Give up on pushing CC_OPTIMIZE_FOR_SIZE
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243 34#include <linux/ipv6.h>
5a0e3ad6 35#include <linux/slab.h>
9d5c8243
AK
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
c6cb090b 38#include <linux/net_tstamp.h>
9d5c8243
AK
39#include <linux/mii.h>
40#include <linux/ethtool.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
c54106bb 43#include <linux/pci-aspm.h>
9d5c8243
AK
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/if_ether.h>
40a914fa 47#include <linux/aer.h>
421e02f0 48#ifdef CONFIG_IGB_DCA
fe4506b6
JC
49#include <linux/dca.h>
50#endif
9d5c8243
AK
51#include "igb.h"
52
0d1fe82d
CW
53#define MAJ 3
54#define MIN 0
55#define BUILD 6
56#define KFIX 2
57#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
58__stringify(BUILD) "-k" __stringify(KFIX)
9d5c8243
AK
59char igb_driver_name[] = "igb";
60char igb_driver_version[] = DRV_VERSION;
61static const char igb_driver_string[] =
62 "Intel(R) Gigabit Ethernet Network Driver";
4c4b42cb 63static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
9d5c8243 64
9d5c8243
AK
65static const struct e1000_info *igb_info_tbl[] = {
66 [board_82575] = &e1000_82575_info,
67};
68
a3aa1884 69static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
95 /* required last entry */
96 {0, }
97};
98
99MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
100
101void igb_reset(struct igb_adapter *);
102static int igb_setup_all_tx_resources(struct igb_adapter *);
103static int igb_setup_all_rx_resources(struct igb_adapter *);
104static void igb_free_all_tx_resources(struct igb_adapter *);
105static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 106static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
107static int igb_probe(struct pci_dev *, const struct pci_device_id *);
108static void __devexit igb_remove(struct pci_dev *pdev);
673b8b70 109static void igb_init_hw_timer(struct igb_adapter *adapter);
9d5c8243
AK
110static int igb_sw_init(struct igb_adapter *);
111static int igb_open(struct net_device *);
112static int igb_close(struct net_device *);
113static void igb_configure_tx(struct igb_adapter *);
114static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
115static void igb_clean_all_tx_rings(struct igb_adapter *);
116static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
117static void igb_clean_tx_ring(struct igb_ring *);
118static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 119static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
120static void igb_update_phy_info(unsigned long);
121static void igb_watchdog(unsigned long);
122static void igb_watchdog_task(struct work_struct *);
b1a436c3 123static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
124static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
125 struct rtnl_link_stats64 *stats);
9d5c8243
AK
126static int igb_change_mtu(struct net_device *, int);
127static int igb_set_mac(struct net_device *, void *);
68d480c4 128static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
129static irqreturn_t igb_intr(int irq, void *);
130static irqreturn_t igb_intr_msi(int irq, void *);
131static irqreturn_t igb_msix_other(int irq, void *);
047e0030 132static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 133#ifdef CONFIG_IGB_DCA
047e0030 134static void igb_update_dca(struct igb_q_vector *);
fe4506b6 135static void igb_setup_dca(struct igb_adapter *);
421e02f0 136#endif /* CONFIG_IGB_DCA */
047e0030 137static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 138static int igb_poll(struct napi_struct *, int);
047e0030 139static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
9d5c8243
AK
140static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
141static void igb_tx_timeout(struct net_device *);
142static void igb_reset_task(struct work_struct *);
143static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
144static void igb_vlan_rx_add_vid(struct net_device *, u16);
145static void igb_vlan_rx_kill_vid(struct net_device *, u16);
146static void igb_restore_vlan(struct igb_adapter *);
26ad9178 147static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
148static void igb_ping_all_vfs(struct igb_adapter *);
149static void igb_msg_task(struct igb_adapter *);
4ae196df 150static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 151static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 152static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
153static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
154static int igb_ndo_set_vf_vlan(struct net_device *netdev,
155 int vf, u16 vlan, u8 qos);
156static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
157static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
158 struct ifla_vf_info *ivi);
17dc566c 159static void igb_check_vf_rate_limit(struct igb_adapter *);
9d5c8243 160
9d5c8243 161#ifdef CONFIG_PM
3fe7c4c9 162static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
163static int igb_resume(struct pci_dev *);
164#endif
165static void igb_shutdown(struct pci_dev *);
421e02f0 166#ifdef CONFIG_IGB_DCA
fe4506b6
JC
167static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
168static struct notifier_block dca_notifier = {
169 .notifier_call = igb_notify_dca,
170 .next = NULL,
171 .priority = 0
172};
173#endif
9d5c8243
AK
174#ifdef CONFIG_NET_POLL_CONTROLLER
175/* for netdump / net console */
176static void igb_netpoll(struct net_device *);
177#endif
37680117 178#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
179static unsigned int max_vfs = 0;
180module_param(max_vfs, uint, 0);
181MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
182 "per physical function");
183#endif /* CONFIG_PCI_IOV */
184
9d5c8243
AK
185static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
186 pci_channel_state_t);
187static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
188static void igb_io_resume(struct pci_dev *);
189
190static struct pci_error_handlers igb_err_handler = {
191 .error_detected = igb_io_error_detected,
192 .slot_reset = igb_io_slot_reset,
193 .resume = igb_io_resume,
194};
195
196
197static struct pci_driver igb_driver = {
198 .name = igb_driver_name,
199 .id_table = igb_pci_tbl,
200 .probe = igb_probe,
201 .remove = __devexit_p(igb_remove),
202#ifdef CONFIG_PM
25985edc 203 /* Power Management Hooks */
9d5c8243
AK
204 .suspend = igb_suspend,
205 .resume = igb_resume,
206#endif
207 .shutdown = igb_shutdown,
208 .err_handler = &igb_err_handler
209};
210
211MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
212MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
213MODULE_LICENSE("GPL");
214MODULE_VERSION(DRV_VERSION);
215
c97ec42a
TI
216struct igb_reg_info {
217 u32 ofs;
218 char *name;
219};
220
221static const struct igb_reg_info igb_reg_info_tbl[] = {
222
223 /* General Registers */
224 {E1000_CTRL, "CTRL"},
225 {E1000_STATUS, "STATUS"},
226 {E1000_CTRL_EXT, "CTRL_EXT"},
227
228 /* Interrupt Registers */
229 {E1000_ICR, "ICR"},
230
231 /* RX Registers */
232 {E1000_RCTL, "RCTL"},
233 {E1000_RDLEN(0), "RDLEN"},
234 {E1000_RDH(0), "RDH"},
235 {E1000_RDT(0), "RDT"},
236 {E1000_RXDCTL(0), "RXDCTL"},
237 {E1000_RDBAL(0), "RDBAL"},
238 {E1000_RDBAH(0), "RDBAH"},
239
240 /* TX Registers */
241 {E1000_TCTL, "TCTL"},
242 {E1000_TDBAL(0), "TDBAL"},
243 {E1000_TDBAH(0), "TDBAH"},
244 {E1000_TDLEN(0), "TDLEN"},
245 {E1000_TDH(0), "TDH"},
246 {E1000_TDT(0), "TDT"},
247 {E1000_TXDCTL(0), "TXDCTL"},
248 {E1000_TDFH, "TDFH"},
249 {E1000_TDFT, "TDFT"},
250 {E1000_TDFHS, "TDFHS"},
251 {E1000_TDFPC, "TDFPC"},
252
253 /* List Terminator */
254 {}
255};
256
257/*
258 * igb_regdump - register printout routine
259 */
260static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
261{
262 int n = 0;
263 char rname[16];
264 u32 regs[8];
265
266 switch (reginfo->ofs) {
267 case E1000_RDLEN(0):
268 for (n = 0; n < 4; n++)
269 regs[n] = rd32(E1000_RDLEN(n));
270 break;
271 case E1000_RDH(0):
272 for (n = 0; n < 4; n++)
273 regs[n] = rd32(E1000_RDH(n));
274 break;
275 case E1000_RDT(0):
276 for (n = 0; n < 4; n++)
277 regs[n] = rd32(E1000_RDT(n));
278 break;
279 case E1000_RXDCTL(0):
280 for (n = 0; n < 4; n++)
281 regs[n] = rd32(E1000_RXDCTL(n));
282 break;
283 case E1000_RDBAL(0):
284 for (n = 0; n < 4; n++)
285 regs[n] = rd32(E1000_RDBAL(n));
286 break;
287 case E1000_RDBAH(0):
288 for (n = 0; n < 4; n++)
289 regs[n] = rd32(E1000_RDBAH(n));
290 break;
291 case E1000_TDBAL(0):
292 for (n = 0; n < 4; n++)
293 regs[n] = rd32(E1000_RDBAL(n));
294 break;
295 case E1000_TDBAH(0):
296 for (n = 0; n < 4; n++)
297 regs[n] = rd32(E1000_TDBAH(n));
298 break;
299 case E1000_TDLEN(0):
300 for (n = 0; n < 4; n++)
301 regs[n] = rd32(E1000_TDLEN(n));
302 break;
303 case E1000_TDH(0):
304 for (n = 0; n < 4; n++)
305 regs[n] = rd32(E1000_TDH(n));
306 break;
307 case E1000_TDT(0):
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_TDT(n));
310 break;
311 case E1000_TXDCTL(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_TXDCTL(n));
314 break;
315 default:
316 printk(KERN_INFO "%-15s %08x\n",
317 reginfo->name, rd32(reginfo->ofs));
318 return;
319 }
320
321 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
322 printk(KERN_INFO "%-15s ", rname);
323 for (n = 0; n < 4; n++)
324 printk(KERN_CONT "%08x ", regs[n]);
325 printk(KERN_CONT "\n");
326}
327
328/*
329 * igb_dump - Print registers, tx-rings and rx-rings
330 */
331static void igb_dump(struct igb_adapter *adapter)
332{
333 struct net_device *netdev = adapter->netdev;
334 struct e1000_hw *hw = &adapter->hw;
335 struct igb_reg_info *reginfo;
336 int n = 0;
337 struct igb_ring *tx_ring;
338 union e1000_adv_tx_desc *tx_desc;
339 struct my_u0 { u64 a; u64 b; } *u0;
340 struct igb_buffer *buffer_info;
341 struct igb_ring *rx_ring;
342 union e1000_adv_rx_desc *rx_desc;
343 u32 staterr;
344 int i = 0;
345
346 if (!netif_msg_hw(adapter))
347 return;
348
349 /* Print netdevice Info */
350 if (netdev) {
351 dev_info(&adapter->pdev->dev, "Net device Info\n");
352 printk(KERN_INFO "Device Name state "
353 "trans_start last_rx\n");
354 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
355 netdev->name,
356 netdev->state,
357 netdev->trans_start,
358 netdev->last_rx);
359 }
360
361 /* Print Registers */
362 dev_info(&adapter->pdev->dev, "Register Dump\n");
363 printk(KERN_INFO " Register Name Value\n");
364 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
365 reginfo->name; reginfo++) {
366 igb_regdump(hw, reginfo);
367 }
368
369 /* Print TX Ring Summary */
370 if (!netdev || !netif_running(netdev))
371 goto exit;
372
373 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
374 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
375 " leng ntw timestamp\n");
376 for (n = 0; n < adapter->num_tx_queues; n++) {
377 tx_ring = adapter->tx_ring[n];
378 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
379 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
380 n, tx_ring->next_to_use, tx_ring->next_to_clean,
381 (u64)buffer_info->dma,
382 buffer_info->length,
383 buffer_info->next_to_watch,
384 (u64)buffer_info->time_stamp);
385 }
386
387 /* Print TX Rings */
388 if (!netif_msg_tx_done(adapter))
389 goto rx_ring_summary;
390
391 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
392
393 /* Transmit Descriptor Formats
394 *
395 * Advanced Transmit Descriptor
396 * +--------------------------------------------------------------+
397 * 0 | Buffer Address [63:0] |
398 * +--------------------------------------------------------------+
399 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
400 * +--------------------------------------------------------------+
401 * 63 46 45 40 39 38 36 35 32 31 24 15 0
402 */
403
404 for (n = 0; n < adapter->num_tx_queues; n++) {
405 tx_ring = adapter->tx_ring[n];
406 printk(KERN_INFO "------------------------------------\n");
407 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
408 printk(KERN_INFO "------------------------------------\n");
409 printk(KERN_INFO "T [desc] [address 63:0 ] "
410 "[PlPOCIStDDM Ln] [bi->dma ] "
411 "leng ntw timestamp bi->skb\n");
412
413 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
414 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
415 buffer_info = &tx_ring->buffer_info[i];
416 u0 = (struct my_u0 *)tx_desc;
417 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
418 " %04X %3X %016llX %p", i,
419 le64_to_cpu(u0->a),
420 le64_to_cpu(u0->b),
421 (u64)buffer_info->dma,
422 buffer_info->length,
423 buffer_info->next_to_watch,
424 (u64)buffer_info->time_stamp,
425 buffer_info->skb);
426 if (i == tx_ring->next_to_use &&
427 i == tx_ring->next_to_clean)
428 printk(KERN_CONT " NTC/U\n");
429 else if (i == tx_ring->next_to_use)
430 printk(KERN_CONT " NTU\n");
431 else if (i == tx_ring->next_to_clean)
432 printk(KERN_CONT " NTC\n");
433 else
434 printk(KERN_CONT "\n");
435
436 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
437 print_hex_dump(KERN_INFO, "",
438 DUMP_PREFIX_ADDRESS,
439 16, 1, phys_to_virt(buffer_info->dma),
440 buffer_info->length, true);
441 }
442 }
443
444 /* Print RX Rings Summary */
445rx_ring_summary:
446 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
447 printk(KERN_INFO "Queue [NTU] [NTC]\n");
448 for (n = 0; n < adapter->num_rx_queues; n++) {
449 rx_ring = adapter->rx_ring[n];
450 printk(KERN_INFO " %5d %5X %5X\n", n,
451 rx_ring->next_to_use, rx_ring->next_to_clean);
452 }
453
454 /* Print RX Rings */
455 if (!netif_msg_rx_status(adapter))
456 goto exit;
457
458 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
459
460 /* Advanced Receive Descriptor (Read) Format
461 * 63 1 0
462 * +-----------------------------------------------------+
463 * 0 | Packet Buffer Address [63:1] |A0/NSE|
464 * +----------------------------------------------+------+
465 * 8 | Header Buffer Address [63:1] | DD |
466 * +-----------------------------------------------------+
467 *
468 *
469 * Advanced Receive Descriptor (Write-Back) Format
470 *
471 * 63 48 47 32 31 30 21 20 17 16 4 3 0
472 * +------------------------------------------------------+
473 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
474 * | Checksum Ident | | | | Type | Type |
475 * +------------------------------------------------------+
476 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
477 * +------------------------------------------------------+
478 * 63 48 47 32 31 20 19 0
479 */
480
481 for (n = 0; n < adapter->num_rx_queues; n++) {
482 rx_ring = adapter->rx_ring[n];
483 printk(KERN_INFO "------------------------------------\n");
484 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
485 printk(KERN_INFO "------------------------------------\n");
486 printk(KERN_INFO "R [desc] [ PktBuf A0] "
487 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
488 "<-- Adv Rx Read format\n");
489 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
490 "[vl er S cks ln] ---------------- [bi->skb] "
491 "<-- Adv Rx Write-Back format\n");
492
493 for (i = 0; i < rx_ring->count; i++) {
494 buffer_info = &rx_ring->buffer_info[i];
495 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
496 u0 = (struct my_u0 *)rx_desc;
497 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
498 if (staterr & E1000_RXD_STAT_DD) {
499 /* Descriptor Done */
500 printk(KERN_INFO "RWB[0x%03X] %016llX "
501 "%016llX ---------------- %p", i,
502 le64_to_cpu(u0->a),
503 le64_to_cpu(u0->b),
504 buffer_info->skb);
505 } else {
506 printk(KERN_INFO "R [0x%03X] %016llX "
507 "%016llX %016llX %p", i,
508 le64_to_cpu(u0->a),
509 le64_to_cpu(u0->b),
510 (u64)buffer_info->dma,
511 buffer_info->skb);
512
513 if (netif_msg_pktdata(adapter)) {
514 print_hex_dump(KERN_INFO, "",
515 DUMP_PREFIX_ADDRESS,
516 16, 1,
517 phys_to_virt(buffer_info->dma),
518 rx_ring->rx_buffer_len, true);
519 if (rx_ring->rx_buffer_len
520 < IGB_RXBUFFER_1024)
521 print_hex_dump(KERN_INFO, "",
522 DUMP_PREFIX_ADDRESS,
523 16, 1,
524 phys_to_virt(
525 buffer_info->page_dma +
526 buffer_info->page_offset),
527 PAGE_SIZE/2, true);
528 }
529 }
530
531 if (i == rx_ring->next_to_use)
532 printk(KERN_CONT " NTU\n");
533 else if (i == rx_ring->next_to_clean)
534 printk(KERN_CONT " NTC\n");
535 else
536 printk(KERN_CONT "\n");
537
538 }
539 }
540
541exit:
542 return;
543}
544
545
38c845c7
PO
546/**
547 * igb_read_clock - read raw cycle counter (to be used by time counter)
548 */
549static cycle_t igb_read_clock(const struct cyclecounter *tc)
550{
551 struct igb_adapter *adapter =
552 container_of(tc, struct igb_adapter, cycles);
553 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
554 u64 stamp = 0;
555 int shift = 0;
38c845c7 556
55cac248
AD
557 /*
558 * The timestamp latches on lowest register read. For the 82580
559 * the lowest register is SYSTIMR instead of SYSTIML. However we never
560 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
561 */
562 if (hw->mac.type == e1000_82580) {
563 stamp = rd32(E1000_SYSTIMR) >> 8;
564 shift = IGB_82580_TSYNC_SHIFT;
565 }
566
c5b9bd5e
AD
567 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
568 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
569 return stamp;
570}
571
9d5c8243 572/**
c041076a 573 * igb_get_hw_dev - return device
9d5c8243
AK
574 * used by hardware layer to print debugging information
575 **/
c041076a 576struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
577{
578 struct igb_adapter *adapter = hw->back;
c041076a 579 return adapter->netdev;
9d5c8243 580}
38c845c7 581
9d5c8243
AK
582/**
583 * igb_init_module - Driver Registration Routine
584 *
585 * igb_init_module is the first routine called when the driver is
586 * loaded. All it does is register with the PCI subsystem.
587 **/
588static int __init igb_init_module(void)
589{
590 int ret;
591 printk(KERN_INFO "%s - version %s\n",
592 igb_driver_string, igb_driver_version);
593
594 printk(KERN_INFO "%s\n", igb_copyright);
595
421e02f0 596#ifdef CONFIG_IGB_DCA
fe4506b6
JC
597 dca_register_notify(&dca_notifier);
598#endif
bbd98fe4 599 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
600 return ret;
601}
602
603module_init(igb_init_module);
604
605/**
606 * igb_exit_module - Driver Exit Cleanup Routine
607 *
608 * igb_exit_module is called just before the driver is removed
609 * from memory.
610 **/
611static void __exit igb_exit_module(void)
612{
421e02f0 613#ifdef CONFIG_IGB_DCA
fe4506b6
JC
614 dca_unregister_notify(&dca_notifier);
615#endif
9d5c8243
AK
616 pci_unregister_driver(&igb_driver);
617}
618
619module_exit(igb_exit_module);
620
26bc19ec
AD
621#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
622/**
623 * igb_cache_ring_register - Descriptor ring to register mapping
624 * @adapter: board private structure to initialize
625 *
626 * Once we know the feature-set enabled for the device, we'll cache
627 * the register offset the descriptor ring is assigned to.
628 **/
629static void igb_cache_ring_register(struct igb_adapter *adapter)
630{
ee1b9f06 631 int i = 0, j = 0;
047e0030 632 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
633
634 switch (adapter->hw.mac.type) {
635 case e1000_82576:
636 /* The queues are allocated for virtualization such that VF 0
637 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
638 * In order to avoid collision we start at the first free queue
639 * and continue consuming queues in the same sequence
640 */
ee1b9f06 641 if (adapter->vfs_allocated_count) {
a99955fc 642 for (; i < adapter->rss_queues; i++)
3025a446
AD
643 adapter->rx_ring[i]->reg_idx = rbase_offset +
644 Q_IDX_82576(i);
ee1b9f06 645 }
26bc19ec 646 case e1000_82575:
55cac248 647 case e1000_82580:
d2ba2ed8 648 case e1000_i350:
26bc19ec 649 default:
ee1b9f06 650 for (; i < adapter->num_rx_queues; i++)
3025a446 651 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 652 for (; j < adapter->num_tx_queues; j++)
3025a446 653 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
654 break;
655 }
656}
657
047e0030
AD
658static void igb_free_queues(struct igb_adapter *adapter)
659{
3025a446 660 int i;
047e0030 661
3025a446
AD
662 for (i = 0; i < adapter->num_tx_queues; i++) {
663 kfree(adapter->tx_ring[i]);
664 adapter->tx_ring[i] = NULL;
665 }
666 for (i = 0; i < adapter->num_rx_queues; i++) {
667 kfree(adapter->rx_ring[i]);
668 adapter->rx_ring[i] = NULL;
669 }
047e0030
AD
670 adapter->num_rx_queues = 0;
671 adapter->num_tx_queues = 0;
672}
673
9d5c8243
AK
674/**
675 * igb_alloc_queues - Allocate memory for all rings
676 * @adapter: board private structure to initialize
677 *
678 * We allocate one ring per queue at run-time since we don't know the
679 * number of queues at compile-time.
680 **/
681static int igb_alloc_queues(struct igb_adapter *adapter)
682{
3025a446 683 struct igb_ring *ring;
9d5c8243
AK
684 int i;
685
661086df 686 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
687 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
688 if (!ring)
689 goto err;
68fd9910 690 ring->count = adapter->tx_ring_count;
661086df 691 ring->queue_index = i;
59d71989 692 ring->dev = &adapter->pdev->dev;
e694e964 693 ring->netdev = adapter->netdev;
85ad76b2
AD
694 /* For 82575, context index must be unique per ring. */
695 if (adapter->hw.mac.type == e1000_82575)
696 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
3025a446 697 adapter->tx_ring[i] = ring;
661086df 698 }
85ad76b2 699
9d5c8243 700 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446
AD
701 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
702 if (!ring)
703 goto err;
68fd9910 704 ring->count = adapter->rx_ring_count;
844290e5 705 ring->queue_index = i;
59d71989 706 ring->dev = &adapter->pdev->dev;
e694e964 707 ring->netdev = adapter->netdev;
4c844851 708 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
85ad76b2
AD
709 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
710 /* set flag indicating ring supports SCTP checksum offload */
711 if (adapter->hw.mac.type >= e1000_82576)
712 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
3025a446 713 adapter->rx_ring[i] = ring;
9d5c8243 714 }
26bc19ec
AD
715
716 igb_cache_ring_register(adapter);
9d5c8243 717
047e0030 718 return 0;
a88f10ec 719
047e0030
AD
720err:
721 igb_free_queues(adapter);
d1a8c9e1 722
047e0030 723 return -ENOMEM;
a88f10ec
AD
724}
725
9d5c8243 726#define IGB_N0_QUEUE -1
047e0030 727static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
728{
729 u32 msixbm = 0;
047e0030 730 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 731 struct e1000_hw *hw = &adapter->hw;
2d064c06 732 u32 ivar, index;
047e0030
AD
733 int rx_queue = IGB_N0_QUEUE;
734 int tx_queue = IGB_N0_QUEUE;
735
736 if (q_vector->rx_ring)
737 rx_queue = q_vector->rx_ring->reg_idx;
738 if (q_vector->tx_ring)
739 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
740
741 switch (hw->mac.type) {
742 case e1000_82575:
9d5c8243
AK
743 /* The 82575 assigns vectors using a bitmask, which matches the
744 bitmask for the EICR/EIMS/EIMC registers. To assign one
745 or more queues to a vector, we write the appropriate bits
746 into the MSIXBM register for that vector. */
047e0030 747 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 748 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 749 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 750 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
751 if (!adapter->msix_entries && msix_vector == 0)
752 msixbm |= E1000_EIMS_OTHER;
9d5c8243 753 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 754 q_vector->eims_value = msixbm;
2d064c06
AD
755 break;
756 case e1000_82576:
26bc19ec 757 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
758 Each queue has a single entry in the table to which we write
759 a vector number along with a "valid" bit. Sadly, the layout
760 of the table is somewhat counterintuitive. */
761 if (rx_queue > IGB_N0_QUEUE) {
047e0030 762 index = (rx_queue & 0x7);
2d064c06 763 ivar = array_rd32(E1000_IVAR0, index);
047e0030 764 if (rx_queue < 8) {
26bc19ec
AD
765 /* vector goes into low byte of register */
766 ivar = ivar & 0xFFFFFF00;
767 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
768 } else {
769 /* vector goes into third byte of register */
770 ivar = ivar & 0xFF00FFFF;
771 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 772 }
2d064c06
AD
773 array_wr32(E1000_IVAR0, index, ivar);
774 }
775 if (tx_queue > IGB_N0_QUEUE) {
047e0030 776 index = (tx_queue & 0x7);
2d064c06 777 ivar = array_rd32(E1000_IVAR0, index);
047e0030 778 if (tx_queue < 8) {
26bc19ec
AD
779 /* vector goes into second byte of register */
780 ivar = ivar & 0xFFFF00FF;
781 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
782 } else {
783 /* vector goes into high byte of register */
784 ivar = ivar & 0x00FFFFFF;
785 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 786 }
2d064c06
AD
787 array_wr32(E1000_IVAR0, index, ivar);
788 }
047e0030 789 q_vector->eims_value = 1 << msix_vector;
2d064c06 790 break;
55cac248 791 case e1000_82580:
d2ba2ed8 792 case e1000_i350:
55cac248
AD
793 /* 82580 uses the same table-based approach as 82576 but has fewer
794 entries as a result we carry over for queues greater than 4. */
795 if (rx_queue > IGB_N0_QUEUE) {
796 index = (rx_queue >> 1);
797 ivar = array_rd32(E1000_IVAR0, index);
798 if (rx_queue & 0x1) {
799 /* vector goes into third byte of register */
800 ivar = ivar & 0xFF00FFFF;
801 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
802 } else {
803 /* vector goes into low byte of register */
804 ivar = ivar & 0xFFFFFF00;
805 ivar |= msix_vector | E1000_IVAR_VALID;
806 }
807 array_wr32(E1000_IVAR0, index, ivar);
808 }
809 if (tx_queue > IGB_N0_QUEUE) {
810 index = (tx_queue >> 1);
811 ivar = array_rd32(E1000_IVAR0, index);
812 if (tx_queue & 0x1) {
813 /* vector goes into high byte of register */
814 ivar = ivar & 0x00FFFFFF;
815 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
816 } else {
817 /* vector goes into second byte of register */
818 ivar = ivar & 0xFFFF00FF;
819 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
820 }
821 array_wr32(E1000_IVAR0, index, ivar);
822 }
823 q_vector->eims_value = 1 << msix_vector;
824 break;
2d064c06
AD
825 default:
826 BUG();
827 break;
828 }
26b39276
AD
829
830 /* add q_vector eims value to global eims_enable_mask */
831 adapter->eims_enable_mask |= q_vector->eims_value;
832
833 /* configure q_vector to set itr on first interrupt */
834 q_vector->set_itr = 1;
9d5c8243
AK
835}
836
837/**
838 * igb_configure_msix - Configure MSI-X hardware
839 *
840 * igb_configure_msix sets up the hardware to properly
841 * generate MSI-X interrupts.
842 **/
843static void igb_configure_msix(struct igb_adapter *adapter)
844{
845 u32 tmp;
846 int i, vector = 0;
847 struct e1000_hw *hw = &adapter->hw;
848
849 adapter->eims_enable_mask = 0;
9d5c8243
AK
850
851 /* set vector for other causes, i.e. link changes */
2d064c06
AD
852 switch (hw->mac.type) {
853 case e1000_82575:
9d5c8243
AK
854 tmp = rd32(E1000_CTRL_EXT);
855 /* enable MSI-X PBA support*/
856 tmp |= E1000_CTRL_EXT_PBA_CLR;
857
858 /* Auto-Mask interrupts upon ICR read. */
859 tmp |= E1000_CTRL_EXT_EIAME;
860 tmp |= E1000_CTRL_EXT_IRCA;
861
862 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
863
864 /* enable msix_other interrupt */
865 array_wr32(E1000_MSIXBM(0), vector++,
866 E1000_EIMS_OTHER);
844290e5 867 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 868
2d064c06
AD
869 break;
870
871 case e1000_82576:
55cac248 872 case e1000_82580:
d2ba2ed8 873 case e1000_i350:
047e0030
AD
874 /* Turn on MSI-X capability first, or our settings
875 * won't stick. And it will take days to debug. */
876 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
877 E1000_GPIE_PBA | E1000_GPIE_EIAME |
878 E1000_GPIE_NSICR);
879
880 /* enable msix_other interrupt */
881 adapter->eims_other = 1 << vector;
2d064c06 882 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 883
047e0030 884 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
885 break;
886 default:
887 /* do nothing, since nothing else supports MSI-X */
888 break;
889 } /* switch (hw->mac.type) */
047e0030
AD
890
891 adapter->eims_enable_mask |= adapter->eims_other;
892
26b39276
AD
893 for (i = 0; i < adapter->num_q_vectors; i++)
894 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 895
9d5c8243
AK
896 wrfl();
897}
898
899/**
900 * igb_request_msix - Initialize MSI-X interrupts
901 *
902 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
903 * kernel.
904 **/
905static int igb_request_msix(struct igb_adapter *adapter)
906{
907 struct net_device *netdev = adapter->netdev;
047e0030 908 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
909 int i, err = 0, vector = 0;
910
047e0030 911 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 912 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
913 if (err)
914 goto out;
915 vector++;
916
917 for (i = 0; i < adapter->num_q_vectors; i++) {
918 struct igb_q_vector *q_vector = adapter->q_vector[i];
919
920 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
921
922 if (q_vector->rx_ring && q_vector->tx_ring)
923 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
924 q_vector->rx_ring->queue_index);
925 else if (q_vector->tx_ring)
926 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
927 q_vector->tx_ring->queue_index);
928 else if (q_vector->rx_ring)
929 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
930 q_vector->rx_ring->queue_index);
9d5c8243 931 else
047e0030
AD
932 sprintf(q_vector->name, "%s-unused", netdev->name);
933
9d5c8243 934 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 935 igb_msix_ring, 0, q_vector->name,
047e0030 936 q_vector);
9d5c8243
AK
937 if (err)
938 goto out;
9d5c8243
AK
939 vector++;
940 }
941
9d5c8243
AK
942 igb_configure_msix(adapter);
943 return 0;
944out:
945 return err;
946}
947
948static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
949{
950 if (adapter->msix_entries) {
951 pci_disable_msix(adapter->pdev);
952 kfree(adapter->msix_entries);
953 adapter->msix_entries = NULL;
047e0030 954 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 955 pci_disable_msi(adapter->pdev);
047e0030 956 }
9d5c8243
AK
957}
958
047e0030
AD
959/**
960 * igb_free_q_vectors - Free memory allocated for interrupt vectors
961 * @adapter: board private structure to initialize
962 *
963 * This function frees the memory allocated to the q_vectors. In addition if
964 * NAPI is enabled it will delete any references to the NAPI struct prior
965 * to freeing the q_vector.
966 **/
967static void igb_free_q_vectors(struct igb_adapter *adapter)
968{
969 int v_idx;
970
971 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
972 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
973 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
974 if (!q_vector)
975 continue;
047e0030
AD
976 netif_napi_del(&q_vector->napi);
977 kfree(q_vector);
978 }
979 adapter->num_q_vectors = 0;
980}
981
982/**
983 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
984 *
985 * This function resets the device so that it has 0 rx queues, tx queues, and
986 * MSI-X interrupts allocated.
987 */
988static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
989{
990 igb_free_queues(adapter);
991 igb_free_q_vectors(adapter);
992 igb_reset_interrupt_capability(adapter);
993}
9d5c8243
AK
994
995/**
996 * igb_set_interrupt_capability - set MSI or MSI-X if supported
997 *
998 * Attempt to configure interrupts using the best available
999 * capabilities of the hardware and kernel.
1000 **/
21adef3e 1001static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
1002{
1003 int err;
1004 int numvecs, i;
1005
83b7180d 1006 /* Number of supported queues. */
a99955fc 1007 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1008 if (adapter->vfs_allocated_count)
1009 adapter->num_tx_queues = 1;
1010 else
1011 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1012
047e0030
AD
1013 /* start with one vector for every rx queue */
1014 numvecs = adapter->num_rx_queues;
1015
3ad2f3fb 1016 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1017 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1018 numvecs += adapter->num_tx_queues;
047e0030
AD
1019
1020 /* store the number of vectors reserved for queues */
1021 adapter->num_q_vectors = numvecs;
1022
1023 /* add 1 vector for link status interrupts */
1024 numvecs++;
9d5c8243
AK
1025 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1026 GFP_KERNEL);
1027 if (!adapter->msix_entries)
1028 goto msi_only;
1029
1030 for (i = 0; i < numvecs; i++)
1031 adapter->msix_entries[i].entry = i;
1032
1033 err = pci_enable_msix(adapter->pdev,
1034 adapter->msix_entries,
1035 numvecs);
1036 if (err == 0)
34a20e89 1037 goto out;
9d5c8243
AK
1038
1039 igb_reset_interrupt_capability(adapter);
1040
1041 /* If we can't do MSI-X, try MSI */
1042msi_only:
2a3abf6d
AD
1043#ifdef CONFIG_PCI_IOV
1044 /* disable SR-IOV for non MSI-X configurations */
1045 if (adapter->vf_data) {
1046 struct e1000_hw *hw = &adapter->hw;
1047 /* disable iov and allow time for transactions to clear */
1048 pci_disable_sriov(adapter->pdev);
1049 msleep(500);
1050
1051 kfree(adapter->vf_data);
1052 adapter->vf_data = NULL;
1053 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1054 msleep(100);
1055 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1056 }
1057#endif
4fc82adf 1058 adapter->vfs_allocated_count = 0;
a99955fc 1059 adapter->rss_queues = 1;
4fc82adf 1060 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1061 adapter->num_rx_queues = 1;
661086df 1062 adapter->num_tx_queues = 1;
047e0030 1063 adapter->num_q_vectors = 1;
9d5c8243 1064 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1065 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1066out:
21adef3e
BH
1067 /* Notify the stack of the (possibly) reduced queue counts. */
1068 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1069 return netif_set_real_num_rx_queues(adapter->netdev,
1070 adapter->num_rx_queues);
9d5c8243
AK
1071}
1072
047e0030
AD
1073/**
1074 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1075 * @adapter: board private structure to initialize
1076 *
1077 * We allocate one q_vector per queue interrupt. If allocation fails we
1078 * return -ENOMEM.
1079 **/
1080static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1081{
1082 struct igb_q_vector *q_vector;
1083 struct e1000_hw *hw = &adapter->hw;
1084 int v_idx;
1085
1086 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1087 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1088 if (!q_vector)
1089 goto err_out;
1090 q_vector->adapter = adapter;
047e0030
AD
1091 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1092 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1093 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1094 adapter->q_vector[v_idx] = q_vector;
1095 }
1096 return 0;
1097
1098err_out:
fe0592b4 1099 igb_free_q_vectors(adapter);
047e0030
AD
1100 return -ENOMEM;
1101}
1102
1103static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1104 int ring_idx, int v_idx)
1105{
3025a446 1106 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1107
3025a446 1108 q_vector->rx_ring = adapter->rx_ring[ring_idx];
047e0030 1109 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
1110 q_vector->itr_val = adapter->rx_itr_setting;
1111 if (q_vector->itr_val && q_vector->itr_val <= 3)
1112 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1113}
1114
1115static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1116 int ring_idx, int v_idx)
1117{
3025a446 1118 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1119
3025a446 1120 q_vector->tx_ring = adapter->tx_ring[ring_idx];
047e0030 1121 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
1122 q_vector->itr_val = adapter->tx_itr_setting;
1123 if (q_vector->itr_val && q_vector->itr_val <= 3)
1124 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1125}
1126
1127/**
1128 * igb_map_ring_to_vector - maps allocated queues to vectors
1129 *
1130 * This function maps the recently allocated queues to vectors.
1131 **/
1132static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1133{
1134 int i;
1135 int v_idx = 0;
1136
1137 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1138 (adapter->num_q_vectors < adapter->num_tx_queues))
1139 return -ENOMEM;
1140
1141 if (adapter->num_q_vectors >=
1142 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1143 for (i = 0; i < adapter->num_rx_queues; i++)
1144 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1145 for (i = 0; i < adapter->num_tx_queues; i++)
1146 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1147 } else {
1148 for (i = 0; i < adapter->num_rx_queues; i++) {
1149 if (i < adapter->num_tx_queues)
1150 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1151 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1152 }
1153 for (; i < adapter->num_tx_queues; i++)
1154 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1155 }
1156 return 0;
1157}
1158
1159/**
1160 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1161 *
1162 * This function initializes the interrupts and allocates all of the queues.
1163 **/
1164static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1165{
1166 struct pci_dev *pdev = adapter->pdev;
1167 int err;
1168
21adef3e
BH
1169 err = igb_set_interrupt_capability(adapter);
1170 if (err)
1171 return err;
047e0030
AD
1172
1173 err = igb_alloc_q_vectors(adapter);
1174 if (err) {
1175 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1176 goto err_alloc_q_vectors;
1177 }
1178
1179 err = igb_alloc_queues(adapter);
1180 if (err) {
1181 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1182 goto err_alloc_queues;
1183 }
1184
1185 err = igb_map_ring_to_vector(adapter);
1186 if (err) {
1187 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1188 goto err_map_queues;
1189 }
1190
1191
1192 return 0;
1193err_map_queues:
1194 igb_free_queues(adapter);
1195err_alloc_queues:
1196 igb_free_q_vectors(adapter);
1197err_alloc_q_vectors:
1198 igb_reset_interrupt_capability(adapter);
1199 return err;
1200}
1201
9d5c8243
AK
1202/**
1203 * igb_request_irq - initialize interrupts
1204 *
1205 * Attempts to configure interrupts using the best available
1206 * capabilities of the hardware and kernel.
1207 **/
1208static int igb_request_irq(struct igb_adapter *adapter)
1209{
1210 struct net_device *netdev = adapter->netdev;
047e0030 1211 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1212 int err = 0;
1213
1214 if (adapter->msix_entries) {
1215 err = igb_request_msix(adapter);
844290e5 1216 if (!err)
9d5c8243 1217 goto request_done;
9d5c8243 1218 /* fall back to MSI */
047e0030 1219 igb_clear_interrupt_scheme(adapter);
9d5c8243 1220 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1221 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1222 igb_free_all_tx_resources(adapter);
1223 igb_free_all_rx_resources(adapter);
047e0030 1224 adapter->num_tx_queues = 1;
9d5c8243 1225 adapter->num_rx_queues = 1;
047e0030
AD
1226 adapter->num_q_vectors = 1;
1227 err = igb_alloc_q_vectors(adapter);
1228 if (err) {
1229 dev_err(&pdev->dev,
1230 "Unable to allocate memory for vectors\n");
1231 goto request_done;
1232 }
1233 err = igb_alloc_queues(adapter);
1234 if (err) {
1235 dev_err(&pdev->dev,
1236 "Unable to allocate memory for queues\n");
1237 igb_free_q_vectors(adapter);
1238 goto request_done;
1239 }
1240 igb_setup_all_tx_resources(adapter);
1241 igb_setup_all_rx_resources(adapter);
844290e5 1242 } else {
feeb2721 1243 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1244 }
844290e5 1245
7dfc16fa 1246 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1247 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1248 netdev->name, adapter);
9d5c8243
AK
1249 if (!err)
1250 goto request_done;
047e0030 1251
9d5c8243
AK
1252 /* fall back to legacy interrupts */
1253 igb_reset_interrupt_capability(adapter);
7dfc16fa 1254 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1255 }
1256
a0607fd3 1257 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1258 netdev->name, adapter);
9d5c8243 1259
6cb5e577 1260 if (err)
9d5c8243
AK
1261 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1262 err);
9d5c8243
AK
1263
1264request_done:
1265 return err;
1266}
1267
1268static void igb_free_irq(struct igb_adapter *adapter)
1269{
9d5c8243
AK
1270 if (adapter->msix_entries) {
1271 int vector = 0, i;
1272
047e0030 1273 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1274
047e0030
AD
1275 for (i = 0; i < adapter->num_q_vectors; i++) {
1276 struct igb_q_vector *q_vector = adapter->q_vector[i];
1277 free_irq(adapter->msix_entries[vector++].vector,
1278 q_vector);
1279 }
1280 } else {
1281 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1282 }
9d5c8243
AK
1283}
1284
1285/**
1286 * igb_irq_disable - Mask off interrupt generation on the NIC
1287 * @adapter: board private structure
1288 **/
1289static void igb_irq_disable(struct igb_adapter *adapter)
1290{
1291 struct e1000_hw *hw = &adapter->hw;
1292
25568a53
AD
1293 /*
1294 * we need to be careful when disabling interrupts. The VFs are also
1295 * mapped into these registers and so clearing the bits can cause
1296 * issues on the VF drivers so we only need to clear what we set
1297 */
9d5c8243 1298 if (adapter->msix_entries) {
2dfd1212
AD
1299 u32 regval = rd32(E1000_EIAM);
1300 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1301 wr32(E1000_EIMC, adapter->eims_enable_mask);
1302 regval = rd32(E1000_EIAC);
1303 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1304 }
844290e5
PW
1305
1306 wr32(E1000_IAM, 0);
9d5c8243
AK
1307 wr32(E1000_IMC, ~0);
1308 wrfl();
81a61859
ET
1309 if (adapter->msix_entries) {
1310 int i;
1311 for (i = 0; i < adapter->num_q_vectors; i++)
1312 synchronize_irq(adapter->msix_entries[i].vector);
1313 } else {
1314 synchronize_irq(adapter->pdev->irq);
1315 }
9d5c8243
AK
1316}
1317
1318/**
1319 * igb_irq_enable - Enable default interrupt generation settings
1320 * @adapter: board private structure
1321 **/
1322static void igb_irq_enable(struct igb_adapter *adapter)
1323{
1324 struct e1000_hw *hw = &adapter->hw;
1325
1326 if (adapter->msix_entries) {
25568a53 1327 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1328 u32 regval = rd32(E1000_EIAC);
1329 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1330 regval = rd32(E1000_EIAM);
1331 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1332 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1333 if (adapter->vfs_allocated_count) {
4ae196df 1334 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1335 ims |= E1000_IMS_VMMB;
1336 }
55cac248
AD
1337 if (adapter->hw.mac.type == e1000_82580)
1338 ims |= E1000_IMS_DRSTA;
1339
25568a53 1340 wr32(E1000_IMS, ims);
844290e5 1341 } else {
55cac248
AD
1342 wr32(E1000_IMS, IMS_ENABLE_MASK |
1343 E1000_IMS_DRSTA);
1344 wr32(E1000_IAM, IMS_ENABLE_MASK |
1345 E1000_IMS_DRSTA);
844290e5 1346 }
9d5c8243
AK
1347}
1348
1349static void igb_update_mng_vlan(struct igb_adapter *adapter)
1350{
51466239 1351 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1352 u16 vid = adapter->hw.mng_cookie.vlan_id;
1353 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1354
1355 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1356 /* add VID to filter table */
1357 igb_vfta_set(hw, vid, true);
1358 adapter->mng_vlan_id = vid;
1359 } else {
1360 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1361 }
1362
1363 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1364 (vid != old_vid) &&
1365 !vlan_group_get_device(adapter->vlgrp, old_vid)) {
1366 /* remove VID from filter table */
1367 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1368 }
1369}
1370
1371/**
1372 * igb_release_hw_control - release control of the h/w to f/w
1373 * @adapter: address of board private structure
1374 *
1375 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1376 * For ASF and Pass Through versions of f/w this means that the
1377 * driver is no longer loaded.
1378 *
1379 **/
1380static void igb_release_hw_control(struct igb_adapter *adapter)
1381{
1382 struct e1000_hw *hw = &adapter->hw;
1383 u32 ctrl_ext;
1384
1385 /* Let firmware take over control of h/w */
1386 ctrl_ext = rd32(E1000_CTRL_EXT);
1387 wr32(E1000_CTRL_EXT,
1388 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1389}
1390
9d5c8243
AK
1391/**
1392 * igb_get_hw_control - get control of the h/w from f/w
1393 * @adapter: address of board private structure
1394 *
1395 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1396 * For ASF and Pass Through versions of f/w this means that
1397 * the driver is loaded.
1398 *
1399 **/
1400static void igb_get_hw_control(struct igb_adapter *adapter)
1401{
1402 struct e1000_hw *hw = &adapter->hw;
1403 u32 ctrl_ext;
1404
1405 /* Let firmware know the driver has taken over */
1406 ctrl_ext = rd32(E1000_CTRL_EXT);
1407 wr32(E1000_CTRL_EXT,
1408 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1409}
1410
9d5c8243
AK
1411/**
1412 * igb_configure - configure the hardware for RX and TX
1413 * @adapter: private board structure
1414 **/
1415static void igb_configure(struct igb_adapter *adapter)
1416{
1417 struct net_device *netdev = adapter->netdev;
1418 int i;
1419
1420 igb_get_hw_control(adapter);
ff41f8dc 1421 igb_set_rx_mode(netdev);
9d5c8243
AK
1422
1423 igb_restore_vlan(adapter);
9d5c8243 1424
85b430b4 1425 igb_setup_tctl(adapter);
06cf2666 1426 igb_setup_mrqc(adapter);
9d5c8243 1427 igb_setup_rctl(adapter);
85b430b4
AD
1428
1429 igb_configure_tx(adapter);
9d5c8243 1430 igb_configure_rx(adapter);
662d7205
AD
1431
1432 igb_rx_fifo_flush_82575(&adapter->hw);
1433
c493ea45 1434 /* call igb_desc_unused which always leaves
9d5c8243
AK
1435 * at least 1 descriptor unused to make sure
1436 * next_to_use != next_to_clean */
1437 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1438 struct igb_ring *ring = adapter->rx_ring[i];
c493ea45 1439 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243 1440 }
9d5c8243
AK
1441}
1442
88a268c1
NN
1443/**
1444 * igb_power_up_link - Power up the phy/serdes link
1445 * @adapter: address of board private structure
1446 **/
1447void igb_power_up_link(struct igb_adapter *adapter)
1448{
1449 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1450 igb_power_up_phy_copper(&adapter->hw);
1451 else
1452 igb_power_up_serdes_link_82575(&adapter->hw);
1453}
1454
1455/**
1456 * igb_power_down_link - Power down the phy/serdes link
1457 * @adapter: address of board private structure
1458 */
1459static void igb_power_down_link(struct igb_adapter *adapter)
1460{
1461 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1462 igb_power_down_phy_copper_82575(&adapter->hw);
1463 else
1464 igb_shutdown_serdes_link_82575(&adapter->hw);
1465}
9d5c8243
AK
1466
1467/**
1468 * igb_up - Open the interface and prepare it to handle traffic
1469 * @adapter: board private structure
1470 **/
9d5c8243
AK
1471int igb_up(struct igb_adapter *adapter)
1472{
1473 struct e1000_hw *hw = &adapter->hw;
1474 int i;
1475
1476 /* hardware has been reset, we need to reload some things */
1477 igb_configure(adapter);
1478
1479 clear_bit(__IGB_DOWN, &adapter->state);
1480
047e0030
AD
1481 for (i = 0; i < adapter->num_q_vectors; i++) {
1482 struct igb_q_vector *q_vector = adapter->q_vector[i];
1483 napi_enable(&q_vector->napi);
1484 }
844290e5 1485 if (adapter->msix_entries)
9d5c8243 1486 igb_configure_msix(adapter);
feeb2721
AD
1487 else
1488 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1489
1490 /* Clear any pending interrupts. */
1491 rd32(E1000_ICR);
1492 igb_irq_enable(adapter);
1493
d4960307
AD
1494 /* notify VFs that reset has been completed */
1495 if (adapter->vfs_allocated_count) {
1496 u32 reg_data = rd32(E1000_CTRL_EXT);
1497 reg_data |= E1000_CTRL_EXT_PFRSTD;
1498 wr32(E1000_CTRL_EXT, reg_data);
1499 }
1500
4cb9be7a
JB
1501 netif_tx_start_all_queues(adapter->netdev);
1502
25568a53
AD
1503 /* start the watchdog. */
1504 hw->mac.get_link_status = 1;
1505 schedule_work(&adapter->watchdog_task);
1506
9d5c8243
AK
1507 return 0;
1508}
1509
1510void igb_down(struct igb_adapter *adapter)
1511{
9d5c8243 1512 struct net_device *netdev = adapter->netdev;
330a6d6a 1513 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1514 u32 tctl, rctl;
1515 int i;
1516
1517 /* signal that we're down so the interrupt handler does not
1518 * reschedule our watchdog timer */
1519 set_bit(__IGB_DOWN, &adapter->state);
1520
1521 /* disable receives in the hardware */
1522 rctl = rd32(E1000_RCTL);
1523 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1524 /* flush and sleep below */
1525
fd2ea0a7 1526 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1527
1528 /* disable transmits in the hardware */
1529 tctl = rd32(E1000_TCTL);
1530 tctl &= ~E1000_TCTL_EN;
1531 wr32(E1000_TCTL, tctl);
1532 /* flush both disables and wait for them to finish */
1533 wrfl();
1534 msleep(10);
1535
047e0030
AD
1536 for (i = 0; i < adapter->num_q_vectors; i++) {
1537 struct igb_q_vector *q_vector = adapter->q_vector[i];
1538 napi_disable(&q_vector->napi);
1539 }
9d5c8243 1540
9d5c8243
AK
1541 igb_irq_disable(adapter);
1542
1543 del_timer_sync(&adapter->watchdog_timer);
1544 del_timer_sync(&adapter->phy_info_timer);
1545
9d5c8243 1546 netif_carrier_off(netdev);
04fe6358
AD
1547
1548 /* record the stats before reset*/
12dcd86b
ED
1549 spin_lock(&adapter->stats64_lock);
1550 igb_update_stats(adapter, &adapter->stats64);
1551 spin_unlock(&adapter->stats64_lock);
04fe6358 1552
9d5c8243
AK
1553 adapter->link_speed = 0;
1554 adapter->link_duplex = 0;
1555
3023682e
JK
1556 if (!pci_channel_offline(adapter->pdev))
1557 igb_reset(adapter);
9d5c8243
AK
1558 igb_clean_all_tx_rings(adapter);
1559 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1560#ifdef CONFIG_IGB_DCA
1561
1562 /* since we reset the hardware DCA settings were cleared */
1563 igb_setup_dca(adapter);
1564#endif
9d5c8243
AK
1565}
1566
1567void igb_reinit_locked(struct igb_adapter *adapter)
1568{
1569 WARN_ON(in_interrupt());
1570 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1571 msleep(1);
1572 igb_down(adapter);
1573 igb_up(adapter);
1574 clear_bit(__IGB_RESETTING, &adapter->state);
1575}
1576
1577void igb_reset(struct igb_adapter *adapter)
1578{
090b1795 1579 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1580 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1581 struct e1000_mac_info *mac = &hw->mac;
1582 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1583 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1584 u16 hwm;
1585
1586 /* Repartition Pba for greater than 9k mtu
1587 * To take effect CTRL.RST is required.
1588 */
fa4dfae0 1589 switch (mac->type) {
d2ba2ed8 1590 case e1000_i350:
55cac248
AD
1591 case e1000_82580:
1592 pba = rd32(E1000_RXPBS);
1593 pba = igb_rxpbs_adjust_82580(pba);
1594 break;
fa4dfae0 1595 case e1000_82576:
d249be54
AD
1596 pba = rd32(E1000_RXPBS);
1597 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1598 break;
1599 case e1000_82575:
1600 default:
1601 pba = E1000_PBA_34K;
1602 break;
2d064c06 1603 }
9d5c8243 1604
2d064c06
AD
1605 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1606 (mac->type < e1000_82576)) {
9d5c8243
AK
1607 /* adjust PBA for jumbo frames */
1608 wr32(E1000_PBA, pba);
1609
1610 /* To maintain wire speed transmits, the Tx FIFO should be
1611 * large enough to accommodate two full transmit packets,
1612 * rounded up to the next 1KB and expressed in KB. Likewise,
1613 * the Rx FIFO should be large enough to accommodate at least
1614 * one full receive packet and is similarly rounded up and
1615 * expressed in KB. */
1616 pba = rd32(E1000_PBA);
1617 /* upper 16 bits has Tx packet buffer allocation size in KB */
1618 tx_space = pba >> 16;
1619 /* lower 16 bits has Rx packet buffer allocation size in KB */
1620 pba &= 0xffff;
1621 /* the tx fifo also stores 16 bytes of information about the tx
1622 * but don't include ethernet FCS because hardware appends it */
1623 min_tx_space = (adapter->max_frame_size +
85e8d004 1624 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1625 ETH_FCS_LEN) * 2;
1626 min_tx_space = ALIGN(min_tx_space, 1024);
1627 min_tx_space >>= 10;
1628 /* software strips receive CRC, so leave room for it */
1629 min_rx_space = adapter->max_frame_size;
1630 min_rx_space = ALIGN(min_rx_space, 1024);
1631 min_rx_space >>= 10;
1632
1633 /* If current Tx allocation is less than the min Tx FIFO size,
1634 * and the min Tx FIFO size is less than the current Rx FIFO
1635 * allocation, take space away from current Rx allocation */
1636 if (tx_space < min_tx_space &&
1637 ((min_tx_space - tx_space) < pba)) {
1638 pba = pba - (min_tx_space - tx_space);
1639
1640 /* if short on rx space, rx wins and must trump tx
1641 * adjustment */
1642 if (pba < min_rx_space)
1643 pba = min_rx_space;
1644 }
2d064c06 1645 wr32(E1000_PBA, pba);
9d5c8243 1646 }
9d5c8243
AK
1647
1648 /* flow control settings */
1649 /* The high water mark must be low enough to fit one full frame
1650 * (or the size used for early receive) above it in the Rx FIFO.
1651 * Set it to the lower of:
1652 * - 90% of the Rx FIFO size, or
1653 * - the full Rx FIFO size minus one full frame */
1654 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1655 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1656
d405ea3e
AD
1657 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1658 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1659 fc->pause_time = 0xFFFF;
1660 fc->send_xon = 1;
0cce119a 1661 fc->current_mode = fc->requested_mode;
9d5c8243 1662
4ae196df
AD
1663 /* disable receive for all VFs and wait one second */
1664 if (adapter->vfs_allocated_count) {
1665 int i;
1666 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1667 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1668
1669 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1670 igb_ping_all_vfs(adapter);
4ae196df
AD
1671
1672 /* disable transmits and receives */
1673 wr32(E1000_VFRE, 0);
1674 wr32(E1000_VFTE, 0);
1675 }
1676
9d5c8243 1677 /* Allow time for pending master requests to run */
330a6d6a 1678 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1679 wr32(E1000_WUC, 0);
1680
330a6d6a 1681 if (hw->mac.ops.init_hw(hw))
090b1795 1682 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4
CW
1683 if (hw->mac.type > e1000_82580) {
1684 if (adapter->flags & IGB_FLAG_DMAC) {
1685 u32 reg;
1686
1687 /*
1688 * DMA Coalescing high water mark needs to be higher
1689 * than * the * Rx threshold. The Rx threshold is
1690 * currently * pba - 6, so we * should use a high water
1691 * mark of pba * - 4. */
1692 hwm = (pba - 4) << 10;
1693
1694 reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
1695 & E1000_DMACR_DMACTHR_MASK);
1696
1697 /* transition to L0x or L1 if available..*/
1698 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1699
1700 /* watchdog timer= +-1000 usec in 32usec intervals */
1701 reg |= (1000 >> 5);
1702 wr32(E1000_DMACR, reg);
1703
1704 /* no lower threshold to disable coalescing(smart fifb)
1705 * -UTRESH=0*/
1706 wr32(E1000_DMCRTRH, 0);
1707
1708 /* set hwm to PBA - 2 * max frame size */
1709 wr32(E1000_FCRTC, hwm);
1710
1711 /*
1712 * This sets the time to wait before requesting tran-
1713 * sition to * low power state to number of usecs needed
1714 * to receive 1 512 * byte frame at gigabit line rate
1715 */
1716 reg = rd32(E1000_DMCTLX);
1717 reg |= IGB_DMCTLX_DCFLUSH_DIS;
1718
1719 /* Delay 255 usec before entering Lx state. */
1720 reg |= 0xFF;
1721 wr32(E1000_DMCTLX, reg);
1722
1723 /* free space in Tx packet buffer to wake from DMAC */
1724 wr32(E1000_DMCTXTH,
1725 (IGB_MIN_TXPBSIZE -
1726 (IGB_TX_BUF_4096 + adapter->max_frame_size))
1727 >> 6);
1728
1729 /* make low power state decision controlled by DMAC */
1730 reg = rd32(E1000_PCIEMISC);
1731 reg |= E1000_PCIEMISC_LX_DECISION;
1732 wr32(E1000_PCIEMISC, reg);
1733 } /* end if IGB_FLAG_DMAC set */
1734 }
55cac248
AD
1735 if (hw->mac.type == e1000_82580) {
1736 u32 reg = rd32(E1000_PCIEMISC);
1737 wr32(E1000_PCIEMISC,
1738 reg & ~E1000_PCIEMISC_LX_DECISION);
1739 }
88a268c1
NN
1740 if (!netif_running(adapter->netdev))
1741 igb_power_down_link(adapter);
1742
9d5c8243
AK
1743 igb_update_mng_vlan(adapter);
1744
1745 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1746 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1747
330a6d6a 1748 igb_get_phy_info(hw);
9d5c8243
AK
1749}
1750
2e5c6922 1751static const struct net_device_ops igb_netdev_ops = {
559e9c49 1752 .ndo_open = igb_open,
2e5c6922 1753 .ndo_stop = igb_close,
00829823 1754 .ndo_start_xmit = igb_xmit_frame_adv,
12dcd86b 1755 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc
AD
1756 .ndo_set_rx_mode = igb_set_rx_mode,
1757 .ndo_set_multicast_list = igb_set_rx_mode,
2e5c6922
SH
1758 .ndo_set_mac_address = igb_set_mac,
1759 .ndo_change_mtu = igb_change_mtu,
1760 .ndo_do_ioctl = igb_ioctl,
1761 .ndo_tx_timeout = igb_tx_timeout,
1762 .ndo_validate_addr = eth_validate_addr,
1763 .ndo_vlan_rx_register = igb_vlan_rx_register,
1764 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1765 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1766 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1767 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1768 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1769 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1770#ifdef CONFIG_NET_POLL_CONTROLLER
1771 .ndo_poll_controller = igb_netpoll,
1772#endif
1773};
1774
9d5c8243
AK
1775/**
1776 * igb_probe - Device Initialization Routine
1777 * @pdev: PCI device information struct
1778 * @ent: entry in igb_pci_tbl
1779 *
1780 * Returns 0 on success, negative on failure
1781 *
1782 * igb_probe initializes an adapter identified by a pci_dev structure.
1783 * The OS initialization, configuring of the adapter private structure,
1784 * and a hardware reset occur.
1785 **/
1786static int __devinit igb_probe(struct pci_dev *pdev,
1787 const struct pci_device_id *ent)
1788{
1789 struct net_device *netdev;
1790 struct igb_adapter *adapter;
1791 struct e1000_hw *hw;
4337e993 1792 u16 eeprom_data = 0;
9835fd73 1793 s32 ret_val;
4337e993 1794 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1795 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1796 unsigned long mmio_start, mmio_len;
2d6a5e95 1797 int err, pci_using_dac;
9d5c8243 1798 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1799 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1800
bded64a7
AG
1801 /* Catch broken hardware that put the wrong VF device ID in
1802 * the PCIe SR-IOV capability.
1803 */
1804 if (pdev->is_virtfn) {
1805 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1806 pci_name(pdev), pdev->vendor, pdev->device);
1807 return -EINVAL;
1808 }
1809
aed5dec3 1810 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1811 if (err)
1812 return err;
1813
1814 pci_using_dac = 0;
59d71989 1815 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1816 if (!err) {
59d71989 1817 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1818 if (!err)
1819 pci_using_dac = 1;
1820 } else {
59d71989 1821 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1822 if (err) {
59d71989 1823 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1824 if (err) {
1825 dev_err(&pdev->dev, "No usable DMA "
1826 "configuration, aborting\n");
1827 goto err_dma;
1828 }
1829 }
1830 }
1831
aed5dec3
AD
1832 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1833 IORESOURCE_MEM),
1834 igb_driver_name);
9d5c8243
AK
1835 if (err)
1836 goto err_pci_reg;
1837
19d5afd4 1838 pci_enable_pcie_error_reporting(pdev);
40a914fa 1839
9d5c8243 1840 pci_set_master(pdev);
c682fc23 1841 pci_save_state(pdev);
9d5c8243
AK
1842
1843 err = -ENOMEM;
1bfaf07b
AD
1844 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1845 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1846 if (!netdev)
1847 goto err_alloc_etherdev;
1848
1849 SET_NETDEV_DEV(netdev, &pdev->dev);
1850
1851 pci_set_drvdata(pdev, netdev);
1852 adapter = netdev_priv(netdev);
1853 adapter->netdev = netdev;
1854 adapter->pdev = pdev;
1855 hw = &adapter->hw;
1856 hw->back = adapter;
1857 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1858
1859 mmio_start = pci_resource_start(pdev, 0);
1860 mmio_len = pci_resource_len(pdev, 0);
1861
1862 err = -EIO;
28b0759c
AD
1863 hw->hw_addr = ioremap(mmio_start, mmio_len);
1864 if (!hw->hw_addr)
9d5c8243
AK
1865 goto err_ioremap;
1866
2e5c6922 1867 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1868 igb_set_ethtool_ops(netdev);
9d5c8243 1869 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1870
1871 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1872
1873 netdev->mem_start = mmio_start;
1874 netdev->mem_end = mmio_start + mmio_len;
1875
9d5c8243
AK
1876 /* PCI config space info */
1877 hw->vendor_id = pdev->vendor;
1878 hw->device_id = pdev->device;
1879 hw->revision_id = pdev->revision;
1880 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1881 hw->subsystem_device_id = pdev->subsystem_device;
1882
9d5c8243
AK
1883 /* Copy the default MAC, PHY and NVM function pointers */
1884 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1885 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1886 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1887 /* Initialize skew-specific constants */
1888 err = ei->get_invariants(hw);
1889 if (err)
450c87c8 1890 goto err_sw_init;
9d5c8243 1891
450c87c8 1892 /* setup the private structure */
9d5c8243
AK
1893 err = igb_sw_init(adapter);
1894 if (err)
1895 goto err_sw_init;
1896
1897 igb_get_bus_info_pcie(hw);
1898
1899 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1900
1901 /* Copper options */
1902 if (hw->phy.media_type == e1000_media_type_copper) {
1903 hw->phy.mdix = AUTO_ALL_MODES;
1904 hw->phy.disable_polarity_correction = false;
1905 hw->phy.ms_type = e1000_ms_hw_default;
1906 }
1907
1908 if (igb_check_reset_block(hw))
1909 dev_info(&pdev->dev,
1910 "PHY reset is blocked due to SOL/IDER session.\n");
1911
1912 netdev->features = NETIF_F_SG |
7d8eb29e 1913 NETIF_F_IP_CSUM |
9d5c8243
AK
1914 NETIF_F_HW_VLAN_TX |
1915 NETIF_F_HW_VLAN_RX |
1916 NETIF_F_HW_VLAN_FILTER;
1917
7d8eb29e 1918 netdev->features |= NETIF_F_IPV6_CSUM;
9d5c8243 1919 netdev->features |= NETIF_F_TSO;
9d5c8243 1920 netdev->features |= NETIF_F_TSO6;
5c0999b7 1921 netdev->features |= NETIF_F_GRO;
d3352520 1922
48f29ffc
JK
1923 netdev->vlan_features |= NETIF_F_TSO;
1924 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1925 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1926 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1927 netdev->vlan_features |= NETIF_F_SG;
1928
7b872a55 1929 if (pci_using_dac) {
9d5c8243 1930 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1931 netdev->vlan_features |= NETIF_F_HIGHDMA;
1932 }
9d5c8243 1933
5b043fb0 1934 if (hw->mac.type >= e1000_82576)
b9473560
JB
1935 netdev->features |= NETIF_F_SCTP_CSUM;
1936
330a6d6a 1937 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1938
1939 /* before reading the NVM, reset the controller to put the device in a
1940 * known good starting state */
1941 hw->mac.ops.reset_hw(hw);
1942
1943 /* make sure the NVM is good */
4322e561 1944 if (hw->nvm.ops.validate(hw) < 0) {
9d5c8243
AK
1945 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1946 err = -EIO;
1947 goto err_eeprom;
1948 }
1949
1950 /* copy the MAC address out of the NVM */
1951 if (hw->mac.ops.read_mac_addr(hw))
1952 dev_err(&pdev->dev, "NVM Read Error\n");
1953
1954 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1955 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1956
1957 if (!is_valid_ether_addr(netdev->perm_addr)) {
1958 dev_err(&pdev->dev, "Invalid MAC Address\n");
1959 err = -EIO;
1960 goto err_eeprom;
1961 }
1962
c061b18d 1963 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 1964 (unsigned long) adapter);
c061b18d 1965 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 1966 (unsigned long) adapter);
9d5c8243
AK
1967
1968 INIT_WORK(&adapter->reset_task, igb_reset_task);
1969 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1970
450c87c8 1971 /* Initialize link properties that are user-changeable */
9d5c8243
AK
1972 adapter->fc_autoneg = true;
1973 hw->mac.autoneg = true;
1974 hw->phy.autoneg_advertised = 0x2f;
1975
0cce119a
AD
1976 hw->fc.requested_mode = e1000_fc_default;
1977 hw->fc.current_mode = e1000_fc_default;
9d5c8243 1978
9d5c8243
AK
1979 igb_validate_mdi_setting(hw);
1980
9d5c8243
AK
1981 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1982 * enable the ACPI Magic Packet filter
1983 */
1984
a2cf8b6c 1985 if (hw->bus.func == 0)
312c75ae 1986 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
55cac248
AD
1987 else if (hw->mac.type == e1000_82580)
1988 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1989 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1990 &eeprom_data);
a2cf8b6c
AD
1991 else if (hw->bus.func == 1)
1992 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
1993
1994 if (eeprom_data & eeprom_apme_mask)
1995 adapter->eeprom_wol |= E1000_WUFC_MAG;
1996
1997 /* now that we have the eeprom settings, apply the special cases where
1998 * the eeprom may be wrong or the board simply won't support wake on
1999 * lan on a particular port */
2000 switch (pdev->device) {
2001 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2002 adapter->eeprom_wol = 0;
2003 break;
2004 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2005 case E1000_DEV_ID_82576_FIBER:
2006 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2007 /* Wake events only supported on port A for dual fiber
2008 * regardless of eeprom setting */
2009 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2010 adapter->eeprom_wol = 0;
2011 break;
c8ea5ea9 2012 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2013 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2014 /* if quad port adapter, disable WoL on all but port A */
2015 if (global_quad_port_a != 0)
2016 adapter->eeprom_wol = 0;
2017 else
2018 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2019 /* Reset for multiple quad port adapters */
2020 if (++global_quad_port_a == 4)
2021 global_quad_port_a = 0;
2022 break;
9d5c8243
AK
2023 }
2024
2025 /* initialize the wol settings based on the eeprom settings */
2026 adapter->wol = adapter->eeprom_wol;
e1b86d84 2027 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
2028
2029 /* reset the hardware with the new settings */
2030 igb_reset(adapter);
2031
2032 /* let the f/w know that the h/w is now under the control of the
2033 * driver. */
2034 igb_get_hw_control(adapter);
2035
9d5c8243
AK
2036 strcpy(netdev->name, "eth%d");
2037 err = register_netdev(netdev);
2038 if (err)
2039 goto err_register;
2040
b168dfc5
JB
2041 /* carrier off reporting is important to ethtool even BEFORE open */
2042 netif_carrier_off(netdev);
2043
421e02f0 2044#ifdef CONFIG_IGB_DCA
bbd98fe4 2045 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2046 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2047 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2048 igb_setup_dca(adapter);
2049 }
fe4506b6 2050
38c845c7 2051#endif
673b8b70
AB
2052 /* do hw tstamp init after resetting */
2053 igb_init_hw_timer(adapter);
2054
9d5c8243
AK
2055 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2056 /* print bus type/speed/width info */
7c510e4b 2057 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2058 netdev->name,
559e9c49 2059 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2060 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2061 "unknown"),
59c3de89
AD
2062 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2063 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2064 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2065 "unknown"),
7c510e4b 2066 netdev->dev_addr);
9d5c8243 2067
9835fd73
CW
2068 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2069 if (ret_val)
2070 strcpy(part_str, "Unknown");
2071 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2072 dev_info(&pdev->dev,
2073 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2074 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2075 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2076 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2077 switch (hw->mac.type) {
2078 case e1000_i350:
2079 igb_set_eee_i350(hw);
2080 break;
2081 default:
2082 break;
2083 }
9d5c8243
AK
2084 return 0;
2085
2086err_register:
2087 igb_release_hw_control(adapter);
2088err_eeprom:
2089 if (!igb_check_reset_block(hw))
f5f4cf08 2090 igb_reset_phy(hw);
9d5c8243
AK
2091
2092 if (hw->flash_address)
2093 iounmap(hw->flash_address);
9d5c8243 2094err_sw_init:
047e0030 2095 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2096 iounmap(hw->hw_addr);
2097err_ioremap:
2098 free_netdev(netdev);
2099err_alloc_etherdev:
559e9c49
AD
2100 pci_release_selected_regions(pdev,
2101 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2102err_pci_reg:
2103err_dma:
2104 pci_disable_device(pdev);
2105 return err;
2106}
2107
2108/**
2109 * igb_remove - Device Removal Routine
2110 * @pdev: PCI device information struct
2111 *
2112 * igb_remove is called by the PCI subsystem to alert the driver
2113 * that it should release a PCI device. The could be caused by a
2114 * Hot-Plug event, or because the driver is going to be removed from
2115 * memory.
2116 **/
2117static void __devexit igb_remove(struct pci_dev *pdev)
2118{
2119 struct net_device *netdev = pci_get_drvdata(pdev);
2120 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2121 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2122
760141a5
TH
2123 /*
2124 * The watchdog timer may be rescheduled, so explicitly
2125 * disable watchdog from being rescheduled.
2126 */
9d5c8243
AK
2127 set_bit(__IGB_DOWN, &adapter->state);
2128 del_timer_sync(&adapter->watchdog_timer);
2129 del_timer_sync(&adapter->phy_info_timer);
2130
760141a5
TH
2131 cancel_work_sync(&adapter->reset_task);
2132 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2133
421e02f0 2134#ifdef CONFIG_IGB_DCA
7dfc16fa 2135 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2136 dev_info(&pdev->dev, "DCA disabled\n");
2137 dca_remove_requester(&pdev->dev);
7dfc16fa 2138 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2139 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2140 }
2141#endif
2142
9d5c8243
AK
2143 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2144 * would have already happened in close and is redundant. */
2145 igb_release_hw_control(adapter);
2146
2147 unregister_netdev(netdev);
2148
047e0030 2149 igb_clear_interrupt_scheme(adapter);
9d5c8243 2150
37680117
AD
2151#ifdef CONFIG_PCI_IOV
2152 /* reclaim resources allocated to VFs */
2153 if (adapter->vf_data) {
2154 /* disable iov and allow time for transactions to clear */
2155 pci_disable_sriov(pdev);
2156 msleep(500);
2157
2158 kfree(adapter->vf_data);
2159 adapter->vf_data = NULL;
2160 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2161 msleep(100);
2162 dev_info(&pdev->dev, "IOV Disabled\n");
2163 }
2164#endif
559e9c49 2165
28b0759c
AD
2166 iounmap(hw->hw_addr);
2167 if (hw->flash_address)
2168 iounmap(hw->flash_address);
559e9c49
AD
2169 pci_release_selected_regions(pdev,
2170 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2171
2172 free_netdev(netdev);
2173
19d5afd4 2174 pci_disable_pcie_error_reporting(pdev);
40a914fa 2175
9d5c8243
AK
2176 pci_disable_device(pdev);
2177}
2178
a6b623e0
AD
2179/**
2180 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2181 * @adapter: board private structure to initialize
2182 *
2183 * This function initializes the vf specific data storage and then attempts to
2184 * allocate the VFs. The reason for ordering it this way is because it is much
2185 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2186 * the memory for the VFs.
2187 **/
2188static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2189{
2190#ifdef CONFIG_PCI_IOV
2191 struct pci_dev *pdev = adapter->pdev;
2192
a6b623e0
AD
2193 if (adapter->vfs_allocated_count) {
2194 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2195 sizeof(struct vf_data_storage),
2196 GFP_KERNEL);
2197 /* if allocation failed then we do not support SR-IOV */
2198 if (!adapter->vf_data) {
2199 adapter->vfs_allocated_count = 0;
2200 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2201 "Data Storage\n");
2202 }
2203 }
2204
2205 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2206 kfree(adapter->vf_data);
2207 adapter->vf_data = NULL;
2208#endif /* CONFIG_PCI_IOV */
2209 adapter->vfs_allocated_count = 0;
2210#ifdef CONFIG_PCI_IOV
2211 } else {
2212 unsigned char mac_addr[ETH_ALEN];
2213 int i;
2214 dev_info(&pdev->dev, "%d vfs allocated\n",
2215 adapter->vfs_allocated_count);
2216 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2217 random_ether_addr(mac_addr);
2218 igb_set_vf_mac(adapter, i, mac_addr);
2219 }
831ec0b4
CW
2220 /* DMA Coalescing is not supported in IOV mode. */
2221 if (adapter->flags & IGB_FLAG_DMAC)
2222 adapter->flags &= ~IGB_FLAG_DMAC;
a6b623e0
AD
2223 }
2224#endif /* CONFIG_PCI_IOV */
2225}
2226
115f459a
AD
2227
2228/**
2229 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2230 * @adapter: board private structure to initialize
2231 *
2232 * igb_init_hw_timer initializes the function pointer and values for the hw
2233 * timer found in hardware.
2234 **/
2235static void igb_init_hw_timer(struct igb_adapter *adapter)
2236{
2237 struct e1000_hw *hw = &adapter->hw;
2238
2239 switch (hw->mac.type) {
d2ba2ed8 2240 case e1000_i350:
55cac248
AD
2241 case e1000_82580:
2242 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2243 adapter->cycles.read = igb_read_clock;
2244 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2245 adapter->cycles.mult = 1;
2246 /*
2247 * The 82580 timesync updates the system timer every 8ns by 8ns
2248 * and the value cannot be shifted. Instead we need to shift
2249 * the registers to generate a 64bit timer value. As a result
2250 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2251 * 24 in order to generate a larger value for synchronization.
2252 */
2253 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2254 /* disable system timer temporarily by setting bit 31 */
2255 wr32(E1000_TSAUXC, 0x80000000);
2256 wrfl();
2257
2258 /* Set registers so that rollover occurs soon to test this. */
2259 wr32(E1000_SYSTIMR, 0x00000000);
2260 wr32(E1000_SYSTIML, 0x80000000);
2261 wr32(E1000_SYSTIMH, 0x000000FF);
2262 wrfl();
2263
2264 /* enable system timer by clearing bit 31 */
2265 wr32(E1000_TSAUXC, 0x0);
2266 wrfl();
2267
2268 timecounter_init(&adapter->clock,
2269 &adapter->cycles,
2270 ktime_to_ns(ktime_get_real()));
2271 /*
2272 * Synchronize our NIC clock against system wall clock. NIC
2273 * time stamp reading requires ~3us per sample, each sample
2274 * was pretty stable even under load => only require 10
2275 * samples for each offset comparison.
2276 */
2277 memset(&adapter->compare, 0, sizeof(adapter->compare));
2278 adapter->compare.source = &adapter->clock;
2279 adapter->compare.target = ktime_get_real;
2280 adapter->compare.num_samples = 10;
2281 timecompare_update(&adapter->compare, 0);
2282 break;
115f459a
AD
2283 case e1000_82576:
2284 /*
2285 * Initialize hardware timer: we keep it running just in case
2286 * that some program needs it later on.
2287 */
2288 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2289 adapter->cycles.read = igb_read_clock;
2290 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2291 adapter->cycles.mult = 1;
2292 /**
2293 * Scale the NIC clock cycle by a large factor so that
2294 * relatively small clock corrections can be added or
25985edc 2295 * subtracted at each clock tick. The drawbacks of a large
115f459a
AD
2296 * factor are a) that the clock register overflows more quickly
2297 * (not such a big deal) and b) that the increment per tick has
2298 * to fit into 24 bits. As a result we need to use a shift of
2299 * 19 so we can fit a value of 16 into the TIMINCA register.
2300 */
2301 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2302 wr32(E1000_TIMINCA,
2303 (1 << E1000_TIMINCA_16NS_SHIFT) |
2304 (16 << IGB_82576_TSYNC_SHIFT));
2305
2306 /* Set registers so that rollover occurs soon to test this. */
2307 wr32(E1000_SYSTIML, 0x00000000);
2308 wr32(E1000_SYSTIMH, 0xFF800000);
2309 wrfl();
2310
2311 timecounter_init(&adapter->clock,
2312 &adapter->cycles,
2313 ktime_to_ns(ktime_get_real()));
2314 /*
2315 * Synchronize our NIC clock against system wall clock. NIC
2316 * time stamp reading requires ~3us per sample, each sample
2317 * was pretty stable even under load => only require 10
2318 * samples for each offset comparison.
2319 */
2320 memset(&adapter->compare, 0, sizeof(adapter->compare));
2321 adapter->compare.source = &adapter->clock;
2322 adapter->compare.target = ktime_get_real;
2323 adapter->compare.num_samples = 10;
2324 timecompare_update(&adapter->compare, 0);
2325 break;
2326 case e1000_82575:
2327 /* 82575 does not support timesync */
2328 default:
2329 break;
2330 }
2331
2332}
2333
9d5c8243
AK
2334/**
2335 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2336 * @adapter: board private structure to initialize
2337 *
2338 * igb_sw_init initializes the Adapter private data structure.
2339 * Fields are initialized based on PCI device information and
2340 * OS network device settings (MTU size).
2341 **/
2342static int __devinit igb_sw_init(struct igb_adapter *adapter)
2343{
2344 struct e1000_hw *hw = &adapter->hw;
2345 struct net_device *netdev = adapter->netdev;
2346 struct pci_dev *pdev = adapter->pdev;
2347
2348 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2349
68fd9910
AD
2350 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2351 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
2352 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2353 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2354
9d5c8243
AK
2355 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2356 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2357
12dcd86b 2358 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2359#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2360 switch (hw->mac.type) {
2361 case e1000_82576:
2362 case e1000_i350:
9b082d73
SA
2363 if (max_vfs > 7) {
2364 dev_warn(&pdev->dev,
2365 "Maximum of 7 VFs per PF, using max\n");
2366 adapter->vfs_allocated_count = 7;
2367 } else
2368 adapter->vfs_allocated_count = max_vfs;
6b78bb1d
CW
2369 break;
2370 default:
2371 break;
2372 }
a6b623e0 2373#endif /* CONFIG_PCI_IOV */
a99955fc
AD
2374 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2375
2376 /*
2377 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2378 * then we should combine the queues into a queue pair in order to
2379 * conserve interrupts due to limited supply
2380 */
2381 if ((adapter->rss_queues > 4) ||
2382 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2383 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2384
a6b623e0 2385 /* This call may decrease the number of queues */
047e0030 2386 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2387 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2388 return -ENOMEM;
2389 }
2390
a6b623e0
AD
2391 igb_probe_vfs(adapter);
2392
9d5c8243
AK
2393 /* Explicitly disable IRQ since the NIC can be in any state. */
2394 igb_irq_disable(adapter);
2395
831ec0b4
CW
2396 if (hw->mac.type == e1000_i350)
2397 adapter->flags &= ~IGB_FLAG_DMAC;
2398
9d5c8243
AK
2399 set_bit(__IGB_DOWN, &adapter->state);
2400 return 0;
2401}
2402
2403/**
2404 * igb_open - Called when a network interface is made active
2405 * @netdev: network interface device structure
2406 *
2407 * Returns 0 on success, negative value on failure
2408 *
2409 * The open entry point is called when a network interface is made
2410 * active by the system (IFF_UP). At this point all resources needed
2411 * for transmit and receive operations are allocated, the interrupt
2412 * handler is registered with the OS, the watchdog timer is started,
2413 * and the stack is notified that the interface is ready.
2414 **/
2415static int igb_open(struct net_device *netdev)
2416{
2417 struct igb_adapter *adapter = netdev_priv(netdev);
2418 struct e1000_hw *hw = &adapter->hw;
2419 int err;
2420 int i;
2421
2422 /* disallow open during test */
2423 if (test_bit(__IGB_TESTING, &adapter->state))
2424 return -EBUSY;
2425
b168dfc5
JB
2426 netif_carrier_off(netdev);
2427
9d5c8243
AK
2428 /* allocate transmit descriptors */
2429 err = igb_setup_all_tx_resources(adapter);
2430 if (err)
2431 goto err_setup_tx;
2432
2433 /* allocate receive descriptors */
2434 err = igb_setup_all_rx_resources(adapter);
2435 if (err)
2436 goto err_setup_rx;
2437
88a268c1 2438 igb_power_up_link(adapter);
9d5c8243 2439
9d5c8243
AK
2440 /* before we allocate an interrupt, we must be ready to handle it.
2441 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2442 * as soon as we call pci_request_irq, so we have to setup our
2443 * clean_rx handler before we do so. */
2444 igb_configure(adapter);
2445
2446 err = igb_request_irq(adapter);
2447 if (err)
2448 goto err_req_irq;
2449
2450 /* From here on the code is the same as igb_up() */
2451 clear_bit(__IGB_DOWN, &adapter->state);
2452
047e0030
AD
2453 for (i = 0; i < adapter->num_q_vectors; i++) {
2454 struct igb_q_vector *q_vector = adapter->q_vector[i];
2455 napi_enable(&q_vector->napi);
2456 }
9d5c8243
AK
2457
2458 /* Clear any pending interrupts. */
2459 rd32(E1000_ICR);
844290e5
PW
2460
2461 igb_irq_enable(adapter);
2462
d4960307
AD
2463 /* notify VFs that reset has been completed */
2464 if (adapter->vfs_allocated_count) {
2465 u32 reg_data = rd32(E1000_CTRL_EXT);
2466 reg_data |= E1000_CTRL_EXT_PFRSTD;
2467 wr32(E1000_CTRL_EXT, reg_data);
2468 }
2469
d55b53ff
JK
2470 netif_tx_start_all_queues(netdev);
2471
25568a53
AD
2472 /* start the watchdog. */
2473 hw->mac.get_link_status = 1;
2474 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2475
2476 return 0;
2477
2478err_req_irq:
2479 igb_release_hw_control(adapter);
88a268c1 2480 igb_power_down_link(adapter);
9d5c8243
AK
2481 igb_free_all_rx_resources(adapter);
2482err_setup_rx:
2483 igb_free_all_tx_resources(adapter);
2484err_setup_tx:
2485 igb_reset(adapter);
2486
2487 return err;
2488}
2489
2490/**
2491 * igb_close - Disables a network interface
2492 * @netdev: network interface device structure
2493 *
2494 * Returns 0, this is not allowed to fail
2495 *
2496 * The close entry point is called when an interface is de-activated
2497 * by the OS. The hardware is still under the driver's control, but
2498 * needs to be disabled. A global MAC reset is issued to stop the
2499 * hardware, and all transmit and receive resources are freed.
2500 **/
2501static int igb_close(struct net_device *netdev)
2502{
2503 struct igb_adapter *adapter = netdev_priv(netdev);
2504
2505 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2506 igb_down(adapter);
2507
2508 igb_free_irq(adapter);
2509
2510 igb_free_all_tx_resources(adapter);
2511 igb_free_all_rx_resources(adapter);
2512
9d5c8243
AK
2513 return 0;
2514}
2515
2516/**
2517 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2518 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2519 *
2520 * Return 0 on success, negative on failure
2521 **/
80785298 2522int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2523{
59d71989 2524 struct device *dev = tx_ring->dev;
9d5c8243
AK
2525 int size;
2526
2527 size = sizeof(struct igb_buffer) * tx_ring->count;
89bf67f1 2528 tx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2529 if (!tx_ring->buffer_info)
2530 goto err;
9d5c8243
AK
2531
2532 /* round up to nearest 4K */
85e8d004 2533 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2534 tx_ring->size = ALIGN(tx_ring->size, 4096);
2535
59d71989
AD
2536 tx_ring->desc = dma_alloc_coherent(dev,
2537 tx_ring->size,
2538 &tx_ring->dma,
2539 GFP_KERNEL);
9d5c8243
AK
2540
2541 if (!tx_ring->desc)
2542 goto err;
2543
9d5c8243
AK
2544 tx_ring->next_to_use = 0;
2545 tx_ring->next_to_clean = 0;
9d5c8243
AK
2546 return 0;
2547
2548err:
2549 vfree(tx_ring->buffer_info);
59d71989 2550 dev_err(dev,
9d5c8243
AK
2551 "Unable to allocate memory for the transmit descriptor ring\n");
2552 return -ENOMEM;
2553}
2554
2555/**
2556 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2557 * (Descriptors) for all queues
2558 * @adapter: board private structure
2559 *
2560 * Return 0 on success, negative on failure
2561 **/
2562static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2563{
439705e1 2564 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2565 int i, err = 0;
2566
2567 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2568 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2569 if (err) {
439705e1 2570 dev_err(&pdev->dev,
9d5c8243
AK
2571 "Allocation for Tx Queue %u failed\n", i);
2572 for (i--; i >= 0; i--)
3025a446 2573 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2574 break;
2575 }
2576 }
2577
a99955fc 2578 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
439705e1 2579 int r_idx = i % adapter->num_tx_queues;
3025a446 2580 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
eebbbdba 2581 }
9d5c8243
AK
2582 return err;
2583}
2584
2585/**
85b430b4
AD
2586 * igb_setup_tctl - configure the transmit control registers
2587 * @adapter: Board private structure
9d5c8243 2588 **/
d7ee5b3a 2589void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2590{
9d5c8243
AK
2591 struct e1000_hw *hw = &adapter->hw;
2592 u32 tctl;
9d5c8243 2593
85b430b4
AD
2594 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2595 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2596
2597 /* Program the Transmit Control Register */
9d5c8243
AK
2598 tctl = rd32(E1000_TCTL);
2599 tctl &= ~E1000_TCTL_CT;
2600 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2601 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2602
2603 igb_config_collision_dist(hw);
2604
9d5c8243
AK
2605 /* Enable transmits */
2606 tctl |= E1000_TCTL_EN;
2607
2608 wr32(E1000_TCTL, tctl);
2609}
2610
85b430b4
AD
2611/**
2612 * igb_configure_tx_ring - Configure transmit ring after Reset
2613 * @adapter: board private structure
2614 * @ring: tx ring to configure
2615 *
2616 * Configure a transmit ring after a reset.
2617 **/
d7ee5b3a
AD
2618void igb_configure_tx_ring(struct igb_adapter *adapter,
2619 struct igb_ring *ring)
85b430b4
AD
2620{
2621 struct e1000_hw *hw = &adapter->hw;
2622 u32 txdctl;
2623 u64 tdba = ring->dma;
2624 int reg_idx = ring->reg_idx;
2625
2626 /* disable the queue */
2627 txdctl = rd32(E1000_TXDCTL(reg_idx));
2628 wr32(E1000_TXDCTL(reg_idx),
2629 txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2630 wrfl();
2631 mdelay(10);
2632
2633 wr32(E1000_TDLEN(reg_idx),
2634 ring->count * sizeof(union e1000_adv_tx_desc));
2635 wr32(E1000_TDBAL(reg_idx),
2636 tdba & 0x00000000ffffffffULL);
2637 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2638
fce99e34
AD
2639 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2640 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2641 writel(0, ring->head);
2642 writel(0, ring->tail);
85b430b4
AD
2643
2644 txdctl |= IGB_TX_PTHRESH;
2645 txdctl |= IGB_TX_HTHRESH << 8;
2646 txdctl |= IGB_TX_WTHRESH << 16;
2647
2648 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2649 wr32(E1000_TXDCTL(reg_idx), txdctl);
2650}
2651
2652/**
2653 * igb_configure_tx - Configure transmit Unit after Reset
2654 * @adapter: board private structure
2655 *
2656 * Configure the Tx unit of the MAC after a reset.
2657 **/
2658static void igb_configure_tx(struct igb_adapter *adapter)
2659{
2660 int i;
2661
2662 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2663 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2664}
2665
9d5c8243
AK
2666/**
2667 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2668 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2669 *
2670 * Returns 0 on success, negative on failure
2671 **/
80785298 2672int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2673{
59d71989 2674 struct device *dev = rx_ring->dev;
9d5c8243
AK
2675 int size, desc_len;
2676
2677 size = sizeof(struct igb_buffer) * rx_ring->count;
89bf67f1 2678 rx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2679 if (!rx_ring->buffer_info)
2680 goto err;
9d5c8243
AK
2681
2682 desc_len = sizeof(union e1000_adv_rx_desc);
2683
2684 /* Round up to nearest 4K */
2685 rx_ring->size = rx_ring->count * desc_len;
2686 rx_ring->size = ALIGN(rx_ring->size, 4096);
2687
59d71989
AD
2688 rx_ring->desc = dma_alloc_coherent(dev,
2689 rx_ring->size,
2690 &rx_ring->dma,
2691 GFP_KERNEL);
9d5c8243
AK
2692
2693 if (!rx_ring->desc)
2694 goto err;
2695
2696 rx_ring->next_to_clean = 0;
2697 rx_ring->next_to_use = 0;
9d5c8243 2698
9d5c8243
AK
2699 return 0;
2700
2701err:
2702 vfree(rx_ring->buffer_info);
439705e1 2703 rx_ring->buffer_info = NULL;
59d71989
AD
2704 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2705 " ring\n");
9d5c8243
AK
2706 return -ENOMEM;
2707}
2708
2709/**
2710 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2711 * (Descriptors) for all queues
2712 * @adapter: board private structure
2713 *
2714 * Return 0 on success, negative on failure
2715 **/
2716static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2717{
439705e1 2718 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2719 int i, err = 0;
2720
2721 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2722 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2723 if (err) {
439705e1 2724 dev_err(&pdev->dev,
9d5c8243
AK
2725 "Allocation for Rx Queue %u failed\n", i);
2726 for (i--; i >= 0; i--)
3025a446 2727 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2728 break;
2729 }
2730 }
2731
2732 return err;
2733}
2734
06cf2666
AD
2735/**
2736 * igb_setup_mrqc - configure the multiple receive queue control registers
2737 * @adapter: Board private structure
2738 **/
2739static void igb_setup_mrqc(struct igb_adapter *adapter)
2740{
2741 struct e1000_hw *hw = &adapter->hw;
2742 u32 mrqc, rxcsum;
2743 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2744 union e1000_reta {
2745 u32 dword;
2746 u8 bytes[4];
2747 } reta;
2748 static const u8 rsshash[40] = {
2749 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2750 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2751 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2752 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2753
2754 /* Fill out hash function seeds */
2755 for (j = 0; j < 10; j++) {
2756 u32 rsskey = rsshash[(j * 4)];
2757 rsskey |= rsshash[(j * 4) + 1] << 8;
2758 rsskey |= rsshash[(j * 4) + 2] << 16;
2759 rsskey |= rsshash[(j * 4) + 3] << 24;
2760 array_wr32(E1000_RSSRK(0), j, rsskey);
2761 }
2762
a99955fc 2763 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2764
2765 if (adapter->vfs_allocated_count) {
2766 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2767 switch (hw->mac.type) {
d2ba2ed8 2768 case e1000_i350:
55cac248
AD
2769 case e1000_82580:
2770 num_rx_queues = 1;
2771 shift = 0;
2772 break;
06cf2666
AD
2773 case e1000_82576:
2774 shift = 3;
2775 num_rx_queues = 2;
2776 break;
2777 case e1000_82575:
2778 shift = 2;
2779 shift2 = 6;
2780 default:
2781 break;
2782 }
2783 } else {
2784 if (hw->mac.type == e1000_82575)
2785 shift = 6;
2786 }
2787
2788 for (j = 0; j < (32 * 4); j++) {
2789 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2790 if (shift2)
2791 reta.bytes[j & 3] |= num_rx_queues << shift2;
2792 if ((j & 3) == 3)
2793 wr32(E1000_RETA(j >> 2), reta.dword);
2794 }
2795
2796 /*
2797 * Disable raw packet checksumming so that RSS hash is placed in
2798 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2799 * offloads as they are enabled by default
2800 */
2801 rxcsum = rd32(E1000_RXCSUM);
2802 rxcsum |= E1000_RXCSUM_PCSD;
2803
2804 if (adapter->hw.mac.type >= e1000_82576)
2805 /* Enable Receive Checksum Offload for SCTP */
2806 rxcsum |= E1000_RXCSUM_CRCOFL;
2807
2808 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2809 wr32(E1000_RXCSUM, rxcsum);
2810
2811 /* If VMDq is enabled then we set the appropriate mode for that, else
2812 * we default to RSS so that an RSS hash is calculated per packet even
2813 * if we are only using one queue */
2814 if (adapter->vfs_allocated_count) {
2815 if (hw->mac.type > e1000_82575) {
2816 /* Set the default pool for the PF's first queue */
2817 u32 vtctl = rd32(E1000_VT_CTL);
2818 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2819 E1000_VT_CTL_DISABLE_DEF_POOL);
2820 vtctl |= adapter->vfs_allocated_count <<
2821 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2822 wr32(E1000_VT_CTL, vtctl);
2823 }
a99955fc 2824 if (adapter->rss_queues > 1)
06cf2666
AD
2825 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2826 else
2827 mrqc = E1000_MRQC_ENABLE_VMDQ;
2828 } else {
2829 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2830 }
2831 igb_vmm_control(adapter);
2832
4478a9cd
AD
2833 /*
2834 * Generate RSS hash based on TCP port numbers and/or
2835 * IPv4/v6 src and dst addresses since UDP cannot be
2836 * hashed reliably due to IP fragmentation
2837 */
2838 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2839 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2840 E1000_MRQC_RSS_FIELD_IPV6 |
2841 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2842 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2843
2844 wr32(E1000_MRQC, mrqc);
2845}
2846
9d5c8243
AK
2847/**
2848 * igb_setup_rctl - configure the receive control registers
2849 * @adapter: Board private structure
2850 **/
d7ee5b3a 2851void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2852{
2853 struct e1000_hw *hw = &adapter->hw;
2854 u32 rctl;
9d5c8243
AK
2855
2856 rctl = rd32(E1000_RCTL);
2857
2858 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2859 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2860
69d728ba 2861 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2862 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2863
87cb7e8c
AK
2864 /*
2865 * enable stripping of CRC. It's unlikely this will break BMC
2866 * redirection as it did with e1000. Newer features require
2867 * that the HW strips the CRC.
73cd78f1 2868 */
87cb7e8c 2869 rctl |= E1000_RCTL_SECRC;
9d5c8243 2870
559e9c49 2871 /* disable store bad packets and clear size bits. */
ec54d7d6 2872 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2873
6ec43fe6
AD
2874 /* enable LPE to prevent packets larger than max_frame_size */
2875 rctl |= E1000_RCTL_LPE;
9d5c8243 2876
952f72a8
AD
2877 /* disable queue 0 to prevent tail write w/o re-config */
2878 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2879
e1739522
AD
2880 /* Attention!!! For SR-IOV PF driver operations you must enable
2881 * queue drop for all VF and PF queues to prevent head of line blocking
2882 * if an un-trusted VF does not provide descriptors to hardware.
2883 */
2884 if (adapter->vfs_allocated_count) {
e1739522
AD
2885 /* set all queue drop enable bits */
2886 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2887 }
2888
9d5c8243
AK
2889 wr32(E1000_RCTL, rctl);
2890}
2891
7d5753f0
AD
2892static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2893 int vfn)
2894{
2895 struct e1000_hw *hw = &adapter->hw;
2896 u32 vmolr;
2897
2898 /* if it isn't the PF check to see if VFs are enabled and
2899 * increase the size to support vlan tags */
2900 if (vfn < adapter->vfs_allocated_count &&
2901 adapter->vf_data[vfn].vlans_enabled)
2902 size += VLAN_TAG_SIZE;
2903
2904 vmolr = rd32(E1000_VMOLR(vfn));
2905 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2906 vmolr |= size | E1000_VMOLR_LPE;
2907 wr32(E1000_VMOLR(vfn), vmolr);
2908
2909 return 0;
2910}
2911
e1739522
AD
2912/**
2913 * igb_rlpml_set - set maximum receive packet size
2914 * @adapter: board private structure
2915 *
2916 * Configure maximum receivable packet size.
2917 **/
2918static void igb_rlpml_set(struct igb_adapter *adapter)
2919{
2920 u32 max_frame_size = adapter->max_frame_size;
2921 struct e1000_hw *hw = &adapter->hw;
2922 u16 pf_id = adapter->vfs_allocated_count;
2923
2924 if (adapter->vlgrp)
2925 max_frame_size += VLAN_TAG_SIZE;
2926
2927 /* if vfs are enabled we set RLPML to the largest possible request
2928 * size and set the VMOLR RLPML to the size we need */
2929 if (pf_id) {
2930 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
7d5753f0 2931 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2932 }
2933
2934 wr32(E1000_RLPML, max_frame_size);
2935}
2936
8151d294
WM
2937static inline void igb_set_vmolr(struct igb_adapter *adapter,
2938 int vfn, bool aupe)
7d5753f0
AD
2939{
2940 struct e1000_hw *hw = &adapter->hw;
2941 u32 vmolr;
2942
2943 /*
2944 * This register exists only on 82576 and newer so if we are older then
2945 * we should exit and do nothing
2946 */
2947 if (hw->mac.type < e1000_82576)
2948 return;
2949
2950 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
2951 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2952 if (aupe)
2953 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2954 else
2955 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
2956
2957 /* clear all bits that might not be set */
2958 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
2959
a99955fc 2960 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
2961 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
2962 /*
2963 * for VMDq only allow the VFs and pool 0 to accept broadcast and
2964 * multicast packets
2965 */
2966 if (vfn <= adapter->vfs_allocated_count)
2967 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
2968
2969 wr32(E1000_VMOLR(vfn), vmolr);
2970}
2971
85b430b4
AD
2972/**
2973 * igb_configure_rx_ring - Configure a receive ring after Reset
2974 * @adapter: board private structure
2975 * @ring: receive ring to be configured
2976 *
2977 * Configure the Rx unit of the MAC after a reset.
2978 **/
d7ee5b3a
AD
2979void igb_configure_rx_ring(struct igb_adapter *adapter,
2980 struct igb_ring *ring)
85b430b4
AD
2981{
2982 struct e1000_hw *hw = &adapter->hw;
2983 u64 rdba = ring->dma;
2984 int reg_idx = ring->reg_idx;
952f72a8 2985 u32 srrctl, rxdctl;
85b430b4
AD
2986
2987 /* disable the queue */
2988 rxdctl = rd32(E1000_RXDCTL(reg_idx));
2989 wr32(E1000_RXDCTL(reg_idx),
2990 rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2991
2992 /* Set DMA base address registers */
2993 wr32(E1000_RDBAL(reg_idx),
2994 rdba & 0x00000000ffffffffULL);
2995 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2996 wr32(E1000_RDLEN(reg_idx),
2997 ring->count * sizeof(union e1000_adv_rx_desc));
2998
2999 /* initialize head and tail */
fce99e34
AD
3000 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
3001 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3002 writel(0, ring->head);
3003 writel(0, ring->tail);
85b430b4 3004
952f72a8 3005 /* set descriptor configuration */
4c844851
AD
3006 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
3007 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
952f72a8
AD
3008 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3009#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3010 srrctl |= IGB_RXBUFFER_16384 >>
3011 E1000_SRRCTL_BSIZEPKT_SHIFT;
3012#else
3013 srrctl |= (PAGE_SIZE / 2) >>
3014 E1000_SRRCTL_BSIZEPKT_SHIFT;
3015#endif
3016 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
3017 } else {
4c844851 3018 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
952f72a8
AD
3019 E1000_SRRCTL_BSIZEPKT_SHIFT;
3020 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3021 }
757b77e2
NN
3022 if (hw->mac.type == e1000_82580)
3023 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3024 /* Only set Drop Enable if we are supporting multiple queues */
3025 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3026 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3027
3028 wr32(E1000_SRRCTL(reg_idx), srrctl);
3029
7d5753f0 3030 /* set filtering for VMDQ pools */
8151d294 3031 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3032
85b430b4
AD
3033 /* enable receive descriptor fetching */
3034 rxdctl = rd32(E1000_RXDCTL(reg_idx));
3035 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3036 rxdctl &= 0xFFF00000;
3037 rxdctl |= IGB_RX_PTHRESH;
3038 rxdctl |= IGB_RX_HTHRESH << 8;
3039 rxdctl |= IGB_RX_WTHRESH << 16;
3040 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3041}
3042
9d5c8243
AK
3043/**
3044 * igb_configure_rx - Configure receive Unit after Reset
3045 * @adapter: board private structure
3046 *
3047 * Configure the Rx unit of the MAC after a reset.
3048 **/
3049static void igb_configure_rx(struct igb_adapter *adapter)
3050{
9107584e 3051 int i;
9d5c8243 3052
68d480c4
AD
3053 /* set UTA to appropriate mode */
3054 igb_set_uta(adapter);
3055
26ad9178
AD
3056 /* set the correct pool for the PF default MAC address in entry 0 */
3057 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3058 adapter->vfs_allocated_count);
3059
06cf2666
AD
3060 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3061 * the Base and Length of the Rx Descriptor Ring */
3062 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3063 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3064}
3065
3066/**
3067 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3068 * @tx_ring: Tx descriptor ring for a specific queue
3069 *
3070 * Free all transmit software resources
3071 **/
68fd9910 3072void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3073{
3b644cf6 3074 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
3075
3076 vfree(tx_ring->buffer_info);
3077 tx_ring->buffer_info = NULL;
3078
439705e1
AD
3079 /* if not set, then don't free */
3080 if (!tx_ring->desc)
3081 return;
3082
59d71989
AD
3083 dma_free_coherent(tx_ring->dev, tx_ring->size,
3084 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3085
3086 tx_ring->desc = NULL;
3087}
3088
3089/**
3090 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3091 * @adapter: board private structure
3092 *
3093 * Free all transmit software resources
3094 **/
3095static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3096{
3097 int i;
3098
3099 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3100 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3101}
3102
b1a436c3
AD
3103void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3104 struct igb_buffer *buffer_info)
9d5c8243 3105{
6366ad33
AD
3106 if (buffer_info->dma) {
3107 if (buffer_info->mapped_as_page)
59d71989 3108 dma_unmap_page(tx_ring->dev,
6366ad33
AD
3109 buffer_info->dma,
3110 buffer_info->length,
59d71989 3111 DMA_TO_DEVICE);
6366ad33 3112 else
59d71989 3113 dma_unmap_single(tx_ring->dev,
6366ad33
AD
3114 buffer_info->dma,
3115 buffer_info->length,
59d71989 3116 DMA_TO_DEVICE);
6366ad33
AD
3117 buffer_info->dma = 0;
3118 }
9d5c8243
AK
3119 if (buffer_info->skb) {
3120 dev_kfree_skb_any(buffer_info->skb);
3121 buffer_info->skb = NULL;
3122 }
3123 buffer_info->time_stamp = 0;
6366ad33
AD
3124 buffer_info->length = 0;
3125 buffer_info->next_to_watch = 0;
3126 buffer_info->mapped_as_page = false;
9d5c8243
AK
3127}
3128
3129/**
3130 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3131 * @tx_ring: ring to be cleaned
3132 **/
3b644cf6 3133static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
3134{
3135 struct igb_buffer *buffer_info;
3136 unsigned long size;
3137 unsigned int i;
3138
3139 if (!tx_ring->buffer_info)
3140 return;
3141 /* Free all the Tx ring sk_buffs */
3142
3143 for (i = 0; i < tx_ring->count; i++) {
3144 buffer_info = &tx_ring->buffer_info[i];
80785298 3145 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3146 }
3147
3148 size = sizeof(struct igb_buffer) * tx_ring->count;
3149 memset(tx_ring->buffer_info, 0, size);
3150
3151 /* Zero out the descriptor ring */
9d5c8243
AK
3152 memset(tx_ring->desc, 0, tx_ring->size);
3153
3154 tx_ring->next_to_use = 0;
3155 tx_ring->next_to_clean = 0;
9d5c8243
AK
3156}
3157
3158/**
3159 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3160 * @adapter: board private structure
3161 **/
3162static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3163{
3164 int i;
3165
3166 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3167 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3168}
3169
3170/**
3171 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3172 * @rx_ring: ring to clean the resources from
3173 *
3174 * Free all receive software resources
3175 **/
68fd9910 3176void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3177{
3b644cf6 3178 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
3179
3180 vfree(rx_ring->buffer_info);
3181 rx_ring->buffer_info = NULL;
3182
439705e1
AD
3183 /* if not set, then don't free */
3184 if (!rx_ring->desc)
3185 return;
3186
59d71989
AD
3187 dma_free_coherent(rx_ring->dev, rx_ring->size,
3188 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3189
3190 rx_ring->desc = NULL;
3191}
3192
3193/**
3194 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3195 * @adapter: board private structure
3196 *
3197 * Free all receive software resources
3198 **/
3199static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3200{
3201 int i;
3202
3203 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3204 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3205}
3206
3207/**
3208 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3209 * @rx_ring: ring to free buffers from
3210 **/
3b644cf6 3211static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243
AK
3212{
3213 struct igb_buffer *buffer_info;
9d5c8243
AK
3214 unsigned long size;
3215 unsigned int i;
3216
3217 if (!rx_ring->buffer_info)
3218 return;
439705e1 3219
9d5c8243
AK
3220 /* Free all the Rx ring sk_buffs */
3221 for (i = 0; i < rx_ring->count; i++) {
3222 buffer_info = &rx_ring->buffer_info[i];
3223 if (buffer_info->dma) {
59d71989 3224 dma_unmap_single(rx_ring->dev,
80785298 3225 buffer_info->dma,
4c844851 3226 rx_ring->rx_buffer_len,
59d71989 3227 DMA_FROM_DEVICE);
9d5c8243
AK
3228 buffer_info->dma = 0;
3229 }
3230
3231 if (buffer_info->skb) {
3232 dev_kfree_skb(buffer_info->skb);
3233 buffer_info->skb = NULL;
3234 }
6ec43fe6 3235 if (buffer_info->page_dma) {
59d71989 3236 dma_unmap_page(rx_ring->dev,
80785298 3237 buffer_info->page_dma,
6ec43fe6 3238 PAGE_SIZE / 2,
59d71989 3239 DMA_FROM_DEVICE);
6ec43fe6
AD
3240 buffer_info->page_dma = 0;
3241 }
9d5c8243 3242 if (buffer_info->page) {
9d5c8243
AK
3243 put_page(buffer_info->page);
3244 buffer_info->page = NULL;
bf36c1a0 3245 buffer_info->page_offset = 0;
9d5c8243
AK
3246 }
3247 }
3248
9d5c8243
AK
3249 size = sizeof(struct igb_buffer) * rx_ring->count;
3250 memset(rx_ring->buffer_info, 0, size);
3251
3252 /* Zero out the descriptor ring */
3253 memset(rx_ring->desc, 0, rx_ring->size);
3254
3255 rx_ring->next_to_clean = 0;
3256 rx_ring->next_to_use = 0;
9d5c8243
AK
3257}
3258
3259/**
3260 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3261 * @adapter: board private structure
3262 **/
3263static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3264{
3265 int i;
3266
3267 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3268 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3269}
3270
3271/**
3272 * igb_set_mac - Change the Ethernet Address of the NIC
3273 * @netdev: network interface device structure
3274 * @p: pointer to an address structure
3275 *
3276 * Returns 0 on success, negative on failure
3277 **/
3278static int igb_set_mac(struct net_device *netdev, void *p)
3279{
3280 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3281 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3282 struct sockaddr *addr = p;
3283
3284 if (!is_valid_ether_addr(addr->sa_data))
3285 return -EADDRNOTAVAIL;
3286
3287 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3288 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3289
26ad9178
AD
3290 /* set the correct pool for the new PF MAC address in entry 0 */
3291 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3292 adapter->vfs_allocated_count);
e1739522 3293
9d5c8243
AK
3294 return 0;
3295}
3296
3297/**
68d480c4 3298 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3299 * @netdev: network interface device structure
3300 *
68d480c4
AD
3301 * Writes multicast address list to the MTA hash table.
3302 * Returns: -ENOMEM on failure
3303 * 0 on no addresses written
3304 * X on writing X addresses to MTA
9d5c8243 3305 **/
68d480c4 3306static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3307{
3308 struct igb_adapter *adapter = netdev_priv(netdev);
3309 struct e1000_hw *hw = &adapter->hw;
22bedad3 3310 struct netdev_hw_addr *ha;
68d480c4 3311 u8 *mta_list;
9d5c8243
AK
3312 int i;
3313
4cd24eaf 3314 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3315 /* nothing to program, so clear mc list */
3316 igb_update_mc_addr_list(hw, NULL, 0);
3317 igb_restore_vf_multicasts(adapter);
3318 return 0;
3319 }
9d5c8243 3320
4cd24eaf 3321 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3322 if (!mta_list)
3323 return -ENOMEM;
ff41f8dc 3324
68d480c4 3325 /* The shared function expects a packed array of only addresses. */
48e2f183 3326 i = 0;
22bedad3
JP
3327 netdev_for_each_mc_addr(ha, netdev)
3328 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3329
68d480c4
AD
3330 igb_update_mc_addr_list(hw, mta_list, i);
3331 kfree(mta_list);
3332
4cd24eaf 3333 return netdev_mc_count(netdev);
68d480c4
AD
3334}
3335
3336/**
3337 * igb_write_uc_addr_list - write unicast addresses to RAR table
3338 * @netdev: network interface device structure
3339 *
3340 * Writes unicast address list to the RAR table.
3341 * Returns: -ENOMEM on failure/insufficient address space
3342 * 0 on no addresses written
3343 * X on writing X addresses to the RAR table
3344 **/
3345static int igb_write_uc_addr_list(struct net_device *netdev)
3346{
3347 struct igb_adapter *adapter = netdev_priv(netdev);
3348 struct e1000_hw *hw = &adapter->hw;
3349 unsigned int vfn = adapter->vfs_allocated_count;
3350 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3351 int count = 0;
3352
3353 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3354 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3355 return -ENOMEM;
9d5c8243 3356
32e7bfc4 3357 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3358 struct netdev_hw_addr *ha;
32e7bfc4
JP
3359
3360 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3361 if (!rar_entries)
3362 break;
26ad9178
AD
3363 igb_rar_set_qsel(adapter, ha->addr,
3364 rar_entries--,
68d480c4
AD
3365 vfn);
3366 count++;
ff41f8dc
AD
3367 }
3368 }
3369 /* write the addresses in reverse order to avoid write combining */
3370 for (; rar_entries > 0 ; rar_entries--) {
3371 wr32(E1000_RAH(rar_entries), 0);
3372 wr32(E1000_RAL(rar_entries), 0);
3373 }
3374 wrfl();
3375
68d480c4
AD
3376 return count;
3377}
3378
3379/**
3380 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3381 * @netdev: network interface device structure
3382 *
3383 * The set_rx_mode entry point is called whenever the unicast or multicast
3384 * address lists or the network interface flags are updated. This routine is
3385 * responsible for configuring the hardware for proper unicast, multicast,
3386 * promiscuous mode, and all-multi behavior.
3387 **/
3388static void igb_set_rx_mode(struct net_device *netdev)
3389{
3390 struct igb_adapter *adapter = netdev_priv(netdev);
3391 struct e1000_hw *hw = &adapter->hw;
3392 unsigned int vfn = adapter->vfs_allocated_count;
3393 u32 rctl, vmolr = 0;
3394 int count;
3395
3396 /* Check for Promiscuous and All Multicast modes */
3397 rctl = rd32(E1000_RCTL);
3398
3399 /* clear the effected bits */
3400 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3401
3402 if (netdev->flags & IFF_PROMISC) {
3403 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3404 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3405 } else {
3406 if (netdev->flags & IFF_ALLMULTI) {
3407 rctl |= E1000_RCTL_MPE;
3408 vmolr |= E1000_VMOLR_MPME;
3409 } else {
3410 /*
3411 * Write addresses to the MTA, if the attempt fails
25985edc 3412 * then we should just turn on promiscuous mode so
68d480c4
AD
3413 * that we can at least receive multicast traffic
3414 */
3415 count = igb_write_mc_addr_list(netdev);
3416 if (count < 0) {
3417 rctl |= E1000_RCTL_MPE;
3418 vmolr |= E1000_VMOLR_MPME;
3419 } else if (count) {
3420 vmolr |= E1000_VMOLR_ROMPE;
3421 }
3422 }
3423 /*
3424 * Write addresses to available RAR registers, if there is not
3425 * sufficient space to store all the addresses then enable
25985edc 3426 * unicast promiscuous mode
68d480c4
AD
3427 */
3428 count = igb_write_uc_addr_list(netdev);
3429 if (count < 0) {
3430 rctl |= E1000_RCTL_UPE;
3431 vmolr |= E1000_VMOLR_ROPE;
3432 }
3433 rctl |= E1000_RCTL_VFE;
28fc06f5 3434 }
68d480c4 3435 wr32(E1000_RCTL, rctl);
28fc06f5 3436
68d480c4
AD
3437 /*
3438 * In order to support SR-IOV and eventually VMDq it is necessary to set
3439 * the VMOLR to enable the appropriate modes. Without this workaround
3440 * we will have issues with VLAN tag stripping not being done for frames
3441 * that are only arriving because we are the default pool
3442 */
3443 if (hw->mac.type < e1000_82576)
28fc06f5 3444 return;
9d5c8243 3445
68d480c4
AD
3446 vmolr |= rd32(E1000_VMOLR(vfn)) &
3447 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3448 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3449 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3450}
3451
13800469
GR
3452static void igb_check_wvbr(struct igb_adapter *adapter)
3453{
3454 struct e1000_hw *hw = &adapter->hw;
3455 u32 wvbr = 0;
3456
3457 switch (hw->mac.type) {
3458 case e1000_82576:
3459 case e1000_i350:
3460 if (!(wvbr = rd32(E1000_WVBR)))
3461 return;
3462 break;
3463 default:
3464 break;
3465 }
3466
3467 adapter->wvbr |= wvbr;
3468}
3469
3470#define IGB_STAGGERED_QUEUE_OFFSET 8
3471
3472static void igb_spoof_check(struct igb_adapter *adapter)
3473{
3474 int j;
3475
3476 if (!adapter->wvbr)
3477 return;
3478
3479 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3480 if (adapter->wvbr & (1 << j) ||
3481 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3482 dev_warn(&adapter->pdev->dev,
3483 "Spoof event(s) detected on VF %d\n", j);
3484 adapter->wvbr &=
3485 ~((1 << j) |
3486 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3487 }
3488 }
3489}
3490
9d5c8243
AK
3491/* Need to wait a few seconds after link up to get diagnostic information from
3492 * the phy */
3493static void igb_update_phy_info(unsigned long data)
3494{
3495 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3496 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3497}
3498
4d6b725e
AD
3499/**
3500 * igb_has_link - check shared code for link and determine up/down
3501 * @adapter: pointer to driver private info
3502 **/
3145535a 3503bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3504{
3505 struct e1000_hw *hw = &adapter->hw;
3506 bool link_active = false;
3507 s32 ret_val = 0;
3508
3509 /* get_link_status is set on LSC (link status) interrupt or
3510 * rx sequence error interrupt. get_link_status will stay
3511 * false until the e1000_check_for_link establishes link
3512 * for copper adapters ONLY
3513 */
3514 switch (hw->phy.media_type) {
3515 case e1000_media_type_copper:
3516 if (hw->mac.get_link_status) {
3517 ret_val = hw->mac.ops.check_for_link(hw);
3518 link_active = !hw->mac.get_link_status;
3519 } else {
3520 link_active = true;
3521 }
3522 break;
4d6b725e
AD
3523 case e1000_media_type_internal_serdes:
3524 ret_val = hw->mac.ops.check_for_link(hw);
3525 link_active = hw->mac.serdes_has_link;
3526 break;
3527 default:
3528 case e1000_media_type_unknown:
3529 break;
3530 }
3531
3532 return link_active;
3533}
3534
563988dc
SA
3535static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3536{
3537 bool ret = false;
3538 u32 ctrl_ext, thstat;
3539
3540 /* check for thermal sensor event on i350, copper only */
3541 if (hw->mac.type == e1000_i350) {
3542 thstat = rd32(E1000_THSTAT);
3543 ctrl_ext = rd32(E1000_CTRL_EXT);
3544
3545 if ((hw->phy.media_type == e1000_media_type_copper) &&
3546 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3547 ret = !!(thstat & event);
3548 }
3549 }
3550
3551 return ret;
3552}
3553
9d5c8243
AK
3554/**
3555 * igb_watchdog - Timer Call-back
3556 * @data: pointer to adapter cast into an unsigned long
3557 **/
3558static void igb_watchdog(unsigned long data)
3559{
3560 struct igb_adapter *adapter = (struct igb_adapter *)data;
3561 /* Do the rest outside of interrupt context */
3562 schedule_work(&adapter->watchdog_task);
3563}
3564
3565static void igb_watchdog_task(struct work_struct *work)
3566{
3567 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3568 struct igb_adapter,
3569 watchdog_task);
9d5c8243 3570 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3571 struct net_device *netdev = adapter->netdev;
563988dc 3572 u32 link;
7a6ea550 3573 int i;
9d5c8243 3574
4d6b725e 3575 link = igb_has_link(adapter);
9d5c8243
AK
3576 if (link) {
3577 if (!netif_carrier_ok(netdev)) {
3578 u32 ctrl;
330a6d6a
AD
3579 hw->mac.ops.get_speed_and_duplex(hw,
3580 &adapter->link_speed,
3581 &adapter->link_duplex);
9d5c8243
AK
3582
3583 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3584 /* Links status message must follow this format */
3585 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3586 "Flow Control: %s\n",
559e9c49
AD
3587 netdev->name,
3588 adapter->link_speed,
3589 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3590 "Full Duplex" : "Half Duplex",
559e9c49
AD
3591 ((ctrl & E1000_CTRL_TFCE) &&
3592 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3593 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3594 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3595
563988dc
SA
3596 /* check for thermal sensor event */
3597 if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
3598 printk(KERN_INFO "igb: %s The network adapter "
3599 "link speed was downshifted "
3600 "because it overheated.\n",
3601 netdev->name);
7ef5ed1c 3602 }
563988dc 3603
d07f3e37 3604 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3605 adapter->tx_timeout_factor = 1;
3606 switch (adapter->link_speed) {
3607 case SPEED_10:
9d5c8243
AK
3608 adapter->tx_timeout_factor = 14;
3609 break;
3610 case SPEED_100:
9d5c8243
AK
3611 /* maybe add some timeout factor ? */
3612 break;
3613 }
3614
3615 netif_carrier_on(netdev);
9d5c8243 3616
4ae196df 3617 igb_ping_all_vfs(adapter);
17dc566c 3618 igb_check_vf_rate_limit(adapter);
4ae196df 3619
4b1a9877 3620 /* link state has changed, schedule phy info update */
9d5c8243
AK
3621 if (!test_bit(__IGB_DOWN, &adapter->state))
3622 mod_timer(&adapter->phy_info_timer,
3623 round_jiffies(jiffies + 2 * HZ));
3624 }
3625 } else {
3626 if (netif_carrier_ok(netdev)) {
3627 adapter->link_speed = 0;
3628 adapter->link_duplex = 0;
563988dc
SA
3629
3630 /* check for thermal sensor event */
3631 if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
3632 printk(KERN_ERR "igb: %s The network adapter "
3633 "was stopped because it "
3634 "overheated.\n",
7ef5ed1c 3635 netdev->name);
7ef5ed1c 3636 }
563988dc 3637
527d47c1
AD
3638 /* Links status message must follow this format */
3639 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3640 netdev->name);
9d5c8243 3641 netif_carrier_off(netdev);
4b1a9877 3642
4ae196df
AD
3643 igb_ping_all_vfs(adapter);
3644
4b1a9877 3645 /* link state has changed, schedule phy info update */
9d5c8243
AK
3646 if (!test_bit(__IGB_DOWN, &adapter->state))
3647 mod_timer(&adapter->phy_info_timer,
3648 round_jiffies(jiffies + 2 * HZ));
3649 }
3650 }
3651
12dcd86b
ED
3652 spin_lock(&adapter->stats64_lock);
3653 igb_update_stats(adapter, &adapter->stats64);
3654 spin_unlock(&adapter->stats64_lock);
9d5c8243 3655
dbabb065 3656 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3657 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3658 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3659 /* We've lost link, so the controller stops DMA,
3660 * but we've got queued Tx work that's never going
3661 * to get done, so reset controller to flush Tx.
3662 * (Do the reset outside of interrupt context). */
dbabb065
AD
3663 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3664 adapter->tx_timeout_count++;
3665 schedule_work(&adapter->reset_task);
3666 /* return immediately since reset is imminent */
3667 return;
3668 }
9d5c8243 3669 }
9d5c8243 3670
dbabb065
AD
3671 /* Force detection of hung controller every watchdog period */
3672 tx_ring->detect_tx_hung = true;
3673 }
f7ba205e 3674
9d5c8243 3675 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3676 if (adapter->msix_entries) {
047e0030
AD
3677 u32 eics = 0;
3678 for (i = 0; i < adapter->num_q_vectors; i++) {
3679 struct igb_q_vector *q_vector = adapter->q_vector[i];
3680 eics |= q_vector->eims_value;
3681 }
7a6ea550
AD
3682 wr32(E1000_EICS, eics);
3683 } else {
3684 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3685 }
9d5c8243 3686
13800469
GR
3687 igb_spoof_check(adapter);
3688
9d5c8243
AK
3689 /* Reset the timer */
3690 if (!test_bit(__IGB_DOWN, &adapter->state))
3691 mod_timer(&adapter->watchdog_timer,
3692 round_jiffies(jiffies + 2 * HZ));
3693}
3694
3695enum latency_range {
3696 lowest_latency = 0,
3697 low_latency = 1,
3698 bulk_latency = 2,
3699 latency_invalid = 255
3700};
3701
6eb5a7f1
AD
3702/**
3703 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3704 *
3705 * Stores a new ITR value based on strictly on packet size. This
3706 * algorithm is less sophisticated than that used in igb_update_itr,
3707 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3708 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3709 * were determined based on theoretical maximum wire speed and testing
3710 * data, in order to minimize response time while increasing bulk
3711 * throughput.
3712 * This functionality is controlled by the InterruptThrottleRate module
3713 * parameter (see igb_param.c)
3714 * NOTE: This function is called only when operating in a multiqueue
3715 * receive environment.
047e0030 3716 * @q_vector: pointer to q_vector
6eb5a7f1 3717 **/
047e0030 3718static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3719{
047e0030 3720 int new_val = q_vector->itr_val;
6eb5a7f1 3721 int avg_wire_size = 0;
047e0030 3722 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b
ED
3723 struct igb_ring *ring;
3724 unsigned int packets;
9d5c8243 3725
6eb5a7f1
AD
3726 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3727 * ints/sec - ITR timer value of 120 ticks.
3728 */
3729 if (adapter->link_speed != SPEED_1000) {
047e0030 3730 new_val = 976;
6eb5a7f1 3731 goto set_itr_val;
9d5c8243 3732 }
047e0030 3733
12dcd86b
ED
3734 ring = q_vector->rx_ring;
3735 if (ring) {
3736 packets = ACCESS_ONCE(ring->total_packets);
3737
3738 if (packets)
3739 avg_wire_size = ring->total_bytes / packets;
047e0030
AD
3740 }
3741
12dcd86b
ED
3742 ring = q_vector->tx_ring;
3743 if (ring) {
3744 packets = ACCESS_ONCE(ring->total_packets);
3745
3746 if (packets)
3747 avg_wire_size = max_t(u32, avg_wire_size,
3748 ring->total_bytes / packets);
047e0030
AD
3749 }
3750
3751 /* if avg_wire_size isn't set no work was done */
3752 if (!avg_wire_size)
3753 goto clear_counts;
9d5c8243 3754
6eb5a7f1
AD
3755 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3756 avg_wire_size += 24;
3757
3758 /* Don't starve jumbo frames */
3759 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3760
6eb5a7f1
AD
3761 /* Give a little boost to mid-size frames */
3762 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3763 new_val = avg_wire_size / 3;
3764 else
3765 new_val = avg_wire_size / 2;
9d5c8243 3766
abe1c363
NN
3767 /* when in itr mode 3 do not exceed 20K ints/sec */
3768 if (adapter->rx_itr_setting == 3 && new_val < 196)
3769 new_val = 196;
3770
6eb5a7f1 3771set_itr_val:
047e0030
AD
3772 if (new_val != q_vector->itr_val) {
3773 q_vector->itr_val = new_val;
3774 q_vector->set_itr = 1;
9d5c8243 3775 }
6eb5a7f1 3776clear_counts:
047e0030
AD
3777 if (q_vector->rx_ring) {
3778 q_vector->rx_ring->total_bytes = 0;
3779 q_vector->rx_ring->total_packets = 0;
3780 }
3781 if (q_vector->tx_ring) {
3782 q_vector->tx_ring->total_bytes = 0;
3783 q_vector->tx_ring->total_packets = 0;
3784 }
9d5c8243
AK
3785}
3786
3787/**
3788 * igb_update_itr - update the dynamic ITR value based on statistics
3789 * Stores a new ITR value based on packets and byte
3790 * counts during the last interrupt. The advantage of per interrupt
3791 * computation is faster updates and more accurate ITR for the current
3792 * traffic pattern. Constants in this function were computed
3793 * based on theoretical maximum wire speed and thresholds were set based
3794 * on testing data as well as attempting to minimize response time
3795 * while increasing bulk throughput.
3796 * this functionality is controlled by the InterruptThrottleRate module
3797 * parameter (see igb_param.c)
3798 * NOTE: These calculations are only valid when operating in a single-
3799 * queue environment.
3800 * @adapter: pointer to adapter
047e0030 3801 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3802 * @packets: the number of packets during this measurement interval
3803 * @bytes: the number of bytes during this measurement interval
3804 **/
3805static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3806 int packets, int bytes)
3807{
3808 unsigned int retval = itr_setting;
3809
3810 if (packets == 0)
3811 goto update_itr_done;
3812
3813 switch (itr_setting) {
3814 case lowest_latency:
3815 /* handle TSO and jumbo frames */
3816 if (bytes/packets > 8000)
3817 retval = bulk_latency;
3818 else if ((packets < 5) && (bytes > 512))
3819 retval = low_latency;
3820 break;
3821 case low_latency: /* 50 usec aka 20000 ints/s */
3822 if (bytes > 10000) {
3823 /* this if handles the TSO accounting */
3824 if (bytes/packets > 8000) {
3825 retval = bulk_latency;
3826 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3827 retval = bulk_latency;
3828 } else if ((packets > 35)) {
3829 retval = lowest_latency;
3830 }
3831 } else if (bytes/packets > 2000) {
3832 retval = bulk_latency;
3833 } else if (packets <= 2 && bytes < 512) {
3834 retval = lowest_latency;
3835 }
3836 break;
3837 case bulk_latency: /* 250 usec aka 4000 ints/s */
3838 if (bytes > 25000) {
3839 if (packets > 35)
3840 retval = low_latency;
1e5c3d21 3841 } else if (bytes < 1500) {
9d5c8243
AK
3842 retval = low_latency;
3843 }
3844 break;
3845 }
3846
3847update_itr_done:
3848 return retval;
3849}
3850
6eb5a7f1 3851static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3852{
047e0030 3853 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3854 u16 current_itr;
047e0030 3855 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3856
3857 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3858 if (adapter->link_speed != SPEED_1000) {
3859 current_itr = 0;
3860 new_itr = 4000;
3861 goto set_itr_now;
3862 }
3863
3864 adapter->rx_itr = igb_update_itr(adapter,
3865 adapter->rx_itr,
3025a446
AD
3866 q_vector->rx_ring->total_packets,
3867 q_vector->rx_ring->total_bytes);
9d5c8243 3868
047e0030
AD
3869 adapter->tx_itr = igb_update_itr(adapter,
3870 adapter->tx_itr,
3025a446
AD
3871 q_vector->tx_ring->total_packets,
3872 q_vector->tx_ring->total_bytes);
047e0030 3873 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3874
6eb5a7f1 3875 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3876 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3877 current_itr = low_latency;
3878
9d5c8243
AK
3879 switch (current_itr) {
3880 /* counts and packets in update_itr are dependent on these numbers */
3881 case lowest_latency:
78b1f607 3882 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3883 break;
3884 case low_latency:
78b1f607 3885 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3886 break;
3887 case bulk_latency:
78b1f607 3888 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3889 break;
3890 default:
3891 break;
3892 }
3893
3894set_itr_now:
3025a446
AD
3895 q_vector->rx_ring->total_bytes = 0;
3896 q_vector->rx_ring->total_packets = 0;
3897 q_vector->tx_ring->total_bytes = 0;
3898 q_vector->tx_ring->total_packets = 0;
6eb5a7f1 3899
047e0030 3900 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3901 /* this attempts to bias the interrupt rate towards Bulk
3902 * by adding intermediate steps when interrupt rate is
3903 * increasing */
047e0030
AD
3904 new_itr = new_itr > q_vector->itr_val ?
3905 max((new_itr * q_vector->itr_val) /
3906 (new_itr + (q_vector->itr_val >> 2)),
3907 new_itr) :
9d5c8243
AK
3908 new_itr;
3909 /* Don't write the value here; it resets the adapter's
3910 * internal timer, and causes us to delay far longer than
3911 * we should between interrupts. Instead, we write the ITR
3912 * value at the beginning of the next interrupt so the timing
3913 * ends up being correct.
3914 */
047e0030
AD
3915 q_vector->itr_val = new_itr;
3916 q_vector->set_itr = 1;
9d5c8243 3917 }
9d5c8243
AK
3918}
3919
9d5c8243
AK
3920#define IGB_TX_FLAGS_CSUM 0x00000001
3921#define IGB_TX_FLAGS_VLAN 0x00000002
3922#define IGB_TX_FLAGS_TSO 0x00000004
3923#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3924#define IGB_TX_FLAGS_TSTAMP 0x00000010
3925#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3926#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3927
85ad76b2 3928static inline int igb_tso_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3929 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3930{
3931 struct e1000_adv_tx_context_desc *context_desc;
3932 unsigned int i;
3933 int err;
3934 struct igb_buffer *buffer_info;
3935 u32 info = 0, tu_cmd = 0;
91d4ee33
NN
3936 u32 mss_l4len_idx;
3937 u8 l4len;
9d5c8243
AK
3938
3939 if (skb_header_cloned(skb)) {
3940 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3941 if (err)
3942 return err;
3943 }
3944
3945 l4len = tcp_hdrlen(skb);
3946 *hdr_len += l4len;
3947
3948 if (skb->protocol == htons(ETH_P_IP)) {
3949 struct iphdr *iph = ip_hdr(skb);
3950 iph->tot_len = 0;
3951 iph->check = 0;
3952 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3953 iph->daddr, 0,
3954 IPPROTO_TCP,
3955 0);
8e1e8a47 3956 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
3957 ipv6_hdr(skb)->payload_len = 0;
3958 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3959 &ipv6_hdr(skb)->daddr,
3960 0, IPPROTO_TCP, 0);
3961 }
3962
3963 i = tx_ring->next_to_use;
3964
3965 buffer_info = &tx_ring->buffer_info[i];
3966 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3967 /* VLAN MACLEN IPLEN */
3968 if (tx_flags & IGB_TX_FLAGS_VLAN)
3969 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3970 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3971 *hdr_len += skb_network_offset(skb);
3972 info |= skb_network_header_len(skb);
3973 *hdr_len += skb_network_header_len(skb);
3974 context_desc->vlan_macip_lens = cpu_to_le32(info);
3975
3976 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3977 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3978
3979 if (skb->protocol == htons(ETH_P_IP))
3980 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3981 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3982
3983 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3984
3985 /* MSS L4LEN IDX */
3986 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3987 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3988
73cd78f1 3989 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
3990 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3991 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
3992
3993 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3994 context_desc->seqnum_seed = 0;
3995
3996 buffer_info->time_stamp = jiffies;
0e014cb1 3997 buffer_info->next_to_watch = i;
9d5c8243
AK
3998 buffer_info->dma = 0;
3999 i++;
4000 if (i == tx_ring->count)
4001 i = 0;
4002
4003 tx_ring->next_to_use = i;
4004
4005 return true;
4006}
4007
85ad76b2
AD
4008static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
4009 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
4010{
4011 struct e1000_adv_tx_context_desc *context_desc;
59d71989 4012 struct device *dev = tx_ring->dev;
9d5c8243
AK
4013 struct igb_buffer *buffer_info;
4014 u32 info = 0, tu_cmd = 0;
80785298 4015 unsigned int i;
9d5c8243
AK
4016
4017 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
4018 (tx_flags & IGB_TX_FLAGS_VLAN)) {
4019 i = tx_ring->next_to_use;
4020 buffer_info = &tx_ring->buffer_info[i];
4021 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
4022
4023 if (tx_flags & IGB_TX_FLAGS_VLAN)
4024 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
cdfd01fc 4025
9d5c8243
AK
4026 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
4027 if (skb->ip_summed == CHECKSUM_PARTIAL)
4028 info |= skb_network_header_len(skb);
4029
4030 context_desc->vlan_macip_lens = cpu_to_le32(info);
4031
4032 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
4033
4034 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
4035 __be16 protocol;
4036
4037 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
4038 const struct vlan_ethhdr *vhdr =
4039 (const struct vlan_ethhdr*)skb->data;
4040
4041 protocol = vhdr->h_vlan_encapsulated_proto;
4042 } else {
4043 protocol = skb->protocol;
4044 }
4045
4046 switch (protocol) {
09640e63 4047 case cpu_to_be16(ETH_P_IP):
9d5c8243 4048 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
4049 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4050 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
4051 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
4052 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 4053 break;
09640e63 4054 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
4055 /* XXX what about other V6 headers?? */
4056 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4057 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
4058 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
4059 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
4060 break;
4061 default:
4062 if (unlikely(net_ratelimit()))
59d71989 4063 dev_warn(dev,
44b0cda3
MW
4064 "partial checksum but proto=%x!\n",
4065 skb->protocol);
4066 break;
4067 }
9d5c8243
AK
4068 }
4069
4070 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
4071 context_desc->seqnum_seed = 0;
85ad76b2 4072 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 4073 context_desc->mss_l4len_idx =
85ad76b2 4074 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
4075
4076 buffer_info->time_stamp = jiffies;
0e014cb1 4077 buffer_info->next_to_watch = i;
9d5c8243
AK
4078 buffer_info->dma = 0;
4079
4080 i++;
4081 if (i == tx_ring->count)
4082 i = 0;
4083 tx_ring->next_to_use = i;
4084
4085 return true;
4086 }
9d5c8243
AK
4087 return false;
4088}
4089
4090#define IGB_MAX_TXD_PWR 16
4091#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
4092
80785298 4093static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
0e014cb1 4094 unsigned int first)
9d5c8243
AK
4095{
4096 struct igb_buffer *buffer_info;
59d71989 4097 struct device *dev = tx_ring->dev;
2873957d 4098 unsigned int hlen = skb_headlen(skb);
9d5c8243
AK
4099 unsigned int count = 0, i;
4100 unsigned int f;
2873957d 4101 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
9d5c8243
AK
4102
4103 i = tx_ring->next_to_use;
4104
4105 buffer_info = &tx_ring->buffer_info[i];
2873957d
NN
4106 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
4107 buffer_info->length = hlen;
9d5c8243
AK
4108 /* set time_stamp *before* dma to help avoid a possible race */
4109 buffer_info->time_stamp = jiffies;
0e014cb1 4110 buffer_info->next_to_watch = i;
2873957d 4111 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
59d71989
AD
4112 DMA_TO_DEVICE);
4113 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33 4114 goto dma_error;
9d5c8243
AK
4115
4116 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2873957d
NN
4117 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
4118 unsigned int len = frag->size;
9d5c8243 4119
8581145f 4120 count++;
65689fef
AD
4121 i++;
4122 if (i == tx_ring->count)
4123 i = 0;
4124
9d5c8243
AK
4125 buffer_info = &tx_ring->buffer_info[i];
4126 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
4127 buffer_info->length = len;
4128 buffer_info->time_stamp = jiffies;
0e014cb1 4129 buffer_info->next_to_watch = i;
6366ad33 4130 buffer_info->mapped_as_page = true;
59d71989 4131 buffer_info->dma = dma_map_page(dev,
6366ad33
AD
4132 frag->page,
4133 frag->page_offset,
4134 len,
59d71989
AD
4135 DMA_TO_DEVICE);
4136 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33
AD
4137 goto dma_error;
4138
9d5c8243
AK
4139 }
4140
9d5c8243 4141 tx_ring->buffer_info[i].skb = skb;
2244d07b 4142 tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
2873957d
NN
4143 /* multiply data chunks by size of headers */
4144 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
4145 tx_ring->buffer_info[i].gso_segs = gso_segs;
0e014cb1 4146 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 4147
cdfd01fc 4148 return ++count;
6366ad33
AD
4149
4150dma_error:
59d71989 4151 dev_err(dev, "TX DMA map failed\n");
6366ad33
AD
4152
4153 /* clear timestamp and dma mappings for failed buffer_info mapping */
4154 buffer_info->dma = 0;
4155 buffer_info->time_stamp = 0;
4156 buffer_info->length = 0;
4157 buffer_info->next_to_watch = 0;
4158 buffer_info->mapped_as_page = false;
6366ad33
AD
4159
4160 /* clear timestamp and dma mappings for remaining portion of packet */
a77ff709
NN
4161 while (count--) {
4162 if (i == 0)
4163 i = tx_ring->count;
6366ad33 4164 i--;
6366ad33
AD
4165 buffer_info = &tx_ring->buffer_info[i];
4166 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4167 }
4168
4169 return 0;
9d5c8243
AK
4170}
4171
85ad76b2 4172static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
91d4ee33 4173 u32 tx_flags, int count, u32 paylen,
9d5c8243
AK
4174 u8 hdr_len)
4175{
cdfd01fc 4176 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
4177 struct igb_buffer *buffer_info;
4178 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 4179 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
4180
4181 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
4182 E1000_ADVTXD_DCMD_DEXT);
4183
4184 if (tx_flags & IGB_TX_FLAGS_VLAN)
4185 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4186
33af6bcc
PO
4187 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4188 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4189
9d5c8243
AK
4190 if (tx_flags & IGB_TX_FLAGS_TSO) {
4191 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4192
4193 /* insert tcp checksum */
4194 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4195
4196 /* insert ip checksum */
4197 if (tx_flags & IGB_TX_FLAGS_IPV4)
4198 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4199
4200 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4201 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4202 }
4203
85ad76b2
AD
4204 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4205 (tx_flags & (IGB_TX_FLAGS_CSUM |
4206 IGB_TX_FLAGS_TSO |
7dfc16fa 4207 IGB_TX_FLAGS_VLAN)))
85ad76b2 4208 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
4209
4210 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4211
cdfd01fc 4212 do {
9d5c8243
AK
4213 buffer_info = &tx_ring->buffer_info[i];
4214 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4215 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4216 tx_desc->read.cmd_type_len =
4217 cpu_to_le32(cmd_type_len | buffer_info->length);
4218 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 4219 count--;
9d5c8243
AK
4220 i++;
4221 if (i == tx_ring->count)
4222 i = 0;
cdfd01fc 4223 } while (count > 0);
9d5c8243 4224
85ad76b2 4225 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
4226 /* Force memory writes to complete before letting h/w
4227 * know there are new descriptors to fetch. (Only
4228 * applicable for weak-ordered memory model archs,
4229 * such as IA-64). */
4230 wmb();
4231
4232 tx_ring->next_to_use = i;
fce99e34 4233 writel(i, tx_ring->tail);
9d5c8243
AK
4234 /* we need this if more than one processor can write to our tail
4235 * at a time, it syncronizes IO on IA64/Altix systems */
4236 mmiowb();
4237}
4238
e694e964 4239static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4240{
e694e964
AD
4241 struct net_device *netdev = tx_ring->netdev;
4242
661086df 4243 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4244
9d5c8243
AK
4245 /* Herbert's original patch had:
4246 * smp_mb__after_netif_stop_queue();
4247 * but since that doesn't exist yet, just open code it. */
4248 smp_mb();
4249
4250 /* We need to check again in a case another CPU has just
4251 * made room available. */
c493ea45 4252 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4253 return -EBUSY;
4254
4255 /* A reprieve! */
661086df 4256 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4257
4258 u64_stats_update_begin(&tx_ring->tx_syncp2);
4259 tx_ring->tx_stats.restart_queue2++;
4260 u64_stats_update_end(&tx_ring->tx_syncp2);
4261
9d5c8243
AK
4262 return 0;
4263}
4264
717ba089 4265static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4266{
c493ea45 4267 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4268 return 0;
e694e964 4269 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4270}
4271
b1a436c3
AD
4272netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4273 struct igb_ring *tx_ring)
9d5c8243 4274{
cdfd01fc 4275 int tso = 0, count;
91d4ee33
NN
4276 u32 tx_flags = 0;
4277 u16 first;
4278 u8 hdr_len = 0;
9d5c8243 4279
9d5c8243
AK
4280 /* need: 1 descriptor per page,
4281 * + 2 desc gap to keep tail from touching head,
4282 * + 1 desc for skb->data,
4283 * + 1 desc for context descriptor,
4284 * otherwise try next time */
e694e964 4285 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4286 /* this is a hard error */
9d5c8243
AK
4287 return NETDEV_TX_BUSY;
4288 }
33af6bcc 4289
2244d07b
OH
4290 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4291 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4292 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4293 }
9d5c8243 4294
eab6d18d 4295 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4296 tx_flags |= IGB_TX_FLAGS_VLAN;
4297 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4298 }
4299
661086df
PWJ
4300 if (skb->protocol == htons(ETH_P_IP))
4301 tx_flags |= IGB_TX_FLAGS_IPV4;
4302
0e014cb1 4303 first = tx_ring->next_to_use;
85ad76b2
AD
4304 if (skb_is_gso(skb)) {
4305 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
cdfd01fc 4306
85ad76b2
AD
4307 if (tso < 0) {
4308 dev_kfree_skb_any(skb);
4309 return NETDEV_TX_OK;
4310 }
9d5c8243
AK
4311 }
4312
4313 if (tso)
4314 tx_flags |= IGB_TX_FLAGS_TSO;
85ad76b2 4315 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
4316 (skb->ip_summed == CHECKSUM_PARTIAL))
4317 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 4318
65689fef 4319 /*
cdfd01fc 4320 * count reflects descriptors mapped, if 0 or less then mapping error
25985edc 4321 * has occurred and we need to rewind the descriptor queue
65689fef 4322 */
80785298 4323 count = igb_tx_map_adv(tx_ring, skb, first);
6366ad33 4324 if (!count) {
65689fef
AD
4325 dev_kfree_skb_any(skb);
4326 tx_ring->buffer_info[first].time_stamp = 0;
4327 tx_ring->next_to_use = first;
85ad76b2 4328 return NETDEV_TX_OK;
65689fef 4329 }
9d5c8243 4330
85ad76b2
AD
4331 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4332
4333 /* Make sure there is space in the ring for the next send. */
e694e964 4334 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4335
9d5c8243
AK
4336 return NETDEV_TX_OK;
4337}
4338
3b29a56d
SH
4339static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4340 struct net_device *netdev)
9d5c8243
AK
4341{
4342 struct igb_adapter *adapter = netdev_priv(netdev);
661086df 4343 struct igb_ring *tx_ring;
661086df 4344 int r_idx = 0;
b1a436c3
AD
4345
4346 if (test_bit(__IGB_DOWN, &adapter->state)) {
4347 dev_kfree_skb_any(skb);
4348 return NETDEV_TX_OK;
4349 }
4350
4351 if (skb->len <= 0) {
4352 dev_kfree_skb_any(skb);
4353 return NETDEV_TX_OK;
4354 }
4355
1bfaf07b 4356 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 4357 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
4358
4359 /* This goes back to the question of how to logically map a tx queue
4360 * to a flow. Right now, performance is impacted slightly negatively
4361 * if using multiple tx queues. If the stack breaks away from a
4362 * single qdisc implementation, we can look at this again. */
e694e964 4363 return igb_xmit_frame_ring_adv(skb, tx_ring);
9d5c8243
AK
4364}
4365
4366/**
4367 * igb_tx_timeout - Respond to a Tx Hang
4368 * @netdev: network interface device structure
4369 **/
4370static void igb_tx_timeout(struct net_device *netdev)
4371{
4372 struct igb_adapter *adapter = netdev_priv(netdev);
4373 struct e1000_hw *hw = &adapter->hw;
4374
4375 /* Do the reset outside of interrupt context */
4376 adapter->tx_timeout_count++;
f7ba205e 4377
55cac248
AD
4378 if (hw->mac.type == e1000_82580)
4379 hw->dev_spec._82575.global_device_reset = true;
4380
9d5c8243 4381 schedule_work(&adapter->reset_task);
265de409
AD
4382 wr32(E1000_EICS,
4383 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4384}
4385
4386static void igb_reset_task(struct work_struct *work)
4387{
4388 struct igb_adapter *adapter;
4389 adapter = container_of(work, struct igb_adapter, reset_task);
4390
c97ec42a
TI
4391 igb_dump(adapter);
4392 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4393 igb_reinit_locked(adapter);
4394}
4395
4396/**
12dcd86b 4397 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4398 * @netdev: network interface device structure
12dcd86b 4399 * @stats: rtnl_link_stats64 pointer
9d5c8243 4400 *
9d5c8243 4401 **/
12dcd86b
ED
4402static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4403 struct rtnl_link_stats64 *stats)
9d5c8243 4404{
12dcd86b
ED
4405 struct igb_adapter *adapter = netdev_priv(netdev);
4406
4407 spin_lock(&adapter->stats64_lock);
4408 igb_update_stats(adapter, &adapter->stats64);
4409 memcpy(stats, &adapter->stats64, sizeof(*stats));
4410 spin_unlock(&adapter->stats64_lock);
4411
4412 return stats;
9d5c8243
AK
4413}
4414
4415/**
4416 * igb_change_mtu - Change the Maximum Transfer Unit
4417 * @netdev: network interface device structure
4418 * @new_mtu: new value for maximum frame size
4419 *
4420 * Returns 0 on success, negative on failure
4421 **/
4422static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4423{
4424 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4425 struct pci_dev *pdev = adapter->pdev;
9d5c8243 4426 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4c844851 4427 u32 rx_buffer_len, i;
9d5c8243 4428
c809d227 4429 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4430 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4431 return -EINVAL;
4432 }
4433
9d5c8243 4434 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4435 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4436 return -EINVAL;
4437 }
4438
4439 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4440 msleep(1);
73cd78f1 4441
9d5c8243
AK
4442 /* igb_down has a dependency on max_frame_size */
4443 adapter->max_frame_size = max_frame;
559e9c49 4444
9d5c8243
AK
4445 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4446 * means we reserve 2 more, this pushes us to allocate from the next
4447 * larger slab size.
4448 * i.e. RXBUFFER_2048 --> size-4096 slab
4449 */
4450
757b77e2
NN
4451 if (adapter->hw.mac.type == e1000_82580)
4452 max_frame += IGB_TS_HDR_LEN;
4453
7d95b717 4454 if (max_frame <= IGB_RXBUFFER_1024)
4c844851 4455 rx_buffer_len = IGB_RXBUFFER_1024;
6ec43fe6 4456 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4c844851 4457 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
6ec43fe6 4458 else
4c844851
AD
4459 rx_buffer_len = IGB_RXBUFFER_128;
4460
757b77e2
NN
4461 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4462 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4463 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4464
4465 if ((adapter->hw.mac.type == e1000_82580) &&
4466 (rx_buffer_len == IGB_RXBUFFER_128))
4467 rx_buffer_len += IGB_RXBUFFER_64;
4468
4c844851
AD
4469 if (netif_running(netdev))
4470 igb_down(adapter);
9d5c8243 4471
090b1795 4472 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4473 netdev->mtu, new_mtu);
4474 netdev->mtu = new_mtu;
4475
4c844851 4476 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 4477 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4c844851 4478
9d5c8243
AK
4479 if (netif_running(netdev))
4480 igb_up(adapter);
4481 else
4482 igb_reset(adapter);
4483
4484 clear_bit(__IGB_RESETTING, &adapter->state);
4485
4486 return 0;
4487}
4488
4489/**
4490 * igb_update_stats - Update the board statistics counters
4491 * @adapter: board private structure
4492 **/
4493
12dcd86b
ED
4494void igb_update_stats(struct igb_adapter *adapter,
4495 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4496{
4497 struct e1000_hw *hw = &adapter->hw;
4498 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4499 u32 reg, mpc;
9d5c8243 4500 u16 phy_tmp;
3f9c0164
AD
4501 int i;
4502 u64 bytes, packets;
12dcd86b
ED
4503 unsigned int start;
4504 u64 _bytes, _packets;
9d5c8243
AK
4505
4506#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4507
4508 /*
4509 * Prevent stats update while adapter is being reset, or if the pci
4510 * connection is down.
4511 */
4512 if (adapter->link_speed == 0)
4513 return;
4514 if (pci_channel_offline(pdev))
4515 return;
4516
3f9c0164
AD
4517 bytes = 0;
4518 packets = 0;
4519 for (i = 0; i < adapter->num_rx_queues; i++) {
4520 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4521 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4522
3025a446 4523 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4524 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4525
4526 do {
4527 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4528 _bytes = ring->rx_stats.bytes;
4529 _packets = ring->rx_stats.packets;
4530 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4531 bytes += _bytes;
4532 packets += _packets;
3f9c0164
AD
4533 }
4534
128e45eb
AD
4535 net_stats->rx_bytes = bytes;
4536 net_stats->rx_packets = packets;
3f9c0164
AD
4537
4538 bytes = 0;
4539 packets = 0;
4540 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4541 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4542 do {
4543 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4544 _bytes = ring->tx_stats.bytes;
4545 _packets = ring->tx_stats.packets;
4546 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4547 bytes += _bytes;
4548 packets += _packets;
3f9c0164 4549 }
128e45eb
AD
4550 net_stats->tx_bytes = bytes;
4551 net_stats->tx_packets = packets;
3f9c0164
AD
4552
4553 /* read stats registers */
9d5c8243
AK
4554 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4555 adapter->stats.gprc += rd32(E1000_GPRC);
4556 adapter->stats.gorc += rd32(E1000_GORCL);
4557 rd32(E1000_GORCH); /* clear GORCL */
4558 adapter->stats.bprc += rd32(E1000_BPRC);
4559 adapter->stats.mprc += rd32(E1000_MPRC);
4560 adapter->stats.roc += rd32(E1000_ROC);
4561
4562 adapter->stats.prc64 += rd32(E1000_PRC64);
4563 adapter->stats.prc127 += rd32(E1000_PRC127);
4564 adapter->stats.prc255 += rd32(E1000_PRC255);
4565 adapter->stats.prc511 += rd32(E1000_PRC511);
4566 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4567 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4568 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4569 adapter->stats.sec += rd32(E1000_SEC);
4570
fa3d9a6d
MW
4571 mpc = rd32(E1000_MPC);
4572 adapter->stats.mpc += mpc;
4573 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4574 adapter->stats.scc += rd32(E1000_SCC);
4575 adapter->stats.ecol += rd32(E1000_ECOL);
4576 adapter->stats.mcc += rd32(E1000_MCC);
4577 adapter->stats.latecol += rd32(E1000_LATECOL);
4578 adapter->stats.dc += rd32(E1000_DC);
4579 adapter->stats.rlec += rd32(E1000_RLEC);
4580 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4581 adapter->stats.xontxc += rd32(E1000_XONTXC);
4582 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4583 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4584 adapter->stats.fcruc += rd32(E1000_FCRUC);
4585 adapter->stats.gptc += rd32(E1000_GPTC);
4586 adapter->stats.gotc += rd32(E1000_GOTCL);
4587 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4588 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4589 adapter->stats.ruc += rd32(E1000_RUC);
4590 adapter->stats.rfc += rd32(E1000_RFC);
4591 adapter->stats.rjc += rd32(E1000_RJC);
4592 adapter->stats.tor += rd32(E1000_TORH);
4593 adapter->stats.tot += rd32(E1000_TOTH);
4594 adapter->stats.tpr += rd32(E1000_TPR);
4595
4596 adapter->stats.ptc64 += rd32(E1000_PTC64);
4597 adapter->stats.ptc127 += rd32(E1000_PTC127);
4598 adapter->stats.ptc255 += rd32(E1000_PTC255);
4599 adapter->stats.ptc511 += rd32(E1000_PTC511);
4600 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4601 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4602
4603 adapter->stats.mptc += rd32(E1000_MPTC);
4604 adapter->stats.bptc += rd32(E1000_BPTC);
4605
2d0b0f69
NN
4606 adapter->stats.tpt += rd32(E1000_TPT);
4607 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4608
4609 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4610 /* read internal phy specific stats */
4611 reg = rd32(E1000_CTRL_EXT);
4612 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4613 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4614 adapter->stats.tncrs += rd32(E1000_TNCRS);
4615 }
4616
9d5c8243
AK
4617 adapter->stats.tsctc += rd32(E1000_TSCTC);
4618 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4619
4620 adapter->stats.iac += rd32(E1000_IAC);
4621 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4622 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4623 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4624 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4625 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4626 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4627 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4628 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4629
4630 /* Fill out the OS statistics structure */
128e45eb
AD
4631 net_stats->multicast = adapter->stats.mprc;
4632 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4633
4634 /* Rx Errors */
4635
4636 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4637 * our own version based on RUC and ROC */
128e45eb 4638 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4639 adapter->stats.crcerrs + adapter->stats.algnerrc +
4640 adapter->stats.ruc + adapter->stats.roc +
4641 adapter->stats.cexterr;
128e45eb
AD
4642 net_stats->rx_length_errors = adapter->stats.ruc +
4643 adapter->stats.roc;
4644 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4645 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4646 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4647
4648 /* Tx Errors */
128e45eb
AD
4649 net_stats->tx_errors = adapter->stats.ecol +
4650 adapter->stats.latecol;
4651 net_stats->tx_aborted_errors = adapter->stats.ecol;
4652 net_stats->tx_window_errors = adapter->stats.latecol;
4653 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4654
4655 /* Tx Dropped needs to be maintained elsewhere */
4656
4657 /* Phy Stats */
4658 if (hw->phy.media_type == e1000_media_type_copper) {
4659 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4660 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4661 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4662 adapter->phy_stats.idle_errors += phy_tmp;
4663 }
4664 }
4665
4666 /* Management Stats */
4667 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4668 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4669 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4670
4671 /* OS2BMC Stats */
4672 reg = rd32(E1000_MANC);
4673 if (reg & E1000_MANC_EN_BMC2OS) {
4674 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4675 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4676 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4677 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4678 }
9d5c8243
AK
4679}
4680
9d5c8243
AK
4681static irqreturn_t igb_msix_other(int irq, void *data)
4682{
047e0030 4683 struct igb_adapter *adapter = data;
9d5c8243 4684 struct e1000_hw *hw = &adapter->hw;
844290e5 4685 u32 icr = rd32(E1000_ICR);
844290e5 4686 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4687
7f081d40
AD
4688 if (icr & E1000_ICR_DRSTA)
4689 schedule_work(&adapter->reset_task);
4690
047e0030 4691 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4692 /* HW is reporting DMA is out of sync */
4693 adapter->stats.doosync++;
13800469
GR
4694 /* The DMA Out of Sync is also indication of a spoof event
4695 * in IOV mode. Check the Wrong VM Behavior register to
4696 * see if it is really a spoof event. */
4697 igb_check_wvbr(adapter);
dda0e083 4698 }
eebbbdba 4699
4ae196df
AD
4700 /* Check for a mailbox event */
4701 if (icr & E1000_ICR_VMMB)
4702 igb_msg_task(adapter);
4703
4704 if (icr & E1000_ICR_LSC) {
4705 hw->mac.get_link_status = 1;
4706 /* guard against interrupt when we're going down */
4707 if (!test_bit(__IGB_DOWN, &adapter->state))
4708 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4709 }
4710
25568a53
AD
4711 if (adapter->vfs_allocated_count)
4712 wr32(E1000_IMS, E1000_IMS_LSC |
4713 E1000_IMS_VMMB |
4714 E1000_IMS_DOUTSYNC);
4715 else
4716 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4717 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4718
4719 return IRQ_HANDLED;
4720}
4721
047e0030 4722static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4723{
26b39276 4724 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4725 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4726
047e0030
AD
4727 if (!q_vector->set_itr)
4728 return;
73cd78f1 4729
047e0030
AD
4730 if (!itr_val)
4731 itr_val = 0x4;
661086df 4732
26b39276
AD
4733 if (adapter->hw.mac.type == e1000_82575)
4734 itr_val |= itr_val << 16;
661086df 4735 else
047e0030 4736 itr_val |= 0x8000000;
661086df 4737
047e0030
AD
4738 writel(itr_val, q_vector->itr_register);
4739 q_vector->set_itr = 0;
6eb5a7f1
AD
4740}
4741
047e0030 4742static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4743{
047e0030 4744 struct igb_q_vector *q_vector = data;
9d5c8243 4745
047e0030
AD
4746 /* Write the ITR value calculated from the previous interrupt. */
4747 igb_write_itr(q_vector);
9d5c8243 4748
047e0030 4749 napi_schedule(&q_vector->napi);
844290e5 4750
047e0030 4751 return IRQ_HANDLED;
fe4506b6
JC
4752}
4753
421e02f0 4754#ifdef CONFIG_IGB_DCA
047e0030 4755static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4756{
047e0030 4757 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4758 struct e1000_hw *hw = &adapter->hw;
4759 int cpu = get_cpu();
fe4506b6 4760
047e0030
AD
4761 if (q_vector->cpu == cpu)
4762 goto out_no_update;
4763
4764 if (q_vector->tx_ring) {
4765 int q = q_vector->tx_ring->reg_idx;
4766 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4767 if (hw->mac.type == e1000_82575) {
4768 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4769 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4770 } else {
047e0030
AD
4771 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4772 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4773 E1000_DCA_TXCTRL_CPUID_SHIFT;
4774 }
4775 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4776 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4777 }
4778 if (q_vector->rx_ring) {
4779 int q = q_vector->rx_ring->reg_idx;
4780 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4781 if (hw->mac.type == e1000_82575) {
2d064c06 4782 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4783 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4784 } else {
4785 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4786 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4787 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4788 }
fe4506b6
JC
4789 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4790 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4791 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4792 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4793 }
047e0030
AD
4794 q_vector->cpu = cpu;
4795out_no_update:
fe4506b6
JC
4796 put_cpu();
4797}
4798
4799static void igb_setup_dca(struct igb_adapter *adapter)
4800{
7e0e99ef 4801 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4802 int i;
4803
7dfc16fa 4804 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4805 return;
4806
7e0e99ef
AD
4807 /* Always use CB2 mode, difference is masked in the CB driver. */
4808 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4809
047e0030 4810 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4811 adapter->q_vector[i]->cpu = -1;
4812 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4813 }
4814}
4815
4816static int __igb_notify_dca(struct device *dev, void *data)
4817{
4818 struct net_device *netdev = dev_get_drvdata(dev);
4819 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4820 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4821 struct e1000_hw *hw = &adapter->hw;
4822 unsigned long event = *(unsigned long *)data;
4823
4824 switch (event) {
4825 case DCA_PROVIDER_ADD:
4826 /* if already enabled, don't do it again */
7dfc16fa 4827 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4828 break;
fe4506b6 4829 if (dca_add_requester(dev) == 0) {
bbd98fe4 4830 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4831 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4832 igb_setup_dca(adapter);
4833 break;
4834 }
4835 /* Fall Through since DCA is disabled. */
4836 case DCA_PROVIDER_REMOVE:
7dfc16fa 4837 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4838 /* without this a class_device is left
047e0030 4839 * hanging around in the sysfs model */
fe4506b6 4840 dca_remove_requester(dev);
090b1795 4841 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4842 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4843 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4844 }
4845 break;
4846 }
bbd98fe4 4847
fe4506b6 4848 return 0;
9d5c8243
AK
4849}
4850
fe4506b6
JC
4851static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4852 void *p)
4853{
4854 int ret_val;
4855
4856 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4857 __igb_notify_dca);
4858
4859 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4860}
421e02f0 4861#endif /* CONFIG_IGB_DCA */
9d5c8243 4862
4ae196df
AD
4863static void igb_ping_all_vfs(struct igb_adapter *adapter)
4864{
4865 struct e1000_hw *hw = &adapter->hw;
4866 u32 ping;
4867 int i;
4868
4869 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4870 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4871 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4872 ping |= E1000_VT_MSGTYPE_CTS;
4873 igb_write_mbx(hw, &ping, 1, i);
4874 }
4875}
4876
7d5753f0
AD
4877static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4878{
4879 struct e1000_hw *hw = &adapter->hw;
4880 u32 vmolr = rd32(E1000_VMOLR(vf));
4881 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4882
d85b9004 4883 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
4884 IGB_VF_FLAG_MULTI_PROMISC);
4885 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4886
4887 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4888 vmolr |= E1000_VMOLR_MPME;
d85b9004 4889 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
4890 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4891 } else {
4892 /*
4893 * if we have hashes and we are clearing a multicast promisc
4894 * flag we need to write the hashes to the MTA as this step
4895 * was previously skipped
4896 */
4897 if (vf_data->num_vf_mc_hashes > 30) {
4898 vmolr |= E1000_VMOLR_MPME;
4899 } else if (vf_data->num_vf_mc_hashes) {
4900 int j;
4901 vmolr |= E1000_VMOLR_ROMPE;
4902 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4903 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4904 }
4905 }
4906
4907 wr32(E1000_VMOLR(vf), vmolr);
4908
4909 /* there are flags left unprocessed, likely not supported */
4910 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4911 return -EINVAL;
4912
4913 return 0;
4914
4915}
4916
4ae196df
AD
4917static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4918 u32 *msgbuf, u32 vf)
4919{
4920 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4921 u16 *hash_list = (u16 *)&msgbuf[1];
4922 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4923 int i;
4924
7d5753f0 4925 /* salt away the number of multicast addresses assigned
4ae196df
AD
4926 * to this VF for later use to restore when the PF multi cast
4927 * list changes
4928 */
4929 vf_data->num_vf_mc_hashes = n;
4930
7d5753f0
AD
4931 /* only up to 30 hash values supported */
4932 if (n > 30)
4933 n = 30;
4934
4935 /* store the hashes for later use */
4ae196df 4936 for (i = 0; i < n; i++)
a419aef8 4937 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4938
4939 /* Flush and reset the mta with the new values */
ff41f8dc 4940 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4941
4942 return 0;
4943}
4944
4945static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4946{
4947 struct e1000_hw *hw = &adapter->hw;
4948 struct vf_data_storage *vf_data;
4949 int i, j;
4950
4951 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4952 u32 vmolr = rd32(E1000_VMOLR(i));
4953 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4954
4ae196df 4955 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4956
4957 if ((vf_data->num_vf_mc_hashes > 30) ||
4958 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4959 vmolr |= E1000_VMOLR_MPME;
4960 } else if (vf_data->num_vf_mc_hashes) {
4961 vmolr |= E1000_VMOLR_ROMPE;
4962 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4963 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4964 }
4965 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4966 }
4967}
4968
4969static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4970{
4971 struct e1000_hw *hw = &adapter->hw;
4972 u32 pool_mask, reg, vid;
4973 int i;
4974
4975 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4976
4977 /* Find the vlan filter for this id */
4978 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4979 reg = rd32(E1000_VLVF(i));
4980
4981 /* remove the vf from the pool */
4982 reg &= ~pool_mask;
4983
4984 /* if pool is empty then remove entry from vfta */
4985 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4986 (reg & E1000_VLVF_VLANID_ENABLE)) {
4987 reg = 0;
4988 vid = reg & E1000_VLVF_VLANID_MASK;
4989 igb_vfta_set(hw, vid, false);
4990 }
4991
4992 wr32(E1000_VLVF(i), reg);
4993 }
ae641bdc
AD
4994
4995 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
4996}
4997
4998static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4999{
5000 struct e1000_hw *hw = &adapter->hw;
5001 u32 reg, i;
5002
51466239
AD
5003 /* The vlvf table only exists on 82576 hardware and newer */
5004 if (hw->mac.type < e1000_82576)
5005 return -1;
5006
5007 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5008 if (!adapter->vfs_allocated_count)
5009 return -1;
5010
5011 /* Find the vlan filter for this id */
5012 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5013 reg = rd32(E1000_VLVF(i));
5014 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5015 vid == (reg & E1000_VLVF_VLANID_MASK))
5016 break;
5017 }
5018
5019 if (add) {
5020 if (i == E1000_VLVF_ARRAY_SIZE) {
5021 /* Did not find a matching VLAN ID entry that was
5022 * enabled. Search for a free filter entry, i.e.
5023 * one without the enable bit set
5024 */
5025 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5026 reg = rd32(E1000_VLVF(i));
5027 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5028 break;
5029 }
5030 }
5031 if (i < E1000_VLVF_ARRAY_SIZE) {
5032 /* Found an enabled/available entry */
5033 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5034
5035 /* if !enabled we need to set this up in vfta */
5036 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5037 /* add VID to filter table */
5038 igb_vfta_set(hw, vid, true);
4ae196df
AD
5039 reg |= E1000_VLVF_VLANID_ENABLE;
5040 }
cad6d05f
AD
5041 reg &= ~E1000_VLVF_VLANID_MASK;
5042 reg |= vid;
4ae196df 5043 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5044
5045 /* do not modify RLPML for PF devices */
5046 if (vf >= adapter->vfs_allocated_count)
5047 return 0;
5048
5049 if (!adapter->vf_data[vf].vlans_enabled) {
5050 u32 size;
5051 reg = rd32(E1000_VMOLR(vf));
5052 size = reg & E1000_VMOLR_RLPML_MASK;
5053 size += 4;
5054 reg &= ~E1000_VMOLR_RLPML_MASK;
5055 reg |= size;
5056 wr32(E1000_VMOLR(vf), reg);
5057 }
ae641bdc 5058
51466239 5059 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5060 return 0;
5061 }
5062 } else {
5063 if (i < E1000_VLVF_ARRAY_SIZE) {
5064 /* remove vf from the pool */
5065 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5066 /* if pool is empty then remove entry from vfta */
5067 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5068 reg = 0;
5069 igb_vfta_set(hw, vid, false);
5070 }
5071 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5072
5073 /* do not modify RLPML for PF devices */
5074 if (vf >= adapter->vfs_allocated_count)
5075 return 0;
5076
5077 adapter->vf_data[vf].vlans_enabled--;
5078 if (!adapter->vf_data[vf].vlans_enabled) {
5079 u32 size;
5080 reg = rd32(E1000_VMOLR(vf));
5081 size = reg & E1000_VMOLR_RLPML_MASK;
5082 size -= 4;
5083 reg &= ~E1000_VMOLR_RLPML_MASK;
5084 reg |= size;
5085 wr32(E1000_VMOLR(vf), reg);
5086 }
4ae196df
AD
5087 }
5088 }
8151d294
WM
5089 return 0;
5090}
5091
5092static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5093{
5094 struct e1000_hw *hw = &adapter->hw;
5095
5096 if (vid)
5097 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5098 else
5099 wr32(E1000_VMVIR(vf), 0);
5100}
5101
5102static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5103 int vf, u16 vlan, u8 qos)
5104{
5105 int err = 0;
5106 struct igb_adapter *adapter = netdev_priv(netdev);
5107
5108 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5109 return -EINVAL;
5110 if (vlan || qos) {
5111 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5112 if (err)
5113 goto out;
5114 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5115 igb_set_vmolr(adapter, vf, !vlan);
5116 adapter->vf_data[vf].pf_vlan = vlan;
5117 adapter->vf_data[vf].pf_qos = qos;
5118 dev_info(&adapter->pdev->dev,
5119 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5120 if (test_bit(__IGB_DOWN, &adapter->state)) {
5121 dev_warn(&adapter->pdev->dev,
5122 "The VF VLAN has been set,"
5123 " but the PF device is not up.\n");
5124 dev_warn(&adapter->pdev->dev,
5125 "Bring the PF device up before"
5126 " attempting to use the VF device.\n");
5127 }
5128 } else {
5129 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5130 false, vf);
5131 igb_set_vmvir(adapter, vlan, vf);
5132 igb_set_vmolr(adapter, vf, true);
5133 adapter->vf_data[vf].pf_vlan = 0;
5134 adapter->vf_data[vf].pf_qos = 0;
5135 }
5136out:
5137 return err;
4ae196df
AD
5138}
5139
5140static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5141{
5142 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5143 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5144
5145 return igb_vlvf_set(adapter, vid, add, vf);
5146}
5147
f2ca0dbe 5148static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5149{
8fa7e0f7
GR
5150 /* clear flags - except flag that indicates PF has set the MAC */
5151 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5152 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5153
5154 /* reset offloads to defaults */
8151d294 5155 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5156
5157 /* reset vlans for device */
5158 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5159 if (adapter->vf_data[vf].pf_vlan)
5160 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5161 adapter->vf_data[vf].pf_vlan,
5162 adapter->vf_data[vf].pf_qos);
5163 else
5164 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5165
5166 /* reset multicast table array for vf */
5167 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5168
5169 /* Flush and reset the mta with the new values */
ff41f8dc 5170 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5171}
5172
f2ca0dbe
AD
5173static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5174{
5175 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5176
5177 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
5178 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5179 random_ether_addr(vf_mac);
f2ca0dbe
AD
5180
5181 /* process remaining reset events */
5182 igb_vf_reset(adapter, vf);
5183}
5184
5185static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5186{
5187 struct e1000_hw *hw = &adapter->hw;
5188 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5189 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5190 u32 reg, msgbuf[3];
5191 u8 *addr = (u8 *)(&msgbuf[1]);
5192
5193 /* process all the same items cleared in a function level reset */
f2ca0dbe 5194 igb_vf_reset(adapter, vf);
4ae196df
AD
5195
5196 /* set vf mac address */
26ad9178 5197 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5198
5199 /* enable transmit and receive for vf */
5200 reg = rd32(E1000_VFTE);
5201 wr32(E1000_VFTE, reg | (1 << vf));
5202 reg = rd32(E1000_VFRE);
5203 wr32(E1000_VFRE, reg | (1 << vf));
5204
8fa7e0f7 5205 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5206
5207 /* reply to reset with ack and vf mac address */
5208 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5209 memcpy(addr, vf_mac, 6);
5210 igb_write_mbx(hw, msgbuf, 3, vf);
5211}
5212
5213static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5214{
de42edde
GR
5215 /*
5216 * The VF MAC Address is stored in a packed array of bytes
5217 * starting at the second 32 bit word of the msg array
5218 */
f2ca0dbe
AD
5219 unsigned char *addr = (char *)&msg[1];
5220 int err = -1;
4ae196df 5221
f2ca0dbe
AD
5222 if (is_valid_ether_addr(addr))
5223 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5224
f2ca0dbe 5225 return err;
4ae196df
AD
5226}
5227
5228static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5229{
5230 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5231 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5232 u32 msg = E1000_VT_MSGTYPE_NACK;
5233
5234 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5235 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5236 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5237 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5238 vf_data->last_nack = jiffies;
4ae196df
AD
5239 }
5240}
5241
f2ca0dbe 5242static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5243{
f2ca0dbe
AD
5244 struct pci_dev *pdev = adapter->pdev;
5245 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5246 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5247 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5248 s32 retval;
5249
f2ca0dbe 5250 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5251
fef45f4c
AD
5252 if (retval) {
5253 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5254 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5255 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5256 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5257 return;
5258 goto out;
5259 }
4ae196df
AD
5260
5261 /* this is a message we already processed, do nothing */
5262 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5263 return;
4ae196df
AD
5264
5265 /*
5266 * until the vf completes a reset it should not be
5267 * allowed to start any configuration.
5268 */
5269
5270 if (msgbuf[0] == E1000_VF_RESET) {
5271 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5272 return;
4ae196df
AD
5273 }
5274
f2ca0dbe 5275 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5276 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5277 return;
5278 retval = -1;
5279 goto out;
4ae196df
AD
5280 }
5281
5282 switch ((msgbuf[0] & 0xFFFF)) {
5283 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5284 retval = -EINVAL;
5285 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5286 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5287 else
5288 dev_warn(&pdev->dev,
5289 "VF %d attempted to override administratively "
5290 "set MAC address\nReload the VF driver to "
5291 "resume operations\n", vf);
4ae196df 5292 break;
7d5753f0
AD
5293 case E1000_VF_SET_PROMISC:
5294 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5295 break;
4ae196df
AD
5296 case E1000_VF_SET_MULTICAST:
5297 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5298 break;
5299 case E1000_VF_SET_LPE:
5300 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5301 break;
5302 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5303 retval = -1;
5304 if (vf_data->pf_vlan)
5305 dev_warn(&pdev->dev,
5306 "VF %d attempted to override administratively "
5307 "set VLAN tag\nReload the VF driver to "
5308 "resume operations\n", vf);
8151d294
WM
5309 else
5310 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5311 break;
5312 default:
090b1795 5313 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5314 retval = -1;
5315 break;
5316 }
5317
fef45f4c
AD
5318 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5319out:
4ae196df
AD
5320 /* notify the VF of the results of what it sent us */
5321 if (retval)
5322 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5323 else
5324 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5325
4ae196df 5326 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5327}
4ae196df 5328
f2ca0dbe
AD
5329static void igb_msg_task(struct igb_adapter *adapter)
5330{
5331 struct e1000_hw *hw = &adapter->hw;
5332 u32 vf;
5333
5334 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5335 /* process any reset requests */
5336 if (!igb_check_for_rst(hw, vf))
5337 igb_vf_reset_event(adapter, vf);
5338
5339 /* process any messages pending */
5340 if (!igb_check_for_msg(hw, vf))
5341 igb_rcv_msg_from_vf(adapter, vf);
5342
5343 /* process any acks */
5344 if (!igb_check_for_ack(hw, vf))
5345 igb_rcv_ack_from_vf(adapter, vf);
5346 }
4ae196df
AD
5347}
5348
68d480c4
AD
5349/**
5350 * igb_set_uta - Set unicast filter table address
5351 * @adapter: board private structure
5352 *
5353 * The unicast table address is a register array of 32-bit registers.
5354 * The table is meant to be used in a way similar to how the MTA is used
5355 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5356 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5357 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5358 **/
5359static void igb_set_uta(struct igb_adapter *adapter)
5360{
5361 struct e1000_hw *hw = &adapter->hw;
5362 int i;
5363
5364 /* The UTA table only exists on 82576 hardware and newer */
5365 if (hw->mac.type < e1000_82576)
5366 return;
5367
5368 /* we only need to do this if VMDq is enabled */
5369 if (!adapter->vfs_allocated_count)
5370 return;
5371
5372 for (i = 0; i < hw->mac.uta_reg_count; i++)
5373 array_wr32(E1000_UTA, i, ~0);
5374}
5375
9d5c8243
AK
5376/**
5377 * igb_intr_msi - Interrupt Handler
5378 * @irq: interrupt number
5379 * @data: pointer to a network interface device structure
5380 **/
5381static irqreturn_t igb_intr_msi(int irq, void *data)
5382{
047e0030
AD
5383 struct igb_adapter *adapter = data;
5384 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5385 struct e1000_hw *hw = &adapter->hw;
5386 /* read ICR disables interrupts using IAM */
5387 u32 icr = rd32(E1000_ICR);
5388
047e0030 5389 igb_write_itr(q_vector);
9d5c8243 5390
7f081d40
AD
5391 if (icr & E1000_ICR_DRSTA)
5392 schedule_work(&adapter->reset_task);
5393
047e0030 5394 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5395 /* HW is reporting DMA is out of sync */
5396 adapter->stats.doosync++;
5397 }
5398
9d5c8243
AK
5399 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5400 hw->mac.get_link_status = 1;
5401 if (!test_bit(__IGB_DOWN, &adapter->state))
5402 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5403 }
5404
047e0030 5405 napi_schedule(&q_vector->napi);
9d5c8243
AK
5406
5407 return IRQ_HANDLED;
5408}
5409
5410/**
4a3c6433 5411 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5412 * @irq: interrupt number
5413 * @data: pointer to a network interface device structure
5414 **/
5415static irqreturn_t igb_intr(int irq, void *data)
5416{
047e0030
AD
5417 struct igb_adapter *adapter = data;
5418 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5419 struct e1000_hw *hw = &adapter->hw;
5420 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5421 * need for the IMC write */
5422 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5423 if (!icr)
5424 return IRQ_NONE; /* Not our interrupt */
5425
047e0030 5426 igb_write_itr(q_vector);
9d5c8243
AK
5427
5428 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5429 * not set, then the adapter didn't send an interrupt */
5430 if (!(icr & E1000_ICR_INT_ASSERTED))
5431 return IRQ_NONE;
5432
7f081d40
AD
5433 if (icr & E1000_ICR_DRSTA)
5434 schedule_work(&adapter->reset_task);
5435
047e0030 5436 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5437 /* HW is reporting DMA is out of sync */
5438 adapter->stats.doosync++;
5439 }
5440
9d5c8243
AK
5441 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5442 hw->mac.get_link_status = 1;
5443 /* guard against interrupt when we're going down */
5444 if (!test_bit(__IGB_DOWN, &adapter->state))
5445 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5446 }
5447
047e0030 5448 napi_schedule(&q_vector->napi);
9d5c8243
AK
5449
5450 return IRQ_HANDLED;
5451}
5452
047e0030 5453static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5454{
047e0030 5455 struct igb_adapter *adapter = q_vector->adapter;
46544258 5456 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5457
4fc82adf
AD
5458 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5459 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 5460 if (!adapter->msix_entries)
6eb5a7f1 5461 igb_set_itr(adapter);
46544258 5462 else
047e0030 5463 igb_update_ring_itr(q_vector);
9d5c8243
AK
5464 }
5465
46544258
AD
5466 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5467 if (adapter->msix_entries)
047e0030 5468 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5469 else
5470 igb_irq_enable(adapter);
5471 }
9d5c8243
AK
5472}
5473
46544258
AD
5474/**
5475 * igb_poll - NAPI Rx polling callback
5476 * @napi: napi polling structure
5477 * @budget: count of how many packets we should handle
5478 **/
5479static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5480{
047e0030
AD
5481 struct igb_q_vector *q_vector = container_of(napi,
5482 struct igb_q_vector,
5483 napi);
5484 int tx_clean_complete = 1, work_done = 0;
9d5c8243 5485
421e02f0 5486#ifdef CONFIG_IGB_DCA
047e0030
AD
5487 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5488 igb_update_dca(q_vector);
fe4506b6 5489#endif
047e0030
AD
5490 if (q_vector->tx_ring)
5491 tx_clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5492
047e0030
AD
5493 if (q_vector->rx_ring)
5494 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5495
5496 if (!tx_clean_complete)
5497 work_done = budget;
46544258 5498
9d5c8243 5499 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 5500 if (work_done < budget) {
288379f0 5501 napi_complete(napi);
047e0030 5502 igb_ring_irq_enable(q_vector);
9d5c8243
AK
5503 }
5504
46544258 5505 return work_done;
9d5c8243 5506}
6d8126f9 5507
33af6bcc 5508/**
c5b9bd5e 5509 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5510 * @adapter: board private structure
c5b9bd5e
AD
5511 * @shhwtstamps: timestamp structure to update
5512 * @regval: unsigned 64bit system time value.
5513 *
5514 * We need to convert the system time value stored in the RX/TXSTMP registers
5515 * into a hwtstamp which can be used by the upper level timestamping functions
5516 */
5517static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5518 struct skb_shared_hwtstamps *shhwtstamps,
5519 u64 regval)
5520{
5521 u64 ns;
5522
55cac248
AD
5523 /*
5524 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5525 * 24 to match clock shift we setup earlier.
5526 */
5527 if (adapter->hw.mac.type == e1000_82580)
5528 regval <<= IGB_82580_TSYNC_SHIFT;
5529
c5b9bd5e
AD
5530 ns = timecounter_cyc2time(&adapter->clock, regval);
5531 timecompare_update(&adapter->compare, ns);
5532 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5533 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5534 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5535}
5536
5537/**
5538 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5539 * @q_vector: pointer to q_vector containing needed info
2873957d 5540 * @buffer: pointer to igb_buffer structure
33af6bcc
PO
5541 *
5542 * If we were asked to do hardware stamping and such a time stamp is
5543 * available, then it must have been for this skb here because we only
5544 * allow only one such packet into the queue.
5545 */
2873957d 5546static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
33af6bcc 5547{
c5b9bd5e 5548 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5549 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5550 struct skb_shared_hwtstamps shhwtstamps;
5551 u64 regval;
33af6bcc 5552
c5b9bd5e 5553 /* if skb does not support hw timestamp or TX stamp not valid exit */
2244d07b 5554 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
c5b9bd5e
AD
5555 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5556 return;
5557
5558 regval = rd32(E1000_TXSTMPL);
5559 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5560
5561 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5562 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5563}
5564
9d5c8243
AK
5565/**
5566 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5567 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5568 * returns true if ring is completely cleaned
5569 **/
047e0030 5570static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5571{
047e0030
AD
5572 struct igb_adapter *adapter = q_vector->adapter;
5573 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 5574 struct net_device *netdev = tx_ring->netdev;
0e014cb1 5575 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5576 struct igb_buffer *buffer_info;
0e014cb1 5577 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5578 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
5579 unsigned int i, eop, count = 0;
5580 bool cleaned = false;
9d5c8243 5581
9d5c8243 5582 i = tx_ring->next_to_clean;
0e014cb1
AD
5583 eop = tx_ring->buffer_info[i].next_to_watch;
5584 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5585
5586 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5587 (count < tx_ring->count)) {
2d0bb1c1 5588 rmb(); /* read buffer_info after eop_desc status */
0e014cb1
AD
5589 for (cleaned = false; !cleaned; count++) {
5590 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 5591 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 5592 cleaned = (i == eop);
9d5c8243 5593
2873957d
NN
5594 if (buffer_info->skb) {
5595 total_bytes += buffer_info->bytecount;
9d5c8243 5596 /* gso_segs is currently only valid for tcp */
2873957d
NN
5597 total_packets += buffer_info->gso_segs;
5598 igb_tx_hwtstamp(q_vector, buffer_info);
9d5c8243
AK
5599 }
5600
80785298 5601 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 5602 tx_desc->wb.status = 0;
9d5c8243
AK
5603
5604 i++;
5605 if (i == tx_ring->count)
5606 i = 0;
9d5c8243 5607 }
0e014cb1
AD
5608 eop = tx_ring->buffer_info[i].next_to_watch;
5609 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5610 }
5611
9d5c8243
AK
5612 tx_ring->next_to_clean = i;
5613
fc7d345d 5614 if (unlikely(count &&
9d5c8243 5615 netif_carrier_ok(netdev) &&
c493ea45 5616 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
5617 /* Make sure that anybody stopping the queue after this
5618 * sees the new next_to_clean.
5619 */
5620 smp_mb();
661086df
PWJ
5621 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5622 !(test_bit(__IGB_DOWN, &adapter->state))) {
5623 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
5624
5625 u64_stats_update_begin(&tx_ring->tx_syncp);
04a5fcaa 5626 tx_ring->tx_stats.restart_queue++;
12dcd86b 5627 u64_stats_update_end(&tx_ring->tx_syncp);
661086df 5628 }
9d5c8243
AK
5629 }
5630
5631 if (tx_ring->detect_tx_hung) {
5632 /* Detect a transmit hang in hardware, this serializes the
5633 * check with the clearing of time_stamp and movement of i */
5634 tx_ring->detect_tx_hung = false;
5635 if (tx_ring->buffer_info[i].time_stamp &&
5636 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
5637 (adapter->tx_timeout_factor * HZ)) &&
5638 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5639
9d5c8243 5640 /* detected Tx unit hang */
59d71989 5641 dev_err(tx_ring->dev,
9d5c8243 5642 "Detected Tx Unit Hang\n"
2d064c06 5643 " Tx Queue <%d>\n"
9d5c8243
AK
5644 " TDH <%x>\n"
5645 " TDT <%x>\n"
5646 " next_to_use <%x>\n"
5647 " next_to_clean <%x>\n"
9d5c8243
AK
5648 "buffer_info[next_to_clean]\n"
5649 " time_stamp <%lx>\n"
0e014cb1 5650 " next_to_watch <%x>\n"
9d5c8243
AK
5651 " jiffies <%lx>\n"
5652 " desc.status <%x>\n",
2d064c06 5653 tx_ring->queue_index,
fce99e34
AD
5654 readl(tx_ring->head),
5655 readl(tx_ring->tail),
9d5c8243
AK
5656 tx_ring->next_to_use,
5657 tx_ring->next_to_clean,
f7ba205e 5658 tx_ring->buffer_info[eop].time_stamp,
0e014cb1 5659 eop,
9d5c8243 5660 jiffies,
0e014cb1 5661 eop_desc->wb.status);
661086df 5662 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
5663 }
5664 }
5665 tx_ring->total_bytes += total_bytes;
5666 tx_ring->total_packets += total_packets;
12dcd86b 5667 u64_stats_update_begin(&tx_ring->tx_syncp);
e21ed353
AD
5668 tx_ring->tx_stats.bytes += total_bytes;
5669 tx_ring->tx_stats.packets += total_packets;
12dcd86b 5670 u64_stats_update_end(&tx_ring->tx_syncp);
807540ba 5671 return count < tx_ring->count;
9d5c8243
AK
5672}
5673
9d5c8243
AK
5674/**
5675 * igb_receive_skb - helper function to handle rx indications
047e0030
AD
5676 * @q_vector: structure containing interrupt and ring information
5677 * @skb: packet to send up
5678 * @vlan_tag: vlan tag for packet
9d5c8243 5679 **/
047e0030
AD
5680static void igb_receive_skb(struct igb_q_vector *q_vector,
5681 struct sk_buff *skb,
5682 u16 vlan_tag)
5683{
5684 struct igb_adapter *adapter = q_vector->adapter;
5685
31b24b95 5686 if (vlan_tag && adapter->vlgrp)
047e0030
AD
5687 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
5688 vlan_tag, skb);
182ff8df 5689 else
047e0030 5690 napi_gro_receive(&q_vector->napi, skb);
9d5c8243
AK
5691}
5692
04a5fcaa 5693static inline void igb_rx_checksum_adv(struct igb_ring *ring,
9d5c8243
AK
5694 u32 status_err, struct sk_buff *skb)
5695{
bc8acf2c 5696 skb_checksum_none_assert(skb);
9d5c8243
AK
5697
5698 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5699 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5700 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5701 return;
85ad76b2 5702
9d5c8243
AK
5703 /* TCP/UDP checksum error bit is set */
5704 if (status_err &
5705 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5706 /*
5707 * work around errata with sctp packets where the TCPE aka
5708 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5709 * packets, (aka let the stack check the crc32c)
5710 */
85ad76b2 5711 if ((skb->len == 60) &&
12dcd86b
ED
5712 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
5713 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5714 ring->rx_stats.csum_err++;
12dcd86b
ED
5715 u64_stats_update_end(&ring->rx_syncp);
5716 }
9d5c8243 5717 /* let the stack verify checksum errors */
9d5c8243
AK
5718 return;
5719 }
5720 /* It must be a TCP or UDP packet with a valid checksum */
5721 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5722 skb->ip_summed = CHECKSUM_UNNECESSARY;
5723
59d71989 5724 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5725}
5726
757b77e2 5727static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
c5b9bd5e
AD
5728 struct sk_buff *skb)
5729{
5730 struct igb_adapter *adapter = q_vector->adapter;
5731 struct e1000_hw *hw = &adapter->hw;
5732 u64 regval;
5733
5734 /*
5735 * If this bit is set, then the RX registers contain the time stamp. No
5736 * other packet will be time stamped until we read these registers, so
5737 * read the registers to make them available again. Because only one
5738 * packet can be time stamped at a time, we know that the register
5739 * values must belong to this one here and therefore we don't need to
5740 * compare any of the additional attributes stored for it.
5741 *
2244d07b 5742 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
5743 * can turn into a skb_shared_hwtstamps.
5744 */
757b77e2
NN
5745 if (staterr & E1000_RXDADV_STAT_TSIP) {
5746 u32 *stamp = (u32 *)skb->data;
5747 regval = le32_to_cpu(*(stamp + 2));
5748 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5749 skb_pull(skb, IGB_TS_HDR_LEN);
5750 } else {
5751 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5752 return;
c5b9bd5e 5753
757b77e2
NN
5754 regval = rd32(E1000_RXSTMPL);
5755 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5756 }
c5b9bd5e
AD
5757
5758 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5759}
4c844851 5760static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
2d94d8ab
AD
5761 union e1000_adv_rx_desc *rx_desc)
5762{
5763 /* HW will not DMA in data larger than the given buffer, even if it
5764 * parses the (NFS, of course) header to be larger. In that case, it
5765 * fills the header buffer and spills the rest into the page.
5766 */
5767 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5768 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4c844851
AD
5769 if (hlen > rx_ring->rx_buffer_len)
5770 hlen = rx_ring->rx_buffer_len;
2d94d8ab
AD
5771 return hlen;
5772}
5773
047e0030
AD
5774static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5775 int *work_done, int budget)
9d5c8243 5776{
047e0030 5777 struct igb_ring *rx_ring = q_vector->rx_ring;
e694e964 5778 struct net_device *netdev = rx_ring->netdev;
59d71989 5779 struct device *dev = rx_ring->dev;
9d5c8243
AK
5780 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5781 struct igb_buffer *buffer_info , *next_buffer;
5782 struct sk_buff *skb;
9d5c8243
AK
5783 bool cleaned = false;
5784 int cleaned_count = 0;
d1eff350 5785 int current_node = numa_node_id();
9d5c8243 5786 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 5787 unsigned int i;
2d94d8ab
AD
5788 u32 staterr;
5789 u16 length;
047e0030 5790 u16 vlan_tag;
9d5c8243
AK
5791
5792 i = rx_ring->next_to_clean;
69d3ca53 5793 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
5794 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5795 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5796
5797 while (staterr & E1000_RXD_STAT_DD) {
5798 if (*work_done >= budget)
5799 break;
5800 (*work_done)++;
2d0bb1c1 5801 rmb(); /* read descriptor and rx_buffer_info after status DD */
9d5c8243 5802
69d3ca53
AD
5803 skb = buffer_info->skb;
5804 prefetch(skb->data - NET_IP_ALIGN);
5805 buffer_info->skb = NULL;
5806
5807 i++;
5808 if (i == rx_ring->count)
5809 i = 0;
42d0781a 5810
69d3ca53
AD
5811 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5812 prefetch(next_rxd);
5813 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
5814
5815 length = le16_to_cpu(rx_desc->wb.upper.length);
5816 cleaned = true;
5817 cleaned_count++;
5818
2d94d8ab 5819 if (buffer_info->dma) {
59d71989 5820 dma_unmap_single(dev, buffer_info->dma,
4c844851 5821 rx_ring->rx_buffer_len,
59d71989 5822 DMA_FROM_DEVICE);
91615f76 5823 buffer_info->dma = 0;
4c844851 5824 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
6ec43fe6
AD
5825 skb_put(skb, length);
5826 goto send_up;
5827 }
4c844851 5828 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
bf36c1a0
AD
5829 }
5830
5831 if (length) {
59d71989
AD
5832 dma_unmap_page(dev, buffer_info->page_dma,
5833 PAGE_SIZE / 2, DMA_FROM_DEVICE);
9d5c8243 5834 buffer_info->page_dma = 0;
bf36c1a0 5835
aa913403 5836 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5837 buffer_info->page,
5838 buffer_info->page_offset,
5839 length);
5840
d1eff350
AD
5841 if ((page_count(buffer_info->page) != 1) ||
5842 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5843 buffer_info->page = NULL;
5844 else
5845 get_page(buffer_info->page);
9d5c8243
AK
5846
5847 skb->len += length;
5848 skb->data_len += length;
bf36c1a0 5849 skb->truesize += length;
9d5c8243 5850 }
9d5c8243 5851
bf36c1a0 5852 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
5853 buffer_info->skb = next_buffer->skb;
5854 buffer_info->dma = next_buffer->dma;
5855 next_buffer->skb = skb;
5856 next_buffer->dma = 0;
bf36c1a0
AD
5857 goto next_desc;
5858 }
69d3ca53 5859send_up:
9d5c8243
AK
5860 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5861 dev_kfree_skb_irq(skb);
5862 goto next_desc;
5863 }
9d5c8243 5864
757b77e2
NN
5865 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5866 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5867 total_bytes += skb->len;
5868 total_packets++;
5869
85ad76b2 5870 igb_rx_checksum_adv(rx_ring, staterr, skb);
9d5c8243
AK
5871
5872 skb->protocol = eth_type_trans(skb, netdev);
047e0030
AD
5873 skb_record_rx_queue(skb, rx_ring->queue_index);
5874
5875 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
5876 le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
9d5c8243 5877
047e0030 5878 igb_receive_skb(q_vector, skb, vlan_tag);
9d5c8243 5879
9d5c8243
AK
5880next_desc:
5881 rx_desc->wb.upper.status_error = 0;
5882
5883 /* return some buffers to hardware, one at a time is too slow */
5884 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 5885 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5886 cleaned_count = 0;
5887 }
5888
5889 /* use prefetched values */
5890 rx_desc = next_rxd;
5891 buffer_info = next_buffer;
9d5c8243
AK
5892 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5893 }
bf36c1a0 5894
9d5c8243 5895 rx_ring->next_to_clean = i;
c493ea45 5896 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
5897
5898 if (cleaned_count)
3b644cf6 5899 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5900
5901 rx_ring->total_packets += total_packets;
5902 rx_ring->total_bytes += total_bytes;
12dcd86b 5903 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
5904 rx_ring->rx_stats.packets += total_packets;
5905 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 5906 u64_stats_update_end(&rx_ring->rx_syncp);
9d5c8243
AK
5907 return cleaned;
5908}
5909
9d5c8243
AK
5910/**
5911 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5912 * @adapter: address of board private structure
5913 **/
d7ee5b3a 5914void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
9d5c8243 5915{
e694e964 5916 struct net_device *netdev = rx_ring->netdev;
9d5c8243
AK
5917 union e1000_adv_rx_desc *rx_desc;
5918 struct igb_buffer *buffer_info;
5919 struct sk_buff *skb;
5920 unsigned int i;
db761762 5921 int bufsz;
9d5c8243
AK
5922
5923 i = rx_ring->next_to_use;
5924 buffer_info = &rx_ring->buffer_info[i];
5925
4c844851 5926 bufsz = rx_ring->rx_buffer_len;
db761762 5927
9d5c8243
AK
5928 while (cleaned_count--) {
5929 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5930
6ec43fe6 5931 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
9d5c8243 5932 if (!buffer_info->page) {
42d0781a 5933 buffer_info->page = netdev_alloc_page(netdev);
12dcd86b
ED
5934 if (unlikely(!buffer_info->page)) {
5935 u64_stats_update_begin(&rx_ring->rx_syncp);
04a5fcaa 5936 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5937 u64_stats_update_end(&rx_ring->rx_syncp);
bf36c1a0
AD
5938 goto no_buffers;
5939 }
5940 buffer_info->page_offset = 0;
5941 } else {
5942 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
5943 }
5944 buffer_info->page_dma =
59d71989 5945 dma_map_page(rx_ring->dev, buffer_info->page,
bf36c1a0
AD
5946 buffer_info->page_offset,
5947 PAGE_SIZE / 2,
59d71989
AD
5948 DMA_FROM_DEVICE);
5949 if (dma_mapping_error(rx_ring->dev,
5950 buffer_info->page_dma)) {
42d0781a 5951 buffer_info->page_dma = 0;
12dcd86b 5952 u64_stats_update_begin(&rx_ring->rx_syncp);
42d0781a 5953 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5954 u64_stats_update_end(&rx_ring->rx_syncp);
42d0781a
AD
5955 goto no_buffers;
5956 }
9d5c8243
AK
5957 }
5958
42d0781a
AD
5959 skb = buffer_info->skb;
5960 if (!skb) {
89d71a66 5961 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
12dcd86b
ED
5962 if (unlikely(!skb)) {
5963 u64_stats_update_begin(&rx_ring->rx_syncp);
04a5fcaa 5964 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5965 u64_stats_update_end(&rx_ring->rx_syncp);
9d5c8243
AK
5966 goto no_buffers;
5967 }
5968
9d5c8243 5969 buffer_info->skb = skb;
42d0781a
AD
5970 }
5971 if (!buffer_info->dma) {
59d71989 5972 buffer_info->dma = dma_map_single(rx_ring->dev,
80785298 5973 skb->data,
9d5c8243 5974 bufsz,
59d71989
AD
5975 DMA_FROM_DEVICE);
5976 if (dma_mapping_error(rx_ring->dev,
5977 buffer_info->dma)) {
42d0781a 5978 buffer_info->dma = 0;
12dcd86b 5979 u64_stats_update_begin(&rx_ring->rx_syncp);
42d0781a 5980 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5981 u64_stats_update_end(&rx_ring->rx_syncp);
42d0781a
AD
5982 goto no_buffers;
5983 }
9d5c8243
AK
5984 }
5985 /* Refresh the desc even if buffer_addrs didn't change because
5986 * each write-back erases this info. */
6ec43fe6 5987 if (bufsz < IGB_RXBUFFER_1024) {
9d5c8243
AK
5988 rx_desc->read.pkt_addr =
5989 cpu_to_le64(buffer_info->page_dma);
5990 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5991 } else {
42d0781a 5992 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
5993 rx_desc->read.hdr_addr = 0;
5994 }
5995
5996 i++;
5997 if (i == rx_ring->count)
5998 i = 0;
5999 buffer_info = &rx_ring->buffer_info[i];
6000 }
6001
6002no_buffers:
6003 if (rx_ring->next_to_use != i) {
6004 rx_ring->next_to_use = i;
6005 if (i == 0)
6006 i = (rx_ring->count - 1);
6007 else
6008 i--;
6009
6010 /* Force memory writes to complete before letting h/w
6011 * know there are new descriptors to fetch. (Only
6012 * applicable for weak-ordered memory model archs,
6013 * such as IA-64). */
6014 wmb();
fce99e34 6015 writel(i, rx_ring->tail);
9d5c8243
AK
6016 }
6017}
6018
6019/**
6020 * igb_mii_ioctl -
6021 * @netdev:
6022 * @ifreq:
6023 * @cmd:
6024 **/
6025static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6026{
6027 struct igb_adapter *adapter = netdev_priv(netdev);
6028 struct mii_ioctl_data *data = if_mii(ifr);
6029
6030 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6031 return -EOPNOTSUPP;
6032
6033 switch (cmd) {
6034 case SIOCGMIIPHY:
6035 data->phy_id = adapter->hw.phy.addr;
6036 break;
6037 case SIOCGMIIREG:
f5f4cf08
AD
6038 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6039 &data->val_out))
9d5c8243
AK
6040 return -EIO;
6041 break;
6042 case SIOCSMIIREG:
6043 default:
6044 return -EOPNOTSUPP;
6045 }
6046 return 0;
6047}
6048
c6cb090b
PO
6049/**
6050 * igb_hwtstamp_ioctl - control hardware time stamping
6051 * @netdev:
6052 * @ifreq:
6053 * @cmd:
6054 *
33af6bcc
PO
6055 * Outgoing time stamping can be enabled and disabled. Play nice and
6056 * disable it when requested, although it shouldn't case any overhead
6057 * when no packet needs it. At most one packet in the queue may be
6058 * marked for time stamping, otherwise it would be impossible to tell
6059 * for sure to which packet the hardware time stamp belongs.
6060 *
6061 * Incoming time stamping has to be configured via the hardware
6062 * filters. Not all combinations are supported, in particular event
6063 * type has to be specified. Matching the kind of event packet is
6064 * not supported, with the exception of "all V2 events regardless of
6065 * level 2 or 4".
6066 *
c6cb090b
PO
6067 **/
6068static int igb_hwtstamp_ioctl(struct net_device *netdev,
6069 struct ifreq *ifr, int cmd)
6070{
33af6bcc
PO
6071 struct igb_adapter *adapter = netdev_priv(netdev);
6072 struct e1000_hw *hw = &adapter->hw;
c6cb090b 6073 struct hwtstamp_config config;
c5b9bd5e
AD
6074 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6075 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 6076 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
6077 bool is_l4 = false;
6078 bool is_l2 = false;
33af6bcc 6079 u32 regval;
c6cb090b
PO
6080
6081 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6082 return -EFAULT;
6083
6084 /* reserved for future extensions */
6085 if (config.flags)
6086 return -EINVAL;
6087
33af6bcc
PO
6088 switch (config.tx_type) {
6089 case HWTSTAMP_TX_OFF:
c5b9bd5e 6090 tsync_tx_ctl = 0;
33af6bcc 6091 case HWTSTAMP_TX_ON:
33af6bcc
PO
6092 break;
6093 default:
6094 return -ERANGE;
6095 }
6096
6097 switch (config.rx_filter) {
6098 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 6099 tsync_rx_ctl = 0;
33af6bcc
PO
6100 break;
6101 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6102 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6103 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6104 case HWTSTAMP_FILTER_ALL:
6105 /*
6106 * register TSYNCRXCFG must be set, therefore it is not
6107 * possible to time stamp both Sync and Delay_Req messages
6108 * => fall back to time stamping all packets
6109 */
c5b9bd5e 6110 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
6111 config.rx_filter = HWTSTAMP_FILTER_ALL;
6112 break;
6113 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 6114 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6115 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 6116 is_l4 = true;
33af6bcc
PO
6117 break;
6118 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 6119 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6120 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 6121 is_l4 = true;
33af6bcc
PO
6122 break;
6123 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6124 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 6125 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6126 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
6127 is_l2 = true;
6128 is_l4 = true;
33af6bcc
PO
6129 config.rx_filter = HWTSTAMP_FILTER_SOME;
6130 break;
6131 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6132 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 6133 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6134 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
6135 is_l2 = true;
6136 is_l4 = true;
33af6bcc
PO
6137 config.rx_filter = HWTSTAMP_FILTER_SOME;
6138 break;
6139 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6140 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6141 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 6142 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 6143 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 6144 is_l2 = true;
33af6bcc
PO
6145 break;
6146 default:
6147 return -ERANGE;
6148 }
6149
c5b9bd5e
AD
6150 if (hw->mac.type == e1000_82575) {
6151 if (tsync_rx_ctl | tsync_tx_ctl)
6152 return -EINVAL;
6153 return 0;
6154 }
6155
757b77e2
NN
6156 /*
6157 * Per-packet timestamping only works if all packets are
6158 * timestamped, so enable timestamping in all packets as
6159 * long as one rx filter was configured.
6160 */
6161 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6162 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6163 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6164 }
6165
33af6bcc
PO
6166 /* enable/disable TX */
6167 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
6168 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6169 regval |= tsync_tx_ctl;
33af6bcc
PO
6170 wr32(E1000_TSYNCTXCTL, regval);
6171
c5b9bd5e 6172 /* enable/disable RX */
33af6bcc 6173 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
6174 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6175 regval |= tsync_rx_ctl;
33af6bcc 6176 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 6177
c5b9bd5e
AD
6178 /* define which PTP packets are time stamped */
6179 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 6180
c5b9bd5e
AD
6181 /* define ethertype filter for timestamped packets */
6182 if (is_l2)
6183 wr32(E1000_ETQF(3),
6184 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6185 E1000_ETQF_1588 | /* enable timestamping */
6186 ETH_P_1588)); /* 1588 eth protocol type */
6187 else
6188 wr32(E1000_ETQF(3), 0);
6189
6190#define PTP_PORT 319
6191 /* L4 Queue Filter[3]: filter by destination port and protocol */
6192 if (is_l4) {
6193 u32 ftqf = (IPPROTO_UDP /* UDP */
6194 | E1000_FTQF_VF_BP /* VF not compared */
6195 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6196 | E1000_FTQF_MASK); /* mask all inputs */
6197 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6198
6199 wr32(E1000_IMIR(3), htons(PTP_PORT));
6200 wr32(E1000_IMIREXT(3),
6201 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6202 if (hw->mac.type == e1000_82576) {
6203 /* enable source port check */
6204 wr32(E1000_SPQF(3), htons(PTP_PORT));
6205 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6206 }
6207 wr32(E1000_FTQF(3), ftqf);
6208 } else {
6209 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6210 }
33af6bcc
PO
6211 wrfl();
6212
6213 adapter->hwtstamp_config = config;
6214
6215 /* clear TX/RX time stamp registers, just to be sure */
6216 regval = rd32(E1000_TXSTMPH);
6217 regval = rd32(E1000_RXSTMPH);
c6cb090b 6218
33af6bcc
PO
6219 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6220 -EFAULT : 0;
c6cb090b
PO
6221}
6222
9d5c8243
AK
6223/**
6224 * igb_ioctl -
6225 * @netdev:
6226 * @ifreq:
6227 * @cmd:
6228 **/
6229static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6230{
6231 switch (cmd) {
6232 case SIOCGMIIPHY:
6233 case SIOCGMIIREG:
6234 case SIOCSMIIREG:
6235 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6236 case SIOCSHWTSTAMP:
6237 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6238 default:
6239 return -EOPNOTSUPP;
6240 }
6241}
6242
009bc06e
AD
6243s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6244{
6245 struct igb_adapter *adapter = hw->back;
6246 u16 cap_offset;
6247
6248 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6249 if (!cap_offset)
6250 return -E1000_ERR_CONFIG;
6251
6252 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6253
6254 return 0;
6255}
6256
6257s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6258{
6259 struct igb_adapter *adapter = hw->back;
6260 u16 cap_offset;
6261
6262 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
6263 if (!cap_offset)
6264 return -E1000_ERR_CONFIG;
6265
6266 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6267
6268 return 0;
6269}
6270
9d5c8243
AK
6271static void igb_vlan_rx_register(struct net_device *netdev,
6272 struct vlan_group *grp)
6273{
6274 struct igb_adapter *adapter = netdev_priv(netdev);
6275 struct e1000_hw *hw = &adapter->hw;
6276 u32 ctrl, rctl;
6277
6278 igb_irq_disable(adapter);
6279 adapter->vlgrp = grp;
6280
6281 if (grp) {
6282 /* enable VLAN tag insert/strip */
6283 ctrl = rd32(E1000_CTRL);
6284 ctrl |= E1000_CTRL_VME;
6285 wr32(E1000_CTRL, ctrl);
6286
51466239 6287 /* Disable CFI check */
9d5c8243 6288 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6289 rctl &= ~E1000_RCTL_CFIEN;
6290 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6291 } else {
6292 /* disable VLAN tag insert/strip */
6293 ctrl = rd32(E1000_CTRL);
6294 ctrl &= ~E1000_CTRL_VME;
6295 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6296 }
6297
e1739522
AD
6298 igb_rlpml_set(adapter);
6299
9d5c8243
AK
6300 if (!test_bit(__IGB_DOWN, &adapter->state))
6301 igb_irq_enable(adapter);
6302}
6303
6304static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6305{
6306 struct igb_adapter *adapter = netdev_priv(netdev);
6307 struct e1000_hw *hw = &adapter->hw;
4ae196df 6308 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6309
51466239
AD
6310 /* attempt to add filter to vlvf array */
6311 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6312
51466239
AD
6313 /* add the filter since PF can receive vlans w/o entry in vlvf */
6314 igb_vfta_set(hw, vid, true);
9d5c8243
AK
6315}
6316
6317static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6318{
6319 struct igb_adapter *adapter = netdev_priv(netdev);
6320 struct e1000_hw *hw = &adapter->hw;
4ae196df 6321 int pf_id = adapter->vfs_allocated_count;
51466239 6322 s32 err;
9d5c8243
AK
6323
6324 igb_irq_disable(adapter);
6325 vlan_group_set_device(adapter->vlgrp, vid, NULL);
6326
6327 if (!test_bit(__IGB_DOWN, &adapter->state))
6328 igb_irq_enable(adapter);
6329
51466239
AD
6330 /* remove vlan from VLVF table array */
6331 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6332
51466239
AD
6333 /* if vid was not present in VLVF just remove it from table */
6334 if (err)
4ae196df 6335 igb_vfta_set(hw, vid, false);
9d5c8243
AK
6336}
6337
6338static void igb_restore_vlan(struct igb_adapter *adapter)
6339{
6340 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
6341
6342 if (adapter->vlgrp) {
6343 u16 vid;
b738127d 6344 for (vid = 0; vid < VLAN_N_VID; vid++) {
9d5c8243
AK
6345 if (!vlan_group_get_device(adapter->vlgrp, vid))
6346 continue;
6347 igb_vlan_rx_add_vid(adapter->netdev, vid);
6348 }
6349 }
6350}
6351
14ad2513 6352int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6353{
090b1795 6354 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6355 struct e1000_mac_info *mac = &adapter->hw.mac;
6356
6357 mac->autoneg = 0;
6358
14ad2513
DD
6359 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6360 * for the switch() below to work */
6361 if ((spd & 1) || (dplx & ~1))
6362 goto err_inval;
6363
cd2638a8
CW
6364 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6365 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
14ad2513
DD
6366 spd != SPEED_1000 &&
6367 dplx != DUPLEX_FULL)
6368 goto err_inval;
cd2638a8 6369
14ad2513 6370 switch (spd + dplx) {
9d5c8243
AK
6371 case SPEED_10 + DUPLEX_HALF:
6372 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6373 break;
6374 case SPEED_10 + DUPLEX_FULL:
6375 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6376 break;
6377 case SPEED_100 + DUPLEX_HALF:
6378 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6379 break;
6380 case SPEED_100 + DUPLEX_FULL:
6381 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6382 break;
6383 case SPEED_1000 + DUPLEX_FULL:
6384 mac->autoneg = 1;
6385 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6386 break;
6387 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6388 default:
14ad2513 6389 goto err_inval;
9d5c8243
AK
6390 }
6391 return 0;
14ad2513
DD
6392
6393err_inval:
6394 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6395 return -EINVAL;
9d5c8243
AK
6396}
6397
3fe7c4c9 6398static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6399{
6400 struct net_device *netdev = pci_get_drvdata(pdev);
6401 struct igb_adapter *adapter = netdev_priv(netdev);
6402 struct e1000_hw *hw = &adapter->hw;
2d064c06 6403 u32 ctrl, rctl, status;
9d5c8243
AK
6404 u32 wufc = adapter->wol;
6405#ifdef CONFIG_PM
6406 int retval = 0;
6407#endif
6408
6409 netif_device_detach(netdev);
6410
a88f10ec
AD
6411 if (netif_running(netdev))
6412 igb_close(netdev);
6413
047e0030 6414 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6415
6416#ifdef CONFIG_PM
6417 retval = pci_save_state(pdev);
6418 if (retval)
6419 return retval;
6420#endif
6421
6422 status = rd32(E1000_STATUS);
6423 if (status & E1000_STATUS_LU)
6424 wufc &= ~E1000_WUFC_LNKC;
6425
6426 if (wufc) {
6427 igb_setup_rctl(adapter);
ff41f8dc 6428 igb_set_rx_mode(netdev);
9d5c8243
AK
6429
6430 /* turn on all-multi mode if wake on multicast is enabled */
6431 if (wufc & E1000_WUFC_MC) {
6432 rctl = rd32(E1000_RCTL);
6433 rctl |= E1000_RCTL_MPE;
6434 wr32(E1000_RCTL, rctl);
6435 }
6436
6437 ctrl = rd32(E1000_CTRL);
6438 /* advertise wake from D3Cold */
6439 #define E1000_CTRL_ADVD3WUC 0x00100000
6440 /* phy power management enable */
6441 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6442 ctrl |= E1000_CTRL_ADVD3WUC;
6443 wr32(E1000_CTRL, ctrl);
6444
9d5c8243 6445 /* Allow time for pending master requests to run */
330a6d6a 6446 igb_disable_pcie_master(hw);
9d5c8243
AK
6447
6448 wr32(E1000_WUC, E1000_WUC_PME_EN);
6449 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6450 } else {
6451 wr32(E1000_WUC, 0);
6452 wr32(E1000_WUFC, 0);
9d5c8243
AK
6453 }
6454
3fe7c4c9
RW
6455 *enable_wake = wufc || adapter->en_mng_pt;
6456 if (!*enable_wake)
88a268c1
NN
6457 igb_power_down_link(adapter);
6458 else
6459 igb_power_up_link(adapter);
9d5c8243
AK
6460
6461 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6462 * would have already happened in close and is redundant. */
6463 igb_release_hw_control(adapter);
6464
6465 pci_disable_device(pdev);
6466
9d5c8243
AK
6467 return 0;
6468}
6469
6470#ifdef CONFIG_PM
3fe7c4c9
RW
6471static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6472{
6473 int retval;
6474 bool wake;
6475
6476 retval = __igb_shutdown(pdev, &wake);
6477 if (retval)
6478 return retval;
6479
6480 if (wake) {
6481 pci_prepare_to_sleep(pdev);
6482 } else {
6483 pci_wake_from_d3(pdev, false);
6484 pci_set_power_state(pdev, PCI_D3hot);
6485 }
6486
6487 return 0;
6488}
6489
9d5c8243
AK
6490static int igb_resume(struct pci_dev *pdev)
6491{
6492 struct net_device *netdev = pci_get_drvdata(pdev);
6493 struct igb_adapter *adapter = netdev_priv(netdev);
6494 struct e1000_hw *hw = &adapter->hw;
6495 u32 err;
6496
6497 pci_set_power_state(pdev, PCI_D0);
6498 pci_restore_state(pdev);
b94f2d77 6499 pci_save_state(pdev);
42bfd33a 6500
aed5dec3 6501 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6502 if (err) {
6503 dev_err(&pdev->dev,
6504 "igb: Cannot enable PCI device from suspend\n");
6505 return err;
6506 }
6507 pci_set_master(pdev);
6508
6509 pci_enable_wake(pdev, PCI_D3hot, 0);
6510 pci_enable_wake(pdev, PCI_D3cold, 0);
6511
047e0030 6512 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6513 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6514 return -ENOMEM;
9d5c8243
AK
6515 }
6516
9d5c8243 6517 igb_reset(adapter);
a8564f03
AD
6518
6519 /* let the f/w know that the h/w is now under the control of the
6520 * driver. */
6521 igb_get_hw_control(adapter);
6522
9d5c8243
AK
6523 wr32(E1000_WUS, ~0);
6524
a88f10ec
AD
6525 if (netif_running(netdev)) {
6526 err = igb_open(netdev);
6527 if (err)
6528 return err;
6529 }
9d5c8243
AK
6530
6531 netif_device_attach(netdev);
6532
9d5c8243
AK
6533 return 0;
6534}
6535#endif
6536
6537static void igb_shutdown(struct pci_dev *pdev)
6538{
3fe7c4c9
RW
6539 bool wake;
6540
6541 __igb_shutdown(pdev, &wake);
6542
6543 if (system_state == SYSTEM_POWER_OFF) {
6544 pci_wake_from_d3(pdev, wake);
6545 pci_set_power_state(pdev, PCI_D3hot);
6546 }
9d5c8243
AK
6547}
6548
6549#ifdef CONFIG_NET_POLL_CONTROLLER
6550/*
6551 * Polling 'interrupt' - used by things like netconsole to send skbs
6552 * without having to re-enable interrupts. It's not called while
6553 * the interrupt routine is executing.
6554 */
6555static void igb_netpoll(struct net_device *netdev)
6556{
6557 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6558 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6559 int i;
9d5c8243 6560
eebbbdba 6561 if (!adapter->msix_entries) {
047e0030 6562 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 6563 igb_irq_disable(adapter);
047e0030 6564 napi_schedule(&q_vector->napi);
eebbbdba
AD
6565 return;
6566 }
9d5c8243 6567
047e0030
AD
6568 for (i = 0; i < adapter->num_q_vectors; i++) {
6569 struct igb_q_vector *q_vector = adapter->q_vector[i];
6570 wr32(E1000_EIMC, q_vector->eims_value);
6571 napi_schedule(&q_vector->napi);
eebbbdba 6572 }
9d5c8243
AK
6573}
6574#endif /* CONFIG_NET_POLL_CONTROLLER */
6575
6576/**
6577 * igb_io_error_detected - called when PCI error is detected
6578 * @pdev: Pointer to PCI device
6579 * @state: The current pci connection state
6580 *
6581 * This function is called after a PCI bus error affecting
6582 * this device has been detected.
6583 */
6584static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6585 pci_channel_state_t state)
6586{
6587 struct net_device *netdev = pci_get_drvdata(pdev);
6588 struct igb_adapter *adapter = netdev_priv(netdev);
6589
6590 netif_device_detach(netdev);
6591
59ed6eec
AD
6592 if (state == pci_channel_io_perm_failure)
6593 return PCI_ERS_RESULT_DISCONNECT;
6594
9d5c8243
AK
6595 if (netif_running(netdev))
6596 igb_down(adapter);
6597 pci_disable_device(pdev);
6598
6599 /* Request a slot slot reset. */
6600 return PCI_ERS_RESULT_NEED_RESET;
6601}
6602
6603/**
6604 * igb_io_slot_reset - called after the pci bus has been reset.
6605 * @pdev: Pointer to PCI device
6606 *
6607 * Restart the card from scratch, as if from a cold-boot. Implementation
6608 * resembles the first-half of the igb_resume routine.
6609 */
6610static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6611{
6612 struct net_device *netdev = pci_get_drvdata(pdev);
6613 struct igb_adapter *adapter = netdev_priv(netdev);
6614 struct e1000_hw *hw = &adapter->hw;
40a914fa 6615 pci_ers_result_t result;
42bfd33a 6616 int err;
9d5c8243 6617
aed5dec3 6618 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6619 dev_err(&pdev->dev,
6620 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6621 result = PCI_ERS_RESULT_DISCONNECT;
6622 } else {
6623 pci_set_master(pdev);
6624 pci_restore_state(pdev);
b94f2d77 6625 pci_save_state(pdev);
9d5c8243 6626
40a914fa
AD
6627 pci_enable_wake(pdev, PCI_D3hot, 0);
6628 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6629
40a914fa
AD
6630 igb_reset(adapter);
6631 wr32(E1000_WUS, ~0);
6632 result = PCI_ERS_RESULT_RECOVERED;
6633 }
9d5c8243 6634
ea943d41
JK
6635 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6636 if (err) {
6637 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6638 "failed 0x%0x\n", err);
6639 /* non-fatal, continue */
6640 }
40a914fa
AD
6641
6642 return result;
9d5c8243
AK
6643}
6644
6645/**
6646 * igb_io_resume - called when traffic can start flowing again.
6647 * @pdev: Pointer to PCI device
6648 *
6649 * This callback is called when the error recovery driver tells us that
6650 * its OK to resume normal operation. Implementation resembles the
6651 * second-half of the igb_resume routine.
6652 */
6653static void igb_io_resume(struct pci_dev *pdev)
6654{
6655 struct net_device *netdev = pci_get_drvdata(pdev);
6656 struct igb_adapter *adapter = netdev_priv(netdev);
6657
9d5c8243
AK
6658 if (netif_running(netdev)) {
6659 if (igb_up(adapter)) {
6660 dev_err(&pdev->dev, "igb_up failed after reset\n");
6661 return;
6662 }
6663 }
6664
6665 netif_device_attach(netdev);
6666
6667 /* let the f/w know that the h/w is now under the control of the
6668 * driver. */
6669 igb_get_hw_control(adapter);
9d5c8243
AK
6670}
6671
26ad9178
AD
6672static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6673 u8 qsel)
6674{
6675 u32 rar_low, rar_high;
6676 struct e1000_hw *hw = &adapter->hw;
6677
6678 /* HW expects these in little endian so we reverse the byte order
6679 * from network order (big endian) to little endian
6680 */
6681 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6682 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6683 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6684
6685 /* Indicate to hardware the Address is Valid. */
6686 rar_high |= E1000_RAH_AV;
6687
6688 if (hw->mac.type == e1000_82575)
6689 rar_high |= E1000_RAH_POOL_1 * qsel;
6690 else
6691 rar_high |= E1000_RAH_POOL_1 << qsel;
6692
6693 wr32(E1000_RAL(index), rar_low);
6694 wrfl();
6695 wr32(E1000_RAH(index), rar_high);
6696 wrfl();
6697}
6698
4ae196df
AD
6699static int igb_set_vf_mac(struct igb_adapter *adapter,
6700 int vf, unsigned char *mac_addr)
6701{
6702 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6703 /* VF MAC addresses start at end of receive addresses and moves
6704 * torwards the first, as a result a collision should not be possible */
6705 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6706
37680117 6707 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6708
26ad9178 6709 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6710
6711 return 0;
6712}
6713
8151d294
WM
6714static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6715{
6716 struct igb_adapter *adapter = netdev_priv(netdev);
6717 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6718 return -EINVAL;
6719 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6720 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6721 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6722 " change effective.");
6723 if (test_bit(__IGB_DOWN, &adapter->state)) {
6724 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6725 " but the PF device is not up.\n");
6726 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6727 " attempting to use the VF device.\n");
6728 }
6729 return igb_set_vf_mac(adapter, vf, mac);
6730}
6731
17dc566c
LL
6732static int igb_link_mbps(int internal_link_speed)
6733{
6734 switch (internal_link_speed) {
6735 case SPEED_100:
6736 return 100;
6737 case SPEED_1000:
6738 return 1000;
6739 default:
6740 return 0;
6741 }
6742}
6743
6744static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6745 int link_speed)
6746{
6747 int rf_dec, rf_int;
6748 u32 bcnrc_val;
6749
6750 if (tx_rate != 0) {
6751 /* Calculate the rate factor values to set */
6752 rf_int = link_speed / tx_rate;
6753 rf_dec = (link_speed - (rf_int * tx_rate));
6754 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6755
6756 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6757 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6758 E1000_RTTBCNRC_RF_INT_MASK);
6759 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6760 } else {
6761 bcnrc_val = 0;
6762 }
6763
6764 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6765 wr32(E1000_RTTBCNRC, bcnrc_val);
6766}
6767
6768static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6769{
6770 int actual_link_speed, i;
6771 bool reset_rate = false;
6772
6773 /* VF TX rate limit was not set or not supported */
6774 if ((adapter->vf_rate_link_speed == 0) ||
6775 (adapter->hw.mac.type != e1000_82576))
6776 return;
6777
6778 actual_link_speed = igb_link_mbps(adapter->link_speed);
6779 if (actual_link_speed != adapter->vf_rate_link_speed) {
6780 reset_rate = true;
6781 adapter->vf_rate_link_speed = 0;
6782 dev_info(&adapter->pdev->dev,
6783 "Link speed has been changed. VF Transmit "
6784 "rate is disabled\n");
6785 }
6786
6787 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6788 if (reset_rate)
6789 adapter->vf_data[i].tx_rate = 0;
6790
6791 igb_set_vf_rate_limit(&adapter->hw, i,
6792 adapter->vf_data[i].tx_rate,
6793 actual_link_speed);
6794 }
6795}
6796
8151d294
WM
6797static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6798{
17dc566c
LL
6799 struct igb_adapter *adapter = netdev_priv(netdev);
6800 struct e1000_hw *hw = &adapter->hw;
6801 int actual_link_speed;
6802
6803 if (hw->mac.type != e1000_82576)
6804 return -EOPNOTSUPP;
6805
6806 actual_link_speed = igb_link_mbps(adapter->link_speed);
6807 if ((vf >= adapter->vfs_allocated_count) ||
6808 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6809 (tx_rate < 0) || (tx_rate > actual_link_speed))
6810 return -EINVAL;
6811
6812 adapter->vf_rate_link_speed = actual_link_speed;
6813 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6814 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6815
6816 return 0;
8151d294
WM
6817}
6818
6819static int igb_ndo_get_vf_config(struct net_device *netdev,
6820 int vf, struct ifla_vf_info *ivi)
6821{
6822 struct igb_adapter *adapter = netdev_priv(netdev);
6823 if (vf >= adapter->vfs_allocated_count)
6824 return -EINVAL;
6825 ivi->vf = vf;
6826 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 6827 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
6828 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6829 ivi->qos = adapter->vf_data[vf].pf_qos;
6830 return 0;
6831}
6832
4ae196df
AD
6833static void igb_vmm_control(struct igb_adapter *adapter)
6834{
6835 struct e1000_hw *hw = &adapter->hw;
10d8e907 6836 u32 reg;
4ae196df 6837
52a1dd4d
AD
6838 switch (hw->mac.type) {
6839 case e1000_82575:
6840 default:
6841 /* replication is not supported for 82575 */
4ae196df 6842 return;
52a1dd4d
AD
6843 case e1000_82576:
6844 /* notify HW that the MAC is adding vlan tags */
6845 reg = rd32(E1000_DTXCTL);
6846 reg |= E1000_DTXCTL_VLAN_ADDED;
6847 wr32(E1000_DTXCTL, reg);
6848 case e1000_82580:
6849 /* enable replication vlan tag stripping */
6850 reg = rd32(E1000_RPLOLR);
6851 reg |= E1000_RPLOLR_STRVLAN;
6852 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6853 case e1000_i350:
6854 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6855 break;
6856 }
10d8e907 6857
d4960307
AD
6858 if (adapter->vfs_allocated_count) {
6859 igb_vmdq_set_loopback_pf(hw, true);
6860 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
6861 igb_vmdq_set_anti_spoofing_pf(hw, true,
6862 adapter->vfs_allocated_count);
d4960307
AD
6863 } else {
6864 igb_vmdq_set_loopback_pf(hw, false);
6865 igb_vmdq_set_replication_pf(hw, false);
6866 }
4ae196df
AD
6867}
6868
9d5c8243 6869/* igb_main.c */