igb: cleanup receive address register initialization
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / net / igb / e1000_mac.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30#include <linux/pci.h>
31#include <linux/netdevice.h>
32
33#include "e1000_mac.h"
34
35#include "igb.h"
36
37static s32 igb_set_default_fc(struct e1000_hw *hw);
38static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
9d5c8243 39
9d5c8243 40/**
733596be 41 * igb_get_bus_info_pcie - Get PCIe bus information
9d5c8243
AK
42 * @hw: pointer to the HW structure
43 *
44 * Determines and stores the system bus information for a particular
45 * network interface. The following bus information is determined and stored:
46 * bus speed, bus width, type (PCIe), and PCIe function.
47 **/
48s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
49{
50 struct e1000_bus_info *bus = &hw->bus;
51 s32 ret_val;
5e8427e5
AD
52 u32 reg;
53 u16 pcie_link_status;
9d5c8243
AK
54
55 bus->type = e1000_bus_type_pci_express;
56 bus->speed = e1000_bus_speed_2500;
57
58 ret_val = igb_read_pcie_cap_reg(hw,
59 PCIE_LINK_STATUS,
60 &pcie_link_status);
61 if (ret_val)
62 bus->width = e1000_bus_width_unknown;
63 else
64 bus->width = (enum e1000_bus_width)((pcie_link_status &
65 PCIE_LINK_WIDTH_MASK) >>
66 PCIE_LINK_WIDTH_SHIFT);
67
5e8427e5
AD
68 reg = rd32(E1000_STATUS);
69 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
9d5c8243
AK
70
71 return 0;
72}
73
74/**
733596be 75 * igb_clear_vfta - Clear VLAN filter table
9d5c8243
AK
76 * @hw: pointer to the HW structure
77 *
78 * Clears the register array which contains the VLAN filter table by
79 * setting all the values to 0.
80 **/
81void igb_clear_vfta(struct e1000_hw *hw)
82{
83 u32 offset;
84
85 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
86 array_wr32(E1000_VFTA, offset, 0);
87 wrfl();
88 }
89}
90
91/**
733596be 92 * igb_write_vfta - Write value to VLAN filter table
9d5c8243
AK
93 * @hw: pointer to the HW structure
94 * @offset: register offset in VLAN filter table
95 * @value: register value written to VLAN filter table
96 *
97 * Writes value at the given offset in the register array which stores
98 * the VLAN filter table.
99 **/
ff6f63dd 100static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
9d5c8243
AK
101{
102 array_wr32(E1000_VFTA, offset, value);
103 wrfl();
104}
105
5ac16659
AD
106/**
107 * igb_init_rx_addrs - Initialize receive address's
108 * @hw: pointer to the HW structure
109 * @rar_count: receive address registers
110 *
111 * Setups the receive address registers by setting the base receive address
112 * register to the devices MAC address and clearing all the other receive
113 * address registers to 0.
114 **/
115void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
116{
117 u32 i;
118 u8 mac_addr[ETH_ALEN] = {0};
119
120 /* Setup the receive address */
121 hw_dbg("Programming MAC Address into RAR[0]\n");
122
123 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
124
125 /* Zero out the other (rar_entry_count - 1) receive addresses */
126 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
127 for (i = 1; i < rar_count; i++)
128 hw->mac.ops.rar_set(hw, mac_addr, i);
129}
130
4ae196df
AD
131/**
132 * igb_vfta_set - enable or disable vlan in VLAN filter table
133 * @hw: pointer to the HW structure
134 * @vid: VLAN id to add or remove
135 * @add: if true add filter, if false remove
136 *
137 * Sets or clears a bit in the VLAN filter table array based on VLAN id
138 * and if we are adding or removing the filter
139 **/
cad6d05f 140s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
4ae196df
AD
141{
142 u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
75f4f382 143 u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
cad6d05f
AD
144 u32 vfta = array_rd32(E1000_VFTA, index);
145 s32 ret_val = 0;
4ae196df 146
cad6d05f
AD
147 /* bit was set/cleared before we started */
148 if ((!!(vfta & mask)) == add) {
149 ret_val = -E1000_ERR_CONFIG;
150 } else {
151 if (add)
152 vfta |= mask;
153 else
154 vfta &= ~mask;
155 }
4ae196df
AD
156
157 igb_write_vfta(hw, index, vfta);
cad6d05f
AD
158
159 return ret_val;
4ae196df
AD
160}
161
9d5c8243 162/**
733596be 163 * igb_check_alt_mac_addr - Check for alternate MAC addr
9d5c8243
AK
164 * @hw: pointer to the HW structure
165 *
166 * Checks the nvm for an alternate MAC address. An alternate MAC address
167 * can be setup by pre-boot software and must be treated like a permanent
168 * address and must override the actual permanent MAC address. If an
169 * alternate MAC address is fopund it is saved in the hw struct and
170 * prgrammed into RAR0 and the cuntion returns success, otherwise the
171 * fucntion returns an error.
172 **/
173s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
174{
175 u32 i;
176 s32 ret_val = 0;
177 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
178 u8 alt_mac_addr[ETH_ALEN];
179
312c75ae 180 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
9d5c8243
AK
181 &nvm_alt_mac_addr_offset);
182 if (ret_val) {
652fff32 183 hw_dbg("NVM Read Error\n");
9d5c8243
AK
184 goto out;
185 }
186
187 if (nvm_alt_mac_addr_offset == 0xFFFF) {
188 ret_val = -(E1000_NOT_IMPLEMENTED);
189 goto out;
190 }
191
192 if (hw->bus.func == E1000_FUNC_1)
193 nvm_alt_mac_addr_offset += ETH_ALEN/sizeof(u16);
194
195 for (i = 0; i < ETH_ALEN; i += 2) {
196 offset = nvm_alt_mac_addr_offset + (i >> 1);
312c75ae 197 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
9d5c8243 198 if (ret_val) {
652fff32 199 hw_dbg("NVM Read Error\n");
9d5c8243
AK
200 goto out;
201 }
202
203 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
204 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
205 }
206
207 /* if multicast bit is set, the alternate address will not be used */
208 if (alt_mac_addr[0] & 0x01) {
209 ret_val = -(E1000_NOT_IMPLEMENTED);
210 goto out;
211 }
212
213 for (i = 0; i < ETH_ALEN; i++)
214 hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i];
215
216 hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0);
217
218out:
219 return ret_val;
220}
221
222/**
733596be 223 * igb_rar_set - Set receive address register
9d5c8243
AK
224 * @hw: pointer to the HW structure
225 * @addr: pointer to the receive address
226 * @index: receive address array register
227 *
228 * Sets the receive address array register at index to the address passed
229 * in by addr.
230 **/
231void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
232{
233 u32 rar_low, rar_high;
234
235 /*
236 * HW expects these in little endian so we reverse the byte order
237 * from network order (big endian) to little endian
238 */
239 rar_low = ((u32) addr[0] |
240 ((u32) addr[1] << 8) |
241 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
242
243 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
244
8675737a
AD
245 /* If MAC address zero, no need to set the AV bit */
246 if (rar_low || rar_high)
9d5c8243
AK
247 rar_high |= E1000_RAH_AV;
248
5e8427e5
AD
249 wr32(E1000_RAL(index), rar_low);
250 wr32(E1000_RAH(index), rar_high);
9d5c8243
AK
251}
252
253/**
733596be 254 * igb_mta_set - Set multicast filter table address
9d5c8243
AK
255 * @hw: pointer to the HW structure
256 * @hash_value: determines the MTA register and bit to set
257 *
258 * The multicast table address is a register array of 32-bit registers.
259 * The hash_value is used to determine what register the bit is in, the
260 * current value is read, the new bit is OR'd in and the new value is
261 * written back into the register.
262 **/
549bdd84 263void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
9d5c8243
AK
264{
265 u32 hash_bit, hash_reg, mta;
266
267 /*
268 * The MTA is a register array of 32-bit registers. It is
269 * treated like an array of (32*mta_reg_count) bits. We want to
270 * set bit BitArray[hash_value]. So we figure out what register
271 * the bit is in, read it, OR in the new bit, then write
272 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
273 * mask to bits 31:5 of the hash value which gives us the
274 * register we're modifying. The hash bit within that register
275 * is determined by the lower 5 bits of the hash value.
276 */
277 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
278 hash_bit = hash_value & 0x1F;
279
280 mta = array_rd32(E1000_MTA, hash_reg);
281
282 mta |= (1 << hash_bit);
283
284 array_wr32(E1000_MTA, hash_reg, mta);
285 wrfl();
286}
287
28fc06f5
AD
288/**
289 * igb_update_mc_addr_list - Update Multicast addresses
290 * @hw: pointer to the HW structure
291 * @mc_addr_list: array of multicast addresses to program
292 * @mc_addr_count: number of multicast addresses to program
293 *
294 * Updates entire Multicast Table Array.
295 * The caller must have a packed mc_addr_list of multicast addresses.
296 **/
297void igb_update_mc_addr_list(struct e1000_hw *hw,
298 u8 *mc_addr_list, u32 mc_addr_count)
299{
300 u32 hash_value, hash_bit, hash_reg;
301 int i;
302
303 /* clear mta_shadow */
304 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
305
306 /* update mta_shadow from mc_addr_list */
307 for (i = 0; (u32) i < mc_addr_count; i++) {
308 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
309
310 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
311 hash_bit = hash_value & 0x1F;
312
313 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
314 mc_addr_list += (ETH_ALEN);
315 }
316
317 /* replace the entire MTA table */
318 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
319 array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
320 wrfl();
321}
322
9d5c8243 323/**
733596be 324 * igb_hash_mc_addr - Generate a multicast hash value
9d5c8243
AK
325 * @hw: pointer to the HW structure
326 * @mc_addr: pointer to a multicast address
327 *
328 * Generates a multicast address hash value which is used to determine
329 * the multicast filter table array address and new table value. See
330 * igb_mta_set()
331 **/
2d064c06 332u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
9d5c8243
AK
333{
334 u32 hash_value, hash_mask;
335 u8 bit_shift = 0;
336
337 /* Register count multiplied by bits per register */
338 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
339
340 /*
341 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
342 * where 0xFF would still fall within the hash mask.
343 */
344 while (hash_mask >> bit_shift != 0xFF)
345 bit_shift++;
346
347 /*
348 * The portion of the address that is used for the hash table
349 * is determined by the mc_filter_type setting.
350 * The algorithm is such that there is a total of 8 bits of shifting.
351 * The bit_shift for a mc_filter_type of 0 represents the number of
352 * left-shifts where the MSB of mc_addr[5] would still fall within
353 * the hash_mask. Case 0 does this exactly. Since there are a total
354 * of 8 bits of shifting, then mc_addr[4] will shift right the
355 * remaining number of bits. Thus 8 - bit_shift. The rest of the
356 * cases are a variation of this algorithm...essentially raising the
357 * number of bits to shift mc_addr[5] left, while still keeping the
358 * 8-bit shifting total.
359 *
360 * For example, given the following Destination MAC Address and an
361 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
362 * we can see that the bit_shift for case 0 is 4. These are the hash
363 * values resulting from each mc_filter_type...
364 * [0] [1] [2] [3] [4] [5]
365 * 01 AA 00 12 34 56
366 * LSB MSB
367 *
368 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
369 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
370 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
371 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
372 */
373 switch (hw->mac.mc_filter_type) {
374 default:
375 case 0:
376 break;
377 case 1:
378 bit_shift += 1;
379 break;
380 case 2:
381 bit_shift += 2;
382 break;
383 case 3:
384 bit_shift += 4;
385 break;
386 }
387
388 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
389 (((u16) mc_addr[5]) << bit_shift)));
390
391 return hash_value;
392}
393
394/**
733596be 395 * igb_clear_hw_cntrs_base - Clear base hardware counters
9d5c8243
AK
396 * @hw: pointer to the HW structure
397 *
398 * Clears the base hardware counters by reading the counter registers.
399 **/
400void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
401{
402 u32 temp;
403
404 temp = rd32(E1000_CRCERRS);
405 temp = rd32(E1000_SYMERRS);
406 temp = rd32(E1000_MPC);
407 temp = rd32(E1000_SCC);
408 temp = rd32(E1000_ECOL);
409 temp = rd32(E1000_MCC);
410 temp = rd32(E1000_LATECOL);
411 temp = rd32(E1000_COLC);
412 temp = rd32(E1000_DC);
413 temp = rd32(E1000_SEC);
414 temp = rd32(E1000_RLEC);
415 temp = rd32(E1000_XONRXC);
416 temp = rd32(E1000_XONTXC);
417 temp = rd32(E1000_XOFFRXC);
418 temp = rd32(E1000_XOFFTXC);
419 temp = rd32(E1000_FCRUC);
420 temp = rd32(E1000_GPRC);
421 temp = rd32(E1000_BPRC);
422 temp = rd32(E1000_MPRC);
423 temp = rd32(E1000_GPTC);
424 temp = rd32(E1000_GORCL);
425 temp = rd32(E1000_GORCH);
426 temp = rd32(E1000_GOTCL);
427 temp = rd32(E1000_GOTCH);
428 temp = rd32(E1000_RNBC);
429 temp = rd32(E1000_RUC);
430 temp = rd32(E1000_RFC);
431 temp = rd32(E1000_ROC);
432 temp = rd32(E1000_RJC);
433 temp = rd32(E1000_TORL);
434 temp = rd32(E1000_TORH);
435 temp = rd32(E1000_TOTL);
436 temp = rd32(E1000_TOTH);
437 temp = rd32(E1000_TPR);
438 temp = rd32(E1000_TPT);
439 temp = rd32(E1000_MPTC);
440 temp = rd32(E1000_BPTC);
441}
442
443/**
733596be 444 * igb_check_for_copper_link - Check for link (Copper)
9d5c8243
AK
445 * @hw: pointer to the HW structure
446 *
447 * Checks to see of the link status of the hardware has changed. If a
448 * change in link status has been detected, then we read the PHY registers
449 * to get the current speed/duplex if link exists.
450 **/
451s32 igb_check_for_copper_link(struct e1000_hw *hw)
452{
453 struct e1000_mac_info *mac = &hw->mac;
454 s32 ret_val;
455 bool link;
456
457 /*
458 * We only want to go out to the PHY registers to see if Auto-Neg
459 * has completed and/or if our link status has changed. The
460 * get_link_status flag is set upon receiving a Link Status
461 * Change or Rx Sequence Error interrupt.
462 */
463 if (!mac->get_link_status) {
464 ret_val = 0;
465 goto out;
466 }
467
468 /*
469 * First we want to see if the MII Status Register reports
470 * link. If so, then we want to get the current speed/duplex
471 * of the PHY.
472 */
473 ret_val = igb_phy_has_link(hw, 1, 0, &link);
474 if (ret_val)
475 goto out;
476
477 if (!link)
478 goto out; /* No link detected */
479
480 mac->get_link_status = false;
481
482 /*
483 * Check if there was DownShift, must be checked
484 * immediately after link-up
485 */
486 igb_check_downshift(hw);
487
488 /*
489 * If we are forcing speed/duplex, then we simply return since
490 * we have already determined whether we have link or not.
491 */
492 if (!mac->autoneg) {
493 ret_val = -E1000_ERR_CONFIG;
494 goto out;
495 }
496
497 /*
498 * Auto-Neg is enabled. Auto Speed Detection takes care
499 * of MAC speed/duplex configuration. So we only need to
500 * configure Collision Distance in the MAC.
501 */
502 igb_config_collision_dist(hw);
503
504 /*
505 * Configure Flow Control now that Auto-Neg has completed.
506 * First, we need to restore the desired flow control
507 * settings because we may have had to re-autoneg with a
508 * different link partner.
509 */
510 ret_val = igb_config_fc_after_link_up(hw);
511 if (ret_val)
652fff32 512 hw_dbg("Error configuring flow control\n");
9d5c8243
AK
513
514out:
515 return ret_val;
516}
517
518/**
733596be 519 * igb_setup_link - Setup flow control and link settings
9d5c8243
AK
520 * @hw: pointer to the HW structure
521 *
522 * Determines which flow control settings to use, then configures flow
523 * control. Calls the appropriate media-specific link configuration
524 * function. Assuming the adapter has a valid link partner, a valid link
525 * should be established. Assumes the hardware has previously been reset
526 * and the transmitter and receiver are not enabled.
527 **/
528s32 igb_setup_link(struct e1000_hw *hw)
529{
530 s32 ret_val = 0;
531
532 /*
533 * In the case of the phy reset being blocked, we already have a link.
534 * We do not need to set it up again.
535 */
536 if (igb_check_reset_block(hw))
537 goto out;
538
539 ret_val = igb_set_default_fc(hw);
540 if (ret_val)
541 goto out;
542
543 /*
544 * We want to save off the original Flow Control configuration just
545 * in case we get disconnected and then reconnected into a different
546 * hub or switch with different Flow Control capabilities.
547 */
548 hw->fc.original_type = hw->fc.type;
549
652fff32 550 hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.type);
9d5c8243
AK
551
552 /* Call the necessary media_type subroutine to configure the link. */
553 ret_val = hw->mac.ops.setup_physical_interface(hw);
554 if (ret_val)
555 goto out;
556
557 /*
558 * Initialize the flow control address, type, and PAUSE timer
559 * registers to their default values. This is done even if flow
560 * control is disabled, because it does not hurt anything to
561 * initialize these registers.
562 */
652fff32 563 hw_dbg("Initializing the Flow Control address, type and timer regs\n");
9d5c8243
AK
564 wr32(E1000_FCT, FLOW_CONTROL_TYPE);
565 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
566 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
567
568 wr32(E1000_FCTTV, hw->fc.pause_time);
569
570 ret_val = igb_set_fc_watermarks(hw);
571
572out:
573 return ret_val;
574}
575
576/**
733596be 577 * igb_config_collision_dist - Configure collision distance
9d5c8243
AK
578 * @hw: pointer to the HW structure
579 *
580 * Configures the collision distance to the default value and is used
581 * during link setup. Currently no func pointer exists and all
582 * implementations are handled in the generic version of this function.
583 **/
584void igb_config_collision_dist(struct e1000_hw *hw)
585{
586 u32 tctl;
587
588 tctl = rd32(E1000_TCTL);
589
590 tctl &= ~E1000_TCTL_COLD;
591 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
592
593 wr32(E1000_TCTL, tctl);
594 wrfl();
595}
596
597/**
733596be 598 * igb_set_fc_watermarks - Set flow control high/low watermarks
9d5c8243
AK
599 * @hw: pointer to the HW structure
600 *
601 * Sets the flow control high/low threshold (watermark) registers. If
602 * flow control XON frame transmission is enabled, then set XON frame
603 * tansmission as well.
604 **/
605static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
606{
607 s32 ret_val = 0;
608 u32 fcrtl = 0, fcrth = 0;
609
610 /*
611 * Set the flow control receive threshold registers. Normally,
612 * these registers will be set to a default threshold that may be
613 * adjusted later by the driver's runtime code. However, if the
614 * ability to transmit pause frames is not enabled, then these
615 * registers will be set to 0.
616 */
617 if (hw->fc.type & e1000_fc_tx_pause) {
618 /*
619 * We need to set up the Receive Threshold high and low water
620 * marks as well as (optionally) enabling the transmission of
621 * XON frames.
622 */
623 fcrtl = hw->fc.low_water;
624 if (hw->fc.send_xon)
625 fcrtl |= E1000_FCRTL_XONE;
626
627 fcrth = hw->fc.high_water;
628 }
629 wr32(E1000_FCRTL, fcrtl);
630 wr32(E1000_FCRTH, fcrth);
631
632 return ret_val;
633}
634
635/**
733596be 636 * igb_set_default_fc - Set flow control default values
9d5c8243
AK
637 * @hw: pointer to the HW structure
638 *
639 * Read the EEPROM for the default values for flow control and store the
640 * values.
641 **/
642static s32 igb_set_default_fc(struct e1000_hw *hw)
643{
644 s32 ret_val = 0;
645 u16 nvm_data;
646
647 /*
648 * Read and store word 0x0F of the EEPROM. This word contains bits
649 * that determine the hardware's default PAUSE (flow control) mode,
650 * a bit that determines whether the HW defaults to enabling or
651 * disabling auto-negotiation, and the direction of the
652 * SW defined pins. If there is no SW over-ride of the flow
653 * control setting, then the variable hw->fc will
654 * be initialized based on a value in the EEPROM.
655 */
312c75ae 656 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
9d5c8243
AK
657
658 if (ret_val) {
652fff32 659 hw_dbg("NVM Read Error\n");
9d5c8243
AK
660 goto out;
661 }
662
663 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
664 hw->fc.type = e1000_fc_none;
665 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
666 NVM_WORD0F_ASM_DIR)
667 hw->fc.type = e1000_fc_tx_pause;
668 else
669 hw->fc.type = e1000_fc_full;
670
671out:
672 return ret_val;
673}
674
675/**
733596be 676 * igb_force_mac_fc - Force the MAC's flow control settings
9d5c8243
AK
677 * @hw: pointer to the HW structure
678 *
679 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
680 * device control register to reflect the adapter settings. TFCE and RFCE
681 * need to be explicitly set by software when a copper PHY is used because
682 * autonegotiation is managed by the PHY rather than the MAC. Software must
683 * also configure these bits when link is forced on a fiber connection.
684 **/
685s32 igb_force_mac_fc(struct e1000_hw *hw)
686{
687 u32 ctrl;
688 s32 ret_val = 0;
689
690 ctrl = rd32(E1000_CTRL);
691
692 /*
693 * Because we didn't get link via the internal auto-negotiation
694 * mechanism (we either forced link or we got link via PHY
695 * auto-neg), we have to manually enable/disable transmit an
696 * receive flow control.
697 *
698 * The "Case" statement below enables/disable flow control
699 * according to the "hw->fc.type" parameter.
700 *
701 * The possible values of the "fc" parameter are:
702 * 0: Flow control is completely disabled
703 * 1: Rx flow control is enabled (we can receive pause
704 * frames but not send pause frames).
705 * 2: Tx flow control is enabled (we can send pause frames
706 * frames but we do not receive pause frames).
707 * 3: Both Rx and TX flow control (symmetric) is enabled.
708 * other: No other values should be possible at this point.
709 */
652fff32 710 hw_dbg("hw->fc.type = %u\n", hw->fc.type);
9d5c8243
AK
711
712 switch (hw->fc.type) {
713 case e1000_fc_none:
714 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
715 break;
716 case e1000_fc_rx_pause:
717 ctrl &= (~E1000_CTRL_TFCE);
718 ctrl |= E1000_CTRL_RFCE;
719 break;
720 case e1000_fc_tx_pause:
721 ctrl &= (~E1000_CTRL_RFCE);
722 ctrl |= E1000_CTRL_TFCE;
723 break;
724 case e1000_fc_full:
725 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
726 break;
727 default:
652fff32 728 hw_dbg("Flow control param set incorrectly\n");
9d5c8243
AK
729 ret_val = -E1000_ERR_CONFIG;
730 goto out;
731 }
732
733 wr32(E1000_CTRL, ctrl);
734
735out:
736 return ret_val;
737}
738
739/**
733596be 740 * igb_config_fc_after_link_up - Configures flow control after link
9d5c8243
AK
741 * @hw: pointer to the HW structure
742 *
743 * Checks the status of auto-negotiation after link up to ensure that the
744 * speed and duplex were not forced. If the link needed to be forced, then
745 * flow control needs to be forced also. If auto-negotiation is enabled
746 * and did not fail, then we configure flow control based on our link
747 * partner.
748 **/
749s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
750{
751 struct e1000_mac_info *mac = &hw->mac;
752 s32 ret_val = 0;
753 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
754 u16 speed, duplex;
755
756 /*
757 * Check for the case where we have fiber media and auto-neg failed
758 * so we had to force link. In this case, we need to force the
759 * configuration of the MAC to match the "fc" parameter.
760 */
761 if (mac->autoneg_failed) {
dcc3ae9a 762 if (hw->phy.media_type == e1000_media_type_internal_serdes)
9d5c8243
AK
763 ret_val = igb_force_mac_fc(hw);
764 } else {
765 if (hw->phy.media_type == e1000_media_type_copper)
766 ret_val = igb_force_mac_fc(hw);
767 }
768
769 if (ret_val) {
652fff32 770 hw_dbg("Error forcing flow control settings\n");
9d5c8243
AK
771 goto out;
772 }
773
774 /*
775 * Check for the case where we have copper media and auto-neg is
776 * enabled. In this case, we need to check and see if Auto-Neg
777 * has completed, and if so, how the PHY and link partner has
778 * flow control configured.
779 */
780 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
781 /*
782 * Read the MII Status Register and check to see if AutoNeg
783 * has completed. We read this twice because this reg has
784 * some "sticky" (latched) bits.
785 */
a8d2a0c2 786 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
9d5c8243
AK
787 &mii_status_reg);
788 if (ret_val)
789 goto out;
a8d2a0c2 790 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
9d5c8243
AK
791 &mii_status_reg);
792 if (ret_val)
793 goto out;
794
795 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
652fff32 796 hw_dbg("Copper PHY and Auto Neg "
9d5c8243
AK
797 "has not completed.\n");
798 goto out;
799 }
800
801 /*
802 * The AutoNeg process has completed, so we now need to
803 * read both the Auto Negotiation Advertisement
804 * Register (Address 4) and the Auto_Negotiation Base
805 * Page Ability Register (Address 5) to determine how
806 * flow control was negotiated.
807 */
a8d2a0c2 808 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
9d5c8243
AK
809 &mii_nway_adv_reg);
810 if (ret_val)
811 goto out;
a8d2a0c2 812 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
9d5c8243
AK
813 &mii_nway_lp_ability_reg);
814 if (ret_val)
815 goto out;
816
817 /*
818 * Two bits in the Auto Negotiation Advertisement Register
819 * (Address 4) and two bits in the Auto Negotiation Base
820 * Page Ability Register (Address 5) determine flow control
821 * for both the PHY and the link partner. The following
822 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
823 * 1999, describes these PAUSE resolution bits and how flow
824 * control is determined based upon these settings.
825 * NOTE: DC = Don't Care
826 *
827 * LOCAL DEVICE | LINK PARTNER
828 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
829 *-------|---------|-------|---------|--------------------
830 * 0 | 0 | DC | DC | e1000_fc_none
831 * 0 | 1 | 0 | DC | e1000_fc_none
832 * 0 | 1 | 1 | 0 | e1000_fc_none
833 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
834 * 1 | 0 | 0 | DC | e1000_fc_none
835 * 1 | DC | 1 | DC | e1000_fc_full
836 * 1 | 1 | 0 | 0 | e1000_fc_none
837 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
838 *
839 * Are both PAUSE bits set to 1? If so, this implies
840 * Symmetric Flow Control is enabled at both ends. The
841 * ASM_DIR bits are irrelevant per the spec.
842 *
843 * For Symmetric Flow Control:
844 *
845 * LOCAL DEVICE | LINK PARTNER
846 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
847 *-------|---------|-------|---------|--------------------
848 * 1 | DC | 1 | DC | E1000_fc_full
849 *
850 */
851 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
852 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
853 /*
854 * Now we need to check if the user selected RX ONLY
855 * of pause frames. In this case, we had to advertise
856 * FULL flow control because we could not advertise RX
857 * ONLY. Hence, we must now check to see if we need to
858 * turn OFF the TRANSMISSION of PAUSE frames.
859 */
860 if (hw->fc.original_type == e1000_fc_full) {
861 hw->fc.type = e1000_fc_full;
652fff32 862 hw_dbg("Flow Control = FULL.\r\n");
9d5c8243
AK
863 } else {
864 hw->fc.type = e1000_fc_rx_pause;
652fff32
AK
865 hw_dbg("Flow Control = "
866 "RX PAUSE frames only.\r\n");
9d5c8243
AK
867 }
868 }
869 /*
870 * For receiving PAUSE frames ONLY.
871 *
872 * LOCAL DEVICE | LINK PARTNER
873 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
874 *-------|---------|-------|---------|--------------------
875 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
876 */
877 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
878 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
879 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
880 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
881 hw->fc.type = e1000_fc_tx_pause;
652fff32 882 hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
9d5c8243
AK
883 }
884 /*
885 * For transmitting PAUSE frames ONLY.
886 *
887 * LOCAL DEVICE | LINK PARTNER
888 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
889 *-------|---------|-------|---------|--------------------
890 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
891 */
892 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
893 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
894 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
895 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
896 hw->fc.type = e1000_fc_rx_pause;
652fff32 897 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
9d5c8243
AK
898 }
899 /*
900 * Per the IEEE spec, at this point flow control should be
901 * disabled. However, we want to consider that we could
902 * be connected to a legacy switch that doesn't advertise
903 * desired flow control, but can be forced on the link
904 * partner. So if we advertised no flow control, that is
905 * what we will resolve to. If we advertised some kind of
906 * receive capability (Rx Pause Only or Full Flow Control)
907 * and the link partner advertised none, we will configure
908 * ourselves to enable Rx Flow Control only. We can do
909 * this safely for two reasons: If the link partner really
910 * didn't want flow control enabled, and we enable Rx, no
911 * harm done since we won't be receiving any PAUSE frames
912 * anyway. If the intent on the link partner was to have
913 * flow control enabled, then by us enabling RX only, we
914 * can at least receive pause frames and process them.
915 * This is a good idea because in most cases, since we are
916 * predominantly a server NIC, more times than not we will
917 * be asked to delay transmission of packets than asking
918 * our link partner to pause transmission of frames.
919 */
920 else if ((hw->fc.original_type == e1000_fc_none ||
921 hw->fc.original_type == e1000_fc_tx_pause) ||
922 hw->fc.strict_ieee) {
923 hw->fc.type = e1000_fc_none;
652fff32 924 hw_dbg("Flow Control = NONE.\r\n");
9d5c8243
AK
925 } else {
926 hw->fc.type = e1000_fc_rx_pause;
652fff32 927 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
9d5c8243
AK
928 }
929
930 /*
931 * Now we need to do one last check... If we auto-
932 * negotiated to HALF DUPLEX, flow control should not be
933 * enabled per IEEE 802.3 spec.
934 */
935 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
936 if (ret_val) {
652fff32 937 hw_dbg("Error getting link speed and duplex\n");
9d5c8243
AK
938 goto out;
939 }
940
941 if (duplex == HALF_DUPLEX)
942 hw->fc.type = e1000_fc_none;
943
944 /*
945 * Now we call a subroutine to actually force the MAC
946 * controller to use the correct flow control settings.
947 */
948 ret_val = igb_force_mac_fc(hw);
949 if (ret_val) {
652fff32 950 hw_dbg("Error forcing flow control settings\n");
9d5c8243
AK
951 goto out;
952 }
953 }
954
955out:
956 return ret_val;
957}
958
959/**
733596be 960 * igb_get_speed_and_duplex_copper - Retreive current speed/duplex
9d5c8243
AK
961 * @hw: pointer to the HW structure
962 * @speed: stores the current speed
963 * @duplex: stores the current duplex
964 *
965 * Read the status register for the current speed/duplex and store the current
966 * speed and duplex for copper connections.
967 **/
968s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
969 u16 *duplex)
970{
971 u32 status;
972
973 status = rd32(E1000_STATUS);
974 if (status & E1000_STATUS_SPEED_1000) {
975 *speed = SPEED_1000;
652fff32 976 hw_dbg("1000 Mbs, ");
9d5c8243
AK
977 } else if (status & E1000_STATUS_SPEED_100) {
978 *speed = SPEED_100;
652fff32 979 hw_dbg("100 Mbs, ");
9d5c8243
AK
980 } else {
981 *speed = SPEED_10;
652fff32 982 hw_dbg("10 Mbs, ");
9d5c8243
AK
983 }
984
985 if (status & E1000_STATUS_FD) {
986 *duplex = FULL_DUPLEX;
652fff32 987 hw_dbg("Full Duplex\n");
9d5c8243
AK
988 } else {
989 *duplex = HALF_DUPLEX;
652fff32 990 hw_dbg("Half Duplex\n");
9d5c8243
AK
991 }
992
993 return 0;
994}
995
996/**
733596be 997 * igb_get_hw_semaphore - Acquire hardware semaphore
9d5c8243
AK
998 * @hw: pointer to the HW structure
999 *
1000 * Acquire the HW semaphore to access the PHY or NVM
1001 **/
1002s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1003{
1004 u32 swsm;
1005 s32 ret_val = 0;
1006 s32 timeout = hw->nvm.word_size + 1;
1007 s32 i = 0;
1008
1009 /* Get the SW semaphore */
1010 while (i < timeout) {
1011 swsm = rd32(E1000_SWSM);
1012 if (!(swsm & E1000_SWSM_SMBI))
1013 break;
1014
1015 udelay(50);
1016 i++;
1017 }
1018
1019 if (i == timeout) {
652fff32 1020 hw_dbg("Driver can't access device - SMBI bit is set.\n");
9d5c8243
AK
1021 ret_val = -E1000_ERR_NVM;
1022 goto out;
1023 }
1024
1025 /* Get the FW semaphore. */
1026 for (i = 0; i < timeout; i++) {
1027 swsm = rd32(E1000_SWSM);
1028 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1029
1030 /* Semaphore acquired if bit latched */
1031 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1032 break;
1033
1034 udelay(50);
1035 }
1036
1037 if (i == timeout) {
1038 /* Release semaphores */
1039 igb_put_hw_semaphore(hw);
652fff32 1040 hw_dbg("Driver can't access the NVM\n");
9d5c8243
AK
1041 ret_val = -E1000_ERR_NVM;
1042 goto out;
1043 }
1044
1045out:
1046 return ret_val;
1047}
1048
1049/**
733596be 1050 * igb_put_hw_semaphore - Release hardware semaphore
9d5c8243
AK
1051 * @hw: pointer to the HW structure
1052 *
1053 * Release hardware semaphore used to access the PHY or NVM
1054 **/
1055void igb_put_hw_semaphore(struct e1000_hw *hw)
1056{
1057 u32 swsm;
1058
1059 swsm = rd32(E1000_SWSM);
1060
1061 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1062
1063 wr32(E1000_SWSM, swsm);
1064}
1065
1066/**
733596be 1067 * igb_get_auto_rd_done - Check for auto read completion
9d5c8243
AK
1068 * @hw: pointer to the HW structure
1069 *
1070 * Check EEPROM for Auto Read done bit.
1071 **/
1072s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1073{
1074 s32 i = 0;
1075 s32 ret_val = 0;
1076
1077
1078 while (i < AUTO_READ_DONE_TIMEOUT) {
1079 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1080 break;
1081 msleep(1);
1082 i++;
1083 }
1084
1085 if (i == AUTO_READ_DONE_TIMEOUT) {
652fff32 1086 hw_dbg("Auto read by HW from NVM has not completed.\n");
9d5c8243
AK
1087 ret_val = -E1000_ERR_RESET;
1088 goto out;
1089 }
1090
1091out:
1092 return ret_val;
1093}
1094
1095/**
733596be 1096 * igb_valid_led_default - Verify a valid default LED config
9d5c8243
AK
1097 * @hw: pointer to the HW structure
1098 * @data: pointer to the NVM (EEPROM)
1099 *
1100 * Read the EEPROM for the current default LED configuration. If the
1101 * LED configuration is not valid, set to a valid LED configuration.
1102 **/
1103static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1104{
1105 s32 ret_val;
1106
312c75ae 1107 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
9d5c8243 1108 if (ret_val) {
652fff32 1109 hw_dbg("NVM Read Error\n");
9d5c8243
AK
1110 goto out;
1111 }
1112
099e1cb7
AD
1113 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1114 switch(hw->phy.media_type) {
1115 case e1000_media_type_internal_serdes:
1116 *data = ID_LED_DEFAULT_82575_SERDES;
1117 break;
1118 case e1000_media_type_copper:
1119 default:
1120 *data = ID_LED_DEFAULT;
1121 break;
1122 }
1123 }
9d5c8243
AK
1124out:
1125 return ret_val;
1126}
1127
1128/**
733596be 1129 * igb_id_led_init -
9d5c8243
AK
1130 * @hw: pointer to the HW structure
1131 *
1132 **/
1133s32 igb_id_led_init(struct e1000_hw *hw)
1134{
1135 struct e1000_mac_info *mac = &hw->mac;
1136 s32 ret_val;
1137 const u32 ledctl_mask = 0x000000FF;
1138 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1139 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1140 u16 data, i, temp;
1141 const u16 led_mask = 0x0F;
1142
1143 ret_val = igb_valid_led_default(hw, &data);
1144 if (ret_val)
1145 goto out;
1146
1147 mac->ledctl_default = rd32(E1000_LEDCTL);
1148 mac->ledctl_mode1 = mac->ledctl_default;
1149 mac->ledctl_mode2 = mac->ledctl_default;
1150
1151 for (i = 0; i < 4; i++) {
1152 temp = (data >> (i << 2)) & led_mask;
1153 switch (temp) {
1154 case ID_LED_ON1_DEF2:
1155 case ID_LED_ON1_ON2:
1156 case ID_LED_ON1_OFF2:
1157 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1158 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1159 break;
1160 case ID_LED_OFF1_DEF2:
1161 case ID_LED_OFF1_ON2:
1162 case ID_LED_OFF1_OFF2:
1163 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1164 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1165 break;
1166 default:
1167 /* Do nothing */
1168 break;
1169 }
1170 switch (temp) {
1171 case ID_LED_DEF1_ON2:
1172 case ID_LED_ON1_ON2:
1173 case ID_LED_OFF1_ON2:
1174 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1175 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1176 break;
1177 case ID_LED_DEF1_OFF2:
1178 case ID_LED_ON1_OFF2:
1179 case ID_LED_OFF1_OFF2:
1180 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1181 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1182 break;
1183 default:
1184 /* Do nothing */
1185 break;
1186 }
1187 }
1188
1189out:
1190 return ret_val;
1191}
1192
1193/**
733596be 1194 * igb_cleanup_led - Set LED config to default operation
9d5c8243
AK
1195 * @hw: pointer to the HW structure
1196 *
1197 * Remove the current LED configuration and set the LED configuration
1198 * to the default value, saved from the EEPROM.
1199 **/
1200s32 igb_cleanup_led(struct e1000_hw *hw)
1201{
1202 wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1203 return 0;
1204}
1205
1206/**
733596be 1207 * igb_blink_led - Blink LED
9d5c8243
AK
1208 * @hw: pointer to the HW structure
1209 *
1210 * Blink the led's which are set to be on.
1211 **/
1212s32 igb_blink_led(struct e1000_hw *hw)
1213{
1214 u32 ledctl_blink = 0;
1215 u32 i;
1216
dcc3ae9a
AD
1217 /*
1218 * set the blink bit for each LED that's "on" (0x0E)
1219 * in ledctl_mode2
1220 */
1221 ledctl_blink = hw->mac.ledctl_mode2;
1222 for (i = 0; i < 4; i++)
1223 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1224 E1000_LEDCTL_MODE_LED_ON)
1225 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1226 (i * 8));
9d5c8243
AK
1227
1228 wr32(E1000_LEDCTL, ledctl_blink);
1229
1230 return 0;
1231}
1232
1233/**
733596be 1234 * igb_led_off - Turn LED off
9d5c8243
AK
1235 * @hw: pointer to the HW structure
1236 *
1237 * Turn LED off.
1238 **/
1239s32 igb_led_off(struct e1000_hw *hw)
1240{
9d5c8243 1241 switch (hw->phy.media_type) {
9d5c8243
AK
1242 case e1000_media_type_copper:
1243 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1244 break;
1245 default:
1246 break;
1247 }
1248
1249 return 0;
1250}
1251
1252/**
733596be 1253 * igb_disable_pcie_master - Disables PCI-express master access
9d5c8243
AK
1254 * @hw: pointer to the HW structure
1255 *
1256 * Returns 0 (0) if successful, else returns -10
1257 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1258 * the master requests to be disabled.
1259 *
1260 * Disables PCI-Express master access and verifies there are no pending
1261 * requests.
1262 **/
1263s32 igb_disable_pcie_master(struct e1000_hw *hw)
1264{
1265 u32 ctrl;
1266 s32 timeout = MASTER_DISABLE_TIMEOUT;
1267 s32 ret_val = 0;
1268
1269 if (hw->bus.type != e1000_bus_type_pci_express)
1270 goto out;
1271
1272 ctrl = rd32(E1000_CTRL);
1273 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1274 wr32(E1000_CTRL, ctrl);
1275
1276 while (timeout) {
1277 if (!(rd32(E1000_STATUS) &
1278 E1000_STATUS_GIO_MASTER_ENABLE))
1279 break;
1280 udelay(100);
1281 timeout--;
1282 }
1283
1284 if (!timeout) {
652fff32 1285 hw_dbg("Master requests are pending.\n");
9d5c8243
AK
1286 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1287 goto out;
1288 }
1289
1290out:
1291 return ret_val;
1292}
1293
1294/**
733596be 1295 * igb_reset_adaptive - Reset Adaptive Interframe Spacing
9d5c8243
AK
1296 * @hw: pointer to the HW structure
1297 *
1298 * Reset the Adaptive Interframe Spacing throttle to default values.
1299 **/
1300void igb_reset_adaptive(struct e1000_hw *hw)
1301{
1302 struct e1000_mac_info *mac = &hw->mac;
1303
1304 if (!mac->adaptive_ifs) {
652fff32 1305 hw_dbg("Not in Adaptive IFS mode!\n");
9d5c8243
AK
1306 goto out;
1307 }
1308
1309 if (!mac->ifs_params_forced) {
1310 mac->current_ifs_val = 0;
1311 mac->ifs_min_val = IFS_MIN;
1312 mac->ifs_max_val = IFS_MAX;
1313 mac->ifs_step_size = IFS_STEP;
1314 mac->ifs_ratio = IFS_RATIO;
1315 }
1316
1317 mac->in_ifs_mode = false;
1318 wr32(E1000_AIT, 0);
1319out:
1320 return;
1321}
1322
1323/**
733596be 1324 * igb_update_adaptive - Update Adaptive Interframe Spacing
9d5c8243
AK
1325 * @hw: pointer to the HW structure
1326 *
1327 * Update the Adaptive Interframe Spacing Throttle value based on the
1328 * time between transmitted packets and time between collisions.
1329 **/
1330void igb_update_adaptive(struct e1000_hw *hw)
1331{
1332 struct e1000_mac_info *mac = &hw->mac;
1333
1334 if (!mac->adaptive_ifs) {
652fff32 1335 hw_dbg("Not in Adaptive IFS mode!\n");
9d5c8243
AK
1336 goto out;
1337 }
1338
1339 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1340 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1341 mac->in_ifs_mode = true;
1342 if (mac->current_ifs_val < mac->ifs_max_val) {
1343 if (!mac->current_ifs_val)
1344 mac->current_ifs_val = mac->ifs_min_val;
1345 else
1346 mac->current_ifs_val +=
1347 mac->ifs_step_size;
1348 wr32(E1000_AIT,
1349 mac->current_ifs_val);
1350 }
1351 }
1352 } else {
1353 if (mac->in_ifs_mode &&
1354 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1355 mac->current_ifs_val = 0;
1356 mac->in_ifs_mode = false;
1357 wr32(E1000_AIT, 0);
1358 }
1359 }
1360out:
1361 return;
1362}
1363
1364/**
733596be 1365 * igb_validate_mdi_setting - Verify MDI/MDIx settings
9d5c8243
AK
1366 * @hw: pointer to the HW structure
1367 *
1368 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1369 * set, which is forced to MDI mode only.
1370 **/
1371s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1372{
1373 s32 ret_val = 0;
1374
1375 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
652fff32 1376 hw_dbg("Invalid MDI setting detected\n");
9d5c8243
AK
1377 hw->phy.mdix = 1;
1378 ret_val = -E1000_ERR_CONFIG;
1379 goto out;
1380 }
1381
1382out:
1383 return ret_val;
1384}
1385
1386/**
733596be 1387 * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
9d5c8243
AK
1388 * @hw: pointer to the HW structure
1389 * @reg: 32bit register offset such as E1000_SCTL
1390 * @offset: register offset to write to
1391 * @data: data to write at register offset
1392 *
1393 * Writes an address/data control type register. There are several of these
1394 * and they all have the format address << 8 | data and bit 31 is polled for
1395 * completion.
1396 **/
1397s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1398 u32 offset, u8 data)
1399{
1400 u32 i, regvalue = 0;
1401 s32 ret_val = 0;
1402
1403 /* Set up the address and data */
1404 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1405 wr32(reg, regvalue);
1406
1407 /* Poll the ready bit to see if the MDI read completed */
1408 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1409 udelay(5);
1410 regvalue = rd32(reg);
1411 if (regvalue & E1000_GEN_CTL_READY)
1412 break;
1413 }
1414 if (!(regvalue & E1000_GEN_CTL_READY)) {
652fff32 1415 hw_dbg("Reg %08x did not indicate ready\n", reg);
9d5c8243
AK
1416 ret_val = -E1000_ERR_PHY;
1417 goto out;
1418 }
1419
1420out:
1421 return ret_val;
1422}
1423
1424/**
733596be 1425 * igb_enable_mng_pass_thru - Enable processing of ARP's
9d5c8243
AK
1426 * @hw: pointer to the HW structure
1427 *
1428 * Verifies the hardware needs to allow ARPs to be processed by the host.
1429 **/
1430bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1431{
1432 u32 manc;
1433 u32 fwsm, factps;
1434 bool ret_val = false;
1435
1436 if (!hw->mac.asf_firmware_present)
1437 goto out;
1438
1439 manc = rd32(E1000_MANC);
1440
1441 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
1442 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
1443 goto out;
1444
1445 if (hw->mac.arc_subsystem_valid) {
1446 fwsm = rd32(E1000_FWSM);
1447 factps = rd32(E1000_FACTPS);
1448
1449 if (!(factps & E1000_FACTPS_MNGCG) &&
1450 ((fwsm & E1000_FWSM_MODE_MASK) ==
1451 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1452 ret_val = true;
1453 goto out;
1454 }
1455 } else {
1456 if ((manc & E1000_MANC_SMBUS_EN) &&
1457 !(manc & E1000_MANC_ASF_EN)) {
1458 ret_val = true;
1459 goto out;
1460 }
1461 }
1462
1463out:
1464 return ret_val;
1465}