igb: Increment driver version
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
9d5c8243
AK
34#include <linux/ipv6.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37#include <linux/mii.h>
38#include <linux/ethtool.h>
39#include <linux/if_vlan.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/interrupt.h>
43#include <linux/if_ether.h>
fe4506b6
JC
44#ifdef CONFIG_DCA
45#include <linux/dca.h>
46#endif
9d5c8243
AK
47#include "igb.h"
48
0024fd00 49#define DRV_VERSION "1.2.45-k2"
9d5c8243
AK
50char igb_driver_name[] = "igb";
51char igb_driver_version[] = DRV_VERSION;
52static const char igb_driver_string[] =
53 "Intel(R) Gigabit Ethernet Network Driver";
54static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation.";
55
56
57static const struct e1000_info *igb_info_tbl[] = {
58 [board_82575] = &e1000_82575_info,
59};
60
61static struct pci_device_id igb_pci_tbl[] = {
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
65 /* required last entry */
66 {0, }
67};
68
69MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
70
71void igb_reset(struct igb_adapter *);
72static int igb_setup_all_tx_resources(struct igb_adapter *);
73static int igb_setup_all_rx_resources(struct igb_adapter *);
74static void igb_free_all_tx_resources(struct igb_adapter *);
75static void igb_free_all_rx_resources(struct igb_adapter *);
3b644cf6
MW
76static void igb_free_tx_resources(struct igb_ring *);
77static void igb_free_rx_resources(struct igb_ring *);
9d5c8243
AK
78void igb_update_stats(struct igb_adapter *);
79static int igb_probe(struct pci_dev *, const struct pci_device_id *);
80static void __devexit igb_remove(struct pci_dev *pdev);
81static int igb_sw_init(struct igb_adapter *);
82static int igb_open(struct net_device *);
83static int igb_close(struct net_device *);
84static void igb_configure_tx(struct igb_adapter *);
85static void igb_configure_rx(struct igb_adapter *);
86static void igb_setup_rctl(struct igb_adapter *);
87static void igb_clean_all_tx_rings(struct igb_adapter *);
88static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
89static void igb_clean_tx_ring(struct igb_ring *);
90static void igb_clean_rx_ring(struct igb_ring *);
9d5c8243
AK
91static void igb_set_multi(struct net_device *);
92static void igb_update_phy_info(unsigned long);
93static void igb_watchdog(unsigned long);
94static void igb_watchdog_task(struct work_struct *);
95static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
96 struct igb_ring *);
97static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
98static struct net_device_stats *igb_get_stats(struct net_device *);
99static int igb_change_mtu(struct net_device *, int);
100static int igb_set_mac(struct net_device *, void *);
101static irqreturn_t igb_intr(int irq, void *);
102static irqreturn_t igb_intr_msi(int irq, void *);
103static irqreturn_t igb_msix_other(int irq, void *);
104static irqreturn_t igb_msix_rx(int irq, void *);
105static irqreturn_t igb_msix_tx(int irq, void *);
106static int igb_clean_rx_ring_msix(struct napi_struct *, int);
fe4506b6
JC
107#ifdef CONFIG_DCA
108static void igb_update_rx_dca(struct igb_ring *);
109static void igb_update_tx_dca(struct igb_ring *);
110static void igb_setup_dca(struct igb_adapter *);
111#endif /* CONFIG_DCA */
3b644cf6 112static bool igb_clean_tx_irq(struct igb_ring *);
661086df 113static int igb_poll(struct napi_struct *, int);
3b644cf6
MW
114static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
115static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
9d5c8243
AK
116static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
117static void igb_tx_timeout(struct net_device *);
118static void igb_reset_task(struct work_struct *);
119static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
120static void igb_vlan_rx_add_vid(struct net_device *, u16);
121static void igb_vlan_rx_kill_vid(struct net_device *, u16);
122static void igb_restore_vlan(struct igb_adapter *);
123
124static int igb_suspend(struct pci_dev *, pm_message_t);
125#ifdef CONFIG_PM
126static int igb_resume(struct pci_dev *);
127#endif
128static void igb_shutdown(struct pci_dev *);
fe4506b6
JC
129#ifdef CONFIG_DCA
130static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
131static struct notifier_block dca_notifier = {
132 .notifier_call = igb_notify_dca,
133 .next = NULL,
134 .priority = 0
135};
136#endif
9d5c8243
AK
137
138#ifdef CONFIG_NET_POLL_CONTROLLER
139/* for netdump / net console */
140static void igb_netpoll(struct net_device *);
141#endif
142
143static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
144 pci_channel_state_t);
145static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
146static void igb_io_resume(struct pci_dev *);
147
148static struct pci_error_handlers igb_err_handler = {
149 .error_detected = igb_io_error_detected,
150 .slot_reset = igb_io_slot_reset,
151 .resume = igb_io_resume,
152};
153
154
155static struct pci_driver igb_driver = {
156 .name = igb_driver_name,
157 .id_table = igb_pci_tbl,
158 .probe = igb_probe,
159 .remove = __devexit_p(igb_remove),
160#ifdef CONFIG_PM
161 /* Power Managment Hooks */
162 .suspend = igb_suspend,
163 .resume = igb_resume,
164#endif
165 .shutdown = igb_shutdown,
166 .err_handler = &igb_err_handler
167};
168
169MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
170MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
171MODULE_LICENSE("GPL");
172MODULE_VERSION(DRV_VERSION);
173
174#ifdef DEBUG
175/**
176 * igb_get_hw_dev_name - return device name string
177 * used by hardware layer to print debugging information
178 **/
179char *igb_get_hw_dev_name(struct e1000_hw *hw)
180{
181 struct igb_adapter *adapter = hw->back;
182 return adapter->netdev->name;
183}
184#endif
185
186/**
187 * igb_init_module - Driver Registration Routine
188 *
189 * igb_init_module is the first routine called when the driver is
190 * loaded. All it does is register with the PCI subsystem.
191 **/
192static int __init igb_init_module(void)
193{
194 int ret;
195 printk(KERN_INFO "%s - version %s\n",
196 igb_driver_string, igb_driver_version);
197
198 printk(KERN_INFO "%s\n", igb_copyright);
199
200 ret = pci_register_driver(&igb_driver);
fe4506b6
JC
201#ifdef CONFIG_DCA
202 dca_register_notify(&dca_notifier);
203#endif
9d5c8243
AK
204 return ret;
205}
206
207module_init(igb_init_module);
208
209/**
210 * igb_exit_module - Driver Exit Cleanup Routine
211 *
212 * igb_exit_module is called just before the driver is removed
213 * from memory.
214 **/
215static void __exit igb_exit_module(void)
216{
fe4506b6
JC
217#ifdef CONFIG_DCA
218 dca_unregister_notify(&dca_notifier);
219#endif
9d5c8243
AK
220 pci_unregister_driver(&igb_driver);
221}
222
223module_exit(igb_exit_module);
224
225/**
226 * igb_alloc_queues - Allocate memory for all rings
227 * @adapter: board private structure to initialize
228 *
229 * We allocate one ring per queue at run-time since we don't know the
230 * number of queues at compile-time.
231 **/
232static int igb_alloc_queues(struct igb_adapter *adapter)
233{
234 int i;
235
236 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
237 sizeof(struct igb_ring), GFP_KERNEL);
238 if (!adapter->tx_ring)
239 return -ENOMEM;
240
241 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
242 sizeof(struct igb_ring), GFP_KERNEL);
243 if (!adapter->rx_ring) {
244 kfree(adapter->tx_ring);
245 return -ENOMEM;
246 }
247
661086df
PWJ
248 for (i = 0; i < adapter->num_tx_queues; i++) {
249 struct igb_ring *ring = &(adapter->tx_ring[i]);
250 ring->adapter = adapter;
251 ring->queue_index = i;
252 }
9d5c8243
AK
253 for (i = 0; i < adapter->num_rx_queues; i++) {
254 struct igb_ring *ring = &(adapter->rx_ring[i]);
255 ring->adapter = adapter;
844290e5 256 ring->queue_index = i;
9d5c8243
AK
257 ring->itr_register = E1000_ITR;
258
844290e5 259 /* set a default napi handler for each rx_ring */
661086df 260 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
9d5c8243
AK
261 }
262 return 0;
263}
264
265#define IGB_N0_QUEUE -1
266static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
267 int tx_queue, int msix_vector)
268{
269 u32 msixbm = 0;
270 struct e1000_hw *hw = &adapter->hw;
271 /* The 82575 assigns vectors using a bitmask, which matches the
272 bitmask for the EICR/EIMS/EIMC registers. To assign one
273 or more queues to a vector, we write the appropriate bits
274 into the MSIXBM register for that vector. */
275 if (rx_queue > IGB_N0_QUEUE) {
276 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
277 adapter->rx_ring[rx_queue].eims_value = msixbm;
278 }
279 if (tx_queue > IGB_N0_QUEUE) {
280 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
281 adapter->tx_ring[tx_queue].eims_value =
282 E1000_EICR_TX_QUEUE0 << tx_queue;
283 }
284 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
285}
286
287/**
288 * igb_configure_msix - Configure MSI-X hardware
289 *
290 * igb_configure_msix sets up the hardware to properly
291 * generate MSI-X interrupts.
292 **/
293static void igb_configure_msix(struct igb_adapter *adapter)
294{
295 u32 tmp;
296 int i, vector = 0;
297 struct e1000_hw *hw = &adapter->hw;
298
299 adapter->eims_enable_mask = 0;
300
301 for (i = 0; i < adapter->num_tx_queues; i++) {
302 struct igb_ring *tx_ring = &adapter->tx_ring[i];
303 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
304 adapter->eims_enable_mask |= tx_ring->eims_value;
305 if (tx_ring->itr_val)
306 writel(1000000000 / (tx_ring->itr_val * 256),
307 hw->hw_addr + tx_ring->itr_register);
308 else
309 writel(1, hw->hw_addr + tx_ring->itr_register);
310 }
311
312 for (i = 0; i < adapter->num_rx_queues; i++) {
313 struct igb_ring *rx_ring = &adapter->rx_ring[i];
314 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
315 adapter->eims_enable_mask |= rx_ring->eims_value;
316 if (rx_ring->itr_val)
317 writel(1000000000 / (rx_ring->itr_val * 256),
318 hw->hw_addr + rx_ring->itr_register);
319 else
320 writel(1, hw->hw_addr + rx_ring->itr_register);
321 }
322
323
324 /* set vector for other causes, i.e. link changes */
325 array_wr32(E1000_MSIXBM(0), vector++,
326 E1000_EIMS_OTHER);
327
9d5c8243
AK
328 tmp = rd32(E1000_CTRL_EXT);
329 /* enable MSI-X PBA support*/
330 tmp |= E1000_CTRL_EXT_PBA_CLR;
331
332 /* Auto-Mask interrupts upon ICR read. */
333 tmp |= E1000_CTRL_EXT_EIAME;
334 tmp |= E1000_CTRL_EXT_IRCA;
335
336 wr32(E1000_CTRL_EXT, tmp);
337 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
844290e5 338 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243
AK
339
340 wrfl();
341}
342
343/**
344 * igb_request_msix - Initialize MSI-X interrupts
345 *
346 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
347 * kernel.
348 **/
349static int igb_request_msix(struct igb_adapter *adapter)
350{
351 struct net_device *netdev = adapter->netdev;
352 int i, err = 0, vector = 0;
353
354 vector = 0;
355
356 for (i = 0; i < adapter->num_tx_queues; i++) {
357 struct igb_ring *ring = &(adapter->tx_ring[i]);
358 sprintf(ring->name, "%s-tx%d", netdev->name, i);
359 err = request_irq(adapter->msix_entries[vector].vector,
360 &igb_msix_tx, 0, ring->name,
361 &(adapter->tx_ring[i]));
362 if (err)
363 goto out;
364 ring->itr_register = E1000_EITR(0) + (vector << 2);
365 ring->itr_val = adapter->itr;
366 vector++;
367 }
368 for (i = 0; i < adapter->num_rx_queues; i++) {
369 struct igb_ring *ring = &(adapter->rx_ring[i]);
370 if (strlen(netdev->name) < (IFNAMSIZ - 5))
371 sprintf(ring->name, "%s-rx%d", netdev->name, i);
372 else
373 memcpy(ring->name, netdev->name, IFNAMSIZ);
374 err = request_irq(adapter->msix_entries[vector].vector,
375 &igb_msix_rx, 0, ring->name,
376 &(adapter->rx_ring[i]));
377 if (err)
378 goto out;
379 ring->itr_register = E1000_EITR(0) + (vector << 2);
380 ring->itr_val = adapter->itr;
844290e5
PW
381 /* overwrite the poll routine for MSIX, we've already done
382 * netif_napi_add */
383 ring->napi.poll = &igb_clean_rx_ring_msix;
9d5c8243
AK
384 vector++;
385 }
386
387 err = request_irq(adapter->msix_entries[vector].vector,
388 &igb_msix_other, 0, netdev->name, netdev);
389 if (err)
390 goto out;
391
9d5c8243
AK
392 igb_configure_msix(adapter);
393 return 0;
394out:
395 return err;
396}
397
398static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
399{
400 if (adapter->msix_entries) {
401 pci_disable_msix(adapter->pdev);
402 kfree(adapter->msix_entries);
403 adapter->msix_entries = NULL;
404 } else if (adapter->msi_enabled)
405 pci_disable_msi(adapter->pdev);
406 return;
407}
408
409
410/**
411 * igb_set_interrupt_capability - set MSI or MSI-X if supported
412 *
413 * Attempt to configure interrupts using the best available
414 * capabilities of the hardware and kernel.
415 **/
416static void igb_set_interrupt_capability(struct igb_adapter *adapter)
417{
418 int err;
419 int numvecs, i;
420
421 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
422 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
423 GFP_KERNEL);
424 if (!adapter->msix_entries)
425 goto msi_only;
426
427 for (i = 0; i < numvecs; i++)
428 adapter->msix_entries[i].entry = i;
429
430 err = pci_enable_msix(adapter->pdev,
431 adapter->msix_entries,
432 numvecs);
433 if (err == 0)
434 return;
435
436 igb_reset_interrupt_capability(adapter);
437
438 /* If we can't do MSI-X, try MSI */
439msi_only:
440 adapter->num_rx_queues = 1;
661086df 441 adapter->num_tx_queues = 1;
9d5c8243
AK
442 if (!pci_enable_msi(adapter->pdev))
443 adapter->msi_enabled = 1;
661086df
PWJ
444
445#ifdef CONFIG_NETDEVICES_MULTIQUEUE
446 /* Notify the stack of the (possibly) reduced Tx Queue count. */
447 adapter->netdev->egress_subqueue_count = adapter->num_tx_queues;
448#endif
9d5c8243
AK
449 return;
450}
451
452/**
453 * igb_request_irq - initialize interrupts
454 *
455 * Attempts to configure interrupts using the best available
456 * capabilities of the hardware and kernel.
457 **/
458static int igb_request_irq(struct igb_adapter *adapter)
459{
460 struct net_device *netdev = adapter->netdev;
461 struct e1000_hw *hw = &adapter->hw;
462 int err = 0;
463
464 if (adapter->msix_entries) {
465 err = igb_request_msix(adapter);
844290e5 466 if (!err)
9d5c8243 467 goto request_done;
9d5c8243
AK
468 /* fall back to MSI */
469 igb_reset_interrupt_capability(adapter);
470 if (!pci_enable_msi(adapter->pdev))
471 adapter->msi_enabled = 1;
472 igb_free_all_tx_resources(adapter);
473 igb_free_all_rx_resources(adapter);
474 adapter->num_rx_queues = 1;
475 igb_alloc_queues(adapter);
844290e5
PW
476 } else {
477 wr32(E1000_MSIXBM(0), (E1000_EICR_RX_QUEUE0 |
478 E1000_EIMS_OTHER));
9d5c8243 479 }
844290e5 480
9d5c8243
AK
481 if (adapter->msi_enabled) {
482 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
483 netdev->name, netdev);
484 if (!err)
485 goto request_done;
486 /* fall back to legacy interrupts */
487 igb_reset_interrupt_capability(adapter);
488 adapter->msi_enabled = 0;
489 }
490
491 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
492 netdev->name, netdev);
493
6cb5e577 494 if (err)
9d5c8243
AK
495 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
496 err);
9d5c8243
AK
497
498request_done:
499 return err;
500}
501
502static void igb_free_irq(struct igb_adapter *adapter)
503{
504 struct net_device *netdev = adapter->netdev;
505
506 if (adapter->msix_entries) {
507 int vector = 0, i;
508
509 for (i = 0; i < adapter->num_tx_queues; i++)
510 free_irq(adapter->msix_entries[vector++].vector,
511 &(adapter->tx_ring[i]));
512 for (i = 0; i < adapter->num_rx_queues; i++)
513 free_irq(adapter->msix_entries[vector++].vector,
514 &(adapter->rx_ring[i]));
515
516 free_irq(adapter->msix_entries[vector++].vector, netdev);
517 return;
518 }
519
520 free_irq(adapter->pdev->irq, netdev);
521}
522
523/**
524 * igb_irq_disable - Mask off interrupt generation on the NIC
525 * @adapter: board private structure
526 **/
527static void igb_irq_disable(struct igb_adapter *adapter)
528{
529 struct e1000_hw *hw = &adapter->hw;
530
531 if (adapter->msix_entries) {
844290e5 532 wr32(E1000_EIAM, 0);
9d5c8243
AK
533 wr32(E1000_EIMC, ~0);
534 wr32(E1000_EIAC, 0);
535 }
844290e5
PW
536
537 wr32(E1000_IAM, 0);
9d5c8243
AK
538 wr32(E1000_IMC, ~0);
539 wrfl();
540 synchronize_irq(adapter->pdev->irq);
541}
542
543/**
544 * igb_irq_enable - Enable default interrupt generation settings
545 * @adapter: board private structure
546 **/
547static void igb_irq_enable(struct igb_adapter *adapter)
548{
549 struct e1000_hw *hw = &adapter->hw;
550
551 if (adapter->msix_entries) {
844290e5
PW
552 wr32(E1000_EIAC, adapter->eims_enable_mask);
553 wr32(E1000_EIAM, adapter->eims_enable_mask);
554 wr32(E1000_EIMS, adapter->eims_enable_mask);
9d5c8243 555 wr32(E1000_IMS, E1000_IMS_LSC);
844290e5
PW
556 } else {
557 wr32(E1000_IMS, IMS_ENABLE_MASK);
558 wr32(E1000_IAM, IMS_ENABLE_MASK);
559 }
9d5c8243
AK
560}
561
562static void igb_update_mng_vlan(struct igb_adapter *adapter)
563{
564 struct net_device *netdev = adapter->netdev;
565 u16 vid = adapter->hw.mng_cookie.vlan_id;
566 u16 old_vid = adapter->mng_vlan_id;
567 if (adapter->vlgrp) {
568 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
569 if (adapter->hw.mng_cookie.status &
570 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
571 igb_vlan_rx_add_vid(netdev, vid);
572 adapter->mng_vlan_id = vid;
573 } else
574 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
575
576 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
577 (vid != old_vid) &&
578 !vlan_group_get_device(adapter->vlgrp, old_vid))
579 igb_vlan_rx_kill_vid(netdev, old_vid);
580 } else
581 adapter->mng_vlan_id = vid;
582 }
583}
584
585/**
586 * igb_release_hw_control - release control of the h/w to f/w
587 * @adapter: address of board private structure
588 *
589 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
590 * For ASF and Pass Through versions of f/w this means that the
591 * driver is no longer loaded.
592 *
593 **/
594static void igb_release_hw_control(struct igb_adapter *adapter)
595{
596 struct e1000_hw *hw = &adapter->hw;
597 u32 ctrl_ext;
598
599 /* Let firmware take over control of h/w */
600 ctrl_ext = rd32(E1000_CTRL_EXT);
601 wr32(E1000_CTRL_EXT,
602 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
603}
604
605
606/**
607 * igb_get_hw_control - get control of the h/w from f/w
608 * @adapter: address of board private structure
609 *
610 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
611 * For ASF and Pass Through versions of f/w this means that
612 * the driver is loaded.
613 *
614 **/
615static void igb_get_hw_control(struct igb_adapter *adapter)
616{
617 struct e1000_hw *hw = &adapter->hw;
618 u32 ctrl_ext;
619
620 /* Let firmware know the driver has taken over */
621 ctrl_ext = rd32(E1000_CTRL_EXT);
622 wr32(E1000_CTRL_EXT,
623 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
624}
625
626static void igb_init_manageability(struct igb_adapter *adapter)
627{
628 struct e1000_hw *hw = &adapter->hw;
629
630 if (adapter->en_mng_pt) {
631 u32 manc2h = rd32(E1000_MANC2H);
632 u32 manc = rd32(E1000_MANC);
633
9d5c8243
AK
634 /* enable receiving management packets to the host */
635 /* this will probably generate destination unreachable messages
636 * from the host OS, but the packets will be handled on SMBUS */
637 manc |= E1000_MANC_EN_MNG2HOST;
638#define E1000_MNG2HOST_PORT_623 (1 << 5)
639#define E1000_MNG2HOST_PORT_664 (1 << 6)
640 manc2h |= E1000_MNG2HOST_PORT_623;
641 manc2h |= E1000_MNG2HOST_PORT_664;
642 wr32(E1000_MANC2H, manc2h);
643
644 wr32(E1000_MANC, manc);
645 }
646}
647
9d5c8243
AK
648/**
649 * igb_configure - configure the hardware for RX and TX
650 * @adapter: private board structure
651 **/
652static void igb_configure(struct igb_adapter *adapter)
653{
654 struct net_device *netdev = adapter->netdev;
655 int i;
656
657 igb_get_hw_control(adapter);
658 igb_set_multi(netdev);
659
660 igb_restore_vlan(adapter);
661 igb_init_manageability(adapter);
662
663 igb_configure_tx(adapter);
664 igb_setup_rctl(adapter);
665 igb_configure_rx(adapter);
662d7205
AD
666
667 igb_rx_fifo_flush_82575(&adapter->hw);
668
9d5c8243
AK
669 /* call IGB_DESC_UNUSED which always leaves
670 * at least 1 descriptor unused to make sure
671 * next_to_use != next_to_clean */
672 for (i = 0; i < adapter->num_rx_queues; i++) {
673 struct igb_ring *ring = &adapter->rx_ring[i];
3b644cf6 674 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
9d5c8243
AK
675 }
676
677
678 adapter->tx_queue_len = netdev->tx_queue_len;
679}
680
681
682/**
683 * igb_up - Open the interface and prepare it to handle traffic
684 * @adapter: board private structure
685 **/
686
687int igb_up(struct igb_adapter *adapter)
688{
689 struct e1000_hw *hw = &adapter->hw;
690 int i;
691
692 /* hardware has been reset, we need to reload some things */
693 igb_configure(adapter);
694
695 clear_bit(__IGB_DOWN, &adapter->state);
696
844290e5
PW
697 for (i = 0; i < adapter->num_rx_queues; i++)
698 napi_enable(&adapter->rx_ring[i].napi);
699 if (adapter->msix_entries)
9d5c8243 700 igb_configure_msix(adapter);
9d5c8243
AK
701
702 /* Clear any pending interrupts. */
703 rd32(E1000_ICR);
704 igb_irq_enable(adapter);
705
706 /* Fire a link change interrupt to start the watchdog. */
707 wr32(E1000_ICS, E1000_ICS_LSC);
708 return 0;
709}
710
711void igb_down(struct igb_adapter *adapter)
712{
713 struct e1000_hw *hw = &adapter->hw;
714 struct net_device *netdev = adapter->netdev;
715 u32 tctl, rctl;
716 int i;
717
718 /* signal that we're down so the interrupt handler does not
719 * reschedule our watchdog timer */
720 set_bit(__IGB_DOWN, &adapter->state);
721
722 /* disable receives in the hardware */
723 rctl = rd32(E1000_RCTL);
724 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
725 /* flush and sleep below */
726
727 netif_stop_queue(netdev);
661086df
PWJ
728#ifdef CONFIG_NETDEVICES_MULTIQUEUE
729 for (i = 0; i < adapter->num_tx_queues; i++)
730 netif_stop_subqueue(netdev, i);
731#endif
9d5c8243
AK
732
733 /* disable transmits in the hardware */
734 tctl = rd32(E1000_TCTL);
735 tctl &= ~E1000_TCTL_EN;
736 wr32(E1000_TCTL, tctl);
737 /* flush both disables and wait for them to finish */
738 wrfl();
739 msleep(10);
740
844290e5
PW
741 for (i = 0; i < adapter->num_rx_queues; i++)
742 napi_disable(&adapter->rx_ring[i].napi);
9d5c8243 743
9d5c8243
AK
744 igb_irq_disable(adapter);
745
746 del_timer_sync(&adapter->watchdog_timer);
747 del_timer_sync(&adapter->phy_info_timer);
748
749 netdev->tx_queue_len = adapter->tx_queue_len;
750 netif_carrier_off(netdev);
751 adapter->link_speed = 0;
752 adapter->link_duplex = 0;
753
3023682e
JK
754 if (!pci_channel_offline(adapter->pdev))
755 igb_reset(adapter);
9d5c8243
AK
756 igb_clean_all_tx_rings(adapter);
757 igb_clean_all_rx_rings(adapter);
758}
759
760void igb_reinit_locked(struct igb_adapter *adapter)
761{
762 WARN_ON(in_interrupt());
763 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
764 msleep(1);
765 igb_down(adapter);
766 igb_up(adapter);
767 clear_bit(__IGB_RESETTING, &adapter->state);
768}
769
770void igb_reset(struct igb_adapter *adapter)
771{
772 struct e1000_hw *hw = &adapter->hw;
773 struct e1000_fc_info *fc = &adapter->hw.fc;
774 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
775 u16 hwm;
776
777 /* Repartition Pba for greater than 9k mtu
778 * To take effect CTRL.RST is required.
779 */
780 pba = E1000_PBA_34K;
781
782 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
783 /* adjust PBA for jumbo frames */
784 wr32(E1000_PBA, pba);
785
786 /* To maintain wire speed transmits, the Tx FIFO should be
787 * large enough to accommodate two full transmit packets,
788 * rounded up to the next 1KB and expressed in KB. Likewise,
789 * the Rx FIFO should be large enough to accommodate at least
790 * one full receive packet and is similarly rounded up and
791 * expressed in KB. */
792 pba = rd32(E1000_PBA);
793 /* upper 16 bits has Tx packet buffer allocation size in KB */
794 tx_space = pba >> 16;
795 /* lower 16 bits has Rx packet buffer allocation size in KB */
796 pba &= 0xffff;
797 /* the tx fifo also stores 16 bytes of information about the tx
798 * but don't include ethernet FCS because hardware appends it */
799 min_tx_space = (adapter->max_frame_size +
800 sizeof(struct e1000_tx_desc) -
801 ETH_FCS_LEN) * 2;
802 min_tx_space = ALIGN(min_tx_space, 1024);
803 min_tx_space >>= 10;
804 /* software strips receive CRC, so leave room for it */
805 min_rx_space = adapter->max_frame_size;
806 min_rx_space = ALIGN(min_rx_space, 1024);
807 min_rx_space >>= 10;
808
809 /* If current Tx allocation is less than the min Tx FIFO size,
810 * and the min Tx FIFO size is less than the current Rx FIFO
811 * allocation, take space away from current Rx allocation */
812 if (tx_space < min_tx_space &&
813 ((min_tx_space - tx_space) < pba)) {
814 pba = pba - (min_tx_space - tx_space);
815
816 /* if short on rx space, rx wins and must trump tx
817 * adjustment */
818 if (pba < min_rx_space)
819 pba = min_rx_space;
820 }
821 }
822 wr32(E1000_PBA, pba);
823
824 /* flow control settings */
825 /* The high water mark must be low enough to fit one full frame
826 * (or the size used for early receive) above it in the Rx FIFO.
827 * Set it to the lower of:
828 * - 90% of the Rx FIFO size, or
829 * - the full Rx FIFO size minus one full frame */
830 hwm = min(((pba << 10) * 9 / 10),
831 ((pba << 10) - adapter->max_frame_size));
832
833 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
834 fc->low_water = fc->high_water - 8;
835 fc->pause_time = 0xFFFF;
836 fc->send_xon = 1;
837 fc->type = fc->original_type;
838
839 /* Allow time for pending master requests to run */
840 adapter->hw.mac.ops.reset_hw(&adapter->hw);
841 wr32(E1000_WUC, 0);
842
843 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
844 dev_err(&adapter->pdev->dev, "Hardware Error\n");
845
846 igb_update_mng_vlan(adapter);
847
848 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
849 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
850
851 igb_reset_adaptive(&adapter->hw);
68707acb
BH
852 if (adapter->hw.phy.ops.get_phy_info)
853 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
9d5c8243
AK
854}
855
42bfd33a
TI
856/**
857 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
858 * @pdev: PCI device information struct
859 *
860 * Returns true if an adapter needs ioport resources
861 **/
862static int igb_is_need_ioport(struct pci_dev *pdev)
863{
864 switch (pdev->device) {
865 /* Currently there are no adapters that need ioport resources */
866 default:
867 return false;
868 }
869}
870
9d5c8243
AK
871/**
872 * igb_probe - Device Initialization Routine
873 * @pdev: PCI device information struct
874 * @ent: entry in igb_pci_tbl
875 *
876 * Returns 0 on success, negative on failure
877 *
878 * igb_probe initializes an adapter identified by a pci_dev structure.
879 * The OS initialization, configuring of the adapter private structure,
880 * and a hardware reset occur.
881 **/
882static int __devinit igb_probe(struct pci_dev *pdev,
883 const struct pci_device_id *ent)
884{
885 struct net_device *netdev;
886 struct igb_adapter *adapter;
887 struct e1000_hw *hw;
888 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
889 unsigned long mmio_start, mmio_len;
9d5c8243
AK
890 int i, err, pci_using_dac;
891 u16 eeprom_data = 0;
892 u16 eeprom_apme_mask = IGB_EEPROM_APME;
893 u32 part_num;
42bfd33a 894 int bars, need_ioport;
9d5c8243 895
42bfd33a
TI
896 /* do not allocate ioport bars when not needed */
897 need_ioport = igb_is_need_ioport(pdev);
898 if (need_ioport) {
899 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
900 err = pci_enable_device(pdev);
901 } else {
902 bars = pci_select_bars(pdev, IORESOURCE_MEM);
903 err = pci_enable_device_mem(pdev);
904 }
9d5c8243
AK
905 if (err)
906 return err;
907
908 pci_using_dac = 0;
909 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
910 if (!err) {
911 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
912 if (!err)
913 pci_using_dac = 1;
914 } else {
915 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
916 if (err) {
917 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
918 if (err) {
919 dev_err(&pdev->dev, "No usable DMA "
920 "configuration, aborting\n");
921 goto err_dma;
922 }
923 }
924 }
925
42bfd33a 926 err = pci_request_selected_regions(pdev, bars, igb_driver_name);
9d5c8243
AK
927 if (err)
928 goto err_pci_reg;
929
930 pci_set_master(pdev);
c682fc23 931 pci_save_state(pdev);
9d5c8243
AK
932
933 err = -ENOMEM;
661086df
PWJ
934#ifdef CONFIG_NETDEVICES_MULTIQUEUE
935 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
936#else
9d5c8243 937 netdev = alloc_etherdev(sizeof(struct igb_adapter));
661086df 938#endif /* CONFIG_NETDEVICES_MULTIQUEUE */
9d5c8243
AK
939 if (!netdev)
940 goto err_alloc_etherdev;
941
942 SET_NETDEV_DEV(netdev, &pdev->dev);
943
944 pci_set_drvdata(pdev, netdev);
945 adapter = netdev_priv(netdev);
946 adapter->netdev = netdev;
947 adapter->pdev = pdev;
948 hw = &adapter->hw;
949 hw->back = adapter;
950 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
42bfd33a
TI
951 adapter->bars = bars;
952 adapter->need_ioport = need_ioport;
9d5c8243
AK
953
954 mmio_start = pci_resource_start(pdev, 0);
955 mmio_len = pci_resource_len(pdev, 0);
956
957 err = -EIO;
958 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
959 if (!adapter->hw.hw_addr)
960 goto err_ioremap;
961
962 netdev->open = &igb_open;
963 netdev->stop = &igb_close;
964 netdev->get_stats = &igb_get_stats;
965 netdev->set_multicast_list = &igb_set_multi;
966 netdev->set_mac_address = &igb_set_mac;
967 netdev->change_mtu = &igb_change_mtu;
968 netdev->do_ioctl = &igb_ioctl;
969 igb_set_ethtool_ops(netdev);
970 netdev->tx_timeout = &igb_tx_timeout;
971 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
972 netdev->vlan_rx_register = igb_vlan_rx_register;
973 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
974 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
975#ifdef CONFIG_NET_POLL_CONTROLLER
976 netdev->poll_controller = igb_netpoll;
977#endif
978 netdev->hard_start_xmit = &igb_xmit_frame_adv;
979
980 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
981
982 netdev->mem_start = mmio_start;
983 netdev->mem_end = mmio_start + mmio_len;
984
9d5c8243
AK
985 /* PCI config space info */
986 hw->vendor_id = pdev->vendor;
987 hw->device_id = pdev->device;
988 hw->revision_id = pdev->revision;
989 hw->subsystem_vendor_id = pdev->subsystem_vendor;
990 hw->subsystem_device_id = pdev->subsystem_device;
991
992 /* setup the private structure */
993 hw->back = adapter;
994 /* Copy the default MAC, PHY and NVM function pointers */
995 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
996 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
997 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
998 /* Initialize skew-specific constants */
999 err = ei->get_invariants(hw);
1000 if (err)
1001 goto err_hw_init;
1002
1003 err = igb_sw_init(adapter);
1004 if (err)
1005 goto err_sw_init;
1006
1007 igb_get_bus_info_pcie(hw);
1008
1009 hw->phy.autoneg_wait_to_complete = false;
1010 hw->mac.adaptive_ifs = true;
1011
1012 /* Copper options */
1013 if (hw->phy.media_type == e1000_media_type_copper) {
1014 hw->phy.mdix = AUTO_ALL_MODES;
1015 hw->phy.disable_polarity_correction = false;
1016 hw->phy.ms_type = e1000_ms_hw_default;
1017 }
1018
1019 if (igb_check_reset_block(hw))
1020 dev_info(&pdev->dev,
1021 "PHY reset is blocked due to SOL/IDER session.\n");
1022
1023 netdev->features = NETIF_F_SG |
1024 NETIF_F_HW_CSUM |
1025 NETIF_F_HW_VLAN_TX |
1026 NETIF_F_HW_VLAN_RX |
1027 NETIF_F_HW_VLAN_FILTER;
1028
1029 netdev->features |= NETIF_F_TSO;
9d5c8243 1030 netdev->features |= NETIF_F_TSO6;
48f29ffc
JK
1031
1032 netdev->vlan_features |= NETIF_F_TSO;
1033 netdev->vlan_features |= NETIF_F_TSO6;
1034 netdev->vlan_features |= NETIF_F_HW_CSUM;
1035 netdev->vlan_features |= NETIF_F_SG;
1036
9d5c8243
AK
1037 if (pci_using_dac)
1038 netdev->features |= NETIF_F_HIGHDMA;
1039
661086df
PWJ
1040#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1041 netdev->features |= NETIF_F_MULTI_QUEUE;
1042#endif
1043
9d5c8243
AK
1044 netdev->features |= NETIF_F_LLTX;
1045 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1046
1047 /* before reading the NVM, reset the controller to put the device in a
1048 * known good starting state */
1049 hw->mac.ops.reset_hw(hw);
1050
1051 /* make sure the NVM is good */
1052 if (igb_validate_nvm_checksum(hw) < 0) {
1053 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1054 err = -EIO;
1055 goto err_eeprom;
1056 }
1057
1058 /* copy the MAC address out of the NVM */
1059 if (hw->mac.ops.read_mac_addr(hw))
1060 dev_err(&pdev->dev, "NVM Read Error\n");
1061
1062 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1063 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1064
1065 if (!is_valid_ether_addr(netdev->perm_addr)) {
1066 dev_err(&pdev->dev, "Invalid MAC Address\n");
1067 err = -EIO;
1068 goto err_eeprom;
1069 }
1070
1071 init_timer(&adapter->watchdog_timer);
1072 adapter->watchdog_timer.function = &igb_watchdog;
1073 adapter->watchdog_timer.data = (unsigned long) adapter;
1074
1075 init_timer(&adapter->phy_info_timer);
1076 adapter->phy_info_timer.function = &igb_update_phy_info;
1077 adapter->phy_info_timer.data = (unsigned long) adapter;
1078
1079 INIT_WORK(&adapter->reset_task, igb_reset_task);
1080 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1081
1082 /* Initialize link & ring properties that are user-changeable */
1083 adapter->tx_ring->count = 256;
1084 for (i = 0; i < adapter->num_tx_queues; i++)
1085 adapter->tx_ring[i].count = adapter->tx_ring->count;
1086 adapter->rx_ring->count = 256;
1087 for (i = 0; i < adapter->num_rx_queues; i++)
1088 adapter->rx_ring[i].count = adapter->rx_ring->count;
1089
1090 adapter->fc_autoneg = true;
1091 hw->mac.autoneg = true;
1092 hw->phy.autoneg_advertised = 0x2f;
1093
1094 hw->fc.original_type = e1000_fc_default;
1095 hw->fc.type = e1000_fc_default;
1096
1097 adapter->itr_setting = 3;
1098 adapter->itr = IGB_START_ITR;
1099
1100 igb_validate_mdi_setting(hw);
1101
1102 adapter->rx_csum = 1;
1103
1104 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1105 * enable the ACPI Magic Packet filter
1106 */
1107
1108 if (hw->bus.func == 0 ||
1109 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1110 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1111 &eeprom_data);
1112
1113 if (eeprom_data & eeprom_apme_mask)
1114 adapter->eeprom_wol |= E1000_WUFC_MAG;
1115
1116 /* now that we have the eeprom settings, apply the special cases where
1117 * the eeprom may be wrong or the board simply won't support wake on
1118 * lan on a particular port */
1119 switch (pdev->device) {
1120 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1121 adapter->eeprom_wol = 0;
1122 break;
1123 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1124 /* Wake events only supported on port A for dual fiber
1125 * regardless of eeprom setting */
1126 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1127 adapter->eeprom_wol = 0;
1128 break;
1129 }
1130
1131 /* initialize the wol settings based on the eeprom settings */
1132 adapter->wol = adapter->eeprom_wol;
1133
1134 /* reset the hardware with the new settings */
1135 igb_reset(adapter);
1136
1137 /* let the f/w know that the h/w is now under the control of the
1138 * driver. */
1139 igb_get_hw_control(adapter);
1140
1141 /* tell the stack to leave us alone until igb_open() is called */
1142 netif_carrier_off(netdev);
1143 netif_stop_queue(netdev);
661086df
PWJ
1144#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1145 for (i = 0; i < adapter->num_tx_queues; i++)
1146 netif_stop_subqueue(netdev, i);
1147#endif
9d5c8243
AK
1148
1149 strcpy(netdev->name, "eth%d");
1150 err = register_netdev(netdev);
1151 if (err)
1152 goto err_register;
1153
fe4506b6
JC
1154#ifdef CONFIG_DCA
1155 if (dca_add_requester(&pdev->dev) == 0) {
1156 adapter->dca_enabled = true;
1157 dev_info(&pdev->dev, "DCA enabled\n");
1158 /* Always use CB2 mode, difference is masked
1159 * in the CB driver. */
1160 wr32(E1000_DCA_CTRL, 2);
1161 igb_setup_dca(adapter);
1162 }
1163#endif
1164
9d5c8243
AK
1165 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1166 /* print bus type/speed/width info */
1167 dev_info(&pdev->dev,
1168 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1169 netdev->name,
1170 ((hw->bus.speed == e1000_bus_speed_2500)
1171 ? "2.5Gb/s" : "unknown"),
1172 ((hw->bus.width == e1000_bus_width_pcie_x4)
1173 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1174 ? "Width x1" : "unknown"),
1175 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1176 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1177
1178 igb_read_part_num(hw, &part_num);
1179 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1180 (part_num >> 8), (part_num & 0xff));
1181
1182 dev_info(&pdev->dev,
1183 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1184 adapter->msix_entries ? "MSI-X" :
1185 adapter->msi_enabled ? "MSI" : "legacy",
1186 adapter->num_rx_queues, adapter->num_tx_queues);
1187
9d5c8243
AK
1188 return 0;
1189
1190err_register:
1191 igb_release_hw_control(adapter);
1192err_eeprom:
1193 if (!igb_check_reset_block(hw))
1194 hw->phy.ops.reset_phy(hw);
1195
1196 if (hw->flash_address)
1197 iounmap(hw->flash_address);
1198
1199 igb_remove_device(hw);
1200 kfree(adapter->tx_ring);
1201 kfree(adapter->rx_ring);
1202err_sw_init:
1203err_hw_init:
1204 iounmap(hw->hw_addr);
1205err_ioremap:
1206 free_netdev(netdev);
1207err_alloc_etherdev:
42bfd33a 1208 pci_release_selected_regions(pdev, bars);
9d5c8243
AK
1209err_pci_reg:
1210err_dma:
1211 pci_disable_device(pdev);
1212 return err;
1213}
1214
1215/**
1216 * igb_remove - Device Removal Routine
1217 * @pdev: PCI device information struct
1218 *
1219 * igb_remove is called by the PCI subsystem to alert the driver
1220 * that it should release a PCI device. The could be caused by a
1221 * Hot-Plug event, or because the driver is going to be removed from
1222 * memory.
1223 **/
1224static void __devexit igb_remove(struct pci_dev *pdev)
1225{
1226 struct net_device *netdev = pci_get_drvdata(pdev);
1227 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 1228 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1229
1230 /* flush_scheduled work may reschedule our watchdog task, so
1231 * explicitly disable watchdog tasks from being rescheduled */
1232 set_bit(__IGB_DOWN, &adapter->state);
1233 del_timer_sync(&adapter->watchdog_timer);
1234 del_timer_sync(&adapter->phy_info_timer);
1235
1236 flush_scheduled_work();
1237
fe4506b6
JC
1238#ifdef CONFIG_DCA
1239 if (adapter->dca_enabled) {
1240 dev_info(&pdev->dev, "DCA disabled\n");
1241 dca_remove_requester(&pdev->dev);
1242 adapter->dca_enabled = false;
1243 wr32(E1000_DCA_CTRL, 1);
1244 }
1245#endif
1246
9d5c8243
AK
1247 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1248 * would have already happened in close and is redundant. */
1249 igb_release_hw_control(adapter);
1250
1251 unregister_netdev(netdev);
1252
1253 if (!igb_check_reset_block(&adapter->hw))
1254 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1255
1256 igb_remove_device(&adapter->hw);
1257 igb_reset_interrupt_capability(adapter);
1258
1259 kfree(adapter->tx_ring);
1260 kfree(adapter->rx_ring);
1261
1262 iounmap(adapter->hw.hw_addr);
1263 if (adapter->hw.flash_address)
1264 iounmap(adapter->hw.flash_address);
42bfd33a 1265 pci_release_selected_regions(pdev, adapter->bars);
9d5c8243
AK
1266
1267 free_netdev(netdev);
1268
1269 pci_disable_device(pdev);
1270}
1271
1272/**
1273 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1274 * @adapter: board private structure to initialize
1275 *
1276 * igb_sw_init initializes the Adapter private data structure.
1277 * Fields are initialized based on PCI device information and
1278 * OS network device settings (MTU size).
1279 **/
1280static int __devinit igb_sw_init(struct igb_adapter *adapter)
1281{
1282 struct e1000_hw *hw = &adapter->hw;
1283 struct net_device *netdev = adapter->netdev;
1284 struct pci_dev *pdev = adapter->pdev;
1285
1286 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1287
1288 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1289 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1290 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1291 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1292
1293 /* Number of supported queues. */
1294 /* Having more queues than CPUs doesn't make sense. */
661086df
PWJ
1295 adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1296#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1297 adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1298#else
9d5c8243 1299 adapter->num_tx_queues = 1;
661086df 1300#endif /* CONFIG_NET_MULTI_QUEUE_DEVICE */
9d5c8243 1301
661086df
PWJ
1302 /* This call may decrease the number of queues depending on
1303 * interrupt mode. */
9d5c8243
AK
1304 igb_set_interrupt_capability(adapter);
1305
1306 if (igb_alloc_queues(adapter)) {
1307 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1308 return -ENOMEM;
1309 }
1310
1311 /* Explicitly disable IRQ since the NIC can be in any state. */
1312 igb_irq_disable(adapter);
1313
1314 set_bit(__IGB_DOWN, &adapter->state);
1315 return 0;
1316}
1317
1318/**
1319 * igb_open - Called when a network interface is made active
1320 * @netdev: network interface device structure
1321 *
1322 * Returns 0 on success, negative value on failure
1323 *
1324 * The open entry point is called when a network interface is made
1325 * active by the system (IFF_UP). At this point all resources needed
1326 * for transmit and receive operations are allocated, the interrupt
1327 * handler is registered with the OS, the watchdog timer is started,
1328 * and the stack is notified that the interface is ready.
1329 **/
1330static int igb_open(struct net_device *netdev)
1331{
1332 struct igb_adapter *adapter = netdev_priv(netdev);
1333 struct e1000_hw *hw = &adapter->hw;
1334 int err;
1335 int i;
1336
1337 /* disallow open during test */
1338 if (test_bit(__IGB_TESTING, &adapter->state))
1339 return -EBUSY;
1340
1341 /* allocate transmit descriptors */
1342 err = igb_setup_all_tx_resources(adapter);
1343 if (err)
1344 goto err_setup_tx;
1345
1346 /* allocate receive descriptors */
1347 err = igb_setup_all_rx_resources(adapter);
1348 if (err)
1349 goto err_setup_rx;
1350
1351 /* e1000_power_up_phy(adapter); */
1352
1353 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1354 if ((adapter->hw.mng_cookie.status &
1355 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1356 igb_update_mng_vlan(adapter);
1357
1358 /* before we allocate an interrupt, we must be ready to handle it.
1359 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1360 * as soon as we call pci_request_irq, so we have to setup our
1361 * clean_rx handler before we do so. */
1362 igb_configure(adapter);
1363
1364 err = igb_request_irq(adapter);
1365 if (err)
1366 goto err_req_irq;
1367
1368 /* From here on the code is the same as igb_up() */
1369 clear_bit(__IGB_DOWN, &adapter->state);
1370
844290e5
PW
1371 for (i = 0; i < adapter->num_rx_queues; i++)
1372 napi_enable(&adapter->rx_ring[i].napi);
9d5c8243
AK
1373
1374 /* Clear any pending interrupts. */
1375 rd32(E1000_ICR);
844290e5
PW
1376
1377 igb_irq_enable(adapter);
1378
9d5c8243
AK
1379 /* Fire a link status change interrupt to start the watchdog. */
1380 wr32(E1000_ICS, E1000_ICS_LSC);
1381
1382 return 0;
1383
1384err_req_irq:
1385 igb_release_hw_control(adapter);
1386 /* e1000_power_down_phy(adapter); */
1387 igb_free_all_rx_resources(adapter);
1388err_setup_rx:
1389 igb_free_all_tx_resources(adapter);
1390err_setup_tx:
1391 igb_reset(adapter);
1392
1393 return err;
1394}
1395
1396/**
1397 * igb_close - Disables a network interface
1398 * @netdev: network interface device structure
1399 *
1400 * Returns 0, this is not allowed to fail
1401 *
1402 * The close entry point is called when an interface is de-activated
1403 * by the OS. The hardware is still under the driver's control, but
1404 * needs to be disabled. A global MAC reset is issued to stop the
1405 * hardware, and all transmit and receive resources are freed.
1406 **/
1407static int igb_close(struct net_device *netdev)
1408{
1409 struct igb_adapter *adapter = netdev_priv(netdev);
1410
1411 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1412 igb_down(adapter);
1413
1414 igb_free_irq(adapter);
1415
1416 igb_free_all_tx_resources(adapter);
1417 igb_free_all_rx_resources(adapter);
1418
1419 /* kill manageability vlan ID if supported, but not if a vlan with
1420 * the same ID is registered on the host OS (let 8021q kill it) */
1421 if ((adapter->hw.mng_cookie.status &
1422 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1423 !(adapter->vlgrp &&
1424 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1425 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1426
1427 return 0;
1428}
1429
1430/**
1431 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1432 * @adapter: board private structure
1433 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1434 *
1435 * Return 0 on success, negative on failure
1436 **/
1437
1438int igb_setup_tx_resources(struct igb_adapter *adapter,
1439 struct igb_ring *tx_ring)
1440{
1441 struct pci_dev *pdev = adapter->pdev;
1442 int size;
1443
1444 size = sizeof(struct igb_buffer) * tx_ring->count;
1445 tx_ring->buffer_info = vmalloc(size);
1446 if (!tx_ring->buffer_info)
1447 goto err;
1448 memset(tx_ring->buffer_info, 0, size);
1449
1450 /* round up to nearest 4K */
1451 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1452 + sizeof(u32);
1453 tx_ring->size = ALIGN(tx_ring->size, 4096);
1454
1455 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1456 &tx_ring->dma);
1457
1458 if (!tx_ring->desc)
1459 goto err;
1460
1461 tx_ring->adapter = adapter;
1462 tx_ring->next_to_use = 0;
1463 tx_ring->next_to_clean = 0;
9d5c8243
AK
1464 return 0;
1465
1466err:
1467 vfree(tx_ring->buffer_info);
1468 dev_err(&adapter->pdev->dev,
1469 "Unable to allocate memory for the transmit descriptor ring\n");
1470 return -ENOMEM;
1471}
1472
1473/**
1474 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1475 * (Descriptors) for all queues
1476 * @adapter: board private structure
1477 *
1478 * Return 0 on success, negative on failure
1479 **/
1480static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1481{
1482 int i, err = 0;
661086df
PWJ
1483#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1484 int r_idx;
1485#endif
9d5c8243
AK
1486
1487 for (i = 0; i < adapter->num_tx_queues; i++) {
1488 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1489 if (err) {
1490 dev_err(&adapter->pdev->dev,
1491 "Allocation for Tx Queue %u failed\n", i);
1492 for (i--; i >= 0; i--)
3b644cf6 1493 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
1494 break;
1495 }
1496 }
1497
661086df
PWJ
1498#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1499 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1500 r_idx = i % adapter->num_tx_queues;
1501 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1502 }
1503#endif
9d5c8243
AK
1504 return err;
1505}
1506
1507/**
1508 * igb_configure_tx - Configure transmit Unit after Reset
1509 * @adapter: board private structure
1510 *
1511 * Configure the Tx unit of the MAC after a reset.
1512 **/
1513static void igb_configure_tx(struct igb_adapter *adapter)
1514{
1515 u64 tdba, tdwba;
1516 struct e1000_hw *hw = &adapter->hw;
1517 u32 tctl;
1518 u32 txdctl, txctrl;
1519 int i;
1520
1521 for (i = 0; i < adapter->num_tx_queues; i++) {
1522 struct igb_ring *ring = &(adapter->tx_ring[i]);
1523
1524 wr32(E1000_TDLEN(i),
1525 ring->count * sizeof(struct e1000_tx_desc));
1526 tdba = ring->dma;
1527 wr32(E1000_TDBAL(i),
1528 tdba & 0x00000000ffffffffULL);
1529 wr32(E1000_TDBAH(i), tdba >> 32);
1530
1531 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1532 tdwba |= 1; /* enable head wb */
1533 wr32(E1000_TDWBAL(i),
1534 tdwba & 0x00000000ffffffffULL);
1535 wr32(E1000_TDWBAH(i), tdwba >> 32);
1536
1537 ring->head = E1000_TDH(i);
1538 ring->tail = E1000_TDT(i);
1539 writel(0, hw->hw_addr + ring->tail);
1540 writel(0, hw->hw_addr + ring->head);
1541 txdctl = rd32(E1000_TXDCTL(i));
1542 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1543 wr32(E1000_TXDCTL(i), txdctl);
1544
1545 /* Turn off Relaxed Ordering on head write-backs. The
1546 * writebacks MUST be delivered in order or it will
1547 * completely screw up our bookeeping.
1548 */
1549 txctrl = rd32(E1000_DCA_TXCTRL(i));
1550 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1551 wr32(E1000_DCA_TXCTRL(i), txctrl);
1552 }
1553
1554
1555
1556 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1557
1558 /* Program the Transmit Control Register */
1559
1560 tctl = rd32(E1000_TCTL);
1561 tctl &= ~E1000_TCTL_CT;
1562 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1563 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1564
1565 igb_config_collision_dist(hw);
1566
1567 /* Setup Transmit Descriptor Settings for eop descriptor */
1568 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1569
1570 /* Enable transmits */
1571 tctl |= E1000_TCTL_EN;
1572
1573 wr32(E1000_TCTL, tctl);
1574}
1575
1576/**
1577 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1578 * @adapter: board private structure
1579 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1580 *
1581 * Returns 0 on success, negative on failure
1582 **/
1583
1584int igb_setup_rx_resources(struct igb_adapter *adapter,
1585 struct igb_ring *rx_ring)
1586{
1587 struct pci_dev *pdev = adapter->pdev;
1588 int size, desc_len;
1589
1590 size = sizeof(struct igb_buffer) * rx_ring->count;
1591 rx_ring->buffer_info = vmalloc(size);
1592 if (!rx_ring->buffer_info)
1593 goto err;
1594 memset(rx_ring->buffer_info, 0, size);
1595
1596 desc_len = sizeof(union e1000_adv_rx_desc);
1597
1598 /* Round up to nearest 4K */
1599 rx_ring->size = rx_ring->count * desc_len;
1600 rx_ring->size = ALIGN(rx_ring->size, 4096);
1601
1602 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1603 &rx_ring->dma);
1604
1605 if (!rx_ring->desc)
1606 goto err;
1607
1608 rx_ring->next_to_clean = 0;
1609 rx_ring->next_to_use = 0;
1610 rx_ring->pending_skb = NULL;
1611
1612 rx_ring->adapter = adapter;
9d5c8243
AK
1613
1614 return 0;
1615
1616err:
1617 vfree(rx_ring->buffer_info);
1618 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1619 "the receive descriptor ring\n");
1620 return -ENOMEM;
1621}
1622
1623/**
1624 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1625 * (Descriptors) for all queues
1626 * @adapter: board private structure
1627 *
1628 * Return 0 on success, negative on failure
1629 **/
1630static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1631{
1632 int i, err = 0;
1633
1634 for (i = 0; i < adapter->num_rx_queues; i++) {
1635 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1636 if (err) {
1637 dev_err(&adapter->pdev->dev,
1638 "Allocation for Rx Queue %u failed\n", i);
1639 for (i--; i >= 0; i--)
3b644cf6 1640 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
1641 break;
1642 }
1643 }
1644
1645 return err;
1646}
1647
1648/**
1649 * igb_setup_rctl - configure the receive control registers
1650 * @adapter: Board private structure
1651 **/
1652static void igb_setup_rctl(struct igb_adapter *adapter)
1653{
1654 struct e1000_hw *hw = &adapter->hw;
1655 u32 rctl;
1656 u32 srrctl = 0;
1657 int i;
1658
1659 rctl = rd32(E1000_RCTL);
1660
1661 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1662
1663 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1664 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1665 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1666
87cb7e8c
AK
1667 /*
1668 * enable stripping of CRC. It's unlikely this will break BMC
1669 * redirection as it did with e1000. Newer features require
1670 * that the HW strips the CRC.
9d5c8243 1671 */
87cb7e8c 1672 rctl |= E1000_RCTL_SECRC;
9d5c8243
AK
1673
1674 rctl &= ~E1000_RCTL_SBP;
1675
1676 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1677 rctl &= ~E1000_RCTL_LPE;
1678 else
1679 rctl |= E1000_RCTL_LPE;
1680 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1681 /* Setup buffer sizes */
1682 rctl &= ~E1000_RCTL_SZ_4096;
1683 rctl |= E1000_RCTL_BSEX;
1684 switch (adapter->rx_buffer_len) {
1685 case IGB_RXBUFFER_256:
1686 rctl |= E1000_RCTL_SZ_256;
1687 rctl &= ~E1000_RCTL_BSEX;
1688 break;
1689 case IGB_RXBUFFER_512:
1690 rctl |= E1000_RCTL_SZ_512;
1691 rctl &= ~E1000_RCTL_BSEX;
1692 break;
1693 case IGB_RXBUFFER_1024:
1694 rctl |= E1000_RCTL_SZ_1024;
1695 rctl &= ~E1000_RCTL_BSEX;
1696 break;
1697 case IGB_RXBUFFER_2048:
1698 default:
1699 rctl |= E1000_RCTL_SZ_2048;
1700 rctl &= ~E1000_RCTL_BSEX;
1701 break;
1702 case IGB_RXBUFFER_4096:
1703 rctl |= E1000_RCTL_SZ_4096;
1704 break;
1705 case IGB_RXBUFFER_8192:
1706 rctl |= E1000_RCTL_SZ_8192;
1707 break;
1708 case IGB_RXBUFFER_16384:
1709 rctl |= E1000_RCTL_SZ_16384;
1710 break;
1711 }
1712 } else {
1713 rctl &= ~E1000_RCTL_BSEX;
1714 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1715 }
1716
1717 /* 82575 and greater support packet-split where the protocol
1718 * header is placed in skb->data and the packet data is
1719 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1720 * In the case of a non-split, skb->data is linearly filled,
1721 * followed by the page buffers. Therefore, skb->data is
1722 * sized to hold the largest protocol header.
1723 */
1724 /* allocations using alloc_page take too long for regular MTU
1725 * so only enable packet split for jumbo frames */
1726 if (rctl & E1000_RCTL_LPE) {
1727 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1728 srrctl = adapter->rx_ps_hdr_size <<
1729 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1730 /* buffer size is ALWAYS one page */
1731 srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1732 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1733 } else {
1734 adapter->rx_ps_hdr_size = 0;
1735 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1736 }
1737
1738 for (i = 0; i < adapter->num_rx_queues; i++)
1739 wr32(E1000_SRRCTL(i), srrctl);
1740
1741 wr32(E1000_RCTL, rctl);
1742}
1743
1744/**
1745 * igb_configure_rx - Configure receive Unit after Reset
1746 * @adapter: board private structure
1747 *
1748 * Configure the Rx unit of the MAC after a reset.
1749 **/
1750static void igb_configure_rx(struct igb_adapter *adapter)
1751{
1752 u64 rdba;
1753 struct e1000_hw *hw = &adapter->hw;
1754 u32 rctl, rxcsum;
1755 u32 rxdctl;
1756 int i;
1757
1758 /* disable receives while setting up the descriptors */
1759 rctl = rd32(E1000_RCTL);
1760 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1761 wrfl();
1762 mdelay(10);
1763
1764 if (adapter->itr_setting > 3)
1765 wr32(E1000_ITR,
1766 1000000000 / (adapter->itr * 256));
1767
1768 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1769 * the Base and Length of the Rx Descriptor Ring */
1770 for (i = 0; i < adapter->num_rx_queues; i++) {
1771 struct igb_ring *ring = &(adapter->rx_ring[i]);
1772 rdba = ring->dma;
1773 wr32(E1000_RDBAL(i),
1774 rdba & 0x00000000ffffffffULL);
1775 wr32(E1000_RDBAH(i), rdba >> 32);
1776 wr32(E1000_RDLEN(i),
1777 ring->count * sizeof(union e1000_adv_rx_desc));
1778
1779 ring->head = E1000_RDH(i);
1780 ring->tail = E1000_RDT(i);
1781 writel(0, hw->hw_addr + ring->tail);
1782 writel(0, hw->hw_addr + ring->head);
1783
1784 rxdctl = rd32(E1000_RXDCTL(i));
1785 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1786 rxdctl &= 0xFFF00000;
1787 rxdctl |= IGB_RX_PTHRESH;
1788 rxdctl |= IGB_RX_HTHRESH << 8;
1789 rxdctl |= IGB_RX_WTHRESH << 16;
1790 wr32(E1000_RXDCTL(i), rxdctl);
1791 }
1792
1793 if (adapter->num_rx_queues > 1) {
1794 u32 random[10];
1795 u32 mrqc;
1796 u32 j, shift;
1797 union e1000_reta {
1798 u32 dword;
1799 u8 bytes[4];
1800 } reta;
1801
1802 get_random_bytes(&random[0], 40);
1803
1804 shift = 6;
1805 for (j = 0; j < (32 * 4); j++) {
1806 reta.bytes[j & 3] =
1807 (j % adapter->num_rx_queues) << shift;
1808 if ((j & 3) == 3)
1809 writel(reta.dword,
1810 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1811 }
1812 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1813
1814 /* Fill out hash function seeds */
1815 for (j = 0; j < 10; j++)
1816 array_wr32(E1000_RSSRK(0), j, random[j]);
1817
1818 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1819 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1820 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1821 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1822 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1823 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1824 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1825 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1826
1827
1828 wr32(E1000_MRQC, mrqc);
1829
1830 /* Multiqueue and raw packet checksumming are mutually
1831 * exclusive. Note that this not the same as TCP/IP
1832 * checksumming, which works fine. */
1833 rxcsum = rd32(E1000_RXCSUM);
1834 rxcsum |= E1000_RXCSUM_PCSD;
1835 wr32(E1000_RXCSUM, rxcsum);
1836 } else {
1837 /* Enable Receive Checksum Offload for TCP and UDP */
1838 rxcsum = rd32(E1000_RXCSUM);
1839 if (adapter->rx_csum) {
1840 rxcsum |= E1000_RXCSUM_TUOFL;
1841
1842 /* Enable IPv4 payload checksum for UDP fragments
1843 * Must be used in conjunction with packet-split. */
1844 if (adapter->rx_ps_hdr_size)
1845 rxcsum |= E1000_RXCSUM_IPPCSE;
1846 } else {
1847 rxcsum &= ~E1000_RXCSUM_TUOFL;
1848 /* don't need to clear IPPCSE as it defaults to 0 */
1849 }
1850 wr32(E1000_RXCSUM, rxcsum);
1851 }
1852
1853 if (adapter->vlgrp)
1854 wr32(E1000_RLPML,
1855 adapter->max_frame_size + VLAN_TAG_SIZE);
1856 else
1857 wr32(E1000_RLPML, adapter->max_frame_size);
1858
1859 /* Enable Receives */
1860 wr32(E1000_RCTL, rctl);
1861}
1862
1863/**
1864 * igb_free_tx_resources - Free Tx Resources per Queue
1865 * @adapter: board private structure
1866 * @tx_ring: Tx descriptor ring for a specific queue
1867 *
1868 * Free all transmit software resources
1869 **/
3b644cf6 1870static void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 1871{
3b644cf6 1872 struct pci_dev *pdev = tx_ring->adapter->pdev;
9d5c8243 1873
3b644cf6 1874 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
1875
1876 vfree(tx_ring->buffer_info);
1877 tx_ring->buffer_info = NULL;
1878
1879 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1880
1881 tx_ring->desc = NULL;
1882}
1883
1884/**
1885 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1886 * @adapter: board private structure
1887 *
1888 * Free all transmit software resources
1889 **/
1890static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1891{
1892 int i;
1893
1894 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 1895 igb_free_tx_resources(&adapter->tx_ring[i]);
9d5c8243
AK
1896}
1897
1898static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1899 struct igb_buffer *buffer_info)
1900{
1901 if (buffer_info->dma) {
1902 pci_unmap_page(adapter->pdev,
1903 buffer_info->dma,
1904 buffer_info->length,
1905 PCI_DMA_TODEVICE);
1906 buffer_info->dma = 0;
1907 }
1908 if (buffer_info->skb) {
1909 dev_kfree_skb_any(buffer_info->skb);
1910 buffer_info->skb = NULL;
1911 }
1912 buffer_info->time_stamp = 0;
1913 /* buffer_info must be completely set up in the transmit path */
1914}
1915
1916/**
1917 * igb_clean_tx_ring - Free Tx Buffers
1918 * @adapter: board private structure
1919 * @tx_ring: ring to be cleaned
1920 **/
3b644cf6 1921static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 1922{
3b644cf6 1923 struct igb_adapter *adapter = tx_ring->adapter;
9d5c8243
AK
1924 struct igb_buffer *buffer_info;
1925 unsigned long size;
1926 unsigned int i;
1927
1928 if (!tx_ring->buffer_info)
1929 return;
1930 /* Free all the Tx ring sk_buffs */
1931
1932 for (i = 0; i < tx_ring->count; i++) {
1933 buffer_info = &tx_ring->buffer_info[i];
1934 igb_unmap_and_free_tx_resource(adapter, buffer_info);
1935 }
1936
1937 size = sizeof(struct igb_buffer) * tx_ring->count;
1938 memset(tx_ring->buffer_info, 0, size);
1939
1940 /* Zero out the descriptor ring */
1941
1942 memset(tx_ring->desc, 0, tx_ring->size);
1943
1944 tx_ring->next_to_use = 0;
1945 tx_ring->next_to_clean = 0;
1946
1947 writel(0, adapter->hw.hw_addr + tx_ring->head);
1948 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1949}
1950
1951/**
1952 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1953 * @adapter: board private structure
1954 **/
1955static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
1956{
1957 int i;
1958
1959 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 1960 igb_clean_tx_ring(&adapter->tx_ring[i]);
9d5c8243
AK
1961}
1962
1963/**
1964 * igb_free_rx_resources - Free Rx Resources
1965 * @adapter: board private structure
1966 * @rx_ring: ring to clean the resources from
1967 *
1968 * Free all receive software resources
1969 **/
3b644cf6 1970static void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 1971{
3b644cf6 1972 struct pci_dev *pdev = rx_ring->adapter->pdev;
9d5c8243 1973
3b644cf6 1974 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
1975
1976 vfree(rx_ring->buffer_info);
1977 rx_ring->buffer_info = NULL;
1978
1979 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1980
1981 rx_ring->desc = NULL;
1982}
1983
1984/**
1985 * igb_free_all_rx_resources - Free Rx Resources for All Queues
1986 * @adapter: board private structure
1987 *
1988 * Free all receive software resources
1989 **/
1990static void igb_free_all_rx_resources(struct igb_adapter *adapter)
1991{
1992 int i;
1993
1994 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 1995 igb_free_rx_resources(&adapter->rx_ring[i]);
9d5c8243
AK
1996}
1997
1998/**
1999 * igb_clean_rx_ring - Free Rx Buffers per Queue
2000 * @adapter: board private structure
2001 * @rx_ring: ring to free buffers from
2002 **/
3b644cf6 2003static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 2004{
3b644cf6 2005 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
2006 struct igb_buffer *buffer_info;
2007 struct pci_dev *pdev = adapter->pdev;
2008 unsigned long size;
2009 unsigned int i;
2010
2011 if (!rx_ring->buffer_info)
2012 return;
2013 /* Free all the Rx ring sk_buffs */
2014 for (i = 0; i < rx_ring->count; i++) {
2015 buffer_info = &rx_ring->buffer_info[i];
2016 if (buffer_info->dma) {
2017 if (adapter->rx_ps_hdr_size)
2018 pci_unmap_single(pdev, buffer_info->dma,
2019 adapter->rx_ps_hdr_size,
2020 PCI_DMA_FROMDEVICE);
2021 else
2022 pci_unmap_single(pdev, buffer_info->dma,
2023 adapter->rx_buffer_len,
2024 PCI_DMA_FROMDEVICE);
2025 buffer_info->dma = 0;
2026 }
2027
2028 if (buffer_info->skb) {
2029 dev_kfree_skb(buffer_info->skb);
2030 buffer_info->skb = NULL;
2031 }
2032 if (buffer_info->page) {
2033 pci_unmap_page(pdev, buffer_info->page_dma,
2034 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2035 put_page(buffer_info->page);
2036 buffer_info->page = NULL;
2037 buffer_info->page_dma = 0;
2038 }
2039 }
2040
2041 /* there also may be some cached data from a chained receive */
2042 if (rx_ring->pending_skb) {
2043 dev_kfree_skb(rx_ring->pending_skb);
2044 rx_ring->pending_skb = NULL;
2045 }
2046
2047 size = sizeof(struct igb_buffer) * rx_ring->count;
2048 memset(rx_ring->buffer_info, 0, size);
2049
2050 /* Zero out the descriptor ring */
2051 memset(rx_ring->desc, 0, rx_ring->size);
2052
2053 rx_ring->next_to_clean = 0;
2054 rx_ring->next_to_use = 0;
2055
2056 writel(0, adapter->hw.hw_addr + rx_ring->head);
2057 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2058}
2059
2060/**
2061 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2062 * @adapter: board private structure
2063 **/
2064static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2065{
2066 int i;
2067
2068 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 2069 igb_clean_rx_ring(&adapter->rx_ring[i]);
9d5c8243
AK
2070}
2071
2072/**
2073 * igb_set_mac - Change the Ethernet Address of the NIC
2074 * @netdev: network interface device structure
2075 * @p: pointer to an address structure
2076 *
2077 * Returns 0 on success, negative on failure
2078 **/
2079static int igb_set_mac(struct net_device *netdev, void *p)
2080{
2081 struct igb_adapter *adapter = netdev_priv(netdev);
2082 struct sockaddr *addr = p;
2083
2084 if (!is_valid_ether_addr(addr->sa_data))
2085 return -EADDRNOTAVAIL;
2086
2087 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2088 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2089
2090 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2091
2092 return 0;
2093}
2094
2095/**
2096 * igb_set_multi - Multicast and Promiscuous mode set
2097 * @netdev: network interface device structure
2098 *
2099 * The set_multi entry point is called whenever the multicast address
2100 * list or the network interface flags are updated. This routine is
2101 * responsible for configuring the hardware for proper multicast,
2102 * promiscuous mode, and all-multi behavior.
2103 **/
2104static void igb_set_multi(struct net_device *netdev)
2105{
2106 struct igb_adapter *adapter = netdev_priv(netdev);
2107 struct e1000_hw *hw = &adapter->hw;
2108 struct e1000_mac_info *mac = &hw->mac;
2109 struct dev_mc_list *mc_ptr;
2110 u8 *mta_list;
2111 u32 rctl;
2112 int i;
2113
2114 /* Check for Promiscuous and All Multicast modes */
2115
2116 rctl = rd32(E1000_RCTL);
2117
2118 if (netdev->flags & IFF_PROMISC)
2119 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2120 else if (netdev->flags & IFF_ALLMULTI) {
2121 rctl |= E1000_RCTL_MPE;
2122 rctl &= ~E1000_RCTL_UPE;
2123 } else
2124 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2125
2126 wr32(E1000_RCTL, rctl);
2127
2128 if (!netdev->mc_count) {
2129 /* nothing to program, so clear mc list */
2130 igb_update_mc_addr_list(hw, NULL, 0, 1,
2131 mac->rar_entry_count);
2132 return;
2133 }
2134
2135 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2136 if (!mta_list)
2137 return;
2138
2139 /* The shared function expects a packed array of only addresses. */
2140 mc_ptr = netdev->mc_list;
2141
2142 for (i = 0; i < netdev->mc_count; i++) {
2143 if (!mc_ptr)
2144 break;
2145 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2146 mc_ptr = mc_ptr->next;
2147 }
2148 igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2149 kfree(mta_list);
2150}
2151
2152/* Need to wait a few seconds after link up to get diagnostic information from
2153 * the phy */
2154static void igb_update_phy_info(unsigned long data)
2155{
2156 struct igb_adapter *adapter = (struct igb_adapter *) data;
68707acb
BH
2157 if (adapter->hw.phy.ops.get_phy_info)
2158 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
9d5c8243
AK
2159}
2160
2161/**
2162 * igb_watchdog - Timer Call-back
2163 * @data: pointer to adapter cast into an unsigned long
2164 **/
2165static void igb_watchdog(unsigned long data)
2166{
2167 struct igb_adapter *adapter = (struct igb_adapter *)data;
2168 /* Do the rest outside of interrupt context */
2169 schedule_work(&adapter->watchdog_task);
2170}
2171
2172static void igb_watchdog_task(struct work_struct *work)
2173{
2174 struct igb_adapter *adapter = container_of(work,
2175 struct igb_adapter, watchdog_task);
2176 struct e1000_hw *hw = &adapter->hw;
2177
2178 struct net_device *netdev = adapter->netdev;
2179 struct igb_ring *tx_ring = adapter->tx_ring;
2180 struct e1000_mac_info *mac = &adapter->hw.mac;
2181 u32 link;
2182 s32 ret_val;
661086df
PWJ
2183#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2184 int i;
2185#endif
9d5c8243
AK
2186
2187 if ((netif_carrier_ok(netdev)) &&
2188 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2189 goto link_up;
2190
2191 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2192 if ((ret_val == E1000_ERR_PHY) &&
2193 (hw->phy.type == e1000_phy_igp_3) &&
2194 (rd32(E1000_CTRL) &
2195 E1000_PHY_CTRL_GBE_DISABLE))
2196 dev_info(&adapter->pdev->dev,
2197 "Gigabit has been disabled, downgrading speed\n");
2198
2199 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2200 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2201 link = mac->serdes_has_link;
2202 else
2203 link = rd32(E1000_STATUS) &
2204 E1000_STATUS_LU;
2205
2206 if (link) {
2207 if (!netif_carrier_ok(netdev)) {
2208 u32 ctrl;
2209 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2210 &adapter->link_speed,
2211 &adapter->link_duplex);
2212
2213 ctrl = rd32(E1000_CTRL);
2214 dev_info(&adapter->pdev->dev,
2215 "NIC Link is Up %d Mbps %s, "
2216 "Flow Control: %s\n",
2217 adapter->link_speed,
2218 adapter->link_duplex == FULL_DUPLEX ?
2219 "Full Duplex" : "Half Duplex",
2220 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2221 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2222 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2223 E1000_CTRL_TFCE) ? "TX" : "None")));
2224
2225 /* tweak tx_queue_len according to speed/duplex and
2226 * adjust the timeout factor */
2227 netdev->tx_queue_len = adapter->tx_queue_len;
2228 adapter->tx_timeout_factor = 1;
2229 switch (adapter->link_speed) {
2230 case SPEED_10:
2231 netdev->tx_queue_len = 10;
2232 adapter->tx_timeout_factor = 14;
2233 break;
2234 case SPEED_100:
2235 netdev->tx_queue_len = 100;
2236 /* maybe add some timeout factor ? */
2237 break;
2238 }
2239
2240 netif_carrier_on(netdev);
2241 netif_wake_queue(netdev);
661086df
PWJ
2242#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2243 for (i = 0; i < adapter->num_tx_queues; i++)
2244 netif_wake_subqueue(netdev, i);
2245#endif
9d5c8243
AK
2246
2247 if (!test_bit(__IGB_DOWN, &adapter->state))
2248 mod_timer(&adapter->phy_info_timer,
2249 round_jiffies(jiffies + 2 * HZ));
2250 }
2251 } else {
2252 if (netif_carrier_ok(netdev)) {
2253 adapter->link_speed = 0;
2254 adapter->link_duplex = 0;
2255 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2256 netif_carrier_off(netdev);
2257 netif_stop_queue(netdev);
661086df
PWJ
2258#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2259 for (i = 0; i < adapter->num_tx_queues; i++)
2260 netif_stop_subqueue(netdev, i);
2261#endif
9d5c8243
AK
2262 if (!test_bit(__IGB_DOWN, &adapter->state))
2263 mod_timer(&adapter->phy_info_timer,
2264 round_jiffies(jiffies + 2 * HZ));
2265 }
2266 }
2267
2268link_up:
2269 igb_update_stats(adapter);
2270
2271 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2272 adapter->tpt_old = adapter->stats.tpt;
2273 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2274 adapter->colc_old = adapter->stats.colc;
2275
2276 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2277 adapter->gorc_old = adapter->stats.gorc;
2278 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2279 adapter->gotc_old = adapter->stats.gotc;
2280
2281 igb_update_adaptive(&adapter->hw);
2282
2283 if (!netif_carrier_ok(netdev)) {
2284 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2285 /* We've lost link, so the controller stops DMA,
2286 * but we've got queued Tx work that's never going
2287 * to get done, so reset controller to flush Tx.
2288 * (Do the reset outside of interrupt context). */
2289 adapter->tx_timeout_count++;
2290 schedule_work(&adapter->reset_task);
2291 }
2292 }
2293
2294 /* Cause software interrupt to ensure rx ring is cleaned */
2295 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2296
2297 /* Force detection of hung controller every watchdog period */
2298 tx_ring->detect_tx_hung = true;
2299
2300 /* Reset the timer */
2301 if (!test_bit(__IGB_DOWN, &adapter->state))
2302 mod_timer(&adapter->watchdog_timer,
2303 round_jiffies(jiffies + 2 * HZ));
2304}
2305
2306enum latency_range {
2307 lowest_latency = 0,
2308 low_latency = 1,
2309 bulk_latency = 2,
2310 latency_invalid = 255
2311};
2312
2313
2314static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2315 struct igb_ring *rx_ring)
2316{
2317 struct e1000_hw *hw = &adapter->hw;
2318 int new_val;
2319
2320 new_val = rx_ring->itr_val / 2;
2321 if (new_val < IGB_MIN_DYN_ITR)
2322 new_val = IGB_MIN_DYN_ITR;
2323
2324 if (new_val != rx_ring->itr_val) {
2325 rx_ring->itr_val = new_val;
2326 wr32(rx_ring->itr_register,
2327 1000000000 / (new_val * 256));
2328 }
2329}
2330
2331static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2332 struct igb_ring *rx_ring)
2333{
2334 struct e1000_hw *hw = &adapter->hw;
2335 int new_val;
2336
2337 new_val = rx_ring->itr_val * 2;
2338 if (new_val > IGB_MAX_DYN_ITR)
2339 new_val = IGB_MAX_DYN_ITR;
2340
2341 if (new_val != rx_ring->itr_val) {
2342 rx_ring->itr_val = new_val;
2343 wr32(rx_ring->itr_register,
2344 1000000000 / (new_val * 256));
2345 }
2346}
2347
2348/**
2349 * igb_update_itr - update the dynamic ITR value based on statistics
2350 * Stores a new ITR value based on packets and byte
2351 * counts during the last interrupt. The advantage of per interrupt
2352 * computation is faster updates and more accurate ITR for the current
2353 * traffic pattern. Constants in this function were computed
2354 * based on theoretical maximum wire speed and thresholds were set based
2355 * on testing data as well as attempting to minimize response time
2356 * while increasing bulk throughput.
2357 * this functionality is controlled by the InterruptThrottleRate module
2358 * parameter (see igb_param.c)
2359 * NOTE: These calculations are only valid when operating in a single-
2360 * queue environment.
2361 * @adapter: pointer to adapter
2362 * @itr_setting: current adapter->itr
2363 * @packets: the number of packets during this measurement interval
2364 * @bytes: the number of bytes during this measurement interval
2365 **/
2366static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2367 int packets, int bytes)
2368{
2369 unsigned int retval = itr_setting;
2370
2371 if (packets == 0)
2372 goto update_itr_done;
2373
2374 switch (itr_setting) {
2375 case lowest_latency:
2376 /* handle TSO and jumbo frames */
2377 if (bytes/packets > 8000)
2378 retval = bulk_latency;
2379 else if ((packets < 5) && (bytes > 512))
2380 retval = low_latency;
2381 break;
2382 case low_latency: /* 50 usec aka 20000 ints/s */
2383 if (bytes > 10000) {
2384 /* this if handles the TSO accounting */
2385 if (bytes/packets > 8000) {
2386 retval = bulk_latency;
2387 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2388 retval = bulk_latency;
2389 } else if ((packets > 35)) {
2390 retval = lowest_latency;
2391 }
2392 } else if (bytes/packets > 2000) {
2393 retval = bulk_latency;
2394 } else if (packets <= 2 && bytes < 512) {
2395 retval = lowest_latency;
2396 }
2397 break;
2398 case bulk_latency: /* 250 usec aka 4000 ints/s */
2399 if (bytes > 25000) {
2400 if (packets > 35)
2401 retval = low_latency;
2402 } else if (bytes < 6000) {
2403 retval = low_latency;
2404 }
2405 break;
2406 }
2407
2408update_itr_done:
2409 return retval;
2410}
2411
2412static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2413 int rx_only)
2414{
2415 u16 current_itr;
2416 u32 new_itr = adapter->itr;
2417
2418 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2419 if (adapter->link_speed != SPEED_1000) {
2420 current_itr = 0;
2421 new_itr = 4000;
2422 goto set_itr_now;
2423 }
2424
2425 adapter->rx_itr = igb_update_itr(adapter,
2426 adapter->rx_itr,
2427 adapter->rx_ring->total_packets,
2428 adapter->rx_ring->total_bytes);
2429 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2430 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2431 adapter->rx_itr = low_latency;
2432
2433 if (!rx_only) {
2434 adapter->tx_itr = igb_update_itr(adapter,
2435 adapter->tx_itr,
2436 adapter->tx_ring->total_packets,
2437 adapter->tx_ring->total_bytes);
2438 /* conservative mode (itr 3) eliminates the
2439 * lowest_latency setting */
2440 if (adapter->itr_setting == 3 &&
2441 adapter->tx_itr == lowest_latency)
2442 adapter->tx_itr = low_latency;
2443
2444 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2445 } else {
2446 current_itr = adapter->rx_itr;
2447 }
2448
2449 switch (current_itr) {
2450 /* counts and packets in update_itr are dependent on these numbers */
2451 case lowest_latency:
2452 new_itr = 70000;
2453 break;
2454 case low_latency:
2455 new_itr = 20000; /* aka hwitr = ~200 */
2456 break;
2457 case bulk_latency:
2458 new_itr = 4000;
2459 break;
2460 default:
2461 break;
2462 }
2463
2464set_itr_now:
2465 if (new_itr != adapter->itr) {
2466 /* this attempts to bias the interrupt rate towards Bulk
2467 * by adding intermediate steps when interrupt rate is
2468 * increasing */
2469 new_itr = new_itr > adapter->itr ?
2470 min(adapter->itr + (new_itr >> 2), new_itr) :
2471 new_itr;
2472 /* Don't write the value here; it resets the adapter's
2473 * internal timer, and causes us to delay far longer than
2474 * we should between interrupts. Instead, we write the ITR
2475 * value at the beginning of the next interrupt so the timing
2476 * ends up being correct.
2477 */
2478 adapter->itr = new_itr;
2479 adapter->set_itr = 1;
2480 }
2481
2482 return;
2483}
2484
2485
2486#define IGB_TX_FLAGS_CSUM 0x00000001
2487#define IGB_TX_FLAGS_VLAN 0x00000002
2488#define IGB_TX_FLAGS_TSO 0x00000004
2489#define IGB_TX_FLAGS_IPV4 0x00000008
2490#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2491#define IGB_TX_FLAGS_VLAN_SHIFT 16
2492
2493static inline int igb_tso_adv(struct igb_adapter *adapter,
2494 struct igb_ring *tx_ring,
2495 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2496{
2497 struct e1000_adv_tx_context_desc *context_desc;
2498 unsigned int i;
2499 int err;
2500 struct igb_buffer *buffer_info;
2501 u32 info = 0, tu_cmd = 0;
2502 u32 mss_l4len_idx, l4len;
2503 *hdr_len = 0;
2504
2505 if (skb_header_cloned(skb)) {
2506 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2507 if (err)
2508 return err;
2509 }
2510
2511 l4len = tcp_hdrlen(skb);
2512 *hdr_len += l4len;
2513
2514 if (skb->protocol == htons(ETH_P_IP)) {
2515 struct iphdr *iph = ip_hdr(skb);
2516 iph->tot_len = 0;
2517 iph->check = 0;
2518 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2519 iph->daddr, 0,
2520 IPPROTO_TCP,
2521 0);
2522 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2523 ipv6_hdr(skb)->payload_len = 0;
2524 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2525 &ipv6_hdr(skb)->daddr,
2526 0, IPPROTO_TCP, 0);
2527 }
2528
2529 i = tx_ring->next_to_use;
2530
2531 buffer_info = &tx_ring->buffer_info[i];
2532 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2533 /* VLAN MACLEN IPLEN */
2534 if (tx_flags & IGB_TX_FLAGS_VLAN)
2535 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2536 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2537 *hdr_len += skb_network_offset(skb);
2538 info |= skb_network_header_len(skb);
2539 *hdr_len += skb_network_header_len(skb);
2540 context_desc->vlan_macip_lens = cpu_to_le32(info);
2541
2542 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2543 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2544
2545 if (skb->protocol == htons(ETH_P_IP))
2546 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2547 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2548
2549 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2550
2551 /* MSS L4LEN IDX */
2552 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2553 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2554
2555 /* Context index must be unique per ring. Luckily, so is the interrupt
2556 * mask value. */
2557 mss_l4len_idx |= tx_ring->eims_value >> 4;
2558
2559 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2560 context_desc->seqnum_seed = 0;
2561
2562 buffer_info->time_stamp = jiffies;
2563 buffer_info->dma = 0;
2564 i++;
2565 if (i == tx_ring->count)
2566 i = 0;
2567
2568 tx_ring->next_to_use = i;
2569
2570 return true;
2571}
2572
2573static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2574 struct igb_ring *tx_ring,
2575 struct sk_buff *skb, u32 tx_flags)
2576{
2577 struct e1000_adv_tx_context_desc *context_desc;
2578 unsigned int i;
2579 struct igb_buffer *buffer_info;
2580 u32 info = 0, tu_cmd = 0;
2581
2582 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2583 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2584 i = tx_ring->next_to_use;
2585 buffer_info = &tx_ring->buffer_info[i];
2586 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2587
2588 if (tx_flags & IGB_TX_FLAGS_VLAN)
2589 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2590 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2591 if (skb->ip_summed == CHECKSUM_PARTIAL)
2592 info |= skb_network_header_len(skb);
2593
2594 context_desc->vlan_macip_lens = cpu_to_le32(info);
2595
2596 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2597
2598 if (skb->ip_summed == CHECKSUM_PARTIAL) {
44b0cda3
MW
2599 switch (skb->protocol) {
2600 case __constant_htons(ETH_P_IP):
9d5c8243 2601 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
2602 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2603 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2604 break;
2605 case __constant_htons(ETH_P_IPV6):
2606 /* XXX what about other V6 headers?? */
2607 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2608 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2609 break;
2610 default:
2611 if (unlikely(net_ratelimit()))
2612 dev_warn(&adapter->pdev->dev,
2613 "partial checksum but proto=%x!\n",
2614 skb->protocol);
2615 break;
2616 }
9d5c8243
AK
2617 }
2618
2619 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2620 context_desc->seqnum_seed = 0;
2621 context_desc->mss_l4len_idx =
661086df 2622 cpu_to_le32(tx_ring->queue_index << 4);
9d5c8243
AK
2623
2624 buffer_info->time_stamp = jiffies;
2625 buffer_info->dma = 0;
2626
2627 i++;
2628 if (i == tx_ring->count)
2629 i = 0;
2630 tx_ring->next_to_use = i;
2631
2632 return true;
2633 }
2634
2635
2636 return false;
2637}
2638
2639#define IGB_MAX_TXD_PWR 16
2640#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2641
2642static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2643 struct igb_ring *tx_ring,
2644 struct sk_buff *skb)
2645{
2646 struct igb_buffer *buffer_info;
2647 unsigned int len = skb_headlen(skb);
2648 unsigned int count = 0, i;
2649 unsigned int f;
2650
2651 i = tx_ring->next_to_use;
2652
2653 buffer_info = &tx_ring->buffer_info[i];
2654 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2655 buffer_info->length = len;
2656 /* set time_stamp *before* dma to help avoid a possible race */
2657 buffer_info->time_stamp = jiffies;
2658 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2659 PCI_DMA_TODEVICE);
2660 count++;
2661 i++;
2662 if (i == tx_ring->count)
2663 i = 0;
2664
2665 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2666 struct skb_frag_struct *frag;
2667
2668 frag = &skb_shinfo(skb)->frags[f];
2669 len = frag->size;
2670
2671 buffer_info = &tx_ring->buffer_info[i];
2672 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2673 buffer_info->length = len;
2674 buffer_info->time_stamp = jiffies;
2675 buffer_info->dma = pci_map_page(adapter->pdev,
2676 frag->page,
2677 frag->page_offset,
2678 len,
2679 PCI_DMA_TODEVICE);
2680
2681 count++;
2682 i++;
2683 if (i == tx_ring->count)
2684 i = 0;
2685 }
2686
2687 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2688 tx_ring->buffer_info[i].skb = skb;
2689
2690 return count;
2691}
2692
2693static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2694 struct igb_ring *tx_ring,
2695 int tx_flags, int count, u32 paylen,
2696 u8 hdr_len)
2697{
2698 union e1000_adv_tx_desc *tx_desc = NULL;
2699 struct igb_buffer *buffer_info;
2700 u32 olinfo_status = 0, cmd_type_len;
2701 unsigned int i;
2702
2703 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2704 E1000_ADVTXD_DCMD_DEXT);
2705
2706 if (tx_flags & IGB_TX_FLAGS_VLAN)
2707 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2708
2709 if (tx_flags & IGB_TX_FLAGS_TSO) {
2710 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2711
2712 /* insert tcp checksum */
2713 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2714
2715 /* insert ip checksum */
2716 if (tx_flags & IGB_TX_FLAGS_IPV4)
2717 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2718
2719 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2720 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2721 }
2722
2723 if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2724 IGB_TX_FLAGS_VLAN))
661086df 2725 olinfo_status |= tx_ring->queue_index << 4;
9d5c8243
AK
2726
2727 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2728
2729 i = tx_ring->next_to_use;
2730 while (count--) {
2731 buffer_info = &tx_ring->buffer_info[i];
2732 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2733 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2734 tx_desc->read.cmd_type_len =
2735 cpu_to_le32(cmd_type_len | buffer_info->length);
2736 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2737 i++;
2738 if (i == tx_ring->count)
2739 i = 0;
2740 }
2741
2742 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2743 /* Force memory writes to complete before letting h/w
2744 * know there are new descriptors to fetch. (Only
2745 * applicable for weak-ordered memory model archs,
2746 * such as IA-64). */
2747 wmb();
2748
2749 tx_ring->next_to_use = i;
2750 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2751 /* we need this if more than one processor can write to our tail
2752 * at a time, it syncronizes IO on IA64/Altix systems */
2753 mmiowb();
2754}
2755
2756static int __igb_maybe_stop_tx(struct net_device *netdev,
2757 struct igb_ring *tx_ring, int size)
2758{
2759 struct igb_adapter *adapter = netdev_priv(netdev);
2760
661086df
PWJ
2761#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2762 netif_stop_subqueue(netdev, tx_ring->queue_index);
2763#else
9d5c8243 2764 netif_stop_queue(netdev);
661086df
PWJ
2765#endif
2766
9d5c8243
AK
2767 /* Herbert's original patch had:
2768 * smp_mb__after_netif_stop_queue();
2769 * but since that doesn't exist yet, just open code it. */
2770 smp_mb();
2771
2772 /* We need to check again in a case another CPU has just
2773 * made room available. */
2774 if (IGB_DESC_UNUSED(tx_ring) < size)
2775 return -EBUSY;
2776
2777 /* A reprieve! */
661086df
PWJ
2778#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2779 netif_wake_subqueue(netdev, tx_ring->queue_index);
2780#else
2781 netif_wake_queue(netdev);
2782#endif
9d5c8243
AK
2783 ++adapter->restart_queue;
2784 return 0;
2785}
2786
2787static int igb_maybe_stop_tx(struct net_device *netdev,
2788 struct igb_ring *tx_ring, int size)
2789{
2790 if (IGB_DESC_UNUSED(tx_ring) >= size)
2791 return 0;
2792 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2793}
2794
2795#define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2796
2797static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2798 struct net_device *netdev,
2799 struct igb_ring *tx_ring)
2800{
2801 struct igb_adapter *adapter = netdev_priv(netdev);
2802 unsigned int tx_flags = 0;
2803 unsigned int len;
9d5c8243
AK
2804 u8 hdr_len = 0;
2805 int tso = 0;
2806
2807 len = skb_headlen(skb);
2808
2809 if (test_bit(__IGB_DOWN, &adapter->state)) {
2810 dev_kfree_skb_any(skb);
2811 return NETDEV_TX_OK;
2812 }
2813
2814 if (skb->len <= 0) {
2815 dev_kfree_skb_any(skb);
2816 return NETDEV_TX_OK;
2817 }
2818
9d5c8243
AK
2819 /* need: 1 descriptor per page,
2820 * + 2 desc gap to keep tail from touching head,
2821 * + 1 desc for skb->data,
2822 * + 1 desc for context descriptor,
2823 * otherwise try next time */
2824 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2825 /* this is a hard error */
9d5c8243
AK
2826 return NETDEV_TX_BUSY;
2827 }
2828
2829 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2830 tx_flags |= IGB_TX_FLAGS_VLAN;
2831 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2832 }
2833
661086df
PWJ
2834 if (skb->protocol == htons(ETH_P_IP))
2835 tx_flags |= IGB_TX_FLAGS_IPV4;
2836
9d5c8243
AK
2837 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2838 &hdr_len) : 0;
2839
2840 if (tso < 0) {
2841 dev_kfree_skb_any(skb);
9d5c8243
AK
2842 return NETDEV_TX_OK;
2843 }
2844
2845 if (tso)
2846 tx_flags |= IGB_TX_FLAGS_TSO;
2847 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2848 if (skb->ip_summed == CHECKSUM_PARTIAL)
2849 tx_flags |= IGB_TX_FLAGS_CSUM;
2850
9d5c8243
AK
2851 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2852 igb_tx_map_adv(adapter, tx_ring, skb),
2853 skb->len, hdr_len);
2854
2855 netdev->trans_start = jiffies;
2856
2857 /* Make sure there is space in the ring for the next send. */
2858 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2859
9d5c8243
AK
2860 return NETDEV_TX_OK;
2861}
2862
2863static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2864{
2865 struct igb_adapter *adapter = netdev_priv(netdev);
661086df
PWJ
2866 struct igb_ring *tx_ring;
2867
2868#ifdef CONFIG_NETDEVICES_MULTIQUEUE
2869 int r_idx = 0;
2870 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
2871 tx_ring = adapter->multi_tx_table[r_idx];
2872#else
2873 tx_ring = &adapter->tx_ring[0];
2874#endif
2875
9d5c8243
AK
2876
2877 /* This goes back to the question of how to logically map a tx queue
2878 * to a flow. Right now, performance is impacted slightly negatively
2879 * if using multiple tx queues. If the stack breaks away from a
2880 * single qdisc implementation, we can look at this again. */
2881 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2882}
2883
2884/**
2885 * igb_tx_timeout - Respond to a Tx Hang
2886 * @netdev: network interface device structure
2887 **/
2888static void igb_tx_timeout(struct net_device *netdev)
2889{
2890 struct igb_adapter *adapter = netdev_priv(netdev);
2891 struct e1000_hw *hw = &adapter->hw;
2892
2893 /* Do the reset outside of interrupt context */
2894 adapter->tx_timeout_count++;
2895 schedule_work(&adapter->reset_task);
2896 wr32(E1000_EICS, adapter->eims_enable_mask &
2897 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
2898}
2899
2900static void igb_reset_task(struct work_struct *work)
2901{
2902 struct igb_adapter *adapter;
2903 adapter = container_of(work, struct igb_adapter, reset_task);
2904
2905 igb_reinit_locked(adapter);
2906}
2907
2908/**
2909 * igb_get_stats - Get System Network Statistics
2910 * @netdev: network interface device structure
2911 *
2912 * Returns the address of the device statistics structure.
2913 * The statistics are actually updated from the timer callback.
2914 **/
2915static struct net_device_stats *
2916igb_get_stats(struct net_device *netdev)
2917{
2918 struct igb_adapter *adapter = netdev_priv(netdev);
2919
2920 /* only return the current stats */
2921 return &adapter->net_stats;
2922}
2923
2924/**
2925 * igb_change_mtu - Change the Maximum Transfer Unit
2926 * @netdev: network interface device structure
2927 * @new_mtu: new value for maximum frame size
2928 *
2929 * Returns 0 on success, negative on failure
2930 **/
2931static int igb_change_mtu(struct net_device *netdev, int new_mtu)
2932{
2933 struct igb_adapter *adapter = netdev_priv(netdev);
2934 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2935
2936 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2937 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2938 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2939 return -EINVAL;
2940 }
2941
2942#define MAX_STD_JUMBO_FRAME_SIZE 9234
2943 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2944 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2945 return -EINVAL;
2946 }
2947
2948 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2949 msleep(1);
2950 /* igb_down has a dependency on max_frame_size */
2951 adapter->max_frame_size = max_frame;
2952 if (netif_running(netdev))
2953 igb_down(adapter);
2954
2955 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2956 * means we reserve 2 more, this pushes us to allocate from the next
2957 * larger slab size.
2958 * i.e. RXBUFFER_2048 --> size-4096 slab
2959 */
2960
2961 if (max_frame <= IGB_RXBUFFER_256)
2962 adapter->rx_buffer_len = IGB_RXBUFFER_256;
2963 else if (max_frame <= IGB_RXBUFFER_512)
2964 adapter->rx_buffer_len = IGB_RXBUFFER_512;
2965 else if (max_frame <= IGB_RXBUFFER_1024)
2966 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
2967 else if (max_frame <= IGB_RXBUFFER_2048)
2968 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
2969 else
2970 adapter->rx_buffer_len = IGB_RXBUFFER_4096;
2971 /* adjust allocation if LPE protects us, and we aren't using SBP */
2972 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2973 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
2974 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
2975
2976 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2977 netdev->mtu, new_mtu);
2978 netdev->mtu = new_mtu;
2979
2980 if (netif_running(netdev))
2981 igb_up(adapter);
2982 else
2983 igb_reset(adapter);
2984
2985 clear_bit(__IGB_RESETTING, &adapter->state);
2986
2987 return 0;
2988}
2989
2990/**
2991 * igb_update_stats - Update the board statistics counters
2992 * @adapter: board private structure
2993 **/
2994
2995void igb_update_stats(struct igb_adapter *adapter)
2996{
2997 struct e1000_hw *hw = &adapter->hw;
2998 struct pci_dev *pdev = adapter->pdev;
2999 u16 phy_tmp;
3000
3001#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3002
3003 /*
3004 * Prevent stats update while adapter is being reset, or if the pci
3005 * connection is down.
3006 */
3007 if (adapter->link_speed == 0)
3008 return;
3009 if (pci_channel_offline(pdev))
3010 return;
3011
3012 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3013 adapter->stats.gprc += rd32(E1000_GPRC);
3014 adapter->stats.gorc += rd32(E1000_GORCL);
3015 rd32(E1000_GORCH); /* clear GORCL */
3016 adapter->stats.bprc += rd32(E1000_BPRC);
3017 adapter->stats.mprc += rd32(E1000_MPRC);
3018 adapter->stats.roc += rd32(E1000_ROC);
3019
3020 adapter->stats.prc64 += rd32(E1000_PRC64);
3021 adapter->stats.prc127 += rd32(E1000_PRC127);
3022 adapter->stats.prc255 += rd32(E1000_PRC255);
3023 adapter->stats.prc511 += rd32(E1000_PRC511);
3024 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3025 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3026 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3027 adapter->stats.sec += rd32(E1000_SEC);
3028
3029 adapter->stats.mpc += rd32(E1000_MPC);
3030 adapter->stats.scc += rd32(E1000_SCC);
3031 adapter->stats.ecol += rd32(E1000_ECOL);
3032 adapter->stats.mcc += rd32(E1000_MCC);
3033 adapter->stats.latecol += rd32(E1000_LATECOL);
3034 adapter->stats.dc += rd32(E1000_DC);
3035 adapter->stats.rlec += rd32(E1000_RLEC);
3036 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3037 adapter->stats.xontxc += rd32(E1000_XONTXC);
3038 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3039 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3040 adapter->stats.fcruc += rd32(E1000_FCRUC);
3041 adapter->stats.gptc += rd32(E1000_GPTC);
3042 adapter->stats.gotc += rd32(E1000_GOTCL);
3043 rd32(E1000_GOTCH); /* clear GOTCL */
3044 adapter->stats.rnbc += rd32(E1000_RNBC);
3045 adapter->stats.ruc += rd32(E1000_RUC);
3046 adapter->stats.rfc += rd32(E1000_RFC);
3047 adapter->stats.rjc += rd32(E1000_RJC);
3048 adapter->stats.tor += rd32(E1000_TORH);
3049 adapter->stats.tot += rd32(E1000_TOTH);
3050 adapter->stats.tpr += rd32(E1000_TPR);
3051
3052 adapter->stats.ptc64 += rd32(E1000_PTC64);
3053 adapter->stats.ptc127 += rd32(E1000_PTC127);
3054 adapter->stats.ptc255 += rd32(E1000_PTC255);
3055 adapter->stats.ptc511 += rd32(E1000_PTC511);
3056 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3057 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3058
3059 adapter->stats.mptc += rd32(E1000_MPTC);
3060 adapter->stats.bptc += rd32(E1000_BPTC);
3061
3062 /* used for adaptive IFS */
3063
3064 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3065 adapter->stats.tpt += hw->mac.tx_packet_delta;
3066 hw->mac.collision_delta = rd32(E1000_COLC);
3067 adapter->stats.colc += hw->mac.collision_delta;
3068
3069 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3070 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3071 adapter->stats.tncrs += rd32(E1000_TNCRS);
3072 adapter->stats.tsctc += rd32(E1000_TSCTC);
3073 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3074
3075 adapter->stats.iac += rd32(E1000_IAC);
3076 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3077 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3078 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3079 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3080 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3081 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3082 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3083 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3084
3085 /* Fill out the OS statistics structure */
3086 adapter->net_stats.multicast = adapter->stats.mprc;
3087 adapter->net_stats.collisions = adapter->stats.colc;
3088
3089 /* Rx Errors */
3090
3091 /* RLEC on some newer hardware can be incorrect so build
3092 * our own version based on RUC and ROC */
3093 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3094 adapter->stats.crcerrs + adapter->stats.algnerrc +
3095 adapter->stats.ruc + adapter->stats.roc +
3096 adapter->stats.cexterr;
3097 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3098 adapter->stats.roc;
3099 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3100 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3101 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3102
3103 /* Tx Errors */
3104 adapter->net_stats.tx_errors = adapter->stats.ecol +
3105 adapter->stats.latecol;
3106 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3107 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3108 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3109
3110 /* Tx Dropped needs to be maintained elsewhere */
3111
3112 /* Phy Stats */
3113 if (hw->phy.media_type == e1000_media_type_copper) {
3114 if ((adapter->link_speed == SPEED_1000) &&
3115 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3116 &phy_tmp))) {
3117 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3118 adapter->phy_stats.idle_errors += phy_tmp;
3119 }
3120 }
3121
3122 /* Management Stats */
3123 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3124 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3125 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3126}
3127
3128
3129static irqreturn_t igb_msix_other(int irq, void *data)
3130{
3131 struct net_device *netdev = data;
3132 struct igb_adapter *adapter = netdev_priv(netdev);
3133 struct e1000_hw *hw = &adapter->hw;
844290e5 3134 u32 icr = rd32(E1000_ICR);
9d5c8243 3135
844290e5
PW
3136 /* reading ICR causes bit 31 of EICR to be cleared */
3137 if (!(icr & E1000_ICR_LSC))
3138 goto no_link_interrupt;
3139 hw->mac.get_link_status = 1;
3140 /* guard against interrupt when we're going down */
3141 if (!test_bit(__IGB_DOWN, &adapter->state))
3142 mod_timer(&adapter->watchdog_timer, jiffies + 1);
661086df 3143
9d5c8243
AK
3144no_link_interrupt:
3145 wr32(E1000_IMS, E1000_IMS_LSC);
844290e5 3146 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
3147
3148 return IRQ_HANDLED;
3149}
3150
3151static irqreturn_t igb_msix_tx(int irq, void *data)
3152{
3153 struct igb_ring *tx_ring = data;
3154 struct igb_adapter *adapter = tx_ring->adapter;
3155 struct e1000_hw *hw = &adapter->hw;
3156
3157 if (!tx_ring->itr_val)
3158 wr32(E1000_EIMC, tx_ring->eims_value);
fe4506b6
JC
3159#ifdef CONFIG_DCA
3160 if (adapter->dca_enabled)
3161 igb_update_tx_dca(tx_ring);
3162#endif
9d5c8243
AK
3163 tx_ring->total_bytes = 0;
3164 tx_ring->total_packets = 0;
661086df
PWJ
3165
3166 /* auto mask will automatically reenable the interrupt when we write
3167 * EICS */
3b644cf6 3168 if (!igb_clean_tx_irq(tx_ring))
9d5c8243
AK
3169 /* Ring was not completely cleaned, so fire another interrupt */
3170 wr32(E1000_EICS, tx_ring->eims_value);
661086df 3171 else
9d5c8243 3172 wr32(E1000_EIMS, tx_ring->eims_value);
661086df 3173
9d5c8243
AK
3174 return IRQ_HANDLED;
3175}
3176
3177static irqreturn_t igb_msix_rx(int irq, void *data)
3178{
3179 struct igb_ring *rx_ring = data;
3180 struct igb_adapter *adapter = rx_ring->adapter;
3181 struct e1000_hw *hw = &adapter->hw;
3182
844290e5
PW
3183 /* Write the ITR value calculated at the end of the
3184 * previous interrupt.
3185 */
9d5c8243 3186
844290e5
PW
3187 if (adapter->set_itr) {
3188 wr32(rx_ring->itr_register,
3189 1000000000 / (rx_ring->itr_val * 256));
3190 adapter->set_itr = 0;
9d5c8243
AK
3191 }
3192
844290e5
PW
3193 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3194 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3195
fe4506b6
JC
3196#ifdef CONFIG_DCA
3197 if (adapter->dca_enabled)
3198 igb_update_rx_dca(rx_ring);
3199#endif
3200 return IRQ_HANDLED;
3201}
3202
3203#ifdef CONFIG_DCA
3204static void igb_update_rx_dca(struct igb_ring *rx_ring)
3205{
3206 u32 dca_rxctrl;
3207 struct igb_adapter *adapter = rx_ring->adapter;
3208 struct e1000_hw *hw = &adapter->hw;
3209 int cpu = get_cpu();
3210 int q = rx_ring - adapter->rx_ring;
3211
3212 if (rx_ring->cpu != cpu) {
3213 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3214 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3215 dca_rxctrl |= dca_get_tag(cpu);
3216 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3217 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3218 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3219 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3220 rx_ring->cpu = cpu;
3221 }
3222 put_cpu();
3223}
3224
3225static void igb_update_tx_dca(struct igb_ring *tx_ring)
3226{
3227 u32 dca_txctrl;
3228 struct igb_adapter *adapter = tx_ring->adapter;
3229 struct e1000_hw *hw = &adapter->hw;
3230 int cpu = get_cpu();
3231 int q = tx_ring - adapter->tx_ring;
3232
3233 if (tx_ring->cpu != cpu) {
3234 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3235 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3236 dca_txctrl |= dca_get_tag(cpu);
3237 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3238 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3239 tx_ring->cpu = cpu;
3240 }
3241 put_cpu();
3242}
3243
3244static void igb_setup_dca(struct igb_adapter *adapter)
3245{
3246 int i;
3247
3248 if (!(adapter->dca_enabled))
3249 return;
3250
3251 for (i = 0; i < adapter->num_tx_queues; i++) {
3252 adapter->tx_ring[i].cpu = -1;
3253 igb_update_tx_dca(&adapter->tx_ring[i]);
3254 }
3255 for (i = 0; i < adapter->num_rx_queues; i++) {
3256 adapter->rx_ring[i].cpu = -1;
3257 igb_update_rx_dca(&adapter->rx_ring[i]);
3258 }
3259}
3260
3261static int __igb_notify_dca(struct device *dev, void *data)
3262{
3263 struct net_device *netdev = dev_get_drvdata(dev);
3264 struct igb_adapter *adapter = netdev_priv(netdev);
3265 struct e1000_hw *hw = &adapter->hw;
3266 unsigned long event = *(unsigned long *)data;
3267
3268 switch (event) {
3269 case DCA_PROVIDER_ADD:
3270 /* if already enabled, don't do it again */
3271 if (adapter->dca_enabled)
3272 break;
3273 adapter->dca_enabled = true;
3274 /* Always use CB2 mode, difference is masked
3275 * in the CB driver. */
3276 wr32(E1000_DCA_CTRL, 2);
3277 if (dca_add_requester(dev) == 0) {
3278 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3279 igb_setup_dca(adapter);
3280 break;
3281 }
3282 /* Fall Through since DCA is disabled. */
3283 case DCA_PROVIDER_REMOVE:
3284 if (adapter->dca_enabled) {
3285 /* without this a class_device is left
3286 * hanging around in the sysfs model */
3287 dca_remove_requester(dev);
3288 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3289 adapter->dca_enabled = false;
3290 wr32(E1000_DCA_CTRL, 1);
3291 }
3292 break;
3293 }
3294
3295 return 0;
9d5c8243
AK
3296}
3297
fe4506b6
JC
3298static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3299 void *p)
3300{
3301 int ret_val;
3302
3303 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3304 __igb_notify_dca);
3305
3306 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3307}
3308#endif /* CONFIG_DCA */
9d5c8243
AK
3309
3310/**
3311 * igb_intr_msi - Interrupt Handler
3312 * @irq: interrupt number
3313 * @data: pointer to a network interface device structure
3314 **/
3315static irqreturn_t igb_intr_msi(int irq, void *data)
3316{
3317 struct net_device *netdev = data;
3318 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
3319 struct e1000_hw *hw = &adapter->hw;
3320 /* read ICR disables interrupts using IAM */
3321 u32 icr = rd32(E1000_ICR);
3322
3323 /* Write the ITR value calculated at the end of the
3324 * previous interrupt.
3325 */
3326 if (adapter->set_itr) {
844290e5 3327 wr32(E1000_ITR, 1000000000 / (adapter->itr * 256));
9d5c8243
AK
3328 adapter->set_itr = 0;
3329 }
3330
9d5c8243
AK
3331 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3332 hw->mac.get_link_status = 1;
3333 if (!test_bit(__IGB_DOWN, &adapter->state))
3334 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3335 }
3336
844290e5 3337 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
9d5c8243
AK
3338
3339 return IRQ_HANDLED;
3340}
3341
3342/**
3343 * igb_intr - Interrupt Handler
3344 * @irq: interrupt number
3345 * @data: pointer to a network interface device structure
3346 **/
3347static irqreturn_t igb_intr(int irq, void *data)
3348{
3349 struct net_device *netdev = data;
3350 struct igb_adapter *adapter = netdev_priv(netdev);
9d5c8243
AK
3351 struct e1000_hw *hw = &adapter->hw;
3352 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3353 * need for the IMC write */
3354 u32 icr = rd32(E1000_ICR);
3355 u32 eicr = 0;
3356 if (!icr)
3357 return IRQ_NONE; /* Not our interrupt */
3358
3359 /* Write the ITR value calculated at the end of the
3360 * previous interrupt.
3361 */
3362 if (adapter->set_itr) {
844290e5 3363 wr32(E1000_ITR, 1000000000 / (adapter->itr * 256));
9d5c8243
AK
3364 adapter->set_itr = 0;
3365 }
3366
3367 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3368 * not set, then the adapter didn't send an interrupt */
3369 if (!(icr & E1000_ICR_INT_ASSERTED))
3370 return IRQ_NONE;
3371
3372 eicr = rd32(E1000_EICR);
3373
3374 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3375 hw->mac.get_link_status = 1;
3376 /* guard against interrupt when we're going down */
3377 if (!test_bit(__IGB_DOWN, &adapter->state))
3378 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3379 }
3380
844290e5 3381 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
9d5c8243
AK
3382
3383 return IRQ_HANDLED;
3384}
3385
3386/**
661086df
PWJ
3387 * igb_poll - NAPI Rx polling callback
3388 * @napi: napi polling structure
3389 * @budget: count of how many packets we should handle
9d5c8243 3390 **/
661086df 3391static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 3392{
661086df
PWJ
3393 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3394 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243 3395 struct net_device *netdev = adapter->netdev;
661086df 3396 int tx_clean_complete, work_done = 0;
9d5c8243 3397
661086df 3398 /* this poll routine only supports one tx and one rx queue */
fe4506b6
JC
3399#ifdef CONFIG_DCA
3400 if (adapter->dca_enabled)
3401 igb_update_tx_dca(&adapter->tx_ring[0]);
3402#endif
661086df 3403 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
fe4506b6
JC
3404
3405#ifdef CONFIG_DCA
3406 if (adapter->dca_enabled)
3407 igb_update_rx_dca(&adapter->rx_ring[0]);
3408#endif
661086df 3409 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
9d5c8243
AK
3410
3411 /* If no Tx and not enough Rx work done, exit the polling mode */
3412 if ((tx_clean_complete && (work_done < budget)) ||
3413 !netif_running(netdev)) {
9d5c8243
AK
3414 if (adapter->itr_setting & 3)
3415 igb_set_itr(adapter, E1000_ITR, false);
3416 netif_rx_complete(netdev, napi);
3417 if (!test_bit(__IGB_DOWN, &adapter->state))
3418 igb_irq_enable(adapter);
3419 return 0;
3420 }
3421
3422 return 1;
3423}
3424
3425static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3426{
3427 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3428 struct igb_adapter *adapter = rx_ring->adapter;
3429 struct e1000_hw *hw = &adapter->hw;
3430 struct net_device *netdev = adapter->netdev;
3431 int work_done = 0;
3432
3433 /* Keep link state information with original netdev */
3434 if (!netif_carrier_ok(netdev))
3435 goto quit_polling;
3436
fe4506b6
JC
3437#ifdef CONFIG_DCA
3438 if (adapter->dca_enabled)
3439 igb_update_rx_dca(rx_ring);
3440#endif
3b644cf6 3441 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
9d5c8243
AK
3442
3443
3444 /* If not enough Rx work done, exit the polling mode */
3445 if ((work_done == 0) || !netif_running(netdev)) {
3446quit_polling:
3447 netif_rx_complete(netdev, napi);
3448
3449 wr32(E1000_EIMS, rx_ring->eims_value);
3450 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3451 (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3452 int mean_size = rx_ring->total_bytes /
3453 rx_ring->total_packets;
3454 if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3455 igb_raise_rx_eitr(adapter, rx_ring);
3456 else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3457 igb_lower_rx_eitr(adapter, rx_ring);
3458 }
844290e5
PW
3459
3460 if (!test_bit(__IGB_DOWN, &adapter->state))
3461 wr32(E1000_EIMS, rx_ring->eims_value);
3462
9d5c8243
AK
3463 return 0;
3464 }
3465
3466 return 1;
3467}
6d8126f9
AV
3468
3469static inline u32 get_head(struct igb_ring *tx_ring)
3470{
3471 void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3472 return le32_to_cpu(*(volatile __le32 *)end);
3473}
3474
9d5c8243
AK
3475/**
3476 * igb_clean_tx_irq - Reclaim resources after transmit completes
3477 * @adapter: board private structure
3478 * returns true if ring is completely cleaned
3479 **/
3b644cf6 3480static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
9d5c8243 3481{
3b644cf6 3482 struct igb_adapter *adapter = tx_ring->adapter;
9d5c8243 3483 struct e1000_hw *hw = &adapter->hw;
3b644cf6 3484 struct net_device *netdev = adapter->netdev;
9d5c8243
AK
3485 struct e1000_tx_desc *tx_desc;
3486 struct igb_buffer *buffer_info;
3487 struct sk_buff *skb;
3488 unsigned int i;
3489 u32 head, oldhead;
3490 unsigned int count = 0;
3491 bool cleaned = false;
3492 bool retval = true;
3493 unsigned int total_bytes = 0, total_packets = 0;
3494
3495 rmb();
6d8126f9 3496 head = get_head(tx_ring);
9d5c8243
AK
3497 i = tx_ring->next_to_clean;
3498 while (1) {
3499 while (i != head) {
3500 cleaned = true;
3501 tx_desc = E1000_TX_DESC(*tx_ring, i);
3502 buffer_info = &tx_ring->buffer_info[i];
3503 skb = buffer_info->skb;
3504
3505 if (skb) {
3506 unsigned int segs, bytecount;
3507 /* gso_segs is currently only valid for tcp */
3508 segs = skb_shinfo(skb)->gso_segs ?: 1;
3509 /* multiply data chunks by size of headers */
3510 bytecount = ((segs - 1) * skb_headlen(skb)) +
3511 skb->len;
3512 total_packets += segs;
3513 total_bytes += bytecount;
3514 }
3515
3516 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3517 tx_desc->upper.data = 0;
3518
3519 i++;
3520 if (i == tx_ring->count)
3521 i = 0;
3522
3523 count++;
3524 if (count == IGB_MAX_TX_CLEAN) {
3525 retval = false;
3526 goto done_cleaning;
3527 }
3528 }
3529 oldhead = head;
3530 rmb();
6d8126f9 3531 head = get_head(tx_ring);
9d5c8243
AK
3532 if (head == oldhead)
3533 goto done_cleaning;
3534 } /* while (1) */
3535
3536done_cleaning:
3537 tx_ring->next_to_clean = i;
3538
3539 if (unlikely(cleaned &&
3540 netif_carrier_ok(netdev) &&
3541 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3542 /* Make sure that anybody stopping the queue after this
3543 * sees the new next_to_clean.
3544 */
3545 smp_mb();
661086df
PWJ
3546#ifdef CONFIG_NETDEVICES_MULTIQUEUE
3547 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3548 !(test_bit(__IGB_DOWN, &adapter->state))) {
3549 netif_wake_subqueue(netdev, tx_ring->queue_index);
3550 ++adapter->restart_queue;
3551 }
3552#else
9d5c8243
AK
3553 if (netif_queue_stopped(netdev) &&
3554 !(test_bit(__IGB_DOWN, &adapter->state))) {
3555 netif_wake_queue(netdev);
3556 ++adapter->restart_queue;
3557 }
661086df 3558#endif
9d5c8243
AK
3559 }
3560
3561 if (tx_ring->detect_tx_hung) {
3562 /* Detect a transmit hang in hardware, this serializes the
3563 * check with the clearing of time_stamp and movement of i */
3564 tx_ring->detect_tx_hung = false;
3565 if (tx_ring->buffer_info[i].time_stamp &&
3566 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3567 (adapter->tx_timeout_factor * HZ))
3568 && !(rd32(E1000_STATUS) &
3569 E1000_STATUS_TXOFF)) {
3570
3571 tx_desc = E1000_TX_DESC(*tx_ring, i);
3572 /* detected Tx unit hang */
3573 dev_err(&adapter->pdev->dev,
3574 "Detected Tx Unit Hang\n"
3575 " Tx Queue <%lu>\n"
3576 " TDH <%x>\n"
3577 " TDT <%x>\n"
3578 " next_to_use <%x>\n"
3579 " next_to_clean <%x>\n"
3580 " head (WB) <%x>\n"
3581 "buffer_info[next_to_clean]\n"
3582 " time_stamp <%lx>\n"
3583 " jiffies <%lx>\n"
3584 " desc.status <%x>\n",
3585 (unsigned long)((tx_ring - adapter->tx_ring) /
3586 sizeof(struct igb_ring)),
3587 readl(adapter->hw.hw_addr + tx_ring->head),
3588 readl(adapter->hw.hw_addr + tx_ring->tail),
3589 tx_ring->next_to_use,
3590 tx_ring->next_to_clean,
3591 head,
3592 tx_ring->buffer_info[i].time_stamp,
3593 jiffies,
3594 tx_desc->upper.fields.status);
661086df
PWJ
3595#ifdef CONFIG_NETDEVICES_MULTIQUEUE
3596 netif_stop_subqueue(netdev, tx_ring->queue_index);
3597#else
9d5c8243 3598 netif_stop_queue(netdev);
661086df 3599#endif
9d5c8243
AK
3600 }
3601 }
3602 tx_ring->total_bytes += total_bytes;
3603 tx_ring->total_packets += total_packets;
e21ed353
AD
3604 tx_ring->tx_stats.bytes += total_bytes;
3605 tx_ring->tx_stats.packets += total_packets;
9d5c8243
AK
3606 adapter->net_stats.tx_bytes += total_bytes;
3607 adapter->net_stats.tx_packets += total_packets;
3608 return retval;
3609}
3610
3611
3612/**
3613 * igb_receive_skb - helper function to handle rx indications
3614 * @adapter: board private structure
3615 * @status: descriptor status field as written by hardware
3616 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3617 * @skb: pointer to sk_buff to be indicated to stack
3618 **/
6d8126f9 3619static void igb_receive_skb(struct igb_adapter *adapter, u8 status, __le16 vlan,
9d5c8243
AK
3620 struct sk_buff *skb)
3621{
3622 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
3623 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
38b22195 3624 le16_to_cpu(vlan));
9d5c8243
AK
3625 else
3626 netif_receive_skb(skb);
3627}
3628
3629
3630static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3631 u32 status_err, struct sk_buff *skb)
3632{
3633 skb->ip_summed = CHECKSUM_NONE;
3634
3635 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3636 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3637 return;
3638 /* TCP/UDP checksum error bit is set */
3639 if (status_err &
3640 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3641 /* let the stack verify checksum errors */
3642 adapter->hw_csum_err++;
3643 return;
3644 }
3645 /* It must be a TCP or UDP packet with a valid checksum */
3646 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3647 skb->ip_summed = CHECKSUM_UNNECESSARY;
3648
3649 adapter->hw_csum_good++;
3650}
3651
3b644cf6
MW
3652static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3653 int *work_done, int budget)
9d5c8243 3654{
3b644cf6 3655 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
3656 struct net_device *netdev = adapter->netdev;
3657 struct pci_dev *pdev = adapter->pdev;
3658 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3659 struct igb_buffer *buffer_info , *next_buffer;
3660 struct sk_buff *skb;
3661 unsigned int i, j;
3662 u32 length, hlen, staterr;
3663 bool cleaned = false;
3664 int cleaned_count = 0;
3665 unsigned int total_bytes = 0, total_packets = 0;
3666
3667 i = rx_ring->next_to_clean;
3668 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3669 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3670
3671 while (staterr & E1000_RXD_STAT_DD) {
3672 if (*work_done >= budget)
3673 break;
3674 (*work_done)++;
3675 buffer_info = &rx_ring->buffer_info[i];
3676
3677 /* HW will not DMA in data larger than the given buffer, even
3678 * if it parses the (NFS, of course) header to be larger. In
3679 * that case, it fills the header buffer and spills the rest
3680 * into the page.
3681 */
7deb07b1
AV
3682 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3683 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
9d5c8243
AK
3684 if (hlen > adapter->rx_ps_hdr_size)
3685 hlen = adapter->rx_ps_hdr_size;
3686
3687 length = le16_to_cpu(rx_desc->wb.upper.length);
3688 cleaned = true;
3689 cleaned_count++;
3690
3691 if (rx_ring->pending_skb != NULL) {
3692 skb = rx_ring->pending_skb;
3693 rx_ring->pending_skb = NULL;
3694 j = rx_ring->pending_skb_page;
3695 } else {
3696 skb = buffer_info->skb;
3697 prefetch(skb->data - NET_IP_ALIGN);
3698 buffer_info->skb = NULL;
3699 if (hlen) {
3700 pci_unmap_single(pdev, buffer_info->dma,
3701 adapter->rx_ps_hdr_size +
3702 NET_IP_ALIGN,
3703 PCI_DMA_FROMDEVICE);
3704 skb_put(skb, hlen);
3705 } else {
3706 pci_unmap_single(pdev, buffer_info->dma,
3707 adapter->rx_buffer_len +
3708 NET_IP_ALIGN,
3709 PCI_DMA_FROMDEVICE);
3710 skb_put(skb, length);
3711 goto send_up;
3712 }
3713 j = 0;
3714 }
3715
3716 while (length) {
3717 pci_unmap_page(pdev, buffer_info->page_dma,
3718 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3719 buffer_info->page_dma = 0;
3720 skb_fill_page_desc(skb, j, buffer_info->page,
3721 0, length);
3722 buffer_info->page = NULL;
3723
3724 skb->len += length;
3725 skb->data_len += length;
3726 skb->truesize += length;
3727 rx_desc->wb.upper.status_error = 0;
3728 if (staterr & E1000_RXD_STAT_EOP)
3729 break;
3730
3731 j++;
3732 cleaned_count++;
3733 i++;
3734 if (i == rx_ring->count)
3735 i = 0;
3736
3737 buffer_info = &rx_ring->buffer_info[i];
3738 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3739 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3740 length = le16_to_cpu(rx_desc->wb.upper.length);
3741 if (!(staterr & E1000_RXD_STAT_DD)) {
3742 rx_ring->pending_skb = skb;
3743 rx_ring->pending_skb_page = j;
3744 goto out;
3745 }
3746 }
3747send_up:
9d5c8243
AK
3748 i++;
3749 if (i == rx_ring->count)
3750 i = 0;
3751 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3752 prefetch(next_rxd);
3753 next_buffer = &rx_ring->buffer_info[i];
3754
3755 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3756 dev_kfree_skb_irq(skb);
3757 goto next_desc;
3758 }
3759 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3760
3761 total_bytes += skb->len;
3762 total_packets++;
3763
3764 igb_rx_checksum_adv(adapter, staterr, skb);
3765
3766 skb->protocol = eth_type_trans(skb, netdev);
3767
3768 igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb);
3769
3770 netdev->last_rx = jiffies;
3771
3772next_desc:
3773 rx_desc->wb.upper.status_error = 0;
3774
3775 /* return some buffers to hardware, one at a time is too slow */
3776 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 3777 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
3778 cleaned_count = 0;
3779 }
3780
3781 /* use prefetched values */
3782 rx_desc = next_rxd;
3783 buffer_info = next_buffer;
3784
3785 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3786 }
3787out:
3788 rx_ring->next_to_clean = i;
3789 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3790
3791 if (cleaned_count)
3b644cf6 3792 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
3793
3794 rx_ring->total_packets += total_packets;
3795 rx_ring->total_bytes += total_bytes;
3796 rx_ring->rx_stats.packets += total_packets;
3797 rx_ring->rx_stats.bytes += total_bytes;
3798 adapter->net_stats.rx_bytes += total_bytes;
3799 adapter->net_stats.rx_packets += total_packets;
3800 return cleaned;
3801}
3802
3803
3804/**
3805 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3806 * @adapter: address of board private structure
3807 **/
3b644cf6 3808static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
9d5c8243
AK
3809 int cleaned_count)
3810{
3b644cf6 3811 struct igb_adapter *adapter = rx_ring->adapter;
9d5c8243
AK
3812 struct net_device *netdev = adapter->netdev;
3813 struct pci_dev *pdev = adapter->pdev;
3814 union e1000_adv_rx_desc *rx_desc;
3815 struct igb_buffer *buffer_info;
3816 struct sk_buff *skb;
3817 unsigned int i;
3818
3819 i = rx_ring->next_to_use;
3820 buffer_info = &rx_ring->buffer_info[i];
3821
3822 while (cleaned_count--) {
3823 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3824
3825 if (adapter->rx_ps_hdr_size && !buffer_info->page) {
3826 buffer_info->page = alloc_page(GFP_ATOMIC);
3827 if (!buffer_info->page) {
3828 adapter->alloc_rx_buff_failed++;
3829 goto no_buffers;
3830 }
3831 buffer_info->page_dma =
3832 pci_map_page(pdev,
3833 buffer_info->page,
3834 0, PAGE_SIZE,
3835 PCI_DMA_FROMDEVICE);
3836 }
3837
3838 if (!buffer_info->skb) {
3839 int bufsz;
3840
3841 if (adapter->rx_ps_hdr_size)
3842 bufsz = adapter->rx_ps_hdr_size;
3843 else
3844 bufsz = adapter->rx_buffer_len;
3845 bufsz += NET_IP_ALIGN;
3846 skb = netdev_alloc_skb(netdev, bufsz);
3847
3848 if (!skb) {
3849 adapter->alloc_rx_buff_failed++;
3850 goto no_buffers;
3851 }
3852
3853 /* Make buffer alignment 2 beyond a 16 byte boundary
3854 * this will result in a 16 byte aligned IP header after
3855 * the 14 byte MAC header is removed
3856 */
3857 skb_reserve(skb, NET_IP_ALIGN);
3858
3859 buffer_info->skb = skb;
3860 buffer_info->dma = pci_map_single(pdev, skb->data,
3861 bufsz,
3862 PCI_DMA_FROMDEVICE);
3863
3864 }
3865 /* Refresh the desc even if buffer_addrs didn't change because
3866 * each write-back erases this info. */
3867 if (adapter->rx_ps_hdr_size) {
3868 rx_desc->read.pkt_addr =
3869 cpu_to_le64(buffer_info->page_dma);
3870 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
3871 } else {
3872 rx_desc->read.pkt_addr =
3873 cpu_to_le64(buffer_info->dma);
3874 rx_desc->read.hdr_addr = 0;
3875 }
3876
3877 i++;
3878 if (i == rx_ring->count)
3879 i = 0;
3880 buffer_info = &rx_ring->buffer_info[i];
3881 }
3882
3883no_buffers:
3884 if (rx_ring->next_to_use != i) {
3885 rx_ring->next_to_use = i;
3886 if (i == 0)
3887 i = (rx_ring->count - 1);
3888 else
3889 i--;
3890
3891 /* Force memory writes to complete before letting h/w
3892 * know there are new descriptors to fetch. (Only
3893 * applicable for weak-ordered memory model archs,
3894 * such as IA-64). */
3895 wmb();
3896 writel(i, adapter->hw.hw_addr + rx_ring->tail);
3897 }
3898}
3899
3900/**
3901 * igb_mii_ioctl -
3902 * @netdev:
3903 * @ifreq:
3904 * @cmd:
3905 **/
3906static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3907{
3908 struct igb_adapter *adapter = netdev_priv(netdev);
3909 struct mii_ioctl_data *data = if_mii(ifr);
3910
3911 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3912 return -EOPNOTSUPP;
3913
3914 switch (cmd) {
3915 case SIOCGMIIPHY:
3916 data->phy_id = adapter->hw.phy.addr;
3917 break;
3918 case SIOCGMIIREG:
3919 if (!capable(CAP_NET_ADMIN))
3920 return -EPERM;
3921 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
3922 data->reg_num
3923 & 0x1F, &data->val_out))
3924 return -EIO;
3925 break;
3926 case SIOCSMIIREG:
3927 default:
3928 return -EOPNOTSUPP;
3929 }
3930 return 0;
3931}
3932
3933/**
3934 * igb_ioctl -
3935 * @netdev:
3936 * @ifreq:
3937 * @cmd:
3938 **/
3939static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3940{
3941 switch (cmd) {
3942 case SIOCGMIIPHY:
3943 case SIOCGMIIREG:
3944 case SIOCSMIIREG:
3945 return igb_mii_ioctl(netdev, ifr, cmd);
3946 default:
3947 return -EOPNOTSUPP;
3948 }
3949}
3950
3951static void igb_vlan_rx_register(struct net_device *netdev,
3952 struct vlan_group *grp)
3953{
3954 struct igb_adapter *adapter = netdev_priv(netdev);
3955 struct e1000_hw *hw = &adapter->hw;
3956 u32 ctrl, rctl;
3957
3958 igb_irq_disable(adapter);
3959 adapter->vlgrp = grp;
3960
3961 if (grp) {
3962 /* enable VLAN tag insert/strip */
3963 ctrl = rd32(E1000_CTRL);
3964 ctrl |= E1000_CTRL_VME;
3965 wr32(E1000_CTRL, ctrl);
3966
3967 /* enable VLAN receive filtering */
3968 rctl = rd32(E1000_RCTL);
3969 rctl |= E1000_RCTL_VFE;
3970 rctl &= ~E1000_RCTL_CFIEN;
3971 wr32(E1000_RCTL, rctl);
3972 igb_update_mng_vlan(adapter);
3973 wr32(E1000_RLPML,
3974 adapter->max_frame_size + VLAN_TAG_SIZE);
3975 } else {
3976 /* disable VLAN tag insert/strip */
3977 ctrl = rd32(E1000_CTRL);
3978 ctrl &= ~E1000_CTRL_VME;
3979 wr32(E1000_CTRL, ctrl);
3980
3981 /* disable VLAN filtering */
3982 rctl = rd32(E1000_RCTL);
3983 rctl &= ~E1000_RCTL_VFE;
3984 wr32(E1000_RCTL, rctl);
3985 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
3986 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3987 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
3988 }
3989 wr32(E1000_RLPML,
3990 adapter->max_frame_size);
3991 }
3992
3993 if (!test_bit(__IGB_DOWN, &adapter->state))
3994 igb_irq_enable(adapter);
3995}
3996
3997static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
3998{
3999 struct igb_adapter *adapter = netdev_priv(netdev);
4000 struct e1000_hw *hw = &adapter->hw;
4001 u32 vfta, index;
4002
4003 if ((adapter->hw.mng_cookie.status &
4004 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4005 (vid == adapter->mng_vlan_id))
4006 return;
4007 /* add VID to filter table */
4008 index = (vid >> 5) & 0x7F;
4009 vfta = array_rd32(E1000_VFTA, index);
4010 vfta |= (1 << (vid & 0x1F));
4011 igb_write_vfta(&adapter->hw, index, vfta);
4012}
4013
4014static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4015{
4016 struct igb_adapter *adapter = netdev_priv(netdev);
4017 struct e1000_hw *hw = &adapter->hw;
4018 u32 vfta, index;
4019
4020 igb_irq_disable(adapter);
4021 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4022
4023 if (!test_bit(__IGB_DOWN, &adapter->state))
4024 igb_irq_enable(adapter);
4025
4026 if ((adapter->hw.mng_cookie.status &
4027 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4028 (vid == adapter->mng_vlan_id)) {
4029 /* release control to f/w */
4030 igb_release_hw_control(adapter);
4031 return;
4032 }
4033
4034 /* remove VID from filter table */
4035 index = (vid >> 5) & 0x7F;
4036 vfta = array_rd32(E1000_VFTA, index);
4037 vfta &= ~(1 << (vid & 0x1F));
4038 igb_write_vfta(&adapter->hw, index, vfta);
4039}
4040
4041static void igb_restore_vlan(struct igb_adapter *adapter)
4042{
4043 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4044
4045 if (adapter->vlgrp) {
4046 u16 vid;
4047 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4048 if (!vlan_group_get_device(adapter->vlgrp, vid))
4049 continue;
4050 igb_vlan_rx_add_vid(adapter->netdev, vid);
4051 }
4052 }
4053}
4054
4055int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4056{
4057 struct e1000_mac_info *mac = &adapter->hw.mac;
4058
4059 mac->autoneg = 0;
4060
4061 /* Fiber NICs only allow 1000 gbps Full duplex */
4062 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4063 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4064 dev_err(&adapter->pdev->dev,
4065 "Unsupported Speed/Duplex configuration\n");
4066 return -EINVAL;
4067 }
4068
4069 switch (spddplx) {
4070 case SPEED_10 + DUPLEX_HALF:
4071 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4072 break;
4073 case SPEED_10 + DUPLEX_FULL:
4074 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4075 break;
4076 case SPEED_100 + DUPLEX_HALF:
4077 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4078 break;
4079 case SPEED_100 + DUPLEX_FULL:
4080 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4081 break;
4082 case SPEED_1000 + DUPLEX_FULL:
4083 mac->autoneg = 1;
4084 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4085 break;
4086 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4087 default:
4088 dev_err(&adapter->pdev->dev,
4089 "Unsupported Speed/Duplex configuration\n");
4090 return -EINVAL;
4091 }
4092 return 0;
4093}
4094
4095
4096static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4097{
4098 struct net_device *netdev = pci_get_drvdata(pdev);
4099 struct igb_adapter *adapter = netdev_priv(netdev);
4100 struct e1000_hw *hw = &adapter->hw;
4101 u32 ctrl, ctrl_ext, rctl, status;
4102 u32 wufc = adapter->wol;
4103#ifdef CONFIG_PM
4104 int retval = 0;
4105#endif
4106
4107 netif_device_detach(netdev);
4108
4109 if (netif_running(netdev)) {
4110 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4111 igb_down(adapter);
4112 igb_free_irq(adapter);
4113 }
4114
4115#ifdef CONFIG_PM
4116 retval = pci_save_state(pdev);
4117 if (retval)
4118 return retval;
4119#endif
4120
4121 status = rd32(E1000_STATUS);
4122 if (status & E1000_STATUS_LU)
4123 wufc &= ~E1000_WUFC_LNKC;
4124
4125 if (wufc) {
4126 igb_setup_rctl(adapter);
4127 igb_set_multi(netdev);
4128
4129 /* turn on all-multi mode if wake on multicast is enabled */
4130 if (wufc & E1000_WUFC_MC) {
4131 rctl = rd32(E1000_RCTL);
4132 rctl |= E1000_RCTL_MPE;
4133 wr32(E1000_RCTL, rctl);
4134 }
4135
4136 ctrl = rd32(E1000_CTRL);
4137 /* advertise wake from D3Cold */
4138 #define E1000_CTRL_ADVD3WUC 0x00100000
4139 /* phy power management enable */
4140 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4141 ctrl |= E1000_CTRL_ADVD3WUC;
4142 wr32(E1000_CTRL, ctrl);
4143
4144 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4145 adapter->hw.phy.media_type ==
4146 e1000_media_type_internal_serdes) {
4147 /* keep the laser running in D3 */
4148 ctrl_ext = rd32(E1000_CTRL_EXT);
4149 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4150 wr32(E1000_CTRL_EXT, ctrl_ext);
4151 }
4152
4153 /* Allow time for pending master requests to run */
4154 igb_disable_pcie_master(&adapter->hw);
4155
4156 wr32(E1000_WUC, E1000_WUC_PME_EN);
4157 wr32(E1000_WUFC, wufc);
4158 pci_enable_wake(pdev, PCI_D3hot, 1);
4159 pci_enable_wake(pdev, PCI_D3cold, 1);
4160 } else {
4161 wr32(E1000_WUC, 0);
4162 wr32(E1000_WUFC, 0);
4163 pci_enable_wake(pdev, PCI_D3hot, 0);
4164 pci_enable_wake(pdev, PCI_D3cold, 0);
4165 }
4166
9d5c8243
AK
4167 /* make sure adapter isn't asleep if manageability is enabled */
4168 if (adapter->en_mng_pt) {
4169 pci_enable_wake(pdev, PCI_D3hot, 1);
4170 pci_enable_wake(pdev, PCI_D3cold, 1);
4171 }
4172
4173 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4174 * would have already happened in close and is redundant. */
4175 igb_release_hw_control(adapter);
4176
4177 pci_disable_device(pdev);
4178
4179 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4180
4181 return 0;
4182}
4183
4184#ifdef CONFIG_PM
4185static int igb_resume(struct pci_dev *pdev)
4186{
4187 struct net_device *netdev = pci_get_drvdata(pdev);
4188 struct igb_adapter *adapter = netdev_priv(netdev);
4189 struct e1000_hw *hw = &adapter->hw;
4190 u32 err;
4191
4192 pci_set_power_state(pdev, PCI_D0);
4193 pci_restore_state(pdev);
42bfd33a
TI
4194
4195 if (adapter->need_ioport)
4196 err = pci_enable_device(pdev);
4197 else
4198 err = pci_enable_device_mem(pdev);
9d5c8243
AK
4199 if (err) {
4200 dev_err(&pdev->dev,
4201 "igb: Cannot enable PCI device from suspend\n");
4202 return err;
4203 }
4204 pci_set_master(pdev);
4205
4206 pci_enable_wake(pdev, PCI_D3hot, 0);
4207 pci_enable_wake(pdev, PCI_D3cold, 0);
4208
4209 if (netif_running(netdev)) {
4210 err = igb_request_irq(adapter);
4211 if (err)
4212 return err;
4213 }
4214
4215 /* e1000_power_up_phy(adapter); */
4216
4217 igb_reset(adapter);
4218 wr32(E1000_WUS, ~0);
4219
4220 igb_init_manageability(adapter);
4221
4222 if (netif_running(netdev))
4223 igb_up(adapter);
4224
4225 netif_device_attach(netdev);
4226
4227 /* let the f/w know that the h/w is now under the control of the
4228 * driver. */
4229 igb_get_hw_control(adapter);
4230
4231 return 0;
4232}
4233#endif
4234
4235static void igb_shutdown(struct pci_dev *pdev)
4236{
4237 igb_suspend(pdev, PMSG_SUSPEND);
4238}
4239
4240#ifdef CONFIG_NET_POLL_CONTROLLER
4241/*
4242 * Polling 'interrupt' - used by things like netconsole to send skbs
4243 * without having to re-enable interrupts. It's not called while
4244 * the interrupt routine is executing.
4245 */
4246static void igb_netpoll(struct net_device *netdev)
4247{
4248 struct igb_adapter *adapter = netdev_priv(netdev);
4249 int i;
4250 int work_done = 0;
4251
4252 igb_irq_disable(adapter);
4253 for (i = 0; i < adapter->num_tx_queues; i++)
3b644cf6 4254 igb_clean_tx_irq(&adapter->tx_ring[i]);
9d5c8243
AK
4255
4256 for (i = 0; i < adapter->num_rx_queues; i++)
3b644cf6 4257 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
9d5c8243
AK
4258 &work_done,
4259 adapter->rx_ring[i].napi.weight);
4260
4261 igb_irq_enable(adapter);
4262}
4263#endif /* CONFIG_NET_POLL_CONTROLLER */
4264
4265/**
4266 * igb_io_error_detected - called when PCI error is detected
4267 * @pdev: Pointer to PCI device
4268 * @state: The current pci connection state
4269 *
4270 * This function is called after a PCI bus error affecting
4271 * this device has been detected.
4272 */
4273static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4274 pci_channel_state_t state)
4275{
4276 struct net_device *netdev = pci_get_drvdata(pdev);
4277 struct igb_adapter *adapter = netdev_priv(netdev);
4278
4279 netif_device_detach(netdev);
4280
4281 if (netif_running(netdev))
4282 igb_down(adapter);
4283 pci_disable_device(pdev);
4284
4285 /* Request a slot slot reset. */
4286 return PCI_ERS_RESULT_NEED_RESET;
4287}
4288
4289/**
4290 * igb_io_slot_reset - called after the pci bus has been reset.
4291 * @pdev: Pointer to PCI device
4292 *
4293 * Restart the card from scratch, as if from a cold-boot. Implementation
4294 * resembles the first-half of the igb_resume routine.
4295 */
4296static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4297{
4298 struct net_device *netdev = pci_get_drvdata(pdev);
4299 struct igb_adapter *adapter = netdev_priv(netdev);
4300 struct e1000_hw *hw = &adapter->hw;
42bfd33a 4301 int err;
9d5c8243 4302
42bfd33a
TI
4303 if (adapter->need_ioport)
4304 err = pci_enable_device(pdev);
4305 else
4306 err = pci_enable_device_mem(pdev);
4307 if (err) {
9d5c8243
AK
4308 dev_err(&pdev->dev,
4309 "Cannot re-enable PCI device after reset.\n");
4310 return PCI_ERS_RESULT_DISCONNECT;
4311 }
4312 pci_set_master(pdev);
c682fc23 4313 pci_restore_state(pdev);
9d5c8243
AK
4314
4315 pci_enable_wake(pdev, PCI_D3hot, 0);
4316 pci_enable_wake(pdev, PCI_D3cold, 0);
4317
4318 igb_reset(adapter);
4319 wr32(E1000_WUS, ~0);
4320
4321 return PCI_ERS_RESULT_RECOVERED;
4322}
4323
4324/**
4325 * igb_io_resume - called when traffic can start flowing again.
4326 * @pdev: Pointer to PCI device
4327 *
4328 * This callback is called when the error recovery driver tells us that
4329 * its OK to resume normal operation. Implementation resembles the
4330 * second-half of the igb_resume routine.
4331 */
4332static void igb_io_resume(struct pci_dev *pdev)
4333{
4334 struct net_device *netdev = pci_get_drvdata(pdev);
4335 struct igb_adapter *adapter = netdev_priv(netdev);
4336
4337 igb_init_manageability(adapter);
4338
4339 if (netif_running(netdev)) {
4340 if (igb_up(adapter)) {
4341 dev_err(&pdev->dev, "igb_up failed after reset\n");
4342 return;
4343 }
4344 }
4345
4346 netif_device_attach(netdev);
4347
4348 /* let the f/w know that the h/w is now under the control of the
4349 * driver. */
4350 igb_get_hw_control(adapter);
4351
4352}
4353
4354/* igb_main.c */