) eliminates the lowest_latency setting */
713 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
714 adapter->rx_itr = low_latency;
715
716 current_itr = max(adapter->rx_itr, adapter->tx_itr);
717
718 switch (current_itr) {
719 /* counts and packets in update_itr are dependent on these numbers */
720 case lowest_latency:
721 new_itr = 70000;
722 break;
723 case low_latency:
724 new_itr = 20000; /* aka hwitr = ~200 */
725 break;
726 case bulk_latency:
727 new_itr = 4000;
728 break;
729 default:
730 break;
731 }
732
733 if (new_itr != adapter->itr) {
734 /*
735 * this attempts to bias the interrupt rate towards Bulk
736 * by adding intermediate steps when interrupt rate is
737 * increasing
738 */
739 new_itr = new_itr > adapter->itr ?
740 min(adapter->itr + (new_itr >> 2), new_itr) :
741 new_itr;
742 adapter->itr = new_itr;
743 adapter->rx_ring->itr_val = 1952;
744
745 if (adapter->msix_entries)
746 adapter->rx_ring->set_itr = 1;
747 else
748 ew32(ITR, 1952);
749 }
750}
751
752/**
753 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
754 * @adapter: board private structure
755 * returns true if ring is completely cleaned
756 **/
757static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
758{
759 struct igbvf_adapter *adapter = tx_ring->adapter;
760 struct e1000_hw *hw = &adapter->hw;
761 struct net_device *netdev = adapter->netdev;
762 struct igbvf_buffer *buffer_info;
763 struct sk_buff *skb;
764 union e1000_adv_tx_desc *tx_desc, *eop_desc;
765 unsigned int total_bytes = 0, total_packets = 0;
766 unsigned int i, eop, count = 0;
767 bool cleaned = false;
768
769 i = tx_ring->next_to_clean;
770 eop = tx_ring->buffer_info[i].next_to_watch;
771 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
772
773 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
774 (count < tx_ring->count)) {
775 for (cleaned = false; !cleaned; count++) {
776 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
777 buffer_info = &tx_ring->buffer_info[i];
778 cleaned = (i == eop);
779 skb = buffer_info->skb;
780
781 if (skb) {
782 unsigned int segs, bytecount;
783
784 /* gso_segs is currently only valid for tcp */
785 segs = skb_shinfo(skb)->gso_segs ?: 1;
786 /* multiply data chunks by size of headers */
787 bytecount = ((segs - 1) * skb_headlen(skb)) +
788 skb->len;
789 total_packets += segs;
790 total_bytes += bytecount;
791 }
792
793 igbvf_put_txbuf(adapter, buffer_info);
794 tx_desc->wb.status = 0;
795
796 i++;
797 if (i == tx_ring->count)
798 i = 0;
799 }
800 eop = tx_ring->buffer_info[i].next_to_watch;
801 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
802 }
803
804 tx_ring->next_to_clean = i;
805
806 if (unlikely(count &&
807 netif_carrier_ok(netdev) &&
808 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
809 /* Make sure that anybody stopping the queue after this
810 * sees the new next_to_clean.
811 */
812 smp_mb();
813 if (netif_queue_stopped(netdev) &&
814 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
815 netif_wake_queue(netdev);
816 ++adapter->restart_queue;
817 }
818 }
819
820 if (adapter->detect_tx_hung) {
821 /* Detect a transmit hang in hardware, this serializes the
822 * check with the clearing of time_stamp and movement of i */
823 adapter->detect_tx_hung = false;
824 if (tx_ring->buffer_info[i].time_stamp &&
825 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
826 (adapter->tx_timeout_factor * HZ))
827 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
828
829 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
830 /* detected Tx unit hang */
831 igbvf_print_tx_hang(adapter);
832
833 netif_stop_queue(netdev);
834 }
835 }
836 adapter->net_stats.tx_bytes += total_bytes;
837 adapter->net_stats.tx_packets += total_packets;
838 return (count < tx_ring->count);
839}
840
841static irqreturn_t igbvf_msix_other(int irq, void *data)
842{
843 struct net_device *netdev = data;
844 struct igbvf_adapter *adapter = netdev_priv(netdev);
845 struct e1000_hw *hw = &adapter->hw;
846
847 adapter->int_counter1++;
848
849 netif_carrier_off(netdev);
850 hw->mac.get_link_status = 1;
851 if (!test_bit(__IGBVF_DOWN, &adapter->state))
852 mod_timer(&adapter->watchdog_timer, jiffies + 1);
853
854 ew32(EIMS, adapter->eims_other);
855
856 return IRQ_HANDLED;
857}
858
859static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
860{
861 struct net_device *netdev = data;
862 struct igbvf_adapter *adapter = netdev_priv(netdev);
863 struct e1000_hw *hw = &adapter->hw;
864 struct igbvf_ring *tx_ring = adapter->tx_ring;
865
866
867 adapter->total_tx_bytes = 0;
868 adapter->total_tx_packets = 0;
869
870 /* auto mask will automatically reenable the interrupt when we write
871 * EICS */
872 if (!igbvf_clean_tx_irq(tx_ring))
873 /* Ring was not completely cleaned, so fire another interrupt */
874 ew32(EICS, tx_ring->eims_value);
875 else
876 ew32(EIMS, tx_ring->eims_value);
877
878 return IRQ_HANDLED;
879}
880
881static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
882{
883 struct net_device *netdev = data;
884 struct igbvf_adapter *adapter = netdev_priv(netdev);
885
886 adapter->int_counter0++;
887
888 /* Write the ITR value calculated at the end of the
889 * previous interrupt.
890 */
891 if (adapter->rx_ring->set_itr) {
892 writel(adapter->rx_ring->itr_val,
893 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
894 adapter->rx_ring->set_itr = 0;
895 }
896
897 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
898 adapter->total_rx_bytes = 0;
899 adapter->total_rx_packets = 0;
900 __napi_schedule(&adapter->rx_ring->napi);
901 }
902
903 return IRQ_HANDLED;
904}
905
906#define IGBVF_NO_QUEUE -1
907
908static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
909 int tx_queue, int msix_vector)
910{
911 struct e1000_hw *hw = &adapter->hw;
912 u32 ivar, index;
913
914 /* 82576 uses a table-based method for assigning vectors.
915 Each queue has a single entry in the table to which we write
916 a vector number along with a "valid" bit. Sadly, the layout
917 of the table is somewhat counterintuitive. */
918 if (rx_queue > IGBVF_NO_QUEUE) {
919 index = (rx_queue >> 1);
920 ivar = array_er32(IVAR0, index);
921 if (rx_queue & 0x1) {
922 /* vector goes into third byte of register */
923 ivar = ivar & 0xFF00FFFF;
924 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
925 } else {
926 /* vector goes into low byte of register */
927 ivar = ivar & 0xFFFFFF00;
928 ivar |= msix_vector | E1000_IVAR_VALID;
929 }
930 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
931 array_ew32(IVAR0, index, ivar);
932 }
933 if (tx_queue > IGBVF_NO_QUEUE) {
934 index = (tx_queue >> 1);
935 ivar = array_er32(IVAR0, index);
936 if (tx_queue & 0x1) {
937 /* vector goes into high byte of register */
938 ivar = ivar & 0x00FFFFFF;
939 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
940 } else {
941 /* vector goes into second byte of register */
942 ivar = ivar & 0xFFFF00FF;
943 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
944 }
945 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
946 array_ew32(IVAR0, index, ivar);
947 }
948}
949
950/**
951 * igbvf_configure_msix - Configure MSI-X hardware
952 *
953 * igbvf_configure_msix sets up the hardware to properly
954 * generate MSI-X interrupts.
955 **/
956static void igbvf_configure_msix(struct igbvf_adapter *adapter)
957{
958 u32 tmp;
959 struct e1000_hw *hw = &adapter->hw;
960 struct igbvf_ring *tx_ring = adapter->tx_ring;
961 struct igbvf_ring *rx_ring = adapter->rx_ring;
962 int vector = 0;
963
964 adapter->eims_enable_mask = 0;
965
966 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
967 adapter->eims_enable_mask |= tx_ring->eims_value;
968 if (tx_ring->itr_val)
969 writel(tx_ring->itr_val,
970 hw->hw_addr + tx_ring->itr_register);
971 else
972 writel(1952, hw->hw_addr + tx_ring->itr_register);
973
974 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
975 adapter->eims_enable_mask |= rx_ring->eims_value;
976 if (rx_ring->itr_val)
977 writel(rx_ring->itr_val,
978 hw->hw_addr + rx_ring->itr_register);
979 else
980 writel(1952, hw->hw_addr + rx_ring->itr_register);
981
982 /* set vector for other causes, i.e. link changes */
983
984 tmp = (vector++ | E1000_IVAR_VALID);
985
986 ew32(IVAR_MISC, tmp);
987
988 adapter->eims_enable_mask = (1 << (vector)) - 1;
989 adapter->eims_other = 1 << (vector - 1);
990 e1e_flush();
991}
992
993void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
994{
995 if (adapter->msix_entries) {
996 pci_disable_msix(adapter->pdev);
997 kfree(adapter->msix_entries);
998 adapter->msix_entries = NULL;
999 }
1000}
1001
1002/**
1003 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1004 *
1005 * Attempt to configure interrupts using the best available
1006 * capabilities of the hardware and kernel.
1007 **/
1008void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1009{
1010 int err = -ENOMEM;
1011 int i;
1012
1013 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1014 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1015 GFP_KERNEL);
1016 if (adapter->msix_entries) {
1017 for (i = 0; i < 3; i++)
1018 adapter->msix_entries[i].entry = i;
1019
1020 err = pci_enable_msix(adapter->pdev,
1021 adapter->msix_entries, 3);
1022 }
1023
1024 if (err) {
1025 /* MSI-X failed */
1026 dev_err(&adapter->pdev->dev,
1027 "Failed to initialize MSI-X interrupts.\n");
1028 igbvf_reset_interrupt_capability(adapter);
1029 }
1030}
1031
1032/**
1033 * igbvf_request_msix - Initialize MSI-X interrupts
1034 *
1035 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1036 * kernel.
1037 **/
1038static int igbvf_request_msix(struct igbvf_adapter *adapter)
1039{
1040 struct net_device *netdev = adapter->netdev;
1041 int err = 0, vector = 0;
1042
1043 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1044 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1045 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1046 } else {
1047 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1048 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1049 }
1050
1051 err = request_irq(adapter->msix_entries[vector].vector,
1052 &igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1053 netdev);
1054 if (err)
1055 goto out;
1056
1057 adapter->tx_ring->itr_register = E1000_EITR(vector);
1058 adapter->tx_ring->itr_val = 1952;
1059 vector++;
1060
1061 err = request_irq(adapter->msix_entries[vector].vector,
1062 &igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1063 netdev);
1064 if (err)
1065 goto out;
1066
1067 adapter->rx_ring->itr_register = E1000_EITR(vector);
1068 adapter->rx_ring->itr_val = 1952;
1069 vector++;
1070
1071 err = request_irq(adapter->msix_entries[vector].vector,
1072 &igbvf_msix_other, 0, netdev->name, netdev);
1073 if (err)
1074 goto out;
1075
1076 igbvf_configure_msix(adapter);
1077 return 0;
1078out:
1079 return err;
1080}
1081
1082/**
1083 * igbvf_alloc_queues - Allocate memory for all rings
1084 * @adapter: board private structure to initialize
1085 **/
1086static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1087{
1088 struct net_device *netdev = adapter->netdev;
1089
1090 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1091 if (!adapter->tx_ring)
1092 return -ENOMEM;
1093
1094 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1095 if (!adapter->rx_ring) {
1096 kfree(adapter->tx_ring);
1097 return -ENOMEM;
1098 }
1099
1100 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1101
1102 return 0;
1103}
1104
1105/**
1106 * igbvf_request_irq - initialize interrupts
1107 *
1108 * Attempts to configure interrupts using the best available
1109 * capabilities of the hardware and kernel.
1110 **/
1111static int igbvf_request_irq(struct igbvf_adapter *adapter)
1112{
1113 int err = -1;
1114
1115 /* igbvf supports msi-x only */
1116 if (adapter->msix_entries)
1117 err = igbvf_request_msix(adapter);
1118
1119 if (!err)
1120 return err;
1121
1122 dev_err(&adapter->pdev->dev,
1123 "Unable to allocate interrupt, Error: %d\n", err);
1124
1125 return err;
1126}
1127
1128static void igbvf_free_irq(struct igbvf_adapter *adapter)
1129{
1130 struct net_device *netdev = adapter->netdev;
1131 int vector;
1132
1133 if (adapter->msix_entries) {
1134 for (vector = 0; vector < 3; vector++)
1135 free_irq(adapter->msix_entries[vector].vector, netdev);
1136 }
1137}
1138
1139/**
1140 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1141 **/
1142static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1143{
1144 struct e1000_hw *hw = &adapter->hw;
1145
1146 ew32(EIMC, ~0);
1147
1148 if (adapter->msix_entries)
1149 ew32(EIAC, 0);
1150}
1151
1152/**
1153 * igbvf_irq_enable - Enable default interrupt generation settings
1154 **/
1155static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1156{
1157 struct e1000_hw *hw = &adapter->hw;
1158
1159 ew32(EIAC, adapter->eims_enable_mask);
1160 ew32(EIAM, adapter->eims_enable_mask);
1161 ew32(EIMS, adapter->eims_enable_mask);
1162}
1163
1164/**
1165 * igbvf_poll - NAPI Rx polling callback
1166 * @napi: struct associated with this polling callback
1167 * @budget: amount of packets driver is allowed to process this poll
1168 **/
1169static int igbvf_poll(struct napi_struct *napi, int budget)
1170{
1171 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1172 struct igbvf_adapter *adapter = rx_ring->adapter;
1173 struct e1000_hw *hw = &adapter->hw;
1174 int work_done = 0;
1175
1176 igbvf_clean_rx_irq(adapter, &work_done, budget);
1177
1178 /* If not enough Rx work done, exit the polling mode */
1179 if (work_done < budget) {
1180 napi_complete(napi);
1181
1182 if (adapter->itr_setting & 3)
1183 igbvf_set_itr(adapter);
1184
1185 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1186 ew32(EIMS, adapter->rx_ring->eims_value);
1187 }
1188
1189 return work_done;
1190}
1191
1192/**
1193 * igbvf_set_rlpml - set receive large packet maximum length
1194 * @adapter: board private structure
1195 *
1196 * Configure the maximum size of packets that will be received
1197 */
1198static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1199{
1200 int max_frame_size = adapter->max_frame_size;
1201 struct e1000_hw *hw = &adapter->hw;
1202
1203 if (adapter->vlgrp)
1204 max_frame_size += VLAN_TAG_SIZE;
1205
1206 e1000_rlpml_set_vf(hw, max_frame_size);
1207}
1208
1209static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1210{
1211 struct igbvf_adapter *adapter = netdev_priv(netdev);
1212 struct e1000_hw *hw = &adapter->hw;
1213
1214 if (hw->mac.ops.set_vfta(hw, vid, true))
1215 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1216}
1217
1218static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1219{
1220 struct igbvf_adapter *adapter = netdev_priv(netdev);
1221 struct e1000_hw *hw = &adapter->hw;
1222
1223 igbvf_irq_disable(adapter);
1224 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1225
1226 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1227 igbvf_irq_enable(adapter);
1228
1229 if (hw->mac.ops.set_vfta(hw, vid, false))
1230 dev_err(&adapter->pdev->dev,
1231 "Failed to remove vlan id %d\n", vid);
1232}
1233
1234static void igbvf_vlan_rx_register(struct net_device *netdev,
1235 struct vlan_group *grp)
1236{
1237 struct igbvf_adapter *adapter = netdev_priv(netdev);
1238
1239 adapter->vlgrp = grp;
1240}
1241
1242static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1243{
1244 u16 vid;
1245
1246 if (!adapter->vlgrp)
1247 return;
1248
1249 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1250 if (!vlan_group_get_device(adapter->vlgrp, vid))
1251 continue;
1252 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1253 }
1254
1255 igbvf_set_rlpml(adapter);
1256}
1257
1258/**
1259 * igbvf_configure_tx - Configure Transmit Unit after Reset
1260 * @adapter: board private structure
1261 *
1262 * Configure the Tx unit of the MAC after a reset.
1263 **/
1264static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1265{
1266 struct e1000_hw *hw = &adapter->hw;
1267 struct igbvf_ring *tx_ring = adapter->tx_ring;
1268 u64 tdba;
1269 u32 txdctl, dca_txctrl;
1270
1271 /* disable transmits */
1272 txdctl = er32(TXDCTL(0));
1273 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1274 msleep(10);
1275
1276 /* Setup the HW Tx Head and Tail descriptor pointers */
1277 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1278 tdba = tx_ring->dma;
1279 ew32(TDBAL(0), (tdba & DMA_32BIT_MASK));
1280 ew32(TDBAH(0), (tdba >> 32));
1281 ew32(TDH(0), 0);
1282 ew32(TDT(0), 0);
1283 tx_ring->head = E1000_TDH(0);
1284 tx_ring->tail = E1000_TDT(0);
1285
1286 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1287 * MUST be delivered in order or it will completely screw up
1288 * our bookeeping.
1289 */
1290 dca_txctrl = er32(DCA_TXCTRL(0));
1291 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1292 ew32(DCA_TXCTRL(0), dca_txctrl);
1293
1294 /* enable transmits */
1295 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1296 ew32(TXDCTL(0), txdctl);
1297
1298 /* Setup Transmit Descriptor Settings for eop descriptor */
1299 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1300
1301 /* enable Report Status bit */
1302 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1303
1304 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1305}
1306
1307/**
1308 * igbvf_setup_srrctl - configure the receive control registers
1309 * @adapter: Board private structure
1310 **/
1311static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1312{
1313 struct e1000_hw *hw = &adapter->hw;
1314 u32 srrctl = 0;
1315
1316 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1317 E1000_SRRCTL_BSIZEHDR_MASK |
1318 E1000_SRRCTL_BSIZEPKT_MASK);
1319
1320 /* Enable queue drop to avoid head of line blocking */
1321 srrctl |= E1000_SRRCTL_DROP_EN;
1322
1323 /* Setup buffer sizes */
1324 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1325 E1000_SRRCTL_BSIZEPKT_SHIFT;
1326
1327 if (adapter->rx_buffer_len < 2048) {
1328 adapter->rx_ps_hdr_size = 0;
1329 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1330 } else {
1331 adapter->rx_ps_hdr_size = 128;
1332 srrctl |= adapter->rx_ps_hdr_size <<
1333 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1334 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1335 }
1336
1337 ew32(SRRCTL(0), srrctl);
1338}
1339
1340/**
1341 * igbvf_configure_rx - Configure Receive Unit after Reset
1342 * @adapter: board private structure
1343 *
1344 * Configure the Rx unit of the MAC after a reset.
1345 **/
1346static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1347{
1348 struct e1000_hw *hw = &adapter->hw;
1349 struct igbvf_ring *rx_ring = adapter->rx_ring;
1350 u64 rdba;
1351 u32 rdlen, rxdctl;
1352
1353 /* disable receives */
1354 rxdctl = er32(RXDCTL(0));
1355 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1356 msleep(10);
1357
1358 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1359
1360 /*
1361 * Setup the HW Rx Head and Tail Descriptor Pointers and
1362 * the Base and Length of the Rx Descriptor Ring
1363 */
1364 rdba = rx_ring->dma;
1365 ew32(RDBAL(0), (rdba & DMA_32BIT_MASK));
1366 ew32(RDBAH(0), (rdba >> 32));
1367 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1368 rx_ring->head = E1000_RDH(0);
1369 rx_ring->tail = E1000_RDT(0);
1370 ew32(RDH(0), 0);
1371 ew32(RDT(0), 0);
1372
1373 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1374 rxdctl &= 0xFFF00000;
1375 rxdctl |= IGBVF_RX_PTHRESH;
1376 rxdctl |= IGBVF_RX_HTHRESH << 8;
1377 rxdctl |= IGBVF_RX_WTHRESH << 16;
1378
1379 igbvf_set_rlpml(adapter);
1380
1381 /* enable receives */
1382 ew32(RXDCTL(0), rxdctl);
1383}
1384
1385/**
1386 * igbvf_set_multi - Multicast and Promiscuous mode set
1387 * @netdev: network interface device structure
1388 *
1389 * The set_multi entry point is called whenever the multicast address
1390 * list or the network interface flags are updated. This routine is
1391 * responsible for configuring the hardware for proper multicast,
1392 * promiscuous mode, and all-multi behavior.
1393 **/
1394static void igbvf_set_multi(struct net_device *netdev)
1395{
1396 struct igbvf_adapter *adapter = netdev_priv(netdev);
1397 struct e1000_hw *hw = &adapter->hw;
1398 struct dev_mc_list *mc_ptr;
1399 u8 *mta_list = NULL;
1400 int i;
1401
1402 if (netdev->mc_count) {
1403 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1404 if (!mta_list) {
1405 dev_err(&adapter->pdev->dev,
1406 "failed to allocate multicast filter list\n");
1407 return;
1408 }
1409 }
1410
1411 /* prepare a packed array of only addresses. */
1412 mc_ptr = netdev->mc_list;
1413
1414 for (i = 0; i < netdev->mc_count; i++) {
1415 if (!mc_ptr)
1416 break;
1417 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1418 ETH_ALEN);
1419 mc_ptr = mc_ptr->next;
1420 }
1421
1422 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1423 kfree(mta_list);
1424}
1425
1426/**
1427 * igbvf_configure - configure the hardware for Rx and Tx
1428 * @adapter: private board structure
1429 **/
1430static void igbvf_configure(struct igbvf_adapter *adapter)
1431{
1432 igbvf_set_multi(adapter->netdev);
1433
1434 igbvf_restore_vlan(adapter);
1435
1436 igbvf_configure_tx(adapter);
1437 igbvf_setup_srrctl(adapter);
1438 igbvf_configure_rx(adapter);
1439 igbvf_alloc_rx_buffers(adapter->rx_ring,
1440 igbvf_desc_unused(adapter->rx_ring));
1441}
1442
1443/* igbvf_reset - bring the hardware into a known good state
1444 *
1445 * This function boots the hardware and enables some settings that
1446 * require a configuration cycle of the hardware - those cannot be
1447 * set/changed during runtime. After reset the device needs to be
1448 * properly configured for Rx, Tx etc.
1449 */
1450void igbvf_reset(struct igbvf_adapter *adapter)
1451{
1452 struct e1000_mac_info *mac = &adapter->hw.mac;
1453 struct net_device *netdev = adapter->netdev;
1454 struct e1000_hw *hw = &adapter->hw;
1455
1456 /* Allow time for pending master requests to run */
1457 if (mac->ops.reset_hw(hw))
1458 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1459
1460 mac->ops.init_hw(hw);
1461
1462 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1463 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1464 netdev->addr_len);
1465 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1466 netdev->addr_len);
1467 }
1468}
1469
1470int igbvf_up(struct igbvf_adapter *adapter)
1471{
1472 struct e1000_hw *hw = &adapter->hw;
1473
1474 /* hardware has been reset, we need to reload some things */
1475 igbvf_configure(adapter);
1476
1477 clear_bit(__IGBVF_DOWN, &adapter->state);
1478
1479 napi_enable(&adapter->rx_ring->napi);
1480 if (adapter->msix_entries)
1481 igbvf_configure_msix(adapter);
1482
1483 /* Clear any pending interrupts. */
1484 er32(EICR);
1485 igbvf_irq_enable(adapter);
1486
1487 /* start the watchdog */
1488 hw->mac.get_link_status = 1;
1489 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1490
1491
1492 return 0;
1493}
1494
1495void igbvf_down(struct igbvf_adapter *adapter)
1496{
1497 struct net_device *netdev = adapter->netdev;
1498 struct e1000_hw *hw = &adapter->hw;
1499 u32 rxdctl, txdctl;
1500
1501 /*
1502 * signal that we're down so the interrupt handler does not
1503 * reschedule our watchdog timer
1504 */
1505 set_bit(__IGBVF_DOWN, &adapter->state);
1506
1507 /* disable receives in the hardware */
1508 rxdctl = er32(RXDCTL(0));
1509 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1510
1511 netif_stop_queue(netdev);
1512
1513 /* disable transmits in the hardware */
1514 txdctl = er32(TXDCTL(0));
1515 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1516
1517 /* flush both disables and wait for them to finish */
1518 e1e_flush();
1519 msleep(10);
1520
1521 napi_disable(&adapter->rx_ring->napi);
1522
1523 igbvf_irq_disable(adapter);
1524
1525 del_timer_sync(&adapter->watchdog_timer);
1526
1527 netdev->tx_queue_len = adapter->tx_queue_len;
1528 netif_carrier_off(netdev);
1529
1530 /* record the stats before reset*/
1531 igbvf_update_stats(adapter);
1532
1533 adapter->link_speed = 0;
1534 adapter->link_duplex = 0;
1535
1536 igbvf_reset(adapter);
1537 igbvf_clean_tx_ring(adapter->tx_ring);
1538 igbvf_clean_rx_ring(adapter->rx_ring);
1539}
1540
1541void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1542{
1543 might_sleep();
1544 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1545 msleep(1);
1546 igbvf_down(adapter);
1547 igbvf_up(adapter);
1548 clear_bit(__IGBVF_RESETTING, &adapter->state);
1549}
1550
1551/**
1552 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1553 * @adapter: board private structure to initialize
1554 *
1555 * igbvf_sw_init initializes the Adapter private data structure.
1556 * Fields are initialized based on PCI device information and
1557 * OS network device settings (MTU size).
1558 **/
1559static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1560{
1561 struct net_device *netdev = adapter->netdev;
1562 s32 rc;
1563
1564 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1565 adapter->rx_ps_hdr_size = 0;
1566 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1567 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1568
1569 adapter->tx_int_delay = 8;
1570 adapter->tx_abs_int_delay = 32;
1571 adapter->rx_int_delay = 0;
1572 adapter->rx_abs_int_delay = 8;
1573 adapter->itr_setting = 3;
1574 adapter->itr = 20000;
1575
1576 /* Set various function pointers */
1577 adapter->ei->init_ops(&adapter->hw);
1578
1579 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1580 if (rc)
1581 return rc;
1582
1583 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1584 if (rc)
1585 return rc;
1586
1587 igbvf_set_interrupt_capability(adapter);
1588
1589 if (igbvf_alloc_queues(adapter))
1590 return -ENOMEM;
1591
1592 spin_lock_init(&adapter->tx_queue_lock);
1593
1594 /* Explicitly disable IRQ since the NIC can be in any state. */
1595 igbvf_irq_disable(adapter);
1596
1597 spin_lock_init(&adapter->stats_lock);
1598
1599 set_bit(__IGBVF_DOWN, &adapter->state);
1600 return 0;
1601}
1602
1603static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1604{
1605 struct e1000_hw *hw = &adapter->hw;
1606
1607 adapter->stats.last_gprc = er32(VFGPRC);
1608 adapter->stats.last_gorc = er32(VFGORC);
1609 adapter->stats.last_gptc = er32(VFGPTC);
1610 adapter->stats.last_gotc = er32(VFGOTC);
1611 adapter->stats.last_mprc = er32(VFMPRC);
1612 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1613 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1614 adapter->stats.last_gorlbc = er32(VFGORLBC);
1615 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1616
1617 adapter->stats.base_gprc = er32(VFGPRC);
1618 adapter->stats.base_gorc = er32(VFGORC);
1619 adapter->stats.base_gptc = er32(VFGPTC);
1620 adapter->stats.base_gotc = er32(VFGOTC);
1621 adapter->stats.base_mprc = er32(VFMPRC);
1622 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1623 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1624 adapter->stats.base_gorlbc = er32(VFGORLBC);
1625 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1626}
1627
1628/**
1629 * igbvf_open - Called when a network interface is made active
1630 * @netdev: network interface device structure
1631 *
1632 * Returns 0 on success, negative value on failure
1633 *
1634 * The open entry point is called when a network interface is made
1635 * active by the system (IFF_UP). At this point all resources needed
1636 * for transmit and receive operations are allocated, the interrupt
1637 * handler is registered with the OS, the watchdog timer is started,
1638 * and the stack is notified that the interface is ready.
1639 **/
1640static int igbvf_open(struct net_device *netdev)
1641{
1642 struct igbvf_adapter *adapter = netdev_priv(netdev);
1643 struct e1000_hw *hw = &adapter->hw;
1644 int err;
1645
1646 /* disallow open during test */
1647 if (test_bit(__IGBVF_TESTING, &adapter->state))
1648 return -EBUSY;
1649
1650 /* allocate transmit descriptors */
1651 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1652 if (err)
1653 goto err_setup_tx;
1654
1655 /* allocate receive descriptors */
1656 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1657 if (err)
1658 goto err_setup_rx;
1659
1660 /*
1661 * before we allocate an interrupt, we must be ready to handle it.
1662 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1663 * as soon as we call pci_request_irq, so we have to setup our
1664 * clean_rx handler before we do so.
1665 */
1666 igbvf_configure(adapter);
1667
1668 err = igbvf_request_irq(adapter);
1669 if (err)
1670 goto err_req_irq;
1671
1672 /* From here on the code is the same as igbvf_up() */
1673 clear_bit(__IGBVF_DOWN, &adapter->state);
1674
1675 napi_enable(&adapter->rx_ring->napi);
1676
1677 /* clear any pending interrupts */
1678 er32(EICR);
1679
1680 igbvf_irq_enable(adapter);
1681
1682 /* start the watchdog */
1683 hw->mac.get_link_status = 1;
1684 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1685
1686 return 0;
1687
1688err_req_irq:
1689 igbvf_free_rx_resources(adapter->rx_ring);
1690err_setup_rx:
1691 igbvf_free_tx_resources(adapter->tx_ring);
1692err_setup_tx:
1693 igbvf_reset(adapter);
1694
1695 return err;
1696}
1697
1698/**
1699 * igbvf_close - Disables a network interface
1700 * @netdev: network interface device structure
1701 *
1702 * Returns 0, this is not allowed to fail
1703 *
1704 * The close entry point is called when an interface is de-activated
1705 * by the OS. The hardware is still under the drivers control, but
1706 * needs to be disabled. A global MAC reset is issued to stop the
1707 * hardware, and all transmit and receive resources are freed.
1708 **/
1709static int igbvf_close(struct net_device *netdev)
1710{
1711 struct igbvf_adapter *adapter = netdev_priv(netdev);
1712
1713 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1714 igbvf_down(adapter);
1715
1716 igbvf_free_irq(adapter);
1717
1718 igbvf_free_tx_resources(adapter->tx_ring);
1719 igbvf_free_rx_resources(adapter->rx_ring);
1720
1721 return 0;
1722}
1723/**
1724 * igbvf_set_mac - Change the Ethernet Address of the NIC
1725 * @netdev: network interface device structure
1726 * @p: pointer to an address structure
1727 *
1728 * Returns 0 on success, negative on failure
1729 **/
1730static int igbvf_set_mac(struct net_device *netdev, void *p)
1731{
1732 struct igbvf_adapter *adapter = netdev_priv(netdev);
1733 struct e1000_hw *hw = &adapter->hw;
1734 struct sockaddr *addr = p;
1735
1736 if (!is_valid_ether_addr(addr->sa_data))
1737 return -EADDRNOTAVAIL;
1738
1739 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1740
1741 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1742
1743 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1744 return -EADDRNOTAVAIL;
1745
1746 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1747
1748 return 0;
1749}
1750
1751#define UPDATE_VF_COUNTER(reg, name) \
1752 { \
1753 u32 current_counter = er32(reg); \
1754 if (current_counter < adapter->stats.last_##name) \
1755 adapter->stats.name += 0x100000000LL; \
1756 adapter->stats.last_##name = current_counter; \
1757 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1758 adapter->stats.name |= current_counter; \
1759 }
1760
1761/**
1762 * igbvf_update_stats - Update the board statistics counters
1763 * @adapter: board private structure
1764**/
1765void igbvf_update_stats(struct igbvf_adapter *adapter)
1766{
1767 struct e1000_hw *hw = &adapter->hw;
1768 struct pci_dev *pdev = adapter->pdev;
1769
1770 /*
1771 * Prevent stats update while adapter is being reset, link is down
1772 * or if the pci connection is down.
1773 */
1774 if (adapter->link_speed == 0)
1775 return;
1776
1777 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1778 return;
1779
1780 if (pci_channel_offline(pdev))
1781 return;
1782
1783 UPDATE_VF_COUNTER(VFGPRC, gprc);
1784 UPDATE_VF_COUNTER(VFGORC, gorc);
1785 UPDATE_VF_COUNTER(VFGPTC, gptc);
1786 UPDATE_VF_COUNTER(VFGOTC, gotc);
1787 UPDATE_VF_COUNTER(VFMPRC, mprc);
1788 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1789 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1790 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1791 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1792
1793 /* Fill out the OS statistics structure */
1794 adapter->net_stats.multicast = adapter->stats.mprc;
1795}
1796
1797static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1798{
1799 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1800 adapter->link_speed,
1801 ((adapter->link_duplex == FULL_DUPLEX) ?
1802 "Full Duplex" : "Half Duplex"));
1803}
1804
1805static bool igbvf_has_link(struct igbvf_adapter *adapter)
1806{
1807 struct e1000_hw *hw = &adapter->hw;
1808 s32 ret_val = E1000_SUCCESS;
1809 bool link_active;
1810
1811 ret_val = hw->mac.ops.check_for_link(hw);
1812 link_active = !hw->mac.get_link_status;
1813
1814 /* if check for link returns error we will need to reset */
1815 if (ret_val)
1816 schedule_work(&adapter->reset_task);
1817
1818 return link_active;
1819}
1820
1821/**
1822 * igbvf_watchdog - Timer Call-back
1823 * @data: pointer to adapter cast into an unsigned long
1824 **/
1825static void igbvf_watchdog(unsigned long data)
1826{
1827 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1828
1829 /* Do the rest outside of interrupt context */
1830 schedule_work(&adapter->watchdog_task);
1831}
1832
1833static void igbvf_watchdog_task(struct work_struct *work)
1834{
1835 struct igbvf_adapter *adapter = container_of(work,
1836 struct igbvf_adapter,
1837 watchdog_task);
1838 struct net_device *netdev = adapter->netdev;
1839 struct e1000_mac_info *mac = &adapter->hw.mac;
1840 struct igbvf_ring *tx_ring = adapter->tx_ring;
1841 struct e1000_hw *hw = &adapter->hw;
1842 u32 link;
1843 int tx_pending = 0;
1844
1845 link = igbvf_has_link(adapter);
1846
1847 if (link) {
1848 if (!netif_carrier_ok(netdev)) {
1849 bool txb2b = 1;
1850
1851 mac->ops.get_link_up_info(&adapter->hw,
1852 &adapter->link_speed,
1853 &adapter->link_duplex);
1854 igbvf_print_link_info(adapter);
1855
1856 /*
1857 * tweak tx_queue_len according to speed/duplex
1858 * and adjust the timeout factor
1859 */
1860 netdev->tx_queue_len = adapter->tx_queue_len;
1861 adapter->tx_timeout_factor = 1;
1862 switch (adapter->link_speed) {
1863 case SPEED_10:
1864 txb2b = 0;
1865 netdev->tx_queue_len = 10;
1866 adapter->tx_timeout_factor = 16;
1867 break;
1868 case SPEED_100:
1869 txb2b = 0;
1870 netdev->tx_queue_len = 100;
1871 /* maybe add some timeout factor ? */
1872 break;
1873 }
1874
1875 netif_carrier_on(netdev);
1876 netif_wake_queue(netdev);
1877 }
1878 } else {
1879 if (netif_carrier_ok(netdev)) {
1880 adapter->link_speed = 0;
1881 adapter->link_duplex = 0;
1882 dev_info(&adapter->pdev->dev, "Link is Down\n");
1883 netif_carrier_off(netdev);
1884 netif_stop_queue(netdev);
1885 }
1886 }
1887
1888 if (netif_carrier_ok(netdev)) {
1889 igbvf_update_stats(adapter);
1890 } else {
1891 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1892 tx_ring->count);
1893 if (tx_pending) {
1894 /*
1895 * We've lost link, so the controller stops DMA,
1896 * but we've got queued Tx work that's never going
1897 * to get done, so reset controller to flush Tx.
1898 * (Do the reset outside of interrupt context).
1899 */
1900 adapter->tx_timeout_count++;
1901 schedule_work(&adapter->reset_task);
1902 }
1903 }
1904
1905 /* Cause software interrupt to ensure Rx ring is cleaned */
1906 ew32(EICS, adapter->rx_ring->eims_value);
1907
1908 /* Force detection of hung controller every watchdog period */
1909 adapter->detect_tx_hung = 1;
1910
1911 /* Reset the timer */
1912 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1913 mod_timer(&adapter->watchdog_timer,
1914 round_jiffies(jiffies + (2 * HZ)));
1915}
1916
1917#define IGBVF_TX_FLAGS_CSUM 0x00000001
1918#define IGBVF_TX_FLAGS_VLAN 0x00000002
1919#define IGBVF_TX_FLAGS_TSO 0x00000004
1920#define IGBVF_TX_FLAGS_IPV4 0x00000008
1921#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1922#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1923
1924static int igbvf_tso(struct igbvf_adapter *adapter,
1925 struct igbvf_ring *tx_ring,
1926 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1927{
1928 struct e1000_adv_tx_context_desc *context_desc;
1929 unsigned int i;
1930 int err;
1931 struct igbvf_buffer *buffer_info;
1932 u32 info = 0, tu_cmd = 0;
1933 u32 mss_l4len_idx, l4len;
1934 *hdr_len = 0;
1935
1936 if (skb_header_cloned(skb)) {
1937 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1938 if (err) {
1939 dev_err(&adapter->pdev->dev,
1940 "igbvf_tso returning an error\n");
1941 return err;
1942 }
1943 }
1944
1945 l4len = tcp_hdrlen(skb);
1946 *hdr_len += l4len;
1947
1948 if (skb->protocol == htons(ETH_P_IP)) {
1949 struct iphdr *iph = ip_hdr(skb);
1950 iph->tot_len = 0;
1951 iph->check = 0;
1952 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1953 iph->daddr, 0,
1954 IPPROTO_TCP,
1955 0);
1956 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
1957 ipv6_hdr(skb)->payload_len = 0;
1958 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1959 &ipv6_hdr(skb)->daddr,
1960 0, IPPROTO_TCP, 0);
1961 }
1962
1963 i = tx_ring->next_to_use;
1964
1965 buffer_info = &tx_ring->buffer_info[i];
1966 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1967 /* VLAN MACLEN IPLEN */
1968 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1969 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1970 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1971 *hdr_len += skb_network_offset(skb);
1972 info |= (skb_transport_header(skb) - skb_network_header(skb));
1973 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1974 context_desc->vlan_macip_lens = cpu_to_le32(info);
1975
1976 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1977 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1978
1979 if (skb->protocol == htons(ETH_P_IP))
1980 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1981 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1982
1983 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1984
1985 /* MSS L4LEN IDX */
1986 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1987 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1988
1989 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1990 context_desc->seqnum_seed = 0;
1991
1992 buffer_info->time_stamp = jiffies;
1993 buffer_info->next_to_watch = i;
1994 buffer_info->dma = 0;
1995 i++;
1996 if (i == tx_ring->count)
1997 i = 0;
1998
1999 tx_ring->next_to_use = i;
2000
2001 return true;
2002}
2003
2004static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
2005 struct igbvf_ring *tx_ring,
2006 struct sk_buff *skb, u32 tx_flags)
2007{
2008 struct e1000_adv_tx_context_desc *context_desc;
2009 unsigned int i;
2010 struct igbvf_buffer *buffer_info;
2011 u32 info = 0, tu_cmd = 0;
2012
2013 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2014 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2015 i = tx_ring->next_to_use;
2016 buffer_info = &tx_ring->buffer_info[i];
2017 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2018
2019 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2020 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2021
2022 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2023 if (skb->ip_summed == CHECKSUM_PARTIAL)
2024 info |= (skb_transport_header(skb) -
2025 skb_network_header(skb));
2026
2027
2028 context_desc->vlan_macip_lens = cpu_to_le32(info);
2029
2030 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2031
2032 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2033 switch (skb->protocol) {
2034 case __constant_htons(ETH_P_IP):
2035 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2036 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2037 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2038 break;
2039 case __constant_htons(ETH_P_IPV6):
2040 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2041 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2042 break;
2043 default:
2044 break;
2045 }
2046 }
2047
2048 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2049 context_desc->seqnum_seed = 0;
2050 context_desc->mss_l4len_idx = 0;
2051
2052 buffer_info->time_stamp = jiffies;
2053 buffer_info->next_to_watch = i;
2054 buffer_info->dma = 0;
2055 i++;
2056 if (i == tx_ring->count)
2057 i = 0;
2058 tx_ring->next_to_use = i;
2059
2060 return true;
2061 }
2062
2063 return false;
2064}
2065
2066static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2067{
2068 struct igbvf_adapter *adapter = netdev_priv(netdev);
2069
2070 /* there is enough descriptors then we don't need to worry */
2071 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2072 return 0;
2073
2074 netif_stop_queue(netdev);
2075
2076 smp_mb();
2077
2078 /* We need to check again just in case room has been made available */
2079 if (igbvf_desc_unused(adapter->tx_ring) < size)
2080 return -EBUSY;
2081
2082 netif_wake_queue(netdev);
2083
2084 ++adapter->restart_queue;
2085 return 0;
2086}
2087
2088#define IGBVF_MAX_TXD_PWR 16
2089#define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2090
2091static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2092 struct igbvf_ring *tx_ring,
2093 struct sk_buff *skb,
2094 unsigned int first)
2095{
2096 struct igbvf_buffer *buffer_info;
2097 unsigned int len = skb_headlen(skb);
2098 unsigned int count = 0, i;
2099 unsigned int f;
2100 dma_addr_t *map;
2101
2102 i = tx_ring->next_to_use;
2103
2104 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2105 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2106 return 0;
2107 }
2108
2109 map = skb_shinfo(skb)->dma_maps;
2110
2111 buffer_info = &tx_ring->buffer_info[i];
2112 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2113 buffer_info->length = len;
2114 /* set time_stamp *before* dma to help avoid a possible race */
2115 buffer_info->time_stamp = jiffies;
2116 buffer_info->next_to_watch = i;
2117 buffer_info->dma = map[count];
2118 count++;
2119
2120 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2121 struct skb_frag_struct *frag;
2122
2123 i++;
2124 if (i == tx_ring->count)
2125 i = 0;
2126
2127 frag = &skb_shinfo(skb)->frags[f];
2128 len = frag->size;
2129
2130 buffer_info = &tx_ring->buffer_info[i];
2131 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2132 buffer_info->length = len;
2133 buffer_info->time_stamp = jiffies;
2134 buffer_info->next_to_watch = i;
2135 buffer_info->dma = map[count];
2136 count++;
2137 }
2138
2139 tx_ring->buffer_info[i].skb = skb;
2140 tx_ring->buffer_info[first].next_to_watch = i;
2141
2142 return count;
2143}
2144
2145static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2146 struct igbvf_ring *tx_ring,
2147 int tx_flags, int count, u32 paylen,
2148 u8 hdr_len)
2149{
2150 union e1000_adv_tx_desc *tx_desc = NULL;
2151 struct igbvf_buffer *buffer_info;
2152 u32 olinfo_status = 0, cmd_type_len;
2153 unsigned int i;
2154
2155 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2156 E1000_ADVTXD_DCMD_DEXT);
2157
2158 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2159 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2160
2161 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2162 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2163
2164 /* insert tcp checksum */
2165 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2166
2167 /* insert ip checksum */
2168 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2169 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2170
2171 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2172 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2173 }
2174
2175 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2176
2177 i = tx_ring->next_to_use;
2178 while (count--) {
2179 buffer_info = &tx_ring->buffer_info[i];
2180 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2181 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2182 tx_desc->read.cmd_type_len =
2183 cpu_to_le32(cmd_type_len | buffer_info->length);
2184 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2185 i++;
2186 if (i == tx_ring->count)
2187 i = 0;
2188 }
2189
2190 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2191 /* Force memory writes to complete before letting h/w
2192 * know there are new descriptors to fetch. (Only
2193 * applicable for weak-ordered memory model archs,
2194 * such as IA-64). */
2195 wmb();
2196
2197 tx_ring->next_to_use = i;
2198 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2199 /* we need this if more than one processor can write to our tail
2200 * at a time, it syncronizes IO on IA64/Altix systems */
2201 mmiowb();
2202}
2203
2204static int igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2205 struct net_device *netdev,
2206 struct igbvf_ring *tx_ring)
2207{
2208 struct igbvf_adapter *adapter = netdev_priv(netdev);
2209 unsigned int first, tx_flags = 0;
2210 u8 hdr_len = 0;
2211 int count = 0;
2212 int tso = 0;
2213
2214 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2215 dev_kfree_skb_any(skb);
2216 return NETDEV_TX_OK;
2217 }
2218
2219 if (skb->len <= 0) {
2220 dev_kfree_skb_any(skb);
2221 return NETDEV_TX_OK;
2222 }
2223
2224 /*
2225 * need: count + 4 desc gap to keep tail from touching
2226 * + 2 desc gap to keep tail from touching head,
2227 * + 1 desc for skb->data,
2228 * + 1 desc for context descriptor,
2229 * head, otherwise try next time
2230 */
2231 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2232 /* this is a hard error */
2233 return NETDEV_TX_BUSY;
2234 }
2235
2236 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2237 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2238 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2239 }
2240
2241 if (skb->protocol == htons(ETH_P_IP))
2242 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2243
2244 first = tx_ring->next_to_use;
2245
2246 tso = skb_is_gso(skb) ?
2247 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2248 if (unlikely(tso < 0)) {
2249 dev_kfree_skb_any(skb);
2250 return NETDEV_TX_OK;
2251 }
2252
2253 if (tso)
2254 tx_flags |= IGBVF_TX_FLAGS_TSO;
2255 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2256 (skb->ip_summed == CHECKSUM_PARTIAL))
2257 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2258
2259 /*
2260 * count reflects descriptors mapped, if 0 then mapping error
2261 * has occured and we need to rewind the descriptor queue
2262 */
2263 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2264
2265 if (count) {
2266 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2267 skb->len, hdr_len);
2268 netdev->trans_start = jiffies;
2269 /* Make sure there is space in the ring for the next send. */
2270 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2271 } else {
2272 dev_kfree_skb_any(skb);
2273 tx_ring->buffer_info[first].time_stamp = 0;
2274 tx_ring->next_to_use = first;
2275 }
2276
2277 return NETDEV_TX_OK;
2278}
2279
2280static int igbvf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2281{
2282 struct igbvf_adapter *adapter = netdev_priv(netdev);
2283 struct igbvf_ring *tx_ring;
2284 int retval;
2285
2286 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2287 dev_kfree_skb_any(skb);
2288 return NETDEV_TX_OK;
2289 }
2290
2291 tx_ring = &adapter->tx_ring[0];
2292
2293 retval = igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2294
2295 return retval;
2296}
2297
2298/**
2299 * igbvf_tx_timeout - Respond to a Tx Hang
2300 * @netdev: network interface device structure
2301 **/
2302static void igbvf_tx_timeout(struct net_device *netdev)
2303{
2304 struct igbvf_adapter *adapter = netdev_priv(netdev);
2305
2306 /* Do the reset outside of interrupt context */
2307 adapter->tx_timeout_count++;
2308 schedule_work(&adapter->reset_task);
2309}
2310
2311static void igbvf_reset_task(struct work_struct *work)
2312{
2313 struct igbvf_adapter *adapter;
2314 adapter = container_of(work, struct igbvf_adapter, reset_task);
2315
2316 igbvf_reinit_locked(adapter);
2317}
2318
2319/**
2320 * igbvf_get_stats - Get System Network Statistics
2321 * @netdev: network interface device structure
2322 *
2323 * Returns the address of the device statistics structure.
2324 * The statistics are actually updated from the timer callback.
2325 **/
2326static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2327{
2328 struct igbvf_adapter *adapter = netdev_priv(netdev);
2329
2330 /* only return the current stats */
2331 return &adapter->net_stats;
2332}
2333
2334/**
2335 * igbvf_change_mtu - Change the Maximum Transfer Unit
2336 * @netdev: network interface device structure
2337 * @new_mtu: new value for maximum frame size
2338 *
2339 * Returns 0 on success, negative on failure
2340 **/
2341static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2342{
2343 struct igbvf_adapter *adapter = netdev_priv(netdev);
2344 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2345
2346 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2347 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2348 return -EINVAL;
2349 }
2350
2351 /* Jumbo frame size limits */
2352 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
2353 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
2354 dev_err(&adapter->pdev->dev,
2355 "Jumbo Frames not supported.\n");
2356 return -EINVAL;
2357 }
2358 }
2359
2360#define MAX_STD_JUMBO_FRAME_SIZE 9234
2361 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2362 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2363 return -EINVAL;
2364 }
2365
2366 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2367 msleep(1);
2368 /* igbvf_down has a dependency on max_frame_size */
2369 adapter->max_frame_size = max_frame;
2370 if (netif_running(netdev))
2371 igbvf_down(adapter);
2372
2373 /*
2374 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2375 * means we reserve 2 more, this pushes us to allocate from the next
2376 * larger slab size.
2377 * i.e. RXBUFFER_2048 --> size-4096 slab
2378 * However with the new *_jumbo_rx* routines, jumbo receives will use
2379 * fragmented skbs
2380 */
2381
2382 if (max_frame <= 1024)
2383 adapter->rx_buffer_len = 1024;
2384 else if (max_frame <= 2048)
2385 adapter->rx_buffer_len = 2048;
2386 else
2387#if (PAGE_SIZE / 2) > 16384
2388 adapter->rx_buffer_len = 16384;
2389#else
2390 adapter->rx_buffer_len = PAGE_SIZE / 2;
2391#endif
2392
2393
2394 /* adjust allocation if LPE protects us, and we aren't using SBP */
2395 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2396 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2397 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2398 ETH_FCS_LEN;
2399
2400 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2401 netdev->mtu, new_mtu);
2402 netdev->mtu = new_mtu;
2403
2404 if (netif_running(netdev))
2405 igbvf_up(adapter);
2406 else
2407 igbvf_reset(adapter);
2408
2409 clear_bit(__IGBVF_RESETTING, &adapter->state);
2410
2411 return 0;
2412}
2413
2414static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2415{
2416 switch (cmd) {
2417 default:
2418 return -EOPNOTSUPP;
2419 }
2420}
2421
2422static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2423{
2424 struct net_device *netdev = pci_get_drvdata(pdev);
2425 struct igbvf_adapter *adapter = netdev_priv(netdev);
2426#ifdef CONFIG_PM
2427 int retval = 0;
2428#endif
2429
2430 netif_device_detach(netdev);
2431
2432 if (netif_running(netdev)) {
2433 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2434 igbvf_down(adapter);
2435 igbvf_free_irq(adapter);
2436 }
2437
2438#ifdef CONFIG_PM
2439 retval = pci_save_state(pdev);
2440 if (retval)
2441 return retval;
2442#endif
2443
2444 pci_disable_device(pdev);
2445
2446 return 0;
2447}
2448
2449#ifdef CONFIG_PM
2450static int igbvf_resume(struct pci_dev *pdev)
2451{
2452 struct net_device *netdev = pci_get_drvdata(pdev);
2453 struct igbvf_adapter *adapter = netdev_priv(netdev);
2454 u32 err;
2455
2456 pci_restore_state(pdev);
2457 err = pci_enable_device_mem(pdev);
2458 if (err) {
2459 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2460 return err;
2461 }
2462
2463 pci_set_master(pdev);
2464
2465 if (netif_running(netdev)) {
2466 err = igbvf_request_irq(adapter);
2467 if (err)
2468 return err;
2469 }
2470
2471 igbvf_reset(adapter);
2472
2473 if (netif_running(netdev))
2474 igbvf_up(adapter);
2475
2476 netif_device_attach(netdev);
2477
2478 return 0;
2479}
2480#endif
2481
2482static void igbvf_shutdown(struct pci_dev *pdev)
2483{
2484 igbvf_suspend(pdev, PMSG_SUSPEND);
2485}
2486
2487#ifdef CONFIG_NET_POLL_CONTROLLER
2488/*
2489 * Polling 'interrupt' - used by things like netconsole to send skbs
2490 * without having to re-enable interrupts. It's not called while
2491 * the interrupt routine is executing.
2492 */
2493static void igbvf_netpoll(struct net_device *netdev)
2494{
2495 struct igbvf_adapter *adapter = netdev_priv(netdev);
2496
2497 disable_irq(adapter->pdev->irq);
2498
2499 igbvf_clean_tx_irq(adapter->tx_ring);
2500
2501 enable_irq(adapter->pdev->irq);
2502}
2503#endif
2504
2505/**
2506 * igbvf_io_error_detected - called when PCI error is detected
2507 * @pdev: Pointer to PCI device
2508 * @state: The current pci connection state
2509 *
2510 * This function is called after a PCI bus error affecting
2511 * this device has been detected.
2512 */
2513static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2514 pci_channel_state_t state)
2515{
2516 struct net_device *netdev = pci_get_drvdata(pdev);
2517 struct igbvf_adapter *adapter = netdev_priv(netdev);
2518
2519 netif_device_detach(netdev);
2520
2521 if (netif_running(netdev))
2522 igbvf_down(adapter);
2523 pci_disable_device(pdev);
2524
2525 /* Request a slot slot reset. */
2526 return PCI_ERS_RESULT_NEED_RESET;
2527}
2528
2529/**
2530 * igbvf_io_slot_reset - called after the pci bus has been reset.
2531 * @pdev: Pointer to PCI device
2532 *
2533 * Restart the card from scratch, as if from a cold-boot. Implementation
2534 * resembles the first-half of the igbvf_resume routine.
2535 */
2536static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2537{
2538 struct net_device *netdev = pci_get_drvdata(pdev);
2539 struct igbvf_adapter *adapter = netdev_priv(netdev);
2540
2541 if (pci_enable_device_mem(pdev)) {
2542 dev_err(&pdev->dev,
2543 "Cannot re-enable PCI device after reset.\n");
2544 return PCI_ERS_RESULT_DISCONNECT;
2545 }
2546 pci_set_master(pdev);
2547
2548 igbvf_reset(adapter);
2549
2550 return PCI_ERS_RESULT_RECOVERED;
2551}
2552
2553/**
2554 * igbvf_io_resume - called when traffic can start flowing again.
2555 * @pdev: Pointer to PCI device
2556 *
2557 * This callback is called when the error recovery driver tells us that
2558 * its OK to resume normal operation. Implementation resembles the
2559 * second-half of the igbvf_resume routine.
2560 */
2561static void igbvf_io_resume(struct pci_dev *pdev)
2562{
2563 struct net_device *netdev = pci_get_drvdata(pdev);
2564 struct igbvf_adapter *adapter = netdev_priv(netdev);
2565
2566 if (netif_running(netdev)) {
2567 if (igbvf_up(adapter)) {
2568 dev_err(&pdev->dev,
2569 "can't bring device back up after reset\n");
2570 return;
2571 }
2572 }
2573
2574 netif_device_attach(netdev);
2575}
2576
2577static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2578{
2579 struct e1000_hw *hw = &adapter->hw;
2580 struct net_device *netdev = adapter->netdev;
2581 struct pci_dev *pdev = adapter->pdev;
2582
2583 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2584 dev_info(&pdev->dev, "Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
2585 /* MAC address */
2586 netdev->dev_addr[0], netdev->dev_addr[1],
2587 netdev->dev_addr[2], netdev->dev_addr[3],
2588 netdev->dev_addr[4], netdev->dev_addr[5]);
2589 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2590}
2591
2592static const struct net_device_ops igbvf_netdev_ops = {
2593 .ndo_open = igbvf_open,
2594 .ndo_stop = igbvf_close,
2595 .ndo_start_xmit = igbvf_xmit_frame,
2596 .ndo_get_stats = igbvf_get_stats,
2597 .ndo_set_multicast_list = igbvf_set_multi,
2598 .ndo_set_mac_address = igbvf_set_mac,
2599 .ndo_change_mtu = igbvf_change_mtu,
2600 .ndo_do_ioctl = igbvf_ioctl,
2601 .ndo_tx_timeout = igbvf_tx_timeout,
2602 .ndo_vlan_rx_register = igbvf_vlan_rx_register,
2603 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2604 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2605#ifdef CONFIG_NET_POLL_CONTROLLER
2606 .ndo_poll_controller = igbvf_netpoll,
2607#endif
2608};
2609
2610/**
2611 * igbvf_probe - Device Initialization Routine
2612 * @pdev: PCI device information struct
2613 * @ent: entry in igbvf_pci_tbl
2614 *
2615 * Returns 0 on success, negative on failure
2616 *
2617 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2618 * The OS initialization, configuring of the adapter private structure,
2619 * and a hardware reset occur.
2620 **/
2621static int __devinit igbvf_probe(struct pci_dev *pdev,
2622 const struct pci_device_id *ent)
2623{
2624 struct net_device *netdev;
2625 struct igbvf_adapter *adapter;
2626 struct e1000_hw *hw;
2627 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2628
2629 static int cards_found;
2630 int err, pci_using_dac;
2631
2632 err = pci_enable_device_mem(pdev);
2633 if (err)
2634 return err;
2635
2636 pci_using_dac = 0;
2637 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
2638 if (!err) {
2639 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
2640 if (!err)
2641 pci_using_dac = 1;
2642 } else {
2643 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2644 if (err) {
2645 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2646 if (err) {
2647 dev_err(&pdev->dev, "No usable DMA "
2648 "configuration, aborting\n");
2649 goto err_dma;
2650 }
2651 }
2652 }
2653
2654 err = pci_request_regions(pdev, igbvf_driver_name);
2655 if (err)
2656 goto err_pci_reg;
2657
2658 pci_set_master(pdev);
2659
2660 err = -ENOMEM;
2661 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2662 if (!netdev)
2663 goto err_alloc_etherdev;
2664
2665 SET_NETDEV_DEV(netdev, &pdev->dev);
2666
2667 pci_set_drvdata(pdev, netdev);
2668 adapter = netdev_priv(netdev);
2669 hw = &adapter->hw;
2670 adapter->netdev = netdev;
2671 adapter->pdev = pdev;
2672 adapter->ei = ei;
2673 adapter->pba = ei->pba;
2674 adapter->flags = ei->flags;
2675 adapter->hw.back = adapter;
2676 adapter->hw.mac.type = ei->mac;
2677 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2678
2679 /* PCI config space info */
2680
2681 hw->vendor_id = pdev->vendor;
2682 hw->device_id = pdev->device;
2683 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2684 hw->subsystem_device_id = pdev->subsystem_device;
2685
2686 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2687
2688 err = -EIO;
2689 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2690 pci_resource_len(pdev, 0));
2691
2692 if (!adapter->hw.hw_addr)
2693 goto err_ioremap;
2694
2695 if (ei->get_variants) {
2696 err = ei->get_variants(adapter);
2697 if (err)
2698 goto err_ioremap;
2699 }
2700
2701 /* setup adapter struct */
2702 err = igbvf_sw_init(adapter);
2703 if (err)
2704 goto err_sw_init;
2705
2706 /* construct the net_device struct */
2707 netdev->netdev_ops = &igbvf_netdev_ops;
2708
2709 igbvf_set_ethtool_ops(netdev);
2710 netdev->watchdog_timeo = 5 * HZ;
2711 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2712
2713 adapter->bd_number = cards_found++;
2714
2715 netdev->features = NETIF_F_SG |
2716 NETIF_F_IP_CSUM |
2717 NETIF_F_HW_VLAN_TX |
2718 NETIF_F_HW_VLAN_RX |
2719 NETIF_F_HW_VLAN_FILTER;
2720
2721 netdev->features |= NETIF_F_IPV6_CSUM;
2722 netdev->features |= NETIF_F_TSO;
2723 netdev->features |= NETIF_F_TSO6;
2724
2725 if (pci_using_dac)
2726 netdev->features |= NETIF_F_HIGHDMA;
2727
2728 netdev->vlan_features |= NETIF_F_TSO;
2729 netdev->vlan_features |= NETIF_F_TSO6;
2730 netdev->vlan_features |= NETIF_F_IP_CSUM;
2731 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2732 netdev->vlan_features |= NETIF_F_SG;
2733
2734 /*reset the controller to put the device in a known good state */
2735 err = hw->mac.ops.reset_hw(hw);
2736 if (err) {
2737 dev_info(&pdev->dev,
2738 "PF still in reset state, assigning new address\n");
2739 random_ether_addr(hw->mac.addr);
2740 } else {
2741 err = hw->mac.ops.read_mac_addr(hw);
2742 if (err) {
2743 dev_err(&pdev->dev, "Error reading MAC address\n");
2744 goto err_hw_init;
2745 }
2746 }
2747
2748 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2749 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2750
2751 if (!is_valid_ether_addr(netdev->perm_addr)) {
2752 dev_err(&pdev->dev, "Invalid MAC Address: "
2753 "%02x:%02x:%02x:%02x:%02x:%02x\n",
2754 netdev->dev_addr[0], netdev->dev_addr[1],
2755 netdev->dev_addr[2], netdev->dev_addr[3],
2756 netdev->dev_addr[4], netdev->dev_addr[5]);
2757 err = -EIO;
2758 goto err_hw_init;
2759 }
2760
2761 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2762 (unsigned long) adapter);
2763
2764 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2765 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2766
2767 /* ring size defaults */
2768 adapter->rx_ring->count = 1024;
2769 adapter->tx_ring->count = 1024;
2770
2771 /* reset the hardware with the new settings */
2772 igbvf_reset(adapter);
2773
2774 /* tell the stack to leave us alone until igbvf_open() is called */
2775 netif_carrier_off(netdev);
2776 netif_stop_queue(netdev);
2777
2778 strcpy(netdev->name, "eth%d");
2779 err = register_netdev(netdev);
2780 if (err)
2781 goto err_hw_init;
2782
2783 igbvf_print_device_info(adapter);
2784
2785 igbvf_initialize_last_counter_stats(adapter);
2786
2787 return 0;
2788
2789err_hw_init:
2790 kfree(adapter->tx_ring);
2791 kfree(adapter->rx_ring);
2792err_sw_init:
2793 igbvf_reset_interrupt_capability(adapter);
2794 iounmap(adapter->hw.hw_addr);
2795err_ioremap:
2796 free_netdev(netdev);
2797err_alloc_etherdev:
2798 pci_release_regions(pdev);
2799err_pci_reg:
2800err_dma:
2801 pci_disable_device(pdev);
2802 return err;
2803}
2804
2805/**
2806 * igbvf_remove - Device Removal Routine
2807 * @pdev: PCI device information struct
2808 *
2809 * igbvf_remove is called by the PCI subsystem to alert the driver
2810 * that it should release a PCI device. The could be caused by a
2811 * Hot-Plug event, or because the driver is going to be removed from
2812 * memory.
2813 **/
2814static void __devexit igbvf_remove(struct pci_dev *pdev)
2815{
2816 struct net_device *netdev = pci_get_drvdata(pdev);
2817 struct igbvf_adapter *adapter = netdev_priv(netdev);
2818 struct e1000_hw *hw = &adapter->hw;
2819
2820 /*
2821 * flush_scheduled work may reschedule our watchdog task, so
2822 * explicitly disable watchdog tasks from being rescheduled
2823 */
2824 set_bit(__IGBVF_DOWN, &adapter->state);
2825 del_timer_sync(&adapter->watchdog_timer);
2826
2827 flush_scheduled_work();
2828
2829 unregister_netdev(netdev);
2830
2831 igbvf_reset_interrupt_capability(adapter);
2832
2833 /*
2834 * it is important to delete the napi struct prior to freeing the
2835 * rx ring so that you do not end up with null pointer refs
2836 */
2837 netif_napi_del(&adapter->rx_ring->napi);
2838 kfree(adapter->tx_ring);
2839 kfree(adapter->rx_ring);
2840
2841 iounmap(hw->hw_addr);
2842 if (hw->flash_address)
2843 iounmap(hw->flash_address);
2844 pci_release_regions(pdev);
2845
2846 free_netdev(netdev);
2847
2848 pci_disable_device(pdev);
2849}
2850
2851/* PCI Error Recovery (ERS) */
2852static struct pci_error_handlers igbvf_err_handler = {
2853 .error_detected = igbvf_io_error_detected,
2854 .slot_reset = igbvf_io_slot_reset,
2855 .resume = igbvf_io_resume,
2856};
2857
2858static struct pci_device_id igbvf_pci_tbl[] = {
2859 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2860 { } /* terminate list */
2861};
2862MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2863
2864/* PCI Device API Driver */
2865static struct pci_driver igbvf_driver = {
2866 .name = igbvf_driver_name,
2867 .id_table = igbvf_pci_tbl,
2868 .probe = igbvf_probe,
2869 .remove = __devexit_p(igbvf_remove),
2870#ifdef CONFIG_PM
2871 /* Power Management Hooks */
2872 .suspend = igbvf_suspend,
2873 .resume = igbvf_resume,
2874#endif
2875 .shutdown = igbvf_shutdown,
2876 .err_handler = &igbvf_err_handler
2877};
2878
2879/**
2880 * igbvf_init_module - Driver Registration Routine
2881 *
2882 * igbvf_init_module is the first routine called when the driver is
2883 * loaded. All it does is register with the PCI subsystem.
2884 **/
2885static int __init igbvf_init_module(void)
2886{
2887 int ret;
2888 printk(KERN_INFO "%s - version %s\n",
2889 igbvf_driver_string, igbvf_driver_version);
2890 printk(KERN_INFO "%s\n", igbvf_copyright);
2891
2892 ret = pci_register_driver(&igbvf_driver);
2893 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name,
2894 PM_QOS_DEFAULT_VALUE);
2895
2896 return ret;
2897}
2898module_init(igbvf_init_module);
2899
2900/**
2901 * igbvf_exit_module - Driver Exit Cleanup Routine
2902 *
2903 * igbvf_exit_module is called just before the driver is removed
2904 * from memory.
2905 **/
2906static void __exit igbvf_exit_module(void)
2907{
2908 pci_unregister_driver(&igbvf_driver);
2909 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name);
2910}
2911module_exit(igbvf_exit_module);
2912
2913
2914MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2915MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2916MODULE_LICENSE("GPL");
2917MODULE_VERSION(DRV_VERSION);
2918
2919/* netdev.c */