sfc: Remove remnants of on-load self-test
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
0a6f40c6 4 * Copyright 2005-2011 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
64d8ad6d 24#include <linux/cpu_rmap.h>
8ceee660 25#include "net_driver.h"
8ceee660 26#include "efx.h"
744093c9 27#include "nic.h"
8ceee660 28
8880f4ec 29#include "mcdi.h"
fd371e32 30#include "workarounds.h"
8880f4ec 31
c459302d
BH
32/**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39/* Loopback mode names (see LOOPBACK_MODE()) */
40const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
18e83e4c 41const char *const efx_loopback_mode_names[] = {
c459302d 42 [LOOPBACK_NONE] = "NONE",
e58f69f4 43 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
9c636baf
BH
47 [LOOPBACK_XAUI] = "XAUI",
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
e58f69f4
BH
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
9c636baf
BH
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
9c636baf 62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
e58f69f4
BH
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
9c636baf 65 [LOOPBACK_GMII_WS] = "GMII_WS",
e58f69f4
BH
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
9c636baf 68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
69};
70
c459302d 71const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
18e83e4c 72const char *const efx_reset_type_names[] = {
c459302d
BH
73 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
74 [RESET_TYPE_ALL] = "ALL",
75 [RESET_TYPE_WORLD] = "WORLD",
76 [RESET_TYPE_DISABLE] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
80 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
81 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
82 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 83 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
84};
85
8ceee660
BH
86#define EFX_MAX_MTU (9 * 1024)
87
1ab00629
SH
88/* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 */
92static struct workqueue_struct *reset_workqueue;
93
8ceee660
BH
94/**************************************************************************
95 *
96 * Configurable values
97 *
98 *************************************************************************/
99
8ceee660
BH
100/*
101 * Use separate channels for TX and RX events
102 *
28b581ab
NT
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
8ceee660 105 *
28b581ab 106 * This is only used in MSI-X interrupt mode
8ceee660 107 */
28b581ab 108static unsigned int separate_tx_channels;
8313aca3 109module_param(separate_tx_channels, uint, 0444);
28b581ab
NT
110MODULE_PARM_DESC(separate_tx_channels,
111 "Use separate channels for TX and RX");
8ceee660
BH
112
113/* This is the weight assigned to each of the (per-channel) virtual
114 * NAPI devices.
115 */
116static int napi_weight = 64;
117
118/* This is the time (in jiffies) between invocations of the hardware
e254c274
BH
119 * monitor. On Falcon-based NICs, this will:
120 * - Check the on-board hardware monitor;
121 * - Poll the link state and reconfigure the hardware as necessary.
8ceee660 122 */
d215697f 123static unsigned int efx_monitor_interval = 1 * HZ;
8ceee660 124
8ceee660
BH
125/* Initial interrupt moderation settings. They can be modified after
126 * module load with ethtool.
127 *
128 * The default for RX should strike a balance between increasing the
129 * round-trip latency and reducing overhead.
130 */
131static unsigned int rx_irq_mod_usec = 60;
132
133/* Initial interrupt moderation settings. They can be modified after
134 * module load with ethtool.
135 *
136 * This default is chosen to ensure that a 10G link does not go idle
137 * while a TX queue is stopped after it has become full. A queue is
138 * restarted when it drops below half full. The time this takes (assuming
139 * worst case 3 descriptors per packet and 1024 descriptors) is
140 * 512 / 3 * 1.2 = 205 usec.
141 */
142static unsigned int tx_irq_mod_usec = 150;
143
144/* This is the first interrupt mode to try out of:
145 * 0 => MSI-X
146 * 1 => MSI
147 * 2 => legacy
148 */
149static unsigned int interrupt_mode;
150
151/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
152 * i.e. the number of CPUs among which we may distribute simultaneous
153 * interrupt handling.
154 *
155 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
cdb08f8f 156 * The default (0) means to assign an interrupt to each core.
8ceee660
BH
157 */
158static unsigned int rss_cpus;
159module_param(rss_cpus, uint, 0444);
160MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
161
84ae48fe
BH
162static int phy_flash_cfg;
163module_param(phy_flash_cfg, int, 0644);
164MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
165
6fb70fd1
BH
166static unsigned irq_adapt_low_thresh = 10000;
167module_param(irq_adapt_low_thresh, uint, 0644);
168MODULE_PARM_DESC(irq_adapt_low_thresh,
169 "Threshold score for reducing IRQ moderation");
170
171static unsigned irq_adapt_high_thresh = 20000;
172module_param(irq_adapt_high_thresh, uint, 0644);
173MODULE_PARM_DESC(irq_adapt_high_thresh,
174 "Threshold score for increasing IRQ moderation");
175
62776d03
BH
176static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
177 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
178 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
179 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
180module_param(debug, uint, 0);
181MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
182
8ceee660
BH
183/**************************************************************************
184 *
185 * Utility functions and prototypes
186 *
187 *************************************************************************/
4642610c
BH
188
189static void efx_remove_channels(struct efx_nic *efx);
8ceee660 190static void efx_remove_port(struct efx_nic *efx);
e8f14992 191static void efx_init_napi(struct efx_nic *efx);
8ceee660 192static void efx_fini_napi(struct efx_nic *efx);
e8f14992 193static void efx_fini_napi_channel(struct efx_channel *channel);
4642610c
BH
194static void efx_fini_struct(struct efx_nic *efx);
195static void efx_start_all(struct efx_nic *efx);
196static void efx_stop_all(struct efx_nic *efx);
8ceee660
BH
197
198#define EFX_ASSERT_RESET_SERIALISED(efx) \
199 do { \
332c1ce9
BH
200 if ((efx->state == STATE_RUNNING) || \
201 (efx->state == STATE_DISABLED)) \
8ceee660
BH
202 ASSERT_RTNL(); \
203 } while (0)
204
205/**************************************************************************
206 *
207 * Event queue processing
208 *
209 *************************************************************************/
210
211/* Process channel's event queue
212 *
213 * This function is responsible for processing the event queue of a
214 * single channel. The caller must guarantee that this function will
215 * never be concurrently called more than once on the same channel,
216 * though different channels may be being processed concurrently.
217 */
fa236e18 218static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 219{
42cbe2d7 220 struct efx_nic *efx = channel->efx;
fa236e18 221 int spent;
8ceee660 222
a7d529ae 223 if (unlikely(efx->reset_pending || !channel->enabled))
42cbe2d7 224 return 0;
8ceee660 225
fa236e18
BH
226 spent = efx_nic_process_eventq(channel, budget);
227 if (spent == 0)
42cbe2d7 228 return 0;
8ceee660
BH
229
230 /* Deliver last RX packet. */
231 if (channel->rx_pkt) {
232 __efx_rx_packet(channel, channel->rx_pkt,
233 channel->rx_pkt_csummed);
234 channel->rx_pkt = NULL;
235 }
236
8ceee660
BH
237 efx_rx_strategy(channel);
238
f7d12cdc 239 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
8ceee660 240
fa236e18 241 return spent;
8ceee660
BH
242}
243
244/* Mark channel as finished processing
245 *
246 * Note that since we will not receive further interrupts for this
247 * channel before we finish processing and call the eventq_read_ack()
248 * method, there is no need to use the interrupt hold-off timers.
249 */
250static inline void efx_channel_processed(struct efx_channel *channel)
251{
5b9e207c
BH
252 /* The interrupt handler for this channel may set work_pending
253 * as soon as we acknowledge the events we've seen. Make sure
254 * it's cleared before then. */
dc8cfa55 255 channel->work_pending = false;
5b9e207c
BH
256 smp_wmb();
257
152b6a62 258 efx_nic_eventq_read_ack(channel);
8ceee660
BH
259}
260
261/* NAPI poll handler
262 *
263 * NAPI guarantees serialisation of polls of the same device, which
264 * provides the guarantee required by efx_process_channel().
265 */
266static int efx_poll(struct napi_struct *napi, int budget)
267{
268 struct efx_channel *channel =
269 container_of(napi, struct efx_channel, napi_str);
62776d03 270 struct efx_nic *efx = channel->efx;
fa236e18 271 int spent;
8ceee660 272
62776d03
BH
273 netif_vdbg(efx, intr, efx->net_dev,
274 "channel %d NAPI poll executing on CPU %d\n",
275 channel->channel, raw_smp_processor_id());
8ceee660 276
fa236e18 277 spent = efx_process_channel(channel, budget);
8ceee660 278
fa236e18 279 if (spent < budget) {
a4900ac9 280 if (channel->channel < efx->n_rx_channels &&
6fb70fd1
BH
281 efx->irq_rx_adaptive &&
282 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
283 if (unlikely(channel->irq_mod_score <
284 irq_adapt_low_thresh)) {
0d86ebd8
BH
285 if (channel->irq_moderation > 1) {
286 channel->irq_moderation -= 1;
ef2b90ee 287 efx->type->push_irq_moderation(channel);
0d86ebd8 288 }
6fb70fd1
BH
289 } else if (unlikely(channel->irq_mod_score >
290 irq_adapt_high_thresh)) {
0d86ebd8
BH
291 if (channel->irq_moderation <
292 efx->irq_rx_moderation) {
293 channel->irq_moderation += 1;
ef2b90ee 294 efx->type->push_irq_moderation(channel);
0d86ebd8 295 }
6fb70fd1 296 }
6fb70fd1
BH
297 channel->irq_count = 0;
298 channel->irq_mod_score = 0;
299 }
300
64d8ad6d
BH
301 efx_filter_rfs_expire(channel);
302
8ceee660 303 /* There is no race here; although napi_disable() will
288379f0 304 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
305 * since efx_channel_processed() will have no effect if
306 * interrupts have already been disabled.
307 */
288379f0 308 napi_complete(napi);
8ceee660
BH
309 efx_channel_processed(channel);
310 }
311
fa236e18 312 return spent;
8ceee660
BH
313}
314
315/* Process the eventq of the specified channel immediately on this CPU
316 *
317 * Disable hardware generated interrupts, wait for any existing
318 * processing to finish, then directly poll (and ack ) the eventq.
319 * Finally reenable NAPI and interrupts.
320 *
d4fabcc8
BH
321 * This is for use only during a loopback self-test. It must not
322 * deliver any packets up the stack as this can result in deadlock.
8ceee660
BH
323 */
324void efx_process_channel_now(struct efx_channel *channel)
325{
326 struct efx_nic *efx = channel->efx;
327
8313aca3 328 BUG_ON(channel->channel >= efx->n_channels);
8ceee660 329 BUG_ON(!channel->enabled);
d4fabcc8 330 BUG_ON(!efx->loopback_selftest);
8ceee660
BH
331
332 /* Disable interrupts and wait for ISRs to complete */
152b6a62 333 efx_nic_disable_interrupts(efx);
94dec6a2 334 if (efx->legacy_irq) {
8ceee660 335 synchronize_irq(efx->legacy_irq);
94dec6a2
BH
336 efx->legacy_irq_enabled = false;
337 }
64ee3120 338 if (channel->irq)
8ceee660
BH
339 synchronize_irq(channel->irq);
340
341 /* Wait for any NAPI processing to complete */
342 napi_disable(&channel->napi_str);
343
344 /* Poll the channel */
ecc910f5 345 efx_process_channel(channel, channel->eventq_mask + 1);
8ceee660
BH
346
347 /* Ack the eventq. This may cause an interrupt to be generated
348 * when they are reenabled */
349 efx_channel_processed(channel);
350
351 napi_enable(&channel->napi_str);
94dec6a2
BH
352 if (efx->legacy_irq)
353 efx->legacy_irq_enabled = true;
152b6a62 354 efx_nic_enable_interrupts(efx);
8ceee660
BH
355}
356
357/* Create event queue
358 * Event queue memory allocations are done only once. If the channel
359 * is reset, the memory buffer will be reused; this guards against
360 * errors during channel reset and also simplifies interrupt handling.
361 */
362static int efx_probe_eventq(struct efx_channel *channel)
363{
ecc910f5
SH
364 struct efx_nic *efx = channel->efx;
365 unsigned long entries;
366
62776d03
BH
367 netif_dbg(channel->efx, probe, channel->efx->net_dev,
368 "chan %d create event queue\n", channel->channel);
8ceee660 369
ecc910f5
SH
370 /* Build an event queue with room for one event per tx and rx buffer,
371 * plus some extra for link state events and MCDI completions. */
372 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
373 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
374 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
375
152b6a62 376 return efx_nic_probe_eventq(channel);
8ceee660
BH
377}
378
379/* Prepare channel's event queue */
bc3c90a2 380static void efx_init_eventq(struct efx_channel *channel)
8ceee660 381{
62776d03
BH
382 netif_dbg(channel->efx, drv, channel->efx->net_dev,
383 "chan %d init event queue\n", channel->channel);
8ceee660
BH
384
385 channel->eventq_read_ptr = 0;
386
152b6a62 387 efx_nic_init_eventq(channel);
8ceee660
BH
388}
389
390static void efx_fini_eventq(struct efx_channel *channel)
391{
62776d03
BH
392 netif_dbg(channel->efx, drv, channel->efx->net_dev,
393 "chan %d fini event queue\n", channel->channel);
8ceee660 394
152b6a62 395 efx_nic_fini_eventq(channel);
8ceee660
BH
396}
397
398static void efx_remove_eventq(struct efx_channel *channel)
399{
62776d03
BH
400 netif_dbg(channel->efx, drv, channel->efx->net_dev,
401 "chan %d remove event queue\n", channel->channel);
8ceee660 402
152b6a62 403 efx_nic_remove_eventq(channel);
8ceee660
BH
404}
405
406/**************************************************************************
407 *
408 * Channel handling
409 *
410 *************************************************************************/
411
4642610c
BH
412/* Allocate and initialise a channel structure, optionally copying
413 * parameters (but not resources) from an old channel structure. */
414static struct efx_channel *
415efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
416{
417 struct efx_channel *channel;
418 struct efx_rx_queue *rx_queue;
419 struct efx_tx_queue *tx_queue;
420 int j;
421
422 if (old_channel) {
423 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
424 if (!channel)
425 return NULL;
426
427 *channel = *old_channel;
428
e8f14992 429 channel->napi_dev = NULL;
4642610c
BH
430 memset(&channel->eventq, 0, sizeof(channel->eventq));
431
432 rx_queue = &channel->rx_queue;
433 rx_queue->buffer = NULL;
434 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
435
436 for (j = 0; j < EFX_TXQ_TYPES; j++) {
437 tx_queue = &channel->tx_queue[j];
438 if (tx_queue->channel)
439 tx_queue->channel = channel;
440 tx_queue->buffer = NULL;
441 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
442 }
443 } else {
444 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
445 if (!channel)
446 return NULL;
447
448 channel->efx = efx;
449 channel->channel = i;
450
451 for (j = 0; j < EFX_TXQ_TYPES; j++) {
452 tx_queue = &channel->tx_queue[j];
453 tx_queue->efx = efx;
454 tx_queue->queue = i * EFX_TXQ_TYPES + j;
455 tx_queue->channel = channel;
456 }
457 }
458
4642610c
BH
459 rx_queue = &channel->rx_queue;
460 rx_queue->efx = efx;
461 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
462 (unsigned long)rx_queue);
463
464 return channel;
465}
466
8ceee660
BH
467static int efx_probe_channel(struct efx_channel *channel)
468{
469 struct efx_tx_queue *tx_queue;
470 struct efx_rx_queue *rx_queue;
471 int rc;
472
62776d03
BH
473 netif_dbg(channel->efx, probe, channel->efx->net_dev,
474 "creating channel %d\n", channel->channel);
8ceee660
BH
475
476 rc = efx_probe_eventq(channel);
477 if (rc)
478 goto fail1;
479
480 efx_for_each_channel_tx_queue(tx_queue, channel) {
481 rc = efx_probe_tx_queue(tx_queue);
482 if (rc)
483 goto fail2;
484 }
485
486 efx_for_each_channel_rx_queue(rx_queue, channel) {
487 rc = efx_probe_rx_queue(rx_queue);
488 if (rc)
489 goto fail3;
490 }
491
492 channel->n_rx_frm_trunc = 0;
493
494 return 0;
495
496 fail3:
497 efx_for_each_channel_rx_queue(rx_queue, channel)
498 efx_remove_rx_queue(rx_queue);
499 fail2:
500 efx_for_each_channel_tx_queue(tx_queue, channel)
501 efx_remove_tx_queue(tx_queue);
502 fail1:
503 return rc;
504}
505
506
56536e9c
BH
507static void efx_set_channel_names(struct efx_nic *efx)
508{
509 struct efx_channel *channel;
510 const char *type = "";
511 int number;
512
513 efx_for_each_channel(channel, efx) {
514 number = channel->channel;
a4900ac9
BH
515 if (efx->n_channels > efx->n_rx_channels) {
516 if (channel->channel < efx->n_rx_channels) {
56536e9c
BH
517 type = "-rx";
518 } else {
519 type = "-tx";
a4900ac9 520 number -= efx->n_rx_channels;
56536e9c
BH
521 }
522 }
4642610c
BH
523 snprintf(efx->channel_name[channel->channel],
524 sizeof(efx->channel_name[0]),
56536e9c
BH
525 "%s%s-%d", efx->name, type, number);
526 }
527}
528
4642610c
BH
529static int efx_probe_channels(struct efx_nic *efx)
530{
531 struct efx_channel *channel;
532 int rc;
533
534 /* Restart special buffer allocation */
535 efx->next_buffer_table = 0;
536
537 efx_for_each_channel(channel, efx) {
538 rc = efx_probe_channel(channel);
539 if (rc) {
540 netif_err(efx, probe, efx->net_dev,
541 "failed to create channel %d\n",
542 channel->channel);
543 goto fail;
544 }
545 }
546 efx_set_channel_names(efx);
547
548 return 0;
549
550fail:
551 efx_remove_channels(efx);
552 return rc;
553}
554
8ceee660
BH
555/* Channels are shutdown and reinitialised whilst the NIC is running
556 * to propagate configuration changes (mtu, checksum offload), or
557 * to clear hardware error conditions
558 */
bc3c90a2 559static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
560{
561 struct efx_tx_queue *tx_queue;
562 struct efx_rx_queue *rx_queue;
563 struct efx_channel *channel;
8ceee660 564
f7f13b0b
BH
565 /* Calculate the rx buffer allocation parameters required to
566 * support the current MTU, including padding for header
567 * alignment and overruns.
568 */
569 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
570 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
39c9cf07 571 efx->type->rx_buffer_hash_size +
f7f13b0b 572 efx->type->rx_buffer_padding);
62b330ba
SH
573 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
574 sizeof(struct efx_rx_page_state));
8ceee660
BH
575
576 /* Initialise the channels */
577 efx_for_each_channel(channel, efx) {
62776d03
BH
578 netif_dbg(channel->efx, drv, channel->efx->net_dev,
579 "init chan %d\n", channel->channel);
8ceee660 580
bc3c90a2 581 efx_init_eventq(channel);
8ceee660 582
bc3c90a2
BH
583 efx_for_each_channel_tx_queue(tx_queue, channel)
584 efx_init_tx_queue(tx_queue);
8ceee660
BH
585
586 /* The rx buffer allocation strategy is MTU dependent */
587 efx_rx_strategy(channel);
588
bc3c90a2
BH
589 efx_for_each_channel_rx_queue(rx_queue, channel)
590 efx_init_rx_queue(rx_queue);
8ceee660
BH
591
592 WARN_ON(channel->rx_pkt != NULL);
593 efx_rx_strategy(channel);
594 }
8ceee660
BH
595}
596
597/* This enables event queue processing and packet transmission.
598 *
599 * Note that this function is not allowed to fail, since that would
600 * introduce too much complexity into the suspend/resume path.
601 */
602static void efx_start_channel(struct efx_channel *channel)
603{
604 struct efx_rx_queue *rx_queue;
605
62776d03
BH
606 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
607 "starting chan %d\n", channel->channel);
8ceee660 608
5b9e207c
BH
609 /* The interrupt handler for this channel may set work_pending
610 * as soon as we enable it. Make sure it's cleared before
611 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
612 channel->work_pending = false;
613 channel->enabled = true;
5b9e207c 614 smp_wmb();
8ceee660 615
90d683af 616 /* Fill the queues before enabling NAPI */
8ceee660
BH
617 efx_for_each_channel_rx_queue(rx_queue, channel)
618 efx_fast_push_rx_descriptors(rx_queue);
90d683af
SH
619
620 napi_enable(&channel->napi_str);
8ceee660
BH
621}
622
623/* This disables event queue processing and packet transmission.
624 * This function does not guarantee that all queue processing
625 * (e.g. RX refill) is complete.
626 */
627static void efx_stop_channel(struct efx_channel *channel)
628{
8ceee660
BH
629 if (!channel->enabled)
630 return;
631
62776d03
BH
632 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
633 "stop chan %d\n", channel->channel);
8ceee660 634
dc8cfa55 635 channel->enabled = false;
8ceee660 636 napi_disable(&channel->napi_str);
8ceee660
BH
637}
638
639static void efx_fini_channels(struct efx_nic *efx)
640{
641 struct efx_channel *channel;
642 struct efx_tx_queue *tx_queue;
643 struct efx_rx_queue *rx_queue;
6bc5d3a9 644 int rc;
8ceee660
BH
645
646 EFX_ASSERT_RESET_SERIALISED(efx);
647 BUG_ON(efx->port_enabled);
648
152b6a62 649 rc = efx_nic_flush_queues(efx);
fd371e32
SH
650 if (rc && EFX_WORKAROUND_7803(efx)) {
651 /* Schedule a reset to recover from the flush failure. The
652 * descriptor caches reference memory we're about to free,
653 * but falcon_reconfigure_mac_wrapper() won't reconnect
654 * the MACs because of the pending reset. */
62776d03
BH
655 netif_err(efx, drv, efx->net_dev,
656 "Resetting to recover from flush failure\n");
fd371e32
SH
657 efx_schedule_reset(efx, RESET_TYPE_ALL);
658 } else if (rc) {
62776d03 659 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
fd371e32 660 } else {
62776d03
BH
661 netif_dbg(efx, drv, efx->net_dev,
662 "successfully flushed all queues\n");
fd371e32 663 }
6bc5d3a9 664
8ceee660 665 efx_for_each_channel(channel, efx) {
62776d03
BH
666 netif_dbg(channel->efx, drv, channel->efx->net_dev,
667 "shut down chan %d\n", channel->channel);
8ceee660
BH
668
669 efx_for_each_channel_rx_queue(rx_queue, channel)
670 efx_fini_rx_queue(rx_queue);
94b274bf 671 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660 672 efx_fini_tx_queue(tx_queue);
8ceee660
BH
673 efx_fini_eventq(channel);
674 }
675}
676
677static void efx_remove_channel(struct efx_channel *channel)
678{
679 struct efx_tx_queue *tx_queue;
680 struct efx_rx_queue *rx_queue;
681
62776d03
BH
682 netif_dbg(channel->efx, drv, channel->efx->net_dev,
683 "destroy chan %d\n", channel->channel);
8ceee660
BH
684
685 efx_for_each_channel_rx_queue(rx_queue, channel)
686 efx_remove_rx_queue(rx_queue);
94b274bf 687 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660
BH
688 efx_remove_tx_queue(tx_queue);
689 efx_remove_eventq(channel);
8ceee660
BH
690}
691
4642610c
BH
692static void efx_remove_channels(struct efx_nic *efx)
693{
694 struct efx_channel *channel;
695
696 efx_for_each_channel(channel, efx)
697 efx_remove_channel(channel);
698}
699
700int
701efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
702{
703 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
704 u32 old_rxq_entries, old_txq_entries;
705 unsigned i;
706 int rc;
707
708 efx_stop_all(efx);
709 efx_fini_channels(efx);
710
711 /* Clone channels */
712 memset(other_channel, 0, sizeof(other_channel));
713 for (i = 0; i < efx->n_channels; i++) {
714 channel = efx_alloc_channel(efx, i, efx->channel[i]);
715 if (!channel) {
716 rc = -ENOMEM;
717 goto out;
718 }
719 other_channel[i] = channel;
720 }
721
722 /* Swap entry counts and channel pointers */
723 old_rxq_entries = efx->rxq_entries;
724 old_txq_entries = efx->txq_entries;
725 efx->rxq_entries = rxq_entries;
726 efx->txq_entries = txq_entries;
727 for (i = 0; i < efx->n_channels; i++) {
728 channel = efx->channel[i];
729 efx->channel[i] = other_channel[i];
730 other_channel[i] = channel;
731 }
732
733 rc = efx_probe_channels(efx);
734 if (rc)
735 goto rollback;
736
e8f14992
BH
737 efx_init_napi(efx);
738
4642610c 739 /* Destroy old channels */
e8f14992
BH
740 for (i = 0; i < efx->n_channels; i++) {
741 efx_fini_napi_channel(other_channel[i]);
4642610c 742 efx_remove_channel(other_channel[i]);
e8f14992 743 }
4642610c
BH
744out:
745 /* Free unused channel structures */
746 for (i = 0; i < efx->n_channels; i++)
747 kfree(other_channel[i]);
748
749 efx_init_channels(efx);
750 efx_start_all(efx);
751 return rc;
752
753rollback:
754 /* Swap back */
755 efx->rxq_entries = old_rxq_entries;
756 efx->txq_entries = old_txq_entries;
757 for (i = 0; i < efx->n_channels; i++) {
758 channel = efx->channel[i];
759 efx->channel[i] = other_channel[i];
760 other_channel[i] = channel;
761 }
762 goto out;
763}
764
90d683af 765void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 766{
90d683af 767 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
768}
769
770/**************************************************************************
771 *
772 * Port handling
773 *
774 **************************************************************************/
775
776/* This ensures that the kernel is kept informed (via
777 * netif_carrier_on/off) of the link status, and also maintains the
778 * link status's stop on the port's TX queue.
779 */
fdaa9aed 780void efx_link_status_changed(struct efx_nic *efx)
8ceee660 781{
eb50c0d6
BH
782 struct efx_link_state *link_state = &efx->link_state;
783
8ceee660
BH
784 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
785 * that no events are triggered between unregister_netdev() and the
786 * driver unloading. A more general condition is that NETDEV_CHANGE
787 * can only be generated between NETDEV_UP and NETDEV_DOWN */
788 if (!netif_running(efx->net_dev))
789 return;
790
eb50c0d6 791 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
792 efx->n_link_state_changes++;
793
eb50c0d6 794 if (link_state->up)
8ceee660
BH
795 netif_carrier_on(efx->net_dev);
796 else
797 netif_carrier_off(efx->net_dev);
798 }
799
800 /* Status message for kernel log */
eb50c0d6 801 if (link_state->up) {
62776d03
BH
802 netif_info(efx, link, efx->net_dev,
803 "link up at %uMbps %s-duplex (MTU %d)%s\n",
804 link_state->speed, link_state->fd ? "full" : "half",
805 efx->net_dev->mtu,
806 (efx->promiscuous ? " [PROMISC]" : ""));
8ceee660 807 } else {
62776d03 808 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
809 }
810
811}
812
d3245b28
BH
813void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
814{
815 efx->link_advertising = advertising;
816 if (advertising) {
817 if (advertising & ADVERTISED_Pause)
818 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
819 else
820 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
821 if (advertising & ADVERTISED_Asym_Pause)
822 efx->wanted_fc ^= EFX_FC_TX;
823 }
824}
825
b5626946 826void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
d3245b28
BH
827{
828 efx->wanted_fc = wanted_fc;
829 if (efx->link_advertising) {
830 if (wanted_fc & EFX_FC_RX)
831 efx->link_advertising |= (ADVERTISED_Pause |
832 ADVERTISED_Asym_Pause);
833 else
834 efx->link_advertising &= ~(ADVERTISED_Pause |
835 ADVERTISED_Asym_Pause);
836 if (wanted_fc & EFX_FC_TX)
837 efx->link_advertising ^= ADVERTISED_Asym_Pause;
838 }
839}
840
115122af
BH
841static void efx_fini_port(struct efx_nic *efx);
842
d3245b28
BH
843/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
844 * the MAC appropriately. All other PHY configuration changes are pushed
845 * through phy_op->set_settings(), and pushed asynchronously to the MAC
846 * through efx_monitor().
847 *
848 * Callers must hold the mac_lock
849 */
850int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 851{
d3245b28
BH
852 enum efx_phy_mode phy_mode;
853 int rc;
8ceee660 854
d3245b28 855 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 856
a816f75a 857 /* Serialise the promiscuous flag with efx_set_multicast_list. */
73ba7b68
BH
858 netif_addr_lock_bh(efx->net_dev);
859 netif_addr_unlock_bh(efx->net_dev);
a816f75a 860
d3245b28
BH
861 /* Disable PHY transmit in mac level loopbacks */
862 phy_mode = efx->phy_mode;
177dfcd8
BH
863 if (LOOPBACK_INTERNAL(efx))
864 efx->phy_mode |= PHY_MODE_TX_DISABLED;
865 else
866 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 867
d3245b28 868 rc = efx->type->reconfigure_port(efx);
8ceee660 869
d3245b28
BH
870 if (rc)
871 efx->phy_mode = phy_mode;
177dfcd8 872
d3245b28 873 return rc;
8ceee660
BH
874}
875
876/* Reinitialise the MAC to pick up new PHY settings, even if the port is
877 * disabled. */
d3245b28 878int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 879{
d3245b28
BH
880 int rc;
881
8ceee660
BH
882 EFX_ASSERT_RESET_SERIALISED(efx);
883
884 mutex_lock(&efx->mac_lock);
d3245b28 885 rc = __efx_reconfigure_port(efx);
8ceee660 886 mutex_unlock(&efx->mac_lock);
d3245b28
BH
887
888 return rc;
8ceee660
BH
889}
890
8be4f3e6
BH
891/* Asynchronous work item for changing MAC promiscuity and multicast
892 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
893 * MAC directly. */
766ca0fa
BH
894static void efx_mac_work(struct work_struct *data)
895{
896 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
897
898 mutex_lock(&efx->mac_lock);
30b81cda 899 if (efx->port_enabled)
710b208d 900 efx->type->reconfigure_mac(efx);
766ca0fa
BH
901 mutex_unlock(&efx->mac_lock);
902}
903
8ceee660
BH
904static int efx_probe_port(struct efx_nic *efx)
905{
906 int rc;
907
62776d03 908 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 909
ff3b00a0
SH
910 if (phy_flash_cfg)
911 efx->phy_mode = PHY_MODE_SPECIAL;
912
ef2b90ee
BH
913 /* Connect up MAC/PHY operations table */
914 rc = efx->type->probe_port(efx);
8ceee660 915 if (rc)
e42de262 916 return rc;
8ceee660 917
e332bcb3
BH
918 /* Initialise MAC address to permanent address */
919 memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
8ceee660
BH
920
921 return 0;
8ceee660
BH
922}
923
924static int efx_init_port(struct efx_nic *efx)
925{
926 int rc;
927
62776d03 928 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 929
1dfc5cea
BH
930 mutex_lock(&efx->mac_lock);
931
177dfcd8 932 rc = efx->phy_op->init(efx);
8ceee660 933 if (rc)
1dfc5cea 934 goto fail1;
8ceee660 935
dc8cfa55 936 efx->port_initialized = true;
1dfc5cea 937
d3245b28
BH
938 /* Reconfigure the MAC before creating dma queues (required for
939 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
710b208d 940 efx->type->reconfigure_mac(efx);
d3245b28
BH
941
942 /* Ensure the PHY advertises the correct flow control settings */
943 rc = efx->phy_op->reconfigure(efx);
944 if (rc)
945 goto fail2;
946
1dfc5cea 947 mutex_unlock(&efx->mac_lock);
8ceee660 948 return 0;
177dfcd8 949
1dfc5cea 950fail2:
177dfcd8 951 efx->phy_op->fini(efx);
1dfc5cea
BH
952fail1:
953 mutex_unlock(&efx->mac_lock);
177dfcd8 954 return rc;
8ceee660
BH
955}
956
8ceee660
BH
957static void efx_start_port(struct efx_nic *efx)
958{
62776d03 959 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
960 BUG_ON(efx->port_enabled);
961
962 mutex_lock(&efx->mac_lock);
dc8cfa55 963 efx->port_enabled = true;
8be4f3e6
BH
964
965 /* efx_mac_work() might have been scheduled after efx_stop_port(),
966 * and then cancelled by efx_flush_all() */
710b208d 967 efx->type->reconfigure_mac(efx);
8be4f3e6 968
8ceee660
BH
969 mutex_unlock(&efx->mac_lock);
970}
971
fdaa9aed 972/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
973static void efx_stop_port(struct efx_nic *efx)
974{
62776d03 975 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660
BH
976
977 mutex_lock(&efx->mac_lock);
dc8cfa55 978 efx->port_enabled = false;
8ceee660
BH
979 mutex_unlock(&efx->mac_lock);
980
981 /* Serialise against efx_set_multicast_list() */
73ba7b68
BH
982 netif_addr_lock_bh(efx->net_dev);
983 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
984}
985
986static void efx_fini_port(struct efx_nic *efx)
987{
62776d03 988 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
989
990 if (!efx->port_initialized)
991 return;
992
177dfcd8 993 efx->phy_op->fini(efx);
dc8cfa55 994 efx->port_initialized = false;
8ceee660 995
eb50c0d6 996 efx->link_state.up = false;
8ceee660
BH
997 efx_link_status_changed(efx);
998}
999
1000static void efx_remove_port(struct efx_nic *efx)
1001{
62776d03 1002 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 1003
ef2b90ee 1004 efx->type->remove_port(efx);
8ceee660
BH
1005}
1006
1007/**************************************************************************
1008 *
1009 * NIC handling
1010 *
1011 **************************************************************************/
1012
1013/* This configures the PCI device to enable I/O and DMA. */
1014static int efx_init_io(struct efx_nic *efx)
1015{
1016 struct pci_dev *pci_dev = efx->pci_dev;
1017 dma_addr_t dma_mask = efx->type->max_dma_mask;
1018 int rc;
1019
62776d03 1020 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
1021
1022 rc = pci_enable_device(pci_dev);
1023 if (rc) {
62776d03
BH
1024 netif_err(efx, probe, efx->net_dev,
1025 "failed to enable PCI device\n");
8ceee660
BH
1026 goto fail1;
1027 }
1028
1029 pci_set_master(pci_dev);
1030
1031 /* Set the PCI DMA mask. Try all possibilities from our
1032 * genuine mask down to 32 bits, because some architectures
1033 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1034 * masks event though they reject 46 bit masks.
1035 */
1036 while (dma_mask > 0x7fffffffUL) {
e9e01846
BH
1037 if (pci_dma_supported(pci_dev, dma_mask)) {
1038 rc = pci_set_dma_mask(pci_dev, dma_mask);
1039 if (rc == 0)
1040 break;
1041 }
8ceee660
BH
1042 dma_mask >>= 1;
1043 }
1044 if (rc) {
62776d03
BH
1045 netif_err(efx, probe, efx->net_dev,
1046 "could not find a suitable DMA mask\n");
8ceee660
BH
1047 goto fail2;
1048 }
62776d03
BH
1049 netif_dbg(efx, probe, efx->net_dev,
1050 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660
BH
1051 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1052 if (rc) {
1053 /* pci_set_consistent_dma_mask() is not *allowed* to
1054 * fail with a mask that pci_set_dma_mask() accepted,
1055 * but just in case...
1056 */
62776d03
BH
1057 netif_err(efx, probe, efx->net_dev,
1058 "failed to set consistent DMA mask\n");
8ceee660
BH
1059 goto fail2;
1060 }
1061
dc803df8
BH
1062 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1063 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 1064 if (rc) {
62776d03
BH
1065 netif_err(efx, probe, efx->net_dev,
1066 "request for memory BAR failed\n");
8ceee660
BH
1067 rc = -EIO;
1068 goto fail3;
1069 }
86c432ca
BH
1070 efx->membase = ioremap_nocache(efx->membase_phys,
1071 efx->type->mem_map_size);
8ceee660 1072 if (!efx->membase) {
62776d03
BH
1073 netif_err(efx, probe, efx->net_dev,
1074 "could not map memory BAR at %llx+%x\n",
1075 (unsigned long long)efx->membase_phys,
1076 efx->type->mem_map_size);
8ceee660
BH
1077 rc = -ENOMEM;
1078 goto fail4;
1079 }
62776d03
BH
1080 netif_dbg(efx, probe, efx->net_dev,
1081 "memory BAR at %llx+%x (virtual %p)\n",
1082 (unsigned long long)efx->membase_phys,
1083 efx->type->mem_map_size, efx->membase);
8ceee660
BH
1084
1085 return 0;
1086
1087 fail4:
dc803df8 1088 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 1089 fail3:
2c118e0f 1090 efx->membase_phys = 0;
8ceee660
BH
1091 fail2:
1092 pci_disable_device(efx->pci_dev);
1093 fail1:
1094 return rc;
1095}
1096
1097static void efx_fini_io(struct efx_nic *efx)
1098{
62776d03 1099 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
1100
1101 if (efx->membase) {
1102 iounmap(efx->membase);
1103 efx->membase = NULL;
1104 }
1105
1106 if (efx->membase_phys) {
dc803df8 1107 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 1108 efx->membase_phys = 0;
8ceee660
BH
1109 }
1110
1111 pci_disable_device(efx->pci_dev);
1112}
1113
fa142b9d 1114static int efx_wanted_parallelism(void)
46123d04 1115{
cdb08f8f 1116 cpumask_var_t thread_mask;
46123d04
BH
1117 int count;
1118 int cpu;
5b874e25
BH
1119
1120 if (rss_cpus)
1121 return rss_cpus;
46123d04 1122
cdb08f8f 1123 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
2f8975fb 1124 printk(KERN_WARNING
3977d033 1125 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
1126 return 1;
1127 }
1128
46123d04
BH
1129 count = 0;
1130 for_each_online_cpu(cpu) {
cdb08f8f 1131 if (!cpumask_test_cpu(cpu, thread_mask)) {
46123d04 1132 ++count;
cdb08f8f
BH
1133 cpumask_or(thread_mask, thread_mask,
1134 topology_thread_cpumask(cpu));
46123d04
BH
1135 }
1136 }
1137
cdb08f8f 1138 free_cpumask_var(thread_mask);
46123d04
BH
1139 return count;
1140}
1141
64d8ad6d
BH
1142static int
1143efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1144{
1145#ifdef CONFIG_RFS_ACCEL
1146 int i, rc;
1147
1148 efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1149 if (!efx->net_dev->rx_cpu_rmap)
1150 return -ENOMEM;
1151 for (i = 0; i < efx->n_rx_channels; i++) {
1152 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1153 xentries[i].vector);
1154 if (rc) {
1155 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1156 efx->net_dev->rx_cpu_rmap = NULL;
1157 return rc;
1158 }
1159 }
1160#endif
1161 return 0;
1162}
1163
46123d04
BH
1164/* Probe the number and type of interrupts we are able to obtain, and
1165 * the resulting numbers of channels and RX queues.
1166 */
64d8ad6d 1167static int efx_probe_interrupts(struct efx_nic *efx)
8ceee660 1168{
46123d04
BH
1169 int max_channels =
1170 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
1171 int rc, i;
1172
1173 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1174 struct msix_entry xentries[EFX_MAX_CHANNELS];
a4900ac9 1175 int n_channels;
aa6ef27e 1176
fa142b9d 1177 n_channels = efx_wanted_parallelism();
a4900ac9
BH
1178 if (separate_tx_channels)
1179 n_channels *= 2;
1180 n_channels = min(n_channels, max_channels);
8ceee660 1181
a4900ac9 1182 for (i = 0; i < n_channels; i++)
8ceee660 1183 xentries[i].entry = i;
a4900ac9 1184 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1185 if (rc > 0) {
62776d03
BH
1186 netif_err(efx, drv, efx->net_dev,
1187 "WARNING: Insufficient MSI-X vectors"
1188 " available (%d < %d).\n", rc, n_channels);
1189 netif_err(efx, drv, efx->net_dev,
1190 "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1191 EFX_BUG_ON_PARANOID(rc >= n_channels);
1192 n_channels = rc;
8ceee660 1193 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1194 n_channels);
8ceee660
BH
1195 }
1196
1197 if (rc == 0) {
a4900ac9
BH
1198 efx->n_channels = n_channels;
1199 if (separate_tx_channels) {
1200 efx->n_tx_channels =
1201 max(efx->n_channels / 2, 1U);
1202 efx->n_rx_channels =
1203 max(efx->n_channels -
1204 efx->n_tx_channels, 1U);
1205 } else {
1206 efx->n_tx_channels = efx->n_channels;
1207 efx->n_rx_channels = efx->n_channels;
1208 }
64d8ad6d
BH
1209 rc = efx_init_rx_cpu_rmap(efx, xentries);
1210 if (rc) {
1211 pci_disable_msix(efx->pci_dev);
1212 return rc;
1213 }
a4900ac9 1214 for (i = 0; i < n_channels; i++)
f7d12cdc
BH
1215 efx_get_channel(efx, i)->irq =
1216 xentries[i].vector;
8ceee660
BH
1217 } else {
1218 /* Fall back to single channel MSI */
1219 efx->interrupt_mode = EFX_INT_MODE_MSI;
62776d03
BH
1220 netif_err(efx, drv, efx->net_dev,
1221 "could not enable MSI-X\n");
8ceee660
BH
1222 }
1223 }
1224
1225 /* Try single interrupt MSI */
1226 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1227 efx->n_channels = 1;
a4900ac9
BH
1228 efx->n_rx_channels = 1;
1229 efx->n_tx_channels = 1;
8ceee660
BH
1230 rc = pci_enable_msi(efx->pci_dev);
1231 if (rc == 0) {
f7d12cdc 1232 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
8ceee660 1233 } else {
62776d03
BH
1234 netif_err(efx, drv, efx->net_dev,
1235 "could not enable MSI\n");
8ceee660
BH
1236 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1237 }
1238 }
1239
1240 /* Assume legacy interrupts */
1241 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1242 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1243 efx->n_rx_channels = 1;
1244 efx->n_tx_channels = 1;
8ceee660
BH
1245 efx->legacy_irq = efx->pci_dev->irq;
1246 }
64d8ad6d
BH
1247
1248 return 0;
8ceee660
BH
1249}
1250
1251static void efx_remove_interrupts(struct efx_nic *efx)
1252{
1253 struct efx_channel *channel;
1254
1255 /* Remove MSI/MSI-X interrupts */
64ee3120 1256 efx_for_each_channel(channel, efx)
8ceee660
BH
1257 channel->irq = 0;
1258 pci_disable_msi(efx->pci_dev);
1259 pci_disable_msix(efx->pci_dev);
1260
1261 /* Remove legacy interrupt */
1262 efx->legacy_irq = 0;
1263}
1264
8831da7b 1265static void efx_set_channels(struct efx_nic *efx)
8ceee660 1266{
602a5322
BH
1267 struct efx_channel *channel;
1268 struct efx_tx_queue *tx_queue;
1269
97653431 1270 efx->tx_channel_offset =
a4900ac9 1271 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
602a5322
BH
1272
1273 /* We need to adjust the TX queue numbers if we have separate
1274 * RX-only and TX-only channels.
1275 */
1276 efx_for_each_channel(channel, efx) {
1277 efx_for_each_channel_tx_queue(tx_queue, channel)
1278 tx_queue->queue -= (efx->tx_channel_offset *
1279 EFX_TXQ_TYPES);
1280 }
8ceee660
BH
1281}
1282
1283static int efx_probe_nic(struct efx_nic *efx)
1284{
765c9f46 1285 size_t i;
8ceee660
BH
1286 int rc;
1287
62776d03 1288 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1289
1290 /* Carry out hardware-type specific initialisation */
ef2b90ee 1291 rc = efx->type->probe(efx);
8ceee660
BH
1292 if (rc)
1293 return rc;
1294
a4900ac9 1295 /* Determine the number of channels and queues by trying to hook
8ceee660 1296 * in MSI-X interrupts. */
64d8ad6d
BH
1297 rc = efx_probe_interrupts(efx);
1298 if (rc)
1299 goto fail;
8ceee660 1300
5d3a6fca
BH
1301 if (efx->n_channels > 1)
1302 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
765c9f46 1303 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
278bc429
BH
1304 efx->rx_indir_table[i] =
1305 ethtool_rxfh_indir_default(i, efx->n_rx_channels);
5d3a6fca 1306
8831da7b 1307 efx_set_channels(efx);
c4f4adc7
BH
1308 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1309 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
8ceee660
BH
1310
1311 /* Initialise the interrupt moderation settings */
9e393b30
BH
1312 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1313 true);
8ceee660
BH
1314
1315 return 0;
64d8ad6d
BH
1316
1317fail:
1318 efx->type->remove(efx);
1319 return rc;
8ceee660
BH
1320}
1321
1322static void efx_remove_nic(struct efx_nic *efx)
1323{
62776d03 1324 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1325
1326 efx_remove_interrupts(efx);
ef2b90ee 1327 efx->type->remove(efx);
8ceee660
BH
1328}
1329
1330/**************************************************************************
1331 *
1332 * NIC startup/shutdown
1333 *
1334 *************************************************************************/
1335
1336static int efx_probe_all(struct efx_nic *efx)
1337{
8ceee660
BH
1338 int rc;
1339
8ceee660
BH
1340 rc = efx_probe_nic(efx);
1341 if (rc) {
62776d03 1342 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1343 goto fail1;
1344 }
1345
8ceee660
BH
1346 rc = efx_probe_port(efx);
1347 if (rc) {
62776d03 1348 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1349 goto fail2;
1350 }
1351
ecc910f5 1352 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
4642610c
BH
1353 rc = efx_probe_channels(efx);
1354 if (rc)
1355 goto fail3;
8ceee660 1356
64eebcfd
BH
1357 rc = efx_probe_filters(efx);
1358 if (rc) {
1359 netif_err(efx, probe, efx->net_dev,
1360 "failed to create filter tables\n");
1361 goto fail4;
1362 }
1363
8ceee660
BH
1364 return 0;
1365
64eebcfd
BH
1366 fail4:
1367 efx_remove_channels(efx);
8ceee660 1368 fail3:
8ceee660
BH
1369 efx_remove_port(efx);
1370 fail2:
1371 efx_remove_nic(efx);
1372 fail1:
1373 return rc;
1374}
1375
1376/* Called after previous invocation(s) of efx_stop_all, restarts the
1377 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1378 * and ensures that the port is scheduled to be reconfigured.
1379 * This function is safe to call multiple times when the NIC is in any
1380 * state. */
1381static void efx_start_all(struct efx_nic *efx)
1382{
1383 struct efx_channel *channel;
1384
1385 EFX_ASSERT_RESET_SERIALISED(efx);
1386
1387 /* Check that it is appropriate to restart the interface. All
1388 * of these flags are safe to read under just the rtnl lock */
1389 if (efx->port_enabled)
1390 return;
1391 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1392 return;
73ba7b68 1393 if (!netif_running(efx->net_dev))
8ceee660
BH
1394 return;
1395
1396 /* Mark the port as enabled so port reconfigurations can start, then
1397 * restart the transmit interface early so the watchdog timer stops */
1398 efx_start_port(efx);
8ceee660 1399
73ba7b68 1400 if (netif_device_present(efx->net_dev))
c04bfc6b
BH
1401 netif_tx_wake_all_queues(efx->net_dev);
1402
1403 efx_for_each_channel(channel, efx)
8ceee660
BH
1404 efx_start_channel(channel);
1405
94dec6a2
BH
1406 if (efx->legacy_irq)
1407 efx->legacy_irq_enabled = true;
152b6a62 1408 efx_nic_enable_interrupts(efx);
8ceee660 1409
8880f4ec
BH
1410 /* Switch to event based MCDI completions after enabling interrupts.
1411 * If a reset has been scheduled, then we need to stay in polled mode.
1412 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1413 * reset_pending [modified from an atomic context], we instead guarantee
1414 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1415 efx_mcdi_mode_event(efx);
a7d529ae 1416 if (efx->reset_pending)
8880f4ec
BH
1417 efx_mcdi_mode_poll(efx);
1418
78c1f0a0
SH
1419 /* Start the hardware monitor if there is one. Otherwise (we're link
1420 * event driven), we have to poll the PHY because after an event queue
1421 * flush, we could have a missed a link state change */
1422 if (efx->type->monitor != NULL) {
8ceee660
BH
1423 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1424 efx_monitor_interval);
78c1f0a0
SH
1425 } else {
1426 mutex_lock(&efx->mac_lock);
1427 if (efx->phy_op->poll(efx))
1428 efx_link_status_changed(efx);
1429 mutex_unlock(&efx->mac_lock);
1430 }
55edc6e6 1431
ef2b90ee 1432 efx->type->start_stats(efx);
8ceee660
BH
1433}
1434
1435/* Flush all delayed work. Should only be called when no more delayed work
1436 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1437 * since we're holding the rtnl_lock at this point. */
1438static void efx_flush_all(struct efx_nic *efx)
1439{
8ceee660
BH
1440 /* Make sure the hardware monitor is stopped */
1441 cancel_delayed_work_sync(&efx->monitor_work);
8ceee660 1442 /* Stop scheduled port reconfigurations */
766ca0fa 1443 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1444}
1445
1446/* Quiesce hardware and software without bringing the link down.
1447 * Safe to call multiple times, when the nic and interface is in any
1448 * state. The caller is guaranteed to subsequently be in a position
1449 * to modify any hardware and software state they see fit without
1450 * taking locks. */
1451static void efx_stop_all(struct efx_nic *efx)
1452{
1453 struct efx_channel *channel;
1454
1455 EFX_ASSERT_RESET_SERIALISED(efx);
1456
1457 /* port_enabled can be read safely under the rtnl lock */
1458 if (!efx->port_enabled)
1459 return;
1460
ef2b90ee 1461 efx->type->stop_stats(efx);
55edc6e6 1462
8880f4ec
BH
1463 /* Switch to MCDI polling on Siena before disabling interrupts */
1464 efx_mcdi_mode_poll(efx);
1465
8ceee660 1466 /* Disable interrupts and wait for ISR to complete */
152b6a62 1467 efx_nic_disable_interrupts(efx);
94dec6a2 1468 if (efx->legacy_irq) {
8ceee660 1469 synchronize_irq(efx->legacy_irq);
94dec6a2
BH
1470 efx->legacy_irq_enabled = false;
1471 }
64ee3120 1472 efx_for_each_channel(channel, efx) {
8ceee660
BH
1473 if (channel->irq)
1474 synchronize_irq(channel->irq);
b3475645 1475 }
8ceee660
BH
1476
1477 /* Stop all NAPI processing and synchronous rx refills */
1478 efx_for_each_channel(channel, efx)
1479 efx_stop_channel(channel);
1480
1481 /* Stop all asynchronous port reconfigurations. Since all
1482 * event processing has already been stopped, there is no
1483 * window to loose phy events */
1484 efx_stop_port(efx);
1485
fdaa9aed 1486 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1487 efx_flush_all(efx);
1488
8ceee660
BH
1489 /* Stop the kernel transmit interface late, so the watchdog
1490 * timer isn't ticking over the flush */
73ba7b68
BH
1491 netif_tx_stop_all_queues(efx->net_dev);
1492 netif_tx_lock_bh(efx->net_dev);
1493 netif_tx_unlock_bh(efx->net_dev);
8ceee660
BH
1494}
1495
1496static void efx_remove_all(struct efx_nic *efx)
1497{
64eebcfd 1498 efx_remove_filters(efx);
4642610c 1499 efx_remove_channels(efx);
8ceee660
BH
1500 efx_remove_port(efx);
1501 efx_remove_nic(efx);
1502}
1503
8ceee660
BH
1504/**************************************************************************
1505 *
1506 * Interrupt moderation
1507 *
1508 **************************************************************************/
1509
cc180b69 1510static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
0d86ebd8 1511{
b548f976
BH
1512 if (usecs == 0)
1513 return 0;
cc180b69 1514 if (usecs * 1000 < quantum_ns)
0d86ebd8 1515 return 1; /* never round down to 0 */
cc180b69 1516 return usecs * 1000 / quantum_ns;
0d86ebd8
BH
1517}
1518
8ceee660 1519/* Set interrupt moderation parameters */
9e393b30
BH
1520int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1521 unsigned int rx_usecs, bool rx_adaptive,
1522 bool rx_may_override_tx)
8ceee660 1523{
f7d12cdc 1524 struct efx_channel *channel;
cc180b69
BH
1525 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1526 efx->timer_quantum_ns,
1527 1000);
1528 unsigned int tx_ticks;
1529 unsigned int rx_ticks;
8ceee660
BH
1530
1531 EFX_ASSERT_RESET_SERIALISED(efx);
1532
cc180b69 1533 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
9e393b30
BH
1534 return -EINVAL;
1535
cc180b69
BH
1536 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1537 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1538
9e393b30
BH
1539 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1540 !rx_may_override_tx) {
1541 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1542 "RX and TX IRQ moderation must be equal\n");
1543 return -EINVAL;
1544 }
1545
6fb70fd1 1546 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1547 efx->irq_rx_moderation = rx_ticks;
f7d12cdc 1548 efx_for_each_channel(channel, efx) {
525da907 1549 if (efx_channel_has_rx_queue(channel))
f7d12cdc 1550 channel->irq_moderation = rx_ticks;
525da907 1551 else if (efx_channel_has_tx_queues(channel))
f7d12cdc
BH
1552 channel->irq_moderation = tx_ticks;
1553 }
9e393b30
BH
1554
1555 return 0;
8ceee660
BH
1556}
1557
a0c4faf5
BH
1558void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1559 unsigned int *rx_usecs, bool *rx_adaptive)
1560{
cc180b69
BH
1561 /* We must round up when converting ticks to microseconds
1562 * because we round down when converting the other way.
1563 */
1564
a0c4faf5 1565 *rx_adaptive = efx->irq_rx_adaptive;
cc180b69
BH
1566 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1567 efx->timer_quantum_ns,
1568 1000);
a0c4faf5
BH
1569
1570 /* If channels are shared between RX and TX, so is IRQ
1571 * moderation. Otherwise, IRQ moderation is the same for all
1572 * TX channels and is not adaptive.
1573 */
1574 if (efx->tx_channel_offset == 0)
1575 *tx_usecs = *rx_usecs;
1576 else
cc180b69 1577 *tx_usecs = DIV_ROUND_UP(
a0c4faf5 1578 efx->channel[efx->tx_channel_offset]->irq_moderation *
cc180b69
BH
1579 efx->timer_quantum_ns,
1580 1000);
a0c4faf5
BH
1581}
1582
8ceee660
BH
1583/**************************************************************************
1584 *
1585 * Hardware monitor
1586 *
1587 **************************************************************************/
1588
e254c274 1589/* Run periodically off the general workqueue */
8ceee660
BH
1590static void efx_monitor(struct work_struct *data)
1591{
1592 struct efx_nic *efx = container_of(data, struct efx_nic,
1593 monitor_work.work);
8ceee660 1594
62776d03
BH
1595 netif_vdbg(efx, timer, efx->net_dev,
1596 "hardware monitor executing on CPU %d\n",
1597 raw_smp_processor_id());
ef2b90ee 1598 BUG_ON(efx->type->monitor == NULL);
8ceee660 1599
8ceee660
BH
1600 /* If the mac_lock is already held then it is likely a port
1601 * reconfiguration is already in place, which will likely do
e254c274
BH
1602 * most of the work of monitor() anyway. */
1603 if (mutex_trylock(&efx->mac_lock)) {
1604 if (efx->port_enabled)
1605 efx->type->monitor(efx);
1606 mutex_unlock(&efx->mac_lock);
1607 }
8ceee660 1608
8ceee660
BH
1609 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1610 efx_monitor_interval);
1611}
1612
1613/**************************************************************************
1614 *
1615 * ioctls
1616 *
1617 *************************************************************************/
1618
1619/* Net device ioctl
1620 * Context: process, rtnl_lock() held.
1621 */
1622static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1623{
767e468c 1624 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1625 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1626
1627 EFX_ASSERT_RESET_SERIALISED(efx);
1628
68e7f45e
BH
1629 /* Convert phy_id from older PRTAD/DEVAD format */
1630 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1631 (data->phy_id & 0xfc00) == 0x0400)
1632 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1633
1634 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1635}
1636
1637/**************************************************************************
1638 *
1639 * NAPI interface
1640 *
1641 **************************************************************************/
1642
e8f14992 1643static void efx_init_napi(struct efx_nic *efx)
8ceee660
BH
1644{
1645 struct efx_channel *channel;
8ceee660
BH
1646
1647 efx_for_each_channel(channel, efx) {
1648 channel->napi_dev = efx->net_dev;
718cff1e
BH
1649 netif_napi_add(channel->napi_dev, &channel->napi_str,
1650 efx_poll, napi_weight);
8ceee660 1651 }
e8f14992
BH
1652}
1653
1654static void efx_fini_napi_channel(struct efx_channel *channel)
1655{
1656 if (channel->napi_dev)
1657 netif_napi_del(&channel->napi_str);
1658 channel->napi_dev = NULL;
8ceee660
BH
1659}
1660
1661static void efx_fini_napi(struct efx_nic *efx)
1662{
1663 struct efx_channel *channel;
1664
e8f14992
BH
1665 efx_for_each_channel(channel, efx)
1666 efx_fini_napi_channel(channel);
8ceee660
BH
1667}
1668
1669/**************************************************************************
1670 *
1671 * Kernel netpoll interface
1672 *
1673 *************************************************************************/
1674
1675#ifdef CONFIG_NET_POLL_CONTROLLER
1676
1677/* Although in the common case interrupts will be disabled, this is not
1678 * guaranteed. However, all our work happens inside the NAPI callback,
1679 * so no locking is required.
1680 */
1681static void efx_netpoll(struct net_device *net_dev)
1682{
767e468c 1683 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1684 struct efx_channel *channel;
1685
64ee3120 1686 efx_for_each_channel(channel, efx)
8ceee660
BH
1687 efx_schedule_channel(channel);
1688}
1689
1690#endif
1691
1692/**************************************************************************
1693 *
1694 * Kernel net device interface
1695 *
1696 *************************************************************************/
1697
1698/* Context: process, rtnl_lock() held. */
1699static int efx_net_open(struct net_device *net_dev)
1700{
767e468c 1701 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1702 EFX_ASSERT_RESET_SERIALISED(efx);
1703
62776d03
BH
1704 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1705 raw_smp_processor_id());
8ceee660 1706
f4bd954e
BH
1707 if (efx->state == STATE_DISABLED)
1708 return -EIO;
f8b87c17
BH
1709 if (efx->phy_mode & PHY_MODE_SPECIAL)
1710 return -EBUSY;
8880f4ec
BH
1711 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1712 return -EIO;
f8b87c17 1713
78c1f0a0
SH
1714 /* Notify the kernel of the link state polled during driver load,
1715 * before the monitor starts running */
1716 efx_link_status_changed(efx);
1717
8ceee660
BH
1718 efx_start_all(efx);
1719 return 0;
1720}
1721
1722/* Context: process, rtnl_lock() held.
1723 * Note that the kernel will ignore our return code; this method
1724 * should really be a void.
1725 */
1726static int efx_net_stop(struct net_device *net_dev)
1727{
767e468c 1728 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1729
62776d03
BH
1730 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1731 raw_smp_processor_id());
8ceee660 1732
f4bd954e
BH
1733 if (efx->state != STATE_DISABLED) {
1734 /* Stop the device and flush all the channels */
1735 efx_stop_all(efx);
1736 efx_fini_channels(efx);
1737 efx_init_channels(efx);
1738 }
8ceee660
BH
1739
1740 return 0;
1741}
1742
5b9e207c 1743/* Context: process, dev_base_lock or RTNL held, non-blocking. */
28172739 1744static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
8ceee660 1745{
767e468c 1746 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1747 struct efx_mac_stats *mac_stats = &efx->mac_stats;
8ceee660 1748
55edc6e6 1749 spin_lock_bh(&efx->stats_lock);
1cb34522 1750
ef2b90ee 1751 efx->type->update_stats(efx);
8ceee660
BH
1752
1753 stats->rx_packets = mac_stats->rx_packets;
1754 stats->tx_packets = mac_stats->tx_packets;
1755 stats->rx_bytes = mac_stats->rx_bytes;
1756 stats->tx_bytes = mac_stats->tx_bytes;
80485d34 1757 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
8ceee660
BH
1758 stats->multicast = mac_stats->rx_multicast;
1759 stats->collisions = mac_stats->tx_collision;
1760 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1761 mac_stats->rx_length_error);
8ceee660
BH
1762 stats->rx_crc_errors = mac_stats->rx_bad;
1763 stats->rx_frame_errors = mac_stats->rx_align_error;
1764 stats->rx_fifo_errors = mac_stats->rx_overflow;
1765 stats->rx_missed_errors = mac_stats->rx_missed;
1766 stats->tx_window_errors = mac_stats->tx_late_collision;
1767
1768 stats->rx_errors = (stats->rx_length_errors +
8ceee660
BH
1769 stats->rx_crc_errors +
1770 stats->rx_frame_errors +
8ceee660
BH
1771 mac_stats->rx_symbol_error);
1772 stats->tx_errors = (stats->tx_window_errors +
1773 mac_stats->tx_bad);
1774
1cb34522
BH
1775 spin_unlock_bh(&efx->stats_lock);
1776
8ceee660
BH
1777 return stats;
1778}
1779
1780/* Context: netif_tx_lock held, BHs disabled. */
1781static void efx_watchdog(struct net_device *net_dev)
1782{
767e468c 1783 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1784
62776d03
BH
1785 netif_err(efx, tx_err, efx->net_dev,
1786 "TX stuck with port_enabled=%d: resetting channels\n",
1787 efx->port_enabled);
8ceee660 1788
739bb23d 1789 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1790}
1791
1792
1793/* Context: process, rtnl_lock() held. */
1794static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1795{
767e468c 1796 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1797 int rc = 0;
1798
1799 EFX_ASSERT_RESET_SERIALISED(efx);
1800
1801 if (new_mtu > EFX_MAX_MTU)
1802 return -EINVAL;
1803
1804 efx_stop_all(efx);
1805
62776d03 1806 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660
BH
1807
1808 efx_fini_channels(efx);
d3245b28
BH
1809
1810 mutex_lock(&efx->mac_lock);
1811 /* Reconfigure the MAC before enabling the dma queues so that
1812 * the RX buffers don't overflow */
8ceee660 1813 net_dev->mtu = new_mtu;
710b208d 1814 efx->type->reconfigure_mac(efx);
d3245b28
BH
1815 mutex_unlock(&efx->mac_lock);
1816
bc3c90a2 1817 efx_init_channels(efx);
8ceee660
BH
1818
1819 efx_start_all(efx);
1820 return rc;
8ceee660
BH
1821}
1822
1823static int efx_set_mac_address(struct net_device *net_dev, void *data)
1824{
767e468c 1825 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1826 struct sockaddr *addr = data;
1827 char *new_addr = addr->sa_data;
1828
1829 EFX_ASSERT_RESET_SERIALISED(efx);
1830
1831 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
1832 netif_err(efx, drv, efx->net_dev,
1833 "invalid ethernet MAC address requested: %pM\n",
1834 new_addr);
8ceee660
BH
1835 return -EINVAL;
1836 }
1837
1838 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1839
1840 /* Reconfigure the MAC */
d3245b28 1841 mutex_lock(&efx->mac_lock);
710b208d 1842 efx->type->reconfigure_mac(efx);
d3245b28 1843 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1844
1845 return 0;
1846}
1847
a816f75a 1848/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1849static void efx_set_multicast_list(struct net_device *net_dev)
1850{
767e468c 1851 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1852 struct netdev_hw_addr *ha;
8ceee660 1853 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1854 u32 crc;
1855 int bit;
8ceee660 1856
8be4f3e6 1857 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1858
1859 /* Build multicast hash table */
8be4f3e6 1860 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1861 memset(mc_hash, 0xff, sizeof(*mc_hash));
1862 } else {
1863 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1864 netdev_for_each_mc_addr(ha, net_dev) {
1865 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1866 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1867 set_bit_le(bit, mc_hash->byte);
8ceee660 1868 }
8ceee660 1869
8be4f3e6
BH
1870 /* Broadcast packets go through the multicast hash filter.
1871 * ether_crc_le() of the broadcast address is 0xbe2612ff
1872 * so we always add bit 0xff to the mask.
1873 */
1874 set_bit_le(0xff, mc_hash->byte);
1875 }
a816f75a 1876
8be4f3e6
BH
1877 if (efx->port_enabled)
1878 queue_work(efx->workqueue, &efx->mac_work);
1879 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1880}
1881
c8f44aff 1882static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
abfe9039
BH
1883{
1884 struct efx_nic *efx = netdev_priv(net_dev);
1885
1886 /* If disabling RX n-tuple filtering, clear existing filters */
1887 if (net_dev->features & ~data & NETIF_F_NTUPLE)
1888 efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
1889
1890 return 0;
1891}
1892
c3ecb9f3
SH
1893static const struct net_device_ops efx_netdev_ops = {
1894 .ndo_open = efx_net_open,
1895 .ndo_stop = efx_net_stop,
4472702e 1896 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
1897 .ndo_tx_timeout = efx_watchdog,
1898 .ndo_start_xmit = efx_hard_start_xmit,
1899 .ndo_validate_addr = eth_validate_addr,
1900 .ndo_do_ioctl = efx_ioctl,
1901 .ndo_change_mtu = efx_change_mtu,
1902 .ndo_set_mac_address = efx_set_mac_address,
afc4b13d 1903 .ndo_set_rx_mode = efx_set_multicast_list,
abfe9039 1904 .ndo_set_features = efx_set_features,
c3ecb9f3
SH
1905#ifdef CONFIG_NET_POLL_CONTROLLER
1906 .ndo_poll_controller = efx_netpoll,
1907#endif
94b274bf 1908 .ndo_setup_tc = efx_setup_tc,
64d8ad6d
BH
1909#ifdef CONFIG_RFS_ACCEL
1910 .ndo_rx_flow_steer = efx_filter_rfs,
1911#endif
c3ecb9f3
SH
1912};
1913
7dde596e
BH
1914static void efx_update_name(struct efx_nic *efx)
1915{
1916 strcpy(efx->name, efx->net_dev->name);
1917 efx_mtd_rename(efx);
1918 efx_set_channel_names(efx);
1919}
1920
8ceee660
BH
1921static int efx_netdev_event(struct notifier_block *this,
1922 unsigned long event, void *ptr)
1923{
d3208b5e 1924 struct net_device *net_dev = ptr;
8ceee660 1925
7dde596e
BH
1926 if (net_dev->netdev_ops == &efx_netdev_ops &&
1927 event == NETDEV_CHANGENAME)
1928 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1929
1930 return NOTIFY_DONE;
1931}
1932
1933static struct notifier_block efx_netdev_notifier = {
1934 .notifier_call = efx_netdev_event,
1935};
1936
06d5e193
BH
1937static ssize_t
1938show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1939{
1940 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1941 return sprintf(buf, "%d\n", efx->phy_type);
1942}
1943static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1944
8ceee660
BH
1945static int efx_register_netdev(struct efx_nic *efx)
1946{
1947 struct net_device *net_dev = efx->net_dev;
c04bfc6b 1948 struct efx_channel *channel;
8ceee660
BH
1949 int rc;
1950
1951 net_dev->watchdog_timeo = 5 * HZ;
1952 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1953 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1954 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1955
7dde596e 1956 rtnl_lock();
aed0628d
BH
1957
1958 rc = dev_alloc_name(net_dev, net_dev->name);
1959 if (rc < 0)
1960 goto fail_locked;
7dde596e 1961 efx_update_name(efx);
aed0628d
BH
1962
1963 rc = register_netdevice(net_dev);
1964 if (rc)
1965 goto fail_locked;
1966
c04bfc6b
BH
1967 efx_for_each_channel(channel, efx) {
1968 struct efx_tx_queue *tx_queue;
60031fcc
BH
1969 efx_for_each_channel_tx_queue(tx_queue, channel)
1970 efx_init_tx_queue_core_txq(tx_queue);
c04bfc6b
BH
1971 }
1972
aed0628d
BH
1973 /* Always start with carrier off; PHY events will detect the link */
1974 netif_carrier_off(efx->net_dev);
1975
7dde596e 1976 rtnl_unlock();
8ceee660 1977
06d5e193
BH
1978 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1979 if (rc) {
62776d03
BH
1980 netif_err(efx, drv, efx->net_dev,
1981 "failed to init net dev attributes\n");
06d5e193
BH
1982 goto fail_registered;
1983 }
1984
8ceee660 1985 return 0;
06d5e193 1986
aed0628d
BH
1987fail_locked:
1988 rtnl_unlock();
62776d03 1989 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d
BH
1990 return rc;
1991
06d5e193
BH
1992fail_registered:
1993 unregister_netdev(net_dev);
1994 return rc;
8ceee660
BH
1995}
1996
1997static void efx_unregister_netdev(struct efx_nic *efx)
1998{
f7d12cdc 1999 struct efx_channel *channel;
8ceee660
BH
2000 struct efx_tx_queue *tx_queue;
2001
2002 if (!efx->net_dev)
2003 return;
2004
767e468c 2005 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
2006
2007 /* Free up any skbs still remaining. This has to happen before
2008 * we try to unregister the netdev as running their destructors
2009 * may be needed to get the device ref. count to 0. */
f7d12cdc
BH
2010 efx_for_each_channel(channel, efx) {
2011 efx_for_each_channel_tx_queue(tx_queue, channel)
2012 efx_release_tx_buffers(tx_queue);
2013 }
8ceee660 2014
73ba7b68
BH
2015 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2016 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2017 unregister_netdev(efx->net_dev);
8ceee660
BH
2018}
2019
2020/**************************************************************************
2021 *
2022 * Device reset and suspend
2023 *
2024 **************************************************************************/
2025
2467ca46
BH
2026/* Tears down the entire software state and most of the hardware state
2027 * before reset. */
d3245b28 2028void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 2029{
8ceee660
BH
2030 EFX_ASSERT_RESET_SERIALISED(efx);
2031
2467ca46
BH
2032 efx_stop_all(efx);
2033 mutex_lock(&efx->mac_lock);
2034
8ceee660 2035 efx_fini_channels(efx);
4b988280
SH
2036 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2037 efx->phy_op->fini(efx);
ef2b90ee 2038 efx->type->fini(efx);
8ceee660
BH
2039}
2040
2467ca46
BH
2041/* This function will always ensure that the locks acquired in
2042 * efx_reset_down() are released. A failure return code indicates
2043 * that we were unable to reinitialise the hardware, and the
2044 * driver should be disabled. If ok is false, then the rx and tx
2045 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 2046int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
2047{
2048 int rc;
2049
2467ca46 2050 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 2051
ef2b90ee 2052 rc = efx->type->init(efx);
8ceee660 2053 if (rc) {
62776d03 2054 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 2055 goto fail;
8ceee660
BH
2056 }
2057
eb9f6744
BH
2058 if (!ok)
2059 goto fail;
2060
4b988280 2061 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
2062 rc = efx->phy_op->init(efx);
2063 if (rc)
2064 goto fail;
2065 if (efx->phy_op->reconfigure(efx))
62776d03
BH
2066 netif_err(efx, drv, efx->net_dev,
2067 "could not restore PHY settings\n");
4b988280
SH
2068 }
2069
710b208d 2070 efx->type->reconfigure_mac(efx);
8ceee660 2071
eb9f6744 2072 efx_init_channels(efx);
64eebcfd 2073 efx_restore_filters(efx);
eb9f6744 2074
eb9f6744
BH
2075 mutex_unlock(&efx->mac_lock);
2076
2077 efx_start_all(efx);
2078
2079 return 0;
2080
2081fail:
2082 efx->port_initialized = false;
2467ca46
BH
2083
2084 mutex_unlock(&efx->mac_lock);
2085
8ceee660
BH
2086 return rc;
2087}
2088
eb9f6744
BH
2089/* Reset the NIC using the specified method. Note that the reset may
2090 * fail, in which case the card will be left in an unusable state.
8ceee660 2091 *
eb9f6744 2092 * Caller must hold the rtnl_lock.
8ceee660 2093 */
eb9f6744 2094int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 2095{
eb9f6744
BH
2096 int rc, rc2;
2097 bool disabled;
8ceee660 2098
62776d03
BH
2099 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2100 RESET_TYPE(method));
8ceee660 2101
e4abce85 2102 netif_device_detach(efx->net_dev);
d3245b28 2103 efx_reset_down(efx, method);
8ceee660 2104
ef2b90ee 2105 rc = efx->type->reset(efx, method);
8ceee660 2106 if (rc) {
62776d03 2107 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 2108 goto out;
8ceee660
BH
2109 }
2110
a7d529ae
BH
2111 /* Clear flags for the scopes we covered. We assume the NIC and
2112 * driver are now quiescent so that there is no race here.
2113 */
2114 efx->reset_pending &= -(1 << (method + 1));
8ceee660
BH
2115
2116 /* Reinitialise bus-mastering, which may have been turned off before
2117 * the reset was scheduled. This is still appropriate, even in the
2118 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2119 * can respond to requests. */
2120 pci_set_master(efx->pci_dev);
2121
eb9f6744 2122out:
8ceee660 2123 /* Leave device stopped if necessary */
eb9f6744
BH
2124 disabled = rc || method == RESET_TYPE_DISABLE;
2125 rc2 = efx_reset_up(efx, method, !disabled);
2126 if (rc2) {
2127 disabled = true;
2128 if (!rc)
2129 rc = rc2;
8ceee660
BH
2130 }
2131
eb9f6744 2132 if (disabled) {
f49a4589 2133 dev_close(efx->net_dev);
62776d03 2134 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 2135 efx->state = STATE_DISABLED;
f4bd954e 2136 } else {
62776d03 2137 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
e4abce85 2138 netif_device_attach(efx->net_dev);
f4bd954e 2139 }
8ceee660
BH
2140 return rc;
2141}
2142
2143/* The worker thread exists so that code that cannot sleep can
2144 * schedule a reset for later.
2145 */
2146static void efx_reset_work(struct work_struct *data)
2147{
eb9f6744 2148 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
a7d529ae 2149 unsigned long pending = ACCESS_ONCE(efx->reset_pending);
8ceee660 2150
a7d529ae 2151 if (!pending)
319ba649
SH
2152 return;
2153
eb9f6744 2154 /* If we're not RUNNING then don't reset. Leave the reset_pending
a7d529ae 2155 * flags set so that efx_pci_probe_main will be retried */
eb9f6744 2156 if (efx->state != STATE_RUNNING) {
62776d03
BH
2157 netif_info(efx, drv, efx->net_dev,
2158 "scheduled reset quenched. NIC not RUNNING\n");
eb9f6744
BH
2159 return;
2160 }
2161
2162 rtnl_lock();
a7d529ae 2163 (void)efx_reset(efx, fls(pending) - 1);
eb9f6744 2164 rtnl_unlock();
8ceee660
BH
2165}
2166
2167void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2168{
2169 enum reset_type method;
2170
8ceee660
BH
2171 switch (type) {
2172 case RESET_TYPE_INVISIBLE:
2173 case RESET_TYPE_ALL:
2174 case RESET_TYPE_WORLD:
2175 case RESET_TYPE_DISABLE:
2176 method = type;
0e2a9c7c
BH
2177 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2178 RESET_TYPE(method));
8ceee660 2179 break;
8ceee660 2180 default:
0e2a9c7c 2181 method = efx->type->map_reset_reason(type);
62776d03
BH
2182 netif_dbg(efx, drv, efx->net_dev,
2183 "scheduling %s reset for %s\n",
2184 RESET_TYPE(method), RESET_TYPE(type));
0e2a9c7c
BH
2185 break;
2186 }
8ceee660 2187
a7d529ae 2188 set_bit(method, &efx->reset_pending);
8ceee660 2189
8880f4ec
BH
2190 /* efx_process_channel() will no longer read events once a
2191 * reset is scheduled. So switch back to poll'd MCDI completions. */
2192 efx_mcdi_mode_poll(efx);
2193
1ab00629 2194 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
2195}
2196
2197/**************************************************************************
2198 *
2199 * List of NICs we support
2200 *
2201 **************************************************************************/
2202
2203/* PCI device ID table */
a3aa1884 2204static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
937383a5
BH
2205 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2206 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
daeda630 2207 .driver_data = (unsigned long) &falcon_a1_nic_type},
937383a5
BH
2208 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2209 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
daeda630 2210 .driver_data = (unsigned long) &falcon_b0_nic_type},
547c474f 2211 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
8880f4ec 2212 .driver_data = (unsigned long) &siena_a0_nic_type},
547c474f 2213 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
8880f4ec 2214 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
2215 {0} /* end of list */
2216};
2217
2218/**************************************************************************
2219 *
3759433d 2220 * Dummy PHY/MAC operations
8ceee660 2221 *
01aad7b6 2222 * Can be used for some unimplemented operations
8ceee660
BH
2223 * Needed so all function pointers are valid and do not have to be tested
2224 * before use
2225 *
2226 **************************************************************************/
2227int efx_port_dummy_op_int(struct efx_nic *efx)
2228{
2229 return 0;
2230}
2231void efx_port_dummy_op_void(struct efx_nic *efx) {}
d215697f 2232
2233static bool efx_port_dummy_op_poll(struct efx_nic *efx)
fdaa9aed
SH
2234{
2235 return false;
2236}
8ceee660 2237
6c8c2513 2238static const struct efx_phy_operations efx_dummy_phy_operations = {
8ceee660 2239 .init = efx_port_dummy_op_int,
d3245b28 2240 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2241 .poll = efx_port_dummy_op_poll,
8ceee660 2242 .fini = efx_port_dummy_op_void,
8ceee660
BH
2243};
2244
8ceee660
BH
2245/**************************************************************************
2246 *
2247 * Data housekeeping
2248 *
2249 **************************************************************************/
2250
2251/* This zeroes out and then fills in the invariants in a struct
2252 * efx_nic (including all sub-structures).
2253 */
6c8c2513 2254static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
8ceee660
BH
2255 struct pci_dev *pci_dev, struct net_device *net_dev)
2256{
4642610c 2257 int i;
8ceee660
BH
2258
2259 /* Initialise common structures */
2260 memset(efx, 0, sizeof(*efx));
2261 spin_lock_init(&efx->biu_lock);
76884835
BH
2262#ifdef CONFIG_SFC_MTD
2263 INIT_LIST_HEAD(&efx->mtd_list);
2264#endif
8ceee660
BH
2265 INIT_WORK(&efx->reset_work, efx_reset_work);
2266 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2267 efx->pci_dev = pci_dev;
62776d03 2268 efx->msg_enable = debug;
8ceee660 2269 efx->state = STATE_INIT;
8ceee660 2270 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2271
2272 efx->net_dev = net_dev;
8ceee660
BH
2273 spin_lock_init(&efx->stats_lock);
2274 mutex_init(&efx->mac_lock);
2275 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2276 efx->mdio.dev = net_dev;
766ca0fa 2277 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2278
2279 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
4642610c
BH
2280 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2281 if (!efx->channel[i])
2282 goto fail;
8ceee660
BH
2283 }
2284
2285 efx->type = type;
2286
8ceee660
BH
2287 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2288
2289 /* Higher numbered interrupt modes are less capable! */
2290 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2291 interrupt_mode);
2292
6977dc63
BH
2293 /* Would be good to use the net_dev name, but we're too early */
2294 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2295 pci_name(pci_dev));
2296 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629 2297 if (!efx->workqueue)
4642610c 2298 goto fail;
8d9853d9 2299
8ceee660 2300 return 0;
4642610c
BH
2301
2302fail:
2303 efx_fini_struct(efx);
2304 return -ENOMEM;
8ceee660
BH
2305}
2306
2307static void efx_fini_struct(struct efx_nic *efx)
2308{
8313aca3
BH
2309 int i;
2310
2311 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2312 kfree(efx->channel[i]);
2313
8ceee660
BH
2314 if (efx->workqueue) {
2315 destroy_workqueue(efx->workqueue);
2316 efx->workqueue = NULL;
2317 }
2318}
2319
2320/**************************************************************************
2321 *
2322 * PCI interface
2323 *
2324 **************************************************************************/
2325
2326/* Main body of final NIC shutdown code
2327 * This is called only at module unload (or hotplug removal).
2328 */
2329static void efx_pci_remove_main(struct efx_nic *efx)
2330{
64d8ad6d
BH
2331#ifdef CONFIG_RFS_ACCEL
2332 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2333 efx->net_dev->rx_cpu_rmap = NULL;
2334#endif
152b6a62 2335 efx_nic_fini_interrupt(efx);
8ceee660
BH
2336 efx_fini_channels(efx);
2337 efx_fini_port(efx);
ef2b90ee 2338 efx->type->fini(efx);
8ceee660
BH
2339 efx_fini_napi(efx);
2340 efx_remove_all(efx);
2341}
2342
2343/* Final NIC shutdown
2344 * This is called only at module unload (or hotplug removal).
2345 */
2346static void efx_pci_remove(struct pci_dev *pci_dev)
2347{
2348 struct efx_nic *efx;
2349
2350 efx = pci_get_drvdata(pci_dev);
2351 if (!efx)
2352 return;
2353
2354 /* Mark the NIC as fini, then stop the interface */
2355 rtnl_lock();
2356 efx->state = STATE_FINI;
2357 dev_close(efx->net_dev);
2358
2359 /* Allow any queued efx_resets() to complete */
2360 rtnl_unlock();
2361
8ceee660
BH
2362 efx_unregister_netdev(efx);
2363
7dde596e
BH
2364 efx_mtd_remove(efx);
2365
8ceee660
BH
2366 /* Wait for any scheduled resets to complete. No more will be
2367 * scheduled from this point because efx_stop_all() has been
2368 * called, we are no longer registered with driverlink, and
2369 * the net_device's have been removed. */
1ab00629 2370 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2371
2372 efx_pci_remove_main(efx);
2373
8ceee660 2374 efx_fini_io(efx);
62776d03 2375 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660
BH
2376
2377 pci_set_drvdata(pci_dev, NULL);
2378 efx_fini_struct(efx);
2379 free_netdev(efx->net_dev);
2380};
2381
2382/* Main body of NIC initialisation
2383 * This is called at module load (or hotplug insertion, theoretically).
2384 */
2385static int efx_pci_probe_main(struct efx_nic *efx)
2386{
2387 int rc;
2388
2389 /* Do start-of-day initialisation */
2390 rc = efx_probe_all(efx);
2391 if (rc)
2392 goto fail1;
2393
e8f14992 2394 efx_init_napi(efx);
8ceee660 2395
ef2b90ee 2396 rc = efx->type->init(efx);
8ceee660 2397 if (rc) {
62776d03
BH
2398 netif_err(efx, probe, efx->net_dev,
2399 "failed to initialise NIC\n");
278c0621 2400 goto fail3;
8ceee660
BH
2401 }
2402
2403 rc = efx_init_port(efx);
2404 if (rc) {
62776d03
BH
2405 netif_err(efx, probe, efx->net_dev,
2406 "failed to initialise port\n");
278c0621 2407 goto fail4;
8ceee660
BH
2408 }
2409
bc3c90a2 2410 efx_init_channels(efx);
8ceee660 2411
152b6a62 2412 rc = efx_nic_init_interrupt(efx);
8ceee660 2413 if (rc)
278c0621 2414 goto fail5;
8ceee660
BH
2415
2416 return 0;
2417
278c0621 2418 fail5:
bc3c90a2 2419 efx_fini_channels(efx);
8ceee660 2420 efx_fini_port(efx);
8ceee660 2421 fail4:
ef2b90ee 2422 efx->type->fini(efx);
8ceee660
BH
2423 fail3:
2424 efx_fini_napi(efx);
8ceee660
BH
2425 efx_remove_all(efx);
2426 fail1:
2427 return rc;
2428}
2429
2430/* NIC initialisation
2431 *
2432 * This is called at module load (or hotplug insertion,
73ba7b68 2433 * theoretically). It sets up PCI mappings, resets the NIC,
8ceee660
BH
2434 * sets up and registers the network devices with the kernel and hooks
2435 * the interrupt service routine. It does not prepare the device for
2436 * transmission; this is left to the first time one of the network
2437 * interfaces is brought up (i.e. efx_net_open).
2438 */
2439static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2440 const struct pci_device_id *entry)
2441{
6c8c2513 2442 const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
8ceee660
BH
2443 struct net_device *net_dev;
2444 struct efx_nic *efx;
2445 int i, rc;
2446
2447 /* Allocate and initialise a struct net_device and struct efx_nic */
94b274bf
BH
2448 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2449 EFX_MAX_RX_QUEUES);
8ceee660
BH
2450 if (!net_dev)
2451 return -ENOMEM;
c383b537 2452 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415 2453 NETIF_F_HIGHDMA | NETIF_F_TSO |
abfe9039 2454 NETIF_F_RXCSUM);
738a8f4b
BH
2455 if (type->offload_features & NETIF_F_V6_CSUM)
2456 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2457 /* Mask for features that also apply to VLAN devices */
2458 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
abfe9039
BH
2459 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2460 NETIF_F_RXCSUM);
2461 /* All offloads can be toggled */
2462 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
767e468c 2463 efx = netdev_priv(net_dev);
8ceee660 2464 pci_set_drvdata(pci_dev, efx);
62776d03 2465 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
8ceee660
BH
2466 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2467 if (rc)
2468 goto fail1;
2469
62776d03 2470 netif_info(efx, probe, efx->net_dev,
ff79c8ac 2471 "Solarflare NIC detected\n");
8ceee660
BH
2472
2473 /* Set up basic I/O (BAR mappings etc) */
2474 rc = efx_init_io(efx);
2475 if (rc)
2476 goto fail2;
2477
2478 /* No serialisation is required with the reset path because
2479 * we're in STATE_INIT. */
2480 for (i = 0; i < 5; i++) {
2481 rc = efx_pci_probe_main(efx);
8ceee660
BH
2482
2483 /* Serialise against efx_reset(). No more resets will be
2484 * scheduled since efx_stop_all() has been called, and we
2485 * have not and never have been registered with either
2486 * the rtnetlink or driverlink layers. */
1ab00629 2487 cancel_work_sync(&efx->reset_work);
8ceee660 2488
fa402b2e 2489 if (rc == 0) {
a7d529ae 2490 if (efx->reset_pending) {
fa402b2e
SH
2491 /* If there was a scheduled reset during
2492 * probe, the NIC is probably hosed anyway */
2493 efx_pci_remove_main(efx);
2494 rc = -EIO;
2495 } else {
2496 break;
2497 }
2498 }
2499
8ceee660 2500 /* Retry if a recoverably reset event has been scheduled */
a7d529ae
BH
2501 if (efx->reset_pending &
2502 ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) ||
2503 !efx->reset_pending)
8ceee660
BH
2504 goto fail3;
2505
a7d529ae 2506 efx->reset_pending = 0;
8ceee660
BH
2507 }
2508
2509 if (rc) {
62776d03 2510 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
8ceee660
BH
2511 goto fail4;
2512 }
2513
55edc6e6
BH
2514 /* Switch to the running state before we expose the device to the OS,
2515 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2516 efx->state = STATE_RUNNING;
7dde596e 2517
8ceee660
BH
2518 rc = efx_register_netdev(efx);
2519 if (rc)
2520 goto fail5;
2521
62776d03 2522 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5
BH
2523
2524 rtnl_lock();
2525 efx_mtd_probe(efx); /* allowed to fail */
2526 rtnl_unlock();
8ceee660
BH
2527 return 0;
2528
2529 fail5:
2530 efx_pci_remove_main(efx);
2531 fail4:
2532 fail3:
2533 efx_fini_io(efx);
2534 fail2:
2535 efx_fini_struct(efx);
2536 fail1:
5e2a911c 2537 WARN_ON(rc > 0);
62776d03 2538 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
2539 free_netdev(net_dev);
2540 return rc;
2541}
2542
89c758fa
BH
2543static int efx_pm_freeze(struct device *dev)
2544{
2545 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2546
2547 efx->state = STATE_FINI;
2548
2549 netif_device_detach(efx->net_dev);
2550
2551 efx_stop_all(efx);
2552 efx_fini_channels(efx);
2553
2554 return 0;
2555}
2556
2557static int efx_pm_thaw(struct device *dev)
2558{
2559 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2560
2561 efx->state = STATE_INIT;
2562
2563 efx_init_channels(efx);
2564
2565 mutex_lock(&efx->mac_lock);
2566 efx->phy_op->reconfigure(efx);
2567 mutex_unlock(&efx->mac_lock);
2568
2569 efx_start_all(efx);
2570
2571 netif_device_attach(efx->net_dev);
2572
2573 efx->state = STATE_RUNNING;
2574
2575 efx->type->resume_wol(efx);
2576
319ba649
SH
2577 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2578 queue_work(reset_workqueue, &efx->reset_work);
2579
89c758fa
BH
2580 return 0;
2581}
2582
2583static int efx_pm_poweroff(struct device *dev)
2584{
2585 struct pci_dev *pci_dev = to_pci_dev(dev);
2586 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2587
2588 efx->type->fini(efx);
2589
a7d529ae 2590 efx->reset_pending = 0;
89c758fa
BH
2591
2592 pci_save_state(pci_dev);
2593 return pci_set_power_state(pci_dev, PCI_D3hot);
2594}
2595
2596/* Used for both resume and restore */
2597static int efx_pm_resume(struct device *dev)
2598{
2599 struct pci_dev *pci_dev = to_pci_dev(dev);
2600 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2601 int rc;
2602
2603 rc = pci_set_power_state(pci_dev, PCI_D0);
2604 if (rc)
2605 return rc;
2606 pci_restore_state(pci_dev);
2607 rc = pci_enable_device(pci_dev);
2608 if (rc)
2609 return rc;
2610 pci_set_master(efx->pci_dev);
2611 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2612 if (rc)
2613 return rc;
2614 rc = efx->type->init(efx);
2615 if (rc)
2616 return rc;
2617 efx_pm_thaw(dev);
2618 return 0;
2619}
2620
2621static int efx_pm_suspend(struct device *dev)
2622{
2623 int rc;
2624
2625 efx_pm_freeze(dev);
2626 rc = efx_pm_poweroff(dev);
2627 if (rc)
2628 efx_pm_resume(dev);
2629 return rc;
2630}
2631
18e83e4c 2632static const struct dev_pm_ops efx_pm_ops = {
89c758fa
BH
2633 .suspend = efx_pm_suspend,
2634 .resume = efx_pm_resume,
2635 .freeze = efx_pm_freeze,
2636 .thaw = efx_pm_thaw,
2637 .poweroff = efx_pm_poweroff,
2638 .restore = efx_pm_resume,
2639};
2640
8ceee660 2641static struct pci_driver efx_pci_driver = {
c5d5f5fd 2642 .name = KBUILD_MODNAME,
8ceee660
BH
2643 .id_table = efx_pci_table,
2644 .probe = efx_pci_probe,
2645 .remove = efx_pci_remove,
89c758fa 2646 .driver.pm = &efx_pm_ops,
8ceee660
BH
2647};
2648
2649/**************************************************************************
2650 *
2651 * Kernel module interface
2652 *
2653 *************************************************************************/
2654
2655module_param(interrupt_mode, uint, 0444);
2656MODULE_PARM_DESC(interrupt_mode,
2657 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2658
2659static int __init efx_init_module(void)
2660{
2661 int rc;
2662
2663 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2664
2665 rc = register_netdevice_notifier(&efx_netdev_notifier);
2666 if (rc)
2667 goto err_notifier;
2668
1ab00629
SH
2669 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2670 if (!reset_workqueue) {
2671 rc = -ENOMEM;
2672 goto err_reset;
2673 }
8ceee660
BH
2674
2675 rc = pci_register_driver(&efx_pci_driver);
2676 if (rc < 0)
2677 goto err_pci;
2678
2679 return 0;
2680
2681 err_pci:
1ab00629
SH
2682 destroy_workqueue(reset_workqueue);
2683 err_reset:
8ceee660
BH
2684 unregister_netdevice_notifier(&efx_netdev_notifier);
2685 err_notifier:
2686 return rc;
2687}
2688
2689static void __exit efx_exit_module(void)
2690{
2691 printk(KERN_INFO "Solarflare NET driver unloading\n");
2692
2693 pci_unregister_driver(&efx_pci_driver);
1ab00629 2694 destroy_workqueue(reset_workqueue);
8ceee660
BH
2695 unregister_netdevice_notifier(&efx_netdev_notifier);
2696
2697}
2698
2699module_init(efx_init_module);
2700module_exit(efx_exit_module);
2701
906bb26c
BH
2702MODULE_AUTHOR("Solarflare Communications and "
2703 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2704MODULE_DESCRIPTION("Solarflare Communications network driver");
2705MODULE_LICENSE("GPL");
2706MODULE_DEVICE_TABLE(pci, efx_pci_table);