sfc: Fix division by zero when using one RX channel and no SR-IOV
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
0a6f40c6 4 * Copyright 2005-2011 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
5a0e3ad6 23#include <linux/gfp.h>
64d8ad6d 24#include <linux/cpu_rmap.h>
8ceee660 25#include "net_driver.h"
8ceee660 26#include "efx.h"
744093c9 27#include "nic.h"
dd40781e 28#include "selftest.h"
8ceee660 29
8880f4ec 30#include "mcdi.h"
fd371e32 31#include "workarounds.h"
8880f4ec 32
c459302d
BH
33/**************************************************************************
34 *
35 * Type name strings
36 *
37 **************************************************************************
38 */
39
40/* Loopback mode names (see LOOPBACK_MODE()) */
41const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
18e83e4c 42const char *const efx_loopback_mode_names[] = {
c459302d 43 [LOOPBACK_NONE] = "NONE",
e58f69f4 44 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
45 [LOOPBACK_GMAC] = "GMAC",
46 [LOOPBACK_XGMII] = "XGMII",
47 [LOOPBACK_XGXS] = "XGXS",
9c636baf
BH
48 [LOOPBACK_XAUI] = "XAUI",
49 [LOOPBACK_GMII] = "GMII",
50 [LOOPBACK_SGMII] = "SGMII",
e58f69f4
BH
51 [LOOPBACK_XGBR] = "XGBR",
52 [LOOPBACK_XFI] = "XFI",
53 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
54 [LOOPBACK_GMII_FAR] = "GMII_FAR",
55 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
56 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
57 [LOOPBACK_GPHY] = "GPHY",
58 [LOOPBACK_PHYXS] = "PHYXS",
9c636baf
BH
59 [LOOPBACK_PCS] = "PCS",
60 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
61 [LOOPBACK_XPORT] = "XPORT",
62 [LOOPBACK_XGMII_WS] = "XGMII_WS",
9c636baf 63 [LOOPBACK_XAUI_WS] = "XAUI_WS",
e58f69f4
BH
64 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
65 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
9c636baf 66 [LOOPBACK_GMII_WS] = "GMII_WS",
e58f69f4
BH
67 [LOOPBACK_XFI_WS] = "XFI_WS",
68 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
9c636baf 69 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
70};
71
c459302d 72const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
18e83e4c 73const char *const efx_reset_type_names[] = {
c459302d
BH
74 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
75 [RESET_TYPE_ALL] = "ALL",
76 [RESET_TYPE_WORLD] = "WORLD",
77 [RESET_TYPE_DISABLE] = "DISABLE",
78 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
79 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
80 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
81 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
82 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
83 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 84 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
85};
86
8ceee660
BH
87#define EFX_MAX_MTU (9 * 1024)
88
1ab00629
SH
89/* Reset workqueue. If any NIC has a hardware failure then a reset will be
90 * queued onto this work queue. This is not a per-nic work queue, because
91 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
92 */
93static struct workqueue_struct *reset_workqueue;
94
8ceee660
BH
95/**************************************************************************
96 *
97 * Configurable values
98 *
99 *************************************************************************/
100
8ceee660
BH
101/*
102 * Use separate channels for TX and RX events
103 *
28b581ab
NT
104 * Set this to 1 to use separate channels for TX and RX. It allows us
105 * to control interrupt affinity separately for TX and RX.
8ceee660 106 *
28b581ab 107 * This is only used in MSI-X interrupt mode
8ceee660 108 */
28b581ab 109static unsigned int separate_tx_channels;
8313aca3 110module_param(separate_tx_channels, uint, 0444);
28b581ab
NT
111MODULE_PARM_DESC(separate_tx_channels,
112 "Use separate channels for TX and RX");
8ceee660
BH
113
114/* This is the weight assigned to each of the (per-channel) virtual
115 * NAPI devices.
116 */
117static int napi_weight = 64;
118
119/* This is the time (in jiffies) between invocations of the hardware
e254c274
BH
120 * monitor. On Falcon-based NICs, this will:
121 * - Check the on-board hardware monitor;
122 * - Poll the link state and reconfigure the hardware as necessary.
8ceee660 123 */
d215697f 124static unsigned int efx_monitor_interval = 1 * HZ;
8ceee660 125
8ceee660
BH
126/* Initial interrupt moderation settings. They can be modified after
127 * module load with ethtool.
128 *
129 * The default for RX should strike a balance between increasing the
130 * round-trip latency and reducing overhead.
131 */
132static unsigned int rx_irq_mod_usec = 60;
133
134/* Initial interrupt moderation settings. They can be modified after
135 * module load with ethtool.
136 *
137 * This default is chosen to ensure that a 10G link does not go idle
138 * while a TX queue is stopped after it has become full. A queue is
139 * restarted when it drops below half full. The time this takes (assuming
140 * worst case 3 descriptors per packet and 1024 descriptors) is
141 * 512 / 3 * 1.2 = 205 usec.
142 */
143static unsigned int tx_irq_mod_usec = 150;
144
145/* This is the first interrupt mode to try out of:
146 * 0 => MSI-X
147 * 1 => MSI
148 * 2 => legacy
149 */
150static unsigned int interrupt_mode;
151
152/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
153 * i.e. the number of CPUs among which we may distribute simultaneous
154 * interrupt handling.
155 *
156 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
cdb08f8f 157 * The default (0) means to assign an interrupt to each core.
8ceee660
BH
158 */
159static unsigned int rss_cpus;
160module_param(rss_cpus, uint, 0444);
161MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
162
84ae48fe
BH
163static int phy_flash_cfg;
164module_param(phy_flash_cfg, int, 0644);
165MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
166
e7bed9c8 167static unsigned irq_adapt_low_thresh = 8000;
6fb70fd1
BH
168module_param(irq_adapt_low_thresh, uint, 0644);
169MODULE_PARM_DESC(irq_adapt_low_thresh,
170 "Threshold score for reducing IRQ moderation");
171
e7bed9c8 172static unsigned irq_adapt_high_thresh = 16000;
6fb70fd1
BH
173module_param(irq_adapt_high_thresh, uint, 0644);
174MODULE_PARM_DESC(irq_adapt_high_thresh,
175 "Threshold score for increasing IRQ moderation");
176
62776d03
BH
177static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
178 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
179 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
180 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
181module_param(debug, uint, 0);
182MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
183
8ceee660
BH
184/**************************************************************************
185 *
186 * Utility functions and prototypes
187 *
188 *************************************************************************/
4642610c 189
7f967c01
BH
190static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
191static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
192static void efx_remove_channel(struct efx_channel *channel);
4642610c 193static void efx_remove_channels(struct efx_nic *efx);
7f967c01 194static const struct efx_channel_type efx_default_channel_type;
8ceee660 195static void efx_remove_port(struct efx_nic *efx);
7f967c01 196static void efx_init_napi_channel(struct efx_channel *channel);
8ceee660 197static void efx_fini_napi(struct efx_nic *efx);
e8f14992 198static void efx_fini_napi_channel(struct efx_channel *channel);
4642610c
BH
199static void efx_fini_struct(struct efx_nic *efx);
200static void efx_start_all(struct efx_nic *efx);
201static void efx_stop_all(struct efx_nic *efx);
8ceee660
BH
202
203#define EFX_ASSERT_RESET_SERIALISED(efx) \
204 do { \
332c1ce9
BH
205 if ((efx->state == STATE_RUNNING) || \
206 (efx->state == STATE_DISABLED)) \
8ceee660
BH
207 ASSERT_RTNL(); \
208 } while (0)
209
210/**************************************************************************
211 *
212 * Event queue processing
213 *
214 *************************************************************************/
215
216/* Process channel's event queue
217 *
218 * This function is responsible for processing the event queue of a
219 * single channel. The caller must guarantee that this function will
220 * never be concurrently called more than once on the same channel,
221 * though different channels may be being processed concurrently.
222 */
fa236e18 223static int efx_process_channel(struct efx_channel *channel, int budget)
8ceee660 224{
fa236e18 225 int spent;
8ceee660 226
9f2cb71c 227 if (unlikely(!channel->enabled))
42cbe2d7 228 return 0;
8ceee660 229
fa236e18 230 spent = efx_nic_process_eventq(channel, budget);
d9ab7007
BH
231 if (spent && efx_channel_has_rx_queue(channel)) {
232 struct efx_rx_queue *rx_queue =
233 efx_channel_get_rx_queue(channel);
234
235 /* Deliver last RX packet. */
236 if (channel->rx_pkt) {
237 __efx_rx_packet(channel, channel->rx_pkt);
238 channel->rx_pkt = NULL;
239 }
9f2cb71c
BH
240 if (rx_queue->enabled) {
241 efx_rx_strategy(channel);
242 efx_fast_push_rx_descriptors(rx_queue);
243 }
8ceee660
BH
244 }
245
fa236e18 246 return spent;
8ceee660
BH
247}
248
249/* Mark channel as finished processing
250 *
251 * Note that since we will not receive further interrupts for this
252 * channel before we finish processing and call the eventq_read_ack()
253 * method, there is no need to use the interrupt hold-off timers.
254 */
255static inline void efx_channel_processed(struct efx_channel *channel)
256{
5b9e207c
BH
257 /* The interrupt handler for this channel may set work_pending
258 * as soon as we acknowledge the events we've seen. Make sure
259 * it's cleared before then. */
dc8cfa55 260 channel->work_pending = false;
5b9e207c
BH
261 smp_wmb();
262
152b6a62 263 efx_nic_eventq_read_ack(channel);
8ceee660
BH
264}
265
266/* NAPI poll handler
267 *
268 * NAPI guarantees serialisation of polls of the same device, which
269 * provides the guarantee required by efx_process_channel().
270 */
271static int efx_poll(struct napi_struct *napi, int budget)
272{
273 struct efx_channel *channel =
274 container_of(napi, struct efx_channel, napi_str);
62776d03 275 struct efx_nic *efx = channel->efx;
fa236e18 276 int spent;
8ceee660 277
62776d03
BH
278 netif_vdbg(efx, intr, efx->net_dev,
279 "channel %d NAPI poll executing on CPU %d\n",
280 channel->channel, raw_smp_processor_id());
8ceee660 281
fa236e18 282 spent = efx_process_channel(channel, budget);
8ceee660 283
fa236e18 284 if (spent < budget) {
9d9a6973 285 if (efx_channel_has_rx_queue(channel) &&
6fb70fd1
BH
286 efx->irq_rx_adaptive &&
287 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
288 if (unlikely(channel->irq_mod_score <
289 irq_adapt_low_thresh)) {
0d86ebd8
BH
290 if (channel->irq_moderation > 1) {
291 channel->irq_moderation -= 1;
ef2b90ee 292 efx->type->push_irq_moderation(channel);
0d86ebd8 293 }
6fb70fd1
BH
294 } else if (unlikely(channel->irq_mod_score >
295 irq_adapt_high_thresh)) {
0d86ebd8
BH
296 if (channel->irq_moderation <
297 efx->irq_rx_moderation) {
298 channel->irq_moderation += 1;
ef2b90ee 299 efx->type->push_irq_moderation(channel);
0d86ebd8 300 }
6fb70fd1 301 }
6fb70fd1
BH
302 channel->irq_count = 0;
303 channel->irq_mod_score = 0;
304 }
305
64d8ad6d
BH
306 efx_filter_rfs_expire(channel);
307
8ceee660 308 /* There is no race here; although napi_disable() will
288379f0 309 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
310 * since efx_channel_processed() will have no effect if
311 * interrupts have already been disabled.
312 */
288379f0 313 napi_complete(napi);
8ceee660
BH
314 efx_channel_processed(channel);
315 }
316
fa236e18 317 return spent;
8ceee660
BH
318}
319
320/* Process the eventq of the specified channel immediately on this CPU
321 *
322 * Disable hardware generated interrupts, wait for any existing
323 * processing to finish, then directly poll (and ack ) the eventq.
324 * Finally reenable NAPI and interrupts.
325 *
d4fabcc8
BH
326 * This is for use only during a loopback self-test. It must not
327 * deliver any packets up the stack as this can result in deadlock.
8ceee660
BH
328 */
329void efx_process_channel_now(struct efx_channel *channel)
330{
331 struct efx_nic *efx = channel->efx;
332
8313aca3 333 BUG_ON(channel->channel >= efx->n_channels);
8ceee660 334 BUG_ON(!channel->enabled);
d4fabcc8 335 BUG_ON(!efx->loopback_selftest);
8ceee660
BH
336
337 /* Disable interrupts and wait for ISRs to complete */
152b6a62 338 efx_nic_disable_interrupts(efx);
94dec6a2 339 if (efx->legacy_irq) {
8ceee660 340 synchronize_irq(efx->legacy_irq);
94dec6a2
BH
341 efx->legacy_irq_enabled = false;
342 }
64ee3120 343 if (channel->irq)
8ceee660
BH
344 synchronize_irq(channel->irq);
345
346 /* Wait for any NAPI processing to complete */
347 napi_disable(&channel->napi_str);
348
349 /* Poll the channel */
ecc910f5 350 efx_process_channel(channel, channel->eventq_mask + 1);
8ceee660
BH
351
352 /* Ack the eventq. This may cause an interrupt to be generated
353 * when they are reenabled */
354 efx_channel_processed(channel);
355
356 napi_enable(&channel->napi_str);
94dec6a2
BH
357 if (efx->legacy_irq)
358 efx->legacy_irq_enabled = true;
152b6a62 359 efx_nic_enable_interrupts(efx);
8ceee660
BH
360}
361
362/* Create event queue
363 * Event queue memory allocations are done only once. If the channel
364 * is reset, the memory buffer will be reused; this guards against
365 * errors during channel reset and also simplifies interrupt handling.
366 */
367static int efx_probe_eventq(struct efx_channel *channel)
368{
ecc910f5
SH
369 struct efx_nic *efx = channel->efx;
370 unsigned long entries;
371
86ee5302 372 netif_dbg(efx, probe, efx->net_dev,
62776d03 373 "chan %d create event queue\n", channel->channel);
8ceee660 374
ecc910f5
SH
375 /* Build an event queue with room for one event per tx and rx buffer,
376 * plus some extra for link state events and MCDI completions. */
377 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
378 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
379 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
380
152b6a62 381 return efx_nic_probe_eventq(channel);
8ceee660
BH
382}
383
384/* Prepare channel's event queue */
bc3c90a2 385static void efx_init_eventq(struct efx_channel *channel)
8ceee660 386{
62776d03
BH
387 netif_dbg(channel->efx, drv, channel->efx->net_dev,
388 "chan %d init event queue\n", channel->channel);
8ceee660
BH
389
390 channel->eventq_read_ptr = 0;
391
152b6a62 392 efx_nic_init_eventq(channel);
8ceee660
BH
393}
394
9f2cb71c
BH
395/* Enable event queue processing and NAPI */
396static void efx_start_eventq(struct efx_channel *channel)
397{
398 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
399 "chan %d start event queue\n", channel->channel);
400
401 /* The interrupt handler for this channel may set work_pending
402 * as soon as we enable it. Make sure it's cleared before
403 * then. Similarly, make sure it sees the enabled flag set.
404 */
405 channel->work_pending = false;
406 channel->enabled = true;
407 smp_wmb();
408
409 napi_enable(&channel->napi_str);
410 efx_nic_eventq_read_ack(channel);
411}
412
413/* Disable event queue processing and NAPI */
414static void efx_stop_eventq(struct efx_channel *channel)
415{
416 if (!channel->enabled)
417 return;
418
419 napi_disable(&channel->napi_str);
420 channel->enabled = false;
421}
422
8ceee660
BH
423static void efx_fini_eventq(struct efx_channel *channel)
424{
62776d03
BH
425 netif_dbg(channel->efx, drv, channel->efx->net_dev,
426 "chan %d fini event queue\n", channel->channel);
8ceee660 427
152b6a62 428 efx_nic_fini_eventq(channel);
8ceee660
BH
429}
430
431static void efx_remove_eventq(struct efx_channel *channel)
432{
62776d03
BH
433 netif_dbg(channel->efx, drv, channel->efx->net_dev,
434 "chan %d remove event queue\n", channel->channel);
8ceee660 435
152b6a62 436 efx_nic_remove_eventq(channel);
8ceee660
BH
437}
438
439/**************************************************************************
440 *
441 * Channel handling
442 *
443 *************************************************************************/
444
7f967c01 445/* Allocate and initialise a channel structure. */
4642610c
BH
446static struct efx_channel *
447efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
448{
449 struct efx_channel *channel;
450 struct efx_rx_queue *rx_queue;
451 struct efx_tx_queue *tx_queue;
452 int j;
453
7f967c01
BH
454 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
455 if (!channel)
456 return NULL;
4642610c 457
7f967c01
BH
458 channel->efx = efx;
459 channel->channel = i;
460 channel->type = &efx_default_channel_type;
4642610c 461
7f967c01
BH
462 for (j = 0; j < EFX_TXQ_TYPES; j++) {
463 tx_queue = &channel->tx_queue[j];
464 tx_queue->efx = efx;
465 tx_queue->queue = i * EFX_TXQ_TYPES + j;
466 tx_queue->channel = channel;
467 }
4642610c 468
7f967c01
BH
469 rx_queue = &channel->rx_queue;
470 rx_queue->efx = efx;
471 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
472 (unsigned long)rx_queue);
4642610c 473
7f967c01
BH
474 return channel;
475}
476
477/* Allocate and initialise a channel structure, copying parameters
478 * (but not resources) from an old channel structure.
479 */
480static struct efx_channel *
481efx_copy_channel(const struct efx_channel *old_channel)
482{
483 struct efx_channel *channel;
484 struct efx_rx_queue *rx_queue;
485 struct efx_tx_queue *tx_queue;
486 int j;
4642610c 487
7f967c01
BH
488 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
489 if (!channel)
490 return NULL;
491
492 *channel = *old_channel;
493
494 channel->napi_dev = NULL;
495 memset(&channel->eventq, 0, sizeof(channel->eventq));
4642610c 496
7f967c01
BH
497 for (j = 0; j < EFX_TXQ_TYPES; j++) {
498 tx_queue = &channel->tx_queue[j];
499 if (tx_queue->channel)
4642610c 500 tx_queue->channel = channel;
7f967c01
BH
501 tx_queue->buffer = NULL;
502 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
4642610c
BH
503 }
504
4642610c 505 rx_queue = &channel->rx_queue;
7f967c01
BH
506 rx_queue->buffer = NULL;
507 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
4642610c
BH
508 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
509 (unsigned long)rx_queue);
510
511 return channel;
512}
513
8ceee660
BH
514static int efx_probe_channel(struct efx_channel *channel)
515{
516 struct efx_tx_queue *tx_queue;
517 struct efx_rx_queue *rx_queue;
518 int rc;
519
62776d03
BH
520 netif_dbg(channel->efx, probe, channel->efx->net_dev,
521 "creating channel %d\n", channel->channel);
8ceee660 522
7f967c01
BH
523 rc = channel->type->pre_probe(channel);
524 if (rc)
525 goto fail;
526
8ceee660
BH
527 rc = efx_probe_eventq(channel);
528 if (rc)
7f967c01 529 goto fail;
8ceee660
BH
530
531 efx_for_each_channel_tx_queue(tx_queue, channel) {
532 rc = efx_probe_tx_queue(tx_queue);
533 if (rc)
7f967c01 534 goto fail;
8ceee660
BH
535 }
536
537 efx_for_each_channel_rx_queue(rx_queue, channel) {
538 rc = efx_probe_rx_queue(rx_queue);
539 if (rc)
7f967c01 540 goto fail;
8ceee660
BH
541 }
542
543 channel->n_rx_frm_trunc = 0;
544
545 return 0;
546
7f967c01
BH
547fail:
548 efx_remove_channel(channel);
8ceee660
BH
549 return rc;
550}
551
7f967c01
BH
552static void
553efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
554{
555 struct efx_nic *efx = channel->efx;
556 const char *type;
557 int number;
558
559 number = channel->channel;
560 if (efx->tx_channel_offset == 0) {
561 type = "";
562 } else if (channel->channel < efx->tx_channel_offset) {
563 type = "-rx";
564 } else {
565 type = "-tx";
566 number -= efx->tx_channel_offset;
567 }
568 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
569}
8ceee660 570
56536e9c
BH
571static void efx_set_channel_names(struct efx_nic *efx)
572{
573 struct efx_channel *channel;
56536e9c 574
7f967c01
BH
575 efx_for_each_channel(channel, efx)
576 channel->type->get_name(channel,
577 efx->channel_name[channel->channel],
578 sizeof(efx->channel_name[0]));
56536e9c
BH
579}
580
4642610c
BH
581static int efx_probe_channels(struct efx_nic *efx)
582{
583 struct efx_channel *channel;
584 int rc;
585
586 /* Restart special buffer allocation */
587 efx->next_buffer_table = 0;
588
c92aaff1
BH
589 /* Probe channels in reverse, so that any 'extra' channels
590 * use the start of the buffer table. This allows the traffic
591 * channels to be resized without moving them or wasting the
592 * entries before them.
593 */
594 efx_for_each_channel_rev(channel, efx) {
4642610c
BH
595 rc = efx_probe_channel(channel);
596 if (rc) {
597 netif_err(efx, probe, efx->net_dev,
598 "failed to create channel %d\n",
599 channel->channel);
600 goto fail;
601 }
602 }
603 efx_set_channel_names(efx);
604
605 return 0;
606
607fail:
608 efx_remove_channels(efx);
609 return rc;
610}
611
8ceee660
BH
612/* Channels are shutdown and reinitialised whilst the NIC is running
613 * to propagate configuration changes (mtu, checksum offload), or
614 * to clear hardware error conditions
615 */
9f2cb71c 616static void efx_start_datapath(struct efx_nic *efx)
8ceee660
BH
617{
618 struct efx_tx_queue *tx_queue;
619 struct efx_rx_queue *rx_queue;
620 struct efx_channel *channel;
8ceee660 621
f7f13b0b
BH
622 /* Calculate the rx buffer allocation parameters required to
623 * support the current MTU, including padding for header
624 * alignment and overruns.
625 */
626 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
627 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
39c9cf07 628 efx->type->rx_buffer_hash_size +
f7f13b0b 629 efx->type->rx_buffer_padding);
62b330ba
SH
630 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
631 sizeof(struct efx_rx_page_state));
8ceee660
BH
632
633 /* Initialise the channels */
634 efx_for_each_channel(channel, efx) {
bc3c90a2
BH
635 efx_for_each_channel_tx_queue(tx_queue, channel)
636 efx_init_tx_queue(tx_queue);
8ceee660
BH
637
638 /* The rx buffer allocation strategy is MTU dependent */
639 efx_rx_strategy(channel);
640
9f2cb71c 641 efx_for_each_channel_rx_queue(rx_queue, channel) {
bc3c90a2 642 efx_init_rx_queue(rx_queue);
9f2cb71c
BH
643 efx_nic_generate_fill_event(rx_queue);
644 }
8ceee660
BH
645
646 WARN_ON(channel->rx_pkt != NULL);
647 efx_rx_strategy(channel);
648 }
8ceee660 649
9f2cb71c
BH
650 if (netif_device_present(efx->net_dev))
651 netif_tx_wake_all_queues(efx->net_dev);
8ceee660
BH
652}
653
9f2cb71c 654static void efx_stop_datapath(struct efx_nic *efx)
8ceee660
BH
655{
656 struct efx_channel *channel;
657 struct efx_tx_queue *tx_queue;
658 struct efx_rx_queue *rx_queue;
6bc5d3a9 659 int rc;
8ceee660
BH
660
661 EFX_ASSERT_RESET_SERIALISED(efx);
662 BUG_ON(efx->port_enabled);
663
152b6a62 664 rc = efx_nic_flush_queues(efx);
fd371e32
SH
665 if (rc && EFX_WORKAROUND_7803(efx)) {
666 /* Schedule a reset to recover from the flush failure. The
667 * descriptor caches reference memory we're about to free,
668 * but falcon_reconfigure_mac_wrapper() won't reconnect
669 * the MACs because of the pending reset. */
62776d03
BH
670 netif_err(efx, drv, efx->net_dev,
671 "Resetting to recover from flush failure\n");
fd371e32
SH
672 efx_schedule_reset(efx, RESET_TYPE_ALL);
673 } else if (rc) {
62776d03 674 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
fd371e32 675 } else {
62776d03
BH
676 netif_dbg(efx, drv, efx->net_dev,
677 "successfully flushed all queues\n");
fd371e32 678 }
6bc5d3a9 679
8ceee660 680 efx_for_each_channel(channel, efx) {
9f2cb71c
BH
681 /* RX packet processing is pipelined, so wait for the
682 * NAPI handler to complete. At least event queue 0
683 * might be kept active by non-data events, so don't
684 * use napi_synchronize() but actually disable NAPI
685 * temporarily.
686 */
687 if (efx_channel_has_rx_queue(channel)) {
688 efx_stop_eventq(channel);
689 efx_start_eventq(channel);
690 }
8ceee660
BH
691
692 efx_for_each_channel_rx_queue(rx_queue, channel)
693 efx_fini_rx_queue(rx_queue);
94b274bf 694 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660 695 efx_fini_tx_queue(tx_queue);
8ceee660
BH
696 }
697}
698
699static void efx_remove_channel(struct efx_channel *channel)
700{
701 struct efx_tx_queue *tx_queue;
702 struct efx_rx_queue *rx_queue;
703
62776d03
BH
704 netif_dbg(channel->efx, drv, channel->efx->net_dev,
705 "destroy chan %d\n", channel->channel);
8ceee660
BH
706
707 efx_for_each_channel_rx_queue(rx_queue, channel)
708 efx_remove_rx_queue(rx_queue);
94b274bf 709 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
8ceee660
BH
710 efx_remove_tx_queue(tx_queue);
711 efx_remove_eventq(channel);
8ceee660
BH
712}
713
4642610c
BH
714static void efx_remove_channels(struct efx_nic *efx)
715{
716 struct efx_channel *channel;
717
718 efx_for_each_channel(channel, efx)
719 efx_remove_channel(channel);
720}
721
722int
723efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
724{
725 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
726 u32 old_rxq_entries, old_txq_entries;
7f967c01
BH
727 unsigned i, next_buffer_table = 0;
728 int rc = 0;
729
730 /* Not all channels should be reallocated. We must avoid
731 * reallocating their buffer table entries.
732 */
733 efx_for_each_channel(channel, efx) {
734 struct efx_rx_queue *rx_queue;
735 struct efx_tx_queue *tx_queue;
736
737 if (channel->type->copy)
738 continue;
739 next_buffer_table = max(next_buffer_table,
740 channel->eventq.index +
741 channel->eventq.entries);
742 efx_for_each_channel_rx_queue(rx_queue, channel)
743 next_buffer_table = max(next_buffer_table,
744 rx_queue->rxd.index +
745 rx_queue->rxd.entries);
746 efx_for_each_channel_tx_queue(tx_queue, channel)
747 next_buffer_table = max(next_buffer_table,
748 tx_queue->txd.index +
749 tx_queue->txd.entries);
750 }
4642610c
BH
751
752 efx_stop_all(efx);
7f967c01 753 efx_stop_interrupts(efx, true);
4642610c 754
7f967c01 755 /* Clone channels (where possible) */
4642610c
BH
756 memset(other_channel, 0, sizeof(other_channel));
757 for (i = 0; i < efx->n_channels; i++) {
7f967c01
BH
758 channel = efx->channel[i];
759 if (channel->type->copy)
760 channel = channel->type->copy(channel);
4642610c
BH
761 if (!channel) {
762 rc = -ENOMEM;
763 goto out;
764 }
765 other_channel[i] = channel;
766 }
767
768 /* Swap entry counts and channel pointers */
769 old_rxq_entries = efx->rxq_entries;
770 old_txq_entries = efx->txq_entries;
771 efx->rxq_entries = rxq_entries;
772 efx->txq_entries = txq_entries;
773 for (i = 0; i < efx->n_channels; i++) {
774 channel = efx->channel[i];
775 efx->channel[i] = other_channel[i];
776 other_channel[i] = channel;
777 }
778
7f967c01
BH
779 /* Restart buffer table allocation */
780 efx->next_buffer_table = next_buffer_table;
e8f14992 781
e8f14992 782 for (i = 0; i < efx->n_channels; i++) {
7f967c01
BH
783 channel = efx->channel[i];
784 if (!channel->type->copy)
785 continue;
786 rc = efx_probe_channel(channel);
787 if (rc)
788 goto rollback;
789 efx_init_napi_channel(efx->channel[i]);
e8f14992 790 }
7f967c01 791
4642610c 792out:
7f967c01
BH
793 /* Destroy unused channel structures */
794 for (i = 0; i < efx->n_channels; i++) {
795 channel = other_channel[i];
796 if (channel && channel->type->copy) {
797 efx_fini_napi_channel(channel);
798 efx_remove_channel(channel);
799 kfree(channel);
800 }
801 }
4642610c 802
7f967c01 803 efx_start_interrupts(efx, true);
4642610c
BH
804 efx_start_all(efx);
805 return rc;
806
807rollback:
808 /* Swap back */
809 efx->rxq_entries = old_rxq_entries;
810 efx->txq_entries = old_txq_entries;
811 for (i = 0; i < efx->n_channels; i++) {
812 channel = efx->channel[i];
813 efx->channel[i] = other_channel[i];
814 other_channel[i] = channel;
815 }
816 goto out;
817}
818
90d683af 819void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
8ceee660 820{
90d683af 821 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
8ceee660
BH
822}
823
7f967c01
BH
824static const struct efx_channel_type efx_default_channel_type = {
825 .pre_probe = efx_channel_dummy_op_int,
826 .get_name = efx_get_channel_name,
827 .copy = efx_copy_channel,
828 .keep_eventq = false,
829};
830
831int efx_channel_dummy_op_int(struct efx_channel *channel)
832{
833 return 0;
834}
835
8ceee660
BH
836/**************************************************************************
837 *
838 * Port handling
839 *
840 **************************************************************************/
841
842/* This ensures that the kernel is kept informed (via
843 * netif_carrier_on/off) of the link status, and also maintains the
844 * link status's stop on the port's TX queue.
845 */
fdaa9aed 846void efx_link_status_changed(struct efx_nic *efx)
8ceee660 847{
eb50c0d6
BH
848 struct efx_link_state *link_state = &efx->link_state;
849
8ceee660
BH
850 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
851 * that no events are triggered between unregister_netdev() and the
852 * driver unloading. A more general condition is that NETDEV_CHANGE
853 * can only be generated between NETDEV_UP and NETDEV_DOWN */
854 if (!netif_running(efx->net_dev))
855 return;
856
eb50c0d6 857 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
858 efx->n_link_state_changes++;
859
eb50c0d6 860 if (link_state->up)
8ceee660
BH
861 netif_carrier_on(efx->net_dev);
862 else
863 netif_carrier_off(efx->net_dev);
864 }
865
866 /* Status message for kernel log */
2aa9ef11 867 if (link_state->up)
62776d03
BH
868 netif_info(efx, link, efx->net_dev,
869 "link up at %uMbps %s-duplex (MTU %d)%s\n",
870 link_state->speed, link_state->fd ? "full" : "half",
871 efx->net_dev->mtu,
872 (efx->promiscuous ? " [PROMISC]" : ""));
2aa9ef11 873 else
62776d03 874 netif_info(efx, link, efx->net_dev, "link down\n");
8ceee660
BH
875}
876
d3245b28
BH
877void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
878{
879 efx->link_advertising = advertising;
880 if (advertising) {
881 if (advertising & ADVERTISED_Pause)
882 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
883 else
884 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
885 if (advertising & ADVERTISED_Asym_Pause)
886 efx->wanted_fc ^= EFX_FC_TX;
887 }
888}
889
b5626946 890void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
d3245b28
BH
891{
892 efx->wanted_fc = wanted_fc;
893 if (efx->link_advertising) {
894 if (wanted_fc & EFX_FC_RX)
895 efx->link_advertising |= (ADVERTISED_Pause |
896 ADVERTISED_Asym_Pause);
897 else
898 efx->link_advertising &= ~(ADVERTISED_Pause |
899 ADVERTISED_Asym_Pause);
900 if (wanted_fc & EFX_FC_TX)
901 efx->link_advertising ^= ADVERTISED_Asym_Pause;
902 }
903}
904
115122af
BH
905static void efx_fini_port(struct efx_nic *efx);
906
d3245b28
BH
907/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
908 * the MAC appropriately. All other PHY configuration changes are pushed
909 * through phy_op->set_settings(), and pushed asynchronously to the MAC
910 * through efx_monitor().
911 *
912 * Callers must hold the mac_lock
913 */
914int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 915{
d3245b28
BH
916 enum efx_phy_mode phy_mode;
917 int rc;
8ceee660 918
d3245b28 919 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 920
0fca8c97 921 /* Serialise the promiscuous flag with efx_set_rx_mode. */
73ba7b68
BH
922 netif_addr_lock_bh(efx->net_dev);
923 netif_addr_unlock_bh(efx->net_dev);
a816f75a 924
d3245b28
BH
925 /* Disable PHY transmit in mac level loopbacks */
926 phy_mode = efx->phy_mode;
177dfcd8
BH
927 if (LOOPBACK_INTERNAL(efx))
928 efx->phy_mode |= PHY_MODE_TX_DISABLED;
929 else
930 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 931
d3245b28 932 rc = efx->type->reconfigure_port(efx);
8ceee660 933
d3245b28
BH
934 if (rc)
935 efx->phy_mode = phy_mode;
177dfcd8 936
d3245b28 937 return rc;
8ceee660
BH
938}
939
940/* Reinitialise the MAC to pick up new PHY settings, even if the port is
941 * disabled. */
d3245b28 942int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 943{
d3245b28
BH
944 int rc;
945
8ceee660
BH
946 EFX_ASSERT_RESET_SERIALISED(efx);
947
948 mutex_lock(&efx->mac_lock);
d3245b28 949 rc = __efx_reconfigure_port(efx);
8ceee660 950 mutex_unlock(&efx->mac_lock);
d3245b28
BH
951
952 return rc;
8ceee660
BH
953}
954
8be4f3e6
BH
955/* Asynchronous work item for changing MAC promiscuity and multicast
956 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
957 * MAC directly. */
766ca0fa
BH
958static void efx_mac_work(struct work_struct *data)
959{
960 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
961
962 mutex_lock(&efx->mac_lock);
30b81cda 963 if (efx->port_enabled)
710b208d 964 efx->type->reconfigure_mac(efx);
766ca0fa
BH
965 mutex_unlock(&efx->mac_lock);
966}
967
8ceee660
BH
968static int efx_probe_port(struct efx_nic *efx)
969{
970 int rc;
971
62776d03 972 netif_dbg(efx, probe, efx->net_dev, "create port\n");
8ceee660 973
ff3b00a0
SH
974 if (phy_flash_cfg)
975 efx->phy_mode = PHY_MODE_SPECIAL;
976
ef2b90ee
BH
977 /* Connect up MAC/PHY operations table */
978 rc = efx->type->probe_port(efx);
8ceee660 979 if (rc)
e42de262 980 return rc;
8ceee660 981
e332bcb3
BH
982 /* Initialise MAC address to permanent address */
983 memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
8ceee660
BH
984
985 return 0;
8ceee660
BH
986}
987
988static int efx_init_port(struct efx_nic *efx)
989{
990 int rc;
991
62776d03 992 netif_dbg(efx, drv, efx->net_dev, "init port\n");
8ceee660 993
1dfc5cea
BH
994 mutex_lock(&efx->mac_lock);
995
177dfcd8 996 rc = efx->phy_op->init(efx);
8ceee660 997 if (rc)
1dfc5cea 998 goto fail1;
8ceee660 999
dc8cfa55 1000 efx->port_initialized = true;
1dfc5cea 1001
d3245b28
BH
1002 /* Reconfigure the MAC before creating dma queues (required for
1003 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
710b208d 1004 efx->type->reconfigure_mac(efx);
d3245b28
BH
1005
1006 /* Ensure the PHY advertises the correct flow control settings */
1007 rc = efx->phy_op->reconfigure(efx);
1008 if (rc)
1009 goto fail2;
1010
1dfc5cea 1011 mutex_unlock(&efx->mac_lock);
8ceee660 1012 return 0;
177dfcd8 1013
1dfc5cea 1014fail2:
177dfcd8 1015 efx->phy_op->fini(efx);
1dfc5cea
BH
1016fail1:
1017 mutex_unlock(&efx->mac_lock);
177dfcd8 1018 return rc;
8ceee660
BH
1019}
1020
8ceee660
BH
1021static void efx_start_port(struct efx_nic *efx)
1022{
62776d03 1023 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
8ceee660
BH
1024 BUG_ON(efx->port_enabled);
1025
1026 mutex_lock(&efx->mac_lock);
dc8cfa55 1027 efx->port_enabled = true;
8be4f3e6
BH
1028
1029 /* efx_mac_work() might have been scheduled after efx_stop_port(),
1030 * and then cancelled by efx_flush_all() */
710b208d 1031 efx->type->reconfigure_mac(efx);
8be4f3e6 1032
8ceee660
BH
1033 mutex_unlock(&efx->mac_lock);
1034}
1035
fdaa9aed 1036/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
1037static void efx_stop_port(struct efx_nic *efx)
1038{
62776d03 1039 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
8ceee660
BH
1040
1041 mutex_lock(&efx->mac_lock);
dc8cfa55 1042 efx->port_enabled = false;
8ceee660
BH
1043 mutex_unlock(&efx->mac_lock);
1044
1045 /* Serialise against efx_set_multicast_list() */
73ba7b68
BH
1046 netif_addr_lock_bh(efx->net_dev);
1047 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
1048}
1049
1050static void efx_fini_port(struct efx_nic *efx)
1051{
62776d03 1052 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
8ceee660
BH
1053
1054 if (!efx->port_initialized)
1055 return;
1056
177dfcd8 1057 efx->phy_op->fini(efx);
dc8cfa55 1058 efx->port_initialized = false;
8ceee660 1059
eb50c0d6 1060 efx->link_state.up = false;
8ceee660
BH
1061 efx_link_status_changed(efx);
1062}
1063
1064static void efx_remove_port(struct efx_nic *efx)
1065{
62776d03 1066 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
8ceee660 1067
ef2b90ee 1068 efx->type->remove_port(efx);
8ceee660
BH
1069}
1070
1071/**************************************************************************
1072 *
1073 * NIC handling
1074 *
1075 **************************************************************************/
1076
1077/* This configures the PCI device to enable I/O and DMA. */
1078static int efx_init_io(struct efx_nic *efx)
1079{
1080 struct pci_dev *pci_dev = efx->pci_dev;
1081 dma_addr_t dma_mask = efx->type->max_dma_mask;
1082 int rc;
1083
62776d03 1084 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
8ceee660
BH
1085
1086 rc = pci_enable_device(pci_dev);
1087 if (rc) {
62776d03
BH
1088 netif_err(efx, probe, efx->net_dev,
1089 "failed to enable PCI device\n");
8ceee660
BH
1090 goto fail1;
1091 }
1092
1093 pci_set_master(pci_dev);
1094
1095 /* Set the PCI DMA mask. Try all possibilities from our
1096 * genuine mask down to 32 bits, because some architectures
1097 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1098 * masks event though they reject 46 bit masks.
1099 */
1100 while (dma_mask > 0x7fffffffUL) {
e9e01846
BH
1101 if (pci_dma_supported(pci_dev, dma_mask)) {
1102 rc = pci_set_dma_mask(pci_dev, dma_mask);
1103 if (rc == 0)
1104 break;
1105 }
8ceee660
BH
1106 dma_mask >>= 1;
1107 }
1108 if (rc) {
62776d03
BH
1109 netif_err(efx, probe, efx->net_dev,
1110 "could not find a suitable DMA mask\n");
8ceee660
BH
1111 goto fail2;
1112 }
62776d03
BH
1113 netif_dbg(efx, probe, efx->net_dev,
1114 "using DMA mask %llx\n", (unsigned long long) dma_mask);
8ceee660
BH
1115 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1116 if (rc) {
1117 /* pci_set_consistent_dma_mask() is not *allowed* to
1118 * fail with a mask that pci_set_dma_mask() accepted,
1119 * but just in case...
1120 */
62776d03
BH
1121 netif_err(efx, probe, efx->net_dev,
1122 "failed to set consistent DMA mask\n");
8ceee660
BH
1123 goto fail2;
1124 }
1125
dc803df8
BH
1126 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1127 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660 1128 if (rc) {
62776d03
BH
1129 netif_err(efx, probe, efx->net_dev,
1130 "request for memory BAR failed\n");
8ceee660
BH
1131 rc = -EIO;
1132 goto fail3;
1133 }
86c432ca
BH
1134 efx->membase = ioremap_nocache(efx->membase_phys,
1135 efx->type->mem_map_size);
8ceee660 1136 if (!efx->membase) {
62776d03
BH
1137 netif_err(efx, probe, efx->net_dev,
1138 "could not map memory BAR at %llx+%x\n",
1139 (unsigned long long)efx->membase_phys,
1140 efx->type->mem_map_size);
8ceee660
BH
1141 rc = -ENOMEM;
1142 goto fail4;
1143 }
62776d03
BH
1144 netif_dbg(efx, probe, efx->net_dev,
1145 "memory BAR at %llx+%x (virtual %p)\n",
1146 (unsigned long long)efx->membase_phys,
1147 efx->type->mem_map_size, efx->membase);
8ceee660
BH
1148
1149 return 0;
1150
1151 fail4:
dc803df8 1152 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 1153 fail3:
2c118e0f 1154 efx->membase_phys = 0;
8ceee660
BH
1155 fail2:
1156 pci_disable_device(efx->pci_dev);
1157 fail1:
1158 return rc;
1159}
1160
1161static void efx_fini_io(struct efx_nic *efx)
1162{
62776d03 1163 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
8ceee660
BH
1164
1165 if (efx->membase) {
1166 iounmap(efx->membase);
1167 efx->membase = NULL;
1168 }
1169
1170 if (efx->membase_phys) {
dc803df8 1171 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 1172 efx->membase_phys = 0;
8ceee660
BH
1173 }
1174
1175 pci_disable_device(efx->pci_dev);
1176}
1177
a9a52506 1178static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
46123d04 1179{
cdb08f8f 1180 cpumask_var_t thread_mask;
a16e5b24 1181 unsigned int count;
46123d04 1182 int cpu;
5b874e25 1183
cd2d5b52
BH
1184 if (rss_cpus) {
1185 count = rss_cpus;
1186 } else {
1187 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1188 netif_warn(efx, probe, efx->net_dev,
1189 "RSS disabled due to allocation failure\n");
1190 return 1;
1191 }
46123d04 1192
cd2d5b52
BH
1193 count = 0;
1194 for_each_online_cpu(cpu) {
1195 if (!cpumask_test_cpu(cpu, thread_mask)) {
1196 ++count;
1197 cpumask_or(thread_mask, thread_mask,
1198 topology_thread_cpumask(cpu));
1199 }
1200 }
1201
1202 free_cpumask_var(thread_mask);
2f8975fb
RR
1203 }
1204
cd2d5b52
BH
1205 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1206 * table entries that are inaccessible to VFs
1207 */
1208 if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1209 count > efx_vf_size(efx)) {
1210 netif_warn(efx, probe, efx->net_dev,
1211 "Reducing number of RSS channels from %u to %u for "
1212 "VF support. Increase vf-msix-limit to use more "
1213 "channels on the PF.\n",
1214 count, efx_vf_size(efx));
1215 count = efx_vf_size(efx);
46123d04
BH
1216 }
1217
1218 return count;
1219}
1220
64d8ad6d
BH
1221static int
1222efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1223{
1224#ifdef CONFIG_RFS_ACCEL
a16e5b24
BH
1225 unsigned int i;
1226 int rc;
64d8ad6d
BH
1227
1228 efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1229 if (!efx->net_dev->rx_cpu_rmap)
1230 return -ENOMEM;
1231 for (i = 0; i < efx->n_rx_channels; i++) {
1232 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1233 xentries[i].vector);
1234 if (rc) {
1235 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1236 efx->net_dev->rx_cpu_rmap = NULL;
1237 return rc;
1238 }
1239 }
1240#endif
1241 return 0;
1242}
1243
46123d04
BH
1244/* Probe the number and type of interrupts we are able to obtain, and
1245 * the resulting numbers of channels and RX queues.
1246 */
64d8ad6d 1247static int efx_probe_interrupts(struct efx_nic *efx)
8ceee660 1248{
a16e5b24
BH
1249 unsigned int max_channels =
1250 min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
7f967c01
BH
1251 unsigned int extra_channels = 0;
1252 unsigned int i, j;
a16e5b24 1253 int rc;
8ceee660 1254
7f967c01
BH
1255 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1256 if (efx->extra_channel_type[i])
1257 ++extra_channels;
1258
8ceee660 1259 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04 1260 struct msix_entry xentries[EFX_MAX_CHANNELS];
a16e5b24 1261 unsigned int n_channels;
aa6ef27e 1262
a9a52506 1263 n_channels = efx_wanted_parallelism(efx);
a4900ac9
BH
1264 if (separate_tx_channels)
1265 n_channels *= 2;
7f967c01 1266 n_channels += extra_channels;
a4900ac9 1267 n_channels = min(n_channels, max_channels);
8ceee660 1268
a4900ac9 1269 for (i = 0; i < n_channels; i++)
8ceee660 1270 xentries[i].entry = i;
a4900ac9 1271 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
8ceee660 1272 if (rc > 0) {
62776d03
BH
1273 netif_err(efx, drv, efx->net_dev,
1274 "WARNING: Insufficient MSI-X vectors"
a16e5b24 1275 " available (%d < %u).\n", rc, n_channels);
62776d03
BH
1276 netif_err(efx, drv, efx->net_dev,
1277 "WARNING: Performance may be reduced.\n");
a4900ac9
BH
1278 EFX_BUG_ON_PARANOID(rc >= n_channels);
1279 n_channels = rc;
8ceee660 1280 rc = pci_enable_msix(efx->pci_dev, xentries,
a4900ac9 1281 n_channels);
8ceee660
BH
1282 }
1283
1284 if (rc == 0) {
a4900ac9 1285 efx->n_channels = n_channels;
7f967c01
BH
1286 if (n_channels > extra_channels)
1287 n_channels -= extra_channels;
a4900ac9 1288 if (separate_tx_channels) {
7f967c01
BH
1289 efx->n_tx_channels = max(n_channels / 2, 1U);
1290 efx->n_rx_channels = max(n_channels -
1291 efx->n_tx_channels,
1292 1U);
a4900ac9 1293 } else {
7f967c01
BH
1294 efx->n_tx_channels = n_channels;
1295 efx->n_rx_channels = n_channels;
a4900ac9 1296 }
64d8ad6d
BH
1297 rc = efx_init_rx_cpu_rmap(efx, xentries);
1298 if (rc) {
1299 pci_disable_msix(efx->pci_dev);
1300 return rc;
1301 }
7f967c01 1302 for (i = 0; i < efx->n_channels; i++)
f7d12cdc
BH
1303 efx_get_channel(efx, i)->irq =
1304 xentries[i].vector;
8ceee660
BH
1305 } else {
1306 /* Fall back to single channel MSI */
1307 efx->interrupt_mode = EFX_INT_MODE_MSI;
62776d03
BH
1308 netif_err(efx, drv, efx->net_dev,
1309 "could not enable MSI-X\n");
8ceee660
BH
1310 }
1311 }
1312
1313 /* Try single interrupt MSI */
1314 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
28b581ab 1315 efx->n_channels = 1;
a4900ac9
BH
1316 efx->n_rx_channels = 1;
1317 efx->n_tx_channels = 1;
8ceee660
BH
1318 rc = pci_enable_msi(efx->pci_dev);
1319 if (rc == 0) {
f7d12cdc 1320 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
8ceee660 1321 } else {
62776d03
BH
1322 netif_err(efx, drv, efx->net_dev,
1323 "could not enable MSI\n");
8ceee660
BH
1324 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1325 }
1326 }
1327
1328 /* Assume legacy interrupts */
1329 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
28b581ab 1330 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
a4900ac9
BH
1331 efx->n_rx_channels = 1;
1332 efx->n_tx_channels = 1;
8ceee660
BH
1333 efx->legacy_irq = efx->pci_dev->irq;
1334 }
64d8ad6d 1335
7f967c01
BH
1336 /* Assign extra channels if possible */
1337 j = efx->n_channels;
1338 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1339 if (!efx->extra_channel_type[i])
1340 continue;
1341 if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1342 efx->n_channels <= extra_channels) {
1343 efx->extra_channel_type[i]->handle_no_channel(efx);
1344 } else {
1345 --j;
1346 efx_get_channel(efx, j)->type =
1347 efx->extra_channel_type[i];
1348 }
1349 }
1350
cd2d5b52 1351 /* RSS might be usable on VFs even if it is disabled on the PF */
3132d282 1352 efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
cd2d5b52
BH
1353 efx->n_rx_channels : efx_vf_size(efx));
1354
64d8ad6d 1355 return 0;
8ceee660
BH
1356}
1357
9f2cb71c 1358/* Enable interrupts, then probe and start the event queues */
7f967c01 1359static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
9f2cb71c
BH
1360{
1361 struct efx_channel *channel;
1362
1363 if (efx->legacy_irq)
1364 efx->legacy_irq_enabled = true;
1365 efx_nic_enable_interrupts(efx);
1366
1367 efx_for_each_channel(channel, efx) {
7f967c01
BH
1368 if (!channel->type->keep_eventq || !may_keep_eventq)
1369 efx_init_eventq(channel);
9f2cb71c
BH
1370 efx_start_eventq(channel);
1371 }
1372
1373 efx_mcdi_mode_event(efx);
1374}
1375
7f967c01 1376static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
9f2cb71c
BH
1377{
1378 struct efx_channel *channel;
1379
1380 efx_mcdi_mode_poll(efx);
1381
1382 efx_nic_disable_interrupts(efx);
1383 if (efx->legacy_irq) {
1384 synchronize_irq(efx->legacy_irq);
1385 efx->legacy_irq_enabled = false;
1386 }
1387
1388 efx_for_each_channel(channel, efx) {
1389 if (channel->irq)
1390 synchronize_irq(channel->irq);
1391
1392 efx_stop_eventq(channel);
7f967c01
BH
1393 if (!channel->type->keep_eventq || !may_keep_eventq)
1394 efx_fini_eventq(channel);
9f2cb71c
BH
1395 }
1396}
1397
8ceee660
BH
1398static void efx_remove_interrupts(struct efx_nic *efx)
1399{
1400 struct efx_channel *channel;
1401
1402 /* Remove MSI/MSI-X interrupts */
64ee3120 1403 efx_for_each_channel(channel, efx)
8ceee660
BH
1404 channel->irq = 0;
1405 pci_disable_msi(efx->pci_dev);
1406 pci_disable_msix(efx->pci_dev);
1407
1408 /* Remove legacy interrupt */
1409 efx->legacy_irq = 0;
1410}
1411
8831da7b 1412static void efx_set_channels(struct efx_nic *efx)
8ceee660 1413{
602a5322
BH
1414 struct efx_channel *channel;
1415 struct efx_tx_queue *tx_queue;
1416
97653431 1417 efx->tx_channel_offset =
a4900ac9 1418 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
602a5322
BH
1419
1420 /* We need to adjust the TX queue numbers if we have separate
1421 * RX-only and TX-only channels.
1422 */
1423 efx_for_each_channel(channel, efx) {
1424 efx_for_each_channel_tx_queue(tx_queue, channel)
1425 tx_queue->queue -= (efx->tx_channel_offset *
1426 EFX_TXQ_TYPES);
1427 }
8ceee660
BH
1428}
1429
1430static int efx_probe_nic(struct efx_nic *efx)
1431{
765c9f46 1432 size_t i;
8ceee660
BH
1433 int rc;
1434
62776d03 1435 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
8ceee660
BH
1436
1437 /* Carry out hardware-type specific initialisation */
ef2b90ee 1438 rc = efx->type->probe(efx);
8ceee660
BH
1439 if (rc)
1440 return rc;
1441
a4900ac9 1442 /* Determine the number of channels and queues by trying to hook
8ceee660 1443 * in MSI-X interrupts. */
64d8ad6d
BH
1444 rc = efx_probe_interrupts(efx);
1445 if (rc)
1446 goto fail;
8ceee660 1447
28e47c49
BH
1448 efx->type->dimension_resources(efx);
1449
5d3a6fca
BH
1450 if (efx->n_channels > 1)
1451 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
765c9f46 1452 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
278bc429 1453 efx->rx_indir_table[i] =
cd2d5b52 1454 ethtool_rxfh_indir_default(i, efx->rss_spread);
5d3a6fca 1455
8831da7b 1456 efx_set_channels(efx);
c4f4adc7
BH
1457 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1458 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
8ceee660
BH
1459
1460 /* Initialise the interrupt moderation settings */
9e393b30
BH
1461 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1462 true);
8ceee660
BH
1463
1464 return 0;
64d8ad6d
BH
1465
1466fail:
1467 efx->type->remove(efx);
1468 return rc;
8ceee660
BH
1469}
1470
1471static void efx_remove_nic(struct efx_nic *efx)
1472{
62776d03 1473 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
8ceee660
BH
1474
1475 efx_remove_interrupts(efx);
ef2b90ee 1476 efx->type->remove(efx);
8ceee660
BH
1477}
1478
1479/**************************************************************************
1480 *
1481 * NIC startup/shutdown
1482 *
1483 *************************************************************************/
1484
1485static int efx_probe_all(struct efx_nic *efx)
1486{
8ceee660
BH
1487 int rc;
1488
8ceee660
BH
1489 rc = efx_probe_nic(efx);
1490 if (rc) {
62776d03 1491 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
8ceee660
BH
1492 goto fail1;
1493 }
1494
8ceee660
BH
1495 rc = efx_probe_port(efx);
1496 if (rc) {
62776d03 1497 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
8ceee660
BH
1498 goto fail2;
1499 }
1500
ecc910f5 1501 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
8ceee660 1502
64eebcfd
BH
1503 rc = efx_probe_filters(efx);
1504 if (rc) {
1505 netif_err(efx, probe, efx->net_dev,
1506 "failed to create filter tables\n");
7f967c01 1507 goto fail3;
64eebcfd
BH
1508 }
1509
7f967c01
BH
1510 rc = efx_probe_channels(efx);
1511 if (rc)
1512 goto fail4;
1513
8ceee660
BH
1514 return 0;
1515
64eebcfd 1516 fail4:
7f967c01 1517 efx_remove_filters(efx);
8ceee660 1518 fail3:
8ceee660
BH
1519 efx_remove_port(efx);
1520 fail2:
1521 efx_remove_nic(efx);
1522 fail1:
1523 return rc;
1524}
1525
9f2cb71c
BH
1526/* Called after previous invocation(s) of efx_stop_all, restarts the port,
1527 * kernel transmit queues and NAPI processing, and ensures that the port is
1528 * scheduled to be reconfigured. This function is safe to call multiple
1529 * times when the NIC is in any state.
1530 */
8ceee660
BH
1531static void efx_start_all(struct efx_nic *efx)
1532{
8ceee660
BH
1533 EFX_ASSERT_RESET_SERIALISED(efx);
1534
1535 /* Check that it is appropriate to restart the interface. All
1536 * of these flags are safe to read under just the rtnl lock */
1537 if (efx->port_enabled)
1538 return;
1539 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1540 return;
73ba7b68 1541 if (!netif_running(efx->net_dev))
8ceee660
BH
1542 return;
1543
8ceee660 1544 efx_start_port(efx);
9f2cb71c 1545 efx_start_datapath(efx);
8880f4ec 1546
78c1f0a0
SH
1547 /* Start the hardware monitor if there is one. Otherwise (we're link
1548 * event driven), we have to poll the PHY because after an event queue
1549 * flush, we could have a missed a link state change */
1550 if (efx->type->monitor != NULL) {
8ceee660
BH
1551 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1552 efx_monitor_interval);
78c1f0a0
SH
1553 } else {
1554 mutex_lock(&efx->mac_lock);
1555 if (efx->phy_op->poll(efx))
1556 efx_link_status_changed(efx);
1557 mutex_unlock(&efx->mac_lock);
1558 }
55edc6e6 1559
ef2b90ee 1560 efx->type->start_stats(efx);
8ceee660
BH
1561}
1562
1563/* Flush all delayed work. Should only be called when no more delayed work
1564 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1565 * since we're holding the rtnl_lock at this point. */
1566static void efx_flush_all(struct efx_nic *efx)
1567{
dd40781e 1568 /* Make sure the hardware monitor and event self-test are stopped */
8ceee660 1569 cancel_delayed_work_sync(&efx->monitor_work);
dd40781e 1570 efx_selftest_async_cancel(efx);
8ceee660 1571 /* Stop scheduled port reconfigurations */
766ca0fa 1572 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1573}
1574
1575/* Quiesce hardware and software without bringing the link down.
1576 * Safe to call multiple times, when the nic and interface is in any
1577 * state. The caller is guaranteed to subsequently be in a position
1578 * to modify any hardware and software state they see fit without
1579 * taking locks. */
1580static void efx_stop_all(struct efx_nic *efx)
1581{
8ceee660
BH
1582 EFX_ASSERT_RESET_SERIALISED(efx);
1583
1584 /* port_enabled can be read safely under the rtnl lock */
1585 if (!efx->port_enabled)
1586 return;
1587
ef2b90ee 1588 efx->type->stop_stats(efx);
8ceee660
BH
1589 efx_stop_port(efx);
1590
fdaa9aed 1591 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1592 efx_flush_all(efx);
1593
8ceee660
BH
1594 /* Stop the kernel transmit interface late, so the watchdog
1595 * timer isn't ticking over the flush */
9f2cb71c
BH
1596 netif_tx_disable(efx->net_dev);
1597
1598 efx_stop_datapath(efx);
8ceee660
BH
1599}
1600
1601static void efx_remove_all(struct efx_nic *efx)
1602{
4642610c 1603 efx_remove_channels(efx);
7f967c01 1604 efx_remove_filters(efx);
8ceee660
BH
1605 efx_remove_port(efx);
1606 efx_remove_nic(efx);
1607}
1608
8ceee660
BH
1609/**************************************************************************
1610 *
1611 * Interrupt moderation
1612 *
1613 **************************************************************************/
1614
cc180b69 1615static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
0d86ebd8 1616{
b548f976
BH
1617 if (usecs == 0)
1618 return 0;
cc180b69 1619 if (usecs * 1000 < quantum_ns)
0d86ebd8 1620 return 1; /* never round down to 0 */
cc180b69 1621 return usecs * 1000 / quantum_ns;
0d86ebd8
BH
1622}
1623
8ceee660 1624/* Set interrupt moderation parameters */
9e393b30
BH
1625int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1626 unsigned int rx_usecs, bool rx_adaptive,
1627 bool rx_may_override_tx)
8ceee660 1628{
f7d12cdc 1629 struct efx_channel *channel;
cc180b69
BH
1630 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1631 efx->timer_quantum_ns,
1632 1000);
1633 unsigned int tx_ticks;
1634 unsigned int rx_ticks;
8ceee660
BH
1635
1636 EFX_ASSERT_RESET_SERIALISED(efx);
1637
cc180b69 1638 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
9e393b30
BH
1639 return -EINVAL;
1640
cc180b69
BH
1641 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1642 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1643
9e393b30
BH
1644 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1645 !rx_may_override_tx) {
1646 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1647 "RX and TX IRQ moderation must be equal\n");
1648 return -EINVAL;
1649 }
1650
6fb70fd1 1651 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1652 efx->irq_rx_moderation = rx_ticks;
f7d12cdc 1653 efx_for_each_channel(channel, efx) {
525da907 1654 if (efx_channel_has_rx_queue(channel))
f7d12cdc 1655 channel->irq_moderation = rx_ticks;
525da907 1656 else if (efx_channel_has_tx_queues(channel))
f7d12cdc
BH
1657 channel->irq_moderation = tx_ticks;
1658 }
9e393b30
BH
1659
1660 return 0;
8ceee660
BH
1661}
1662
a0c4faf5
BH
1663void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1664 unsigned int *rx_usecs, bool *rx_adaptive)
1665{
cc180b69
BH
1666 /* We must round up when converting ticks to microseconds
1667 * because we round down when converting the other way.
1668 */
1669
a0c4faf5 1670 *rx_adaptive = efx->irq_rx_adaptive;
cc180b69
BH
1671 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1672 efx->timer_quantum_ns,
1673 1000);
a0c4faf5
BH
1674
1675 /* If channels are shared between RX and TX, so is IRQ
1676 * moderation. Otherwise, IRQ moderation is the same for all
1677 * TX channels and is not adaptive.
1678 */
1679 if (efx->tx_channel_offset == 0)
1680 *tx_usecs = *rx_usecs;
1681 else
cc180b69 1682 *tx_usecs = DIV_ROUND_UP(
a0c4faf5 1683 efx->channel[efx->tx_channel_offset]->irq_moderation *
cc180b69
BH
1684 efx->timer_quantum_ns,
1685 1000);
a0c4faf5
BH
1686}
1687
8ceee660
BH
1688/**************************************************************************
1689 *
1690 * Hardware monitor
1691 *
1692 **************************************************************************/
1693
e254c274 1694/* Run periodically off the general workqueue */
8ceee660
BH
1695static void efx_monitor(struct work_struct *data)
1696{
1697 struct efx_nic *efx = container_of(data, struct efx_nic,
1698 monitor_work.work);
8ceee660 1699
62776d03
BH
1700 netif_vdbg(efx, timer, efx->net_dev,
1701 "hardware monitor executing on CPU %d\n",
1702 raw_smp_processor_id());
ef2b90ee 1703 BUG_ON(efx->type->monitor == NULL);
8ceee660 1704
8ceee660
BH
1705 /* If the mac_lock is already held then it is likely a port
1706 * reconfiguration is already in place, which will likely do
e254c274
BH
1707 * most of the work of monitor() anyway. */
1708 if (mutex_trylock(&efx->mac_lock)) {
1709 if (efx->port_enabled)
1710 efx->type->monitor(efx);
1711 mutex_unlock(&efx->mac_lock);
1712 }
8ceee660 1713
8ceee660
BH
1714 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1715 efx_monitor_interval);
1716}
1717
1718/**************************************************************************
1719 *
1720 * ioctls
1721 *
1722 *************************************************************************/
1723
1724/* Net device ioctl
1725 * Context: process, rtnl_lock() held.
1726 */
1727static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1728{
767e468c 1729 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1730 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1731
1732 EFX_ASSERT_RESET_SERIALISED(efx);
1733
68e7f45e
BH
1734 /* Convert phy_id from older PRTAD/DEVAD format */
1735 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1736 (data->phy_id & 0xfc00) == 0x0400)
1737 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1738
1739 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1740}
1741
1742/**************************************************************************
1743 *
1744 * NAPI interface
1745 *
1746 **************************************************************************/
1747
7f967c01
BH
1748static void efx_init_napi_channel(struct efx_channel *channel)
1749{
1750 struct efx_nic *efx = channel->efx;
1751
1752 channel->napi_dev = efx->net_dev;
1753 netif_napi_add(channel->napi_dev, &channel->napi_str,
1754 efx_poll, napi_weight);
1755}
1756
e8f14992 1757static void efx_init_napi(struct efx_nic *efx)
8ceee660
BH
1758{
1759 struct efx_channel *channel;
8ceee660 1760
7f967c01
BH
1761 efx_for_each_channel(channel, efx)
1762 efx_init_napi_channel(channel);
e8f14992
BH
1763}
1764
1765static void efx_fini_napi_channel(struct efx_channel *channel)
1766{
1767 if (channel->napi_dev)
1768 netif_napi_del(&channel->napi_str);
1769 channel->napi_dev = NULL;
8ceee660
BH
1770}
1771
1772static void efx_fini_napi(struct efx_nic *efx)
1773{
1774 struct efx_channel *channel;
1775
e8f14992
BH
1776 efx_for_each_channel(channel, efx)
1777 efx_fini_napi_channel(channel);
8ceee660
BH
1778}
1779
1780/**************************************************************************
1781 *
1782 * Kernel netpoll interface
1783 *
1784 *************************************************************************/
1785
1786#ifdef CONFIG_NET_POLL_CONTROLLER
1787
1788/* Although in the common case interrupts will be disabled, this is not
1789 * guaranteed. However, all our work happens inside the NAPI callback,
1790 * so no locking is required.
1791 */
1792static void efx_netpoll(struct net_device *net_dev)
1793{
767e468c 1794 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1795 struct efx_channel *channel;
1796
64ee3120 1797 efx_for_each_channel(channel, efx)
8ceee660
BH
1798 efx_schedule_channel(channel);
1799}
1800
1801#endif
1802
1803/**************************************************************************
1804 *
1805 * Kernel net device interface
1806 *
1807 *************************************************************************/
1808
1809/* Context: process, rtnl_lock() held. */
1810static int efx_net_open(struct net_device *net_dev)
1811{
767e468c 1812 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1813 EFX_ASSERT_RESET_SERIALISED(efx);
1814
62776d03
BH
1815 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1816 raw_smp_processor_id());
8ceee660 1817
f4bd954e
BH
1818 if (efx->state == STATE_DISABLED)
1819 return -EIO;
f8b87c17
BH
1820 if (efx->phy_mode & PHY_MODE_SPECIAL)
1821 return -EBUSY;
8880f4ec
BH
1822 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1823 return -EIO;
f8b87c17 1824
78c1f0a0
SH
1825 /* Notify the kernel of the link state polled during driver load,
1826 * before the monitor starts running */
1827 efx_link_status_changed(efx);
1828
8ceee660 1829 efx_start_all(efx);
dd40781e 1830 efx_selftest_async_start(efx);
8ceee660
BH
1831 return 0;
1832}
1833
1834/* Context: process, rtnl_lock() held.
1835 * Note that the kernel will ignore our return code; this method
1836 * should really be a void.
1837 */
1838static int efx_net_stop(struct net_device *net_dev)
1839{
767e468c 1840 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1841
62776d03
BH
1842 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1843 raw_smp_processor_id());
8ceee660 1844
f4bd954e
BH
1845 if (efx->state != STATE_DISABLED) {
1846 /* Stop the device and flush all the channels */
1847 efx_stop_all(efx);
f4bd954e 1848 }
8ceee660
BH
1849
1850 return 0;
1851}
1852
5b9e207c 1853/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2aa9ef11
BH
1854static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1855 struct rtnl_link_stats64 *stats)
8ceee660 1856{
767e468c 1857 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1858 struct efx_mac_stats *mac_stats = &efx->mac_stats;
8ceee660 1859
55edc6e6 1860 spin_lock_bh(&efx->stats_lock);
1cb34522 1861
ef2b90ee 1862 efx->type->update_stats(efx);
8ceee660
BH
1863
1864 stats->rx_packets = mac_stats->rx_packets;
1865 stats->tx_packets = mac_stats->tx_packets;
1866 stats->rx_bytes = mac_stats->rx_bytes;
1867 stats->tx_bytes = mac_stats->tx_bytes;
80485d34 1868 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
8ceee660
BH
1869 stats->multicast = mac_stats->rx_multicast;
1870 stats->collisions = mac_stats->tx_collision;
1871 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1872 mac_stats->rx_length_error);
8ceee660
BH
1873 stats->rx_crc_errors = mac_stats->rx_bad;
1874 stats->rx_frame_errors = mac_stats->rx_align_error;
1875 stats->rx_fifo_errors = mac_stats->rx_overflow;
1876 stats->rx_missed_errors = mac_stats->rx_missed;
1877 stats->tx_window_errors = mac_stats->tx_late_collision;
1878
1879 stats->rx_errors = (stats->rx_length_errors +
8ceee660
BH
1880 stats->rx_crc_errors +
1881 stats->rx_frame_errors +
8ceee660
BH
1882 mac_stats->rx_symbol_error);
1883 stats->tx_errors = (stats->tx_window_errors +
1884 mac_stats->tx_bad);
1885
1cb34522
BH
1886 spin_unlock_bh(&efx->stats_lock);
1887
8ceee660
BH
1888 return stats;
1889}
1890
1891/* Context: netif_tx_lock held, BHs disabled. */
1892static void efx_watchdog(struct net_device *net_dev)
1893{
767e468c 1894 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1895
62776d03
BH
1896 netif_err(efx, tx_err, efx->net_dev,
1897 "TX stuck with port_enabled=%d: resetting channels\n",
1898 efx->port_enabled);
8ceee660 1899
739bb23d 1900 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1901}
1902
1903
1904/* Context: process, rtnl_lock() held. */
1905static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1906{
767e468c 1907 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1908
1909 EFX_ASSERT_RESET_SERIALISED(efx);
1910
1911 if (new_mtu > EFX_MAX_MTU)
1912 return -EINVAL;
1913
1914 efx_stop_all(efx);
1915
62776d03 1916 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
8ceee660 1917
d3245b28
BH
1918 mutex_lock(&efx->mac_lock);
1919 /* Reconfigure the MAC before enabling the dma queues so that
1920 * the RX buffers don't overflow */
8ceee660 1921 net_dev->mtu = new_mtu;
710b208d 1922 efx->type->reconfigure_mac(efx);
d3245b28
BH
1923 mutex_unlock(&efx->mac_lock);
1924
8ceee660 1925 efx_start_all(efx);
6c8eef4a 1926 return 0;
8ceee660
BH
1927}
1928
1929static int efx_set_mac_address(struct net_device *net_dev, void *data)
1930{
767e468c 1931 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1932 struct sockaddr *addr = data;
1933 char *new_addr = addr->sa_data;
1934
1935 EFX_ASSERT_RESET_SERIALISED(efx);
1936
1937 if (!is_valid_ether_addr(new_addr)) {
62776d03
BH
1938 netif_err(efx, drv, efx->net_dev,
1939 "invalid ethernet MAC address requested: %pM\n",
1940 new_addr);
504f9b5a 1941 return -EADDRNOTAVAIL;
8ceee660
BH
1942 }
1943
1944 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
cd2d5b52 1945 efx_sriov_mac_address_changed(efx);
8ceee660
BH
1946
1947 /* Reconfigure the MAC */
d3245b28 1948 mutex_lock(&efx->mac_lock);
710b208d 1949 efx->type->reconfigure_mac(efx);
d3245b28 1950 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1951
1952 return 0;
1953}
1954
a816f75a 1955/* Context: netif_addr_lock held, BHs disabled. */
0fca8c97 1956static void efx_set_rx_mode(struct net_device *net_dev)
8ceee660 1957{
767e468c 1958 struct efx_nic *efx = netdev_priv(net_dev);
22bedad3 1959 struct netdev_hw_addr *ha;
8ceee660 1960 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1961 u32 crc;
1962 int bit;
8ceee660 1963
8be4f3e6 1964 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1965
1966 /* Build multicast hash table */
8be4f3e6 1967 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1968 memset(mc_hash, 0xff, sizeof(*mc_hash));
1969 } else {
1970 memset(mc_hash, 0x00, sizeof(*mc_hash));
22bedad3
JP
1971 netdev_for_each_mc_addr(ha, net_dev) {
1972 crc = ether_crc_le(ETH_ALEN, ha->addr);
8ceee660
BH
1973 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1974 set_bit_le(bit, mc_hash->byte);
8ceee660 1975 }
8ceee660 1976
8be4f3e6
BH
1977 /* Broadcast packets go through the multicast hash filter.
1978 * ether_crc_le() of the broadcast address is 0xbe2612ff
1979 * so we always add bit 0xff to the mask.
1980 */
1981 set_bit_le(0xff, mc_hash->byte);
1982 }
a816f75a 1983
8be4f3e6
BH
1984 if (efx->port_enabled)
1985 queue_work(efx->workqueue, &efx->mac_work);
1986 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1987}
1988
c8f44aff 1989static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
abfe9039
BH
1990{
1991 struct efx_nic *efx = netdev_priv(net_dev);
1992
1993 /* If disabling RX n-tuple filtering, clear existing filters */
1994 if (net_dev->features & ~data & NETIF_F_NTUPLE)
1995 efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
1996
1997 return 0;
1998}
1999
c3ecb9f3
SH
2000static const struct net_device_ops efx_netdev_ops = {
2001 .ndo_open = efx_net_open,
2002 .ndo_stop = efx_net_stop,
4472702e 2003 .ndo_get_stats64 = efx_net_stats,
c3ecb9f3
SH
2004 .ndo_tx_timeout = efx_watchdog,
2005 .ndo_start_xmit = efx_hard_start_xmit,
2006 .ndo_validate_addr = eth_validate_addr,
2007 .ndo_do_ioctl = efx_ioctl,
2008 .ndo_change_mtu = efx_change_mtu,
2009 .ndo_set_mac_address = efx_set_mac_address,
0fca8c97 2010 .ndo_set_rx_mode = efx_set_rx_mode,
abfe9039 2011 .ndo_set_features = efx_set_features,
cd2d5b52
BH
2012#ifdef CONFIG_SFC_SRIOV
2013 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
2014 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
2015 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
2016 .ndo_get_vf_config = efx_sriov_get_vf_config,
2017#endif
c3ecb9f3
SH
2018#ifdef CONFIG_NET_POLL_CONTROLLER
2019 .ndo_poll_controller = efx_netpoll,
2020#endif
94b274bf 2021 .ndo_setup_tc = efx_setup_tc,
64d8ad6d
BH
2022#ifdef CONFIG_RFS_ACCEL
2023 .ndo_rx_flow_steer = efx_filter_rfs,
2024#endif
c3ecb9f3
SH
2025};
2026
7dde596e
BH
2027static void efx_update_name(struct efx_nic *efx)
2028{
2029 strcpy(efx->name, efx->net_dev->name);
2030 efx_mtd_rename(efx);
2031 efx_set_channel_names(efx);
2032}
2033
8ceee660
BH
2034static int efx_netdev_event(struct notifier_block *this,
2035 unsigned long event, void *ptr)
2036{
d3208b5e 2037 struct net_device *net_dev = ptr;
8ceee660 2038
7dde596e
BH
2039 if (net_dev->netdev_ops == &efx_netdev_ops &&
2040 event == NETDEV_CHANGENAME)
2041 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
2042
2043 return NOTIFY_DONE;
2044}
2045
2046static struct notifier_block efx_netdev_notifier = {
2047 .notifier_call = efx_netdev_event,
2048};
2049
06d5e193
BH
2050static ssize_t
2051show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2052{
2053 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2054 return sprintf(buf, "%d\n", efx->phy_type);
2055}
2056static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
2057
8ceee660
BH
2058static int efx_register_netdev(struct efx_nic *efx)
2059{
2060 struct net_device *net_dev = efx->net_dev;
c04bfc6b 2061 struct efx_channel *channel;
8ceee660
BH
2062 int rc;
2063
2064 net_dev->watchdog_timeo = 5 * HZ;
2065 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 2066 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
2067 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2068
7dde596e 2069 rtnl_lock();
aed0628d
BH
2070
2071 rc = dev_alloc_name(net_dev, net_dev->name);
2072 if (rc < 0)
2073 goto fail_locked;
7dde596e 2074 efx_update_name(efx);
aed0628d
BH
2075
2076 rc = register_netdevice(net_dev);
2077 if (rc)
2078 goto fail_locked;
2079
c04bfc6b
BH
2080 efx_for_each_channel(channel, efx) {
2081 struct efx_tx_queue *tx_queue;
60031fcc
BH
2082 efx_for_each_channel_tx_queue(tx_queue, channel)
2083 efx_init_tx_queue_core_txq(tx_queue);
c04bfc6b
BH
2084 }
2085
aed0628d 2086 /* Always start with carrier off; PHY events will detect the link */
86ee5302 2087 netif_carrier_off(net_dev);
aed0628d 2088
7dde596e 2089 rtnl_unlock();
8ceee660 2090
06d5e193
BH
2091 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2092 if (rc) {
62776d03
BH
2093 netif_err(efx, drv, efx->net_dev,
2094 "failed to init net dev attributes\n");
06d5e193
BH
2095 goto fail_registered;
2096 }
2097
8ceee660 2098 return 0;
06d5e193 2099
aed0628d
BH
2100fail_locked:
2101 rtnl_unlock();
62776d03 2102 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
aed0628d
BH
2103 return rc;
2104
06d5e193
BH
2105fail_registered:
2106 unregister_netdev(net_dev);
2107 return rc;
8ceee660
BH
2108}
2109
2110static void efx_unregister_netdev(struct efx_nic *efx)
2111{
f7d12cdc 2112 struct efx_channel *channel;
8ceee660
BH
2113 struct efx_tx_queue *tx_queue;
2114
2115 if (!efx->net_dev)
2116 return;
2117
767e468c 2118 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
2119
2120 /* Free up any skbs still remaining. This has to happen before
2121 * we try to unregister the netdev as running their destructors
2122 * may be needed to get the device ref. count to 0. */
f7d12cdc
BH
2123 efx_for_each_channel(channel, efx) {
2124 efx_for_each_channel_tx_queue(tx_queue, channel)
2125 efx_release_tx_buffers(tx_queue);
2126 }
8ceee660 2127
73ba7b68
BH
2128 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2129 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2130 unregister_netdev(efx->net_dev);
8ceee660
BH
2131}
2132
2133/**************************************************************************
2134 *
2135 * Device reset and suspend
2136 *
2137 **************************************************************************/
2138
2467ca46
BH
2139/* Tears down the entire software state and most of the hardware state
2140 * before reset. */
d3245b28 2141void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 2142{
8ceee660
BH
2143 EFX_ASSERT_RESET_SERIALISED(efx);
2144
2467ca46
BH
2145 efx_stop_all(efx);
2146 mutex_lock(&efx->mac_lock);
2147
7f967c01 2148 efx_stop_interrupts(efx, false);
4b988280
SH
2149 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2150 efx->phy_op->fini(efx);
ef2b90ee 2151 efx->type->fini(efx);
8ceee660
BH
2152}
2153
2467ca46
BH
2154/* This function will always ensure that the locks acquired in
2155 * efx_reset_down() are released. A failure return code indicates
2156 * that we were unable to reinitialise the hardware, and the
2157 * driver should be disabled. If ok is false, then the rx and tx
2158 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 2159int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
2160{
2161 int rc;
2162
2467ca46 2163 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 2164
ef2b90ee 2165 rc = efx->type->init(efx);
8ceee660 2166 if (rc) {
62776d03 2167 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
eb9f6744 2168 goto fail;
8ceee660
BH
2169 }
2170
eb9f6744
BH
2171 if (!ok)
2172 goto fail;
2173
4b988280 2174 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
2175 rc = efx->phy_op->init(efx);
2176 if (rc)
2177 goto fail;
2178 if (efx->phy_op->reconfigure(efx))
62776d03
BH
2179 netif_err(efx, drv, efx->net_dev,
2180 "could not restore PHY settings\n");
4b988280
SH
2181 }
2182
710b208d 2183 efx->type->reconfigure_mac(efx);
8ceee660 2184
7f967c01 2185 efx_start_interrupts(efx, false);
64eebcfd 2186 efx_restore_filters(efx);
cd2d5b52 2187 efx_sriov_reset(efx);
eb9f6744 2188
eb9f6744
BH
2189 mutex_unlock(&efx->mac_lock);
2190
2191 efx_start_all(efx);
2192
2193 return 0;
2194
2195fail:
2196 efx->port_initialized = false;
2467ca46
BH
2197
2198 mutex_unlock(&efx->mac_lock);
2199
8ceee660
BH
2200 return rc;
2201}
2202
eb9f6744
BH
2203/* Reset the NIC using the specified method. Note that the reset may
2204 * fail, in which case the card will be left in an unusable state.
8ceee660 2205 *
eb9f6744 2206 * Caller must hold the rtnl_lock.
8ceee660 2207 */
eb9f6744 2208int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 2209{
eb9f6744
BH
2210 int rc, rc2;
2211 bool disabled;
8ceee660 2212
62776d03
BH
2213 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2214 RESET_TYPE(method));
8ceee660 2215
e4abce85 2216 netif_device_detach(efx->net_dev);
d3245b28 2217 efx_reset_down(efx, method);
8ceee660 2218
ef2b90ee 2219 rc = efx->type->reset(efx, method);
8ceee660 2220 if (rc) {
62776d03 2221 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
eb9f6744 2222 goto out;
8ceee660
BH
2223 }
2224
a7d529ae
BH
2225 /* Clear flags for the scopes we covered. We assume the NIC and
2226 * driver are now quiescent so that there is no race here.
2227 */
2228 efx->reset_pending &= -(1 << (method + 1));
8ceee660
BH
2229
2230 /* Reinitialise bus-mastering, which may have been turned off before
2231 * the reset was scheduled. This is still appropriate, even in the
2232 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2233 * can respond to requests. */
2234 pci_set_master(efx->pci_dev);
2235
eb9f6744 2236out:
8ceee660 2237 /* Leave device stopped if necessary */
eb9f6744
BH
2238 disabled = rc || method == RESET_TYPE_DISABLE;
2239 rc2 = efx_reset_up(efx, method, !disabled);
2240 if (rc2) {
2241 disabled = true;
2242 if (!rc)
2243 rc = rc2;
8ceee660
BH
2244 }
2245
eb9f6744 2246 if (disabled) {
f49a4589 2247 dev_close(efx->net_dev);
62776d03 2248 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
f4bd954e 2249 efx->state = STATE_DISABLED;
f4bd954e 2250 } else {
62776d03 2251 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
e4abce85 2252 netif_device_attach(efx->net_dev);
f4bd954e 2253 }
8ceee660
BH
2254 return rc;
2255}
2256
2257/* The worker thread exists so that code that cannot sleep can
2258 * schedule a reset for later.
2259 */
2260static void efx_reset_work(struct work_struct *data)
2261{
eb9f6744 2262 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
a7d529ae 2263 unsigned long pending = ACCESS_ONCE(efx->reset_pending);
8ceee660 2264
a7d529ae 2265 if (!pending)
319ba649
SH
2266 return;
2267
eb9f6744 2268 /* If we're not RUNNING then don't reset. Leave the reset_pending
a7d529ae 2269 * flags set so that efx_pci_probe_main will be retried */
eb9f6744 2270 if (efx->state != STATE_RUNNING) {
62776d03
BH
2271 netif_info(efx, drv, efx->net_dev,
2272 "scheduled reset quenched. NIC not RUNNING\n");
eb9f6744
BH
2273 return;
2274 }
2275
2276 rtnl_lock();
a7d529ae 2277 (void)efx_reset(efx, fls(pending) - 1);
eb9f6744 2278 rtnl_unlock();
8ceee660
BH
2279}
2280
2281void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2282{
2283 enum reset_type method;
2284
8ceee660
BH
2285 switch (type) {
2286 case RESET_TYPE_INVISIBLE:
2287 case RESET_TYPE_ALL:
2288 case RESET_TYPE_WORLD:
2289 case RESET_TYPE_DISABLE:
2290 method = type;
0e2a9c7c
BH
2291 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2292 RESET_TYPE(method));
8ceee660 2293 break;
8ceee660 2294 default:
0e2a9c7c 2295 method = efx->type->map_reset_reason(type);
62776d03
BH
2296 netif_dbg(efx, drv, efx->net_dev,
2297 "scheduling %s reset for %s\n",
2298 RESET_TYPE(method), RESET_TYPE(type));
0e2a9c7c
BH
2299 break;
2300 }
8ceee660 2301
a7d529ae 2302 set_bit(method, &efx->reset_pending);
8ceee660 2303
8880f4ec
BH
2304 /* efx_process_channel() will no longer read events once a
2305 * reset is scheduled. So switch back to poll'd MCDI completions. */
2306 efx_mcdi_mode_poll(efx);
2307
1ab00629 2308 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
2309}
2310
2311/**************************************************************************
2312 *
2313 * List of NICs we support
2314 *
2315 **************************************************************************/
2316
2317/* PCI device ID table */
a3aa1884 2318static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
937383a5
BH
2319 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2320 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
daeda630 2321 .driver_data = (unsigned long) &falcon_a1_nic_type},
937383a5
BH
2322 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2323 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
daeda630 2324 .driver_data = (unsigned long) &falcon_b0_nic_type},
547c474f 2325 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
8880f4ec 2326 .driver_data = (unsigned long) &siena_a0_nic_type},
547c474f 2327 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
8880f4ec 2328 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
2329 {0} /* end of list */
2330};
2331
2332/**************************************************************************
2333 *
3759433d 2334 * Dummy PHY/MAC operations
8ceee660 2335 *
01aad7b6 2336 * Can be used for some unimplemented operations
8ceee660
BH
2337 * Needed so all function pointers are valid and do not have to be tested
2338 * before use
2339 *
2340 **************************************************************************/
2341int efx_port_dummy_op_int(struct efx_nic *efx)
2342{
2343 return 0;
2344}
2345void efx_port_dummy_op_void(struct efx_nic *efx) {}
d215697f 2346
2347static bool efx_port_dummy_op_poll(struct efx_nic *efx)
fdaa9aed
SH
2348{
2349 return false;
2350}
8ceee660 2351
6c8c2513 2352static const struct efx_phy_operations efx_dummy_phy_operations = {
8ceee660 2353 .init = efx_port_dummy_op_int,
d3245b28 2354 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 2355 .poll = efx_port_dummy_op_poll,
8ceee660 2356 .fini = efx_port_dummy_op_void,
8ceee660
BH
2357};
2358
8ceee660
BH
2359/**************************************************************************
2360 *
2361 * Data housekeeping
2362 *
2363 **************************************************************************/
2364
2365/* This zeroes out and then fills in the invariants in a struct
2366 * efx_nic (including all sub-structures).
2367 */
6c8c2513 2368static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
8ceee660
BH
2369 struct pci_dev *pci_dev, struct net_device *net_dev)
2370{
4642610c 2371 int i;
8ceee660
BH
2372
2373 /* Initialise common structures */
2374 memset(efx, 0, sizeof(*efx));
2375 spin_lock_init(&efx->biu_lock);
76884835
BH
2376#ifdef CONFIG_SFC_MTD
2377 INIT_LIST_HEAD(&efx->mtd_list);
2378#endif
8ceee660
BH
2379 INIT_WORK(&efx->reset_work, efx_reset_work);
2380 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
dd40781e 2381 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
8ceee660 2382 efx->pci_dev = pci_dev;
62776d03 2383 efx->msg_enable = debug;
8ceee660 2384 efx->state = STATE_INIT;
8ceee660 2385 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2386
2387 efx->net_dev = net_dev;
8ceee660
BH
2388 spin_lock_init(&efx->stats_lock);
2389 mutex_init(&efx->mac_lock);
2390 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2391 efx->mdio.dev = net_dev;
766ca0fa 2392 INIT_WORK(&efx->mac_work, efx_mac_work);
9f2cb71c 2393 init_waitqueue_head(&efx->flush_wq);
8ceee660
BH
2394
2395 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
4642610c
BH
2396 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2397 if (!efx->channel[i])
2398 goto fail;
8ceee660
BH
2399 }
2400
2401 efx->type = type;
2402
8ceee660
BH
2403 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2404
2405 /* Higher numbered interrupt modes are less capable! */
2406 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2407 interrupt_mode);
2408
6977dc63
BH
2409 /* Would be good to use the net_dev name, but we're too early */
2410 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2411 pci_name(pci_dev));
2412 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629 2413 if (!efx->workqueue)
4642610c 2414 goto fail;
8d9853d9 2415
8ceee660 2416 return 0;
4642610c
BH
2417
2418fail:
2419 efx_fini_struct(efx);
2420 return -ENOMEM;
8ceee660
BH
2421}
2422
2423static void efx_fini_struct(struct efx_nic *efx)
2424{
8313aca3
BH
2425 int i;
2426
2427 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2428 kfree(efx->channel[i]);
2429
8ceee660
BH
2430 if (efx->workqueue) {
2431 destroy_workqueue(efx->workqueue);
2432 efx->workqueue = NULL;
2433 }
2434}
2435
2436/**************************************************************************
2437 *
2438 * PCI interface
2439 *
2440 **************************************************************************/
2441
2442/* Main body of final NIC shutdown code
2443 * This is called only at module unload (or hotplug removal).
2444 */
2445static void efx_pci_remove_main(struct efx_nic *efx)
2446{
64d8ad6d
BH
2447#ifdef CONFIG_RFS_ACCEL
2448 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2449 efx->net_dev->rx_cpu_rmap = NULL;
2450#endif
7f967c01 2451 efx_stop_interrupts(efx, false);
152b6a62 2452 efx_nic_fini_interrupt(efx);
8ceee660 2453 efx_fini_port(efx);
ef2b90ee 2454 efx->type->fini(efx);
8ceee660
BH
2455 efx_fini_napi(efx);
2456 efx_remove_all(efx);
2457}
2458
2459/* Final NIC shutdown
2460 * This is called only at module unload (or hotplug removal).
2461 */
2462static void efx_pci_remove(struct pci_dev *pci_dev)
2463{
2464 struct efx_nic *efx;
2465
2466 efx = pci_get_drvdata(pci_dev);
2467 if (!efx)
2468 return;
2469
2470 /* Mark the NIC as fini, then stop the interface */
2471 rtnl_lock();
2472 efx->state = STATE_FINI;
2473 dev_close(efx->net_dev);
2474
2475 /* Allow any queued efx_resets() to complete */
2476 rtnl_unlock();
2477
7f967c01 2478 efx_stop_interrupts(efx, false);
cd2d5b52 2479 efx_sriov_fini(efx);
8ceee660
BH
2480 efx_unregister_netdev(efx);
2481
7dde596e
BH
2482 efx_mtd_remove(efx);
2483
8ceee660
BH
2484 /* Wait for any scheduled resets to complete. No more will be
2485 * scheduled from this point because efx_stop_all() has been
2486 * called, we are no longer registered with driverlink, and
2487 * the net_device's have been removed. */
1ab00629 2488 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2489
2490 efx_pci_remove_main(efx);
2491
8ceee660 2492 efx_fini_io(efx);
62776d03 2493 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
8ceee660
BH
2494
2495 pci_set_drvdata(pci_dev, NULL);
2496 efx_fini_struct(efx);
2497 free_netdev(efx->net_dev);
2498};
2499
460eeaa0
BH
2500/* NIC VPD information
2501 * Called during probe to display the part number of the
2502 * installed NIC. VPD is potentially very large but this should
2503 * always appear within the first 512 bytes.
2504 */
2505#define SFC_VPD_LEN 512
2506static void efx_print_product_vpd(struct efx_nic *efx)
2507{
2508 struct pci_dev *dev = efx->pci_dev;
2509 char vpd_data[SFC_VPD_LEN];
2510 ssize_t vpd_size;
2511 int i, j;
2512
2513 /* Get the vpd data from the device */
2514 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2515 if (vpd_size <= 0) {
2516 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2517 return;
2518 }
2519
2520 /* Get the Read only section */
2521 i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2522 if (i < 0) {
2523 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2524 return;
2525 }
2526
2527 j = pci_vpd_lrdt_size(&vpd_data[i]);
2528 i += PCI_VPD_LRDT_TAG_SIZE;
2529 if (i + j > vpd_size)
2530 j = vpd_size - i;
2531
2532 /* Get the Part number */
2533 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2534 if (i < 0) {
2535 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2536 return;
2537 }
2538
2539 j = pci_vpd_info_field_size(&vpd_data[i]);
2540 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2541 if (i + j > vpd_size) {
2542 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2543 return;
2544 }
2545
2546 netif_info(efx, drv, efx->net_dev,
2547 "Part Number : %.*s\n", j, &vpd_data[i]);
2548}
2549
2550
8ceee660
BH
2551/* Main body of NIC initialisation
2552 * This is called at module load (or hotplug insertion, theoretically).
2553 */
2554static int efx_pci_probe_main(struct efx_nic *efx)
2555{
2556 int rc;
2557
2558 /* Do start-of-day initialisation */
2559 rc = efx_probe_all(efx);
2560 if (rc)
2561 goto fail1;
2562
e8f14992 2563 efx_init_napi(efx);
8ceee660 2564
ef2b90ee 2565 rc = efx->type->init(efx);
8ceee660 2566 if (rc) {
62776d03
BH
2567 netif_err(efx, probe, efx->net_dev,
2568 "failed to initialise NIC\n");
278c0621 2569 goto fail3;
8ceee660
BH
2570 }
2571
2572 rc = efx_init_port(efx);
2573 if (rc) {
62776d03
BH
2574 netif_err(efx, probe, efx->net_dev,
2575 "failed to initialise port\n");
278c0621 2576 goto fail4;
8ceee660
BH
2577 }
2578
152b6a62 2579 rc = efx_nic_init_interrupt(efx);
8ceee660 2580 if (rc)
278c0621 2581 goto fail5;
7f967c01 2582 efx_start_interrupts(efx, false);
8ceee660
BH
2583
2584 return 0;
2585
278c0621 2586 fail5:
8ceee660 2587 efx_fini_port(efx);
8ceee660 2588 fail4:
ef2b90ee 2589 efx->type->fini(efx);
8ceee660
BH
2590 fail3:
2591 efx_fini_napi(efx);
8ceee660
BH
2592 efx_remove_all(efx);
2593 fail1:
2594 return rc;
2595}
2596
2597/* NIC initialisation
2598 *
2599 * This is called at module load (or hotplug insertion,
73ba7b68 2600 * theoretically). It sets up PCI mappings, resets the NIC,
8ceee660
BH
2601 * sets up and registers the network devices with the kernel and hooks
2602 * the interrupt service routine. It does not prepare the device for
2603 * transmission; this is left to the first time one of the network
2604 * interfaces is brought up (i.e. efx_net_open).
2605 */
2606static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2607 const struct pci_device_id *entry)
2608{
6c8c2513 2609 const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
8ceee660
BH
2610 struct net_device *net_dev;
2611 struct efx_nic *efx;
fadac6aa 2612 int rc;
8ceee660
BH
2613
2614 /* Allocate and initialise a struct net_device and struct efx_nic */
94b274bf
BH
2615 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2616 EFX_MAX_RX_QUEUES);
8ceee660
BH
2617 if (!net_dev)
2618 return -ENOMEM;
c383b537 2619 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415 2620 NETIF_F_HIGHDMA | NETIF_F_TSO |
abfe9039 2621 NETIF_F_RXCSUM);
738a8f4b
BH
2622 if (type->offload_features & NETIF_F_V6_CSUM)
2623 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2624 /* Mask for features that also apply to VLAN devices */
2625 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
abfe9039
BH
2626 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2627 NETIF_F_RXCSUM);
2628 /* All offloads can be toggled */
2629 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
767e468c 2630 efx = netdev_priv(net_dev);
8ceee660 2631 pci_set_drvdata(pci_dev, efx);
62776d03 2632 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
8ceee660
BH
2633 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2634 if (rc)
2635 goto fail1;
2636
62776d03 2637 netif_info(efx, probe, efx->net_dev,
ff79c8ac 2638 "Solarflare NIC detected\n");
8ceee660 2639
460eeaa0
BH
2640 efx_print_product_vpd(efx);
2641
8ceee660
BH
2642 /* Set up basic I/O (BAR mappings etc) */
2643 rc = efx_init_io(efx);
2644 if (rc)
2645 goto fail2;
2646
fadac6aa 2647 rc = efx_pci_probe_main(efx);
fa402b2e 2648
fadac6aa
BH
2649 /* Serialise against efx_reset(). No more resets will be
2650 * scheduled since efx_stop_all() has been called, and we have
2651 * not and never have been registered.
2652 */
2653 cancel_work_sync(&efx->reset_work);
8ceee660 2654
fadac6aa
BH
2655 if (rc)
2656 goto fail3;
8ceee660 2657
fadac6aa
BH
2658 /* If there was a scheduled reset during probe, the NIC is
2659 * probably hosed anyway.
2660 */
2661 if (efx->reset_pending) {
2662 rc = -EIO;
8ceee660
BH
2663 goto fail4;
2664 }
2665
55edc6e6
BH
2666 /* Switch to the running state before we expose the device to the OS,
2667 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2668 efx->state = STATE_RUNNING;
7dde596e 2669
8ceee660
BH
2670 rc = efx_register_netdev(efx);
2671 if (rc)
fadac6aa 2672 goto fail4;
8ceee660 2673
cd2d5b52
BH
2674 rc = efx_sriov_init(efx);
2675 if (rc)
2676 netif_err(efx, probe, efx->net_dev,
2677 "SR-IOV can't be enabled rc %d\n", rc);
2678
62776d03 2679 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
a5211bb5 2680
7c43161c 2681 /* Try to create MTDs, but allow this to fail */
a5211bb5 2682 rtnl_lock();
7c43161c 2683 rc = efx_mtd_probe(efx);
a5211bb5 2684 rtnl_unlock();
7c43161c
BH
2685 if (rc)
2686 netif_warn(efx, probe, efx->net_dev,
2687 "failed to create MTDs (%d)\n", rc);
2688
8ceee660
BH
2689 return 0;
2690
8ceee660 2691 fail4:
fadac6aa 2692 efx_pci_remove_main(efx);
8ceee660
BH
2693 fail3:
2694 efx_fini_io(efx);
2695 fail2:
2696 efx_fini_struct(efx);
2697 fail1:
5e2a911c 2698 WARN_ON(rc > 0);
62776d03 2699 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
8ceee660
BH
2700 free_netdev(net_dev);
2701 return rc;
2702}
2703
89c758fa
BH
2704static int efx_pm_freeze(struct device *dev)
2705{
2706 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2707
2708 efx->state = STATE_FINI;
2709
2710 netif_device_detach(efx->net_dev);
2711
2712 efx_stop_all(efx);
7f967c01 2713 efx_stop_interrupts(efx, false);
89c758fa
BH
2714
2715 return 0;
2716}
2717
2718static int efx_pm_thaw(struct device *dev)
2719{
2720 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2721
2722 efx->state = STATE_INIT;
2723
7f967c01 2724 efx_start_interrupts(efx, false);
89c758fa
BH
2725
2726 mutex_lock(&efx->mac_lock);
2727 efx->phy_op->reconfigure(efx);
2728 mutex_unlock(&efx->mac_lock);
2729
2730 efx_start_all(efx);
2731
2732 netif_device_attach(efx->net_dev);
2733
2734 efx->state = STATE_RUNNING;
2735
2736 efx->type->resume_wol(efx);
2737
319ba649
SH
2738 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2739 queue_work(reset_workqueue, &efx->reset_work);
2740
89c758fa
BH
2741 return 0;
2742}
2743
2744static int efx_pm_poweroff(struct device *dev)
2745{
2746 struct pci_dev *pci_dev = to_pci_dev(dev);
2747 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2748
2749 efx->type->fini(efx);
2750
a7d529ae 2751 efx->reset_pending = 0;
89c758fa
BH
2752
2753 pci_save_state(pci_dev);
2754 return pci_set_power_state(pci_dev, PCI_D3hot);
2755}
2756
2757/* Used for both resume and restore */
2758static int efx_pm_resume(struct device *dev)
2759{
2760 struct pci_dev *pci_dev = to_pci_dev(dev);
2761 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2762 int rc;
2763
2764 rc = pci_set_power_state(pci_dev, PCI_D0);
2765 if (rc)
2766 return rc;
2767 pci_restore_state(pci_dev);
2768 rc = pci_enable_device(pci_dev);
2769 if (rc)
2770 return rc;
2771 pci_set_master(efx->pci_dev);
2772 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2773 if (rc)
2774 return rc;
2775 rc = efx->type->init(efx);
2776 if (rc)
2777 return rc;
2778 efx_pm_thaw(dev);
2779 return 0;
2780}
2781
2782static int efx_pm_suspend(struct device *dev)
2783{
2784 int rc;
2785
2786 efx_pm_freeze(dev);
2787 rc = efx_pm_poweroff(dev);
2788 if (rc)
2789 efx_pm_resume(dev);
2790 return rc;
2791}
2792
18e83e4c 2793static const struct dev_pm_ops efx_pm_ops = {
89c758fa
BH
2794 .suspend = efx_pm_suspend,
2795 .resume = efx_pm_resume,
2796 .freeze = efx_pm_freeze,
2797 .thaw = efx_pm_thaw,
2798 .poweroff = efx_pm_poweroff,
2799 .restore = efx_pm_resume,
2800};
2801
8ceee660 2802static struct pci_driver efx_pci_driver = {
c5d5f5fd 2803 .name = KBUILD_MODNAME,
8ceee660
BH
2804 .id_table = efx_pci_table,
2805 .probe = efx_pci_probe,
2806 .remove = efx_pci_remove,
89c758fa 2807 .driver.pm = &efx_pm_ops,
8ceee660
BH
2808};
2809
2810/**************************************************************************
2811 *
2812 * Kernel module interface
2813 *
2814 *************************************************************************/
2815
2816module_param(interrupt_mode, uint, 0444);
2817MODULE_PARM_DESC(interrupt_mode,
2818 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2819
2820static int __init efx_init_module(void)
2821{
2822 int rc;
2823
2824 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2825
2826 rc = register_netdevice_notifier(&efx_netdev_notifier);
2827 if (rc)
2828 goto err_notifier;
2829
cd2d5b52
BH
2830 rc = efx_init_sriov();
2831 if (rc)
2832 goto err_sriov;
2833
1ab00629
SH
2834 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2835 if (!reset_workqueue) {
2836 rc = -ENOMEM;
2837 goto err_reset;
2838 }
8ceee660
BH
2839
2840 rc = pci_register_driver(&efx_pci_driver);
2841 if (rc < 0)
2842 goto err_pci;
2843
2844 return 0;
2845
2846 err_pci:
1ab00629
SH
2847 destroy_workqueue(reset_workqueue);
2848 err_reset:
cd2d5b52
BH
2849 efx_fini_sriov();
2850 err_sriov:
8ceee660
BH
2851 unregister_netdevice_notifier(&efx_netdev_notifier);
2852 err_notifier:
2853 return rc;
2854}
2855
2856static void __exit efx_exit_module(void)
2857{
2858 printk(KERN_INFO "Solarflare NET driver unloading\n");
2859
2860 pci_unregister_driver(&efx_pci_driver);
1ab00629 2861 destroy_workqueue(reset_workqueue);
cd2d5b52 2862 efx_fini_sriov();
8ceee660
BH
2863 unregister_netdevice_notifier(&efx_netdev_notifier);
2864
2865}
2866
2867module_init(efx_init_module);
2868module_exit(efx_exit_module);
2869
906bb26c
BH
2870MODULE_AUTHOR("Solarflare Communications and "
2871 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2872MODULE_DESCRIPTION("Solarflare Communications network driver");
2873MODULE_LICENSE("GPL");
2874MODULE_DEVICE_TABLE(pci, efx_pci_table);