fix work queues in FEC driver
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / fec.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
10 *
7dd6a2aa 11 * Right now, I am very wasteful with the buffers. I allocate memory
1da177e4
LT
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets.
17 *
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
20 *
562d2f8c
GU
21 * Support for FEC controller of ColdFire processors.
22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
7dd6a2aa
GU
23 *
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
677177c5 25 * Copyright (c) 2004-2006 Macq Electronique SA.
1da177e4
LT
26 */
27
1da177e4
LT
28#include <linux/module.h>
29#include <linux/kernel.h>
30#include <linux/string.h>
31#include <linux/ptrace.h>
32#include <linux/errno.h>
33#include <linux/ioport.h>
34#include <linux/slab.h>
35#include <linux/interrupt.h>
36#include <linux/pci.h>
37#include <linux/init.h>
38#include <linux/delay.h>
39#include <linux/netdevice.h>
40#include <linux/etherdevice.h>
41#include <linux/skbuff.h>
42#include <linux/spinlock.h>
43#include <linux/workqueue.h>
44#include <linux/bitops.h>
45
46#include <asm/irq.h>
47#include <asm/uaccess.h>
48#include <asm/io.h>
49#include <asm/pgtable.h>
080853af 50#include <asm/cacheflush.h>
1da177e4 51
7dd6a2aa 52#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
562d2f8c 53 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
6b265293 54 defined(CONFIG_M520x) || defined(CONFIG_M532x)
1da177e4
LT
55#include <asm/coldfire.h>
56#include <asm/mcfsim.h>
57#include "fec.h"
58#else
59#include <asm/8xx_immap.h>
60#include <asm/mpc8xx.h>
61#include "commproc.h"
62#endif
63
64#if defined(CONFIG_FEC2)
65#define FEC_MAX_PORTS 2
66#else
67#define FEC_MAX_PORTS 1
68#endif
69
70/*
71 * Define the fixed address of the FEC hardware.
72 */
73static unsigned int fec_hw[] = {
74#if defined(CONFIG_M5272)
75 (MCF_MBAR + 0x840),
76#elif defined(CONFIG_M527x)
77 (MCF_MBAR + 0x1000),
78 (MCF_MBAR + 0x1800),
7dd6a2aa 79#elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
1da177e4 80 (MCF_MBAR + 0x1000),
562d2f8c
GU
81#elif defined(CONFIG_M520x)
82 (MCF_MBAR+0x30000),
6b265293
MW
83#elif defined(CONFIG_M532x)
84 (MCF_MBAR+0xfc030000),
1da177e4
LT
85#else
86 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
87#endif
88};
89
90static unsigned char fec_mac_default[] = {
91 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
92};
93
94/*
95 * Some hardware gets it MAC address out of local flash memory.
96 * if this is non-zero then assume it is the address to get MAC from.
97 */
98#if defined(CONFIG_NETtel)
99#define FEC_FLASHMAC 0xf0006006
100#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
101#define FEC_FLASHMAC 0xf0006000
1da177e4
LT
102#elif defined(CONFIG_CANCam)
103#define FEC_FLASHMAC 0xf0020000
7dd6a2aa
GU
104#elif defined (CONFIG_M5272C3)
105#define FEC_FLASHMAC (0xffe04000 + 4)
106#elif defined(CONFIG_MOD5272)
107#define FEC_FLASHMAC 0xffc0406b
1da177e4
LT
108#else
109#define FEC_FLASHMAC 0
110#endif
111
1da177e4
LT
112/* Forward declarations of some structures to support different PHYs
113*/
114
115typedef struct {
116 uint mii_data;
117 void (*funct)(uint mii_reg, struct net_device *dev);
118} phy_cmd_t;
119
120typedef struct {
121 uint id;
122 char *name;
123
124 const phy_cmd_t *config;
125 const phy_cmd_t *startup;
126 const phy_cmd_t *ack_int;
127 const phy_cmd_t *shutdown;
128} phy_info_t;
129
130/* The number of Tx and Rx buffers. These are allocated from the page
131 * pool. The code may assume these are power of two, so it it best
132 * to keep them that size.
133 * We don't need to allocate pages for the transmitter. We just use
134 * the skbuffer directly.
135 */
136#define FEC_ENET_RX_PAGES 8
137#define FEC_ENET_RX_FRSIZE 2048
138#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
139#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
140#define FEC_ENET_TX_FRSIZE 2048
141#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
142#define TX_RING_SIZE 16 /* Must be power of two */
143#define TX_RING_MOD_MASK 15 /* for this to work */
144
562d2f8c 145#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
6b265293 146#error "FEC: descriptor ring size constants too large"
562d2f8c
GU
147#endif
148
1da177e4
LT
149/* Interrupt events/masks.
150*/
151#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
152#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
153#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
154#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
155#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
156#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
157#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
158#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
159#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
160#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
161
162/* The FEC stores dest/src/type, data, and checksum for receive packets.
163 */
164#define PKT_MAXBUF_SIZE 1518
165#define PKT_MINBUF_SIZE 64
166#define PKT_MAXBLR_SIZE 1520
167
168
169/*
6b265293 170 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
1da177e4
LT
171 * size bits. Other FEC hardware does not, so we need to take that into
172 * account when setting it.
173 */
562d2f8c 174#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
6b265293 175 defined(CONFIG_M520x) || defined(CONFIG_M532x)
1da177e4
LT
176#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
177#else
178#define OPT_FRAME_SIZE 0
179#endif
180
181/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
182 * tx_bd_base always point to the base of the buffer descriptors. The
183 * cur_rx and cur_tx point to the currently available buffer.
184 * The dirty_tx tracks the current buffer that is being sent by the
185 * controller. The cur_tx and dirty_tx are equal under both completely
186 * empty and completely full conditions. The empty/ready indicator in
187 * the buffer descriptor determines the actual condition.
188 */
189struct fec_enet_private {
190 /* Hardware registers of the FEC device */
191 volatile fec_t *hwp;
192
cb84d6e7
GU
193 struct net_device *netdev;
194
1da177e4
LT
195 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
196 unsigned char *tx_bounce[TX_RING_SIZE];
197 struct sk_buff* tx_skbuff[TX_RING_SIZE];
198 ushort skb_cur;
199 ushort skb_dirty;
200
201 /* CPM dual port RAM relative addresses.
202 */
203 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
204 cbd_t *tx_bd_base;
205 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
206 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
207 struct net_device_stats stats;
208 uint tx_full;
209 spinlock_t lock;
210
211 uint phy_id;
212 uint phy_id_done;
213 uint phy_status;
214 uint phy_speed;
7dd6a2aa 215 phy_info_t const *phy;
1da177e4
LT
216 struct work_struct phy_task;
217
218 uint sequence_done;
219 uint mii_phy_task_queued;
220
221 uint phy_addr;
222
223 int index;
224 int opened;
225 int link;
226 int old_link;
227 int full_duplex;
1da177e4
LT
228};
229
230static int fec_enet_open(struct net_device *dev);
231static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
232static void fec_enet_mii(struct net_device *dev);
7d12e780 233static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
1da177e4
LT
234static void fec_enet_tx(struct net_device *dev);
235static void fec_enet_rx(struct net_device *dev);
236static int fec_enet_close(struct net_device *dev);
237static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
238static void set_multicast_list(struct net_device *dev);
239static void fec_restart(struct net_device *dev, int duplex);
240static void fec_stop(struct net_device *dev);
241static void fec_set_mac_address(struct net_device *dev);
242
243
244/* MII processing. We keep this as simple as possible. Requests are
245 * placed on the list (if there is room). When the request is finished
246 * by the MII, an optional function may be called.
247 */
248typedef struct mii_list {
249 uint mii_regval;
250 void (*mii_func)(uint val, struct net_device *dev);
251 struct mii_list *mii_next;
252} mii_list_t;
253
254#define NMII 20
7dd6a2aa
GU
255static mii_list_t mii_cmds[NMII];
256static mii_list_t *mii_free;
257static mii_list_t *mii_head;
258static mii_list_t *mii_tail;
1da177e4 259
6aa20a22 260static int mii_queue(struct net_device *dev, int request,
1da177e4
LT
261 void (*func)(uint, struct net_device *));
262
263/* Make MII read/write commands for the FEC.
264*/
265#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
266#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
267 (VAL & 0xffff))
268#define mk_mii_end 0
269
270/* Transmitter timeout.
271*/
272#define TX_TIMEOUT (2*HZ)
273
274/* Register definitions for the PHY.
275*/
276
277#define MII_REG_CR 0 /* Control Register */
278#define MII_REG_SR 1 /* Status Register */
279#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
280#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
6aa20a22 281#define MII_REG_ANAR 4 /* A-N Advertisement Register */
1da177e4
LT
282#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
283#define MII_REG_ANER 6 /* A-N Expansion Register */
284#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
285#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
286
287/* values for phy_status */
288
289#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
290#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
291#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
292#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
6aa20a22 293#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
1da177e4 294#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
6aa20a22 295#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
1da177e4
LT
296
297#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
298#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
299#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
300#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
301#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
6aa20a22 302#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
1da177e4 303#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
6aa20a22 304#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
1da177e4
LT
305
306
307static int
308fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
309{
310 struct fec_enet_private *fep;
311 volatile fec_t *fecp;
312 volatile cbd_t *bdp;
0e702ab3 313 unsigned short status;
1da177e4
LT
314
315 fep = netdev_priv(dev);
316 fecp = (volatile fec_t*)dev->base_addr;
317
318 if (!fep->link) {
319 /* Link is down or autonegotiation is in progress. */
320 return 1;
321 }
322
323 /* Fill in a Tx ring entry */
324 bdp = fep->cur_tx;
325
0e702ab3 326 status = bdp->cbd_sc;
1da177e4 327#ifndef final_version
0e702ab3 328 if (status & BD_ENET_TX_READY) {
1da177e4
LT
329 /* Ooops. All transmit buffers are full. Bail out.
330 * This should not happen, since dev->tbusy should be set.
331 */
332 printk("%s: tx queue full!.\n", dev->name);
333 return 1;
334 }
335#endif
336
337 /* Clear all of the status flags.
338 */
0e702ab3 339 status &= ~BD_ENET_TX_STATS;
1da177e4
LT
340
341 /* Set buffer length and buffer pointer.
342 */
343 bdp->cbd_bufaddr = __pa(skb->data);
344 bdp->cbd_datlen = skb->len;
345
346 /*
347 * On some FEC implementations data must be aligned on
348 * 4-byte boundaries. Use bounce buffers to copy data
349 * and get it aligned. Ugh.
350 */
351 if (bdp->cbd_bufaddr & 0x3) {
352 unsigned int index;
353 index = bdp - fep->tx_bd_base;
354 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
355 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
356 }
357
358 /* Save skb pointer.
359 */
360 fep->tx_skbuff[fep->skb_cur] = skb;
361
362 fep->stats.tx_bytes += skb->len;
363 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
6aa20a22 364
1da177e4
LT
365 /* Push the data cache so the CPM does not get stale memory
366 * data.
367 */
368 flush_dcache_range((unsigned long)skb->data,
369 (unsigned long)skb->data + skb->len);
370
371 spin_lock_irq(&fep->lock);
372
0e702ab3
GU
373 /* Send it on its way. Tell FEC it's ready, interrupt when done,
374 * it's the last BD of the frame, and to put the CRC on the end.
1da177e4
LT
375 */
376
0e702ab3 377 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
1da177e4 378 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
0e702ab3 379 bdp->cbd_sc = status;
1da177e4
LT
380
381 dev->trans_start = jiffies;
382
383 /* Trigger transmission start */
0e702ab3 384 fecp->fec_x_des_active = 0;
1da177e4
LT
385
386 /* If this was the last BD in the ring, start at the beginning again.
387 */
0e702ab3 388 if (status & BD_ENET_TX_WRAP) {
1da177e4
LT
389 bdp = fep->tx_bd_base;
390 } else {
391 bdp++;
392 }
393
394 if (bdp == fep->dirty_tx) {
395 fep->tx_full = 1;
396 netif_stop_queue(dev);
397 }
398
399 fep->cur_tx = (cbd_t *)bdp;
400
401 spin_unlock_irq(&fep->lock);
402
403 return 0;
404}
405
406static void
407fec_timeout(struct net_device *dev)
408{
409 struct fec_enet_private *fep = netdev_priv(dev);
410
411 printk("%s: transmit timed out.\n", dev->name);
412 fep->stats.tx_errors++;
413#ifndef final_version
414 {
415 int i;
416 cbd_t *bdp;
417
418 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
419 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
420 (unsigned long)fep->dirty_tx,
421 (unsigned long)fep->cur_rx);
422
423 bdp = fep->tx_bd_base;
424 printk(" tx: %u buffers\n", TX_RING_SIZE);
425 for (i = 0 ; i < TX_RING_SIZE; i++) {
6aa20a22 426 printk(" %08x: %04x %04x %08x\n",
1da177e4
LT
427 (uint) bdp,
428 bdp->cbd_sc,
429 bdp->cbd_datlen,
430 (int) bdp->cbd_bufaddr);
431 bdp++;
432 }
433
434 bdp = fep->rx_bd_base;
435 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
436 for (i = 0 ; i < RX_RING_SIZE; i++) {
437 printk(" %08x: %04x %04x %08x\n",
438 (uint) bdp,
439 bdp->cbd_sc,
440 bdp->cbd_datlen,
441 (int) bdp->cbd_bufaddr);
442 bdp++;
443 }
444 }
445#endif
7dd6a2aa 446 fec_restart(dev, fep->full_duplex);
1da177e4
LT
447 netif_wake_queue(dev);
448}
449
450/* The interrupt handler.
451 * This is called from the MPC core interrupt.
452 */
453static irqreturn_t
7d12e780 454fec_enet_interrupt(int irq, void * dev_id)
1da177e4
LT
455{
456 struct net_device *dev = dev_id;
457 volatile fec_t *fecp;
458 uint int_events;
459 int handled = 0;
460
461 fecp = (volatile fec_t*)dev->base_addr;
462
463 /* Get the interrupt events that caused us to be here.
464 */
465 while ((int_events = fecp->fec_ievent) != 0) {
466 fecp->fec_ievent = int_events;
467
468 /* Handle receive event in its own function.
469 */
470 if (int_events & FEC_ENET_RXF) {
471 handled = 1;
472 fec_enet_rx(dev);
473 }
474
475 /* Transmit OK, or non-fatal error. Update the buffer
476 descriptors. FEC handles all errors, we just discover
477 them as part of the transmit process.
478 */
479 if (int_events & FEC_ENET_TXF) {
480 handled = 1;
481 fec_enet_tx(dev);
482 }
483
484 if (int_events & FEC_ENET_MII) {
485 handled = 1;
486 fec_enet_mii(dev);
487 }
6aa20a22 488
1da177e4
LT
489 }
490 return IRQ_RETVAL(handled);
491}
492
493
494static void
495fec_enet_tx(struct net_device *dev)
496{
497 struct fec_enet_private *fep;
498 volatile cbd_t *bdp;
0e702ab3 499 unsigned short status;
1da177e4
LT
500 struct sk_buff *skb;
501
502 fep = netdev_priv(dev);
503 spin_lock(&fep->lock);
504 bdp = fep->dirty_tx;
505
0e702ab3 506 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1da177e4
LT
507 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
508
509 skb = fep->tx_skbuff[fep->skb_dirty];
510 /* Check for errors. */
0e702ab3 511 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1da177e4
LT
512 BD_ENET_TX_RL | BD_ENET_TX_UN |
513 BD_ENET_TX_CSL)) {
514 fep->stats.tx_errors++;
0e702ab3 515 if (status & BD_ENET_TX_HB) /* No heartbeat */
1da177e4 516 fep->stats.tx_heartbeat_errors++;
0e702ab3 517 if (status & BD_ENET_TX_LC) /* Late collision */
1da177e4 518 fep->stats.tx_window_errors++;
0e702ab3 519 if (status & BD_ENET_TX_RL) /* Retrans limit */
1da177e4 520 fep->stats.tx_aborted_errors++;
0e702ab3 521 if (status & BD_ENET_TX_UN) /* Underrun */
1da177e4 522 fep->stats.tx_fifo_errors++;
0e702ab3 523 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1da177e4
LT
524 fep->stats.tx_carrier_errors++;
525 } else {
526 fep->stats.tx_packets++;
527 }
528
529#ifndef final_version
0e702ab3 530 if (status & BD_ENET_TX_READY)
1da177e4
LT
531 printk("HEY! Enet xmit interrupt and TX_READY.\n");
532#endif
533 /* Deferred means some collisions occurred during transmit,
534 * but we eventually sent the packet OK.
535 */
0e702ab3 536 if (status & BD_ENET_TX_DEF)
1da177e4 537 fep->stats.collisions++;
6aa20a22 538
1da177e4
LT
539 /* Free the sk buffer associated with this last transmit.
540 */
541 dev_kfree_skb_any(skb);
542 fep->tx_skbuff[fep->skb_dirty] = NULL;
543 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
6aa20a22 544
1da177e4
LT
545 /* Update pointer to next buffer descriptor to be transmitted.
546 */
0e702ab3 547 if (status & BD_ENET_TX_WRAP)
1da177e4
LT
548 bdp = fep->tx_bd_base;
549 else
550 bdp++;
6aa20a22 551
1da177e4
LT
552 /* Since we have freed up a buffer, the ring is no longer
553 * full.
554 */
555 if (fep->tx_full) {
556 fep->tx_full = 0;
557 if (netif_queue_stopped(dev))
558 netif_wake_queue(dev);
559 }
560 }
561 fep->dirty_tx = (cbd_t *)bdp;
562 spin_unlock(&fep->lock);
563}
564
565
566/* During a receive, the cur_rx points to the current incoming buffer.
567 * When we update through the ring, if the next incoming buffer has
568 * not been given to the system, we just set the empty indicator,
569 * effectively tossing the packet.
570 */
571static void
572fec_enet_rx(struct net_device *dev)
573{
574 struct fec_enet_private *fep;
575 volatile fec_t *fecp;
576 volatile cbd_t *bdp;
0e702ab3 577 unsigned short status;
1da177e4
LT
578 struct sk_buff *skb;
579 ushort pkt_len;
580 __u8 *data;
6aa20a22 581
0e702ab3
GU
582#ifdef CONFIG_M532x
583 flush_cache_all();
6aa20a22 584#endif
1da177e4
LT
585
586 fep = netdev_priv(dev);
587 fecp = (volatile fec_t*)dev->base_addr;
588
589 /* First, grab all of the stats for the incoming packet.
590 * These get messed up if we get called due to a busy condition.
591 */
592 bdp = fep->cur_rx;
593
0e702ab3 594while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1da177e4
LT
595
596#ifndef final_version
597 /* Since we have allocated space to hold a complete frame,
598 * the last indicator should be set.
599 */
0e702ab3 600 if ((status & BD_ENET_RX_LAST) == 0)
1da177e4
LT
601 printk("FEC ENET: rcv is not +last\n");
602#endif
603
604 if (!fep->opened)
605 goto rx_processing_done;
606
607 /* Check for errors. */
0e702ab3 608 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1da177e4 609 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
6aa20a22 610 fep->stats.rx_errors++;
0e702ab3 611 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1da177e4
LT
612 /* Frame too long or too short. */
613 fep->stats.rx_length_errors++;
614 }
0e702ab3 615 if (status & BD_ENET_RX_NO) /* Frame alignment */
1da177e4 616 fep->stats.rx_frame_errors++;
0e702ab3 617 if (status & BD_ENET_RX_CR) /* CRC Error */
1da177e4 618 fep->stats.rx_crc_errors++;
0e702ab3
GU
619 if (status & BD_ENET_RX_OV) /* FIFO overrun */
620 fep->stats.rx_fifo_errors++;
1da177e4
LT
621 }
622
623 /* Report late collisions as a frame error.
624 * On this error, the BD is closed, but we don't know what we
625 * have in the buffer. So, just drop this frame on the floor.
626 */
0e702ab3 627 if (status & BD_ENET_RX_CL) {
1da177e4
LT
628 fep->stats.rx_errors++;
629 fep->stats.rx_frame_errors++;
630 goto rx_processing_done;
631 }
632
633 /* Process the incoming frame.
634 */
635 fep->stats.rx_packets++;
636 pkt_len = bdp->cbd_datlen;
637 fep->stats.rx_bytes += pkt_len;
638 data = (__u8*)__va(bdp->cbd_bufaddr);
639
640 /* This does 16 byte alignment, exactly what we need.
641 * The packet length includes FCS, but we don't want to
642 * include that when passing upstream as it messes up
643 * bridging applications.
644 */
645 skb = dev_alloc_skb(pkt_len-4);
646
647 if (skb == NULL) {
648 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
649 fep->stats.rx_dropped++;
650 } else {
1da177e4 651 skb_put(skb,pkt_len-4); /* Make room */
8c7b7faa 652 skb_copy_to_linear_data(skb, data, pkt_len-4);
1da177e4
LT
653 skb->protocol=eth_type_trans(skb,dev);
654 netif_rx(skb);
655 }
656 rx_processing_done:
657
658 /* Clear the status flags for this buffer.
659 */
0e702ab3 660 status &= ~BD_ENET_RX_STATS;
1da177e4
LT
661
662 /* Mark the buffer empty.
663 */
0e702ab3
GU
664 status |= BD_ENET_RX_EMPTY;
665 bdp->cbd_sc = status;
1da177e4
LT
666
667 /* Update BD pointer to next entry.
668 */
0e702ab3 669 if (status & BD_ENET_RX_WRAP)
1da177e4
LT
670 bdp = fep->rx_bd_base;
671 else
672 bdp++;
6aa20a22 673
1da177e4
LT
674#if 1
675 /* Doing this here will keep the FEC running while we process
676 * incoming frames. On a heavily loaded network, we should be
677 * able to keep up at the expense of system resources.
678 */
0e702ab3 679 fecp->fec_r_des_active = 0;
1da177e4 680#endif
0e702ab3 681 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
1da177e4
LT
682 fep->cur_rx = (cbd_t *)bdp;
683
684#if 0
685 /* Doing this here will allow us to process all frames in the
686 * ring before the FEC is allowed to put more there. On a heavily
687 * loaded network, some frames may be lost. Unfortunately, this
688 * increases the interrupt overhead since we can potentially work
689 * our way back to the interrupt return only to come right back
690 * here.
691 */
0e702ab3 692 fecp->fec_r_des_active = 0;
1da177e4
LT
693#endif
694}
695
696
0e702ab3 697/* called from interrupt context */
1da177e4
LT
698static void
699fec_enet_mii(struct net_device *dev)
700{
701 struct fec_enet_private *fep;
702 volatile fec_t *ep;
703 mii_list_t *mip;
704 uint mii_reg;
705
706 fep = netdev_priv(dev);
707 ep = fep->hwp;
708 mii_reg = ep->fec_mii_data;
0e702ab3
GU
709
710 spin_lock(&fep->lock);
6aa20a22 711
1da177e4
LT
712 if ((mip = mii_head) == NULL) {
713 printk("MII and no head!\n");
0e702ab3 714 goto unlock;
1da177e4
LT
715 }
716
717 if (mip->mii_func != NULL)
718 (*(mip->mii_func))(mii_reg, dev);
719
720 mii_head = mip->mii_next;
721 mip->mii_next = mii_free;
722 mii_free = mip;
723
724 if ((mip = mii_head) != NULL)
725 ep->fec_mii_data = mip->mii_regval;
0e702ab3
GU
726
727unlock:
728 spin_unlock(&fep->lock);
1da177e4
LT
729}
730
731static int
732mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
733{
734 struct fec_enet_private *fep;
735 unsigned long flags;
736 mii_list_t *mip;
737 int retval;
738
739 /* Add PHY address to register command.
740 */
741 fep = netdev_priv(dev);
742 regval |= fep->phy_addr << 23;
743
744 retval = 0;
745
0e702ab3 746 spin_lock_irqsave(&fep->lock,flags);
1da177e4
LT
747
748 if ((mip = mii_free) != NULL) {
749 mii_free = mip->mii_next;
750 mip->mii_regval = regval;
751 mip->mii_func = func;
752 mip->mii_next = NULL;
753 if (mii_head) {
754 mii_tail->mii_next = mip;
755 mii_tail = mip;
756 }
757 else {
758 mii_head = mii_tail = mip;
759 fep->hwp->fec_mii_data = regval;
760 }
761 }
762 else {
763 retval = 1;
764 }
765
0e702ab3 766 spin_unlock_irqrestore(&fep->lock,flags);
1da177e4
LT
767
768 return(retval);
769}
770
771static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
772{
773 int k;
774
775 if(!c)
776 return;
777
778 for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
779 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
780 }
781}
782
783static void mii_parse_sr(uint mii_reg, struct net_device *dev)
784{
785 struct fec_enet_private *fep = netdev_priv(dev);
786 volatile uint *s = &(fep->phy_status);
7dd6a2aa 787 uint status;
1da177e4 788
7dd6a2aa 789 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
1da177e4
LT
790
791 if (mii_reg & 0x0004)
7dd6a2aa 792 status |= PHY_STAT_LINK;
1da177e4 793 if (mii_reg & 0x0010)
7dd6a2aa 794 status |= PHY_STAT_FAULT;
1da177e4 795 if (mii_reg & 0x0020)
7dd6a2aa
GU
796 status |= PHY_STAT_ANC;
797
798 *s = status;
1da177e4
LT
799}
800
801static void mii_parse_cr(uint mii_reg, struct net_device *dev)
802{
803 struct fec_enet_private *fep = netdev_priv(dev);
804 volatile uint *s = &(fep->phy_status);
7dd6a2aa 805 uint status;
1da177e4 806
7dd6a2aa 807 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
1da177e4
LT
808
809 if (mii_reg & 0x1000)
7dd6a2aa 810 status |= PHY_CONF_ANE;
1da177e4 811 if (mii_reg & 0x4000)
7dd6a2aa
GU
812 status |= PHY_CONF_LOOP;
813 *s = status;
1da177e4
LT
814}
815
816static void mii_parse_anar(uint mii_reg, struct net_device *dev)
817{
818 struct fec_enet_private *fep = netdev_priv(dev);
819 volatile uint *s = &(fep->phy_status);
7dd6a2aa 820 uint status;
1da177e4 821
7dd6a2aa 822 status = *s & ~(PHY_CONF_SPMASK);
1da177e4
LT
823
824 if (mii_reg & 0x0020)
7dd6a2aa 825 status |= PHY_CONF_10HDX;
1da177e4 826 if (mii_reg & 0x0040)
7dd6a2aa 827 status |= PHY_CONF_10FDX;
1da177e4 828 if (mii_reg & 0x0080)
7dd6a2aa 829 status |= PHY_CONF_100HDX;
1da177e4 830 if (mii_reg & 0x00100)
7dd6a2aa
GU
831 status |= PHY_CONF_100FDX;
832 *s = status;
1da177e4
LT
833}
834
835/* ------------------------------------------------------------------------- */
836/* The Level one LXT970 is used by many boards */
837
838#define MII_LXT970_MIRROR 16 /* Mirror register */
839#define MII_LXT970_IER 17 /* Interrupt Enable Register */
840#define MII_LXT970_ISR 18 /* Interrupt Status Register */
841#define MII_LXT970_CONFIG 19 /* Configuration Register */
842#define MII_LXT970_CSR 20 /* Chip Status Register */
843
844static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
845{
846 struct fec_enet_private *fep = netdev_priv(dev);
847 volatile uint *s = &(fep->phy_status);
7dd6a2aa 848 uint status;
1da177e4 849
7dd6a2aa 850 status = *s & ~(PHY_STAT_SPMASK);
1da177e4
LT
851 if (mii_reg & 0x0800) {
852 if (mii_reg & 0x1000)
7dd6a2aa 853 status |= PHY_STAT_100FDX;
1da177e4 854 else
7dd6a2aa 855 status |= PHY_STAT_100HDX;
1da177e4
LT
856 } else {
857 if (mii_reg & 0x1000)
7dd6a2aa 858 status |= PHY_STAT_10FDX;
1da177e4 859 else
7dd6a2aa 860 status |= PHY_STAT_10HDX;
1da177e4 861 }
7dd6a2aa 862 *s = status;
1da177e4
LT
863}
864
7dd6a2aa 865static phy_cmd_t const phy_cmd_lxt970_config[] = {
1da177e4
LT
866 { mk_mii_read(MII_REG_CR), mii_parse_cr },
867 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
868 { mk_mii_end, }
7dd6a2aa
GU
869 };
870static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
1da177e4
LT
871 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
872 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
873 { mk_mii_end, }
7dd6a2aa
GU
874 };
875static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
1da177e4
LT
876 /* read SR and ISR to acknowledge */
877 { mk_mii_read(MII_REG_SR), mii_parse_sr },
878 { mk_mii_read(MII_LXT970_ISR), NULL },
879
880 /* find out the current status */
881 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
882 { mk_mii_end, }
7dd6a2aa
GU
883 };
884static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
1da177e4
LT
885 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
886 { mk_mii_end, }
7dd6a2aa
GU
887 };
888static phy_info_t const phy_info_lxt970 = {
6aa20a22 889 .id = 0x07810000,
7dd6a2aa
GU
890 .name = "LXT970",
891 .config = phy_cmd_lxt970_config,
892 .startup = phy_cmd_lxt970_startup,
893 .ack_int = phy_cmd_lxt970_ack_int,
894 .shutdown = phy_cmd_lxt970_shutdown
1da177e4 895};
6aa20a22 896
1da177e4
LT
897/* ------------------------------------------------------------------------- */
898/* The Level one LXT971 is used on some of my custom boards */
899
900/* register definitions for the 971 */
901
902#define MII_LXT971_PCR 16 /* Port Control Register */
903#define MII_LXT971_SR2 17 /* Status Register 2 */
904#define MII_LXT971_IER 18 /* Interrupt Enable Register */
905#define MII_LXT971_ISR 19 /* Interrupt Status Register */
906#define MII_LXT971_LCR 20 /* LED Control Register */
907#define MII_LXT971_TCR 30 /* Transmit Control Register */
908
6aa20a22 909/*
1da177e4
LT
910 * I had some nice ideas of running the MDIO faster...
911 * The 971 should support 8MHz and I tried it, but things acted really
912 * weird, so 2.5 MHz ought to be enough for anyone...
913 */
914
915static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
916{
917 struct fec_enet_private *fep = netdev_priv(dev);
918 volatile uint *s = &(fep->phy_status);
7dd6a2aa 919 uint status;
1da177e4 920
7dd6a2aa 921 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1da177e4
LT
922
923 if (mii_reg & 0x0400) {
924 fep->link = 1;
7dd6a2aa 925 status |= PHY_STAT_LINK;
1da177e4
LT
926 } else {
927 fep->link = 0;
928 }
929 if (mii_reg & 0x0080)
7dd6a2aa 930 status |= PHY_STAT_ANC;
1da177e4
LT
931 if (mii_reg & 0x4000) {
932 if (mii_reg & 0x0200)
7dd6a2aa 933 status |= PHY_STAT_100FDX;
1da177e4 934 else
7dd6a2aa 935 status |= PHY_STAT_100HDX;
1da177e4
LT
936 } else {
937 if (mii_reg & 0x0200)
7dd6a2aa 938 status |= PHY_STAT_10FDX;
1da177e4 939 else
7dd6a2aa 940 status |= PHY_STAT_10HDX;
1da177e4
LT
941 }
942 if (mii_reg & 0x0008)
7dd6a2aa 943 status |= PHY_STAT_FAULT;
1da177e4 944
7dd6a2aa
GU
945 *s = status;
946}
6aa20a22 947
7dd6a2aa 948static phy_cmd_t const phy_cmd_lxt971_config[] = {
6aa20a22 949 /* limit to 10MBit because my prototype board
1da177e4
LT
950 * doesn't work with 100. */
951 { mk_mii_read(MII_REG_CR), mii_parse_cr },
952 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
953 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
954 { mk_mii_end, }
7dd6a2aa
GU
955 };
956static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
1da177e4
LT
957 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
958 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
959 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
960 /* Somehow does the 971 tell me that the link is down
961 * the first read after power-up.
962 * read here to get a valid value in ack_int */
6aa20a22 963 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1da177e4 964 { mk_mii_end, }
7dd6a2aa
GU
965 };
966static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
967 /* acknowledge the int before reading status ! */
968 { mk_mii_read(MII_LXT971_ISR), NULL },
1da177e4
LT
969 /* find out the current status */
970 { mk_mii_read(MII_REG_SR), mii_parse_sr },
971 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
1da177e4 972 { mk_mii_end, }
7dd6a2aa
GU
973 };
974static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
1da177e4
LT
975 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
976 { mk_mii_end, }
7dd6a2aa
GU
977 };
978static phy_info_t const phy_info_lxt971 = {
6aa20a22 979 .id = 0x0001378e,
7dd6a2aa
GU
980 .name = "LXT971",
981 .config = phy_cmd_lxt971_config,
982 .startup = phy_cmd_lxt971_startup,
983 .ack_int = phy_cmd_lxt971_ack_int,
984 .shutdown = phy_cmd_lxt971_shutdown
1da177e4
LT
985};
986
987/* ------------------------------------------------------------------------- */
988/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
989
990/* register definitions */
991
992#define MII_QS6612_MCR 17 /* Mode Control Register */
993#define MII_QS6612_FTR 27 /* Factory Test Register */
994#define MII_QS6612_MCO 28 /* Misc. Control Register */
995#define MII_QS6612_ISR 29 /* Interrupt Source Register */
996#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
997#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
998
999static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
1000{
1001 struct fec_enet_private *fep = netdev_priv(dev);
1002 volatile uint *s = &(fep->phy_status);
7dd6a2aa 1003 uint status;
1da177e4 1004
7dd6a2aa 1005 status = *s & ~(PHY_STAT_SPMASK);
1da177e4
LT
1006
1007 switch((mii_reg >> 2) & 7) {
7dd6a2aa
GU
1008 case 1: status |= PHY_STAT_10HDX; break;
1009 case 2: status |= PHY_STAT_100HDX; break;
1010 case 5: status |= PHY_STAT_10FDX; break;
1011 case 6: status |= PHY_STAT_100FDX; break;
1da177e4
LT
1012}
1013
7dd6a2aa
GU
1014 *s = status;
1015}
1016
1017static phy_cmd_t const phy_cmd_qs6612_config[] = {
6aa20a22 1018 /* The PHY powers up isolated on the RPX,
1da177e4
LT
1019 * so send a command to allow operation.
1020 */
1021 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1022
1023 /* parse cr and anar to get some info */
1024 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1025 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1026 { mk_mii_end, }
7dd6a2aa
GU
1027 };
1028static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1da177e4
LT
1029 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1030 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1031 { mk_mii_end, }
7dd6a2aa
GU
1032 };
1033static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1da177e4
LT
1034 /* we need to read ISR, SR and ANER to acknowledge */
1035 { mk_mii_read(MII_QS6612_ISR), NULL },
1036 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1037 { mk_mii_read(MII_REG_ANER), NULL },
1038
1039 /* read pcr to get info */
1040 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1041 { mk_mii_end, }
7dd6a2aa
GU
1042 };
1043static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1da177e4
LT
1044 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1045 { mk_mii_end, }
7dd6a2aa
GU
1046 };
1047static phy_info_t const phy_info_qs6612 = {
6aa20a22 1048 .id = 0x00181440,
7dd6a2aa
GU
1049 .name = "QS6612",
1050 .config = phy_cmd_qs6612_config,
1051 .startup = phy_cmd_qs6612_startup,
1052 .ack_int = phy_cmd_qs6612_ack_int,
1053 .shutdown = phy_cmd_qs6612_shutdown
1da177e4
LT
1054};
1055
1056/* ------------------------------------------------------------------------- */
1057/* AMD AM79C874 phy */
1058
1059/* register definitions for the 874 */
1060
1061#define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1062#define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1063#define MII_AM79C874_DR 18 /* Diagnostic Register */
1064#define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1065#define MII_AM79C874_MCR 21 /* ModeControl Register */
1066#define MII_AM79C874_DC 23 /* Disconnect Counter */
1067#define MII_AM79C874_REC 24 /* Recieve Error Counter */
1068
1069static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1070{
1071 struct fec_enet_private *fep = netdev_priv(dev);
1072 volatile uint *s = &(fep->phy_status);
7dd6a2aa 1073 uint status;
1da177e4 1074
7dd6a2aa 1075 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1da177e4
LT
1076
1077 if (mii_reg & 0x0080)
7dd6a2aa 1078 status |= PHY_STAT_ANC;
1da177e4 1079 if (mii_reg & 0x0400)
7dd6a2aa 1080 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1da177e4 1081 else
7dd6a2aa
GU
1082 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1083
1084 *s = status;
1da177e4
LT
1085}
1086
7dd6a2aa 1087static phy_cmd_t const phy_cmd_am79c874_config[] = {
1da177e4
LT
1088 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1089 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1090 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1091 { mk_mii_end, }
7dd6a2aa
GU
1092 };
1093static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1da177e4
LT
1094 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1095 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
6aa20a22 1096 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1da177e4 1097 { mk_mii_end, }
7dd6a2aa
GU
1098 };
1099static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1da177e4
LT
1100 /* find out the current status */
1101 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1102 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1103 /* we only need to read ISR to acknowledge */
1104 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1105 { mk_mii_end, }
7dd6a2aa
GU
1106 };
1107static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1da177e4
LT
1108 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1109 { mk_mii_end, }
7dd6a2aa
GU
1110 };
1111static phy_info_t const phy_info_am79c874 = {
1112 .id = 0x00022561,
1113 .name = "AM79C874",
1114 .config = phy_cmd_am79c874_config,
1115 .startup = phy_cmd_am79c874_startup,
1116 .ack_int = phy_cmd_am79c874_ack_int,
1117 .shutdown = phy_cmd_am79c874_shutdown
1da177e4
LT
1118};
1119
7dd6a2aa 1120
1da177e4
LT
1121/* ------------------------------------------------------------------------- */
1122/* Kendin KS8721BL phy */
1123
1124/* register definitions for the 8721 */
1125
1126#define MII_KS8721BL_RXERCR 21
1127#define MII_KS8721BL_ICSR 22
1128#define MII_KS8721BL_PHYCR 31
1129
7dd6a2aa 1130static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1da177e4
LT
1131 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1132 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1133 { mk_mii_end, }
7dd6a2aa
GU
1134 };
1135static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1da177e4
LT
1136 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1137 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
6aa20a22 1138 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1da177e4 1139 { mk_mii_end, }
7dd6a2aa
GU
1140 };
1141static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1da177e4
LT
1142 /* find out the current status */
1143 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1144 /* we only need to read ISR to acknowledge */
1145 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1146 { mk_mii_end, }
7dd6a2aa
GU
1147 };
1148static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1da177e4
LT
1149 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1150 { mk_mii_end, }
7dd6a2aa
GU
1151 };
1152static phy_info_t const phy_info_ks8721bl = {
6aa20a22 1153 .id = 0x00022161,
7dd6a2aa
GU
1154 .name = "KS8721BL",
1155 .config = phy_cmd_ks8721bl_config,
1156 .startup = phy_cmd_ks8721bl_startup,
1157 .ack_int = phy_cmd_ks8721bl_ack_int,
1158 .shutdown = phy_cmd_ks8721bl_shutdown
1da177e4
LT
1159};
1160
562d2f8c
GU
1161/* ------------------------------------------------------------------------- */
1162/* register definitions for the DP83848 */
1163
1164#define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1165
1166static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1167{
1168 struct fec_enet_private *fep = dev->priv;
1169 volatile uint *s = &(fep->phy_status);
1170
1171 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1172
1173 /* Link up */
1174 if (mii_reg & 0x0001) {
1175 fep->link = 1;
1176 *s |= PHY_STAT_LINK;
1177 } else
1178 fep->link = 0;
1179 /* Status of link */
1180 if (mii_reg & 0x0010) /* Autonegotioation complete */
1181 *s |= PHY_STAT_ANC;
1182 if (mii_reg & 0x0002) { /* 10MBps? */
1183 if (mii_reg & 0x0004) /* Full Duplex? */
1184 *s |= PHY_STAT_10FDX;
1185 else
1186 *s |= PHY_STAT_10HDX;
1187 } else { /* 100 Mbps? */
1188 if (mii_reg & 0x0004) /* Full Duplex? */
1189 *s |= PHY_STAT_100FDX;
1190 else
1191 *s |= PHY_STAT_100HDX;
1192 }
1193 if (mii_reg & 0x0008)
1194 *s |= PHY_STAT_FAULT;
1195}
1196
1197static phy_info_t phy_info_dp83848= {
1198 0x020005c9,
1199 "DP83848",
1200
1201 (const phy_cmd_t []) { /* config */
1202 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1203 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1204 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1205 { mk_mii_end, }
1206 },
1207 (const phy_cmd_t []) { /* startup - enable interrupts */
1208 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1209 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1210 { mk_mii_end, }
1211 },
1212 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1213 { mk_mii_end, }
1214 },
1215 (const phy_cmd_t []) { /* shutdown */
1216 { mk_mii_end, }
1217 },
1218};
1219
1da177e4
LT
1220/* ------------------------------------------------------------------------- */
1221
7dd6a2aa 1222static phy_info_t const * const phy_info[] = {
1da177e4
LT
1223 &phy_info_lxt970,
1224 &phy_info_lxt971,
1225 &phy_info_qs6612,
1226 &phy_info_am79c874,
1227 &phy_info_ks8721bl,
562d2f8c 1228 &phy_info_dp83848,
1da177e4
LT
1229 NULL
1230};
1231
1232/* ------------------------------------------------------------------------- */
6b265293 1233#if !defined(CONFIG_M532x)
1da177e4
LT
1234#ifdef CONFIG_RPXCLASSIC
1235static void
1236mii_link_interrupt(void *dev_id);
1237#else
1238static irqreturn_t
7d12e780 1239mii_link_interrupt(int irq, void * dev_id);
1da177e4 1240#endif
6b265293 1241#endif
1da177e4
LT
1242
1243#if defined(CONFIG_M5272)
1244
1245/*
1246 * Code specific to Coldfire 5272 setup.
1247 */
1248static void __inline__ fec_request_intrs(struct net_device *dev)
1249{
1250 volatile unsigned long *icrp;
7dd6a2aa
GU
1251 static const struct idesc {
1252 char *name;
1253 unsigned short irq;
7d12e780 1254 irq_handler_t handler;
7dd6a2aa
GU
1255 } *idp, id[] = {
1256 { "fec(RX)", 86, fec_enet_interrupt },
1257 { "fec(TX)", 87, fec_enet_interrupt },
1258 { "fec(OTHER)", 88, fec_enet_interrupt },
1259 { "fec(MII)", 66, mii_link_interrupt },
1260 { NULL },
1261 };
1da177e4
LT
1262
1263 /* Setup interrupt handlers. */
7dd6a2aa
GU
1264 for (idp = id; idp->name; idp++) {
1265 if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0)
1266 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1267 }
1da177e4
LT
1268
1269 /* Unmask interrupt at ColdFire 5272 SIM */
1270 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1271 *icrp = 0x00000ddd;
1272 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1273 *icrp = (*icrp & 0x70777777) | 0x0d000000;
1274}
1275
1276static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1277{
1278 volatile fec_t *fecp;
1279
1280 fecp = fep->hwp;
1281 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1282 fecp->fec_x_cntrl = 0x00;
1283
1284 /*
1285 * Set MII speed to 2.5 MHz
1286 * See 5272 manual section 11.5.8: MSCR
1287 */
1288 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1289 fecp->fec_mii_speed = fep->phy_speed;
1290
1291 fec_restart(dev, 0);
1292}
1293
1294static void __inline__ fec_get_mac(struct net_device *dev)
1295{
1296 struct fec_enet_private *fep = netdev_priv(dev);
1297 volatile fec_t *fecp;
7dd6a2aa 1298 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4
LT
1299
1300 fecp = fep->hwp;
1301
7dd6a2aa 1302 if (FEC_FLASHMAC) {
1da177e4
LT
1303 /*
1304 * Get MAC address from FLASH.
1305 * If it is all 1's or 0's, use the default.
1306 */
7dd6a2aa 1307 iap = (unsigned char *)FEC_FLASHMAC;
1da177e4
LT
1308 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1309 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1310 iap = fec_mac_default;
1311 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1312 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1313 iap = fec_mac_default;
1314 } else {
1315 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1316 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1317 iap = &tmpaddr[0];
1318 }
1319
7dd6a2aa 1320 memcpy(dev->dev_addr, iap, ETH_ALEN);
1da177e4
LT
1321
1322 /* Adjust MAC if using default MAC address */
7dd6a2aa
GU
1323 if (iap == fec_mac_default)
1324 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1da177e4
LT
1325}
1326
1327static void __inline__ fec_enable_phy_intr(void)
1328{
1329}
1330
1331static void __inline__ fec_disable_phy_intr(void)
1332{
1333 volatile unsigned long *icrp;
1334 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1335 *icrp = (*icrp & 0x70777777) | 0x08000000;
1336}
1337
1338static void __inline__ fec_phy_ack_intr(void)
1339{
1340 volatile unsigned long *icrp;
1341 /* Acknowledge the interrupt */
1342 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1343 *icrp = (*icrp & 0x77777777) | 0x08000000;
1344}
1345
1346static void __inline__ fec_localhw_setup(void)
1347{
1348}
1349
1350/*
1351 * Do not need to make region uncached on 5272.
1352 */
1353static void __inline__ fec_uncache(unsigned long addr)
1354{
1355}
1356
1357/* ------------------------------------------------------------------------- */
1358
7dd6a2aa 1359#elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1da177e4
LT
1360
1361/*
7dd6a2aa
GU
1362 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1363 * the 5270/5271/5274/5275 and 5280/5282 setups.
1da177e4
LT
1364 */
1365static void __inline__ fec_request_intrs(struct net_device *dev)
1366{
1367 struct fec_enet_private *fep;
1368 int b;
7dd6a2aa
GU
1369 static const struct idesc {
1370 char *name;
1371 unsigned short irq;
1372 } *idp, id[] = {
1373 { "fec(TXF)", 23 },
1374 { "fec(TXB)", 24 },
1375 { "fec(TXFIFO)", 25 },
1376 { "fec(TXCR)", 26 },
1377 { "fec(RXF)", 27 },
1378 { "fec(RXB)", 28 },
1379 { "fec(MII)", 29 },
1380 { "fec(LC)", 30 },
1381 { "fec(HBERR)", 31 },
1382 { "fec(GRA)", 32 },
1383 { "fec(EBERR)", 33 },
1384 { "fec(BABT)", 34 },
1385 { "fec(BABR)", 35 },
1386 { NULL },
1387 };
1da177e4
LT
1388
1389 fep = netdev_priv(dev);
1390 b = (fep->index) ? 128 : 64;
1391
1392 /* Setup interrupt handlers. */
7dd6a2aa
GU
1393 for (idp = id; idp->name; idp++) {
1394 if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0)
1395 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1396 }
1da177e4
LT
1397
1398 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1399 {
1400 volatile unsigned char *icrp;
1401 volatile unsigned long *imrp;
83901fc1 1402 int i, ilip;
1da177e4
LT
1403
1404 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1405 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1406 MCFINTC_ICR0);
83901fc1
WC
1407 for (i = 23, ilip = 0x28; (i < 36); i++)
1408 icrp[i] = ilip--;
1da177e4
LT
1409
1410 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1411 MCFINTC_IMRH);
1412 *imrp &= ~0x0000000f;
1413 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1414 MCFINTC_IMRL);
1415 *imrp &= ~0xff800001;
1416 }
1417
1418#if defined(CONFIG_M528x)
1419 /* Set up gpio outputs for MII lines */
1420 {
7dd6a2aa
GU
1421 volatile u16 *gpio_paspar;
1422 volatile u8 *gpio_pehlpar;
6aa20a22 1423
7dd6a2aa
GU
1424 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1425 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1426 *gpio_paspar |= 0x0f00;
1427 *gpio_pehlpar = 0xc0;
1da177e4
LT
1428 }
1429#endif
1430}
1431
1432static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1433{
1434 volatile fec_t *fecp;
1435
1436 fecp = fep->hwp;
1437 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1438 fecp->fec_x_cntrl = 0x00;
1439
1440 /*
1441 * Set MII speed to 2.5 MHz
1442 * See 5282 manual section 17.5.4.7: MSCR
1443 */
1444 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1445 fecp->fec_mii_speed = fep->phy_speed;
1446
1447 fec_restart(dev, 0);
1448}
1449
1450static void __inline__ fec_get_mac(struct net_device *dev)
1451{
1452 struct fec_enet_private *fep = netdev_priv(dev);
1453 volatile fec_t *fecp;
7dd6a2aa 1454 unsigned char *iap, tmpaddr[ETH_ALEN];
1da177e4
LT
1455
1456 fecp = fep->hwp;
1457
7dd6a2aa 1458 if (FEC_FLASHMAC) {
1da177e4
LT
1459 /*
1460 * Get MAC address from FLASH.
1461 * If it is all 1's or 0's, use the default.
1462 */
7dd6a2aa 1463 iap = FEC_FLASHMAC;
1da177e4
LT
1464 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1465 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1466 iap = fec_mac_default;
1467 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1468 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1469 iap = fec_mac_default;
1470 } else {
1471 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1472 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1473 iap = &tmpaddr[0];
1474 }
1475
7dd6a2aa 1476 memcpy(dev->dev_addr, iap, ETH_ALEN);
1da177e4
LT
1477
1478 /* Adjust MAC if using default MAC address */
7dd6a2aa
GU
1479 if (iap == fec_mac_default)
1480 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1da177e4
LT
1481}
1482
1483static void __inline__ fec_enable_phy_intr(void)
1484{
1485}
1486
1487static void __inline__ fec_disable_phy_intr(void)
1488{
1489}
1490
1491static void __inline__ fec_phy_ack_intr(void)
1492{
1493}
1494
1495static void __inline__ fec_localhw_setup(void)
1496{
1497}
1498
1499/*
1500 * Do not need to make region uncached on 5272.
1501 */
1502static void __inline__ fec_uncache(unsigned long addr)
1503{
1504}
1505
1506/* ------------------------------------------------------------------------- */
1507
562d2f8c
GU
1508#elif defined(CONFIG_M520x)
1509
1510/*
1511 * Code specific to Coldfire 520x
1512 */
1513static void __inline__ fec_request_intrs(struct net_device *dev)
1514{
1515 struct fec_enet_private *fep;
1516 int b;
1517 static const struct idesc {
1518 char *name;
1519 unsigned short irq;
1520 } *idp, id[] = {
1521 { "fec(TXF)", 23 },
1522 { "fec(TXB)", 24 },
1523 { "fec(TXFIFO)", 25 },
1524 { "fec(TXCR)", 26 },
1525 { "fec(RXF)", 27 },
1526 { "fec(RXB)", 28 },
1527 { "fec(MII)", 29 },
1528 { "fec(LC)", 30 },
1529 { "fec(HBERR)", 31 },
1530 { "fec(GRA)", 32 },
1531 { "fec(EBERR)", 33 },
1532 { "fec(BABT)", 34 },
1533 { "fec(BABR)", 35 },
1534 { NULL },
1535 };
1536
1537 fep = netdev_priv(dev);
1538 b = 64 + 13;
1539
1540 /* Setup interrupt handlers. */
1541 for (idp = id; idp->name; idp++) {
1542 if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
1543 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1544 }
1545
1546 /* Unmask interrupts at ColdFire interrupt controller */
1547 {
1548 volatile unsigned char *icrp;
1549 volatile unsigned long *imrp;
1550
1551 icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
1552 MCFINTC_ICR0);
1553 for (b = 36; (b < 49); b++)
1554 icrp[b] = 0x04;
1555 imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
1556 MCFINTC_IMRH);
1557 *imrp &= ~0x0001FFF0;
1558 }
1559 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
1560 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
1561}
1562
1563static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1564{
1565 volatile fec_t *fecp;
1566
1567 fecp = fep->hwp;
1568 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1569 fecp->fec_x_cntrl = 0x00;
1570
1571 /*
1572 * Set MII speed to 2.5 MHz
1573 * See 5282 manual section 17.5.4.7: MSCR
1574 */
1575 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1576 fecp->fec_mii_speed = fep->phy_speed;
1577
1578 fec_restart(dev, 0);
1579}
1580
1581static void __inline__ fec_get_mac(struct net_device *dev)
1582{
1583 struct fec_enet_private *fep = netdev_priv(dev);
1584 volatile fec_t *fecp;
1585 unsigned char *iap, tmpaddr[ETH_ALEN];
1586
1587 fecp = fep->hwp;
1588
1589 if (FEC_FLASHMAC) {
1590 /*
1591 * Get MAC address from FLASH.
1592 * If it is all 1's or 0's, use the default.
1593 */
1594 iap = FEC_FLASHMAC;
1595 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1596 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1597 iap = fec_mac_default;
1598 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1599 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1600 iap = fec_mac_default;
1601 } else {
1602 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1603 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1604 iap = &tmpaddr[0];
1605 }
1606
1607 memcpy(dev->dev_addr, iap, ETH_ALEN);
1608
1609 /* Adjust MAC if using default MAC address */
1610 if (iap == fec_mac_default)
1611 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1612}
1613
1614static void __inline__ fec_enable_phy_intr(void)
1615{
1616}
1617
1618static void __inline__ fec_disable_phy_intr(void)
1619{
1620}
1621
1622static void __inline__ fec_phy_ack_intr(void)
1623{
1624}
1625
1626static void __inline__ fec_localhw_setup(void)
1627{
1628}
1629
1630static void __inline__ fec_uncache(unsigned long addr)
1631{
1632}
1633
1634/* ------------------------------------------------------------------------- */
1635
6b265293
MW
1636#elif defined(CONFIG_M532x)
1637/*
1638 * Code specific for M532x
1639 */
1640static void __inline__ fec_request_intrs(struct net_device *dev)
1641{
1642 struct fec_enet_private *fep;
1643 int b;
1644 static const struct idesc {
1645 char *name;
1646 unsigned short irq;
1647 } *idp, id[] = {
1648 { "fec(TXF)", 36 },
1649 { "fec(TXB)", 37 },
1650 { "fec(TXFIFO)", 38 },
1651 { "fec(TXCR)", 39 },
1652 { "fec(RXF)", 40 },
1653 { "fec(RXB)", 41 },
1654 { "fec(MII)", 42 },
1655 { "fec(LC)", 43 },
1656 { "fec(HBERR)", 44 },
1657 { "fec(GRA)", 45 },
1658 { "fec(EBERR)", 46 },
1659 { "fec(BABT)", 47 },
1660 { "fec(BABR)", 48 },
1661 { NULL },
1662 };
1663
1664 fep = netdev_priv(dev);
1665 b = (fep->index) ? 128 : 64;
1666
1667 /* Setup interrupt handlers. */
1668 for (idp = id; idp->name; idp++) {
1669 if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
6aa20a22 1670 printk("FEC: Could not allocate %s IRQ(%d)!\n",
6b265293
MW
1671 idp->name, b+idp->irq);
1672 }
1673
1674 /* Unmask interrupts */
1675 MCF_INTC0_ICR36 = 0x2;
1676 MCF_INTC0_ICR37 = 0x2;
1677 MCF_INTC0_ICR38 = 0x2;
1678 MCF_INTC0_ICR39 = 0x2;
1679 MCF_INTC0_ICR40 = 0x2;
1680 MCF_INTC0_ICR41 = 0x2;
1681 MCF_INTC0_ICR42 = 0x2;
1682 MCF_INTC0_ICR43 = 0x2;
1683 MCF_INTC0_ICR44 = 0x2;
1684 MCF_INTC0_ICR45 = 0x2;
1685 MCF_INTC0_ICR46 = 0x2;
1686 MCF_INTC0_ICR47 = 0x2;
1687 MCF_INTC0_ICR48 = 0x2;
1688
1689 MCF_INTC0_IMRH &= ~(
1690 MCF_INTC_IMRH_INT_MASK36 |
1691 MCF_INTC_IMRH_INT_MASK37 |
1692 MCF_INTC_IMRH_INT_MASK38 |
1693 MCF_INTC_IMRH_INT_MASK39 |
1694 MCF_INTC_IMRH_INT_MASK40 |
1695 MCF_INTC_IMRH_INT_MASK41 |
1696 MCF_INTC_IMRH_INT_MASK42 |
1697 MCF_INTC_IMRH_INT_MASK43 |
1698 MCF_INTC_IMRH_INT_MASK44 |
1699 MCF_INTC_IMRH_INT_MASK45 |
1700 MCF_INTC_IMRH_INT_MASK46 |
1701 MCF_INTC_IMRH_INT_MASK47 |
1702 MCF_INTC_IMRH_INT_MASK48 );
1703
1704 /* Set up gpio outputs for MII lines */
1705 MCF_GPIO_PAR_FECI2C |= (0 |
1706 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
1707 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
1708 MCF_GPIO_PAR_FEC = (0 |
1709 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
1710 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
1711}
1712
1713static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1714{
1715 volatile fec_t *fecp;
1716
1717 fecp = fep->hwp;
1718 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1719 fecp->fec_x_cntrl = 0x00;
1720
1721 /*
1722 * Set MII speed to 2.5 MHz
1723 */
1724 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1725 fecp->fec_mii_speed = fep->phy_speed;
1726
1727 fec_restart(dev, 0);
1728}
1729
1730static void __inline__ fec_get_mac(struct net_device *dev)
1731{
1732 struct fec_enet_private *fep = netdev_priv(dev);
1733 volatile fec_t *fecp;
1734 unsigned char *iap, tmpaddr[ETH_ALEN];
1735
1736 fecp = fep->hwp;
1737
1738 if (FEC_FLASHMAC) {
1739 /*
1740 * Get MAC address from FLASH.
1741 * If it is all 1's or 0's, use the default.
1742 */
1743 iap = FEC_FLASHMAC;
1744 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1745 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1746 iap = fec_mac_default;
1747 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1748 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1749 iap = fec_mac_default;
1750 } else {
1751 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1752 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1753 iap = &tmpaddr[0];
1754 }
1755
1756 memcpy(dev->dev_addr, iap, ETH_ALEN);
1757
1758 /* Adjust MAC if using default MAC address */
1759 if (iap == fec_mac_default)
1760 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1761}
1762
1763static void __inline__ fec_enable_phy_intr(void)
1764{
1765}
1766
1767static void __inline__ fec_disable_phy_intr(void)
1768{
1769}
1770
1771static void __inline__ fec_phy_ack_intr(void)
1772{
1773}
1774
1775static void __inline__ fec_localhw_setup(void)
1776{
1777}
1778
1779/*
1780 * Do not need to make region uncached on 532x.
1781 */
1782static void __inline__ fec_uncache(unsigned long addr)
1783{
1784}
1785
1786/* ------------------------------------------------------------------------- */
1787
1788
1da177e4
LT
1789#else
1790
1791/*
7dd6a2aa 1792 * Code specific to the MPC860T setup.
1da177e4
LT
1793 */
1794static void __inline__ fec_request_intrs(struct net_device *dev)
1795{
1796 volatile immap_t *immap;
1797
1798 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1799
1800 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1801 panic("Could not allocate FEC IRQ!");
1802
1803#ifdef CONFIG_RPXCLASSIC
1804 /* Make Port C, bit 15 an input that causes interrupts.
1805 */
1806 immap->im_ioport.iop_pcpar &= ~0x0001;
1807 immap->im_ioport.iop_pcdir &= ~0x0001;
1808 immap->im_ioport.iop_pcso &= ~0x0001;
1809 immap->im_ioport.iop_pcint |= 0x0001;
1810 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1811
1812 /* Make LEDS reflect Link status.
1813 */
1814 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1815#endif
1816#ifdef CONFIG_FADS
1817 if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
1818 panic("Could not allocate MII IRQ!");
1819#endif
1820}
1821
1822static void __inline__ fec_get_mac(struct net_device *dev)
1823{
1da177e4 1824 bd_t *bd;
1da177e4 1825
1da177e4 1826 bd = (bd_t *)__res;
7dd6a2aa 1827 memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
1da177e4
LT
1828
1829#ifdef CONFIG_RPXCLASSIC
1830 /* The Embedded Planet boards have only one MAC address in
1831 * the EEPROM, but can have two Ethernet ports. For the
1832 * FEC port, we create another address by setting one of
1833 * the address bits above something that would have (up to
1834 * now) been allocated.
1835 */
7dd6a2aa 1836 dev->dev_adrd[3] |= 0x80;
1da177e4 1837#endif
1da177e4
LT
1838}
1839
1840static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1841{
1842 extern uint _get_IMMR(void);
1843 volatile immap_t *immap;
1844 volatile fec_t *fecp;
1845
1846 fecp = fep->hwp;
1847 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1848
1849 /* Configure all of port D for MII.
1850 */
1851 immap->im_ioport.iop_pdpar = 0x1fff;
1852
1853 /* Bits moved from Rev. D onward.
1854 */
1855 if ((_get_IMMR() & 0xffff) < 0x0501)
1856 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1857 else
1858 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
6aa20a22 1859
1da177e4
LT
1860 /* Set MII speed to 2.5 MHz
1861 */
6aa20a22 1862 fecp->fec_mii_speed = fep->phy_speed =
1da177e4
LT
1863 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1864}
1865
1866static void __inline__ fec_enable_phy_intr(void)
1867{
1868 volatile fec_t *fecp;
1869
1870 fecp = fep->hwp;
1871
6aa20a22 1872 /* Enable MII command finished interrupt
1da177e4
LT
1873 */
1874 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1875}
1876
1877static void __inline__ fec_disable_phy_intr(void)
1878{
1879}
1880
1881static void __inline__ fec_phy_ack_intr(void)
1882{
1883}
1884
1885static void __inline__ fec_localhw_setup(void)
1886{
1887 volatile fec_t *fecp;
1888
1889 fecp = fep->hwp;
1890 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1891 /* Enable big endian and don't care about SDMA FC.
1892 */
1893 fecp->fec_fun_code = 0x78000000;
1894}
1895
1896static void __inline__ fec_uncache(unsigned long addr)
1897{
1898 pte_t *pte;
1899 pte = va_to_pte(mem_addr);
1900 pte_val(*pte) |= _PAGE_NO_CACHE;
1901 flush_tlb_page(init_mm.mmap, mem_addr);
1902}
1903
1904#endif
1905
1906/* ------------------------------------------------------------------------- */
1907
1908static void mii_display_status(struct net_device *dev)
1909{
1910 struct fec_enet_private *fep = netdev_priv(dev);
1911 volatile uint *s = &(fep->phy_status);
1912
1913 if (!fep->link && !fep->old_link) {
1914 /* Link is still down - don't print anything */
1915 return;
1916 }
1917
1918 printk("%s: status: ", dev->name);
1919
1920 if (!fep->link) {
1921 printk("link down");
1922 } else {
1923 printk("link up");
1924
1925 switch(*s & PHY_STAT_SPMASK) {
1926 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1927 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1928 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1929 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1930 default:
1931 printk(", Unknown speed/duplex");
1932 }
1933
1934 if (*s & PHY_STAT_ANC)
1935 printk(", auto-negotiation complete");
1936 }
1937
1938 if (*s & PHY_STAT_FAULT)
1939 printk(", remote fault");
1940
1941 printk(".\n");
1942}
1943
cb84d6e7 1944static void mii_display_config(struct work_struct *work)
1da177e4 1945{
cb84d6e7
GU
1946 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1947 struct net_device *dev = fep->netdev;
7dd6a2aa 1948 uint status = fep->phy_status;
1da177e4
LT
1949
1950 /*
1951 ** When we get here, phy_task is already removed from
1952 ** the workqueue. It is thus safe to allow to reuse it.
1953 */
1954 fep->mii_phy_task_queued = 0;
1955 printk("%s: config: auto-negotiation ", dev->name);
1956
7dd6a2aa 1957 if (status & PHY_CONF_ANE)
1da177e4
LT
1958 printk("on");
1959 else
1960 printk("off");
1961
7dd6a2aa 1962 if (status & PHY_CONF_100FDX)
1da177e4 1963 printk(", 100FDX");
7dd6a2aa 1964 if (status & PHY_CONF_100HDX)
1da177e4 1965 printk(", 100HDX");
7dd6a2aa 1966 if (status & PHY_CONF_10FDX)
1da177e4 1967 printk(", 10FDX");
7dd6a2aa 1968 if (status & PHY_CONF_10HDX)
1da177e4 1969 printk(", 10HDX");
7dd6a2aa 1970 if (!(status & PHY_CONF_SPMASK))
1da177e4
LT
1971 printk(", No speed/duplex selected?");
1972
7dd6a2aa 1973 if (status & PHY_CONF_LOOP)
1da177e4 1974 printk(", loopback enabled");
6aa20a22 1975
1da177e4
LT
1976 printk(".\n");
1977
1978 fep->sequence_done = 1;
1979}
1980
cb84d6e7 1981static void mii_relink(struct work_struct *work)
1da177e4 1982{
cb84d6e7
GU
1983 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1984 struct net_device *dev = fep->netdev;
1da177e4
LT
1985 int duplex;
1986
1987 /*
1988 ** When we get here, phy_task is already removed from
1989 ** the workqueue. It is thus safe to allow to reuse it.
1990 */
1991 fep->mii_phy_task_queued = 0;
1992 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1993 mii_display_status(dev);
1994 fep->old_link = fep->link;
1995
1996 if (fep->link) {
1997 duplex = 0;
6aa20a22 1998 if (fep->phy_status
1da177e4
LT
1999 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
2000 duplex = 1;
2001 fec_restart(dev, duplex);
2002 }
2003 else
2004 fec_stop(dev);
2005
2006#if 0
2007 enable_irq(fep->mii_irq);
2008#endif
2009
2010}
2011
2012/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
2013static void mii_queue_relink(uint mii_reg, struct net_device *dev)
2014{
2015 struct fec_enet_private *fep = netdev_priv(dev);
2016
2017 /*
2018 ** We cannot queue phy_task twice in the workqueue. It
2019 ** would cause an endless loop in the workqueue.
2020 ** Fortunately, if the last mii_relink entry has not yet been
2021 ** executed now, it will do the job for the current interrupt,
2022 ** which is just what we want.
2023 */
2024 if (fep->mii_phy_task_queued)
2025 return;
2026
2027 fep->mii_phy_task_queued = 1;
cb84d6e7 2028 INIT_WORK(&fep->phy_task, mii_relink);
1da177e4
LT
2029 schedule_work(&fep->phy_task);
2030}
2031
7dd6a2aa 2032/* mii_queue_config is called in interrupt context from fec_enet_mii */
1da177e4
LT
2033static void mii_queue_config(uint mii_reg, struct net_device *dev)
2034{
2035 struct fec_enet_private *fep = netdev_priv(dev);
2036
2037 if (fep->mii_phy_task_queued)
2038 return;
2039
2040 fep->mii_phy_task_queued = 1;
cb84d6e7 2041 INIT_WORK(&fep->phy_task, mii_display_config);
1da177e4
LT
2042 schedule_work(&fep->phy_task);
2043}
2044
7dd6a2aa
GU
2045phy_cmd_t const phy_cmd_relink[] = {
2046 { mk_mii_read(MII_REG_CR), mii_queue_relink },
2047 { mk_mii_end, }
2048 };
2049phy_cmd_t const phy_cmd_config[] = {
2050 { mk_mii_read(MII_REG_CR), mii_queue_config },
2051 { mk_mii_end, }
2052 };
1da177e4
LT
2053
2054/* Read remainder of PHY ID.
2055*/
2056static void
2057mii_discover_phy3(uint mii_reg, struct net_device *dev)
2058{
2059 struct fec_enet_private *fep;
2060 int i;
2061
2062 fep = netdev_priv(dev);
2063 fep->phy_id |= (mii_reg & 0xffff);
2064 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
2065
2066 for(i = 0; phy_info[i]; i++) {
2067 if(phy_info[i]->id == (fep->phy_id >> 4))
2068 break;
2069 }
2070
2071 if (phy_info[i])
2072 printk(" -- %s\n", phy_info[i]->name);
2073 else
2074 printk(" -- unknown PHY!\n");
6aa20a22 2075
1da177e4
LT
2076 fep->phy = phy_info[i];
2077 fep->phy_id_done = 1;
2078}
2079
2080/* Scan all of the MII PHY addresses looking for someone to respond
2081 * with a valid ID. This usually happens quickly.
2082 */
2083static void
2084mii_discover_phy(uint mii_reg, struct net_device *dev)
2085{
2086 struct fec_enet_private *fep;
2087 volatile fec_t *fecp;
2088 uint phytype;
2089
2090 fep = netdev_priv(dev);
2091 fecp = fep->hwp;
2092
2093 if (fep->phy_addr < 32) {
2094 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
6aa20a22 2095
1da177e4
LT
2096 /* Got first part of ID, now get remainder.
2097 */
2098 fep->phy_id = phytype << 16;
2099 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
2100 mii_discover_phy3);
2101 }
2102 else {
2103 fep->phy_addr++;
2104 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
2105 mii_discover_phy);
2106 }
2107 } else {
2108 printk("FEC: No PHY device found.\n");
2109 /* Disable external MII interface */
2110 fecp->fec_mii_speed = fep->phy_speed = 0;
2111 fec_disable_phy_intr();
2112 }
2113}
2114
2115/* This interrupt occurs when the PHY detects a link change.
2116*/
2117#ifdef CONFIG_RPXCLASSIC
2118static void
2119mii_link_interrupt(void *dev_id)
2120#else
2121static irqreturn_t
7d12e780 2122mii_link_interrupt(int irq, void * dev_id)
1da177e4
LT
2123#endif
2124{
2125 struct net_device *dev = dev_id;
2126 struct fec_enet_private *fep = netdev_priv(dev);
2127
2128 fec_phy_ack_intr();
2129
2130#if 0
2131 disable_irq(fep->mii_irq); /* disable now, enable later */
2132#endif
2133
2134 mii_do_cmd(dev, fep->phy->ack_int);
2135 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
2136
2137 return IRQ_HANDLED;
2138}
2139
2140static int
2141fec_enet_open(struct net_device *dev)
2142{
2143 struct fec_enet_private *fep = netdev_priv(dev);
2144
2145 /* I should reset the ring buffers here, but I don't yet know
2146 * a simple way to do that.
2147 */
2148 fec_set_mac_address(dev);
2149
2150 fep->sequence_done = 0;
2151 fep->link = 0;
2152
2153 if (fep->phy) {
2154 mii_do_cmd(dev, fep->phy->ack_int);
2155 mii_do_cmd(dev, fep->phy->config);
2156 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
2157
6b265293
MW
2158 /* Poll until the PHY tells us its configuration
2159 * (not link state).
2160 * Request is initiated by mii_do_cmd above, but answer
2161 * comes by interrupt.
2162 * This should take about 25 usec per register at 2.5 MHz,
2163 * and we read approximately 5 registers.
1da177e4
LT
2164 */
2165 while(!fep->sequence_done)
2166 schedule();
2167
2168 mii_do_cmd(dev, fep->phy->startup);
2169
2170 /* Set the initial link state to true. A lot of hardware
2171 * based on this device does not implement a PHY interrupt,
2172 * so we are never notified of link change.
2173 */
2174 fep->link = 1;
2175 } else {
2176 fep->link = 1; /* lets just try it and see */
2177 /* no phy, go full duplex, it's most likely a hub chip */
2178 fec_restart(dev, 1);
2179 }
2180
2181 netif_start_queue(dev);
2182 fep->opened = 1;
2183 return 0; /* Success */
2184}
2185
2186static int
2187fec_enet_close(struct net_device *dev)
2188{
2189 struct fec_enet_private *fep = netdev_priv(dev);
2190
2191 /* Don't know what to do yet.
2192 */
2193 fep->opened = 0;
2194 netif_stop_queue(dev);
2195 fec_stop(dev);
2196
2197 return 0;
2198}
2199
2200static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
2201{
2202 struct fec_enet_private *fep = netdev_priv(dev);
2203
2204 return &fep->stats;
2205}
2206
2207/* Set or clear the multicast filter for this adaptor.
2208 * Skeleton taken from sunlance driver.
2209 * The CPM Ethernet implementation allows Multicast as well as individual
2210 * MAC address filtering. Some of the drivers check to make sure it is
2211 * a group multicast address, and discard those that are not. I guess I
2212 * will do the same for now, but just remove the test if you want
2213 * individual filtering as well (do the upper net layers want or support
2214 * this kind of feature?).
2215 */
2216
2217#define HASH_BITS 6 /* #bits in hash */
2218#define CRC32_POLY 0xEDB88320
2219
2220static void set_multicast_list(struct net_device *dev)
2221{
2222 struct fec_enet_private *fep;
2223 volatile fec_t *ep;
2224 struct dev_mc_list *dmi;
2225 unsigned int i, j, bit, data, crc;
2226 unsigned char hash;
2227
2228 fep = netdev_priv(dev);
2229 ep = fep->hwp;
2230
2231 if (dev->flags&IFF_PROMISC) {
1da177e4
LT
2232 ep->fec_r_cntrl |= 0x0008;
2233 } else {
2234
2235 ep->fec_r_cntrl &= ~0x0008;
2236
2237 if (dev->flags & IFF_ALLMULTI) {
2238 /* Catch all multicast addresses, so set the
2239 * filter to all 1's.
2240 */
2241 ep->fec_hash_table_high = 0xffffffff;
2242 ep->fec_hash_table_low = 0xffffffff;
2243 } else {
2244 /* Clear filter and add the addresses in hash register.
2245 */
2246 ep->fec_hash_table_high = 0;
2247 ep->fec_hash_table_low = 0;
6aa20a22 2248
1da177e4
LT
2249 dmi = dev->mc_list;
2250
2251 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
2252 {
2253 /* Only support group multicast for now.
2254 */
2255 if (!(dmi->dmi_addr[0] & 1))
2256 continue;
6aa20a22 2257
1da177e4
LT
2258 /* calculate crc32 value of mac address
2259 */
2260 crc = 0xffffffff;
2261
2262 for (i = 0; i < dmi->dmi_addrlen; i++)
2263 {
2264 data = dmi->dmi_addr[i];
2265 for (bit = 0; bit < 8; bit++, data >>= 1)
2266 {
2267 crc = (crc >> 1) ^
2268 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2269 }
2270 }
2271
2272 /* only upper 6 bits (HASH_BITS) are used
2273 which point to specific bit in he hash registers
2274 */
2275 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
6aa20a22 2276
1da177e4
LT
2277 if (hash > 31)
2278 ep->fec_hash_table_high |= 1 << (hash - 32);
2279 else
2280 ep->fec_hash_table_low |= 1 << hash;
2281 }
2282 }
2283 }
2284}
2285
2286/* Set a MAC change in hardware.
2287 */
2288static void
2289fec_set_mac_address(struct net_device *dev)
2290{
1da177e4
LT
2291 volatile fec_t *fecp;
2292
7dd6a2aa 2293 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
1da177e4
LT
2294
2295 /* Set station address. */
7dd6a2aa
GU
2296 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
2297 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
2298 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
2299 (dev->dev_addr[4] << 24);
1da177e4
LT
2300
2301}
2302
2303/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2304 */
2305 /*
2306 * XXX: We need to clean up on failure exits here.
2307 */
2308int __init fec_enet_init(struct net_device *dev)
2309{
2310 struct fec_enet_private *fep = netdev_priv(dev);
2311 unsigned long mem_addr;
2312 volatile cbd_t *bdp;
2313 cbd_t *cbd_base;
2314 volatile fec_t *fecp;
2315 int i, j;
2316 static int index = 0;
2317
2318 /* Only allow us to be probed once. */
2319 if (index >= FEC_MAX_PORTS)
2320 return -ENXIO;
2321
562d2f8c
GU
2322 /* Allocate memory for buffer descriptors.
2323 */
2324 mem_addr = __get_free_page(GFP_KERNEL);
2325 if (mem_addr == 0) {
2326 printk("FEC: allocate descriptor memory failed?\n");
2327 return -ENOMEM;
2328 }
2329
1da177e4
LT
2330 /* Create an Ethernet device instance.
2331 */
2332 fecp = (volatile fec_t *) fec_hw[index];
2333
2334 fep->index = index;
2335 fep->hwp = fecp;
cb84d6e7 2336 fep->netdev = dev;
1da177e4
LT
2337
2338 /* Whack a reset. We should wait for this.
2339 */
2340 fecp->fec_ecntrl = 1;
2341 udelay(10);
2342
1da177e4
LT
2343 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2344 * this needs some work to get unique addresses.
2345 *
2346 * This is our default MAC address unless the user changes
2347 * it via eth_mac_addr (our dev->set_mac_addr handler).
2348 */
2349 fec_get_mac(dev);
2350
1da177e4
LT
2351 cbd_base = (cbd_t *)mem_addr;
2352 /* XXX: missing check for allocation failure */
2353
2354 fec_uncache(mem_addr);
2355
2356 /* Set receive and transmit descriptor base.
2357 */
2358 fep->rx_bd_base = cbd_base;
2359 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2360
2361 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2362 fep->cur_rx = fep->rx_bd_base;
2363
2364 fep->skb_cur = fep->skb_dirty = 0;
2365
2366 /* Initialize the receive buffer descriptors.
2367 */
2368 bdp = fep->rx_bd_base;
2369 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2370
2371 /* Allocate a page.
2372 */
2373 mem_addr = __get_free_page(GFP_KERNEL);
2374 /* XXX: missing check for allocation failure */
2375
2376 fec_uncache(mem_addr);
2377
2378 /* Initialize the BD for every fragment in the page.
2379 */
2380 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2381 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2382 bdp->cbd_bufaddr = __pa(mem_addr);
2383 mem_addr += FEC_ENET_RX_FRSIZE;
2384 bdp++;
2385 }
2386 }
2387
2388 /* Set the last buffer to wrap.
2389 */
2390 bdp--;
2391 bdp->cbd_sc |= BD_SC_WRAP;
2392
2393 /* ...and the same for transmmit.
2394 */
2395 bdp = fep->tx_bd_base;
2396 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2397 if (j >= FEC_ENET_TX_FRPPG) {
2398 mem_addr = __get_free_page(GFP_KERNEL);
2399 j = 1;
2400 } else {
2401 mem_addr += FEC_ENET_TX_FRSIZE;
2402 j++;
2403 }
2404 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2405
2406 /* Initialize the BD for every fragment in the page.
2407 */
2408 bdp->cbd_sc = 0;
2409 bdp->cbd_bufaddr = 0;
2410 bdp++;
2411 }
2412
2413 /* Set the last buffer to wrap.
2414 */
2415 bdp--;
2416 bdp->cbd_sc |= BD_SC_WRAP;
2417
2418 /* Set receive and transmit descriptor base.
2419 */
2420 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2421 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2422
2423 /* Install our interrupt handlers. This varies depending on
2424 * the architecture.
2425 */
2426 fec_request_intrs(dev);
2427
562d2f8c
GU
2428 fecp->fec_hash_table_high = 0;
2429 fecp->fec_hash_table_low = 0;
2430 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2431 fecp->fec_ecntrl = 2;
6b265293 2432 fecp->fec_r_des_active = 0;
562d2f8c 2433
1da177e4
LT
2434 dev->base_addr = (unsigned long)fecp;
2435
2436 /* The FEC Ethernet specific entries in the device structure. */
2437 dev->open = fec_enet_open;
2438 dev->hard_start_xmit = fec_enet_start_xmit;
2439 dev->tx_timeout = fec_timeout;
2440 dev->watchdog_timeo = TX_TIMEOUT;
2441 dev->stop = fec_enet_close;
2442 dev->get_stats = fec_enet_get_stats;
2443 dev->set_multicast_list = set_multicast_list;
2444
2445 for (i=0; i<NMII-1; i++)
2446 mii_cmds[i].mii_next = &mii_cmds[i+1];
2447 mii_free = mii_cmds;
2448
2449 /* setup MII interface */
2450 fec_set_mii(dev, fep);
2451
6b265293
MW
2452 /* Clear and enable interrupts */
2453 fecp->fec_ievent = 0xffc00000;
2454 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2455 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2456
1da177e4
LT
2457 /* Queue up command to detect the PHY and initialize the
2458 * remainder of the interface.
2459 */
2460 fep->phy_id_done = 0;
2461 fep->phy_addr = 0;
2462 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2463
2464 index++;
2465 return 0;
2466}
2467
2468/* This function is called to start or restart the FEC during a link
2469 * change. This only happens when switching between half and full
2470 * duplex.
2471 */
2472static void
2473fec_restart(struct net_device *dev, int duplex)
2474{
2475 struct fec_enet_private *fep;
2476 volatile cbd_t *bdp;
2477 volatile fec_t *fecp;
2478 int i;
2479
2480 fep = netdev_priv(dev);
2481 fecp = fep->hwp;
2482
2483 /* Whack a reset. We should wait for this.
2484 */
2485 fecp->fec_ecntrl = 1;
2486 udelay(10);
2487
1da177e4
LT
2488 /* Clear any outstanding interrupt.
2489 */
7dd6a2aa 2490 fecp->fec_ievent = 0xffc00000;
1da177e4
LT
2491 fec_enable_phy_intr();
2492
2493 /* Set station address.
2494 */
7dd6a2aa 2495 fec_set_mac_address(dev);
1da177e4
LT
2496
2497 /* Reset all multicast.
2498 */
2499 fecp->fec_hash_table_high = 0;
2500 fecp->fec_hash_table_low = 0;
2501
2502 /* Set maximum receive buffer size.
2503 */
2504 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2505
2506 fec_localhw_setup();
2507
2508 /* Set receive and transmit descriptor base.
2509 */
2510 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2511 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2512
2513 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2514 fep->cur_rx = fep->rx_bd_base;
2515
2516 /* Reset SKB transmit buffers.
2517 */
2518 fep->skb_cur = fep->skb_dirty = 0;
2519 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2520 if (fep->tx_skbuff[i] != NULL) {
2521 dev_kfree_skb_any(fep->tx_skbuff[i]);
2522 fep->tx_skbuff[i] = NULL;
2523 }
2524 }
2525
2526 /* Initialize the receive buffer descriptors.
2527 */
2528 bdp = fep->rx_bd_base;
2529 for (i=0; i<RX_RING_SIZE; i++) {
2530
2531 /* Initialize the BD for every fragment in the page.
2532 */
2533 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2534 bdp++;
2535 }
2536
2537 /* Set the last buffer to wrap.
2538 */
2539 bdp--;
2540 bdp->cbd_sc |= BD_SC_WRAP;
2541
2542 /* ...and the same for transmmit.
2543 */
2544 bdp = fep->tx_bd_base;
2545 for (i=0; i<TX_RING_SIZE; i++) {
2546
2547 /* Initialize the BD for every fragment in the page.
2548 */
2549 bdp->cbd_sc = 0;
2550 bdp->cbd_bufaddr = 0;
2551 bdp++;
2552 }
2553
2554 /* Set the last buffer to wrap.
2555 */
2556 bdp--;
2557 bdp->cbd_sc |= BD_SC_WRAP;
2558
2559 /* Enable MII mode.
2560 */
2561 if (duplex) {
2562 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2563 fecp->fec_x_cntrl = 0x04; /* FD enable */
2564 }
2565 else {
2566 /* MII enable|No Rcv on Xmit */
2567 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2568 fecp->fec_x_cntrl = 0x00;
2569 }
2570 fep->full_duplex = duplex;
2571
2572 /* Set MII speed.
2573 */
2574 fecp->fec_mii_speed = fep->phy_speed;
2575
2576 /* And last, enable the transmit and receive processing.
2577 */
2578 fecp->fec_ecntrl = 2;
6b265293
MW
2579 fecp->fec_r_des_active = 0;
2580
2581 /* Enable interrupts we wish to service.
2582 */
2583 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2584 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
1da177e4
LT
2585}
2586
2587static void
2588fec_stop(struct net_device *dev)
2589{
2590 volatile fec_t *fecp;
2591 struct fec_enet_private *fep;
2592
2593 fep = netdev_priv(dev);
2594 fecp = fep->hwp;
2595
677177c5
PDM
2596 /*
2597 ** We cannot expect a graceful transmit stop without link !!!
2598 */
2599 if (fep->link)
2600 {
2601 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2602 udelay(10);
2603 if (!(fecp->fec_ievent & FEC_ENET_GRA))
2604 printk("fec_stop : Graceful transmit stop did not complete !\n");
2605 }
1da177e4
LT
2606
2607 /* Whack a reset. We should wait for this.
2608 */
2609 fecp->fec_ecntrl = 1;
2610 udelay(10);
2611
2612 /* Clear outstanding MII command interrupts.
2613 */
2614 fecp->fec_ievent = FEC_ENET_MII;
2615 fec_enable_phy_intr();
2616
2617 fecp->fec_imask = FEC_ENET_MII;
2618 fecp->fec_mii_speed = fep->phy_speed;
2619}
2620
2621static int __init fec_enet_module_init(void)
2622{
2623 struct net_device *dev;
7dd6a2aa
GU
2624 int i, j, err;
2625
2626 printk("FEC ENET Version 0.2\n");
1da177e4
LT
2627
2628 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2629 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2630 if (!dev)
2631 return -ENOMEM;
2632 err = fec_enet_init(dev);
2633 if (err) {
2634 free_netdev(dev);
2635 continue;
2636 }
2637 if (register_netdev(dev) != 0) {
2638 /* XXX: missing cleanup here */
2639 free_netdev(dev);
2640 return -EIO;
2641 }
7dd6a2aa
GU
2642
2643 printk("%s: ethernet ", dev->name);
2644 for (j = 0; (j < 5); j++)
2645 printk("%02x:", dev->dev_addr[j]);
2646 printk("%02x\n", dev->dev_addr[5]);
1da177e4
LT
2647 }
2648 return 0;
2649}
2650
2651module_init(fec_enet_module_init);
2652
2653MODULE_LICENSE("GPL");