igb: open up SCTP checksum offloads to all MACs 82576 and newer
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243
AK
34#include <linux/ipv6.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
c6cb090b 37#include <linux/net_tstamp.h>
9d5c8243
AK
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if_vlan.h>
41#include <linux/pci.h>
c54106bb 42#include <linux/pci-aspm.h>
9d5c8243
AK
43#include <linux/delay.h>
44#include <linux/interrupt.h>
45#include <linux/if_ether.h>
40a914fa 46#include <linux/aer.h>
421e02f0 47#ifdef CONFIG_IGB_DCA
fe4506b6
JC
48#include <linux/dca.h>
49#endif
9d5c8243
AK
50#include "igb.h"
51
86d5d38f 52#define DRV_VERSION "1.3.16-k2"
9d5c8243
AK
53char igb_driver_name[] = "igb";
54char igb_driver_version[] = DRV_VERSION;
55static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
86d5d38f 57static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
9d5c8243 58
9d5c8243
AK
59static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61};
62
63static struct pci_device_id igb_pci_tbl[] = {
2d064c06 64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
c8ea5ea9 70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
74 /* required last entry */
75 {0, }
76};
77
78MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
79
80void igb_reset(struct igb_adapter *);
81static int igb_setup_all_tx_resources(struct igb_adapter *);
82static int igb_setup_all_rx_resources(struct igb_adapter *);
83static void igb_free_all_tx_resources(struct igb_adapter *);
84static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 85static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
86void igb_update_stats(struct igb_adapter *);
87static int igb_probe(struct pci_dev *, const struct pci_device_id *);
88static void __devexit igb_remove(struct pci_dev *pdev);
89static int igb_sw_init(struct igb_adapter *);
90static int igb_open(struct net_device *);
91static int igb_close(struct net_device *);
92static void igb_configure_tx(struct igb_adapter *);
93static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
94static void igb_clean_all_tx_rings(struct igb_adapter *);
95static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
96static void igb_clean_tx_ring(struct igb_ring *);
97static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 98static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
99static void igb_update_phy_info(unsigned long);
100static void igb_watchdog(unsigned long);
101static void igb_watchdog_task(struct work_struct *);
b1a436c3 102static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
9d5c8243
AK
103static struct net_device_stats *igb_get_stats(struct net_device *);
104static int igb_change_mtu(struct net_device *, int);
105static int igb_set_mac(struct net_device *, void *);
68d480c4 106static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
107static irqreturn_t igb_intr(int irq, void *);
108static irqreturn_t igb_intr_msi(int irq, void *);
109static irqreturn_t igb_msix_other(int irq, void *);
047e0030 110static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 111#ifdef CONFIG_IGB_DCA
047e0030 112static void igb_update_dca(struct igb_q_vector *);
fe4506b6 113static void igb_setup_dca(struct igb_adapter *);
421e02f0 114#endif /* CONFIG_IGB_DCA */
047e0030 115static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 116static int igb_poll(struct napi_struct *, int);
047e0030 117static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
9d5c8243
AK
118static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119static void igb_tx_timeout(struct net_device *);
120static void igb_reset_task(struct work_struct *);
121static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122static void igb_vlan_rx_add_vid(struct net_device *, u16);
123static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124static void igb_restore_vlan(struct igb_adapter *);
26ad9178 125static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
126static void igb_ping_all_vfs(struct igb_adapter *);
127static void igb_msg_task(struct igb_adapter *);
4ae196df 128static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 129static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 130static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
9d5c8243 131
9d5c8243 132#ifdef CONFIG_PM
3fe7c4c9 133static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
134static int igb_resume(struct pci_dev *);
135#endif
136static void igb_shutdown(struct pci_dev *);
421e02f0 137#ifdef CONFIG_IGB_DCA
fe4506b6
JC
138static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
139static struct notifier_block dca_notifier = {
140 .notifier_call = igb_notify_dca,
141 .next = NULL,
142 .priority = 0
143};
144#endif
9d5c8243
AK
145#ifdef CONFIG_NET_POLL_CONTROLLER
146/* for netdump / net console */
147static void igb_netpoll(struct net_device *);
148#endif
37680117 149#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
150static unsigned int max_vfs = 0;
151module_param(max_vfs, uint, 0);
152MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
153 "per physical function");
154#endif /* CONFIG_PCI_IOV */
155
9d5c8243
AK
156static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
157 pci_channel_state_t);
158static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
159static void igb_io_resume(struct pci_dev *);
160
161static struct pci_error_handlers igb_err_handler = {
162 .error_detected = igb_io_error_detected,
163 .slot_reset = igb_io_slot_reset,
164 .resume = igb_io_resume,
165};
166
167
168static struct pci_driver igb_driver = {
169 .name = igb_driver_name,
170 .id_table = igb_pci_tbl,
171 .probe = igb_probe,
172 .remove = __devexit_p(igb_remove),
173#ifdef CONFIG_PM
174 /* Power Managment Hooks */
175 .suspend = igb_suspend,
176 .resume = igb_resume,
177#endif
178 .shutdown = igb_shutdown,
179 .err_handler = &igb_err_handler
180};
181
182MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
183MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
184MODULE_LICENSE("GPL");
185MODULE_VERSION(DRV_VERSION);
186
38c845c7
PO
187/**
188 * igb_read_clock - read raw cycle counter (to be used by time counter)
189 */
190static cycle_t igb_read_clock(const struct cyclecounter *tc)
191{
192 struct igb_adapter *adapter =
193 container_of(tc, struct igb_adapter, cycles);
194 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
195 u64 stamp = 0;
196 int shift = 0;
38c845c7 197
c5b9bd5e
AD
198 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
199 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
200 return stamp;
201}
202
9d5c8243
AK
203#ifdef DEBUG
204/**
205 * igb_get_hw_dev_name - return device name string
206 * used by hardware layer to print debugging information
207 **/
208char *igb_get_hw_dev_name(struct e1000_hw *hw)
209{
210 struct igb_adapter *adapter = hw->back;
211 return adapter->netdev->name;
212}
38c845c7
PO
213
214/**
215 * igb_get_time_str - format current NIC and system time as string
216 */
217static char *igb_get_time_str(struct igb_adapter *adapter,
218 char buffer[160])
219{
220 cycle_t hw = adapter->cycles.read(&adapter->cycles);
221 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
222 struct timespec sys;
223 struct timespec delta;
224 getnstimeofday(&sys);
225
226 delta = timespec_sub(nic, sys);
227
228 sprintf(buffer,
33af6bcc
PO
229 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
230 hw,
38c845c7
PO
231 (long)nic.tv_sec, nic.tv_nsec,
232 (long)sys.tv_sec, sys.tv_nsec,
233 (long)delta.tv_sec, delta.tv_nsec);
234
235 return buffer;
236}
9d5c8243
AK
237#endif
238
239/**
240 * igb_init_module - Driver Registration Routine
241 *
242 * igb_init_module is the first routine called when the driver is
243 * loaded. All it does is register with the PCI subsystem.
244 **/
245static int __init igb_init_module(void)
246{
247 int ret;
248 printk(KERN_INFO "%s - version %s\n",
249 igb_driver_string, igb_driver_version);
250
251 printk(KERN_INFO "%s\n", igb_copyright);
252
421e02f0 253#ifdef CONFIG_IGB_DCA
fe4506b6
JC
254 dca_register_notify(&dca_notifier);
255#endif
bbd98fe4 256 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
257 return ret;
258}
259
260module_init(igb_init_module);
261
262/**
263 * igb_exit_module - Driver Exit Cleanup Routine
264 *
265 * igb_exit_module is called just before the driver is removed
266 * from memory.
267 **/
268static void __exit igb_exit_module(void)
269{
421e02f0 270#ifdef CONFIG_IGB_DCA
fe4506b6
JC
271 dca_unregister_notify(&dca_notifier);
272#endif
9d5c8243
AK
273 pci_unregister_driver(&igb_driver);
274}
275
276module_exit(igb_exit_module);
277
26bc19ec
AD
278#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
279/**
280 * igb_cache_ring_register - Descriptor ring to register mapping
281 * @adapter: board private structure to initialize
282 *
283 * Once we know the feature-set enabled for the device, we'll cache
284 * the register offset the descriptor ring is assigned to.
285 **/
286static void igb_cache_ring_register(struct igb_adapter *adapter)
287{
ee1b9f06 288 int i = 0, j = 0;
047e0030 289 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
290
291 switch (adapter->hw.mac.type) {
292 case e1000_82576:
293 /* The queues are allocated for virtualization such that VF 0
294 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
295 * In order to avoid collision we start at the first free queue
296 * and continue consuming queues in the same sequence
297 */
ee1b9f06
AD
298 if (adapter->vfs_allocated_count) {
299 for (; i < adapter->num_rx_queues; i++)
300 adapter->rx_ring[i].reg_idx = rbase_offset +
301 Q_IDX_82576(i);
302 for (; j < adapter->num_tx_queues; j++)
303 adapter->tx_ring[j].reg_idx = rbase_offset +
304 Q_IDX_82576(j);
305 }
26bc19ec
AD
306 case e1000_82575:
307 default:
ee1b9f06
AD
308 for (; i < adapter->num_rx_queues; i++)
309 adapter->rx_ring[i].reg_idx = rbase_offset + i;
310 for (; j < adapter->num_tx_queues; j++)
311 adapter->tx_ring[j].reg_idx = rbase_offset + j;
26bc19ec
AD
312 break;
313 }
314}
315
047e0030
AD
316static void igb_free_queues(struct igb_adapter *adapter)
317{
318 kfree(adapter->tx_ring);
319 kfree(adapter->rx_ring);
320
321 adapter->tx_ring = NULL;
322 adapter->rx_ring = NULL;
323
324 adapter->num_rx_queues = 0;
325 adapter->num_tx_queues = 0;
326}
327
9d5c8243
AK
328/**
329 * igb_alloc_queues - Allocate memory for all rings
330 * @adapter: board private structure to initialize
331 *
332 * We allocate one ring per queue at run-time since we don't know the
333 * number of queues at compile-time.
334 **/
335static int igb_alloc_queues(struct igb_adapter *adapter)
336{
337 int i;
338
339 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
340 sizeof(struct igb_ring), GFP_KERNEL);
341 if (!adapter->tx_ring)
047e0030 342 goto err;
9d5c8243
AK
343
344 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
345 sizeof(struct igb_ring), GFP_KERNEL);
047e0030
AD
346 if (!adapter->rx_ring)
347 goto err;
6eb5a7f1 348
661086df
PWJ
349 for (i = 0; i < adapter->num_tx_queues; i++) {
350 struct igb_ring *ring = &(adapter->tx_ring[i]);
68fd9910 351 ring->count = adapter->tx_ring_count;
661086df 352 ring->queue_index = i;
80785298 353 ring->pdev = adapter->pdev;
e694e964 354 ring->netdev = adapter->netdev;
85ad76b2
AD
355 /* For 82575, context index must be unique per ring. */
356 if (adapter->hw.mac.type == e1000_82575)
357 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
661086df 358 }
85ad76b2 359
9d5c8243
AK
360 for (i = 0; i < adapter->num_rx_queues; i++) {
361 struct igb_ring *ring = &(adapter->rx_ring[i]);
68fd9910 362 ring->count = adapter->rx_ring_count;
844290e5 363 ring->queue_index = i;
80785298 364 ring->pdev = adapter->pdev;
e694e964 365 ring->netdev = adapter->netdev;
4c844851 366 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
85ad76b2
AD
367 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
368 /* set flag indicating ring supports SCTP checksum offload */
369 if (adapter->hw.mac.type >= e1000_82576)
370 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
9d5c8243 371 }
26bc19ec
AD
372
373 igb_cache_ring_register(adapter);
9d5c8243 374
047e0030 375 return 0;
a88f10ec 376
047e0030
AD
377err:
378 igb_free_queues(adapter);
d1a8c9e1 379
047e0030 380 return -ENOMEM;
a88f10ec
AD
381}
382
9d5c8243 383#define IGB_N0_QUEUE -1
047e0030 384static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
385{
386 u32 msixbm = 0;
047e0030 387 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 388 struct e1000_hw *hw = &adapter->hw;
2d064c06 389 u32 ivar, index;
047e0030
AD
390 int rx_queue = IGB_N0_QUEUE;
391 int tx_queue = IGB_N0_QUEUE;
392
393 if (q_vector->rx_ring)
394 rx_queue = q_vector->rx_ring->reg_idx;
395 if (q_vector->tx_ring)
396 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
397
398 switch (hw->mac.type) {
399 case e1000_82575:
9d5c8243
AK
400 /* The 82575 assigns vectors using a bitmask, which matches the
401 bitmask for the EICR/EIMS/EIMC registers. To assign one
402 or more queues to a vector, we write the appropriate bits
403 into the MSIXBM register for that vector. */
047e0030 404 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 405 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 406 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 407 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
9d5c8243 408 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 409 q_vector->eims_value = msixbm;
2d064c06
AD
410 break;
411 case e1000_82576:
26bc19ec 412 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
413 Each queue has a single entry in the table to which we write
414 a vector number along with a "valid" bit. Sadly, the layout
415 of the table is somewhat counterintuitive. */
416 if (rx_queue > IGB_N0_QUEUE) {
047e0030 417 index = (rx_queue & 0x7);
2d064c06 418 ivar = array_rd32(E1000_IVAR0, index);
047e0030 419 if (rx_queue < 8) {
26bc19ec
AD
420 /* vector goes into low byte of register */
421 ivar = ivar & 0xFFFFFF00;
422 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
423 } else {
424 /* vector goes into third byte of register */
425 ivar = ivar & 0xFF00FFFF;
426 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 427 }
2d064c06
AD
428 array_wr32(E1000_IVAR0, index, ivar);
429 }
430 if (tx_queue > IGB_N0_QUEUE) {
047e0030 431 index = (tx_queue & 0x7);
2d064c06 432 ivar = array_rd32(E1000_IVAR0, index);
047e0030 433 if (tx_queue < 8) {
26bc19ec
AD
434 /* vector goes into second byte of register */
435 ivar = ivar & 0xFFFF00FF;
436 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
437 } else {
438 /* vector goes into high byte of register */
439 ivar = ivar & 0x00FFFFFF;
440 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 441 }
2d064c06
AD
442 array_wr32(E1000_IVAR0, index, ivar);
443 }
047e0030 444 q_vector->eims_value = 1 << msix_vector;
2d064c06
AD
445 break;
446 default:
447 BUG();
448 break;
449 }
9d5c8243
AK
450}
451
452/**
453 * igb_configure_msix - Configure MSI-X hardware
454 *
455 * igb_configure_msix sets up the hardware to properly
456 * generate MSI-X interrupts.
457 **/
458static void igb_configure_msix(struct igb_adapter *adapter)
459{
460 u32 tmp;
461 int i, vector = 0;
462 struct e1000_hw *hw = &adapter->hw;
463
464 adapter->eims_enable_mask = 0;
9d5c8243
AK
465
466 /* set vector for other causes, i.e. link changes */
2d064c06
AD
467 switch (hw->mac.type) {
468 case e1000_82575:
9d5c8243
AK
469 tmp = rd32(E1000_CTRL_EXT);
470 /* enable MSI-X PBA support*/
471 tmp |= E1000_CTRL_EXT_PBA_CLR;
472
473 /* Auto-Mask interrupts upon ICR read. */
474 tmp |= E1000_CTRL_EXT_EIAME;
475 tmp |= E1000_CTRL_EXT_IRCA;
476
477 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
478
479 /* enable msix_other interrupt */
480 array_wr32(E1000_MSIXBM(0), vector++,
481 E1000_EIMS_OTHER);
844290e5 482 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 483
2d064c06
AD
484 break;
485
486 case e1000_82576:
047e0030
AD
487 /* Turn on MSI-X capability first, or our settings
488 * won't stick. And it will take days to debug. */
489 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
490 E1000_GPIE_PBA | E1000_GPIE_EIAME |
491 E1000_GPIE_NSICR);
492
493 /* enable msix_other interrupt */
494 adapter->eims_other = 1 << vector;
2d064c06 495 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 496
047e0030 497 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
498 break;
499 default:
500 /* do nothing, since nothing else supports MSI-X */
501 break;
502 } /* switch (hw->mac.type) */
047e0030
AD
503
504 adapter->eims_enable_mask |= adapter->eims_other;
505
506 for (i = 0; i < adapter->num_q_vectors; i++) {
507 struct igb_q_vector *q_vector = adapter->q_vector[i];
508 igb_assign_vector(q_vector, vector++);
509 adapter->eims_enable_mask |= q_vector->eims_value;
510 }
511
9d5c8243
AK
512 wrfl();
513}
514
515/**
516 * igb_request_msix - Initialize MSI-X interrupts
517 *
518 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
519 * kernel.
520 **/
521static int igb_request_msix(struct igb_adapter *adapter)
522{
523 struct net_device *netdev = adapter->netdev;
047e0030 524 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
525 int i, err = 0, vector = 0;
526
047e0030
AD
527 err = request_irq(adapter->msix_entries[vector].vector,
528 &igb_msix_other, 0, netdev->name, adapter);
529 if (err)
530 goto out;
531 vector++;
532
533 for (i = 0; i < adapter->num_q_vectors; i++) {
534 struct igb_q_vector *q_vector = adapter->q_vector[i];
535
536 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
537
538 if (q_vector->rx_ring && q_vector->tx_ring)
539 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
540 q_vector->rx_ring->queue_index);
541 else if (q_vector->tx_ring)
542 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
543 q_vector->tx_ring->queue_index);
544 else if (q_vector->rx_ring)
545 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
546 q_vector->rx_ring->queue_index);
9d5c8243 547 else
047e0030
AD
548 sprintf(q_vector->name, "%s-unused", netdev->name);
549
9d5c8243 550 err = request_irq(adapter->msix_entries[vector].vector,
047e0030
AD
551 &igb_msix_ring, 0, q_vector->name,
552 q_vector);
9d5c8243
AK
553 if (err)
554 goto out;
9d5c8243
AK
555 vector++;
556 }
557
9d5c8243
AK
558 igb_configure_msix(adapter);
559 return 0;
560out:
561 return err;
562}
563
564static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
565{
566 if (adapter->msix_entries) {
567 pci_disable_msix(adapter->pdev);
568 kfree(adapter->msix_entries);
569 adapter->msix_entries = NULL;
047e0030 570 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 571 pci_disable_msi(adapter->pdev);
047e0030 572 }
9d5c8243
AK
573}
574
047e0030
AD
575/**
576 * igb_free_q_vectors - Free memory allocated for interrupt vectors
577 * @adapter: board private structure to initialize
578 *
579 * This function frees the memory allocated to the q_vectors. In addition if
580 * NAPI is enabled it will delete any references to the NAPI struct prior
581 * to freeing the q_vector.
582 **/
583static void igb_free_q_vectors(struct igb_adapter *adapter)
584{
585 int v_idx;
586
587 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
588 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
589 adapter->q_vector[v_idx] = NULL;
590 netif_napi_del(&q_vector->napi);
591 kfree(q_vector);
592 }
593 adapter->num_q_vectors = 0;
594}
595
596/**
597 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
598 *
599 * This function resets the device so that it has 0 rx queues, tx queues, and
600 * MSI-X interrupts allocated.
601 */
602static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
603{
604 igb_free_queues(adapter);
605 igb_free_q_vectors(adapter);
606 igb_reset_interrupt_capability(adapter);
607}
9d5c8243
AK
608
609/**
610 * igb_set_interrupt_capability - set MSI or MSI-X if supported
611 *
612 * Attempt to configure interrupts using the best available
613 * capabilities of the hardware and kernel.
614 **/
615static void igb_set_interrupt_capability(struct igb_adapter *adapter)
616{
617 int err;
618 int numvecs, i;
619
83b7180d 620 /* Number of supported queues. */
83b7180d
AD
621 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
622 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
623
047e0030
AD
624 /* start with one vector for every rx queue */
625 numvecs = adapter->num_rx_queues;
626
627 /* if tx handler is seperate add 1 for every tx queue */
628 numvecs += adapter->num_tx_queues;
629
630 /* store the number of vectors reserved for queues */
631 adapter->num_q_vectors = numvecs;
632
633 /* add 1 vector for link status interrupts */
634 numvecs++;
9d5c8243
AK
635 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
636 GFP_KERNEL);
637 if (!adapter->msix_entries)
638 goto msi_only;
639
640 for (i = 0; i < numvecs; i++)
641 adapter->msix_entries[i].entry = i;
642
643 err = pci_enable_msix(adapter->pdev,
644 adapter->msix_entries,
645 numvecs);
646 if (err == 0)
34a20e89 647 goto out;
9d5c8243
AK
648
649 igb_reset_interrupt_capability(adapter);
650
651 /* If we can't do MSI-X, try MSI */
652msi_only:
2a3abf6d
AD
653#ifdef CONFIG_PCI_IOV
654 /* disable SR-IOV for non MSI-X configurations */
655 if (adapter->vf_data) {
656 struct e1000_hw *hw = &adapter->hw;
657 /* disable iov and allow time for transactions to clear */
658 pci_disable_sriov(adapter->pdev);
659 msleep(500);
660
661 kfree(adapter->vf_data);
662 adapter->vf_data = NULL;
663 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
664 msleep(100);
665 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
666 }
667#endif
4fc82adf
AD
668 adapter->vfs_allocated_count = 0;
669 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 670 adapter->num_rx_queues = 1;
661086df 671 adapter->num_tx_queues = 1;
047e0030 672 adapter->num_q_vectors = 1;
9d5c8243 673 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 674 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 675out:
661086df 676 /* Notify the stack of the (possibly) reduced Tx Queue count. */
fd2ea0a7 677 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
9d5c8243
AK
678 return;
679}
680
047e0030
AD
681/**
682 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
683 * @adapter: board private structure to initialize
684 *
685 * We allocate one q_vector per queue interrupt. If allocation fails we
686 * return -ENOMEM.
687 **/
688static int igb_alloc_q_vectors(struct igb_adapter *adapter)
689{
690 struct igb_q_vector *q_vector;
691 struct e1000_hw *hw = &adapter->hw;
692 int v_idx;
693
694 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
695 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
696 if (!q_vector)
697 goto err_out;
698 q_vector->adapter = adapter;
699 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
700 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
701 q_vector->itr_val = IGB_START_ITR;
702 q_vector->set_itr = 1;
703 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
704 adapter->q_vector[v_idx] = q_vector;
705 }
706 return 0;
707
708err_out:
709 while (v_idx) {
710 v_idx--;
711 q_vector = adapter->q_vector[v_idx];
712 netif_napi_del(&q_vector->napi);
713 kfree(q_vector);
714 adapter->q_vector[v_idx] = NULL;
715 }
716 return -ENOMEM;
717}
718
719static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
720 int ring_idx, int v_idx)
721{
722 struct igb_q_vector *q_vector;
723
724 q_vector = adapter->q_vector[v_idx];
725 q_vector->rx_ring = &adapter->rx_ring[ring_idx];
726 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
727 q_vector->itr_val = adapter->rx_itr_setting;
728 if (q_vector->itr_val && q_vector->itr_val <= 3)
729 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
730}
731
732static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
733 int ring_idx, int v_idx)
734{
735 struct igb_q_vector *q_vector;
736
737 q_vector = adapter->q_vector[v_idx];
738 q_vector->tx_ring = &adapter->tx_ring[ring_idx];
739 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
740 q_vector->itr_val = adapter->tx_itr_setting;
741 if (q_vector->itr_val && q_vector->itr_val <= 3)
742 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
743}
744
745/**
746 * igb_map_ring_to_vector - maps allocated queues to vectors
747 *
748 * This function maps the recently allocated queues to vectors.
749 **/
750static int igb_map_ring_to_vector(struct igb_adapter *adapter)
751{
752 int i;
753 int v_idx = 0;
754
755 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
756 (adapter->num_q_vectors < adapter->num_tx_queues))
757 return -ENOMEM;
758
759 if (adapter->num_q_vectors >=
760 (adapter->num_rx_queues + adapter->num_tx_queues)) {
761 for (i = 0; i < adapter->num_rx_queues; i++)
762 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
763 for (i = 0; i < adapter->num_tx_queues; i++)
764 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
765 } else {
766 for (i = 0; i < adapter->num_rx_queues; i++) {
767 if (i < adapter->num_tx_queues)
768 igb_map_tx_ring_to_vector(adapter, i, v_idx);
769 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
770 }
771 for (; i < adapter->num_tx_queues; i++)
772 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
773 }
774 return 0;
775}
776
777/**
778 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
779 *
780 * This function initializes the interrupts and allocates all of the queues.
781 **/
782static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
783{
784 struct pci_dev *pdev = adapter->pdev;
785 int err;
786
787 igb_set_interrupt_capability(adapter);
788
789 err = igb_alloc_q_vectors(adapter);
790 if (err) {
791 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
792 goto err_alloc_q_vectors;
793 }
794
795 err = igb_alloc_queues(adapter);
796 if (err) {
797 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
798 goto err_alloc_queues;
799 }
800
801 err = igb_map_ring_to_vector(adapter);
802 if (err) {
803 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
804 goto err_map_queues;
805 }
806
807
808 return 0;
809err_map_queues:
810 igb_free_queues(adapter);
811err_alloc_queues:
812 igb_free_q_vectors(adapter);
813err_alloc_q_vectors:
814 igb_reset_interrupt_capability(adapter);
815 return err;
816}
817
9d5c8243
AK
818/**
819 * igb_request_irq - initialize interrupts
820 *
821 * Attempts to configure interrupts using the best available
822 * capabilities of the hardware and kernel.
823 **/
824static int igb_request_irq(struct igb_adapter *adapter)
825{
826 struct net_device *netdev = adapter->netdev;
047e0030 827 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
828 struct e1000_hw *hw = &adapter->hw;
829 int err = 0;
830
831 if (adapter->msix_entries) {
832 err = igb_request_msix(adapter);
844290e5 833 if (!err)
9d5c8243 834 goto request_done;
9d5c8243 835 /* fall back to MSI */
047e0030 836 igb_clear_interrupt_scheme(adapter);
9d5c8243 837 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 838 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
839 igb_free_all_tx_resources(adapter);
840 igb_free_all_rx_resources(adapter);
047e0030 841 adapter->num_tx_queues = 1;
9d5c8243 842 adapter->num_rx_queues = 1;
047e0030
AD
843 adapter->num_q_vectors = 1;
844 err = igb_alloc_q_vectors(adapter);
845 if (err) {
846 dev_err(&pdev->dev,
847 "Unable to allocate memory for vectors\n");
848 goto request_done;
849 }
850 err = igb_alloc_queues(adapter);
851 if (err) {
852 dev_err(&pdev->dev,
853 "Unable to allocate memory for queues\n");
854 igb_free_q_vectors(adapter);
855 goto request_done;
856 }
857 igb_setup_all_tx_resources(adapter);
858 igb_setup_all_rx_resources(adapter);
844290e5 859 } else {
2d064c06
AD
860 switch (hw->mac.type) {
861 case e1000_82575:
862 wr32(E1000_MSIXBM(0),
047e0030
AD
863 (E1000_EICR_RX_QUEUE0 |
864 E1000_EICR_TX_QUEUE0 |
865 E1000_EIMS_OTHER));
2d064c06
AD
866 break;
867 case e1000_82576:
868 wr32(E1000_IVAR0, E1000_IVAR_VALID);
869 break;
870 default:
871 break;
872 }
9d5c8243 873 }
844290e5 874
7dfc16fa 875 if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 876 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
047e0030 877 netdev->name, adapter);
9d5c8243
AK
878 if (!err)
879 goto request_done;
047e0030 880
9d5c8243
AK
881 /* fall back to legacy interrupts */
882 igb_reset_interrupt_capability(adapter);
7dfc16fa 883 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
884 }
885
886 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
047e0030 887 netdev->name, adapter);
9d5c8243 888
6cb5e577 889 if (err)
9d5c8243
AK
890 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
891 err);
9d5c8243
AK
892
893request_done:
894 return err;
895}
896
897static void igb_free_irq(struct igb_adapter *adapter)
898{
9d5c8243
AK
899 if (adapter->msix_entries) {
900 int vector = 0, i;
901
047e0030 902 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 903
047e0030
AD
904 for (i = 0; i < adapter->num_q_vectors; i++) {
905 struct igb_q_vector *q_vector = adapter->q_vector[i];
906 free_irq(adapter->msix_entries[vector++].vector,
907 q_vector);
908 }
909 } else {
910 free_irq(adapter->pdev->irq, adapter);
9d5c8243 911 }
9d5c8243
AK
912}
913
914/**
915 * igb_irq_disable - Mask off interrupt generation on the NIC
916 * @adapter: board private structure
917 **/
918static void igb_irq_disable(struct igb_adapter *adapter)
919{
920 struct e1000_hw *hw = &adapter->hw;
921
25568a53
AD
922 /*
923 * we need to be careful when disabling interrupts. The VFs are also
924 * mapped into these registers and so clearing the bits can cause
925 * issues on the VF drivers so we only need to clear what we set
926 */
9d5c8243 927 if (adapter->msix_entries) {
2dfd1212
AD
928 u32 regval = rd32(E1000_EIAM);
929 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
930 wr32(E1000_EIMC, adapter->eims_enable_mask);
931 regval = rd32(E1000_EIAC);
932 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 933 }
844290e5
PW
934
935 wr32(E1000_IAM, 0);
9d5c8243
AK
936 wr32(E1000_IMC, ~0);
937 wrfl();
938 synchronize_irq(adapter->pdev->irq);
939}
940
941/**
942 * igb_irq_enable - Enable default interrupt generation settings
943 * @adapter: board private structure
944 **/
945static void igb_irq_enable(struct igb_adapter *adapter)
946{
947 struct e1000_hw *hw = &adapter->hw;
948
949 if (adapter->msix_entries) {
25568a53 950 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
951 u32 regval = rd32(E1000_EIAC);
952 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
953 regval = rd32(E1000_EIAM);
954 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 955 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 956 if (adapter->vfs_allocated_count) {
4ae196df 957 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
958 ims |= E1000_IMS_VMMB;
959 }
960 wr32(E1000_IMS, ims);
844290e5
PW
961 } else {
962 wr32(E1000_IMS, IMS_ENABLE_MASK);
963 wr32(E1000_IAM, IMS_ENABLE_MASK);
964 }
9d5c8243
AK
965}
966
967static void igb_update_mng_vlan(struct igb_adapter *adapter)
968{
51466239 969 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
970 u16 vid = adapter->hw.mng_cookie.vlan_id;
971 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
972
973 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
974 /* add VID to filter table */
975 igb_vfta_set(hw, vid, true);
976 adapter->mng_vlan_id = vid;
977 } else {
978 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
979 }
980
981 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
982 (vid != old_vid) &&
983 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
984 /* remove VID from filter table */
985 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
986 }
987}
988
989/**
990 * igb_release_hw_control - release control of the h/w to f/w
991 * @adapter: address of board private structure
992 *
993 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
994 * For ASF and Pass Through versions of f/w this means that the
995 * driver is no longer loaded.
996 *
997 **/
998static void igb_release_hw_control(struct igb_adapter *adapter)
999{
1000 struct e1000_hw *hw = &adapter->hw;
1001 u32 ctrl_ext;
1002
1003 /* Let firmware take over control of h/w */
1004 ctrl_ext = rd32(E1000_CTRL_EXT);
1005 wr32(E1000_CTRL_EXT,
1006 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1007}
1008
1009
1010/**
1011 * igb_get_hw_control - get control of the h/w from f/w
1012 * @adapter: address of board private structure
1013 *
1014 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1015 * For ASF and Pass Through versions of f/w this means that
1016 * the driver is loaded.
1017 *
1018 **/
1019static void igb_get_hw_control(struct igb_adapter *adapter)
1020{
1021 struct e1000_hw *hw = &adapter->hw;
1022 u32 ctrl_ext;
1023
1024 /* Let firmware know the driver has taken over */
1025 ctrl_ext = rd32(E1000_CTRL_EXT);
1026 wr32(E1000_CTRL_EXT,
1027 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1028}
1029
9d5c8243
AK
1030/**
1031 * igb_configure - configure the hardware for RX and TX
1032 * @adapter: private board structure
1033 **/
1034static void igb_configure(struct igb_adapter *adapter)
1035{
1036 struct net_device *netdev = adapter->netdev;
1037 int i;
1038
1039 igb_get_hw_control(adapter);
ff41f8dc 1040 igb_set_rx_mode(netdev);
9d5c8243
AK
1041
1042 igb_restore_vlan(adapter);
9d5c8243 1043
85b430b4 1044 igb_setup_tctl(adapter);
06cf2666 1045 igb_setup_mrqc(adapter);
9d5c8243 1046 igb_setup_rctl(adapter);
85b430b4
AD
1047
1048 igb_configure_tx(adapter);
9d5c8243 1049 igb_configure_rx(adapter);
662d7205
AD
1050
1051 igb_rx_fifo_flush_82575(&adapter->hw);
1052
c493ea45 1053 /* call igb_desc_unused which always leaves
9d5c8243
AK
1054 * at least 1 descriptor unused to make sure
1055 * next_to_use != next_to_clean */
1056 for (i = 0; i < adapter->num_rx_queues; i++) {
1057 struct igb_ring *ring = &adapter->rx_ring[i];
c493ea45 1058 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243
AK
1059 }
1060
1061
1062 adapter->tx_queue_len = netdev->tx_queue_len;
1063}
1064
1065
1066/**
1067 * igb_up - Open the interface and prepare it to handle traffic
1068 * @adapter: board private structure
1069 **/
1070
1071int igb_up(struct igb_adapter *adapter)
1072{
1073 struct e1000_hw *hw = &adapter->hw;
1074 int i;
1075
1076 /* hardware has been reset, we need to reload some things */
1077 igb_configure(adapter);
1078
1079 clear_bit(__IGB_DOWN, &adapter->state);
1080
047e0030
AD
1081 for (i = 0; i < adapter->num_q_vectors; i++) {
1082 struct igb_q_vector *q_vector = adapter->q_vector[i];
1083 napi_enable(&q_vector->napi);
1084 }
844290e5 1085 if (adapter->msix_entries)
9d5c8243 1086 igb_configure_msix(adapter);
9d5c8243
AK
1087
1088 /* Clear any pending interrupts. */
1089 rd32(E1000_ICR);
1090 igb_irq_enable(adapter);
1091
d4960307
AD
1092 /* notify VFs that reset has been completed */
1093 if (adapter->vfs_allocated_count) {
1094 u32 reg_data = rd32(E1000_CTRL_EXT);
1095 reg_data |= E1000_CTRL_EXT_PFRSTD;
1096 wr32(E1000_CTRL_EXT, reg_data);
1097 }
1098
4cb9be7a
JB
1099 netif_tx_start_all_queues(adapter->netdev);
1100
25568a53
AD
1101 /* start the watchdog. */
1102 hw->mac.get_link_status = 1;
1103 schedule_work(&adapter->watchdog_task);
1104
9d5c8243
AK
1105 return 0;
1106}
1107
1108void igb_down(struct igb_adapter *adapter)
1109{
9d5c8243 1110 struct net_device *netdev = adapter->netdev;
330a6d6a 1111 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1112 u32 tctl, rctl;
1113 int i;
1114
1115 /* signal that we're down so the interrupt handler does not
1116 * reschedule our watchdog timer */
1117 set_bit(__IGB_DOWN, &adapter->state);
1118
1119 /* disable receives in the hardware */
1120 rctl = rd32(E1000_RCTL);
1121 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1122 /* flush and sleep below */
1123
fd2ea0a7 1124 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1125
1126 /* disable transmits in the hardware */
1127 tctl = rd32(E1000_TCTL);
1128 tctl &= ~E1000_TCTL_EN;
1129 wr32(E1000_TCTL, tctl);
1130 /* flush both disables and wait for them to finish */
1131 wrfl();
1132 msleep(10);
1133
047e0030
AD
1134 for (i = 0; i < adapter->num_q_vectors; i++) {
1135 struct igb_q_vector *q_vector = adapter->q_vector[i];
1136 napi_disable(&q_vector->napi);
1137 }
9d5c8243 1138
9d5c8243
AK
1139 igb_irq_disable(adapter);
1140
1141 del_timer_sync(&adapter->watchdog_timer);
1142 del_timer_sync(&adapter->phy_info_timer);
1143
1144 netdev->tx_queue_len = adapter->tx_queue_len;
1145 netif_carrier_off(netdev);
04fe6358
AD
1146
1147 /* record the stats before reset*/
1148 igb_update_stats(adapter);
1149
9d5c8243
AK
1150 adapter->link_speed = 0;
1151 adapter->link_duplex = 0;
1152
3023682e
JK
1153 if (!pci_channel_offline(adapter->pdev))
1154 igb_reset(adapter);
9d5c8243
AK
1155 igb_clean_all_tx_rings(adapter);
1156 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1157#ifdef CONFIG_IGB_DCA
1158
1159 /* since we reset the hardware DCA settings were cleared */
1160 igb_setup_dca(adapter);
1161#endif
9d5c8243
AK
1162}
1163
1164void igb_reinit_locked(struct igb_adapter *adapter)
1165{
1166 WARN_ON(in_interrupt());
1167 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1168 msleep(1);
1169 igb_down(adapter);
1170 igb_up(adapter);
1171 clear_bit(__IGB_RESETTING, &adapter->state);
1172}
1173
1174void igb_reset(struct igb_adapter *adapter)
1175{
090b1795 1176 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1177 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1178 struct e1000_mac_info *mac = &hw->mac;
1179 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1180 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1181 u16 hwm;
1182
1183 /* Repartition Pba for greater than 9k mtu
1184 * To take effect CTRL.RST is required.
1185 */
fa4dfae0
AD
1186 switch (mac->type) {
1187 case e1000_82576:
d249be54
AD
1188 pba = rd32(E1000_RXPBS);
1189 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1190 break;
1191 case e1000_82575:
1192 default:
1193 pba = E1000_PBA_34K;
1194 break;
2d064c06 1195 }
9d5c8243 1196
2d064c06
AD
1197 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1198 (mac->type < e1000_82576)) {
9d5c8243
AK
1199 /* adjust PBA for jumbo frames */
1200 wr32(E1000_PBA, pba);
1201
1202 /* To maintain wire speed transmits, the Tx FIFO should be
1203 * large enough to accommodate two full transmit packets,
1204 * rounded up to the next 1KB and expressed in KB. Likewise,
1205 * the Rx FIFO should be large enough to accommodate at least
1206 * one full receive packet and is similarly rounded up and
1207 * expressed in KB. */
1208 pba = rd32(E1000_PBA);
1209 /* upper 16 bits has Tx packet buffer allocation size in KB */
1210 tx_space = pba >> 16;
1211 /* lower 16 bits has Rx packet buffer allocation size in KB */
1212 pba &= 0xffff;
1213 /* the tx fifo also stores 16 bytes of information about the tx
1214 * but don't include ethernet FCS because hardware appends it */
1215 min_tx_space = (adapter->max_frame_size +
85e8d004 1216 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1217 ETH_FCS_LEN) * 2;
1218 min_tx_space = ALIGN(min_tx_space, 1024);
1219 min_tx_space >>= 10;
1220 /* software strips receive CRC, so leave room for it */
1221 min_rx_space = adapter->max_frame_size;
1222 min_rx_space = ALIGN(min_rx_space, 1024);
1223 min_rx_space >>= 10;
1224
1225 /* If current Tx allocation is less than the min Tx FIFO size,
1226 * and the min Tx FIFO size is less than the current Rx FIFO
1227 * allocation, take space away from current Rx allocation */
1228 if (tx_space < min_tx_space &&
1229 ((min_tx_space - tx_space) < pba)) {
1230 pba = pba - (min_tx_space - tx_space);
1231
1232 /* if short on rx space, rx wins and must trump tx
1233 * adjustment */
1234 if (pba < min_rx_space)
1235 pba = min_rx_space;
1236 }
2d064c06 1237 wr32(E1000_PBA, pba);
9d5c8243 1238 }
9d5c8243
AK
1239
1240 /* flow control settings */
1241 /* The high water mark must be low enough to fit one full frame
1242 * (or the size used for early receive) above it in the Rx FIFO.
1243 * Set it to the lower of:
1244 * - 90% of the Rx FIFO size, or
1245 * - the full Rx FIFO size minus one full frame */
1246 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1247 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1248
2d064c06
AD
1249 if (mac->type < e1000_82576) {
1250 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1251 fc->low_water = fc->high_water - 8;
1252 } else {
1253 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1254 fc->low_water = fc->high_water - 16;
1255 }
9d5c8243
AK
1256 fc->pause_time = 0xFFFF;
1257 fc->send_xon = 1;
0cce119a 1258 fc->current_mode = fc->requested_mode;
9d5c8243 1259
4ae196df
AD
1260 /* disable receive for all VFs and wait one second */
1261 if (adapter->vfs_allocated_count) {
1262 int i;
1263 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
f2ca0dbe 1264 adapter->vf_data[i].flags = 0;
4ae196df
AD
1265
1266 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1267 igb_ping_all_vfs(adapter);
4ae196df
AD
1268
1269 /* disable transmits and receives */
1270 wr32(E1000_VFRE, 0);
1271 wr32(E1000_VFTE, 0);
1272 }
1273
9d5c8243 1274 /* Allow time for pending master requests to run */
330a6d6a 1275 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1276 wr32(E1000_WUC, 0);
1277
330a6d6a 1278 if (hw->mac.ops.init_hw(hw))
090b1795 1279 dev_err(&pdev->dev, "Hardware Error\n");
9d5c8243
AK
1280
1281 igb_update_mng_vlan(adapter);
1282
1283 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1284 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1285
330a6d6a
AD
1286 igb_reset_adaptive(hw);
1287 igb_get_phy_info(hw);
9d5c8243
AK
1288}
1289
2e5c6922
SH
1290static const struct net_device_ops igb_netdev_ops = {
1291 .ndo_open = igb_open,
1292 .ndo_stop = igb_close,
00829823 1293 .ndo_start_xmit = igb_xmit_frame_adv,
2e5c6922 1294 .ndo_get_stats = igb_get_stats,
ff41f8dc
AD
1295 .ndo_set_rx_mode = igb_set_rx_mode,
1296 .ndo_set_multicast_list = igb_set_rx_mode,
2e5c6922
SH
1297 .ndo_set_mac_address = igb_set_mac,
1298 .ndo_change_mtu = igb_change_mtu,
1299 .ndo_do_ioctl = igb_ioctl,
1300 .ndo_tx_timeout = igb_tx_timeout,
1301 .ndo_validate_addr = eth_validate_addr,
1302 .ndo_vlan_rx_register = igb_vlan_rx_register,
1303 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1304 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1305#ifdef CONFIG_NET_POLL_CONTROLLER
1306 .ndo_poll_controller = igb_netpoll,
1307#endif
1308};
1309
9d5c8243
AK
1310/**
1311 * igb_probe - Device Initialization Routine
1312 * @pdev: PCI device information struct
1313 * @ent: entry in igb_pci_tbl
1314 *
1315 * Returns 0 on success, negative on failure
1316 *
1317 * igb_probe initializes an adapter identified by a pci_dev structure.
1318 * The OS initialization, configuring of the adapter private structure,
1319 * and a hardware reset occur.
1320 **/
1321static int __devinit igb_probe(struct pci_dev *pdev,
1322 const struct pci_device_id *ent)
1323{
1324 struct net_device *netdev;
1325 struct igb_adapter *adapter;
1326 struct e1000_hw *hw;
4337e993
AD
1327 u16 eeprom_data = 0;
1328 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1329 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1330 unsigned long mmio_start, mmio_len;
2d6a5e95 1331 int err, pci_using_dac;
9d5c8243
AK
1332 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1333 u32 part_num;
1334
aed5dec3 1335 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1336 if (err)
1337 return err;
1338
1339 pci_using_dac = 0;
6a35528a 1340 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
9d5c8243 1341 if (!err) {
6a35528a 1342 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
9d5c8243
AK
1343 if (!err)
1344 pci_using_dac = 1;
1345 } else {
284901a9 1346 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
9d5c8243 1347 if (err) {
284901a9 1348 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
9d5c8243
AK
1349 if (err) {
1350 dev_err(&pdev->dev, "No usable DMA "
1351 "configuration, aborting\n");
1352 goto err_dma;
1353 }
1354 }
1355 }
1356
aed5dec3
AD
1357 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1358 IORESOURCE_MEM),
1359 igb_driver_name);
9d5c8243
AK
1360 if (err)
1361 goto err_pci_reg;
1362
19d5afd4 1363 pci_enable_pcie_error_reporting(pdev);
40a914fa 1364
9d5c8243 1365 pci_set_master(pdev);
c682fc23 1366 pci_save_state(pdev);
9d5c8243
AK
1367
1368 err = -ENOMEM;
1bfaf07b
AD
1369 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1370 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1371 if (!netdev)
1372 goto err_alloc_etherdev;
1373
1374 SET_NETDEV_DEV(netdev, &pdev->dev);
1375
1376 pci_set_drvdata(pdev, netdev);
1377 adapter = netdev_priv(netdev);
1378 adapter->netdev = netdev;
1379 adapter->pdev = pdev;
1380 hw = &adapter->hw;
1381 hw->back = adapter;
1382 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1383
1384 mmio_start = pci_resource_start(pdev, 0);
1385 mmio_len = pci_resource_len(pdev, 0);
1386
1387 err = -EIO;
28b0759c
AD
1388 hw->hw_addr = ioremap(mmio_start, mmio_len);
1389 if (!hw->hw_addr)
9d5c8243
AK
1390 goto err_ioremap;
1391
2e5c6922 1392 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1393 igb_set_ethtool_ops(netdev);
9d5c8243 1394 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1395
1396 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1397
1398 netdev->mem_start = mmio_start;
1399 netdev->mem_end = mmio_start + mmio_len;
1400
9d5c8243
AK
1401 /* PCI config space info */
1402 hw->vendor_id = pdev->vendor;
1403 hw->device_id = pdev->device;
1404 hw->revision_id = pdev->revision;
1405 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1406 hw->subsystem_device_id = pdev->subsystem_device;
1407
9d5c8243
AK
1408 /* Copy the default MAC, PHY and NVM function pointers */
1409 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1410 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1411 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1412 /* Initialize skew-specific constants */
1413 err = ei->get_invariants(hw);
1414 if (err)
450c87c8 1415 goto err_sw_init;
9d5c8243 1416
450c87c8 1417 /* setup the private structure */
9d5c8243
AK
1418 err = igb_sw_init(adapter);
1419 if (err)
1420 goto err_sw_init;
1421
1422 igb_get_bus_info_pcie(hw);
1423
1424 hw->phy.autoneg_wait_to_complete = false;
1425 hw->mac.adaptive_ifs = true;
1426
1427 /* Copper options */
1428 if (hw->phy.media_type == e1000_media_type_copper) {
1429 hw->phy.mdix = AUTO_ALL_MODES;
1430 hw->phy.disable_polarity_correction = false;
1431 hw->phy.ms_type = e1000_ms_hw_default;
1432 }
1433
1434 if (igb_check_reset_block(hw))
1435 dev_info(&pdev->dev,
1436 "PHY reset is blocked due to SOL/IDER session.\n");
1437
1438 netdev->features = NETIF_F_SG |
7d8eb29e 1439 NETIF_F_IP_CSUM |
9d5c8243
AK
1440 NETIF_F_HW_VLAN_TX |
1441 NETIF_F_HW_VLAN_RX |
1442 NETIF_F_HW_VLAN_FILTER;
1443
7d8eb29e 1444 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1445 netdev->features |= NETIF_F_TSO;
9d5c8243 1446 netdev->features |= NETIF_F_TSO6;
48f29ffc 1447
5c0999b7 1448 netdev->features |= NETIF_F_GRO;
d3352520 1449
48f29ffc
JK
1450 netdev->vlan_features |= NETIF_F_TSO;
1451 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1452 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1453 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1454 netdev->vlan_features |= NETIF_F_SG;
1455
9d5c8243
AK
1456 if (pci_using_dac)
1457 netdev->features |= NETIF_F_HIGHDMA;
1458
5b043fb0 1459 if (hw->mac.type >= e1000_82576)
b9473560
JB
1460 netdev->features |= NETIF_F_SCTP_CSUM;
1461
330a6d6a 1462 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1463
1464 /* before reading the NVM, reset the controller to put the device in a
1465 * known good starting state */
1466 hw->mac.ops.reset_hw(hw);
1467
1468 /* make sure the NVM is good */
1469 if (igb_validate_nvm_checksum(hw) < 0) {
1470 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1471 err = -EIO;
1472 goto err_eeprom;
1473 }
1474
1475 /* copy the MAC address out of the NVM */
1476 if (hw->mac.ops.read_mac_addr(hw))
1477 dev_err(&pdev->dev, "NVM Read Error\n");
1478
1479 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1480 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1481
1482 if (!is_valid_ether_addr(netdev->perm_addr)) {
1483 dev_err(&pdev->dev, "Invalid MAC Address\n");
1484 err = -EIO;
1485 goto err_eeprom;
1486 }
1487
0e340485
AD
1488 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1489 (unsigned long) adapter);
1490 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1491 (unsigned long) adapter);
9d5c8243
AK
1492
1493 INIT_WORK(&adapter->reset_task, igb_reset_task);
1494 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1495
450c87c8 1496 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1497 adapter->fc_autoneg = true;
1498 hw->mac.autoneg = true;
1499 hw->phy.autoneg_advertised = 0x2f;
1500
0cce119a
AD
1501 hw->fc.requested_mode = e1000_fc_default;
1502 hw->fc.current_mode = e1000_fc_default;
9d5c8243 1503
9d5c8243
AK
1504 igb_validate_mdi_setting(hw);
1505
9d5c8243
AK
1506 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1507 * enable the ACPI Magic Packet filter
1508 */
1509
a2cf8b6c 1510 if (hw->bus.func == 0)
312c75ae 1511 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
a2cf8b6c
AD
1512 else if (hw->bus.func == 1)
1513 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1514
1515 if (eeprom_data & eeprom_apme_mask)
1516 adapter->eeprom_wol |= E1000_WUFC_MAG;
1517
1518 /* now that we have the eeprom settings, apply the special cases where
1519 * the eeprom may be wrong or the board simply won't support wake on
1520 * lan on a particular port */
1521 switch (pdev->device) {
1522 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1523 adapter->eeprom_wol = 0;
1524 break;
1525 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
1526 case E1000_DEV_ID_82576_FIBER:
1527 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
1528 /* Wake events only supported on port A for dual fiber
1529 * regardless of eeprom setting */
1530 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1531 adapter->eeprom_wol = 0;
1532 break;
c8ea5ea9
AD
1533 case E1000_DEV_ID_82576_QUAD_COPPER:
1534 /* if quad port adapter, disable WoL on all but port A */
1535 if (global_quad_port_a != 0)
1536 adapter->eeprom_wol = 0;
1537 else
1538 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1539 /* Reset for multiple quad port adapters */
1540 if (++global_quad_port_a == 4)
1541 global_quad_port_a = 0;
1542 break;
9d5c8243
AK
1543 }
1544
1545 /* initialize the wol settings based on the eeprom settings */
1546 adapter->wol = adapter->eeprom_wol;
e1b86d84 1547 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
1548
1549 /* reset the hardware with the new settings */
1550 igb_reset(adapter);
1551
1552 /* let the f/w know that the h/w is now under the control of the
1553 * driver. */
1554 igb_get_hw_control(adapter);
1555
9d5c8243
AK
1556 strcpy(netdev->name, "eth%d");
1557 err = register_netdev(netdev);
1558 if (err)
1559 goto err_register;
1560
b168dfc5
JB
1561 /* carrier off reporting is important to ethtool even BEFORE open */
1562 netif_carrier_off(netdev);
1563
421e02f0 1564#ifdef CONFIG_IGB_DCA
bbd98fe4 1565 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 1566 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 1567 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
1568 igb_setup_dca(adapter);
1569 }
fe4506b6 1570
38c845c7 1571#endif
38c845c7 1572
c5b9bd5e
AD
1573 switch (hw->mac.type) {
1574 case e1000_82576:
1575 /*
1576 * Initialize hardware timer: we keep it running just in case
1577 * that some program needs it later on.
1578 */
1579 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1580 adapter->cycles.read = igb_read_clock;
1581 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1582 adapter->cycles.mult = 1;
1583 /**
1584 * Scale the NIC clock cycle by a large factor so that
1585 * relatively small clock corrections can be added or
1586 * substracted at each clock tick. The drawbacks of a large
1587 * factor are a) that the clock register overflows more quickly
1588 * (not such a big deal) and b) that the increment per tick has
1589 * to fit into 24 bits. As a result we need to use a shift of
1590 * 19 so we can fit a value of 16 into the TIMINCA register.
1591 */
1592 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
1593 wr32(E1000_TIMINCA,
1594 (1 << E1000_TIMINCA_16NS_SHIFT) |
1595 (16 << IGB_82576_TSYNC_SHIFT));
1596
1597 /* Set registers so that rollover occurs soon to test this. */
1598 wr32(E1000_SYSTIML, 0x00000000);
1599 wr32(E1000_SYSTIMH, 0xFF800000);
1600 wrfl();
1601
1602 timecounter_init(&adapter->clock,
1603 &adapter->cycles,
1604 ktime_to_ns(ktime_get_real()));
1605 /*
1606 * Synchronize our NIC clock against system wall clock. NIC
1607 * time stamp reading requires ~3us per sample, each sample
1608 * was pretty stable even under load => only require 10
1609 * samples for each offset comparison.
1610 */
1611 memset(&adapter->compare, 0, sizeof(adapter->compare));
1612 adapter->compare.source = &adapter->clock;
1613 adapter->compare.target = ktime_get_real;
1614 adapter->compare.num_samples = 10;
1615 timecompare_update(&adapter->compare, 0);
1616 break;
1617 case e1000_82575:
1618 /* 82575 does not support timesync */
1619 default:
1620 break;
38c845c7 1621 }
38c845c7 1622
9d5c8243
AK
1623 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1624 /* print bus type/speed/width info */
7c510e4b 1625 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243
AK
1626 netdev->name,
1627 ((hw->bus.speed == e1000_bus_speed_2500)
1628 ? "2.5Gb/s" : "unknown"),
59c3de89
AD
1629 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1630 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1631 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1632 "unknown"),
7c510e4b 1633 netdev->dev_addr);
9d5c8243
AK
1634
1635 igb_read_part_num(hw, &part_num);
1636 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1637 (part_num >> 8), (part_num & 0xff));
1638
1639 dev_info(&pdev->dev,
1640 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1641 adapter->msix_entries ? "MSI-X" :
7dfc16fa 1642 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243
AK
1643 adapter->num_rx_queues, adapter->num_tx_queues);
1644
9d5c8243
AK
1645 return 0;
1646
1647err_register:
1648 igb_release_hw_control(adapter);
1649err_eeprom:
1650 if (!igb_check_reset_block(hw))
f5f4cf08 1651 igb_reset_phy(hw);
9d5c8243
AK
1652
1653 if (hw->flash_address)
1654 iounmap(hw->flash_address);
9d5c8243 1655err_sw_init:
047e0030 1656 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
1657 iounmap(hw->hw_addr);
1658err_ioremap:
1659 free_netdev(netdev);
1660err_alloc_etherdev:
aed5dec3
AD
1661 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1662 IORESOURCE_MEM));
9d5c8243
AK
1663err_pci_reg:
1664err_dma:
1665 pci_disable_device(pdev);
1666 return err;
1667}
1668
1669/**
1670 * igb_remove - Device Removal Routine
1671 * @pdev: PCI device information struct
1672 *
1673 * igb_remove is called by the PCI subsystem to alert the driver
1674 * that it should release a PCI device. The could be caused by a
1675 * Hot-Plug event, or because the driver is going to be removed from
1676 * memory.
1677 **/
1678static void __devexit igb_remove(struct pci_dev *pdev)
1679{
1680 struct net_device *netdev = pci_get_drvdata(pdev);
1681 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 1682 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1683
1684 /* flush_scheduled work may reschedule our watchdog task, so
1685 * explicitly disable watchdog tasks from being rescheduled */
1686 set_bit(__IGB_DOWN, &adapter->state);
1687 del_timer_sync(&adapter->watchdog_timer);
1688 del_timer_sync(&adapter->phy_info_timer);
1689
1690 flush_scheduled_work();
1691
421e02f0 1692#ifdef CONFIG_IGB_DCA
7dfc16fa 1693 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
1694 dev_info(&pdev->dev, "DCA disabled\n");
1695 dca_remove_requester(&pdev->dev);
7dfc16fa 1696 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 1697 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
1698 }
1699#endif
1700
9d5c8243
AK
1701 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1702 * would have already happened in close and is redundant. */
1703 igb_release_hw_control(adapter);
1704
1705 unregister_netdev(netdev);
1706
330a6d6a
AD
1707 if (!igb_check_reset_block(hw))
1708 igb_reset_phy(hw);
9d5c8243 1709
047e0030 1710 igb_clear_interrupt_scheme(adapter);
9d5c8243 1711
37680117
AD
1712#ifdef CONFIG_PCI_IOV
1713 /* reclaim resources allocated to VFs */
1714 if (adapter->vf_data) {
1715 /* disable iov and allow time for transactions to clear */
1716 pci_disable_sriov(pdev);
1717 msleep(500);
1718
1719 kfree(adapter->vf_data);
1720 adapter->vf_data = NULL;
1721 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1722 msleep(100);
1723 dev_info(&pdev->dev, "IOV Disabled\n");
1724 }
1725#endif
28b0759c
AD
1726 iounmap(hw->hw_addr);
1727 if (hw->flash_address)
1728 iounmap(hw->flash_address);
aed5dec3
AD
1729 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1730 IORESOURCE_MEM));
9d5c8243
AK
1731
1732 free_netdev(netdev);
1733
19d5afd4 1734 pci_disable_pcie_error_reporting(pdev);
40a914fa 1735
9d5c8243
AK
1736 pci_disable_device(pdev);
1737}
1738
a6b623e0
AD
1739/**
1740 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
1741 * @adapter: board private structure to initialize
1742 *
1743 * This function initializes the vf specific data storage and then attempts to
1744 * allocate the VFs. The reason for ordering it this way is because it is much
1745 * mor expensive time wise to disable SR-IOV than it is to allocate and free
1746 * the memory for the VFs.
1747 **/
1748static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
1749{
1750#ifdef CONFIG_PCI_IOV
1751 struct pci_dev *pdev = adapter->pdev;
1752
1753 if (adapter->vfs_allocated_count > 7)
1754 adapter->vfs_allocated_count = 7;
1755
1756 if (adapter->vfs_allocated_count) {
1757 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
1758 sizeof(struct vf_data_storage),
1759 GFP_KERNEL);
1760 /* if allocation failed then we do not support SR-IOV */
1761 if (!adapter->vf_data) {
1762 adapter->vfs_allocated_count = 0;
1763 dev_err(&pdev->dev, "Unable to allocate memory for VF "
1764 "Data Storage\n");
1765 }
1766 }
1767
1768 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
1769 kfree(adapter->vf_data);
1770 adapter->vf_data = NULL;
1771#endif /* CONFIG_PCI_IOV */
1772 adapter->vfs_allocated_count = 0;
1773#ifdef CONFIG_PCI_IOV
1774 } else {
1775 unsigned char mac_addr[ETH_ALEN];
1776 int i;
1777 dev_info(&pdev->dev, "%d vfs allocated\n",
1778 adapter->vfs_allocated_count);
1779 for (i = 0; i < adapter->vfs_allocated_count; i++) {
1780 random_ether_addr(mac_addr);
1781 igb_set_vf_mac(adapter, i, mac_addr);
1782 }
1783 }
1784#endif /* CONFIG_PCI_IOV */
1785}
1786
9d5c8243
AK
1787/**
1788 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1789 * @adapter: board private structure to initialize
1790 *
1791 * igb_sw_init initializes the Adapter private data structure.
1792 * Fields are initialized based on PCI device information and
1793 * OS network device settings (MTU size).
1794 **/
1795static int __devinit igb_sw_init(struct igb_adapter *adapter)
1796{
1797 struct e1000_hw *hw = &adapter->hw;
1798 struct net_device *netdev = adapter->netdev;
1799 struct pci_dev *pdev = adapter->pdev;
1800
1801 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1802
68fd9910
AD
1803 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1804 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
1805 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
1806 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
1807
9d5c8243
AK
1808 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1809 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1810
a6b623e0
AD
1811#ifdef CONFIG_PCI_IOV
1812 if (hw->mac.type == e1000_82576)
1813 adapter->vfs_allocated_count = max_vfs;
1814
1815#endif /* CONFIG_PCI_IOV */
1816 /* This call may decrease the number of queues */
047e0030 1817 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
1818 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1819 return -ENOMEM;
1820 }
1821
a6b623e0
AD
1822 igb_probe_vfs(adapter);
1823
9d5c8243
AK
1824 /* Explicitly disable IRQ since the NIC can be in any state. */
1825 igb_irq_disable(adapter);
1826
1827 set_bit(__IGB_DOWN, &adapter->state);
1828 return 0;
1829}
1830
1831/**
1832 * igb_open - Called when a network interface is made active
1833 * @netdev: network interface device structure
1834 *
1835 * Returns 0 on success, negative value on failure
1836 *
1837 * The open entry point is called when a network interface is made
1838 * active by the system (IFF_UP). At this point all resources needed
1839 * for transmit and receive operations are allocated, the interrupt
1840 * handler is registered with the OS, the watchdog timer is started,
1841 * and the stack is notified that the interface is ready.
1842 **/
1843static int igb_open(struct net_device *netdev)
1844{
1845 struct igb_adapter *adapter = netdev_priv(netdev);
1846 struct e1000_hw *hw = &adapter->hw;
1847 int err;
1848 int i;
1849
1850 /* disallow open during test */
1851 if (test_bit(__IGB_TESTING, &adapter->state))
1852 return -EBUSY;
1853
b168dfc5
JB
1854 netif_carrier_off(netdev);
1855
9d5c8243
AK
1856 /* allocate transmit descriptors */
1857 err = igb_setup_all_tx_resources(adapter);
1858 if (err)
1859 goto err_setup_tx;
1860
1861 /* allocate receive descriptors */
1862 err = igb_setup_all_rx_resources(adapter);
1863 if (err)
1864 goto err_setup_rx;
1865
1866 /* e1000_power_up_phy(adapter); */
1867
9d5c8243
AK
1868 /* before we allocate an interrupt, we must be ready to handle it.
1869 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1870 * as soon as we call pci_request_irq, so we have to setup our
1871 * clean_rx handler before we do so. */
1872 igb_configure(adapter);
1873
1874 err = igb_request_irq(adapter);
1875 if (err)
1876 goto err_req_irq;
1877
1878 /* From here on the code is the same as igb_up() */
1879 clear_bit(__IGB_DOWN, &adapter->state);
1880
047e0030
AD
1881 for (i = 0; i < adapter->num_q_vectors; i++) {
1882 struct igb_q_vector *q_vector = adapter->q_vector[i];
1883 napi_enable(&q_vector->napi);
1884 }
9d5c8243
AK
1885
1886 /* Clear any pending interrupts. */
1887 rd32(E1000_ICR);
844290e5
PW
1888
1889 igb_irq_enable(adapter);
1890
d4960307
AD
1891 /* notify VFs that reset has been completed */
1892 if (adapter->vfs_allocated_count) {
1893 u32 reg_data = rd32(E1000_CTRL_EXT);
1894 reg_data |= E1000_CTRL_EXT_PFRSTD;
1895 wr32(E1000_CTRL_EXT, reg_data);
1896 }
1897
d55b53ff
JK
1898 netif_tx_start_all_queues(netdev);
1899
25568a53
AD
1900 /* start the watchdog. */
1901 hw->mac.get_link_status = 1;
1902 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
1903
1904 return 0;
1905
1906err_req_irq:
1907 igb_release_hw_control(adapter);
1908 /* e1000_power_down_phy(adapter); */
1909 igb_free_all_rx_resources(adapter);
1910err_setup_rx:
1911 igb_free_all_tx_resources(adapter);
1912err_setup_tx:
1913 igb_reset(adapter);
1914
1915 return err;
1916}
1917
1918/**
1919 * igb_close - Disables a network interface
1920 * @netdev: network interface device structure
1921 *
1922 * Returns 0, this is not allowed to fail
1923 *
1924 * The close entry point is called when an interface is de-activated
1925 * by the OS. The hardware is still under the driver's control, but
1926 * needs to be disabled. A global MAC reset is issued to stop the
1927 * hardware, and all transmit and receive resources are freed.
1928 **/
1929static int igb_close(struct net_device *netdev)
1930{
1931 struct igb_adapter *adapter = netdev_priv(netdev);
1932
1933 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1934 igb_down(adapter);
1935
1936 igb_free_irq(adapter);
1937
1938 igb_free_all_tx_resources(adapter);
1939 igb_free_all_rx_resources(adapter);
1940
9d5c8243
AK
1941 return 0;
1942}
1943
1944/**
1945 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
1946 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1947 *
1948 * Return 0 on success, negative on failure
1949 **/
80785298 1950int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 1951{
80785298 1952 struct pci_dev *pdev = tx_ring->pdev;
9d5c8243
AK
1953 int size;
1954
1955 size = sizeof(struct igb_buffer) * tx_ring->count;
1956 tx_ring->buffer_info = vmalloc(size);
1957 if (!tx_ring->buffer_info)
1958 goto err;
1959 memset(tx_ring->buffer_info, 0, size);
1960
1961 /* round up to nearest 4K */
85e8d004 1962 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
1963 tx_ring->size = ALIGN(tx_ring->size, 4096);
1964
439705e1
AD
1965 tx_ring->desc = pci_alloc_consistent(pdev,
1966 tx_ring->size,
9d5c8243
AK
1967 &tx_ring->dma);
1968
1969 if (!tx_ring->desc)
1970 goto err;
1971
9d5c8243
AK
1972 tx_ring->next_to_use = 0;
1973 tx_ring->next_to_clean = 0;
9d5c8243
AK
1974 return 0;
1975
1976err:
1977 vfree(tx_ring->buffer_info);
047e0030 1978 dev_err(&pdev->dev,
9d5c8243
AK
1979 "Unable to allocate memory for the transmit descriptor ring\n");
1980 return -ENOMEM;
1981}
1982
1983/**
1984 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1985 * (Descriptors) for all queues
1986 * @adapter: board private structure
1987 *
1988 * Return 0 on success, negative on failure
1989 **/
1990static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1991{
439705e1 1992 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1993 int i, err = 0;
1994
1995 for (i = 0; i < adapter->num_tx_queues; i++) {
80785298 1996 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
9d5c8243 1997 if (err) {
439705e1 1998 dev_err(&pdev->dev,
9d5c8243
AK
1999 "Allocation for Tx Queue %u failed\n", i);
2000 for (i--; i >= 0; i--)
3b644cf6 2001 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
2002 break;
2003 }
2004 }
2005
661086df 2006 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
439705e1 2007 int r_idx = i % adapter->num_tx_queues;
661086df 2008 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
eebbbdba 2009 }
9d5c8243
AK
2010 return err;
2011}
2012
2013/**
85b430b4
AD
2014 * igb_setup_tctl - configure the transmit control registers
2015 * @adapter: Board private structure
9d5c8243 2016 **/
d7ee5b3a 2017void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2018{
9d5c8243
AK
2019 struct e1000_hw *hw = &adapter->hw;
2020 u32 tctl;
9d5c8243 2021
85b430b4
AD
2022 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2023 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2024
2025 /* Program the Transmit Control Register */
9d5c8243
AK
2026 tctl = rd32(E1000_TCTL);
2027 tctl &= ~E1000_TCTL_CT;
2028 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2029 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2030
2031 igb_config_collision_dist(hw);
2032
9d5c8243
AK
2033 /* Enable transmits */
2034 tctl |= E1000_TCTL_EN;
2035
2036 wr32(E1000_TCTL, tctl);
2037}
2038
85b430b4
AD
2039/**
2040 * igb_configure_tx_ring - Configure transmit ring after Reset
2041 * @adapter: board private structure
2042 * @ring: tx ring to configure
2043 *
2044 * Configure a transmit ring after a reset.
2045 **/
d7ee5b3a
AD
2046void igb_configure_tx_ring(struct igb_adapter *adapter,
2047 struct igb_ring *ring)
85b430b4
AD
2048{
2049 struct e1000_hw *hw = &adapter->hw;
2050 u32 txdctl;
2051 u64 tdba = ring->dma;
2052 int reg_idx = ring->reg_idx;
2053
2054 /* disable the queue */
2055 txdctl = rd32(E1000_TXDCTL(reg_idx));
2056 wr32(E1000_TXDCTL(reg_idx),
2057 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2058 wrfl();
2059 mdelay(10);
2060
2061 wr32(E1000_TDLEN(reg_idx),
2062 ring->count * sizeof(union e1000_adv_tx_desc));
2063 wr32(E1000_TDBAL(reg_idx),
2064 tdba & 0x00000000ffffffffULL);
2065 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2066
fce99e34
AD
2067 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2068 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2069 writel(0, ring->head);
2070 writel(0, ring->tail);
85b430b4
AD
2071
2072 txdctl |= IGB_TX_PTHRESH;
2073 txdctl |= IGB_TX_HTHRESH << 8;
2074 txdctl |= IGB_TX_WTHRESH << 16;
2075
2076 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2077 wr32(E1000_TXDCTL(reg_idx), txdctl);
2078}
2079
2080/**
2081 * igb_configure_tx - Configure transmit Unit after Reset
2082 * @adapter: board private structure
2083 *
2084 * Configure the Tx unit of the MAC after a reset.
2085 **/
2086static void igb_configure_tx(struct igb_adapter *adapter)
2087{
2088 int i;
2089
2090 for (i = 0; i < adapter->num_tx_queues; i++)
2091 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
85b430b4
AD
2092}
2093
9d5c8243
AK
2094/**
2095 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2096 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2097 *
2098 * Returns 0 on success, negative on failure
2099 **/
80785298 2100int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2101{
80785298 2102 struct pci_dev *pdev = rx_ring->pdev;
9d5c8243
AK
2103 int size, desc_len;
2104
2105 size = sizeof(struct igb_buffer) * rx_ring->count;
2106 rx_ring->buffer_info = vmalloc(size);
2107 if (!rx_ring->buffer_info)
2108 goto err;
2109 memset(rx_ring->buffer_info, 0, size);
2110
2111 desc_len = sizeof(union e1000_adv_rx_desc);
2112
2113 /* Round up to nearest 4K */
2114 rx_ring->size = rx_ring->count * desc_len;
2115 rx_ring->size = ALIGN(rx_ring->size, 4096);
2116
2117 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2118 &rx_ring->dma);
2119
2120 if (!rx_ring->desc)
2121 goto err;
2122
2123 rx_ring->next_to_clean = 0;
2124 rx_ring->next_to_use = 0;
9d5c8243 2125
9d5c8243
AK
2126 return 0;
2127
2128err:
2129 vfree(rx_ring->buffer_info);
439705e1 2130 rx_ring->buffer_info = NULL;
80785298 2131 dev_err(&pdev->dev, "Unable to allocate memory for "
9d5c8243
AK
2132 "the receive descriptor ring\n");
2133 return -ENOMEM;
2134}
2135
2136/**
2137 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2138 * (Descriptors) for all queues
2139 * @adapter: board private structure
2140 *
2141 * Return 0 on success, negative on failure
2142 **/
2143static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2144{
439705e1 2145 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2146 int i, err = 0;
2147
2148 for (i = 0; i < adapter->num_rx_queues; i++) {
80785298 2149 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
9d5c8243 2150 if (err) {
439705e1 2151 dev_err(&pdev->dev,
9d5c8243
AK
2152 "Allocation for Rx Queue %u failed\n", i);
2153 for (i--; i >= 0; i--)
3b644cf6 2154 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
2155 break;
2156 }
2157 }
2158
2159 return err;
2160}
2161
06cf2666
AD
2162/**
2163 * igb_setup_mrqc - configure the multiple receive queue control registers
2164 * @adapter: Board private structure
2165 **/
2166static void igb_setup_mrqc(struct igb_adapter *adapter)
2167{
2168 struct e1000_hw *hw = &adapter->hw;
2169 u32 mrqc, rxcsum;
2170 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2171 union e1000_reta {
2172 u32 dword;
2173 u8 bytes[4];
2174 } reta;
2175 static const u8 rsshash[40] = {
2176 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2177 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2178 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2179 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2180
2181 /* Fill out hash function seeds */
2182 for (j = 0; j < 10; j++) {
2183 u32 rsskey = rsshash[(j * 4)];
2184 rsskey |= rsshash[(j * 4) + 1] << 8;
2185 rsskey |= rsshash[(j * 4) + 2] << 16;
2186 rsskey |= rsshash[(j * 4) + 3] << 24;
2187 array_wr32(E1000_RSSRK(0), j, rsskey);
2188 }
2189
2190 num_rx_queues = adapter->num_rx_queues;
2191
2192 if (adapter->vfs_allocated_count) {
2193 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2194 switch (hw->mac.type) {
2195 case e1000_82576:
2196 shift = 3;
2197 num_rx_queues = 2;
2198 break;
2199 case e1000_82575:
2200 shift = 2;
2201 shift2 = 6;
2202 default:
2203 break;
2204 }
2205 } else {
2206 if (hw->mac.type == e1000_82575)
2207 shift = 6;
2208 }
2209
2210 for (j = 0; j < (32 * 4); j++) {
2211 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2212 if (shift2)
2213 reta.bytes[j & 3] |= num_rx_queues << shift2;
2214 if ((j & 3) == 3)
2215 wr32(E1000_RETA(j >> 2), reta.dword);
2216 }
2217
2218 /*
2219 * Disable raw packet checksumming so that RSS hash is placed in
2220 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2221 * offloads as they are enabled by default
2222 */
2223 rxcsum = rd32(E1000_RXCSUM);
2224 rxcsum |= E1000_RXCSUM_PCSD;
2225
2226 if (adapter->hw.mac.type >= e1000_82576)
2227 /* Enable Receive Checksum Offload for SCTP */
2228 rxcsum |= E1000_RXCSUM_CRCOFL;
2229
2230 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2231 wr32(E1000_RXCSUM, rxcsum);
2232
2233 /* If VMDq is enabled then we set the appropriate mode for that, else
2234 * we default to RSS so that an RSS hash is calculated per packet even
2235 * if we are only using one queue */
2236 if (adapter->vfs_allocated_count) {
2237 if (hw->mac.type > e1000_82575) {
2238 /* Set the default pool for the PF's first queue */
2239 u32 vtctl = rd32(E1000_VT_CTL);
2240 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2241 E1000_VT_CTL_DISABLE_DEF_POOL);
2242 vtctl |= adapter->vfs_allocated_count <<
2243 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2244 wr32(E1000_VT_CTL, vtctl);
2245 }
2246 if (adapter->num_rx_queues > 1)
2247 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2248 else
2249 mrqc = E1000_MRQC_ENABLE_VMDQ;
2250 } else {
2251 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2252 }
2253 igb_vmm_control(adapter);
2254
2255 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2256 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2257 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2258 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2259 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2260 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2261 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2262 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2263
2264 wr32(E1000_MRQC, mrqc);
2265}
2266
9d5c8243
AK
2267/**
2268 * igb_setup_rctl - configure the receive control registers
2269 * @adapter: Board private structure
2270 **/
d7ee5b3a 2271void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2272{
2273 struct e1000_hw *hw = &adapter->hw;
2274 u32 rctl;
9d5c8243
AK
2275
2276 rctl = rd32(E1000_RCTL);
2277
2278 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2279 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2280
69d728ba 2281 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2282 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2283
87cb7e8c
AK
2284 /*
2285 * enable stripping of CRC. It's unlikely this will break BMC
2286 * redirection as it did with e1000. Newer features require
2287 * that the HW strips the CRC.
73cd78f1 2288 */
87cb7e8c 2289 rctl |= E1000_RCTL_SECRC;
9d5c8243 2290
9b07f3d3 2291 /*
ec54d7d6 2292 * disable store bad packets and clear size bits.
9b07f3d3 2293 */
ec54d7d6 2294 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2295
6ec43fe6
AD
2296 /* enable LPE to prevent packets larger than max_frame_size */
2297 rctl |= E1000_RCTL_LPE;
9d5c8243 2298
952f72a8
AD
2299 /* disable queue 0 to prevent tail write w/o re-config */
2300 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2301
e1739522
AD
2302 /* Attention!!! For SR-IOV PF driver operations you must enable
2303 * queue drop for all VF and PF queues to prevent head of line blocking
2304 * if an un-trusted VF does not provide descriptors to hardware.
2305 */
2306 if (adapter->vfs_allocated_count) {
e1739522
AD
2307 /* set all queue drop enable bits */
2308 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2309 }
2310
9d5c8243
AK
2311 wr32(E1000_RCTL, rctl);
2312}
2313
7d5753f0
AD
2314static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2315 int vfn)
2316{
2317 struct e1000_hw *hw = &adapter->hw;
2318 u32 vmolr;
2319
2320 /* if it isn't the PF check to see if VFs are enabled and
2321 * increase the size to support vlan tags */
2322 if (vfn < adapter->vfs_allocated_count &&
2323 adapter->vf_data[vfn].vlans_enabled)
2324 size += VLAN_TAG_SIZE;
2325
2326 vmolr = rd32(E1000_VMOLR(vfn));
2327 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2328 vmolr |= size | E1000_VMOLR_LPE;
2329 wr32(E1000_VMOLR(vfn), vmolr);
2330
2331 return 0;
2332}
2333
e1739522
AD
2334/**
2335 * igb_rlpml_set - set maximum receive packet size
2336 * @adapter: board private structure
2337 *
2338 * Configure maximum receivable packet size.
2339 **/
2340static void igb_rlpml_set(struct igb_adapter *adapter)
2341{
2342 u32 max_frame_size = adapter->max_frame_size;
2343 struct e1000_hw *hw = &adapter->hw;
2344 u16 pf_id = adapter->vfs_allocated_count;
2345
2346 if (adapter->vlgrp)
2347 max_frame_size += VLAN_TAG_SIZE;
2348
2349 /* if vfs are enabled we set RLPML to the largest possible request
2350 * size and set the VMOLR RLPML to the size we need */
2351 if (pf_id) {
2352 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
7d5753f0 2353 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2354 }
2355
2356 wr32(E1000_RLPML, max_frame_size);
2357}
2358
7d5753f0
AD
2359static inline void igb_set_vmolr(struct igb_adapter *adapter, int vfn)
2360{
2361 struct e1000_hw *hw = &adapter->hw;
2362 u32 vmolr;
2363
2364 /*
2365 * This register exists only on 82576 and newer so if we are older then
2366 * we should exit and do nothing
2367 */
2368 if (hw->mac.type < e1000_82576)
2369 return;
2370
2371 vmolr = rd32(E1000_VMOLR(vfn));
2372 vmolr |= E1000_VMOLR_AUPE | /* Accept untagged packets */
2373 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2374
2375 /* clear all bits that might not be set */
2376 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2377
2378 if (adapter->num_rx_queues > 1 && vfn == adapter->vfs_allocated_count)
2379 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2380 /*
2381 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2382 * multicast packets
2383 */
2384 if (vfn <= adapter->vfs_allocated_count)
2385 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2386
2387 wr32(E1000_VMOLR(vfn), vmolr);
2388}
2389
85b430b4
AD
2390/**
2391 * igb_configure_rx_ring - Configure a receive ring after Reset
2392 * @adapter: board private structure
2393 * @ring: receive ring to be configured
2394 *
2395 * Configure the Rx unit of the MAC after a reset.
2396 **/
d7ee5b3a
AD
2397void igb_configure_rx_ring(struct igb_adapter *adapter,
2398 struct igb_ring *ring)
85b430b4
AD
2399{
2400 struct e1000_hw *hw = &adapter->hw;
2401 u64 rdba = ring->dma;
2402 int reg_idx = ring->reg_idx;
952f72a8 2403 u32 srrctl, rxdctl;
85b430b4
AD
2404
2405 /* disable the queue */
2406 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2407 wr32(E1000_RXDCTL(reg_idx),
2408 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2409
2410 /* Set DMA base address registers */
2411 wr32(E1000_RDBAL(reg_idx),
2412 rdba & 0x00000000ffffffffULL);
2413 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2414 wr32(E1000_RDLEN(reg_idx),
2415 ring->count * sizeof(union e1000_adv_rx_desc));
2416
2417 /* initialize head and tail */
fce99e34
AD
2418 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2419 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2420 writel(0, ring->head);
2421 writel(0, ring->tail);
85b430b4 2422
952f72a8 2423 /* set descriptor configuration */
4c844851
AD
2424 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2425 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
952f72a8
AD
2426 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2427#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2428 srrctl |= IGB_RXBUFFER_16384 >>
2429 E1000_SRRCTL_BSIZEPKT_SHIFT;
2430#else
2431 srrctl |= (PAGE_SIZE / 2) >>
2432 E1000_SRRCTL_BSIZEPKT_SHIFT;
2433#endif
2434 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2435 } else {
4c844851 2436 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
952f72a8
AD
2437 E1000_SRRCTL_BSIZEPKT_SHIFT;
2438 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2439 }
2440
2441 wr32(E1000_SRRCTL(reg_idx), srrctl);
2442
7d5753f0
AD
2443 /* set filtering for VMDQ pools */
2444 igb_set_vmolr(adapter, reg_idx & 0x7);
2445
85b430b4
AD
2446 /* enable receive descriptor fetching */
2447 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2448 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2449 rxdctl &= 0xFFF00000;
2450 rxdctl |= IGB_RX_PTHRESH;
2451 rxdctl |= IGB_RX_HTHRESH << 8;
2452 rxdctl |= IGB_RX_WTHRESH << 16;
2453 wr32(E1000_RXDCTL(reg_idx), rxdctl);
2454}
2455
9d5c8243
AK
2456/**
2457 * igb_configure_rx - Configure receive Unit after Reset
2458 * @adapter: board private structure
2459 *
2460 * Configure the Rx unit of the MAC after a reset.
2461 **/
2462static void igb_configure_rx(struct igb_adapter *adapter)
2463{
9107584e 2464 int i;
9d5c8243 2465
68d480c4
AD
2466 /* set UTA to appropriate mode */
2467 igb_set_uta(adapter);
2468
26ad9178
AD
2469 /* set the correct pool for the PF default MAC address in entry 0 */
2470 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2471 adapter->vfs_allocated_count);
2472
06cf2666
AD
2473 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2474 * the Base and Length of the Rx Descriptor Ring */
2475 for (i = 0; i < adapter->num_rx_queues; i++)
2476 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
9d5c8243
AK
2477}
2478
2479/**
2480 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
2481 * @tx_ring: Tx descriptor ring for a specific queue
2482 *
2483 * Free all transmit software resources
2484 **/
68fd9910 2485void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2486{
3b644cf6 2487 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
2488
2489 vfree(tx_ring->buffer_info);
2490 tx_ring->buffer_info = NULL;
2491
439705e1
AD
2492 /* if not set, then don't free */
2493 if (!tx_ring->desc)
2494 return;
2495
80785298
AD
2496 pci_free_consistent(tx_ring->pdev, tx_ring->size,
2497 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
2498
2499 tx_ring->desc = NULL;
2500}
2501
2502/**
2503 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2504 * @adapter: board private structure
2505 *
2506 * Free all transmit software resources
2507 **/
2508static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2509{
2510 int i;
2511
2512 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2513 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
2514}
2515
b1a436c3
AD
2516void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2517 struct igb_buffer *buffer_info)
9d5c8243 2518{
65689fef 2519 buffer_info->dma = 0;
9d5c8243 2520 if (buffer_info->skb) {
80785298
AD
2521 skb_dma_unmap(&tx_ring->pdev->dev,
2522 buffer_info->skb,
65689fef 2523 DMA_TO_DEVICE);
9d5c8243
AK
2524 dev_kfree_skb_any(buffer_info->skb);
2525 buffer_info->skb = NULL;
2526 }
2527 buffer_info->time_stamp = 0;
2528 /* buffer_info must be completely set up in the transmit path */
2529}
2530
2531/**
2532 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
2533 * @tx_ring: ring to be cleaned
2534 **/
3b644cf6 2535static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
2536{
2537 struct igb_buffer *buffer_info;
2538 unsigned long size;
2539 unsigned int i;
2540
2541 if (!tx_ring->buffer_info)
2542 return;
2543 /* Free all the Tx ring sk_buffs */
2544
2545 for (i = 0; i < tx_ring->count; i++) {
2546 buffer_info = &tx_ring->buffer_info[i];
80785298 2547 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
2548 }
2549
2550 size = sizeof(struct igb_buffer) * tx_ring->count;
2551 memset(tx_ring->buffer_info, 0, size);
2552
2553 /* Zero out the descriptor ring */
9d5c8243
AK
2554 memset(tx_ring->desc, 0, tx_ring->size);
2555
2556 tx_ring->next_to_use = 0;
2557 tx_ring->next_to_clean = 0;
9d5c8243
AK
2558}
2559
2560/**
2561 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2562 * @adapter: board private structure
2563 **/
2564static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2565{
2566 int i;
2567
2568 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 2569 igb_clean_tx_ring(&adapter->tx_ring[i]);
9d5c8243
AK
2570}
2571
2572/**
2573 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
2574 * @rx_ring: ring to clean the resources from
2575 *
2576 * Free all receive software resources
2577 **/
68fd9910 2578void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2579{
3b644cf6 2580 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
2581
2582 vfree(rx_ring->buffer_info);
2583 rx_ring->buffer_info = NULL;
2584
439705e1
AD
2585 /* if not set, then don't free */
2586 if (!rx_ring->desc)
2587 return;
2588
80785298
AD
2589 pci_free_consistent(rx_ring->pdev, rx_ring->size,
2590 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
2591
2592 rx_ring->desc = NULL;
2593}
2594
2595/**
2596 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2597 * @adapter: board private structure
2598 *
2599 * Free all receive software resources
2600 **/
2601static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2602{
2603 int i;
2604
2605 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2606 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
2607}
2608
2609/**
2610 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
2611 * @rx_ring: ring to free buffers from
2612 **/
3b644cf6 2613static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243
AK
2614{
2615 struct igb_buffer *buffer_info;
9d5c8243
AK
2616 unsigned long size;
2617 unsigned int i;
2618
2619 if (!rx_ring->buffer_info)
2620 return;
439705e1 2621
9d5c8243
AK
2622 /* Free all the Rx ring sk_buffs */
2623 for (i = 0; i < rx_ring->count; i++) {
2624 buffer_info = &rx_ring->buffer_info[i];
2625 if (buffer_info->dma) {
80785298
AD
2626 pci_unmap_single(rx_ring->pdev,
2627 buffer_info->dma,
4c844851 2628 rx_ring->rx_buffer_len,
6ec43fe6 2629 PCI_DMA_FROMDEVICE);
9d5c8243
AK
2630 buffer_info->dma = 0;
2631 }
2632
2633 if (buffer_info->skb) {
2634 dev_kfree_skb(buffer_info->skb);
2635 buffer_info->skb = NULL;
2636 }
6ec43fe6 2637 if (buffer_info->page_dma) {
80785298
AD
2638 pci_unmap_page(rx_ring->pdev,
2639 buffer_info->page_dma,
6ec43fe6
AD
2640 PAGE_SIZE / 2,
2641 PCI_DMA_FROMDEVICE);
2642 buffer_info->page_dma = 0;
2643 }
9d5c8243 2644 if (buffer_info->page) {
9d5c8243
AK
2645 put_page(buffer_info->page);
2646 buffer_info->page = NULL;
bf36c1a0 2647 buffer_info->page_offset = 0;
9d5c8243
AK
2648 }
2649 }
2650
9d5c8243
AK
2651 size = sizeof(struct igb_buffer) * rx_ring->count;
2652 memset(rx_ring->buffer_info, 0, size);
2653
2654 /* Zero out the descriptor ring */
2655 memset(rx_ring->desc, 0, rx_ring->size);
2656
2657 rx_ring->next_to_clean = 0;
2658 rx_ring->next_to_use = 0;
9d5c8243
AK
2659}
2660
2661/**
2662 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2663 * @adapter: board private structure
2664 **/
2665static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2666{
2667 int i;
2668
2669 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2670 igb_clean_rx_ring(&adapter->rx_ring[i]);
9d5c8243
AK
2671}
2672
2673/**
2674 * igb_set_mac - Change the Ethernet Address of the NIC
2675 * @netdev: network interface device structure
2676 * @p: pointer to an address structure
2677 *
2678 * Returns 0 on success, negative on failure
2679 **/
2680static int igb_set_mac(struct net_device *netdev, void *p)
2681{
2682 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 2683 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2684 struct sockaddr *addr = p;
2685
2686 if (!is_valid_ether_addr(addr->sa_data))
2687 return -EADDRNOTAVAIL;
2688
2689 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 2690 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 2691
26ad9178
AD
2692 /* set the correct pool for the new PF MAC address in entry 0 */
2693 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2694 adapter->vfs_allocated_count);
e1739522 2695
9d5c8243
AK
2696 return 0;
2697}
2698
2699/**
68d480c4 2700 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
2701 * @netdev: network interface device structure
2702 *
68d480c4
AD
2703 * Writes multicast address list to the MTA hash table.
2704 * Returns: -ENOMEM on failure
2705 * 0 on no addresses written
2706 * X on writing X addresses to MTA
9d5c8243 2707 **/
68d480c4 2708static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
2709{
2710 struct igb_adapter *adapter = netdev_priv(netdev);
2711 struct e1000_hw *hw = &adapter->hw;
ff41f8dc 2712 struct dev_mc_list *mc_ptr = netdev->mc_list;
68d480c4
AD
2713 u8 *mta_list;
2714 u32 vmolr = 0;
9d5c8243
AK
2715 int i;
2716
68d480c4
AD
2717 if (!netdev->mc_count) {
2718 /* nothing to program, so clear mc list */
2719 igb_update_mc_addr_list(hw, NULL, 0);
2720 igb_restore_vf_multicasts(adapter);
2721 return 0;
2722 }
9d5c8243 2723
68d480c4
AD
2724 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2725 if (!mta_list)
2726 return -ENOMEM;
ff41f8dc 2727
68d480c4
AD
2728 /* set vmolr receive overflow multicast bit */
2729 vmolr |= E1000_VMOLR_ROMPE;
2730
2731 /* The shared function expects a packed array of only addresses. */
2732 mc_ptr = netdev->mc_list;
2733
2734 for (i = 0; i < netdev->mc_count; i++) {
2735 if (!mc_ptr)
2736 break;
2737 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2738 mc_ptr = mc_ptr->next;
746b9f02 2739 }
68d480c4
AD
2740 igb_update_mc_addr_list(hw, mta_list, i);
2741 kfree(mta_list);
2742
2743 return netdev->mc_count;
2744}
2745
2746/**
2747 * igb_write_uc_addr_list - write unicast addresses to RAR table
2748 * @netdev: network interface device structure
2749 *
2750 * Writes unicast address list to the RAR table.
2751 * Returns: -ENOMEM on failure/insufficient address space
2752 * 0 on no addresses written
2753 * X on writing X addresses to the RAR table
2754 **/
2755static int igb_write_uc_addr_list(struct net_device *netdev)
2756{
2757 struct igb_adapter *adapter = netdev_priv(netdev);
2758 struct e1000_hw *hw = &adapter->hw;
2759 unsigned int vfn = adapter->vfs_allocated_count;
2760 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2761 int count = 0;
2762
2763 /* return ENOMEM indicating insufficient memory for addresses */
2764 if (netdev->uc.count > rar_entries)
2765 return -ENOMEM;
9d5c8243 2766
ff41f8dc
AD
2767 if (netdev->uc.count && rar_entries) {
2768 struct netdev_hw_addr *ha;
2769 list_for_each_entry(ha, &netdev->uc.list, list) {
2770 if (!rar_entries)
2771 break;
26ad9178
AD
2772 igb_rar_set_qsel(adapter, ha->addr,
2773 rar_entries--,
68d480c4
AD
2774 vfn);
2775 count++;
ff41f8dc
AD
2776 }
2777 }
2778 /* write the addresses in reverse order to avoid write combining */
2779 for (; rar_entries > 0 ; rar_entries--) {
2780 wr32(E1000_RAH(rar_entries), 0);
2781 wr32(E1000_RAL(rar_entries), 0);
2782 }
2783 wrfl();
2784
68d480c4
AD
2785 return count;
2786}
2787
2788/**
2789 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2790 * @netdev: network interface device structure
2791 *
2792 * The set_rx_mode entry point is called whenever the unicast or multicast
2793 * address lists or the network interface flags are updated. This routine is
2794 * responsible for configuring the hardware for proper unicast, multicast,
2795 * promiscuous mode, and all-multi behavior.
2796 **/
2797static void igb_set_rx_mode(struct net_device *netdev)
2798{
2799 struct igb_adapter *adapter = netdev_priv(netdev);
2800 struct e1000_hw *hw = &adapter->hw;
2801 unsigned int vfn = adapter->vfs_allocated_count;
2802 u32 rctl, vmolr = 0;
2803 int count;
2804
2805 /* Check for Promiscuous and All Multicast modes */
2806 rctl = rd32(E1000_RCTL);
2807
2808 /* clear the effected bits */
2809 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2810
2811 if (netdev->flags & IFF_PROMISC) {
2812 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2813 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2814 } else {
2815 if (netdev->flags & IFF_ALLMULTI) {
2816 rctl |= E1000_RCTL_MPE;
2817 vmolr |= E1000_VMOLR_MPME;
2818 } else {
2819 /*
2820 * Write addresses to the MTA, if the attempt fails
2821 * then we should just turn on promiscous mode so
2822 * that we can at least receive multicast traffic
2823 */
2824 count = igb_write_mc_addr_list(netdev);
2825 if (count < 0) {
2826 rctl |= E1000_RCTL_MPE;
2827 vmolr |= E1000_VMOLR_MPME;
2828 } else if (count) {
2829 vmolr |= E1000_VMOLR_ROMPE;
2830 }
2831 }
2832 /*
2833 * Write addresses to available RAR registers, if there is not
2834 * sufficient space to store all the addresses then enable
2835 * unicast promiscous mode
2836 */
2837 count = igb_write_uc_addr_list(netdev);
2838 if (count < 0) {
2839 rctl |= E1000_RCTL_UPE;
2840 vmolr |= E1000_VMOLR_ROPE;
2841 }
2842 rctl |= E1000_RCTL_VFE;
28fc06f5 2843 }
68d480c4 2844 wr32(E1000_RCTL, rctl);
28fc06f5 2845
68d480c4
AD
2846 /*
2847 * In order to support SR-IOV and eventually VMDq it is necessary to set
2848 * the VMOLR to enable the appropriate modes. Without this workaround
2849 * we will have issues with VLAN tag stripping not being done for frames
2850 * that are only arriving because we are the default pool
2851 */
2852 if (hw->mac.type < e1000_82576)
28fc06f5 2853 return;
9d5c8243 2854
68d480c4
AD
2855 vmolr |= rd32(E1000_VMOLR(vfn)) &
2856 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
2857 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 2858 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
2859}
2860
2861/* Need to wait a few seconds after link up to get diagnostic information from
2862 * the phy */
2863static void igb_update_phy_info(unsigned long data)
2864{
2865 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 2866 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
2867}
2868
4d6b725e
AD
2869/**
2870 * igb_has_link - check shared code for link and determine up/down
2871 * @adapter: pointer to driver private info
2872 **/
2873static bool igb_has_link(struct igb_adapter *adapter)
2874{
2875 struct e1000_hw *hw = &adapter->hw;
2876 bool link_active = false;
2877 s32 ret_val = 0;
2878
2879 /* get_link_status is set on LSC (link status) interrupt or
2880 * rx sequence error interrupt. get_link_status will stay
2881 * false until the e1000_check_for_link establishes link
2882 * for copper adapters ONLY
2883 */
2884 switch (hw->phy.media_type) {
2885 case e1000_media_type_copper:
2886 if (hw->mac.get_link_status) {
2887 ret_val = hw->mac.ops.check_for_link(hw);
2888 link_active = !hw->mac.get_link_status;
2889 } else {
2890 link_active = true;
2891 }
2892 break;
4d6b725e
AD
2893 case e1000_media_type_internal_serdes:
2894 ret_val = hw->mac.ops.check_for_link(hw);
2895 link_active = hw->mac.serdes_has_link;
2896 break;
2897 default:
2898 case e1000_media_type_unknown:
2899 break;
2900 }
2901
2902 return link_active;
2903}
2904
9d5c8243
AK
2905/**
2906 * igb_watchdog - Timer Call-back
2907 * @data: pointer to adapter cast into an unsigned long
2908 **/
2909static void igb_watchdog(unsigned long data)
2910{
2911 struct igb_adapter *adapter = (struct igb_adapter *)data;
2912 /* Do the rest outside of interrupt context */
2913 schedule_work(&adapter->watchdog_task);
2914}
2915
2916static void igb_watchdog_task(struct work_struct *work)
2917{
2918 struct igb_adapter *adapter = container_of(work,
2919 struct igb_adapter, watchdog_task);
2920 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
2921 struct net_device *netdev = adapter->netdev;
2922 struct igb_ring *tx_ring = adapter->tx_ring;
9d5c8243 2923 u32 link;
7a6ea550 2924 int i;
9d5c8243 2925
4d6b725e 2926 link = igb_has_link(adapter);
9d5c8243
AK
2927 if (link) {
2928 if (!netif_carrier_ok(netdev)) {
2929 u32 ctrl;
330a6d6a
AD
2930 hw->mac.ops.get_speed_and_duplex(hw,
2931 &adapter->link_speed,
2932 &adapter->link_duplex);
9d5c8243
AK
2933
2934 ctrl = rd32(E1000_CTRL);
527d47c1
AD
2935 /* Links status message must follow this format */
2936 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 2937 "Flow Control: %s\n",
527d47c1 2938 netdev->name,
9d5c8243
AK
2939 adapter->link_speed,
2940 adapter->link_duplex == FULL_DUPLEX ?
2941 "Full Duplex" : "Half Duplex",
2942 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2943 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2944 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2945 E1000_CTRL_TFCE) ? "TX" : "None")));
2946
2947 /* tweak tx_queue_len according to speed/duplex and
2948 * adjust the timeout factor */
2949 netdev->tx_queue_len = adapter->tx_queue_len;
2950 adapter->tx_timeout_factor = 1;
2951 switch (adapter->link_speed) {
2952 case SPEED_10:
2953 netdev->tx_queue_len = 10;
2954 adapter->tx_timeout_factor = 14;
2955 break;
2956 case SPEED_100:
2957 netdev->tx_queue_len = 100;
2958 /* maybe add some timeout factor ? */
2959 break;
2960 }
2961
2962 netif_carrier_on(netdev);
9d5c8243 2963
4ae196df
AD
2964 igb_ping_all_vfs(adapter);
2965
4b1a9877 2966 /* link state has changed, schedule phy info update */
9d5c8243
AK
2967 if (!test_bit(__IGB_DOWN, &adapter->state))
2968 mod_timer(&adapter->phy_info_timer,
2969 round_jiffies(jiffies + 2 * HZ));
2970 }
2971 } else {
2972 if (netif_carrier_ok(netdev)) {
2973 adapter->link_speed = 0;
2974 adapter->link_duplex = 0;
527d47c1
AD
2975 /* Links status message must follow this format */
2976 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2977 netdev->name);
9d5c8243 2978 netif_carrier_off(netdev);
4b1a9877 2979
4ae196df
AD
2980 igb_ping_all_vfs(adapter);
2981
4b1a9877 2982 /* link state has changed, schedule phy info update */
9d5c8243
AK
2983 if (!test_bit(__IGB_DOWN, &adapter->state))
2984 mod_timer(&adapter->phy_info_timer,
2985 round_jiffies(jiffies + 2 * HZ));
2986 }
2987 }
2988
9d5c8243 2989 igb_update_stats(adapter);
645a3abd 2990 igb_update_adaptive(hw);
9d5c8243
AK
2991
2992 if (!netif_carrier_ok(netdev)) {
c493ea45 2993 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
9d5c8243
AK
2994 /* We've lost link, so the controller stops DMA,
2995 * but we've got queued Tx work that's never going
2996 * to get done, so reset controller to flush Tx.
2997 * (Do the reset outside of interrupt context). */
2998 adapter->tx_timeout_count++;
2999 schedule_work(&adapter->reset_task);
c2d5ab49
JB
3000 /* return immediately since reset is imminent */
3001 return;
9d5c8243
AK
3002 }
3003 }
3004
f7ba205e
AD
3005 /* Force detection of hung controller every watchdog period */
3006 for (i = 0; i < adapter->num_tx_queues; i++)
3007 adapter->tx_ring[i].detect_tx_hung = true;
3008
9d5c8243 3009 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3010 if (adapter->msix_entries) {
047e0030
AD
3011 u32 eics = 0;
3012 for (i = 0; i < adapter->num_q_vectors; i++) {
3013 struct igb_q_vector *q_vector = adapter->q_vector[i];
3014 eics |= q_vector->eims_value;
3015 }
7a6ea550
AD
3016 wr32(E1000_EICS, eics);
3017 } else {
3018 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3019 }
9d5c8243 3020
9d5c8243
AK
3021 /* Reset the timer */
3022 if (!test_bit(__IGB_DOWN, &adapter->state))
3023 mod_timer(&adapter->watchdog_timer,
3024 round_jiffies(jiffies + 2 * HZ));
3025}
3026
3027enum latency_range {
3028 lowest_latency = 0,
3029 low_latency = 1,
3030 bulk_latency = 2,
3031 latency_invalid = 255
3032};
3033
6eb5a7f1
AD
3034/**
3035 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3036 *
3037 * Stores a new ITR value based on strictly on packet size. This
3038 * algorithm is less sophisticated than that used in igb_update_itr,
3039 * due to the difficulty of synchronizing statistics across multiple
3040 * receive rings. The divisors and thresholds used by this fuction
3041 * were determined based on theoretical maximum wire speed and testing
3042 * data, in order to minimize response time while increasing bulk
3043 * throughput.
3044 * This functionality is controlled by the InterruptThrottleRate module
3045 * parameter (see igb_param.c)
3046 * NOTE: This function is called only when operating in a multiqueue
3047 * receive environment.
047e0030 3048 * @q_vector: pointer to q_vector
6eb5a7f1 3049 **/
047e0030 3050static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3051{
047e0030 3052 int new_val = q_vector->itr_val;
6eb5a7f1 3053 int avg_wire_size = 0;
047e0030 3054 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 3055
6eb5a7f1
AD
3056 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3057 * ints/sec - ITR timer value of 120 ticks.
3058 */
3059 if (adapter->link_speed != SPEED_1000) {
047e0030 3060 new_val = 976;
6eb5a7f1 3061 goto set_itr_val;
9d5c8243 3062 }
047e0030
AD
3063
3064 if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3065 struct igb_ring *ring = q_vector->rx_ring;
3066 avg_wire_size = ring->total_bytes / ring->total_packets;
3067 }
3068
3069 if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3070 struct igb_ring *ring = q_vector->tx_ring;
3071 avg_wire_size = max_t(u32, avg_wire_size,
3072 (ring->total_bytes /
3073 ring->total_packets));
3074 }
3075
3076 /* if avg_wire_size isn't set no work was done */
3077 if (!avg_wire_size)
3078 goto clear_counts;
9d5c8243 3079
6eb5a7f1
AD
3080 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3081 avg_wire_size += 24;
3082
3083 /* Don't starve jumbo frames */
3084 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3085
6eb5a7f1
AD
3086 /* Give a little boost to mid-size frames */
3087 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3088 new_val = avg_wire_size / 3;
3089 else
3090 new_val = avg_wire_size / 2;
9d5c8243 3091
6eb5a7f1 3092set_itr_val:
047e0030
AD
3093 if (new_val != q_vector->itr_val) {
3094 q_vector->itr_val = new_val;
3095 q_vector->set_itr = 1;
9d5c8243 3096 }
6eb5a7f1 3097clear_counts:
047e0030
AD
3098 if (q_vector->rx_ring) {
3099 q_vector->rx_ring->total_bytes = 0;
3100 q_vector->rx_ring->total_packets = 0;
3101 }
3102 if (q_vector->tx_ring) {
3103 q_vector->tx_ring->total_bytes = 0;
3104 q_vector->tx_ring->total_packets = 0;
3105 }
9d5c8243
AK
3106}
3107
3108/**
3109 * igb_update_itr - update the dynamic ITR value based on statistics
3110 * Stores a new ITR value based on packets and byte
3111 * counts during the last interrupt. The advantage of per interrupt
3112 * computation is faster updates and more accurate ITR for the current
3113 * traffic pattern. Constants in this function were computed
3114 * based on theoretical maximum wire speed and thresholds were set based
3115 * on testing data as well as attempting to minimize response time
3116 * while increasing bulk throughput.
3117 * this functionality is controlled by the InterruptThrottleRate module
3118 * parameter (see igb_param.c)
3119 * NOTE: These calculations are only valid when operating in a single-
3120 * queue environment.
3121 * @adapter: pointer to adapter
047e0030 3122 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3123 * @packets: the number of packets during this measurement interval
3124 * @bytes: the number of bytes during this measurement interval
3125 **/
3126static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3127 int packets, int bytes)
3128{
3129 unsigned int retval = itr_setting;
3130
3131 if (packets == 0)
3132 goto update_itr_done;
3133
3134 switch (itr_setting) {
3135 case lowest_latency:
3136 /* handle TSO and jumbo frames */
3137 if (bytes/packets > 8000)
3138 retval = bulk_latency;
3139 else if ((packets < 5) && (bytes > 512))
3140 retval = low_latency;
3141 break;
3142 case low_latency: /* 50 usec aka 20000 ints/s */
3143 if (bytes > 10000) {
3144 /* this if handles the TSO accounting */
3145 if (bytes/packets > 8000) {
3146 retval = bulk_latency;
3147 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3148 retval = bulk_latency;
3149 } else if ((packets > 35)) {
3150 retval = lowest_latency;
3151 }
3152 } else if (bytes/packets > 2000) {
3153 retval = bulk_latency;
3154 } else if (packets <= 2 && bytes < 512) {
3155 retval = lowest_latency;
3156 }
3157 break;
3158 case bulk_latency: /* 250 usec aka 4000 ints/s */
3159 if (bytes > 25000) {
3160 if (packets > 35)
3161 retval = low_latency;
1e5c3d21 3162 } else if (bytes < 1500) {
9d5c8243
AK
3163 retval = low_latency;
3164 }
3165 break;
3166 }
3167
3168update_itr_done:
3169 return retval;
3170}
3171
6eb5a7f1 3172static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3173{
047e0030 3174 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3175 u16 current_itr;
047e0030 3176 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3177
3178 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3179 if (adapter->link_speed != SPEED_1000) {
3180 current_itr = 0;
3181 new_itr = 4000;
3182 goto set_itr_now;
3183 }
3184
3185 adapter->rx_itr = igb_update_itr(adapter,
3186 adapter->rx_itr,
3187 adapter->rx_ring->total_packets,
3188 adapter->rx_ring->total_bytes);
9d5c8243 3189
047e0030
AD
3190 adapter->tx_itr = igb_update_itr(adapter,
3191 adapter->tx_itr,
3192 adapter->tx_ring->total_packets,
3193 adapter->tx_ring->total_bytes);
3194 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3195
6eb5a7f1 3196 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3197 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3198 current_itr = low_latency;
3199
9d5c8243
AK
3200 switch (current_itr) {
3201 /* counts and packets in update_itr are dependent on these numbers */
3202 case lowest_latency:
78b1f607 3203 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3204 break;
3205 case low_latency:
78b1f607 3206 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3207 break;
3208 case bulk_latency:
78b1f607 3209 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3210 break;
3211 default:
3212 break;
3213 }
3214
3215set_itr_now:
6eb5a7f1
AD
3216 adapter->rx_ring->total_bytes = 0;
3217 adapter->rx_ring->total_packets = 0;
047e0030
AD
3218 adapter->tx_ring->total_bytes = 0;
3219 adapter->tx_ring->total_packets = 0;
6eb5a7f1 3220
047e0030 3221 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3222 /* this attempts to bias the interrupt rate towards Bulk
3223 * by adding intermediate steps when interrupt rate is
3224 * increasing */
047e0030
AD
3225 new_itr = new_itr > q_vector->itr_val ?
3226 max((new_itr * q_vector->itr_val) /
3227 (new_itr + (q_vector->itr_val >> 2)),
3228 new_itr) :
9d5c8243
AK
3229 new_itr;
3230 /* Don't write the value here; it resets the adapter's
3231 * internal timer, and causes us to delay far longer than
3232 * we should between interrupts. Instead, we write the ITR
3233 * value at the beginning of the next interrupt so the timing
3234 * ends up being correct.
3235 */
047e0030
AD
3236 q_vector->itr_val = new_itr;
3237 q_vector->set_itr = 1;
9d5c8243
AK
3238 }
3239
3240 return;
3241}
3242
9d5c8243
AK
3243#define IGB_TX_FLAGS_CSUM 0x00000001
3244#define IGB_TX_FLAGS_VLAN 0x00000002
3245#define IGB_TX_FLAGS_TSO 0x00000004
3246#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3247#define IGB_TX_FLAGS_TSTAMP 0x00000010
3248#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3249#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3250
85ad76b2 3251static inline int igb_tso_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3252 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3253{
3254 struct e1000_adv_tx_context_desc *context_desc;
3255 unsigned int i;
3256 int err;
3257 struct igb_buffer *buffer_info;
3258 u32 info = 0, tu_cmd = 0;
3259 u32 mss_l4len_idx, l4len;
3260 *hdr_len = 0;
3261
3262 if (skb_header_cloned(skb)) {
3263 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3264 if (err)
3265 return err;
3266 }
3267
3268 l4len = tcp_hdrlen(skb);
3269 *hdr_len += l4len;
3270
3271 if (skb->protocol == htons(ETH_P_IP)) {
3272 struct iphdr *iph = ip_hdr(skb);
3273 iph->tot_len = 0;
3274 iph->check = 0;
3275 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3276 iph->daddr, 0,
3277 IPPROTO_TCP,
3278 0);
3279 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3280 ipv6_hdr(skb)->payload_len = 0;
3281 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3282 &ipv6_hdr(skb)->daddr,
3283 0, IPPROTO_TCP, 0);
3284 }
3285
3286 i = tx_ring->next_to_use;
3287
3288 buffer_info = &tx_ring->buffer_info[i];
3289 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3290 /* VLAN MACLEN IPLEN */
3291 if (tx_flags & IGB_TX_FLAGS_VLAN)
3292 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3293 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3294 *hdr_len += skb_network_offset(skb);
3295 info |= skb_network_header_len(skb);
3296 *hdr_len += skb_network_header_len(skb);
3297 context_desc->vlan_macip_lens = cpu_to_le32(info);
3298
3299 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3300 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3301
3302 if (skb->protocol == htons(ETH_P_IP))
3303 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3304 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3305
3306 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3307
3308 /* MSS L4LEN IDX */
3309 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3310 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3311
73cd78f1 3312 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
3313 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3314 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
3315
3316 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3317 context_desc->seqnum_seed = 0;
3318
3319 buffer_info->time_stamp = jiffies;
0e014cb1 3320 buffer_info->next_to_watch = i;
9d5c8243
AK
3321 buffer_info->dma = 0;
3322 i++;
3323 if (i == tx_ring->count)
3324 i = 0;
3325
3326 tx_ring->next_to_use = i;
3327
3328 return true;
3329}
3330
85ad76b2
AD
3331static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
3332 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
3333{
3334 struct e1000_adv_tx_context_desc *context_desc;
80785298 3335 struct pci_dev *pdev = tx_ring->pdev;
9d5c8243
AK
3336 struct igb_buffer *buffer_info;
3337 u32 info = 0, tu_cmd = 0;
80785298 3338 unsigned int i;
9d5c8243
AK
3339
3340 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3341 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3342 i = tx_ring->next_to_use;
3343 buffer_info = &tx_ring->buffer_info[i];
3344 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3345
3346 if (tx_flags & IGB_TX_FLAGS_VLAN)
3347 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
cdfd01fc 3348
9d5c8243
AK
3349 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3350 if (skb->ip_summed == CHECKSUM_PARTIAL)
3351 info |= skb_network_header_len(skb);
3352
3353 context_desc->vlan_macip_lens = cpu_to_le32(info);
3354
3355 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3356
3357 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
3358 __be16 protocol;
3359
3360 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3361 const struct vlan_ethhdr *vhdr =
3362 (const struct vlan_ethhdr*)skb->data;
3363
3364 protocol = vhdr->h_vlan_encapsulated_proto;
3365 } else {
3366 protocol = skb->protocol;
3367 }
3368
3369 switch (protocol) {
09640e63 3370 case cpu_to_be16(ETH_P_IP):
9d5c8243 3371 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
3372 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3373 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3374 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3375 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 3376 break;
09640e63 3377 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
3378 /* XXX what about other V6 headers?? */
3379 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3380 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
3381 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3382 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
3383 break;
3384 default:
3385 if (unlikely(net_ratelimit()))
80785298 3386 dev_warn(&pdev->dev,
44b0cda3
MW
3387 "partial checksum but proto=%x!\n",
3388 skb->protocol);
3389 break;
3390 }
9d5c8243
AK
3391 }
3392
3393 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3394 context_desc->seqnum_seed = 0;
85ad76b2 3395 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 3396 context_desc->mss_l4len_idx =
85ad76b2 3397 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
3398
3399 buffer_info->time_stamp = jiffies;
0e014cb1 3400 buffer_info->next_to_watch = i;
9d5c8243
AK
3401 buffer_info->dma = 0;
3402
3403 i++;
3404 if (i == tx_ring->count)
3405 i = 0;
3406 tx_ring->next_to_use = i;
3407
3408 return true;
3409 }
9d5c8243
AK
3410 return false;
3411}
3412
3413#define IGB_MAX_TXD_PWR 16
3414#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3415
80785298 3416static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
0e014cb1 3417 unsigned int first)
9d5c8243
AK
3418{
3419 struct igb_buffer *buffer_info;
80785298 3420 struct pci_dev *pdev = tx_ring->pdev;
9d5c8243
AK
3421 unsigned int len = skb_headlen(skb);
3422 unsigned int count = 0, i;
3423 unsigned int f;
65689fef 3424 dma_addr_t *map;
9d5c8243
AK
3425
3426 i = tx_ring->next_to_use;
3427
80785298
AD
3428 if (skb_dma_map(&pdev->dev, skb, DMA_TO_DEVICE)) {
3429 dev_err(&pdev->dev, "TX DMA map failed\n");
65689fef
AD
3430 return 0;
3431 }
3432
3433 map = skb_shinfo(skb)->dma_maps;
3434
9d5c8243
AK
3435 buffer_info = &tx_ring->buffer_info[i];
3436 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3437 buffer_info->length = len;
3438 /* set time_stamp *before* dma to help avoid a possible race */
3439 buffer_info->time_stamp = jiffies;
0e014cb1 3440 buffer_info->next_to_watch = i;
042a53a9 3441 buffer_info->dma = skb_shinfo(skb)->dma_head;
9d5c8243
AK
3442
3443 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3444 struct skb_frag_struct *frag;
3445
65689fef
AD
3446 i++;
3447 if (i == tx_ring->count)
3448 i = 0;
3449
9d5c8243
AK
3450 frag = &skb_shinfo(skb)->frags[f];
3451 len = frag->size;
3452
3453 buffer_info = &tx_ring->buffer_info[i];
3454 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3455 buffer_info->length = len;
3456 buffer_info->time_stamp = jiffies;
0e014cb1 3457 buffer_info->next_to_watch = i;
65689fef 3458 buffer_info->dma = map[count];
9d5c8243 3459 count++;
9d5c8243
AK
3460 }
3461
9d5c8243 3462 tx_ring->buffer_info[i].skb = skb;
0e014cb1 3463 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 3464
cdfd01fc 3465 return ++count;
9d5c8243
AK
3466}
3467
85ad76b2 3468static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3469 int tx_flags, int count, u32 paylen,
3470 u8 hdr_len)
3471{
cdfd01fc 3472 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
3473 struct igb_buffer *buffer_info;
3474 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 3475 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
3476
3477 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3478 E1000_ADVTXD_DCMD_DEXT);
3479
3480 if (tx_flags & IGB_TX_FLAGS_VLAN)
3481 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3482
33af6bcc
PO
3483 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3484 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3485
9d5c8243
AK
3486 if (tx_flags & IGB_TX_FLAGS_TSO) {
3487 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3488
3489 /* insert tcp checksum */
3490 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3491
3492 /* insert ip checksum */
3493 if (tx_flags & IGB_TX_FLAGS_IPV4)
3494 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3495
3496 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3497 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3498 }
3499
85ad76b2
AD
3500 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
3501 (tx_flags & (IGB_TX_FLAGS_CSUM |
3502 IGB_TX_FLAGS_TSO |
7dfc16fa 3503 IGB_TX_FLAGS_VLAN)))
85ad76b2 3504 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
3505
3506 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3507
cdfd01fc 3508 do {
9d5c8243
AK
3509 buffer_info = &tx_ring->buffer_info[i];
3510 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3511 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3512 tx_desc->read.cmd_type_len =
3513 cpu_to_le32(cmd_type_len | buffer_info->length);
3514 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 3515 count--;
9d5c8243
AK
3516 i++;
3517 if (i == tx_ring->count)
3518 i = 0;
cdfd01fc 3519 } while (count > 0);
9d5c8243 3520
85ad76b2 3521 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
3522 /* Force memory writes to complete before letting h/w
3523 * know there are new descriptors to fetch. (Only
3524 * applicable for weak-ordered memory model archs,
3525 * such as IA-64). */
3526 wmb();
3527
3528 tx_ring->next_to_use = i;
fce99e34 3529 writel(i, tx_ring->tail);
9d5c8243
AK
3530 /* we need this if more than one processor can write to our tail
3531 * at a time, it syncronizes IO on IA64/Altix systems */
3532 mmiowb();
3533}
3534
e694e964 3535static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 3536{
e694e964
AD
3537 struct net_device *netdev = tx_ring->netdev;
3538
661086df 3539 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 3540
9d5c8243
AK
3541 /* Herbert's original patch had:
3542 * smp_mb__after_netif_stop_queue();
3543 * but since that doesn't exist yet, just open code it. */
3544 smp_mb();
3545
3546 /* We need to check again in a case another CPU has just
3547 * made room available. */
c493ea45 3548 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
3549 return -EBUSY;
3550
3551 /* A reprieve! */
661086df 3552 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 3553 tx_ring->tx_stats.restart_queue++;
9d5c8243
AK
3554 return 0;
3555}
3556
e694e964 3557static int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 3558{
c493ea45 3559 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 3560 return 0;
e694e964 3561 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
3562}
3563
b1a436c3
AD
3564netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3565 struct igb_ring *tx_ring)
9d5c8243 3566{
e694e964 3567 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
0e014cb1 3568 unsigned int first;
9d5c8243 3569 unsigned int tx_flags = 0;
9d5c8243 3570 u8 hdr_len = 0;
cdfd01fc 3571 int tso = 0, count;
c5b9bd5e 3572 union skb_shared_tx *shtx = skb_tx(skb);
9d5c8243 3573
9d5c8243
AK
3574 /* need: 1 descriptor per page,
3575 * + 2 desc gap to keep tail from touching head,
3576 * + 1 desc for skb->data,
3577 * + 1 desc for context descriptor,
3578 * otherwise try next time */
e694e964 3579 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 3580 /* this is a hard error */
9d5c8243
AK
3581 return NETDEV_TX_BUSY;
3582 }
33af6bcc 3583
33af6bcc
PO
3584 if (unlikely(shtx->hardware)) {
3585 shtx->in_progress = 1;
3586 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 3587 }
9d5c8243 3588
cdfd01fc 3589 if (vlan_tx_tag_present(skb) && adapter->vlgrp) {
9d5c8243
AK
3590 tx_flags |= IGB_TX_FLAGS_VLAN;
3591 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3592 }
3593
661086df
PWJ
3594 if (skb->protocol == htons(ETH_P_IP))
3595 tx_flags |= IGB_TX_FLAGS_IPV4;
3596
0e014cb1 3597 first = tx_ring->next_to_use;
85ad76b2
AD
3598 if (skb_is_gso(skb)) {
3599 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
cdfd01fc 3600
85ad76b2
AD
3601 if (tso < 0) {
3602 dev_kfree_skb_any(skb);
3603 return NETDEV_TX_OK;
3604 }
9d5c8243
AK
3605 }
3606
3607 if (tso)
3608 tx_flags |= IGB_TX_FLAGS_TSO;
85ad76b2 3609 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
3610 (skb->ip_summed == CHECKSUM_PARTIAL))
3611 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 3612
65689fef 3613 /*
cdfd01fc 3614 * count reflects descriptors mapped, if 0 or less then mapping error
65689fef
AD
3615 * has occured and we need to rewind the descriptor queue
3616 */
80785298 3617 count = igb_tx_map_adv(tx_ring, skb, first);
cdfd01fc 3618 if (count <= 0) {
65689fef
AD
3619 dev_kfree_skb_any(skb);
3620 tx_ring->buffer_info[first].time_stamp = 0;
3621 tx_ring->next_to_use = first;
85ad76b2 3622 return NETDEV_TX_OK;
65689fef 3623 }
9d5c8243 3624
85ad76b2
AD
3625 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
3626
3627 /* Make sure there is space in the ring for the next send. */
e694e964 3628 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 3629
9d5c8243
AK
3630 return NETDEV_TX_OK;
3631}
3632
3b29a56d
SH
3633static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3634 struct net_device *netdev)
9d5c8243
AK
3635{
3636 struct igb_adapter *adapter = netdev_priv(netdev);
661086df 3637 struct igb_ring *tx_ring;
661086df 3638 int r_idx = 0;
b1a436c3
AD
3639
3640 if (test_bit(__IGB_DOWN, &adapter->state)) {
3641 dev_kfree_skb_any(skb);
3642 return NETDEV_TX_OK;
3643 }
3644
3645 if (skb->len <= 0) {
3646 dev_kfree_skb_any(skb);
3647 return NETDEV_TX_OK;
3648 }
3649
1bfaf07b 3650 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 3651 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
3652
3653 /* This goes back to the question of how to logically map a tx queue
3654 * to a flow. Right now, performance is impacted slightly negatively
3655 * if using multiple tx queues. If the stack breaks away from a
3656 * single qdisc implementation, we can look at this again. */
e694e964 3657 return igb_xmit_frame_ring_adv(skb, tx_ring);
9d5c8243
AK
3658}
3659
3660/**
3661 * igb_tx_timeout - Respond to a Tx Hang
3662 * @netdev: network interface device structure
3663 **/
3664static void igb_tx_timeout(struct net_device *netdev)
3665{
3666 struct igb_adapter *adapter = netdev_priv(netdev);
3667 struct e1000_hw *hw = &adapter->hw;
3668
3669 /* Do the reset outside of interrupt context */
3670 adapter->tx_timeout_count++;
f7ba205e 3671
9d5c8243 3672 schedule_work(&adapter->reset_task);
265de409
AD
3673 wr32(E1000_EICS,
3674 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
3675}
3676
3677static void igb_reset_task(struct work_struct *work)
3678{
3679 struct igb_adapter *adapter;
3680 adapter = container_of(work, struct igb_adapter, reset_task);
3681
3682 igb_reinit_locked(adapter);
3683}
3684
3685/**
3686 * igb_get_stats - Get System Network Statistics
3687 * @netdev: network interface device structure
3688 *
3689 * Returns the address of the device statistics structure.
3690 * The statistics are actually updated from the timer callback.
3691 **/
73cd78f1 3692static struct net_device_stats *igb_get_stats(struct net_device *netdev)
9d5c8243 3693{
9d5c8243 3694 /* only return the current stats */
8d24e933 3695 return &netdev->stats;
9d5c8243
AK
3696}
3697
3698/**
3699 * igb_change_mtu - Change the Maximum Transfer Unit
3700 * @netdev: network interface device structure
3701 * @new_mtu: new value for maximum frame size
3702 *
3703 * Returns 0 on success, negative on failure
3704 **/
3705static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3706{
3707 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 3708 struct pci_dev *pdev = adapter->pdev;
9d5c8243 3709 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4c844851 3710 u32 rx_buffer_len, i;
9d5c8243 3711
c809d227 3712 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 3713 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
3714 return -EINVAL;
3715 }
3716
9d5c8243 3717 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 3718 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
3719 return -EINVAL;
3720 }
3721
3722 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3723 msleep(1);
73cd78f1 3724
9d5c8243
AK
3725 /* igb_down has a dependency on max_frame_size */
3726 adapter->max_frame_size = max_frame;
9d5c8243
AK
3727 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3728 * means we reserve 2 more, this pushes us to allocate from the next
3729 * larger slab size.
3730 * i.e. RXBUFFER_2048 --> size-4096 slab
3731 */
3732
7d95b717 3733 if (max_frame <= IGB_RXBUFFER_1024)
4c844851 3734 rx_buffer_len = IGB_RXBUFFER_1024;
6ec43fe6 3735 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4c844851 3736 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
6ec43fe6 3737 else
4c844851
AD
3738 rx_buffer_len = IGB_RXBUFFER_128;
3739
3740 if (netif_running(netdev))
3741 igb_down(adapter);
9d5c8243 3742
090b1795 3743 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
3744 netdev->mtu, new_mtu);
3745 netdev->mtu = new_mtu;
3746
4c844851
AD
3747 for (i = 0; i < adapter->num_rx_queues; i++)
3748 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3749
9d5c8243
AK
3750 if (netif_running(netdev))
3751 igb_up(adapter);
3752 else
3753 igb_reset(adapter);
3754
3755 clear_bit(__IGB_RESETTING, &adapter->state);
3756
3757 return 0;
3758}
3759
3760/**
3761 * igb_update_stats - Update the board statistics counters
3762 * @adapter: board private structure
3763 **/
3764
3765void igb_update_stats(struct igb_adapter *adapter)
3766{
8d24e933 3767 struct net_device *netdev = adapter->netdev;
9d5c8243
AK
3768 struct e1000_hw *hw = &adapter->hw;
3769 struct pci_dev *pdev = adapter->pdev;
3f9c0164 3770 u32 rnbc;
9d5c8243 3771 u16 phy_tmp;
3f9c0164
AD
3772 int i;
3773 u64 bytes, packets;
9d5c8243
AK
3774
3775#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3776
3777 /*
3778 * Prevent stats update while adapter is being reset, or if the pci
3779 * connection is down.
3780 */
3781 if (adapter->link_speed == 0)
3782 return;
3783 if (pci_channel_offline(pdev))
3784 return;
3785
3f9c0164
AD
3786 bytes = 0;
3787 packets = 0;
3788 for (i = 0; i < adapter->num_rx_queues; i++) {
3789 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3790 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3791 netdev->stats.rx_fifo_errors += rqdpc_tmp;
3792 bytes += adapter->rx_ring[i].rx_stats.bytes;
3793 packets += adapter->rx_ring[i].rx_stats.packets;
3794 }
3795
3796 netdev->stats.rx_bytes = bytes;
3797 netdev->stats.rx_packets = packets;
3798
3799 bytes = 0;
3800 packets = 0;
3801 for (i = 0; i < adapter->num_tx_queues; i++) {
3802 bytes += adapter->tx_ring[i].tx_stats.bytes;
3803 packets += adapter->tx_ring[i].tx_stats.packets;
3804 }
3805 netdev->stats.tx_bytes = bytes;
3806 netdev->stats.tx_packets = packets;
3807
3808 /* read stats registers */
9d5c8243
AK
3809 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3810 adapter->stats.gprc += rd32(E1000_GPRC);
3811 adapter->stats.gorc += rd32(E1000_GORCL);
3812 rd32(E1000_GORCH); /* clear GORCL */
3813 adapter->stats.bprc += rd32(E1000_BPRC);
3814 adapter->stats.mprc += rd32(E1000_MPRC);
3815 adapter->stats.roc += rd32(E1000_ROC);
3816
3817 adapter->stats.prc64 += rd32(E1000_PRC64);
3818 adapter->stats.prc127 += rd32(E1000_PRC127);
3819 adapter->stats.prc255 += rd32(E1000_PRC255);
3820 adapter->stats.prc511 += rd32(E1000_PRC511);
3821 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3822 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3823 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3824 adapter->stats.sec += rd32(E1000_SEC);
3825
3826 adapter->stats.mpc += rd32(E1000_MPC);
3827 adapter->stats.scc += rd32(E1000_SCC);
3828 adapter->stats.ecol += rd32(E1000_ECOL);
3829 adapter->stats.mcc += rd32(E1000_MCC);
3830 adapter->stats.latecol += rd32(E1000_LATECOL);
3831 adapter->stats.dc += rd32(E1000_DC);
3832 adapter->stats.rlec += rd32(E1000_RLEC);
3833 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3834 adapter->stats.xontxc += rd32(E1000_XONTXC);
3835 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3836 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3837 adapter->stats.fcruc += rd32(E1000_FCRUC);
3838 adapter->stats.gptc += rd32(E1000_GPTC);
3839 adapter->stats.gotc += rd32(E1000_GOTCL);
3840 rd32(E1000_GOTCH); /* clear GOTCL */
3f9c0164
AD
3841 rnbc = rd32(E1000_RNBC);
3842 adapter->stats.rnbc += rnbc;
3843 netdev->stats.rx_fifo_errors += rnbc;
9d5c8243
AK
3844 adapter->stats.ruc += rd32(E1000_RUC);
3845 adapter->stats.rfc += rd32(E1000_RFC);
3846 adapter->stats.rjc += rd32(E1000_RJC);
3847 adapter->stats.tor += rd32(E1000_TORH);
3848 adapter->stats.tot += rd32(E1000_TOTH);
3849 adapter->stats.tpr += rd32(E1000_TPR);
3850
3851 adapter->stats.ptc64 += rd32(E1000_PTC64);
3852 adapter->stats.ptc127 += rd32(E1000_PTC127);
3853 adapter->stats.ptc255 += rd32(E1000_PTC255);
3854 adapter->stats.ptc511 += rd32(E1000_PTC511);
3855 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3856 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3857
3858 adapter->stats.mptc += rd32(E1000_MPTC);
3859 adapter->stats.bptc += rd32(E1000_BPTC);
3860
3861 /* used for adaptive IFS */
9d5c8243
AK
3862 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3863 adapter->stats.tpt += hw->mac.tx_packet_delta;
3864 hw->mac.collision_delta = rd32(E1000_COLC);
3865 adapter->stats.colc += hw->mac.collision_delta;
3866
3867 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3868 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3869 adapter->stats.tncrs += rd32(E1000_TNCRS);
3870 adapter->stats.tsctc += rd32(E1000_TSCTC);
3871 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3872
3873 adapter->stats.iac += rd32(E1000_IAC);
3874 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3875 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3876 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3877 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3878 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3879 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3880 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3881 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3882
3883 /* Fill out the OS statistics structure */
8d24e933
AK
3884 netdev->stats.multicast = adapter->stats.mprc;
3885 netdev->stats.collisions = adapter->stats.colc;
9d5c8243
AK
3886
3887 /* Rx Errors */
3888
3889 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 3890 * our own version based on RUC and ROC */
8d24e933 3891 netdev->stats.rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
3892 adapter->stats.crcerrs + adapter->stats.algnerrc +
3893 adapter->stats.ruc + adapter->stats.roc +
3894 adapter->stats.cexterr;
8d24e933 3895 netdev->stats.rx_length_errors = adapter->stats.ruc +
9d5c8243 3896 adapter->stats.roc;
8d24e933
AK
3897 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3898 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3899 netdev->stats.rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
3900
3901 /* Tx Errors */
8d24e933 3902 netdev->stats.tx_errors = adapter->stats.ecol +
9d5c8243 3903 adapter->stats.latecol;
8d24e933
AK
3904 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3905 netdev->stats.tx_window_errors = adapter->stats.latecol;
3906 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
3907
3908 /* Tx Dropped needs to be maintained elsewhere */
3909
3910 /* Phy Stats */
3911 if (hw->phy.media_type == e1000_media_type_copper) {
3912 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 3913 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
3914 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3915 adapter->phy_stats.idle_errors += phy_tmp;
3916 }
3917 }
3918
3919 /* Management Stats */
3920 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3921 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3922 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3923}
3924
9d5c8243
AK
3925static irqreturn_t igb_msix_other(int irq, void *data)
3926{
047e0030 3927 struct igb_adapter *adapter = data;
9d5c8243 3928 struct e1000_hw *hw = &adapter->hw;
844290e5 3929 u32 icr = rd32(E1000_ICR);
844290e5 3930 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 3931
047e0030 3932 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
3933 /* HW is reporting DMA is out of sync */
3934 adapter->stats.doosync++;
3935 }
eebbbdba 3936
4ae196df
AD
3937 /* Check for a mailbox event */
3938 if (icr & E1000_ICR_VMMB)
3939 igb_msg_task(adapter);
3940
3941 if (icr & E1000_ICR_LSC) {
3942 hw->mac.get_link_status = 1;
3943 /* guard against interrupt when we're going down */
3944 if (!test_bit(__IGB_DOWN, &adapter->state))
3945 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3946 }
3947
25568a53
AD
3948 if (adapter->vfs_allocated_count)
3949 wr32(E1000_IMS, E1000_IMS_LSC |
3950 E1000_IMS_VMMB |
3951 E1000_IMS_DOUTSYNC);
3952 else
3953 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 3954 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
3955
3956 return IRQ_HANDLED;
3957}
3958
047e0030 3959static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 3960{
047e0030 3961 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 3962
047e0030
AD
3963 if (!q_vector->set_itr)
3964 return;
73cd78f1 3965
047e0030
AD
3966 if (!itr_val)
3967 itr_val = 0x4;
661086df 3968
047e0030
AD
3969 if (q_vector->itr_shift)
3970 itr_val |= itr_val << q_vector->itr_shift;
661086df 3971 else
047e0030 3972 itr_val |= 0x8000000;
661086df 3973
047e0030
AD
3974 writel(itr_val, q_vector->itr_register);
3975 q_vector->set_itr = 0;
6eb5a7f1
AD
3976}
3977
047e0030 3978static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 3979{
047e0030 3980 struct igb_q_vector *q_vector = data;
9d5c8243 3981
047e0030
AD
3982 /* Write the ITR value calculated from the previous interrupt. */
3983 igb_write_itr(q_vector);
9d5c8243 3984
047e0030 3985 napi_schedule(&q_vector->napi);
844290e5 3986
047e0030 3987 return IRQ_HANDLED;
fe4506b6
JC
3988}
3989
421e02f0 3990#ifdef CONFIG_IGB_DCA
047e0030 3991static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 3992{
047e0030 3993 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
3994 struct e1000_hw *hw = &adapter->hw;
3995 int cpu = get_cpu();
fe4506b6 3996
047e0030
AD
3997 if (q_vector->cpu == cpu)
3998 goto out_no_update;
3999
4000 if (q_vector->tx_ring) {
4001 int q = q_vector->tx_ring->reg_idx;
4002 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4003 if (hw->mac.type == e1000_82575) {
4004 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4005 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4006 } else {
047e0030
AD
4007 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4008 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4009 E1000_DCA_TXCTRL_CPUID_SHIFT;
4010 }
4011 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4012 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4013 }
4014 if (q_vector->rx_ring) {
4015 int q = q_vector->rx_ring->reg_idx;
4016 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4017 if (hw->mac.type == e1000_82575) {
2d064c06 4018 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4019 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4020 } else {
4021 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4022 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4023 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4024 }
fe4506b6
JC
4025 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4026 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4027 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4028 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4029 }
047e0030
AD
4030 q_vector->cpu = cpu;
4031out_no_update:
fe4506b6
JC
4032 put_cpu();
4033}
4034
4035static void igb_setup_dca(struct igb_adapter *adapter)
4036{
7e0e99ef 4037 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4038 int i;
4039
7dfc16fa 4040 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4041 return;
4042
7e0e99ef
AD
4043 /* Always use CB2 mode, difference is masked in the CB driver. */
4044 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4045
047e0030
AD
4046 for (i = 0; i < adapter->num_q_vectors; i++) {
4047 struct igb_q_vector *q_vector = adapter->q_vector[i];
4048 q_vector->cpu = -1;
4049 igb_update_dca(q_vector);
fe4506b6
JC
4050 }
4051}
4052
4053static int __igb_notify_dca(struct device *dev, void *data)
4054{
4055 struct net_device *netdev = dev_get_drvdata(dev);
4056 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4057 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4058 struct e1000_hw *hw = &adapter->hw;
4059 unsigned long event = *(unsigned long *)data;
4060
4061 switch (event) {
4062 case DCA_PROVIDER_ADD:
4063 /* if already enabled, don't do it again */
7dfc16fa 4064 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4065 break;
fe4506b6 4066 if (dca_add_requester(dev) == 0) {
bbd98fe4 4067 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4068 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4069 igb_setup_dca(adapter);
4070 break;
4071 }
4072 /* Fall Through since DCA is disabled. */
4073 case DCA_PROVIDER_REMOVE:
7dfc16fa 4074 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4075 /* without this a class_device is left
047e0030 4076 * hanging around in the sysfs model */
fe4506b6 4077 dca_remove_requester(dev);
090b1795 4078 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4079 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4080 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4081 }
4082 break;
4083 }
bbd98fe4 4084
fe4506b6 4085 return 0;
9d5c8243
AK
4086}
4087
fe4506b6
JC
4088static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4089 void *p)
4090{
4091 int ret_val;
4092
4093 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4094 __igb_notify_dca);
4095
4096 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4097}
421e02f0 4098#endif /* CONFIG_IGB_DCA */
9d5c8243 4099
4ae196df
AD
4100static void igb_ping_all_vfs(struct igb_adapter *adapter)
4101{
4102 struct e1000_hw *hw = &adapter->hw;
4103 u32 ping;
4104 int i;
4105
4106 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4107 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4108 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4109 ping |= E1000_VT_MSGTYPE_CTS;
4110 igb_write_mbx(hw, &ping, 1, i);
4111 }
4112}
4113
7d5753f0
AD
4114static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4115{
4116 struct e1000_hw *hw = &adapter->hw;
4117 u32 vmolr = rd32(E1000_VMOLR(vf));
4118 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4119
4120 vf_data->flags |= ~(IGB_VF_FLAG_UNI_PROMISC |
4121 IGB_VF_FLAG_MULTI_PROMISC);
4122 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4123
4124 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4125 vmolr |= E1000_VMOLR_MPME;
4126 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4127 } else {
4128 /*
4129 * if we have hashes and we are clearing a multicast promisc
4130 * flag we need to write the hashes to the MTA as this step
4131 * was previously skipped
4132 */
4133 if (vf_data->num_vf_mc_hashes > 30) {
4134 vmolr |= E1000_VMOLR_MPME;
4135 } else if (vf_data->num_vf_mc_hashes) {
4136 int j;
4137 vmolr |= E1000_VMOLR_ROMPE;
4138 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4139 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4140 }
4141 }
4142
4143 wr32(E1000_VMOLR(vf), vmolr);
4144
4145 /* there are flags left unprocessed, likely not supported */
4146 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4147 return -EINVAL;
4148
4149 return 0;
4150
4151}
4152
4ae196df
AD
4153static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4154 u32 *msgbuf, u32 vf)
4155{
4156 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4157 u16 *hash_list = (u16 *)&msgbuf[1];
4158 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4159 int i;
4160
7d5753f0 4161 /* salt away the number of multicast addresses assigned
4ae196df
AD
4162 * to this VF for later use to restore when the PF multi cast
4163 * list changes
4164 */
4165 vf_data->num_vf_mc_hashes = n;
4166
7d5753f0
AD
4167 /* only up to 30 hash values supported */
4168 if (n > 30)
4169 n = 30;
4170
4171 /* store the hashes for later use */
4ae196df 4172 for (i = 0; i < n; i++)
a419aef8 4173 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4174
4175 /* Flush and reset the mta with the new values */
ff41f8dc 4176 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4177
4178 return 0;
4179}
4180
4181static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4182{
4183 struct e1000_hw *hw = &adapter->hw;
4184 struct vf_data_storage *vf_data;
4185 int i, j;
4186
4187 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4188 u32 vmolr = rd32(E1000_VMOLR(i));
4189 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4190
4ae196df 4191 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4192
4193 if ((vf_data->num_vf_mc_hashes > 30) ||
4194 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4195 vmolr |= E1000_VMOLR_MPME;
4196 } else if (vf_data->num_vf_mc_hashes) {
4197 vmolr |= E1000_VMOLR_ROMPE;
4198 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4199 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4200 }
4201 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4202 }
4203}
4204
4205static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4206{
4207 struct e1000_hw *hw = &adapter->hw;
4208 u32 pool_mask, reg, vid;
4209 int i;
4210
4211 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4212
4213 /* Find the vlan filter for this id */
4214 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4215 reg = rd32(E1000_VLVF(i));
4216
4217 /* remove the vf from the pool */
4218 reg &= ~pool_mask;
4219
4220 /* if pool is empty then remove entry from vfta */
4221 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4222 (reg & E1000_VLVF_VLANID_ENABLE)) {
4223 reg = 0;
4224 vid = reg & E1000_VLVF_VLANID_MASK;
4225 igb_vfta_set(hw, vid, false);
4226 }
4227
4228 wr32(E1000_VLVF(i), reg);
4229 }
ae641bdc
AD
4230
4231 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
4232}
4233
4234static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4235{
4236 struct e1000_hw *hw = &adapter->hw;
4237 u32 reg, i;
4238
51466239
AD
4239 /* The vlvf table only exists on 82576 hardware and newer */
4240 if (hw->mac.type < e1000_82576)
4241 return -1;
4242
4243 /* we only need to do this if VMDq is enabled */
4ae196df
AD
4244 if (!adapter->vfs_allocated_count)
4245 return -1;
4246
4247 /* Find the vlan filter for this id */
4248 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4249 reg = rd32(E1000_VLVF(i));
4250 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4251 vid == (reg & E1000_VLVF_VLANID_MASK))
4252 break;
4253 }
4254
4255 if (add) {
4256 if (i == E1000_VLVF_ARRAY_SIZE) {
4257 /* Did not find a matching VLAN ID entry that was
4258 * enabled. Search for a free filter entry, i.e.
4259 * one without the enable bit set
4260 */
4261 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4262 reg = rd32(E1000_VLVF(i));
4263 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4264 break;
4265 }
4266 }
4267 if (i < E1000_VLVF_ARRAY_SIZE) {
4268 /* Found an enabled/available entry */
4269 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4270
4271 /* if !enabled we need to set this up in vfta */
4272 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
4273 /* add VID to filter table */
4274 igb_vfta_set(hw, vid, true);
4ae196df
AD
4275 reg |= E1000_VLVF_VLANID_ENABLE;
4276 }
cad6d05f
AD
4277 reg &= ~E1000_VLVF_VLANID_MASK;
4278 reg |= vid;
4ae196df 4279 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4280
4281 /* do not modify RLPML for PF devices */
4282 if (vf >= adapter->vfs_allocated_count)
4283 return 0;
4284
4285 if (!adapter->vf_data[vf].vlans_enabled) {
4286 u32 size;
4287 reg = rd32(E1000_VMOLR(vf));
4288 size = reg & E1000_VMOLR_RLPML_MASK;
4289 size += 4;
4290 reg &= ~E1000_VMOLR_RLPML_MASK;
4291 reg |= size;
4292 wr32(E1000_VMOLR(vf), reg);
4293 }
ae641bdc 4294
51466239 4295 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
4296 return 0;
4297 }
4298 } else {
4299 if (i < E1000_VLVF_ARRAY_SIZE) {
4300 /* remove vf from the pool */
4301 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4302 /* if pool is empty then remove entry from vfta */
4303 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4304 reg = 0;
4305 igb_vfta_set(hw, vid, false);
4306 }
4307 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
4308
4309 /* do not modify RLPML for PF devices */
4310 if (vf >= adapter->vfs_allocated_count)
4311 return 0;
4312
4313 adapter->vf_data[vf].vlans_enabled--;
4314 if (!adapter->vf_data[vf].vlans_enabled) {
4315 u32 size;
4316 reg = rd32(E1000_VMOLR(vf));
4317 size = reg & E1000_VMOLR_RLPML_MASK;
4318 size -= 4;
4319 reg &= ~E1000_VMOLR_RLPML_MASK;
4320 reg |= size;
4321 wr32(E1000_VMOLR(vf), reg);
4322 }
4ae196df
AD
4323 return 0;
4324 }
4325 }
4326 return -1;
4327}
4328
4329static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4330{
4331 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4332 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4333
4334 return igb_vlvf_set(adapter, vid, add, vf);
4335}
4336
f2ca0dbe 4337static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 4338{
f2ca0dbe
AD
4339 /* clear all flags */
4340 adapter->vf_data[vf].flags = 0;
4341 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
4342
4343 /* reset offloads to defaults */
7d5753f0 4344 igb_set_vmolr(adapter, vf);
4ae196df
AD
4345
4346 /* reset vlans for device */
4347 igb_clear_vf_vfta(adapter, vf);
4348
4349 /* reset multicast table array for vf */
4350 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4351
4352 /* Flush and reset the mta with the new values */
ff41f8dc 4353 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4354}
4355
f2ca0dbe
AD
4356static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4357{
4358 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4359
4360 /* generate a new mac address as we were hotplug removed/added */
4361 random_ether_addr(vf_mac);
4362
4363 /* process remaining reset events */
4364 igb_vf_reset(adapter, vf);
4365}
4366
4367static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
4368{
4369 struct e1000_hw *hw = &adapter->hw;
4370 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 4371 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
4372 u32 reg, msgbuf[3];
4373 u8 *addr = (u8 *)(&msgbuf[1]);
4374
4375 /* process all the same items cleared in a function level reset */
f2ca0dbe 4376 igb_vf_reset(adapter, vf);
4ae196df
AD
4377
4378 /* set vf mac address */
26ad9178 4379 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
4380
4381 /* enable transmit and receive for vf */
4382 reg = rd32(E1000_VFTE);
4383 wr32(E1000_VFTE, reg | (1 << vf));
4384 reg = rd32(E1000_VFRE);
4385 wr32(E1000_VFRE, reg | (1 << vf));
4386
f2ca0dbe 4387 adapter->vf_data[vf].flags = IGB_VF_FLAG_CTS;
4ae196df
AD
4388
4389 /* reply to reset with ack and vf mac address */
4390 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4391 memcpy(addr, vf_mac, 6);
4392 igb_write_mbx(hw, msgbuf, 3, vf);
4393}
4394
4395static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4396{
f2ca0dbe
AD
4397 unsigned char *addr = (char *)&msg[1];
4398 int err = -1;
4ae196df 4399
f2ca0dbe
AD
4400 if (is_valid_ether_addr(addr))
4401 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 4402
f2ca0dbe 4403 return err;
4ae196df
AD
4404}
4405
4406static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4407{
4408 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 4409 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
4410 u32 msg = E1000_VT_MSGTYPE_NACK;
4411
4412 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
4413 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
4414 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 4415 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 4416 vf_data->last_nack = jiffies;
4ae196df
AD
4417 }
4418}
4419
f2ca0dbe 4420static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 4421{
f2ca0dbe
AD
4422 struct pci_dev *pdev = adapter->pdev;
4423 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 4424 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 4425 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
4426 s32 retval;
4427
f2ca0dbe 4428 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df
AD
4429
4430 if (retval)
f2ca0dbe 4431 dev_err(&pdev->dev, "Error receiving message from VF\n");
4ae196df
AD
4432
4433 /* this is a message we already processed, do nothing */
4434 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 4435 return;
4ae196df
AD
4436
4437 /*
4438 * until the vf completes a reset it should not be
4439 * allowed to start any configuration.
4440 */
4441
4442 if (msgbuf[0] == E1000_VF_RESET) {
4443 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 4444 return;
4ae196df
AD
4445 }
4446
f2ca0dbe
AD
4447 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
4448 msgbuf[0] = E1000_VT_MSGTYPE_NACK;
4449 if (time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4450 igb_write_mbx(hw, msgbuf, 1, vf);
4451 vf_data->last_nack = jiffies;
4452 }
4453 return;
4ae196df
AD
4454 }
4455
4456 switch ((msgbuf[0] & 0xFFFF)) {
4457 case E1000_VF_SET_MAC_ADDR:
4458 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4459 break;
7d5753f0
AD
4460 case E1000_VF_SET_PROMISC:
4461 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
4462 break;
4ae196df
AD
4463 case E1000_VF_SET_MULTICAST:
4464 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4465 break;
4466 case E1000_VF_SET_LPE:
4467 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4468 break;
4469 case E1000_VF_SET_VLAN:
4470 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4471 break;
4472 default:
090b1795 4473 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
4474 retval = -1;
4475 break;
4476 }
4477
4478 /* notify the VF of the results of what it sent us */
4479 if (retval)
4480 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4481 else
4482 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4483
4484 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4485
4486 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 4487}
4ae196df 4488
f2ca0dbe
AD
4489static void igb_msg_task(struct igb_adapter *adapter)
4490{
4491 struct e1000_hw *hw = &adapter->hw;
4492 u32 vf;
4493
4494 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4495 /* process any reset requests */
4496 if (!igb_check_for_rst(hw, vf))
4497 igb_vf_reset_event(adapter, vf);
4498
4499 /* process any messages pending */
4500 if (!igb_check_for_msg(hw, vf))
4501 igb_rcv_msg_from_vf(adapter, vf);
4502
4503 /* process any acks */
4504 if (!igb_check_for_ack(hw, vf))
4505 igb_rcv_ack_from_vf(adapter, vf);
4506 }
4ae196df
AD
4507}
4508
68d480c4
AD
4509/**
4510 * igb_set_uta - Set unicast filter table address
4511 * @adapter: board private structure
4512 *
4513 * The unicast table address is a register array of 32-bit registers.
4514 * The table is meant to be used in a way similar to how the MTA is used
4515 * however due to certain limitations in the hardware it is necessary to
4516 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4517 * enable bit to allow vlan tag stripping when promiscous mode is enabled
4518 **/
4519static void igb_set_uta(struct igb_adapter *adapter)
4520{
4521 struct e1000_hw *hw = &adapter->hw;
4522 int i;
4523
4524 /* The UTA table only exists on 82576 hardware and newer */
4525 if (hw->mac.type < e1000_82576)
4526 return;
4527
4528 /* we only need to do this if VMDq is enabled */
4529 if (!adapter->vfs_allocated_count)
4530 return;
4531
4532 for (i = 0; i < hw->mac.uta_reg_count; i++)
4533 array_wr32(E1000_UTA, i, ~0);
4534}
4535
9d5c8243
AK
4536/**
4537 * igb_intr_msi - Interrupt Handler
4538 * @irq: interrupt number
4539 * @data: pointer to a network interface device structure
4540 **/
4541static irqreturn_t igb_intr_msi(int irq, void *data)
4542{
047e0030
AD
4543 struct igb_adapter *adapter = data;
4544 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
4545 struct e1000_hw *hw = &adapter->hw;
4546 /* read ICR disables interrupts using IAM */
4547 u32 icr = rd32(E1000_ICR);
4548
047e0030 4549 igb_write_itr(q_vector);
9d5c8243 4550
047e0030 4551 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4552 /* HW is reporting DMA is out of sync */
4553 adapter->stats.doosync++;
4554 }
4555
9d5c8243
AK
4556 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4557 hw->mac.get_link_status = 1;
4558 if (!test_bit(__IGB_DOWN, &adapter->state))
4559 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4560 }
4561
047e0030 4562 napi_schedule(&q_vector->napi);
9d5c8243
AK
4563
4564 return IRQ_HANDLED;
4565}
4566
4567/**
4a3c6433 4568 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
4569 * @irq: interrupt number
4570 * @data: pointer to a network interface device structure
4571 **/
4572static irqreturn_t igb_intr(int irq, void *data)
4573{
047e0030
AD
4574 struct igb_adapter *adapter = data;
4575 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
4576 struct e1000_hw *hw = &adapter->hw;
4577 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4578 * need for the IMC write */
4579 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
4580 if (!icr)
4581 return IRQ_NONE; /* Not our interrupt */
4582
047e0030 4583 igb_write_itr(q_vector);
9d5c8243
AK
4584
4585 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4586 * not set, then the adapter didn't send an interrupt */
4587 if (!(icr & E1000_ICR_INT_ASSERTED))
4588 return IRQ_NONE;
4589
047e0030 4590 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4591 /* HW is reporting DMA is out of sync */
4592 adapter->stats.doosync++;
4593 }
4594
9d5c8243
AK
4595 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4596 hw->mac.get_link_status = 1;
4597 /* guard against interrupt when we're going down */
4598 if (!test_bit(__IGB_DOWN, &adapter->state))
4599 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4600 }
4601
047e0030 4602 napi_schedule(&q_vector->napi);
9d5c8243
AK
4603
4604 return IRQ_HANDLED;
4605}
4606
047e0030 4607static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 4608{
047e0030 4609 struct igb_adapter *adapter = q_vector->adapter;
46544258 4610 struct e1000_hw *hw = &adapter->hw;
9d5c8243 4611
4fc82adf
AD
4612 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
4613 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 4614 if (!adapter->msix_entries)
6eb5a7f1 4615 igb_set_itr(adapter);
46544258 4616 else
047e0030 4617 igb_update_ring_itr(q_vector);
9d5c8243
AK
4618 }
4619
46544258
AD
4620 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4621 if (adapter->msix_entries)
047e0030 4622 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
4623 else
4624 igb_irq_enable(adapter);
4625 }
9d5c8243
AK
4626}
4627
46544258
AD
4628/**
4629 * igb_poll - NAPI Rx polling callback
4630 * @napi: napi polling structure
4631 * @budget: count of how many packets we should handle
4632 **/
4633static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 4634{
047e0030
AD
4635 struct igb_q_vector *q_vector = container_of(napi,
4636 struct igb_q_vector,
4637 napi);
4638 int tx_clean_complete = 1, work_done = 0;
9d5c8243 4639
421e02f0 4640#ifdef CONFIG_IGB_DCA
047e0030
AD
4641 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4642 igb_update_dca(q_vector);
fe4506b6 4643#endif
047e0030
AD
4644 if (q_vector->tx_ring)
4645 tx_clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 4646
047e0030
AD
4647 if (q_vector->rx_ring)
4648 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4649
4650 if (!tx_clean_complete)
4651 work_done = budget;
46544258 4652
9d5c8243 4653 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 4654 if (work_done < budget) {
288379f0 4655 napi_complete(napi);
047e0030 4656 igb_ring_irq_enable(q_vector);
9d5c8243
AK
4657 }
4658
46544258 4659 return work_done;
9d5c8243 4660}
6d8126f9 4661
33af6bcc 4662/**
c5b9bd5e 4663 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 4664 * @adapter: board private structure
c5b9bd5e
AD
4665 * @shhwtstamps: timestamp structure to update
4666 * @regval: unsigned 64bit system time value.
4667 *
4668 * We need to convert the system time value stored in the RX/TXSTMP registers
4669 * into a hwtstamp which can be used by the upper level timestamping functions
4670 */
4671static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
4672 struct skb_shared_hwtstamps *shhwtstamps,
4673 u64 regval)
4674{
4675 u64 ns;
4676
4677 ns = timecounter_cyc2time(&adapter->clock, regval);
4678 timecompare_update(&adapter->compare, ns);
4679 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
4680 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4681 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
4682}
4683
4684/**
4685 * igb_tx_hwtstamp - utility function which checks for TX time stamp
4686 * @q_vector: pointer to q_vector containing needed info
33af6bcc
PO
4687 * @skb: packet that was just sent
4688 *
4689 * If we were asked to do hardware stamping and such a time stamp is
4690 * available, then it must have been for this skb here because we only
4691 * allow only one such packet into the queue.
4692 */
c5b9bd5e 4693static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
33af6bcc 4694{
c5b9bd5e 4695 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc
PO
4696 union skb_shared_tx *shtx = skb_tx(skb);
4697 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
4698 struct skb_shared_hwtstamps shhwtstamps;
4699 u64 regval;
33af6bcc 4700
c5b9bd5e
AD
4701 /* if skb does not support hw timestamp or TX stamp not valid exit */
4702 if (likely(!shtx->hardware) ||
4703 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
4704 return;
4705
4706 regval = rd32(E1000_TXSTMPL);
4707 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4708
4709 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
4710 skb_tstamp_tx(skb, &shhwtstamps);
33af6bcc
PO
4711}
4712
9d5c8243
AK
4713/**
4714 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 4715 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
4716 * returns true if ring is completely cleaned
4717 **/
047e0030 4718static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 4719{
047e0030
AD
4720 struct igb_adapter *adapter = q_vector->adapter;
4721 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 4722 struct net_device *netdev = tx_ring->netdev;
0e014cb1 4723 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
4724 struct igb_buffer *buffer_info;
4725 struct sk_buff *skb;
0e014cb1 4726 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 4727 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
4728 unsigned int i, eop, count = 0;
4729 bool cleaned = false;
9d5c8243 4730
9d5c8243 4731 i = tx_ring->next_to_clean;
0e014cb1
AD
4732 eop = tx_ring->buffer_info[i].next_to_watch;
4733 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4734
4735 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4736 (count < tx_ring->count)) {
4737 for (cleaned = false; !cleaned; count++) {
4738 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 4739 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 4740 cleaned = (i == eop);
9d5c8243
AK
4741 skb = buffer_info->skb;
4742
4743 if (skb) {
4744 unsigned int segs, bytecount;
4745 /* gso_segs is currently only valid for tcp */
4746 segs = skb_shinfo(skb)->gso_segs ?: 1;
4747 /* multiply data chunks by size of headers */
4748 bytecount = ((segs - 1) * skb_headlen(skb)) +
4749 skb->len;
4750 total_packets += segs;
4751 total_bytes += bytecount;
33af6bcc 4752
c5b9bd5e 4753 igb_tx_hwtstamp(q_vector, skb);
9d5c8243
AK
4754 }
4755
80785298 4756 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 4757 tx_desc->wb.status = 0;
9d5c8243
AK
4758
4759 i++;
4760 if (i == tx_ring->count)
4761 i = 0;
9d5c8243 4762 }
0e014cb1
AD
4763 eop = tx_ring->buffer_info[i].next_to_watch;
4764 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4765 }
4766
9d5c8243
AK
4767 tx_ring->next_to_clean = i;
4768
fc7d345d 4769 if (unlikely(count &&
9d5c8243 4770 netif_carrier_ok(netdev) &&
c493ea45 4771 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
4772 /* Make sure that anybody stopping the queue after this
4773 * sees the new next_to_clean.
4774 */
4775 smp_mb();
661086df
PWJ
4776 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4777 !(test_bit(__IGB_DOWN, &adapter->state))) {
4778 netif_wake_subqueue(netdev, tx_ring->queue_index);
04a5fcaa 4779 tx_ring->tx_stats.restart_queue++;
661086df 4780 }
9d5c8243
AK
4781 }
4782
4783 if (tx_ring->detect_tx_hung) {
4784 /* Detect a transmit hang in hardware, this serializes the
4785 * check with the clearing of time_stamp and movement of i */
4786 tx_ring->detect_tx_hung = false;
4787 if (tx_ring->buffer_info[i].time_stamp &&
4788 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4789 (adapter->tx_timeout_factor * HZ))
4790 && !(rd32(E1000_STATUS) &
4791 E1000_STATUS_TXOFF)) {
4792
9d5c8243 4793 /* detected Tx unit hang */
80785298 4794 dev_err(&tx_ring->pdev->dev,
9d5c8243 4795 "Detected Tx Unit Hang\n"
2d064c06 4796 " Tx Queue <%d>\n"
9d5c8243
AK
4797 " TDH <%x>\n"
4798 " TDT <%x>\n"
4799 " next_to_use <%x>\n"
4800 " next_to_clean <%x>\n"
9d5c8243
AK
4801 "buffer_info[next_to_clean]\n"
4802 " time_stamp <%lx>\n"
0e014cb1 4803 " next_to_watch <%x>\n"
9d5c8243
AK
4804 " jiffies <%lx>\n"
4805 " desc.status <%x>\n",
2d064c06 4806 tx_ring->queue_index,
fce99e34
AD
4807 readl(tx_ring->head),
4808 readl(tx_ring->tail),
9d5c8243
AK
4809 tx_ring->next_to_use,
4810 tx_ring->next_to_clean,
f7ba205e 4811 tx_ring->buffer_info[eop].time_stamp,
0e014cb1 4812 eop,
9d5c8243 4813 jiffies,
0e014cb1 4814 eop_desc->wb.status);
661086df 4815 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
4816 }
4817 }
4818 tx_ring->total_bytes += total_bytes;
4819 tx_ring->total_packets += total_packets;
e21ed353
AD
4820 tx_ring->tx_stats.bytes += total_bytes;
4821 tx_ring->tx_stats.packets += total_packets;
0e014cb1 4822 return (count < tx_ring->count);
9d5c8243
AK
4823}
4824
9d5c8243
AK
4825/**
4826 * igb_receive_skb - helper function to handle rx indications
047e0030
AD
4827 * @q_vector: structure containing interrupt and ring information
4828 * @skb: packet to send up
4829 * @vlan_tag: vlan tag for packet
9d5c8243 4830 **/
047e0030
AD
4831static void igb_receive_skb(struct igb_q_vector *q_vector,
4832 struct sk_buff *skb,
4833 u16 vlan_tag)
4834{
4835 struct igb_adapter *adapter = q_vector->adapter;
4836
4837 if (vlan_tag)
4838 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
4839 vlan_tag, skb);
182ff8df 4840 else
047e0030 4841 napi_gro_receive(&q_vector->napi, skb);
9d5c8243
AK
4842}
4843
04a5fcaa 4844static inline void igb_rx_checksum_adv(struct igb_ring *ring,
9d5c8243
AK
4845 u32 status_err, struct sk_buff *skb)
4846{
4847 skb->ip_summed = CHECKSUM_NONE;
4848
4849 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
4850 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
4851 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 4852 return;
85ad76b2 4853
9d5c8243
AK
4854 /* TCP/UDP checksum error bit is set */
4855 if (status_err &
4856 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
4857 /*
4858 * work around errata with sctp packets where the TCPE aka
4859 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4860 * packets, (aka let the stack check the crc32c)
4861 */
85ad76b2
AD
4862 if ((skb->len == 60) &&
4863 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM))
04a5fcaa 4864 ring->rx_stats.csum_err++;
85ad76b2 4865
9d5c8243 4866 /* let the stack verify checksum errors */
9d5c8243
AK
4867 return;
4868 }
4869 /* It must be a TCP or UDP packet with a valid checksum */
4870 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4871 skb->ip_summed = CHECKSUM_UNNECESSARY;
4872
85ad76b2 4873 dev_dbg(&ring->pdev->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
4874}
4875
c5b9bd5e
AD
4876static inline void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
4877 struct sk_buff *skb)
4878{
4879 struct igb_adapter *adapter = q_vector->adapter;
4880 struct e1000_hw *hw = &adapter->hw;
4881 u64 regval;
4882
4883 /*
4884 * If this bit is set, then the RX registers contain the time stamp. No
4885 * other packet will be time stamped until we read these registers, so
4886 * read the registers to make them available again. Because only one
4887 * packet can be time stamped at a time, we know that the register
4888 * values must belong to this one here and therefore we don't need to
4889 * compare any of the additional attributes stored for it.
4890 *
4891 * If nothing went wrong, then it should have a skb_shared_tx that we
4892 * can turn into a skb_shared_hwtstamps.
4893 */
4894 if (likely(!(staterr & E1000_RXDADV_STAT_TS)))
4895 return;
4896 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
4897 return;
4898
4899 regval = rd32(E1000_RXSTMPL);
4900 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4901
4902 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
4903}
4c844851 4904static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
2d94d8ab
AD
4905 union e1000_adv_rx_desc *rx_desc)
4906{
4907 /* HW will not DMA in data larger than the given buffer, even if it
4908 * parses the (NFS, of course) header to be larger. In that case, it
4909 * fills the header buffer and spills the rest into the page.
4910 */
4911 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4912 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4c844851
AD
4913 if (hlen > rx_ring->rx_buffer_len)
4914 hlen = rx_ring->rx_buffer_len;
2d94d8ab
AD
4915 return hlen;
4916}
4917
047e0030
AD
4918static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
4919 int *work_done, int budget)
9d5c8243 4920{
047e0030 4921 struct igb_ring *rx_ring = q_vector->rx_ring;
e694e964 4922 struct net_device *netdev = rx_ring->netdev;
80785298 4923 struct pci_dev *pdev = rx_ring->pdev;
9d5c8243
AK
4924 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4925 struct igb_buffer *buffer_info , *next_buffer;
4926 struct sk_buff *skb;
9d5c8243
AK
4927 bool cleaned = false;
4928 int cleaned_count = 0;
4929 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 4930 unsigned int i;
2d94d8ab
AD
4931 u32 staterr;
4932 u16 length;
047e0030 4933 u16 vlan_tag;
9d5c8243
AK
4934
4935 i = rx_ring->next_to_clean;
69d3ca53 4936 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
4937 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4938 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4939
4940 while (staterr & E1000_RXD_STAT_DD) {
4941 if (*work_done >= budget)
4942 break;
4943 (*work_done)++;
9d5c8243 4944
69d3ca53
AD
4945 skb = buffer_info->skb;
4946 prefetch(skb->data - NET_IP_ALIGN);
4947 buffer_info->skb = NULL;
4948
4949 i++;
4950 if (i == rx_ring->count)
4951 i = 0;
42d0781a 4952
69d3ca53
AD
4953 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4954 prefetch(next_rxd);
4955 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
4956
4957 length = le16_to_cpu(rx_desc->wb.upper.length);
4958 cleaned = true;
4959 cleaned_count++;
4960
2d94d8ab 4961 if (buffer_info->dma) {
bf36c1a0 4962 pci_unmap_single(pdev, buffer_info->dma,
4c844851 4963 rx_ring->rx_buffer_len,
bf36c1a0 4964 PCI_DMA_FROMDEVICE);
91615f76 4965 buffer_info->dma = 0;
4c844851 4966 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
6ec43fe6
AD
4967 skb_put(skb, length);
4968 goto send_up;
4969 }
4c844851 4970 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
bf36c1a0
AD
4971 }
4972
4973 if (length) {
9d5c8243 4974 pci_unmap_page(pdev, buffer_info->page_dma,
bf36c1a0 4975 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
9d5c8243 4976 buffer_info->page_dma = 0;
bf36c1a0
AD
4977
4978 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4979 buffer_info->page,
4980 buffer_info->page_offset,
4981 length);
4982
6ec43fe6 4983 if (page_count(buffer_info->page) != 1)
bf36c1a0
AD
4984 buffer_info->page = NULL;
4985 else
4986 get_page(buffer_info->page);
9d5c8243
AK
4987
4988 skb->len += length;
4989 skb->data_len += length;
bf36c1a0 4990 skb->truesize += length;
9d5c8243 4991 }
9d5c8243 4992
bf36c1a0 4993 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
4994 buffer_info->skb = next_buffer->skb;
4995 buffer_info->dma = next_buffer->dma;
4996 next_buffer->skb = skb;
4997 next_buffer->dma = 0;
bf36c1a0
AD
4998 goto next_desc;
4999 }
69d3ca53 5000send_up:
9d5c8243
AK
5001 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5002 dev_kfree_skb_irq(skb);
5003 goto next_desc;
5004 }
9d5c8243 5005
c5b9bd5e 5006 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5007 total_bytes += skb->len;
5008 total_packets++;
5009
85ad76b2 5010 igb_rx_checksum_adv(rx_ring, staterr, skb);
9d5c8243
AK
5011
5012 skb->protocol = eth_type_trans(skb, netdev);
047e0030
AD
5013 skb_record_rx_queue(skb, rx_ring->queue_index);
5014
5015 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5016 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
9d5c8243 5017
047e0030 5018 igb_receive_skb(q_vector, skb, vlan_tag);
9d5c8243 5019
9d5c8243
AK
5020next_desc:
5021 rx_desc->wb.upper.status_error = 0;
5022
5023 /* return some buffers to hardware, one at a time is too slow */
5024 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 5025 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5026 cleaned_count = 0;
5027 }
5028
5029 /* use prefetched values */
5030 rx_desc = next_rxd;
5031 buffer_info = next_buffer;
9d5c8243
AK
5032 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5033 }
bf36c1a0 5034
9d5c8243 5035 rx_ring->next_to_clean = i;
c493ea45 5036 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
5037
5038 if (cleaned_count)
3b644cf6 5039 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5040
5041 rx_ring->total_packets += total_packets;
5042 rx_ring->total_bytes += total_bytes;
5043 rx_ring->rx_stats.packets += total_packets;
5044 rx_ring->rx_stats.bytes += total_bytes;
9d5c8243
AK
5045 return cleaned;
5046}
5047
9d5c8243
AK
5048/**
5049 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5050 * @adapter: address of board private structure
5051 **/
d7ee5b3a 5052void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
9d5c8243 5053{
e694e964 5054 struct net_device *netdev = rx_ring->netdev;
9d5c8243
AK
5055 union e1000_adv_rx_desc *rx_desc;
5056 struct igb_buffer *buffer_info;
5057 struct sk_buff *skb;
5058 unsigned int i;
db761762 5059 int bufsz;
9d5c8243
AK
5060
5061 i = rx_ring->next_to_use;
5062 buffer_info = &rx_ring->buffer_info[i];
5063
4c844851 5064 bufsz = rx_ring->rx_buffer_len;
db761762 5065
9d5c8243
AK
5066 while (cleaned_count--) {
5067 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5068
6ec43fe6 5069 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
9d5c8243 5070 if (!buffer_info->page) {
42d0781a 5071 buffer_info->page = netdev_alloc_page(netdev);
bf36c1a0 5072 if (!buffer_info->page) {
04a5fcaa 5073 rx_ring->rx_stats.alloc_failed++;
bf36c1a0
AD
5074 goto no_buffers;
5075 }
5076 buffer_info->page_offset = 0;
5077 } else {
5078 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
5079 }
5080 buffer_info->page_dma =
80785298 5081 pci_map_page(rx_ring->pdev, buffer_info->page,
bf36c1a0
AD
5082 buffer_info->page_offset,
5083 PAGE_SIZE / 2,
9d5c8243 5084 PCI_DMA_FROMDEVICE);
42d0781a
AD
5085 if (pci_dma_mapping_error(rx_ring->pdev,
5086 buffer_info->page_dma)) {
5087 buffer_info->page_dma = 0;
5088 rx_ring->rx_stats.alloc_failed++;
5089 goto no_buffers;
5090 }
9d5c8243
AK
5091 }
5092
42d0781a
AD
5093 skb = buffer_info->skb;
5094 if (!skb) {
89d71a66 5095 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
9d5c8243 5096 if (!skb) {
04a5fcaa 5097 rx_ring->rx_stats.alloc_failed++;
9d5c8243
AK
5098 goto no_buffers;
5099 }
5100
9d5c8243 5101 buffer_info->skb = skb;
42d0781a
AD
5102 }
5103 if (!buffer_info->dma) {
80785298
AD
5104 buffer_info->dma = pci_map_single(rx_ring->pdev,
5105 skb->data,
9d5c8243
AK
5106 bufsz,
5107 PCI_DMA_FROMDEVICE);
42d0781a
AD
5108 if (pci_dma_mapping_error(rx_ring->pdev,
5109 buffer_info->dma)) {
5110 buffer_info->dma = 0;
5111 rx_ring->rx_stats.alloc_failed++;
5112 goto no_buffers;
5113 }
9d5c8243
AK
5114 }
5115 /* Refresh the desc even if buffer_addrs didn't change because
5116 * each write-back erases this info. */
6ec43fe6 5117 if (bufsz < IGB_RXBUFFER_1024) {
9d5c8243
AK
5118 rx_desc->read.pkt_addr =
5119 cpu_to_le64(buffer_info->page_dma);
5120 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5121 } else {
42d0781a 5122 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
5123 rx_desc->read.hdr_addr = 0;
5124 }
5125
5126 i++;
5127 if (i == rx_ring->count)
5128 i = 0;
5129 buffer_info = &rx_ring->buffer_info[i];
5130 }
5131
5132no_buffers:
5133 if (rx_ring->next_to_use != i) {
5134 rx_ring->next_to_use = i;
5135 if (i == 0)
5136 i = (rx_ring->count - 1);
5137 else
5138 i--;
5139
5140 /* Force memory writes to complete before letting h/w
5141 * know there are new descriptors to fetch. (Only
5142 * applicable for weak-ordered memory model archs,
5143 * such as IA-64). */
5144 wmb();
fce99e34 5145 writel(i, rx_ring->tail);
9d5c8243
AK
5146 }
5147}
5148
5149/**
5150 * igb_mii_ioctl -
5151 * @netdev:
5152 * @ifreq:
5153 * @cmd:
5154 **/
5155static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5156{
5157 struct igb_adapter *adapter = netdev_priv(netdev);
5158 struct mii_ioctl_data *data = if_mii(ifr);
5159
5160 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5161 return -EOPNOTSUPP;
5162
5163 switch (cmd) {
5164 case SIOCGMIIPHY:
5165 data->phy_id = adapter->hw.phy.addr;
5166 break;
5167 case SIOCGMIIREG:
f5f4cf08
AD
5168 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5169 &data->val_out))
9d5c8243
AK
5170 return -EIO;
5171 break;
5172 case SIOCSMIIREG:
5173 default:
5174 return -EOPNOTSUPP;
5175 }
5176 return 0;
5177}
5178
c6cb090b
PO
5179/**
5180 * igb_hwtstamp_ioctl - control hardware time stamping
5181 * @netdev:
5182 * @ifreq:
5183 * @cmd:
5184 *
33af6bcc
PO
5185 * Outgoing time stamping can be enabled and disabled. Play nice and
5186 * disable it when requested, although it shouldn't case any overhead
5187 * when no packet needs it. At most one packet in the queue may be
5188 * marked for time stamping, otherwise it would be impossible to tell
5189 * for sure to which packet the hardware time stamp belongs.
5190 *
5191 * Incoming time stamping has to be configured via the hardware
5192 * filters. Not all combinations are supported, in particular event
5193 * type has to be specified. Matching the kind of event packet is
5194 * not supported, with the exception of "all V2 events regardless of
5195 * level 2 or 4".
5196 *
c6cb090b
PO
5197 **/
5198static int igb_hwtstamp_ioctl(struct net_device *netdev,
5199 struct ifreq *ifr, int cmd)
5200{
33af6bcc
PO
5201 struct igb_adapter *adapter = netdev_priv(netdev);
5202 struct e1000_hw *hw = &adapter->hw;
c6cb090b 5203 struct hwtstamp_config config;
c5b9bd5e
AD
5204 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
5205 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 5206 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
5207 bool is_l4 = false;
5208 bool is_l2 = false;
33af6bcc 5209 u32 regval;
c6cb090b
PO
5210
5211 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5212 return -EFAULT;
5213
5214 /* reserved for future extensions */
5215 if (config.flags)
5216 return -EINVAL;
5217
33af6bcc
PO
5218 switch (config.tx_type) {
5219 case HWTSTAMP_TX_OFF:
c5b9bd5e 5220 tsync_tx_ctl = 0;
33af6bcc 5221 case HWTSTAMP_TX_ON:
33af6bcc
PO
5222 break;
5223 default:
5224 return -ERANGE;
5225 }
5226
5227 switch (config.rx_filter) {
5228 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 5229 tsync_rx_ctl = 0;
33af6bcc
PO
5230 break;
5231 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5232 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5233 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5234 case HWTSTAMP_FILTER_ALL:
5235 /*
5236 * register TSYNCRXCFG must be set, therefore it is not
5237 * possible to time stamp both Sync and Delay_Req messages
5238 * => fall back to time stamping all packets
5239 */
c5b9bd5e 5240 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
5241 config.rx_filter = HWTSTAMP_FILTER_ALL;
5242 break;
5243 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 5244 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5245 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 5246 is_l4 = true;
33af6bcc
PO
5247 break;
5248 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 5249 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 5250 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 5251 is_l4 = true;
33af6bcc
PO
5252 break;
5253 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5254 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 5255 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5256 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
5257 is_l2 = true;
5258 is_l4 = true;
33af6bcc
PO
5259 config.rx_filter = HWTSTAMP_FILTER_SOME;
5260 break;
5261 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5262 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 5263 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 5264 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
5265 is_l2 = true;
5266 is_l4 = true;
33af6bcc
PO
5267 config.rx_filter = HWTSTAMP_FILTER_SOME;
5268 break;
5269 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5270 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5271 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 5272 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 5273 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 5274 is_l2 = true;
33af6bcc
PO
5275 break;
5276 default:
5277 return -ERANGE;
5278 }
5279
c5b9bd5e
AD
5280 if (hw->mac.type == e1000_82575) {
5281 if (tsync_rx_ctl | tsync_tx_ctl)
5282 return -EINVAL;
5283 return 0;
5284 }
5285
33af6bcc
PO
5286 /* enable/disable TX */
5287 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
5288 regval &= ~E1000_TSYNCTXCTL_ENABLED;
5289 regval |= tsync_tx_ctl;
33af6bcc
PO
5290 wr32(E1000_TSYNCTXCTL, regval);
5291
c5b9bd5e 5292 /* enable/disable RX */
33af6bcc 5293 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
5294 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
5295 regval |= tsync_rx_ctl;
33af6bcc 5296 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 5297
c5b9bd5e
AD
5298 /* define which PTP packets are time stamped */
5299 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 5300
c5b9bd5e
AD
5301 /* define ethertype filter for timestamped packets */
5302 if (is_l2)
5303 wr32(E1000_ETQF(3),
5304 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
5305 E1000_ETQF_1588 | /* enable timestamping */
5306 ETH_P_1588)); /* 1588 eth protocol type */
5307 else
5308 wr32(E1000_ETQF(3), 0);
5309
5310#define PTP_PORT 319
5311 /* L4 Queue Filter[3]: filter by destination port and protocol */
5312 if (is_l4) {
5313 u32 ftqf = (IPPROTO_UDP /* UDP */
5314 | E1000_FTQF_VF_BP /* VF not compared */
5315 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
5316 | E1000_FTQF_MASK); /* mask all inputs */
5317 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
5318
5319 wr32(E1000_IMIR(3), htons(PTP_PORT));
5320 wr32(E1000_IMIREXT(3),
5321 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
5322 if (hw->mac.type == e1000_82576) {
5323 /* enable source port check */
5324 wr32(E1000_SPQF(3), htons(PTP_PORT));
5325 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
5326 }
5327 wr32(E1000_FTQF(3), ftqf);
5328 } else {
5329 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
5330 }
33af6bcc
PO
5331 wrfl();
5332
5333 adapter->hwtstamp_config = config;
5334
5335 /* clear TX/RX time stamp registers, just to be sure */
5336 regval = rd32(E1000_TXSTMPH);
5337 regval = rd32(E1000_RXSTMPH);
c6cb090b 5338
33af6bcc
PO
5339 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5340 -EFAULT : 0;
c6cb090b
PO
5341}
5342
9d5c8243
AK
5343/**
5344 * igb_ioctl -
5345 * @netdev:
5346 * @ifreq:
5347 * @cmd:
5348 **/
5349static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5350{
5351 switch (cmd) {
5352 case SIOCGMIIPHY:
5353 case SIOCGMIIREG:
5354 case SIOCSMIIREG:
5355 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
5356 case SIOCSHWTSTAMP:
5357 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
5358 default:
5359 return -EOPNOTSUPP;
5360 }
5361}
5362
009bc06e
AD
5363s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5364{
5365 struct igb_adapter *adapter = hw->back;
5366 u16 cap_offset;
5367
5368 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5369 if (!cap_offset)
5370 return -E1000_ERR_CONFIG;
5371
5372 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5373
5374 return 0;
5375}
5376
5377s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5378{
5379 struct igb_adapter *adapter = hw->back;
5380 u16 cap_offset;
5381
5382 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5383 if (!cap_offset)
5384 return -E1000_ERR_CONFIG;
5385
5386 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5387
5388 return 0;
5389}
5390
9d5c8243
AK
5391static void igb_vlan_rx_register(struct net_device *netdev,
5392 struct vlan_group *grp)
5393{
5394 struct igb_adapter *adapter = netdev_priv(netdev);
5395 struct e1000_hw *hw = &adapter->hw;
5396 u32 ctrl, rctl;
5397
5398 igb_irq_disable(adapter);
5399 adapter->vlgrp = grp;
5400
5401 if (grp) {
5402 /* enable VLAN tag insert/strip */
5403 ctrl = rd32(E1000_CTRL);
5404 ctrl |= E1000_CTRL_VME;
5405 wr32(E1000_CTRL, ctrl);
5406
51466239 5407 /* Disable CFI check */
9d5c8243 5408 rctl = rd32(E1000_RCTL);
9d5c8243
AK
5409 rctl &= ~E1000_RCTL_CFIEN;
5410 wr32(E1000_RCTL, rctl);
9d5c8243
AK
5411 } else {
5412 /* disable VLAN tag insert/strip */
5413 ctrl = rd32(E1000_CTRL);
5414 ctrl &= ~E1000_CTRL_VME;
5415 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
5416 }
5417
e1739522
AD
5418 igb_rlpml_set(adapter);
5419
9d5c8243
AK
5420 if (!test_bit(__IGB_DOWN, &adapter->state))
5421 igb_irq_enable(adapter);
5422}
5423
5424static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5425{
5426 struct igb_adapter *adapter = netdev_priv(netdev);
5427 struct e1000_hw *hw = &adapter->hw;
4ae196df 5428 int pf_id = adapter->vfs_allocated_count;
9d5c8243 5429
51466239
AD
5430 /* attempt to add filter to vlvf array */
5431 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 5432
51466239
AD
5433 /* add the filter since PF can receive vlans w/o entry in vlvf */
5434 igb_vfta_set(hw, vid, true);
9d5c8243
AK
5435}
5436
5437static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5438{
5439 struct igb_adapter *adapter = netdev_priv(netdev);
5440 struct e1000_hw *hw = &adapter->hw;
4ae196df 5441 int pf_id = adapter->vfs_allocated_count;
51466239 5442 s32 err;
9d5c8243
AK
5443
5444 igb_irq_disable(adapter);
5445 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5446
5447 if (!test_bit(__IGB_DOWN, &adapter->state))
5448 igb_irq_enable(adapter);
5449
51466239
AD
5450 /* remove vlan from VLVF table array */
5451 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 5452
51466239
AD
5453 /* if vid was not present in VLVF just remove it from table */
5454 if (err)
4ae196df 5455 igb_vfta_set(hw, vid, false);
9d5c8243
AK
5456}
5457
5458static void igb_restore_vlan(struct igb_adapter *adapter)
5459{
5460 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5461
5462 if (adapter->vlgrp) {
5463 u16 vid;
5464 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5465 if (!vlan_group_get_device(adapter->vlgrp, vid))
5466 continue;
5467 igb_vlan_rx_add_vid(adapter->netdev, vid);
5468 }
5469 }
5470}
5471
5472int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5473{
090b1795 5474 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
5475 struct e1000_mac_info *mac = &adapter->hw.mac;
5476
5477 mac->autoneg = 0;
5478
9d5c8243
AK
5479 switch (spddplx) {
5480 case SPEED_10 + DUPLEX_HALF:
5481 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5482 break;
5483 case SPEED_10 + DUPLEX_FULL:
5484 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5485 break;
5486 case SPEED_100 + DUPLEX_HALF:
5487 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5488 break;
5489 case SPEED_100 + DUPLEX_FULL:
5490 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5491 break;
5492 case SPEED_1000 + DUPLEX_FULL:
5493 mac->autoneg = 1;
5494 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5495 break;
5496 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5497 default:
090b1795 5498 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9d5c8243
AK
5499 return -EINVAL;
5500 }
5501 return 0;
5502}
5503
3fe7c4c9 5504static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
5505{
5506 struct net_device *netdev = pci_get_drvdata(pdev);
5507 struct igb_adapter *adapter = netdev_priv(netdev);
5508 struct e1000_hw *hw = &adapter->hw;
2d064c06 5509 u32 ctrl, rctl, status;
9d5c8243
AK
5510 u32 wufc = adapter->wol;
5511#ifdef CONFIG_PM
5512 int retval = 0;
5513#endif
5514
5515 netif_device_detach(netdev);
5516
a88f10ec
AD
5517 if (netif_running(netdev))
5518 igb_close(netdev);
5519
047e0030 5520 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
5521
5522#ifdef CONFIG_PM
5523 retval = pci_save_state(pdev);
5524 if (retval)
5525 return retval;
5526#endif
5527
5528 status = rd32(E1000_STATUS);
5529 if (status & E1000_STATUS_LU)
5530 wufc &= ~E1000_WUFC_LNKC;
5531
5532 if (wufc) {
5533 igb_setup_rctl(adapter);
ff41f8dc 5534 igb_set_rx_mode(netdev);
9d5c8243
AK
5535
5536 /* turn on all-multi mode if wake on multicast is enabled */
5537 if (wufc & E1000_WUFC_MC) {
5538 rctl = rd32(E1000_RCTL);
5539 rctl |= E1000_RCTL_MPE;
5540 wr32(E1000_RCTL, rctl);
5541 }
5542
5543 ctrl = rd32(E1000_CTRL);
5544 /* advertise wake from D3Cold */
5545 #define E1000_CTRL_ADVD3WUC 0x00100000
5546 /* phy power management enable */
5547 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5548 ctrl |= E1000_CTRL_ADVD3WUC;
5549 wr32(E1000_CTRL, ctrl);
5550
9d5c8243 5551 /* Allow time for pending master requests to run */
330a6d6a 5552 igb_disable_pcie_master(hw);
9d5c8243
AK
5553
5554 wr32(E1000_WUC, E1000_WUC_PME_EN);
5555 wr32(E1000_WUFC, wufc);
9d5c8243
AK
5556 } else {
5557 wr32(E1000_WUC, 0);
5558 wr32(E1000_WUFC, 0);
9d5c8243
AK
5559 }
5560
3fe7c4c9
RW
5561 *enable_wake = wufc || adapter->en_mng_pt;
5562 if (!*enable_wake)
2fb02a26 5563 igb_shutdown_serdes_link_82575(hw);
9d5c8243
AK
5564
5565 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5566 * would have already happened in close and is redundant. */
5567 igb_release_hw_control(adapter);
5568
5569 pci_disable_device(pdev);
5570
9d5c8243
AK
5571 return 0;
5572}
5573
5574#ifdef CONFIG_PM
3fe7c4c9
RW
5575static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5576{
5577 int retval;
5578 bool wake;
5579
5580 retval = __igb_shutdown(pdev, &wake);
5581 if (retval)
5582 return retval;
5583
5584 if (wake) {
5585 pci_prepare_to_sleep(pdev);
5586 } else {
5587 pci_wake_from_d3(pdev, false);
5588 pci_set_power_state(pdev, PCI_D3hot);
5589 }
5590
5591 return 0;
5592}
5593
9d5c8243
AK
5594static int igb_resume(struct pci_dev *pdev)
5595{
5596 struct net_device *netdev = pci_get_drvdata(pdev);
5597 struct igb_adapter *adapter = netdev_priv(netdev);
5598 struct e1000_hw *hw = &adapter->hw;
5599 u32 err;
5600
5601 pci_set_power_state(pdev, PCI_D0);
5602 pci_restore_state(pdev);
42bfd33a 5603
aed5dec3 5604 err = pci_enable_device_mem(pdev);
9d5c8243
AK
5605 if (err) {
5606 dev_err(&pdev->dev,
5607 "igb: Cannot enable PCI device from suspend\n");
5608 return err;
5609 }
5610 pci_set_master(pdev);
5611
5612 pci_enable_wake(pdev, PCI_D3hot, 0);
5613 pci_enable_wake(pdev, PCI_D3cold, 0);
5614
047e0030 5615 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
5616 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5617 return -ENOMEM;
9d5c8243
AK
5618 }
5619
5620 /* e1000_power_up_phy(adapter); */
5621
5622 igb_reset(adapter);
a8564f03
AD
5623
5624 /* let the f/w know that the h/w is now under the control of the
5625 * driver. */
5626 igb_get_hw_control(adapter);
5627
9d5c8243
AK
5628 wr32(E1000_WUS, ~0);
5629
a88f10ec
AD
5630 if (netif_running(netdev)) {
5631 err = igb_open(netdev);
5632 if (err)
5633 return err;
5634 }
9d5c8243
AK
5635
5636 netif_device_attach(netdev);
5637
9d5c8243
AK
5638 return 0;
5639}
5640#endif
5641
5642static void igb_shutdown(struct pci_dev *pdev)
5643{
3fe7c4c9
RW
5644 bool wake;
5645
5646 __igb_shutdown(pdev, &wake);
5647
5648 if (system_state == SYSTEM_POWER_OFF) {
5649 pci_wake_from_d3(pdev, wake);
5650 pci_set_power_state(pdev, PCI_D3hot);
5651 }
9d5c8243
AK
5652}
5653
5654#ifdef CONFIG_NET_POLL_CONTROLLER
5655/*
5656 * Polling 'interrupt' - used by things like netconsole to send skbs
5657 * without having to re-enable interrupts. It's not called while
5658 * the interrupt routine is executing.
5659 */
5660static void igb_netpoll(struct net_device *netdev)
5661{
5662 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 5663 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5664 int i;
9d5c8243 5665
eebbbdba 5666 if (!adapter->msix_entries) {
047e0030 5667 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 5668 igb_irq_disable(adapter);
047e0030 5669 napi_schedule(&q_vector->napi);
eebbbdba
AD
5670 return;
5671 }
9d5c8243 5672
047e0030
AD
5673 for (i = 0; i < adapter->num_q_vectors; i++) {
5674 struct igb_q_vector *q_vector = adapter->q_vector[i];
5675 wr32(E1000_EIMC, q_vector->eims_value);
5676 napi_schedule(&q_vector->napi);
eebbbdba 5677 }
9d5c8243
AK
5678}
5679#endif /* CONFIG_NET_POLL_CONTROLLER */
5680
5681/**
5682 * igb_io_error_detected - called when PCI error is detected
5683 * @pdev: Pointer to PCI device
5684 * @state: The current pci connection state
5685 *
5686 * This function is called after a PCI bus error affecting
5687 * this device has been detected.
5688 */
5689static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5690 pci_channel_state_t state)
5691{
5692 struct net_device *netdev = pci_get_drvdata(pdev);
5693 struct igb_adapter *adapter = netdev_priv(netdev);
5694
5695 netif_device_detach(netdev);
5696
59ed6eec
AD
5697 if (state == pci_channel_io_perm_failure)
5698 return PCI_ERS_RESULT_DISCONNECT;
5699
9d5c8243
AK
5700 if (netif_running(netdev))
5701 igb_down(adapter);
5702 pci_disable_device(pdev);
5703
5704 /* Request a slot slot reset. */
5705 return PCI_ERS_RESULT_NEED_RESET;
5706}
5707
5708/**
5709 * igb_io_slot_reset - called after the pci bus has been reset.
5710 * @pdev: Pointer to PCI device
5711 *
5712 * Restart the card from scratch, as if from a cold-boot. Implementation
5713 * resembles the first-half of the igb_resume routine.
5714 */
5715static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5716{
5717 struct net_device *netdev = pci_get_drvdata(pdev);
5718 struct igb_adapter *adapter = netdev_priv(netdev);
5719 struct e1000_hw *hw = &adapter->hw;
40a914fa 5720 pci_ers_result_t result;
42bfd33a 5721 int err;
9d5c8243 5722
aed5dec3 5723 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
5724 dev_err(&pdev->dev,
5725 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
5726 result = PCI_ERS_RESULT_DISCONNECT;
5727 } else {
5728 pci_set_master(pdev);
5729 pci_restore_state(pdev);
9d5c8243 5730
40a914fa
AD
5731 pci_enable_wake(pdev, PCI_D3hot, 0);
5732 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 5733
40a914fa
AD
5734 igb_reset(adapter);
5735 wr32(E1000_WUS, ~0);
5736 result = PCI_ERS_RESULT_RECOVERED;
5737 }
9d5c8243 5738
ea943d41
JK
5739 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5740 if (err) {
5741 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5742 "failed 0x%0x\n", err);
5743 /* non-fatal, continue */
5744 }
40a914fa
AD
5745
5746 return result;
9d5c8243
AK
5747}
5748
5749/**
5750 * igb_io_resume - called when traffic can start flowing again.
5751 * @pdev: Pointer to PCI device
5752 *
5753 * This callback is called when the error recovery driver tells us that
5754 * its OK to resume normal operation. Implementation resembles the
5755 * second-half of the igb_resume routine.
5756 */
5757static void igb_io_resume(struct pci_dev *pdev)
5758{
5759 struct net_device *netdev = pci_get_drvdata(pdev);
5760 struct igb_adapter *adapter = netdev_priv(netdev);
5761
9d5c8243
AK
5762 if (netif_running(netdev)) {
5763 if (igb_up(adapter)) {
5764 dev_err(&pdev->dev, "igb_up failed after reset\n");
5765 return;
5766 }
5767 }
5768
5769 netif_device_attach(netdev);
5770
5771 /* let the f/w know that the h/w is now under the control of the
5772 * driver. */
5773 igb_get_hw_control(adapter);
9d5c8243
AK
5774}
5775
26ad9178
AD
5776static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5777 u8 qsel)
5778{
5779 u32 rar_low, rar_high;
5780 struct e1000_hw *hw = &adapter->hw;
5781
5782 /* HW expects these in little endian so we reverse the byte order
5783 * from network order (big endian) to little endian
5784 */
5785 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5786 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5787 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5788
5789 /* Indicate to hardware the Address is Valid. */
5790 rar_high |= E1000_RAH_AV;
5791
5792 if (hw->mac.type == e1000_82575)
5793 rar_high |= E1000_RAH_POOL_1 * qsel;
5794 else
5795 rar_high |= E1000_RAH_POOL_1 << qsel;
5796
5797 wr32(E1000_RAL(index), rar_low);
5798 wrfl();
5799 wr32(E1000_RAH(index), rar_high);
5800 wrfl();
5801}
5802
4ae196df
AD
5803static int igb_set_vf_mac(struct igb_adapter *adapter,
5804 int vf, unsigned char *mac_addr)
5805{
5806 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
5807 /* VF MAC addresses start at end of receive addresses and moves
5808 * torwards the first, as a result a collision should not be possible */
5809 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 5810
37680117 5811 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 5812
26ad9178 5813 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
5814
5815 return 0;
5816}
5817
5818static void igb_vmm_control(struct igb_adapter *adapter)
5819{
5820 struct e1000_hw *hw = &adapter->hw;
10d8e907 5821 u32 reg;
4ae196df 5822
d4960307
AD
5823 /* replication is not supported for 82575 */
5824 if (hw->mac.type == e1000_82575)
4ae196df
AD
5825 return;
5826
10d8e907
AD
5827 /* enable replication vlan tag stripping */
5828 reg = rd32(E1000_RPLOLR);
5829 reg |= E1000_RPLOLR_STRVLAN;
5830 wr32(E1000_RPLOLR, reg);
5831
5832 /* notify HW that the MAC is adding vlan tags */
5833 reg = rd32(E1000_DTXCTL);
5834 reg |= E1000_DTXCTL_VLAN_ADDED;
5835 wr32(E1000_DTXCTL, reg);
5836
d4960307
AD
5837 if (adapter->vfs_allocated_count) {
5838 igb_vmdq_set_loopback_pf(hw, true);
5839 igb_vmdq_set_replication_pf(hw, true);
5840 } else {
5841 igb_vmdq_set_loopback_pf(hw, false);
5842 igb_vmdq_set_replication_pf(hw, false);
5843 }
4ae196df
AD
5844}
5845
9d5c8243 5846/* igb_main.c */