Merge tag 'please-pull-pstore' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / neterion / s2io.c
CommitLineData
1da177e4 1/************************************************************************
776bd20f 2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
926bd900 3 * Copyright(c) 2002-2010 Exar Corp.
d44570e4 4 *
1da177e4
LT
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
20346722
K
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
1da177e4
LT
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
20346722 21 * Francois Romieu : For pointing out all code part that were
1da177e4 22 * deprecated and also styling related comments.
20346722 23 * Grant Grundler : For helping me get rid of some Architecture
1da177e4
LT
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
20346722 26 *
1da177e4 27 * The module loadable parameters that are supported by the driver and a brief
a2a20aef 28 * explanation of all the variables.
9dc737a7 29 *
20346722
K
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
9dc737a7
AR
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
da6971d8 34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
6d517a27 35 * values are 1, 2.
1da177e4 36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
20346722 37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
1da177e4 38 * Tx descriptors that can be associated with each corresponding FIFO.
9dc737a7 39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
8abc4d5b 40 * 2(MSI_X). Default value is '2(MSI_X)'
9dc737a7
AR
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
926930b2
SS
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
3a3d5756
SH
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
1da177e4
LT
53 ************************************************************************/
54
6cef2b8e
JP
55#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
1da177e4
LT
57#include <linux/module.h>
58#include <linux/types.h>
59#include <linux/errno.h>
60#include <linux/ioport.h>
61#include <linux/pci.h>
1e7f0bd8 62#include <linux/dma-mapping.h>
1da177e4
LT
63#include <linux/kernel.h>
64#include <linux/netdevice.h>
65#include <linux/etherdevice.h>
40239396 66#include <linux/mdio.h>
1da177e4
LT
67#include <linux/skbuff.h>
68#include <linux/init.h>
69#include <linux/delay.h>
70#include <linux/stddef.h>
71#include <linux/ioctl.h>
72#include <linux/timex.h>
1da177e4 73#include <linux/ethtool.h>
1da177e4 74#include <linux/workqueue.h>
be3a6b02 75#include <linux/if_vlan.h>
7d3d0439
RA
76#include <linux/ip.h>
77#include <linux/tcp.h>
d44570e4
JP
78#include <linux/uaccess.h>
79#include <linux/io.h>
5a0e3ad6 80#include <linux/slab.h>
70c71606 81#include <linux/prefetch.h>
7d3d0439 82#include <net/tcp.h>
1da177e4 83
fe931395 84#include <asm/div64.h>
330ce0de 85#include <asm/irq.h>
1da177e4
LT
86
87/* local include */
88#include "s2io.h"
89#include "s2io-regs.h"
90
11410b62 91#define DRV_VERSION "2.0.26.28"
6c1792f4 92
1da177e4 93/* S2io Driver name & version. */
c0dbf37e
JM
94static const char s2io_driver_name[] = "Neterion";
95static const char s2io_driver_version[] = DRV_VERSION;
1da177e4 96
c0dbf37e
JM
97static const int rxd_size[2] = {32, 48};
98static const int rxd_count[2] = {127, 85};
da6971d8 99
1ee6dd77 100static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
5e25b9dd
K
101{
102 int ret;
103
104 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
d44570e4 105 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
5e25b9dd
K
106
107 return ret;
108}
109
20346722 110/*
1da177e4
LT
111 * Cards with following subsystem_id have a link state indication
112 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113 * macro below identifies these cards given the subsystem_id.
114 */
d44570e4
JP
115#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
116 (dev_type == XFRAME_I_DEVICE) ? \
117 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
118 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
1da177e4
LT
119
120#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
1da177e4 122
d44570e4 123static inline int is_s2io_card_up(const struct s2io_nic *sp)
92b84437
SS
124{
125 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126}
127
1da177e4 128/* Ethtool related variables and Macros. */
6fce365d 129static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
1da177e4
LT
130 "Register test\t(offline)",
131 "Eeprom test\t(offline)",
132 "Link test\t(online)",
133 "RLDRAM test\t(offline)",
134 "BIST Test\t(offline)"
135};
136
6fce365d 137static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
1da177e4
LT
138 {"tmac_frms"},
139 {"tmac_data_octets"},
140 {"tmac_drop_frms"},
141 {"tmac_mcst_frms"},
142 {"tmac_bcst_frms"},
143 {"tmac_pause_ctrl_frms"},
bd1034f0
AR
144 {"tmac_ttl_octets"},
145 {"tmac_ucst_frms"},
146 {"tmac_nucst_frms"},
1da177e4 147 {"tmac_any_err_frms"},
bd1034f0 148 {"tmac_ttl_less_fb_octets"},
1da177e4
LT
149 {"tmac_vld_ip_octets"},
150 {"tmac_vld_ip"},
151 {"tmac_drop_ip"},
152 {"tmac_icmp"},
153 {"tmac_rst_tcp"},
154 {"tmac_tcp"},
155 {"tmac_udp"},
156 {"rmac_vld_frms"},
157 {"rmac_data_octets"},
158 {"rmac_fcs_err_frms"},
159 {"rmac_drop_frms"},
160 {"rmac_vld_mcst_frms"},
161 {"rmac_vld_bcst_frms"},
162 {"rmac_in_rng_len_err_frms"},
bd1034f0 163 {"rmac_out_rng_len_err_frms"},
1da177e4
LT
164 {"rmac_long_frms"},
165 {"rmac_pause_ctrl_frms"},
bd1034f0
AR
166 {"rmac_unsup_ctrl_frms"},
167 {"rmac_ttl_octets"},
168 {"rmac_accepted_ucst_frms"},
169 {"rmac_accepted_nucst_frms"},
1da177e4 170 {"rmac_discarded_frms"},
bd1034f0
AR
171 {"rmac_drop_events"},
172 {"rmac_ttl_less_fb_octets"},
173 {"rmac_ttl_frms"},
1da177e4
LT
174 {"rmac_usized_frms"},
175 {"rmac_osized_frms"},
176 {"rmac_frag_frms"},
177 {"rmac_jabber_frms"},
bd1034f0
AR
178 {"rmac_ttl_64_frms"},
179 {"rmac_ttl_65_127_frms"},
180 {"rmac_ttl_128_255_frms"},
181 {"rmac_ttl_256_511_frms"},
182 {"rmac_ttl_512_1023_frms"},
183 {"rmac_ttl_1024_1518_frms"},
1da177e4
LT
184 {"rmac_ip"},
185 {"rmac_ip_octets"},
186 {"rmac_hdr_err_ip"},
187 {"rmac_drop_ip"},
188 {"rmac_icmp"},
189 {"rmac_tcp"},
190 {"rmac_udp"},
191 {"rmac_err_drp_udp"},
bd1034f0
AR
192 {"rmac_xgmii_err_sym"},
193 {"rmac_frms_q0"},
194 {"rmac_frms_q1"},
195 {"rmac_frms_q2"},
196 {"rmac_frms_q3"},
197 {"rmac_frms_q4"},
198 {"rmac_frms_q5"},
199 {"rmac_frms_q6"},
200 {"rmac_frms_q7"},
201 {"rmac_full_q0"},
202 {"rmac_full_q1"},
203 {"rmac_full_q2"},
204 {"rmac_full_q3"},
205 {"rmac_full_q4"},
206 {"rmac_full_q5"},
207 {"rmac_full_q6"},
208 {"rmac_full_q7"},
1da177e4 209 {"rmac_pause_cnt"},
bd1034f0
AR
210 {"rmac_xgmii_data_err_cnt"},
211 {"rmac_xgmii_ctrl_err_cnt"},
1da177e4
LT
212 {"rmac_accepted_ip"},
213 {"rmac_err_tcp"},
bd1034f0
AR
214 {"rd_req_cnt"},
215 {"new_rd_req_cnt"},
216 {"new_rd_req_rtry_cnt"},
217 {"rd_rtry_cnt"},
218 {"wr_rtry_rd_ack_cnt"},
219 {"wr_req_cnt"},
220 {"new_wr_req_cnt"},
221 {"new_wr_req_rtry_cnt"},
222 {"wr_rtry_cnt"},
223 {"wr_disc_cnt"},
224 {"rd_rtry_wr_ack_cnt"},
225 {"txp_wr_cnt"},
226 {"txd_rd_cnt"},
227 {"txd_wr_cnt"},
228 {"rxd_rd_cnt"},
229 {"rxd_wr_cnt"},
230 {"txf_rd_cnt"},
fa1f0cb3
SS
231 {"rxf_wr_cnt"}
232};
233
6fce365d 234static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
bd1034f0
AR
235 {"rmac_ttl_1519_4095_frms"},
236 {"rmac_ttl_4096_8191_frms"},
237 {"rmac_ttl_8192_max_frms"},
238 {"rmac_ttl_gt_max_frms"},
239 {"rmac_osized_alt_frms"},
240 {"rmac_jabber_alt_frms"},
241 {"rmac_gt_max_alt_frms"},
242 {"rmac_vlan_frms"},
243 {"rmac_len_discard"},
244 {"rmac_fcs_discard"},
245 {"rmac_pf_discard"},
246 {"rmac_da_discard"},
247 {"rmac_red_discard"},
248 {"rmac_rts_discard"},
249 {"rmac_ingm_full_discard"},
fa1f0cb3
SS
250 {"link_fault_cnt"}
251};
252
6fce365d 253static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
7ba013ac
K
254 {"\n DRIVER STATISTICS"},
255 {"single_bit_ecc_errs"},
256 {"double_bit_ecc_errs"},
bd1034f0
AR
257 {"parity_err_cnt"},
258 {"serious_err_cnt"},
259 {"soft_reset_cnt"},
260 {"fifo_full_cnt"},
8116f3cf
SS
261 {"ring_0_full_cnt"},
262 {"ring_1_full_cnt"},
263 {"ring_2_full_cnt"},
264 {"ring_3_full_cnt"},
265 {"ring_4_full_cnt"},
266 {"ring_5_full_cnt"},
267 {"ring_6_full_cnt"},
268 {"ring_7_full_cnt"},
43b7c451
SH
269 {"alarm_transceiver_temp_high"},
270 {"alarm_transceiver_temp_low"},
271 {"alarm_laser_bias_current_high"},
272 {"alarm_laser_bias_current_low"},
273 {"alarm_laser_output_power_high"},
274 {"alarm_laser_output_power_low"},
275 {"warn_transceiver_temp_high"},
276 {"warn_transceiver_temp_low"},
277 {"warn_laser_bias_current_high"},
278 {"warn_laser_bias_current_low"},
279 {"warn_laser_output_power_high"},
280 {"warn_laser_output_power_low"},
281 {"lro_aggregated_pkts"},
282 {"lro_flush_both_count"},
283 {"lro_out_of_sequence_pkts"},
284 {"lro_flush_due_to_max_pkts"},
285 {"lro_avg_aggr_pkts"},
286 {"mem_alloc_fail_cnt"},
287 {"pci_map_fail_cnt"},
288 {"watchdog_timer_cnt"},
289 {"mem_allocated"},
290 {"mem_freed"},
291 {"link_up_cnt"},
292 {"link_down_cnt"},
293 {"link_up_time"},
294 {"link_down_time"},
295 {"tx_tcode_buf_abort_cnt"},
296 {"tx_tcode_desc_abort_cnt"},
297 {"tx_tcode_parity_err_cnt"},
298 {"tx_tcode_link_loss_cnt"},
299 {"tx_tcode_list_proc_err_cnt"},
300 {"rx_tcode_parity_err_cnt"},
301 {"rx_tcode_abort_cnt"},
302 {"rx_tcode_parity_abort_cnt"},
303 {"rx_tcode_rda_fail_cnt"},
304 {"rx_tcode_unkn_prot_cnt"},
305 {"rx_tcode_fcs_err_cnt"},
306 {"rx_tcode_buf_size_err_cnt"},
307 {"rx_tcode_rxd_corrupt_cnt"},
308 {"rx_tcode_unkn_err_cnt"},
8116f3cf
SS
309 {"tda_err_cnt"},
310 {"pfc_err_cnt"},
311 {"pcc_err_cnt"},
312 {"tti_err_cnt"},
313 {"tpa_err_cnt"},
314 {"sm_err_cnt"},
315 {"lso_err_cnt"},
316 {"mac_tmac_err_cnt"},
317 {"mac_rmac_err_cnt"},
318 {"xgxs_txgxs_err_cnt"},
319 {"xgxs_rxgxs_err_cnt"},
320 {"rc_err_cnt"},
321 {"prc_pcix_err_cnt"},
322 {"rpa_err_cnt"},
323 {"rda_err_cnt"},
324 {"rti_err_cnt"},
325 {"mc_err_cnt"}
1da177e4
LT
326};
327
4c3616cd
AMR
328#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
329#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
330#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
fa1f0cb3 331
d44570e4
JP
332#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
fa1f0cb3 334
d44570e4
JP
335#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
1da177e4 337
4c3616cd 338#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
d44570e4 339#define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
1da177e4 340
d44570e4
JP
341#define S2IO_TIMER_CONF(timer, handle, arg, exp) \
342 init_timer(&timer); \
343 timer.function = handle; \
344 timer.data = (unsigned long)arg; \
345 mod_timer(&timer, (jiffies + exp)) \
25fff88e 346
2fd37688
SS
347/* copy mac addr to def_mac_addr array */
348static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
349{
350 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
351 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
352 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
353 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
354 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
355 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
356}
04025095 357
20346722 358/*
1da177e4
LT
359 * Constants to be programmed into the Xena's registers, to configure
360 * the XAUI.
361 */
362
1da177e4 363#define END_SIGN 0x0
f71e1309 364static const u64 herc_act_dtx_cfg[] = {
541ae68f 365 /* Set address */
e960fc5c 366 0x8000051536750000ULL, 0x80000515367500E0ULL,
541ae68f 367 /* Write data */
e960fc5c 368 0x8000051536750004ULL, 0x80000515367500E4ULL,
541ae68f
K
369 /* Set address */
370 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
371 /* Write data */
372 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
373 /* Set address */
e960fc5c 374 0x801205150D440000ULL, 0x801205150D4400E0ULL,
375 /* Write data */
376 0x801205150D440004ULL, 0x801205150D4400E4ULL,
377 /* Set address */
541ae68f
K
378 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
379 /* Write data */
380 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
381 /* Done */
382 END_SIGN
383};
384
f71e1309 385static const u64 xena_dtx_cfg[] = {
c92ca04b 386 /* Set address */
1da177e4 387 0x8000051500000000ULL, 0x80000515000000E0ULL,
c92ca04b
AR
388 /* Write data */
389 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
390 /* Set address */
391 0x8001051500000000ULL, 0x80010515000000E0ULL,
392 /* Write data */
393 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
394 /* Set address */
1da177e4 395 0x8002051500000000ULL, 0x80020515000000E0ULL,
c92ca04b
AR
396 /* Write data */
397 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
1da177e4
LT
398 END_SIGN
399};
400
20346722 401/*
1da177e4
LT
402 * Constants for Fixing the MacAddress problem seen mostly on
403 * Alpha machines.
404 */
f71e1309 405static const u64 fix_mac[] = {
1da177e4
LT
406 0x0060000000000000ULL, 0x0060600000000000ULL,
407 0x0040600000000000ULL, 0x0000600000000000ULL,
408 0x0020600000000000ULL, 0x0060600000000000ULL,
409 0x0020600000000000ULL, 0x0060600000000000ULL,
410 0x0020600000000000ULL, 0x0060600000000000ULL,
411 0x0020600000000000ULL, 0x0060600000000000ULL,
412 0x0020600000000000ULL, 0x0060600000000000ULL,
413 0x0020600000000000ULL, 0x0060600000000000ULL,
414 0x0020600000000000ULL, 0x0060600000000000ULL,
415 0x0020600000000000ULL, 0x0060600000000000ULL,
416 0x0020600000000000ULL, 0x0060600000000000ULL,
417 0x0020600000000000ULL, 0x0060600000000000ULL,
418 0x0020600000000000ULL, 0x0000600000000000ULL,
419 0x0040600000000000ULL, 0x0060600000000000ULL,
420 END_SIGN
421};
422
b41477f3
AR
423MODULE_LICENSE("GPL");
424MODULE_VERSION(DRV_VERSION);
425
426
1da177e4 427/* Module Loadable parameters. */
6cfc482b 428S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
b41477f3 429S2IO_PARM_INT(rx_ring_num, 1);
3a3d5756 430S2IO_PARM_INT(multiq, 0);
b41477f3
AR
431S2IO_PARM_INT(rx_ring_mode, 1);
432S2IO_PARM_INT(use_continuous_tx_intrs, 1);
433S2IO_PARM_INT(rmac_pause_time, 0x100);
434S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
435S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
436S2IO_PARM_INT(shared_splits, 0);
437S2IO_PARM_INT(tmac_util_period, 5);
438S2IO_PARM_INT(rmac_util_period, 5);
b41477f3 439S2IO_PARM_INT(l3l4hdr_size, 128);
6cfc482b
SH
440/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
441S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
303bcb4b 442/* Frequency of Rx desc syncs expressed as power of 2 */
b41477f3 443S2IO_PARM_INT(rxsync_frequency, 3);
eccb8628 444/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
8abc4d5b 445S2IO_PARM_INT(intr_type, 2);
7d3d0439 446/* Large receive offload feature */
43b7c451 447
7d3d0439
RA
448/* Max pkts to be aggregated by LRO at one time. If not specified,
449 * aggregation happens until we hit max IP pkt size(64K)
450 */
b41477f3 451S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
b41477f3 452S2IO_PARM_INT(indicate_max_pkts, 0);
db874e65
SS
453
454S2IO_PARM_INT(napi, 1);
455S2IO_PARM_INT(ufo, 0);
926930b2 456S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
b41477f3
AR
457
458static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
d44570e4 459{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
b41477f3 460static unsigned int rx_ring_sz[MAX_RX_RINGS] =
d44570e4 461{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
b41477f3 462static unsigned int rts_frm_len[MAX_RX_RINGS] =
d44570e4 463{[0 ...(MAX_RX_RINGS - 1)] = 0 };
b41477f3
AR
464
465module_param_array(tx_fifo_len, uint, NULL, 0);
466module_param_array(rx_ring_sz, uint, NULL, 0);
467module_param_array(rts_frm_len, uint, NULL, 0);
1da177e4 468
20346722 469/*
1da177e4 470 * S2IO device table.
20346722 471 * This table lists all the devices that this driver supports.
1da177e4 472 */
a3aa1884 473static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
1da177e4
LT
474 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
475 PCI_ANY_ID, PCI_ANY_ID},
476 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
477 PCI_ANY_ID, PCI_ANY_ID},
478 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
d44570e4
JP
479 PCI_ANY_ID, PCI_ANY_ID},
480 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
481 PCI_ANY_ID, PCI_ANY_ID},
1da177e4
LT
482 {0,}
483};
484
485MODULE_DEVICE_TABLE(pci, s2io_tbl);
486
3646f0e5 487static const struct pci_error_handlers s2io_err_handler = {
d796fdb7
LV
488 .error_detected = s2io_io_error_detected,
489 .slot_reset = s2io_io_slot_reset,
490 .resume = s2io_io_resume,
491};
492
1da177e4 493static struct pci_driver s2io_driver = {
d44570e4
JP
494 .name = "S2IO",
495 .id_table = s2io_tbl,
496 .probe = s2io_init_nic,
3a036ce5 497 .remove = s2io_rem_nic,
d44570e4 498 .err_handler = &s2io_err_handler,
1da177e4
LT
499};
500
501/* A simplifier macro used both by init and free shared_mem Fns(). */
502#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
503
3a3d5756
SH
504/* netqueue manipulation helper functions */
505static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
506{
fd2ea0a7
DM
507 if (!sp->config.multiq) {
508 int i;
509
3a3d5756
SH
510 for (i = 0; i < sp->config.tx_fifo_num; i++)
511 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
3a3d5756 512 }
fd2ea0a7 513 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
514}
515
516static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
517{
fd2ea0a7 518 if (!sp->config.multiq)
3a3d5756
SH
519 sp->mac_control.fifos[fifo_no].queue_state =
520 FIFO_QUEUE_STOP;
fd2ea0a7
DM
521
522 netif_tx_stop_all_queues(sp->dev);
3a3d5756
SH
523}
524
525static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
526{
fd2ea0a7
DM
527 if (!sp->config.multiq) {
528 int i;
529
3a3d5756
SH
530 for (i = 0; i < sp->config.tx_fifo_num; i++)
531 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 532 }
fd2ea0a7 533 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
534}
535
536static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
537{
fd2ea0a7 538 if (!sp->config.multiq)
3a3d5756
SH
539 sp->mac_control.fifos[fifo_no].queue_state =
540 FIFO_QUEUE_START;
fd2ea0a7
DM
541
542 netif_tx_start_all_queues(sp->dev);
3a3d5756
SH
543}
544
545static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
546{
fd2ea0a7
DM
547 if (!sp->config.multiq) {
548 int i;
549
3a3d5756
SH
550 for (i = 0; i < sp->config.tx_fifo_num; i++)
551 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
3a3d5756 552 }
fd2ea0a7 553 netif_tx_wake_all_queues(sp->dev);
3a3d5756
SH
554}
555
556static inline void s2io_wake_tx_queue(
557 struct fifo_info *fifo, int cnt, u8 multiq)
558{
559
3a3d5756
SH
560 if (multiq) {
561 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
562 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
b19fa1fa 563 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
564 if (netif_queue_stopped(fifo->dev)) {
565 fifo->queue_state = FIFO_QUEUE_START;
566 netif_wake_queue(fifo->dev);
567 }
568 }
569}
570
1da177e4
LT
571/**
572 * init_shared_mem - Allocation and Initialization of Memory
573 * @nic: Device private variable.
20346722
K
574 * Description: The function allocates all the memory areas shared
575 * between the NIC and the driver. This includes Tx descriptors,
1da177e4
LT
576 * Rx descriptors and the statistics block.
577 */
578
579static int init_shared_mem(struct s2io_nic *nic)
580{
581 u32 size;
582 void *tmp_v_addr, *tmp_v_addr_next;
583 dma_addr_t tmp_p_addr, tmp_p_addr_next;
1ee6dd77 584 struct RxD_block *pre_rxd_blk = NULL;
372cc597 585 int i, j, blk_cnt;
1da177e4
LT
586 int lst_size, lst_per_page;
587 struct net_device *dev = nic->dev;
8ae418cf 588 unsigned long tmp;
1ee6dd77 589 struct buffAdd *ba;
ffb5df6c
JP
590 struct config_param *config = &nic->config;
591 struct mac_info *mac_control = &nic->mac_control;
491976b2 592 unsigned long long mem_allocated = 0;
1da177e4 593
13d866a9 594 /* Allocation and initialization of TXDLs in FIFOs */
1da177e4
LT
595 size = 0;
596 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
597 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
598
599 size += tx_cfg->fifo_len;
1da177e4
LT
600 }
601 if (size > MAX_AVAILABLE_TXDS) {
9e39f7c5
JP
602 DBG_PRINT(ERR_DBG,
603 "Too many TxDs requested: %d, max supported: %d\n",
604 size, MAX_AVAILABLE_TXDS);
b41477f3 605 return -EINVAL;
1da177e4
LT
606 }
607
2fda096d
SR
608 size = 0;
609 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
610 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
611
612 size = tx_cfg->fifo_len;
2fda096d
SR
613 /*
614 * Legal values are from 2 to 8192
615 */
616 if (size < 2) {
9e39f7c5
JP
617 DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
618 "Valid lengths are 2 through 8192\n",
619 i, size);
2fda096d
SR
620 return -EINVAL;
621 }
622 }
623
1ee6dd77 624 lst_size = (sizeof(struct TxD) * config->max_txds);
1da177e4
LT
625 lst_per_page = PAGE_SIZE / lst_size;
626
627 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
628 struct fifo_info *fifo = &mac_control->fifos[i];
629 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
630 int fifo_len = tx_cfg->fifo_len;
1ee6dd77 631 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
13d866a9
JP
632
633 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
634 if (!fifo->list_info) {
d44570e4 635 DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
1da177e4
LT
636 return -ENOMEM;
637 }
491976b2 638 mem_allocated += list_holder_size;
1da177e4
LT
639 }
640 for (i = 0; i < config->tx_fifo_num; i++) {
641 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
642 lst_per_page);
13d866a9
JP
643 struct fifo_info *fifo = &mac_control->fifos[i];
644 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
645
646 fifo->tx_curr_put_info.offset = 0;
647 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
648 fifo->tx_curr_get_info.offset = 0;
649 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
650 fifo->fifo_no = i;
651 fifo->nic = nic;
652 fifo->max_txds = MAX_SKB_FRAGS + 2;
653 fifo->dev = dev;
20346722 654
1da177e4
LT
655 for (j = 0; j < page_num; j++) {
656 int k = 0;
657 dma_addr_t tmp_p;
658 void *tmp_v;
659 tmp_v = pci_alloc_consistent(nic->pdev,
660 PAGE_SIZE, &tmp_p);
661 if (!tmp_v) {
9e39f7c5
JP
662 DBG_PRINT(INFO_DBG,
663 "pci_alloc_consistent failed for TxDL\n");
1da177e4
LT
664 return -ENOMEM;
665 }
776bd20f 666 /* If we got a zero DMA address(can happen on
667 * certain platforms like PPC), reallocate.
668 * Store virtual address of page we don't want,
669 * to be freed later.
670 */
671 if (!tmp_p) {
672 mac_control->zerodma_virt_addr = tmp_v;
6aa20a22 673 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
674 "%s: Zero DMA address for TxDL. "
675 "Virtual address %p\n",
676 dev->name, tmp_v);
776bd20f 677 tmp_v = pci_alloc_consistent(nic->pdev,
d44570e4 678 PAGE_SIZE, &tmp_p);
776bd20f 679 if (!tmp_v) {
0c61ed5f 680 DBG_PRINT(INFO_DBG,
9e39f7c5 681 "pci_alloc_consistent failed for TxDL\n");
776bd20f 682 return -ENOMEM;
683 }
491976b2 684 mem_allocated += PAGE_SIZE;
776bd20f 685 }
1da177e4
LT
686 while (k < lst_per_page) {
687 int l = (j * lst_per_page) + k;
13d866a9 688 if (l == tx_cfg->fifo_len)
20346722 689 break;
13d866a9 690 fifo->list_info[l].list_virt_addr =
d44570e4 691 tmp_v + (k * lst_size);
13d866a9 692 fifo->list_info[l].list_phy_addr =
d44570e4 693 tmp_p + (k * lst_size);
1da177e4
LT
694 k++;
695 }
696 }
697 }
1da177e4 698
2fda096d 699 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
700 struct fifo_info *fifo = &mac_control->fifos[i];
701 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
702
703 size = tx_cfg->fifo_len;
704 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
705 if (!fifo->ufo_in_band_v)
2fda096d
SR
706 return -ENOMEM;
707 mem_allocated += (size * sizeof(u64));
708 }
fed5eccd 709
1da177e4
LT
710 /* Allocation and initialization of RXDs in Rings */
711 size = 0;
712 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
713 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
714 struct ring_info *ring = &mac_control->rings[i];
715
716 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
9e39f7c5
JP
717 DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
718 "multiple of RxDs per Block\n",
719 dev->name, i);
1da177e4
LT
720 return FAILURE;
721 }
13d866a9
JP
722 size += rx_cfg->num_rxd;
723 ring->block_count = rx_cfg->num_rxd /
d44570e4 724 (rxd_count[nic->rxd_mode] + 1);
13d866a9 725 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
1da177e4 726 }
da6971d8 727 if (nic->rxd_mode == RXD_MODE_1)
1ee6dd77 728 size = (size * (sizeof(struct RxD1)));
da6971d8 729 else
1ee6dd77 730 size = (size * (sizeof(struct RxD3)));
1da177e4
LT
731
732 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
733 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
734 struct ring_info *ring = &mac_control->rings[i];
735
736 ring->rx_curr_get_info.block_index = 0;
737 ring->rx_curr_get_info.offset = 0;
738 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
739 ring->rx_curr_put_info.block_index = 0;
740 ring->rx_curr_put_info.offset = 0;
741 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
742 ring->nic = nic;
743 ring->ring_no = i;
13d866a9
JP
744
745 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
1da177e4
LT
746 /* Allocating all the Rx blocks */
747 for (j = 0; j < blk_cnt; j++) {
1ee6dd77 748 struct rx_block_info *rx_blocks;
da6971d8
AR
749 int l;
750
13d866a9 751 rx_blocks = &ring->rx_blocks[j];
d44570e4 752 size = SIZE_OF_BLOCK; /* size is always page size */
1da177e4
LT
753 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
754 &tmp_p_addr);
755 if (tmp_v_addr == NULL) {
756 /*
20346722
K
757 * In case of failure, free_shared_mem()
758 * is called, which should free any
759 * memory that was alloced till the
1da177e4
LT
760 * failure happened.
761 */
da6971d8 762 rx_blocks->block_virt_addr = tmp_v_addr;
1da177e4
LT
763 return -ENOMEM;
764 }
491976b2 765 mem_allocated += size;
1da177e4 766 memset(tmp_v_addr, 0, size);
4f870320
JP
767
768 size = sizeof(struct rxd_info) *
769 rxd_count[nic->rxd_mode];
da6971d8
AR
770 rx_blocks->block_virt_addr = tmp_v_addr;
771 rx_blocks->block_dma_addr = tmp_p_addr;
4f870320 772 rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
372cc597
SS
773 if (!rx_blocks->rxds)
774 return -ENOMEM;
4f870320 775 mem_allocated += size;
d44570e4 776 for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
da6971d8
AR
777 rx_blocks->rxds[l].virt_addr =
778 rx_blocks->block_virt_addr +
779 (rxd_size[nic->rxd_mode] * l);
780 rx_blocks->rxds[l].dma_addr =
781 rx_blocks->block_dma_addr +
782 (rxd_size[nic->rxd_mode] * l);
783 }
1da177e4
LT
784 }
785 /* Interlinking all Rx Blocks */
786 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
787 int next = (j + 1) % blk_cnt;
788 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
789 tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
790 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
791 tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
1da177e4 792
43d620c8 793 pre_rxd_blk = tmp_v_addr;
1da177e4 794 pre_rxd_blk->reserved_2_pNext_RxD_block =
d44570e4 795 (unsigned long)tmp_v_addr_next;
1da177e4 796 pre_rxd_blk->pNext_RxD_Blk_physical =
d44570e4 797 (u64)tmp_p_addr_next;
1da177e4
LT
798 }
799 }
6d517a27 800 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
801 /*
802 * Allocation of Storages for buffer addresses in 2BUFF mode
803 * and the buffers as well.
804 */
805 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
806 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
807 struct ring_info *ring = &mac_control->rings[i];
808
809 blk_cnt = rx_cfg->num_rxd /
d44570e4 810 (rxd_count[nic->rxd_mode] + 1);
4f870320
JP
811 size = sizeof(struct buffAdd *) * blk_cnt;
812 ring->ba = kmalloc(size, GFP_KERNEL);
13d866a9 813 if (!ring->ba)
1da177e4 814 return -ENOMEM;
4f870320 815 mem_allocated += size;
da6971d8
AR
816 for (j = 0; j < blk_cnt; j++) {
817 int k = 0;
4f870320
JP
818
819 size = sizeof(struct buffAdd) *
820 (rxd_count[nic->rxd_mode] + 1);
821 ring->ba[j] = kmalloc(size, GFP_KERNEL);
13d866a9 822 if (!ring->ba[j])
1da177e4 823 return -ENOMEM;
4f870320 824 mem_allocated += size;
da6971d8 825 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 826 ba = &ring->ba[j][k];
4f870320
JP
827 size = BUF0_LEN + ALIGN_SIZE;
828 ba->ba_0_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
829 if (!ba->ba_0_org)
830 return -ENOMEM;
4f870320 831 mem_allocated += size;
da6971d8
AR
832 tmp = (unsigned long)ba->ba_0_org;
833 tmp += ALIGN_SIZE;
d44570e4
JP
834 tmp &= ~((unsigned long)ALIGN_SIZE);
835 ba->ba_0 = (void *)tmp;
da6971d8 836
4f870320
JP
837 size = BUF1_LEN + ALIGN_SIZE;
838 ba->ba_1_org = kmalloc(size, GFP_KERNEL);
da6971d8
AR
839 if (!ba->ba_1_org)
840 return -ENOMEM;
4f870320 841 mem_allocated += size;
d44570e4 842 tmp = (unsigned long)ba->ba_1_org;
da6971d8 843 tmp += ALIGN_SIZE;
d44570e4
JP
844 tmp &= ~((unsigned long)ALIGN_SIZE);
845 ba->ba_1 = (void *)tmp;
da6971d8
AR
846 k++;
847 }
1da177e4
LT
848 }
849 }
850 }
1da177e4
LT
851
852 /* Allocation and initialization of Statistics block */
1ee6dd77 853 size = sizeof(struct stat_block);
d44570e4
JP
854 mac_control->stats_mem =
855 pci_alloc_consistent(nic->pdev, size,
856 &mac_control->stats_mem_phy);
1da177e4
LT
857
858 if (!mac_control->stats_mem) {
20346722
K
859 /*
860 * In case of failure, free_shared_mem() is called, which
861 * should free any memory that was alloced till the
1da177e4
LT
862 * failure happened.
863 */
864 return -ENOMEM;
865 }
491976b2 866 mem_allocated += size;
1da177e4
LT
867 mac_control->stats_mem_sz = size;
868
869 tmp_v_addr = mac_control->stats_mem;
43d620c8 870 mac_control->stats_info = tmp_v_addr;
1da177e4 871 memset(tmp_v_addr, 0, size);
3a22813a
BL
872 DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
873 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
491976b2 874 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
1da177e4
LT
875 return SUCCESS;
876}
877
20346722
K
878/**
879 * free_shared_mem - Free the allocated Memory
1da177e4
LT
880 * @nic: Device private variable.
881 * Description: This function is to free all memory locations allocated by
882 * the init_shared_mem() function and return it to the kernel.
883 */
884
885static void free_shared_mem(struct s2io_nic *nic)
886{
887 int i, j, blk_cnt, size;
888 void *tmp_v_addr;
889 dma_addr_t tmp_p_addr;
1da177e4 890 int lst_size, lst_per_page;
8910b49f 891 struct net_device *dev;
491976b2 892 int page_num = 0;
ffb5df6c
JP
893 struct config_param *config;
894 struct mac_info *mac_control;
895 struct stat_block *stats;
896 struct swStat *swstats;
1da177e4
LT
897
898 if (!nic)
899 return;
900
8910b49f
MG
901 dev = nic->dev;
902
1da177e4 903 config = &nic->config;
ffb5df6c
JP
904 mac_control = &nic->mac_control;
905 stats = mac_control->stats_info;
906 swstats = &stats->sw_stat;
1da177e4 907
d44570e4 908 lst_size = sizeof(struct TxD) * config->max_txds;
1da177e4
LT
909 lst_per_page = PAGE_SIZE / lst_size;
910
911 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
912 struct fifo_info *fifo = &mac_control->fifos[i];
913 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
914
915 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
1da177e4
LT
916 for (j = 0; j < page_num; j++) {
917 int mem_blks = (j * lst_per_page);
13d866a9
JP
918 struct list_info_hold *fli;
919
920 if (!fifo->list_info)
6aa20a22 921 return;
13d866a9
JP
922
923 fli = &fifo->list_info[mem_blks];
924 if (!fli->list_virt_addr)
1da177e4
LT
925 break;
926 pci_free_consistent(nic->pdev, PAGE_SIZE,
13d866a9
JP
927 fli->list_virt_addr,
928 fli->list_phy_addr);
ffb5df6c 929 swstats->mem_freed += PAGE_SIZE;
1da177e4 930 }
776bd20f 931 /* If we got a zero DMA address during allocation,
932 * free the page now
933 */
934 if (mac_control->zerodma_virt_addr) {
935 pci_free_consistent(nic->pdev, PAGE_SIZE,
936 mac_control->zerodma_virt_addr,
937 (dma_addr_t)0);
6aa20a22 938 DBG_PRINT(INIT_DBG,
9e39f7c5
JP
939 "%s: Freeing TxDL with zero DMA address. "
940 "Virtual address %p\n",
941 dev->name, mac_control->zerodma_virt_addr);
ffb5df6c 942 swstats->mem_freed += PAGE_SIZE;
776bd20f 943 }
13d866a9 944 kfree(fifo->list_info);
82c2d023 945 swstats->mem_freed += tx_cfg->fifo_len *
d44570e4 946 sizeof(struct list_info_hold);
1da177e4
LT
947 }
948
1da177e4 949 size = SIZE_OF_BLOCK;
1da177e4 950 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
951 struct ring_info *ring = &mac_control->rings[i];
952
953 blk_cnt = ring->block_count;
1da177e4 954 for (j = 0; j < blk_cnt; j++) {
13d866a9
JP
955 tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
956 tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1da177e4
LT
957 if (tmp_v_addr == NULL)
958 break;
959 pci_free_consistent(nic->pdev, size,
960 tmp_v_addr, tmp_p_addr);
ffb5df6c 961 swstats->mem_freed += size;
13d866a9 962 kfree(ring->rx_blocks[j].rxds);
ffb5df6c
JP
963 swstats->mem_freed += sizeof(struct rxd_info) *
964 rxd_count[nic->rxd_mode];
1da177e4
LT
965 }
966 }
967
6d517a27 968 if (nic->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
969 /* Freeing buffer storage addresses in 2BUFF mode. */
970 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
971 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
972 struct ring_info *ring = &mac_control->rings[i];
973
974 blk_cnt = rx_cfg->num_rxd /
975 (rxd_count[nic->rxd_mode] + 1);
da6971d8
AR
976 for (j = 0; j < blk_cnt; j++) {
977 int k = 0;
13d866a9 978 if (!ring->ba[j])
da6971d8
AR
979 continue;
980 while (k != rxd_count[nic->rxd_mode]) {
13d866a9 981 struct buffAdd *ba = &ring->ba[j][k];
da6971d8 982 kfree(ba->ba_0_org);
ffb5df6c
JP
983 swstats->mem_freed +=
984 BUF0_LEN + ALIGN_SIZE;
da6971d8 985 kfree(ba->ba_1_org);
ffb5df6c
JP
986 swstats->mem_freed +=
987 BUF1_LEN + ALIGN_SIZE;
da6971d8
AR
988 k++;
989 }
13d866a9 990 kfree(ring->ba[j]);
ffb5df6c
JP
991 swstats->mem_freed += sizeof(struct buffAdd) *
992 (rxd_count[nic->rxd_mode] + 1);
1da177e4 993 }
13d866a9 994 kfree(ring->ba);
ffb5df6c
JP
995 swstats->mem_freed += sizeof(struct buffAdd *) *
996 blk_cnt;
1da177e4 997 }
1da177e4 998 }
1da177e4 999
2fda096d 1000 for (i = 0; i < nic->config.tx_fifo_num; i++) {
13d866a9
JP
1001 struct fifo_info *fifo = &mac_control->fifos[i];
1002 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1003
1004 if (fifo->ufo_in_band_v) {
ffb5df6c
JP
1005 swstats->mem_freed += tx_cfg->fifo_len *
1006 sizeof(u64);
13d866a9 1007 kfree(fifo->ufo_in_band_v);
2fda096d
SR
1008 }
1009 }
1010
1da177e4 1011 if (mac_control->stats_mem) {
ffb5df6c 1012 swstats->mem_freed += mac_control->stats_mem_sz;
1da177e4
LT
1013 pci_free_consistent(nic->pdev,
1014 mac_control->stats_mem_sz,
1015 mac_control->stats_mem,
1016 mac_control->stats_mem_phy);
491976b2 1017 }
1da177e4
LT
1018}
1019
541ae68f
K
1020/**
1021 * s2io_verify_pci_mode -
1022 */
1023
1ee6dd77 1024static int s2io_verify_pci_mode(struct s2io_nic *nic)
541ae68f 1025{
1ee6dd77 1026 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1027 register u64 val64 = 0;
1028 int mode;
1029
1030 val64 = readq(&bar0->pci_mode);
1031 mode = (u8)GET_PCI_MODE(val64);
1032
d44570e4 1033 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f
K
1034 return -1; /* Unknown PCI mode */
1035 return mode;
1036}
1037
c92ca04b
AR
1038#define NEC_VENID 0x1033
1039#define NEC_DEVID 0x0125
1040static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1041{
1042 struct pci_dev *tdev = NULL;
008d845c 1043 for_each_pci_dev(tdev) {
26d36b64 1044 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
7ad62dbc 1045 if (tdev->bus == s2io_pdev->bus->parent) {
26d36b64 1046 pci_dev_put(tdev);
c92ca04b 1047 return 1;
7ad62dbc 1048 }
c92ca04b
AR
1049 }
1050 }
1051 return 0;
1052}
541ae68f 1053
7b32a312 1054static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
541ae68f
K
1055/**
1056 * s2io_print_pci_mode -
1057 */
1ee6dd77 1058static int s2io_print_pci_mode(struct s2io_nic *nic)
541ae68f 1059{
1ee6dd77 1060 struct XENA_dev_config __iomem *bar0 = nic->bar0;
541ae68f
K
1061 register u64 val64 = 0;
1062 int mode;
1063 struct config_param *config = &nic->config;
9e39f7c5 1064 const char *pcimode;
541ae68f
K
1065
1066 val64 = readq(&bar0->pci_mode);
1067 mode = (u8)GET_PCI_MODE(val64);
1068
d44570e4 1069 if (val64 & PCI_MODE_UNKNOWN_MODE)
541ae68f
K
1070 return -1; /* Unknown PCI mode */
1071
c92ca04b
AR
1072 config->bus_speed = bus_speed[mode];
1073
1074 if (s2io_on_nec_bridge(nic->pdev)) {
1075 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
d44570e4 1076 nic->dev->name);
c92ca04b
AR
1077 return mode;
1078 }
1079
d44570e4
JP
1080 switch (mode) {
1081 case PCI_MODE_PCI_33:
9e39f7c5 1082 pcimode = "33MHz PCI bus";
d44570e4
JP
1083 break;
1084 case PCI_MODE_PCI_66:
9e39f7c5 1085 pcimode = "66MHz PCI bus";
d44570e4
JP
1086 break;
1087 case PCI_MODE_PCIX_M1_66:
9e39f7c5 1088 pcimode = "66MHz PCIX(M1) bus";
d44570e4
JP
1089 break;
1090 case PCI_MODE_PCIX_M1_100:
9e39f7c5 1091 pcimode = "100MHz PCIX(M1) bus";
d44570e4
JP
1092 break;
1093 case PCI_MODE_PCIX_M1_133:
9e39f7c5 1094 pcimode = "133MHz PCIX(M1) bus";
d44570e4
JP
1095 break;
1096 case PCI_MODE_PCIX_M2_66:
9e39f7c5 1097 pcimode = "133MHz PCIX(M2) bus";
d44570e4
JP
1098 break;
1099 case PCI_MODE_PCIX_M2_100:
9e39f7c5 1100 pcimode = "200MHz PCIX(M2) bus";
d44570e4
JP
1101 break;
1102 case PCI_MODE_PCIX_M2_133:
9e39f7c5 1103 pcimode = "266MHz PCIX(M2) bus";
d44570e4
JP
1104 break;
1105 default:
9e39f7c5
JP
1106 pcimode = "unsupported bus!";
1107 mode = -1;
541ae68f
K
1108 }
1109
9e39f7c5
JP
1110 DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1111 nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1112
541ae68f
K
1113 return mode;
1114}
1115
b7c5678f
RV
1116/**
1117 * init_tti - Initialization transmit traffic interrupt scheme
1118 * @nic: device private variable
1119 * @link: link status (UP/DOWN) used to enable/disable continuous
1120 * transmit interrupts
1121 * Description: The function configures transmit traffic interrupts
1122 * Return Value: SUCCESS on success and
1123 * '-1' on failure
1124 */
1125
0d66afe7 1126static int init_tti(struct s2io_nic *nic, int link)
b7c5678f
RV
1127{
1128 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1129 register u64 val64 = 0;
1130 int i;
ffb5df6c 1131 struct config_param *config = &nic->config;
b7c5678f
RV
1132
1133 for (i = 0; i < config->tx_fifo_num; i++) {
1134 /*
1135 * TTI Initialization. Default Tx timer gets us about
1136 * 250 interrupts per sec. Continuous interrupts are enabled
1137 * by default.
1138 */
1139 if (nic->device_type == XFRAME_II_DEVICE) {
1140 int count = (nic->config.bus_speed * 125)/2;
1141 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1142 } else
1143 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1144
1145 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
d44570e4
JP
1146 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1147 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1148 TTI_DATA1_MEM_TX_TIMER_AC_EN;
ac731ab6
SH
1149 if (i == 0)
1150 if (use_continuous_tx_intrs && (link == LINK_UP))
1151 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
b7c5678f
RV
1152 writeq(val64, &bar0->tti_data1_mem);
1153
ac731ab6
SH
1154 if (nic->config.intr_type == MSI_X) {
1155 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1156 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1157 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1158 TTI_DATA2_MEM_TX_UFC_D(0x300);
1159 } else {
1160 if ((nic->config.tx_steering_type ==
d44570e4
JP
1161 TX_DEFAULT_STEERING) &&
1162 (config->tx_fifo_num > 1) &&
1163 (i >= nic->udp_fifo_idx) &&
1164 (i < (nic->udp_fifo_idx +
1165 nic->total_udp_fifos)))
ac731ab6
SH
1166 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1167 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1168 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1169 TTI_DATA2_MEM_TX_UFC_D(0x120);
1170 else
1171 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1172 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1173 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1174 TTI_DATA2_MEM_TX_UFC_D(0x80);
1175 }
b7c5678f
RV
1176
1177 writeq(val64, &bar0->tti_data2_mem);
1178
d44570e4
JP
1179 val64 = TTI_CMD_MEM_WE |
1180 TTI_CMD_MEM_STROBE_NEW_CMD |
1181 TTI_CMD_MEM_OFFSET(i);
b7c5678f
RV
1182 writeq(val64, &bar0->tti_command_mem);
1183
1184 if (wait_for_cmd_complete(&bar0->tti_command_mem,
d44570e4
JP
1185 TTI_CMD_MEM_STROBE_NEW_CMD,
1186 S2IO_BIT_RESET) != SUCCESS)
b7c5678f
RV
1187 return FAILURE;
1188 }
1189
1190 return SUCCESS;
1191}
1192
20346722
K
1193/**
1194 * init_nic - Initialization of hardware
b7c5678f 1195 * @nic: device private variable
20346722
K
1196 * Description: The function sequentially configures every block
1197 * of the H/W from their reset values.
1198 * Return Value: SUCCESS on success and
1da177e4
LT
1199 * '-1' on failure (endian settings incorrect).
1200 */
1201
1202static int init_nic(struct s2io_nic *nic)
1203{
1ee6dd77 1204 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
1205 struct net_device *dev = nic->dev;
1206 register u64 val64 = 0;
1207 void __iomem *add;
1208 u32 time;
1209 int i, j;
c92ca04b 1210 int dtx_cnt = 0;
1da177e4 1211 unsigned long long mem_share;
20346722 1212 int mem_size;
ffb5df6c
JP
1213 struct config_param *config = &nic->config;
1214 struct mac_info *mac_control = &nic->mac_control;
1da177e4 1215
5e25b9dd 1216 /* to set the swapper controle on the card */
d44570e4
JP
1217 if (s2io_set_swapper(nic)) {
1218 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
9f74ffde 1219 return -EIO;
1da177e4
LT
1220 }
1221
541ae68f
K
1222 /*
1223 * Herc requires EOI to be removed from reset before XGXS, so..
1224 */
1225 if (nic->device_type & XFRAME_II_DEVICE) {
1226 val64 = 0xA500000000ULL;
1227 writeq(val64, &bar0->sw_reset);
1228 msleep(500);
1229 val64 = readq(&bar0->sw_reset);
1230 }
1231
1da177e4
LT
1232 /* Remove XGXS from reset state */
1233 val64 = 0;
1234 writeq(val64, &bar0->sw_reset);
1da177e4 1235 msleep(500);
20346722 1236 val64 = readq(&bar0->sw_reset);
1da177e4 1237
7962024e
SH
1238 /* Ensure that it's safe to access registers by checking
1239 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1240 */
1241 if (nic->device_type == XFRAME_II_DEVICE) {
1242 for (i = 0; i < 50; i++) {
1243 val64 = readq(&bar0->adapter_status);
1244 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1245 break;
1246 msleep(10);
1247 }
1248 if (i == 50)
1249 return -ENODEV;
1250 }
1251
1da177e4
LT
1252 /* Enable Receiving broadcasts */
1253 add = &bar0->mac_cfg;
1254 val64 = readq(&bar0->mac_cfg);
1255 val64 |= MAC_RMAC_BCAST_ENABLE;
1256 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 1257 writel((u32)val64, add);
1da177e4
LT
1258 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1259 writel((u32) (val64 >> 32), (add + 4));
1260
1261 /* Read registers in all blocks */
1262 val64 = readq(&bar0->mac_int_mask);
1263 val64 = readq(&bar0->mc_int_mask);
1264 val64 = readq(&bar0->xgxs_int_mask);
1265
1266 /* Set MTU */
1267 val64 = dev->mtu;
1268 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1269
541ae68f
K
1270 if (nic->device_type & XFRAME_II_DEVICE) {
1271 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
303bcb4b 1272 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1da177e4 1273 &bar0->dtx_control, UF);
541ae68f
K
1274 if (dtx_cnt & 0x1)
1275 msleep(1); /* Necessary!! */
1da177e4
LT
1276 dtx_cnt++;
1277 }
541ae68f 1278 } else {
c92ca04b
AR
1279 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1280 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1281 &bar0->dtx_control, UF);
1282 val64 = readq(&bar0->dtx_control);
1283 dtx_cnt++;
1da177e4
LT
1284 }
1285 }
1286
1287 /* Tx DMA Initialization */
1288 val64 = 0;
1289 writeq(val64, &bar0->tx_fifo_partition_0);
1290 writeq(val64, &bar0->tx_fifo_partition_1);
1291 writeq(val64, &bar0->tx_fifo_partition_2);
1292 writeq(val64, &bar0->tx_fifo_partition_3);
1293
1da177e4 1294 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
1295 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1296
1297 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1298 vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1da177e4
LT
1299
1300 if (i == (config->tx_fifo_num - 1)) {
1301 if (i % 2 == 0)
1302 i++;
1303 }
1304
1305 switch (i) {
1306 case 1:
1307 writeq(val64, &bar0->tx_fifo_partition_0);
1308 val64 = 0;
b7c5678f 1309 j = 0;
1da177e4
LT
1310 break;
1311 case 3:
1312 writeq(val64, &bar0->tx_fifo_partition_1);
1313 val64 = 0;
b7c5678f 1314 j = 0;
1da177e4
LT
1315 break;
1316 case 5:
1317 writeq(val64, &bar0->tx_fifo_partition_2);
1318 val64 = 0;
b7c5678f 1319 j = 0;
1da177e4
LT
1320 break;
1321 case 7:
1322 writeq(val64, &bar0->tx_fifo_partition_3);
b7c5678f
RV
1323 val64 = 0;
1324 j = 0;
1325 break;
1326 default:
1327 j++;
1da177e4
LT
1328 break;
1329 }
1330 }
1331
5e25b9dd
K
1332 /*
1333 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1334 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1335 */
d44570e4 1336 if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
5e25b9dd
K
1337 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1338
1da177e4
LT
1339 val64 = readq(&bar0->tx_fifo_partition_0);
1340 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
d44570e4 1341 &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1da177e4 1342
20346722
K
1343 /*
1344 * Initialization of Tx_PA_CONFIG register to ignore packet
1da177e4
LT
1345 * integrity checking.
1346 */
1347 val64 = readq(&bar0->tx_pa_cfg);
d44570e4
JP
1348 val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1349 TX_PA_CFG_IGNORE_SNAP_OUI |
1350 TX_PA_CFG_IGNORE_LLC_CTRL |
1351 TX_PA_CFG_IGNORE_L2_ERR;
1da177e4
LT
1352 writeq(val64, &bar0->tx_pa_cfg);
1353
1354 /* Rx DMA intialization. */
1355 val64 = 0;
1356 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
1357 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1358
1359 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1da177e4
LT
1360 }
1361 writeq(val64, &bar0->rx_queue_priority);
1362
20346722
K
1363 /*
1364 * Allocating equal share of memory to all the
1da177e4
LT
1365 * configured Rings.
1366 */
1367 val64 = 0;
541ae68f
K
1368 if (nic->device_type & XFRAME_II_DEVICE)
1369 mem_size = 32;
1370 else
1371 mem_size = 64;
1372
1da177e4
LT
1373 for (i = 0; i < config->rx_ring_num; i++) {
1374 switch (i) {
1375 case 0:
20346722
K
1376 mem_share = (mem_size / config->rx_ring_num +
1377 mem_size % config->rx_ring_num);
1da177e4
LT
1378 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1379 continue;
1380 case 1:
20346722 1381 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1382 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1383 continue;
1384 case 2:
20346722 1385 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1386 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1387 continue;
1388 case 3:
20346722 1389 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1390 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1391 continue;
1392 case 4:
20346722 1393 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1394 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1395 continue;
1396 case 5:
20346722 1397 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1398 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1399 continue;
1400 case 6:
20346722 1401 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1402 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1403 continue;
1404 case 7:
20346722 1405 mem_share = (mem_size / config->rx_ring_num);
1da177e4
LT
1406 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1407 continue;
1408 }
1409 }
1410 writeq(val64, &bar0->rx_queue_cfg);
1411
20346722 1412 /*
5e25b9dd 1413 * Filling Tx round robin registers
b7c5678f 1414 * as per the number of FIFOs for equal scheduling priority
1da177e4 1415 */
5e25b9dd
K
1416 switch (config->tx_fifo_num) {
1417 case 1:
b7c5678f 1418 val64 = 0x0;
5e25b9dd
K
1419 writeq(val64, &bar0->tx_w_round_robin_0);
1420 writeq(val64, &bar0->tx_w_round_robin_1);
1421 writeq(val64, &bar0->tx_w_round_robin_2);
1422 writeq(val64, &bar0->tx_w_round_robin_3);
1423 writeq(val64, &bar0->tx_w_round_robin_4);
1424 break;
1425 case 2:
b7c5678f 1426 val64 = 0x0001000100010001ULL;
5e25b9dd 1427 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1428 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1429 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1430 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1431 val64 = 0x0001000100000000ULL;
5e25b9dd
K
1432 writeq(val64, &bar0->tx_w_round_robin_4);
1433 break;
1434 case 3:
b7c5678f 1435 val64 = 0x0001020001020001ULL;
5e25b9dd 1436 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1437 val64 = 0x0200010200010200ULL;
5e25b9dd 1438 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1439 val64 = 0x0102000102000102ULL;
5e25b9dd 1440 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1441 val64 = 0x0001020001020001ULL;
5e25b9dd 1442 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1443 val64 = 0x0200010200000000ULL;
5e25b9dd
K
1444 writeq(val64, &bar0->tx_w_round_robin_4);
1445 break;
1446 case 4:
b7c5678f 1447 val64 = 0x0001020300010203ULL;
5e25b9dd 1448 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1449 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1450 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1451 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1452 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1453 writeq(val64, &bar0->tx_w_round_robin_4);
1454 break;
1455 case 5:
b7c5678f 1456 val64 = 0x0001020304000102ULL;
5e25b9dd 1457 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1458 val64 = 0x0304000102030400ULL;
5e25b9dd 1459 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1460 val64 = 0x0102030400010203ULL;
5e25b9dd 1461 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1462 val64 = 0x0400010203040001ULL;
5e25b9dd 1463 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1464 val64 = 0x0203040000000000ULL;
5e25b9dd
K
1465 writeq(val64, &bar0->tx_w_round_robin_4);
1466 break;
1467 case 6:
b7c5678f 1468 val64 = 0x0001020304050001ULL;
5e25b9dd 1469 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1470 val64 = 0x0203040500010203ULL;
5e25b9dd 1471 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1472 val64 = 0x0405000102030405ULL;
5e25b9dd 1473 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1474 val64 = 0x0001020304050001ULL;
5e25b9dd 1475 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1476 val64 = 0x0203040500000000ULL;
5e25b9dd
K
1477 writeq(val64, &bar0->tx_w_round_robin_4);
1478 break;
1479 case 7:
b7c5678f 1480 val64 = 0x0001020304050600ULL;
5e25b9dd 1481 writeq(val64, &bar0->tx_w_round_robin_0);
b7c5678f 1482 val64 = 0x0102030405060001ULL;
5e25b9dd 1483 writeq(val64, &bar0->tx_w_round_robin_1);
b7c5678f 1484 val64 = 0x0203040506000102ULL;
5e25b9dd 1485 writeq(val64, &bar0->tx_w_round_robin_2);
b7c5678f 1486 val64 = 0x0304050600010203ULL;
5e25b9dd 1487 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1488 val64 = 0x0405060000000000ULL;
5e25b9dd
K
1489 writeq(val64, &bar0->tx_w_round_robin_4);
1490 break;
1491 case 8:
b7c5678f 1492 val64 = 0x0001020304050607ULL;
5e25b9dd 1493 writeq(val64, &bar0->tx_w_round_robin_0);
5e25b9dd 1494 writeq(val64, &bar0->tx_w_round_robin_1);
5e25b9dd 1495 writeq(val64, &bar0->tx_w_round_robin_2);
5e25b9dd 1496 writeq(val64, &bar0->tx_w_round_robin_3);
b7c5678f 1497 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1498 writeq(val64, &bar0->tx_w_round_robin_4);
1499 break;
1500 }
1501
b41477f3 1502 /* Enable all configured Tx FIFO partitions */
5d3213cc
AR
1503 val64 = readq(&bar0->tx_fifo_partition_0);
1504 val64 |= (TX_FIFO_PARTITION_EN);
1505 writeq(val64, &bar0->tx_fifo_partition_0);
1506
5e25b9dd 1507 /* Filling the Rx round robin registers as per the
0425b46a
SH
1508 * number of Rings and steering based on QoS with
1509 * equal priority.
1510 */
5e25b9dd
K
1511 switch (config->rx_ring_num) {
1512 case 1:
0425b46a
SH
1513 val64 = 0x0;
1514 writeq(val64, &bar0->rx_w_round_robin_0);
1515 writeq(val64, &bar0->rx_w_round_robin_1);
1516 writeq(val64, &bar0->rx_w_round_robin_2);
1517 writeq(val64, &bar0->rx_w_round_robin_3);
1518 writeq(val64, &bar0->rx_w_round_robin_4);
1519
5e25b9dd
K
1520 val64 = 0x8080808080808080ULL;
1521 writeq(val64, &bar0->rts_qos_steering);
1522 break;
1523 case 2:
0425b46a 1524 val64 = 0x0001000100010001ULL;
5e25b9dd 1525 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1526 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1527 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1528 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1529 val64 = 0x0001000100000000ULL;
5e25b9dd
K
1530 writeq(val64, &bar0->rx_w_round_robin_4);
1531
1532 val64 = 0x8080808040404040ULL;
1533 writeq(val64, &bar0->rts_qos_steering);
1534 break;
1535 case 3:
0425b46a 1536 val64 = 0x0001020001020001ULL;
5e25b9dd 1537 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1538 val64 = 0x0200010200010200ULL;
5e25b9dd 1539 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1540 val64 = 0x0102000102000102ULL;
5e25b9dd 1541 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1542 val64 = 0x0001020001020001ULL;
5e25b9dd 1543 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1544 val64 = 0x0200010200000000ULL;
5e25b9dd
K
1545 writeq(val64, &bar0->rx_w_round_robin_4);
1546
1547 val64 = 0x8080804040402020ULL;
1548 writeq(val64, &bar0->rts_qos_steering);
1549 break;
1550 case 4:
0425b46a 1551 val64 = 0x0001020300010203ULL;
5e25b9dd 1552 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1553 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1554 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1555 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1556 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1557 writeq(val64, &bar0->rx_w_round_robin_4);
1558
1559 val64 = 0x8080404020201010ULL;
1560 writeq(val64, &bar0->rts_qos_steering);
1561 break;
1562 case 5:
0425b46a 1563 val64 = 0x0001020304000102ULL;
5e25b9dd 1564 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1565 val64 = 0x0304000102030400ULL;
5e25b9dd 1566 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1567 val64 = 0x0102030400010203ULL;
5e25b9dd 1568 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1569 val64 = 0x0400010203040001ULL;
5e25b9dd 1570 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1571 val64 = 0x0203040000000000ULL;
5e25b9dd
K
1572 writeq(val64, &bar0->rx_w_round_robin_4);
1573
1574 val64 = 0x8080404020201008ULL;
1575 writeq(val64, &bar0->rts_qos_steering);
1576 break;
1577 case 6:
0425b46a 1578 val64 = 0x0001020304050001ULL;
5e25b9dd 1579 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1580 val64 = 0x0203040500010203ULL;
5e25b9dd 1581 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1582 val64 = 0x0405000102030405ULL;
5e25b9dd 1583 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1584 val64 = 0x0001020304050001ULL;
5e25b9dd 1585 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1586 val64 = 0x0203040500000000ULL;
5e25b9dd
K
1587 writeq(val64, &bar0->rx_w_round_robin_4);
1588
1589 val64 = 0x8080404020100804ULL;
1590 writeq(val64, &bar0->rts_qos_steering);
1591 break;
1592 case 7:
0425b46a 1593 val64 = 0x0001020304050600ULL;
5e25b9dd 1594 writeq(val64, &bar0->rx_w_round_robin_0);
0425b46a 1595 val64 = 0x0102030405060001ULL;
5e25b9dd 1596 writeq(val64, &bar0->rx_w_round_robin_1);
0425b46a 1597 val64 = 0x0203040506000102ULL;
5e25b9dd 1598 writeq(val64, &bar0->rx_w_round_robin_2);
0425b46a 1599 val64 = 0x0304050600010203ULL;
5e25b9dd 1600 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1601 val64 = 0x0405060000000000ULL;
5e25b9dd
K
1602 writeq(val64, &bar0->rx_w_round_robin_4);
1603
1604 val64 = 0x8080402010080402ULL;
1605 writeq(val64, &bar0->rts_qos_steering);
1606 break;
1607 case 8:
0425b46a 1608 val64 = 0x0001020304050607ULL;
5e25b9dd 1609 writeq(val64, &bar0->rx_w_round_robin_0);
5e25b9dd 1610 writeq(val64, &bar0->rx_w_round_robin_1);
5e25b9dd 1611 writeq(val64, &bar0->rx_w_round_robin_2);
5e25b9dd 1612 writeq(val64, &bar0->rx_w_round_robin_3);
0425b46a 1613 val64 = 0x0001020300000000ULL;
5e25b9dd
K
1614 writeq(val64, &bar0->rx_w_round_robin_4);
1615
1616 val64 = 0x8040201008040201ULL;
1617 writeq(val64, &bar0->rts_qos_steering);
1618 break;
1619 }
1da177e4
LT
1620
1621 /* UDP Fix */
1622 val64 = 0;
20346722 1623 for (i = 0; i < 8; i++)
1da177e4
LT
1624 writeq(val64, &bar0->rts_frm_len_n[i]);
1625
5e25b9dd
K
1626 /* Set the default rts frame length for the rings configured */
1627 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1628 for (i = 0 ; i < config->rx_ring_num ; i++)
1629 writeq(val64, &bar0->rts_frm_len_n[i]);
1630
1631 /* Set the frame length for the configured rings
1632 * desired by the user
1633 */
1634 for (i = 0; i < config->rx_ring_num; i++) {
1635 /* If rts_frm_len[i] == 0 then it is assumed that user not
1636 * specified frame length steering.
1637 * If the user provides the frame length then program
1638 * the rts_frm_len register for those values or else
1639 * leave it as it is.
1640 */
1641 if (rts_frm_len[i] != 0) {
1642 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
d44570e4 1643 &bar0->rts_frm_len_n[i]);
5e25b9dd
K
1644 }
1645 }
8a4bdbaa 1646
9fc93a41
SS
1647 /* Disable differentiated services steering logic */
1648 for (i = 0; i < 64; i++) {
1649 if (rts_ds_steer(nic, i, 0) == FAILURE) {
9e39f7c5
JP
1650 DBG_PRINT(ERR_DBG,
1651 "%s: rts_ds_steer failed on codepoint %d\n",
1652 dev->name, i);
9f74ffde 1653 return -ENODEV;
9fc93a41
SS
1654 }
1655 }
1656
20346722 1657 /* Program statistics memory */
1da177e4 1658 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1da177e4 1659
541ae68f
K
1660 if (nic->device_type == XFRAME_II_DEVICE) {
1661 val64 = STAT_BC(0x320);
1662 writeq(val64, &bar0->stat_byte_cnt);
1663 }
1664
20346722 1665 /*
1da177e4
LT
1666 * Initializing the sampling rate for the device to calculate the
1667 * bandwidth utilization.
1668 */
1669 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
d44570e4 1670 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1da177e4
LT
1671 writeq(val64, &bar0->mac_link_util);
1672
20346722
K
1673 /*
1674 * Initializing the Transmit and Receive Traffic Interrupt
1da177e4
LT
1675 * Scheme.
1676 */
1da177e4 1677
b7c5678f
RV
1678 /* Initialize TTI */
1679 if (SUCCESS != init_tti(nic, nic->last_link_state))
1680 return -ENODEV;
1da177e4 1681
8a4bdbaa
SS
1682 /* RTI Initialization */
1683 if (nic->device_type == XFRAME_II_DEVICE) {
541ae68f 1684 /*
8a4bdbaa
SS
1685 * Programmed to generate Apprx 500 Intrs per
1686 * second
1687 */
1688 int count = (nic->config.bus_speed * 125)/4;
1689 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1690 } else
1691 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1692 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
d44570e4
JP
1693 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1694 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1695 RTI_DATA1_MEM_RX_TIMER_AC_EN;
8a4bdbaa
SS
1696
1697 writeq(val64, &bar0->rti_data1_mem);
1698
1699 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1700 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1701 if (nic->config.intr_type == MSI_X)
d44570e4
JP
1702 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1703 RTI_DATA2_MEM_RX_UFC_D(0x40));
8a4bdbaa 1704 else
d44570e4
JP
1705 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1706 RTI_DATA2_MEM_RX_UFC_D(0x80));
8a4bdbaa 1707 writeq(val64, &bar0->rti_data2_mem);
1da177e4 1708
8a4bdbaa 1709 for (i = 0; i < config->rx_ring_num; i++) {
d44570e4
JP
1710 val64 = RTI_CMD_MEM_WE |
1711 RTI_CMD_MEM_STROBE_NEW_CMD |
1712 RTI_CMD_MEM_OFFSET(i);
8a4bdbaa 1713 writeq(val64, &bar0->rti_command_mem);
1da177e4 1714
8a4bdbaa
SS
1715 /*
1716 * Once the operation completes, the Strobe bit of the
1717 * command register will be reset. We poll for this
1718 * particular condition. We wait for a maximum of 500ms
1719 * for the operation to complete, if it's not complete
1720 * by then we return error.
1721 */
1722 time = 0;
f957bcf0 1723 while (true) {
8a4bdbaa
SS
1724 val64 = readq(&bar0->rti_command_mem);
1725 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1726 break;
b6e3f982 1727
8a4bdbaa 1728 if (time > 10) {
9e39f7c5 1729 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
8a4bdbaa 1730 dev->name);
9f74ffde 1731 return -ENODEV;
b6e3f982 1732 }
8a4bdbaa
SS
1733 time++;
1734 msleep(50);
1da177e4 1735 }
1da177e4
LT
1736 }
1737
20346722
K
1738 /*
1739 * Initializing proper values as Pause threshold into all
1da177e4
LT
1740 * the 8 Queues on Rx side.
1741 */
1742 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1743 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1744
1745 /* Disable RMAC PAD STRIPPING */
509a2671 1746 add = &bar0->mac_cfg;
1da177e4
LT
1747 val64 = readq(&bar0->mac_cfg);
1748 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1749 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1750 writel((u32) (val64), add);
1751 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1752 writel((u32) (val64 >> 32), (add + 4));
1753 val64 = readq(&bar0->mac_cfg);
1754
7d3d0439
RA
1755 /* Enable FCS stripping by adapter */
1756 add = &bar0->mac_cfg;
1757 val64 = readq(&bar0->mac_cfg);
1758 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1759 if (nic->device_type == XFRAME_II_DEVICE)
1760 writeq(val64, &bar0->mac_cfg);
1761 else {
1762 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1763 writel((u32) (val64), add);
1764 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1765 writel((u32) (val64 >> 32), (add + 4));
1766 }
1767
20346722
K
1768 /*
1769 * Set the time value to be inserted in the pause frame
1da177e4
LT
1770 * generated by xena.
1771 */
1772 val64 = readq(&bar0->rmac_pause_cfg);
1773 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1774 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1775 writeq(val64, &bar0->rmac_pause_cfg);
1776
20346722 1777 /*
1da177e4
LT
1778 * Set the Threshold Limit for Generating the pause frame
1779 * If the amount of data in any Queue exceeds ratio of
1780 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1781 * pause frame is generated
1782 */
1783 val64 = 0;
1784 for (i = 0; i < 4; i++) {
d44570e4
JP
1785 val64 |= (((u64)0xFF00 |
1786 nic->mac_control.mc_pause_threshold_q0q3)
1787 << (i * 2 * 8));
1da177e4
LT
1788 }
1789 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1790
1791 val64 = 0;
1792 for (i = 0; i < 4; i++) {
d44570e4
JP
1793 val64 |= (((u64)0xFF00 |
1794 nic->mac_control.mc_pause_threshold_q4q7)
1795 << (i * 2 * 8));
1da177e4
LT
1796 }
1797 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1798
20346722
K
1799 /*
1800 * TxDMA will stop Read request if the number of read split has
1da177e4
LT
1801 * exceeded the limit pointed by shared_splits
1802 */
1803 val64 = readq(&bar0->pic_control);
1804 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1805 writeq(val64, &bar0->pic_control);
1806
863c11a9
AR
1807 if (nic->config.bus_speed == 266) {
1808 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1809 writeq(0x0, &bar0->read_retry_delay);
1810 writeq(0x0, &bar0->write_retry_delay);
1811 }
1812
541ae68f
K
1813 /*
1814 * Programming the Herc to split every write transaction
1815 * that does not start on an ADB to reduce disconnects.
1816 */
1817 if (nic->device_type == XFRAME_II_DEVICE) {
19a60522
SS
1818 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1819 MISC_LINK_STABILITY_PRD(3);
863c11a9
AR
1820 writeq(val64, &bar0->misc_control);
1821 val64 = readq(&bar0->pic_control2);
b7b5a128 1822 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
863c11a9 1823 writeq(val64, &bar0->pic_control2);
541ae68f 1824 }
c92ca04b
AR
1825 if (strstr(nic->product_name, "CX4")) {
1826 val64 = TMAC_AVG_IPG(0x17);
1827 writeq(val64, &bar0->tmac_avg_ipg);
a371a07d
K
1828 }
1829
1da177e4
LT
1830 return SUCCESS;
1831}
a371a07d
K
1832#define LINK_UP_DOWN_INTERRUPT 1
1833#define MAC_RMAC_ERR_TIMER 2
1834
1ee6dd77 1835static int s2io_link_fault_indication(struct s2io_nic *nic)
a371a07d
K
1836{
1837 if (nic->device_type == XFRAME_II_DEVICE)
1838 return LINK_UP_DOWN_INTERRUPT;
1839 else
1840 return MAC_RMAC_ERR_TIMER;
1841}
8116f3cf 1842
9caab458
SS
1843/**
1844 * do_s2io_write_bits - update alarm bits in alarm register
1845 * @value: alarm bits
1846 * @flag: interrupt status
1847 * @addr: address value
1848 * Description: update alarm bits in alarm register
1849 * Return Value:
1850 * NONE.
1851 */
1852static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1853{
1854 u64 temp64;
1855
1856 temp64 = readq(addr);
1857
d44570e4
JP
1858 if (flag == ENABLE_INTRS)
1859 temp64 &= ~((u64)value);
9caab458 1860 else
d44570e4 1861 temp64 |= ((u64)value);
9caab458
SS
1862 writeq(temp64, addr);
1863}
1da177e4 1864
43b7c451 1865static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
9caab458
SS
1866{
1867 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1868 register u64 gen_int_mask = 0;
01e16faa 1869 u64 interruptible;
9caab458 1870
01e16faa 1871 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
9caab458 1872 if (mask & TX_DMA_INTR) {
9caab458
SS
1873 gen_int_mask |= TXDMA_INT_M;
1874
1875 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
d44570e4
JP
1876 TXDMA_PCC_INT | TXDMA_TTI_INT |
1877 TXDMA_LSO_INT | TXDMA_TPA_INT |
1878 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
9caab458
SS
1879
1880 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
d44570e4
JP
1881 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1882 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1883 &bar0->pfc_err_mask);
9caab458
SS
1884
1885 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
d44570e4
JP
1886 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1887 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
9caab458
SS
1888
1889 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
d44570e4
JP
1890 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1891 PCC_N_SERR | PCC_6_COF_OV_ERR |
1892 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1893 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1894 PCC_TXB_ECC_SG_ERR,
1895 flag, &bar0->pcc_err_mask);
9caab458
SS
1896
1897 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
d44570e4 1898 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
9caab458
SS
1899
1900 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
d44570e4
JP
1901 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1902 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1903 flag, &bar0->lso_err_mask);
9caab458
SS
1904
1905 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
d44570e4 1906 flag, &bar0->tpa_err_mask);
9caab458
SS
1907
1908 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
9caab458
SS
1909 }
1910
1911 if (mask & TX_MAC_INTR) {
1912 gen_int_mask |= TXMAC_INT_M;
1913 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
d44570e4 1914 &bar0->mac_int_mask);
9caab458 1915 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
d44570e4
JP
1916 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1917 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1918 flag, &bar0->mac_tmac_err_mask);
9caab458
SS
1919 }
1920
1921 if (mask & TX_XGXS_INTR) {
1922 gen_int_mask |= TXXGXS_INT_M;
1923 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
d44570e4 1924 &bar0->xgxs_int_mask);
9caab458 1925 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
d44570e4
JP
1926 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1927 flag, &bar0->xgxs_txgxs_err_mask);
9caab458
SS
1928 }
1929
1930 if (mask & RX_DMA_INTR) {
1931 gen_int_mask |= RXDMA_INT_M;
1932 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
d44570e4
JP
1933 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1934 flag, &bar0->rxdma_int_mask);
9caab458 1935 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
d44570e4
JP
1936 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1937 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1938 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
9caab458 1939 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
d44570e4
JP
1940 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1941 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1942 &bar0->prc_pcix_err_mask);
9caab458 1943 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
d44570e4
JP
1944 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1945 &bar0->rpa_err_mask);
9caab458 1946 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
d44570e4
JP
1947 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1948 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1949 RDA_FRM_ECC_SG_ERR |
1950 RDA_MISC_ERR|RDA_PCIX_ERR,
1951 flag, &bar0->rda_err_mask);
9caab458 1952 do_s2io_write_bits(RTI_SM_ERR_ALARM |
d44570e4
JP
1953 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1954 flag, &bar0->rti_err_mask);
9caab458
SS
1955 }
1956
1957 if (mask & RX_MAC_INTR) {
1958 gen_int_mask |= RXMAC_INT_M;
1959 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
d44570e4
JP
1960 &bar0->mac_int_mask);
1961 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1962 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1963 RMAC_DOUBLE_ECC_ERR);
01e16faa
SH
1964 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1965 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1966 do_s2io_write_bits(interruptible,
d44570e4 1967 flag, &bar0->mac_rmac_err_mask);
9caab458
SS
1968 }
1969
d44570e4 1970 if (mask & RX_XGXS_INTR) {
9caab458
SS
1971 gen_int_mask |= RXXGXS_INT_M;
1972 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
d44570e4 1973 &bar0->xgxs_int_mask);
9caab458 1974 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
d44570e4 1975 &bar0->xgxs_rxgxs_err_mask);
9caab458
SS
1976 }
1977
1978 if (mask & MC_INTR) {
1979 gen_int_mask |= MC_INT_M;
d44570e4
JP
1980 do_s2io_write_bits(MC_INT_MASK_MC_INT,
1981 flag, &bar0->mc_int_mask);
9caab458 1982 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
d44570e4
JP
1983 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1984 &bar0->mc_err_mask);
9caab458
SS
1985 }
1986 nic->general_int_mask = gen_int_mask;
1987
1988 /* Remove this line when alarm interrupts are enabled */
1989 nic->general_int_mask = 0;
1990}
d44570e4 1991
20346722
K
1992/**
1993 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1da177e4
LT
1994 * @nic: device private variable,
1995 * @mask: A mask indicating which Intr block must be modified and,
1996 * @flag: A flag indicating whether to enable or disable the Intrs.
1997 * Description: This function will either disable or enable the interrupts
20346722
K
1998 * depending on the flag argument. The mask argument can be used to
1999 * enable/disable any Intr block.
1da177e4
LT
2000 * Return Value: NONE.
2001 */
2002
2003static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2004{
1ee6dd77 2005 struct XENA_dev_config __iomem *bar0 = nic->bar0;
9caab458
SS
2006 register u64 temp64 = 0, intr_mask = 0;
2007
2008 intr_mask = nic->general_int_mask;
1da177e4
LT
2009
2010 /* Top level interrupt classification */
2011 /* PIC Interrupts */
9caab458 2012 if (mask & TX_PIC_INTR) {
1da177e4 2013 /* Enable PIC Intrs in the general intr mask register */
9caab458 2014 intr_mask |= TXPIC_INT_M;
1da177e4 2015 if (flag == ENABLE_INTRS) {
20346722 2016 /*
a371a07d 2017 * If Hercules adapter enable GPIO otherwise
b41477f3 2018 * disable all PCIX, Flash, MDIO, IIC and GPIO
20346722
K
2019 * interrupts for now.
2020 * TODO
1da177e4 2021 */
a371a07d 2022 if (s2io_link_fault_indication(nic) ==
d44570e4 2023 LINK_UP_DOWN_INTERRUPT) {
9caab458 2024 do_s2io_write_bits(PIC_INT_GPIO, flag,
d44570e4 2025 &bar0->pic_int_mask);
9caab458 2026 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
d44570e4 2027 &bar0->gpio_int_mask);
9caab458 2028 } else
a371a07d 2029 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4 2030 } else if (flag == DISABLE_INTRS) {
20346722
K
2031 /*
2032 * Disable PIC Intrs in the general
2033 * intr mask register
1da177e4
LT
2034 */
2035 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1da177e4
LT
2036 }
2037 }
2038
1da177e4
LT
2039 /* Tx traffic interrupts */
2040 if (mask & TX_TRAFFIC_INTR) {
9caab458 2041 intr_mask |= TXTRAFFIC_INT_M;
1da177e4 2042 if (flag == ENABLE_INTRS) {
20346722 2043 /*
1da177e4 2044 * Enable all the Tx side interrupts
20346722 2045 * writing 0 Enables all 64 TX interrupt levels
1da177e4
LT
2046 */
2047 writeq(0x0, &bar0->tx_traffic_mask);
2048 } else if (flag == DISABLE_INTRS) {
20346722
K
2049 /*
2050 * Disable Tx Traffic Intrs in the general intr mask
1da177e4
LT
2051 * register.
2052 */
2053 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1da177e4
LT
2054 }
2055 }
2056
2057 /* Rx traffic interrupts */
2058 if (mask & RX_TRAFFIC_INTR) {
9caab458 2059 intr_mask |= RXTRAFFIC_INT_M;
1da177e4 2060 if (flag == ENABLE_INTRS) {
1da177e4
LT
2061 /* writing 0 Enables all 8 RX interrupt levels */
2062 writeq(0x0, &bar0->rx_traffic_mask);
2063 } else if (flag == DISABLE_INTRS) {
20346722
K
2064 /*
2065 * Disable Rx Traffic Intrs in the general intr mask
1da177e4
LT
2066 * register.
2067 */
2068 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1da177e4
LT
2069 }
2070 }
9caab458
SS
2071
2072 temp64 = readq(&bar0->general_int_mask);
2073 if (flag == ENABLE_INTRS)
d44570e4 2074 temp64 &= ~((u64)intr_mask);
9caab458
SS
2075 else
2076 temp64 = DISABLE_ALL_INTRS;
2077 writeq(temp64, &bar0->general_int_mask);
2078
2079 nic->general_int_mask = readq(&bar0->general_int_mask);
1da177e4
LT
2080}
2081
19a60522
SS
2082/**
2083 * verify_pcc_quiescent- Checks for PCC quiescent state
2084 * Return: 1 If PCC is quiescence
2085 * 0 If PCC is not quiescence
2086 */
1ee6dd77 2087static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
20346722 2088{
19a60522 2089 int ret = 0, herc;
1ee6dd77 2090 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522 2091 u64 val64 = readq(&bar0->adapter_status);
8a4bdbaa 2092
19a60522 2093 herc = (sp->device_type == XFRAME_II_DEVICE);
20346722 2094
f957bcf0 2095 if (flag == false) {
44c10138 2096 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
19a60522 2097 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2098 ret = 1;
19a60522
SS
2099 } else {
2100 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2101 ret = 1;
20346722
K
2102 }
2103 } else {
44c10138 2104 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
5e25b9dd 2105 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
19a60522 2106 ADAPTER_STATUS_RMAC_PCC_IDLE))
5e25b9dd 2107 ret = 1;
5e25b9dd
K
2108 } else {
2109 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
19a60522 2110 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
5e25b9dd 2111 ret = 1;
20346722
K
2112 }
2113 }
2114
2115 return ret;
2116}
2117/**
2118 * verify_xena_quiescence - Checks whether the H/W is ready
1da177e4 2119 * Description: Returns whether the H/W is ready to go or not. Depending
20346722 2120 * on whether adapter enable bit was written or not the comparison
1da177e4
LT
2121 * differs and the calling function passes the input argument flag to
2122 * indicate this.
20346722 2123 * Return: 1 If xena is quiescence
1da177e4
LT
2124 * 0 If Xena is not quiescence
2125 */
2126
1ee6dd77 2127static int verify_xena_quiescence(struct s2io_nic *sp)
1da177e4 2128{
19a60522 2129 int mode;
1ee6dd77 2130 struct XENA_dev_config __iomem *bar0 = sp->bar0;
19a60522
SS
2131 u64 val64 = readq(&bar0->adapter_status);
2132 mode = s2io_verify_pci_mode(sp);
1da177e4 2133
19a60522 2134 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
9e39f7c5 2135 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
19a60522
SS
2136 return 0;
2137 }
2138 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
9e39f7c5 2139 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
19a60522
SS
2140 return 0;
2141 }
2142 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
9e39f7c5 2143 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
19a60522
SS
2144 return 0;
2145 }
2146 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
9e39f7c5 2147 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
19a60522
SS
2148 return 0;
2149 }
2150 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
9e39f7c5 2151 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
19a60522
SS
2152 return 0;
2153 }
2154 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
9e39f7c5 2155 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
19a60522
SS
2156 return 0;
2157 }
2158 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
9e39f7c5 2159 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
19a60522
SS
2160 return 0;
2161 }
2162 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
9e39f7c5 2163 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
19a60522 2164 return 0;
1da177e4
LT
2165 }
2166
19a60522
SS
2167 /*
2168 * In PCI 33 mode, the P_PLL is not used, and therefore,
2169 * the the P_PLL_LOCK bit in the adapter_status register will
2170 * not be asserted.
2171 */
2172 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
d44570e4
JP
2173 sp->device_type == XFRAME_II_DEVICE &&
2174 mode != PCI_MODE_PCI_33) {
9e39f7c5 2175 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
19a60522
SS
2176 return 0;
2177 }
2178 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
d44570e4 2179 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
9e39f7c5 2180 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
19a60522
SS
2181 return 0;
2182 }
2183 return 1;
1da177e4
LT
2184}
2185
2186/**
2187 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2188 * @sp: Pointer to device specifc structure
20346722 2189 * Description :
1da177e4
LT
2190 * New procedure to clear mac address reading problems on Alpha platforms
2191 *
2192 */
2193
d44570e4 2194static void fix_mac_address(struct s2io_nic *sp)
1da177e4 2195{
1ee6dd77 2196 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
2197 int i = 0;
2198
2199 while (fix_mac[i] != END_SIGN) {
2200 writeq(fix_mac[i++], &bar0->gpio_control);
20346722 2201 udelay(10);
d83d282b 2202 (void) readq(&bar0->gpio_control);
1da177e4
LT
2203 }
2204}
2205
2206/**
20346722 2207 * start_nic - Turns the device on
1da177e4 2208 * @nic : device private variable.
20346722
K
2209 * Description:
2210 * This function actually turns the device on. Before this function is
2211 * called,all Registers are configured from their reset states
2212 * and shared memory is allocated but the NIC is still quiescent. On
1da177e4
LT
2213 * calling this function, the device interrupts are cleared and the NIC is
2214 * literally switched on by writing into the adapter control register.
20346722 2215 * Return Value:
1da177e4
LT
2216 * SUCCESS on success and -1 on failure.
2217 */
2218
2219static int start_nic(struct s2io_nic *nic)
2220{
1ee6dd77 2221 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
2222 struct net_device *dev = nic->dev;
2223 register u64 val64 = 0;
20346722 2224 u16 subid, i;
ffb5df6c
JP
2225 struct config_param *config = &nic->config;
2226 struct mac_info *mac_control = &nic->mac_control;
1da177e4
LT
2227
2228 /* PRC Initialization and configuration */
2229 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2230 struct ring_info *ring = &mac_control->rings[i];
2231
d44570e4 2232 writeq((u64)ring->rx_blocks[0].block_dma_addr,
1da177e4
LT
2233 &bar0->prc_rxd0_n[i]);
2234
2235 val64 = readq(&bar0->prc_ctrl_n[i]);
da6971d8
AR
2236 if (nic->rxd_mode == RXD_MODE_1)
2237 val64 |= PRC_CTRL_RC_ENABLED;
2238 else
2239 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
863c11a9
AR
2240 if (nic->device_type == XFRAME_II_DEVICE)
2241 val64 |= PRC_CTRL_GROUP_READS;
2242 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2243 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1da177e4
LT
2244 writeq(val64, &bar0->prc_ctrl_n[i]);
2245 }
2246
da6971d8
AR
2247 if (nic->rxd_mode == RXD_MODE_3B) {
2248 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2249 val64 = readq(&bar0->rx_pa_cfg);
2250 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2251 writeq(val64, &bar0->rx_pa_cfg);
2252 }
1da177e4 2253
926930b2
SS
2254 if (vlan_tag_strip == 0) {
2255 val64 = readq(&bar0->rx_pa_cfg);
2256 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2257 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 2258 nic->vlan_strip_flag = 0;
926930b2
SS
2259 }
2260
20346722 2261 /*
1da177e4
LT
2262 * Enabling MC-RLDRAM. After enabling the device, we timeout
2263 * for around 100ms, which is approximately the time required
2264 * for the device to be ready for operation.
2265 */
2266 val64 = readq(&bar0->mc_rldram_mrs);
2267 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2268 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2269 val64 = readq(&bar0->mc_rldram_mrs);
2270
20346722 2271 msleep(100); /* Delay by around 100 ms. */
1da177e4
LT
2272
2273 /* Enabling ECC Protection. */
2274 val64 = readq(&bar0->adapter_control);
2275 val64 &= ~ADAPTER_ECC_EN;
2276 writeq(val64, &bar0->adapter_control);
2277
20346722
K
2278 /*
2279 * Verify if the device is ready to be enabled, if so enable
1da177e4
LT
2280 * it.
2281 */
2282 val64 = readq(&bar0->adapter_status);
19a60522 2283 if (!verify_xena_quiescence(nic)) {
9e39f7c5
JP
2284 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2285 "Adapter status reads: 0x%llx\n",
2286 dev->name, (unsigned long long)val64);
1da177e4
LT
2287 return FAILURE;
2288 }
2289
20346722 2290 /*
1da177e4 2291 * With some switches, link might be already up at this point.
20346722
K
2292 * Because of this weird behavior, when we enable laser,
2293 * we may not get link. We need to handle this. We cannot
2294 * figure out which switch is misbehaving. So we are forced to
2295 * make a global change.
1da177e4
LT
2296 */
2297
2298 /* Enabling Laser. */
2299 val64 = readq(&bar0->adapter_control);
2300 val64 |= ADAPTER_EOI_TX_ON;
2301 writeq(val64, &bar0->adapter_control);
2302
c92ca04b
AR
2303 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2304 /*
25985edc 2305 * Dont see link state interrupts initially on some switches,
c92ca04b
AR
2306 * so directly scheduling the link state task here.
2307 */
2308 schedule_work(&nic->set_link_task);
2309 }
1da177e4
LT
2310 /* SXE-002: Initialize link and activity LED */
2311 subid = nic->pdev->subsystem_device;
541ae68f
K
2312 if (((subid & 0xFF) >= 0x07) &&
2313 (nic->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
2314 val64 = readq(&bar0->gpio_control);
2315 val64 |= 0x0000800000000000ULL;
2316 writeq(val64, &bar0->gpio_control);
2317 val64 = 0x0411040400000000ULL;
509a2671 2318 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
2319 }
2320
1da177e4
LT
2321 return SUCCESS;
2322}
fed5eccd
AR
2323/**
2324 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2325 */
d44570e4
JP
2326static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2327 struct TxD *txdlp, int get_off)
fed5eccd 2328{
1ee6dd77 2329 struct s2io_nic *nic = fifo_data->nic;
fed5eccd 2330 struct sk_buff *skb;
1ee6dd77 2331 struct TxD *txds;
fed5eccd
AR
2332 u16 j, frg_cnt;
2333
2334 txds = txdlp;
2fda096d 2335 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
d44570e4
JP
2336 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2337 sizeof(u64), PCI_DMA_TODEVICE);
fed5eccd
AR
2338 txds++;
2339 }
2340
d44570e4 2341 skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
fed5eccd 2342 if (!skb) {
1ee6dd77 2343 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
fed5eccd
AR
2344 return NULL;
2345 }
d44570e4 2346 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
e743d313 2347 skb_headlen(skb), PCI_DMA_TODEVICE);
fed5eccd
AR
2348 frg_cnt = skb_shinfo(skb)->nr_frags;
2349 if (frg_cnt) {
2350 txds++;
2351 for (j = 0; j < frg_cnt; j++, txds++) {
9e903e08 2352 const skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
fed5eccd
AR
2353 if (!txds->Buffer_Pointer)
2354 break;
d44570e4
JP
2355 pci_unmap_page(nic->pdev,
2356 (dma_addr_t)txds->Buffer_Pointer,
9e903e08 2357 skb_frag_size(frag), PCI_DMA_TODEVICE);
fed5eccd
AR
2358 }
2359 }
d44570e4
JP
2360 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2361 return skb;
fed5eccd 2362}
1da177e4 2363
20346722
K
2364/**
2365 * free_tx_buffers - Free all queued Tx buffers
1da177e4 2366 * @nic : device private variable.
20346722 2367 * Description:
1da177e4 2368 * Free all queued Tx buffers.
20346722 2369 * Return Value: void
d44570e4 2370 */
1da177e4
LT
2371
2372static void free_tx_buffers(struct s2io_nic *nic)
2373{
2374 struct net_device *dev = nic->dev;
2375 struct sk_buff *skb;
1ee6dd77 2376 struct TxD *txdp;
1da177e4 2377 int i, j;
fed5eccd 2378 int cnt = 0;
ffb5df6c
JP
2379 struct config_param *config = &nic->config;
2380 struct mac_info *mac_control = &nic->mac_control;
2381 struct stat_block *stats = mac_control->stats_info;
2382 struct swStat *swstats = &stats->sw_stat;
1da177e4
LT
2383
2384 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
2385 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2386 struct fifo_info *fifo = &mac_control->fifos[i];
2fda096d 2387 unsigned long flags;
13d866a9
JP
2388
2389 spin_lock_irqsave(&fifo->tx_lock, flags);
2390 for (j = 0; j < tx_cfg->fifo_len; j++) {
43d620c8 2391 txdp = fifo->list_info[j].list_virt_addr;
fed5eccd
AR
2392 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2393 if (skb) {
ffb5df6c 2394 swstats->mem_freed += skb->truesize;
fed5eccd
AR
2395 dev_kfree_skb(skb);
2396 cnt++;
1da177e4 2397 }
1da177e4
LT
2398 }
2399 DBG_PRINT(INTR_DBG,
9e39f7c5 2400 "%s: forcibly freeing %d skbs on FIFO%d\n",
1da177e4 2401 dev->name, cnt, i);
13d866a9
JP
2402 fifo->tx_curr_get_info.offset = 0;
2403 fifo->tx_curr_put_info.offset = 0;
2404 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4
LT
2405 }
2406}
2407
20346722
K
2408/**
2409 * stop_nic - To stop the nic
1da177e4 2410 * @nic ; device private variable.
20346722
K
2411 * Description:
2412 * This function does exactly the opposite of what the start_nic()
1da177e4
LT
2413 * function does. This function is called to stop the device.
2414 * Return Value:
2415 * void.
2416 */
2417
2418static void stop_nic(struct s2io_nic *nic)
2419{
1ee6dd77 2420 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4 2421 register u64 val64 = 0;
5d3213cc 2422 u16 interruptible;
1da177e4
LT
2423
2424 /* Disable all interrupts */
9caab458 2425 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
e960fc5c 2426 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 2427 interruptible |= TX_PIC_INTR;
1da177e4
LT
2428 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2429
5d3213cc
AR
2430 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2431 val64 = readq(&bar0->adapter_control);
2432 val64 &= ~(ADAPTER_CNTL_EN);
2433 writeq(val64, &bar0->adapter_control);
1da177e4
LT
2434}
2435
20346722
K
2436/**
2437 * fill_rx_buffers - Allocates the Rx side skbs
0425b46a 2438 * @ring_info: per ring structure
3f78d885
SH
2439 * @from_card_up: If this is true, we will map the buffer to get
2440 * the dma address for buf0 and buf1 to give it to the card.
2441 * Else we will sync the already mapped buffer to give it to the card.
20346722 2442 * Description:
1da177e4
LT
2443 * The function allocates Rx side skbs and puts the physical
2444 * address of these buffers into the RxD buffer pointers, so that the NIC
2445 * can DMA the received frame into these locations.
2446 * The NIC supports 3 receive modes, viz
2447 * 1. single buffer,
2448 * 2. three buffer and
2449 * 3. Five buffer modes.
20346722
K
2450 * Each mode defines how many fragments the received frame will be split
2451 * up into by the NIC. The frame is split into L3 header, L4 Header,
1da177e4
LT
2452 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2453 * is split into 3 fragments. As of now only single buffer mode is
2454 * supported.
2455 * Return Value:
2456 * SUCCESS on success or an appropriate -ve value on failure.
2457 */
8d8bb39b 2458static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
d44570e4 2459 int from_card_up)
1da177e4 2460{
1da177e4 2461 struct sk_buff *skb;
1ee6dd77 2462 struct RxD_t *rxdp;
0425b46a 2463 int off, size, block_no, block_no1;
1da177e4 2464 u32 alloc_tab = 0;
20346722 2465 u32 alloc_cnt;
20346722 2466 u64 tmp;
1ee6dd77 2467 struct buffAdd *ba;
1ee6dd77 2468 struct RxD_t *first_rxdp = NULL;
363dc367 2469 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
0425b46a 2470 int rxd_index = 0;
6d517a27
VP
2471 struct RxD1 *rxdp1;
2472 struct RxD3 *rxdp3;
ffb5df6c 2473 struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
1da177e4 2474
0425b46a 2475 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
1da177e4 2476
0425b46a 2477 block_no1 = ring->rx_curr_get_info.block_index;
1da177e4 2478 while (alloc_tab < alloc_cnt) {
0425b46a 2479 block_no = ring->rx_curr_put_info.block_index;
1da177e4 2480
0425b46a
SH
2481 off = ring->rx_curr_put_info.offset;
2482
2483 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2484
2485 rxd_index = off + 1;
2486 if (block_no)
2487 rxd_index += (block_no * ring->rxd_count);
da6971d8 2488
7d2e3cb7 2489 if ((block_no == block_no1) &&
d44570e4
JP
2490 (off == ring->rx_curr_get_info.offset) &&
2491 (rxdp->Host_Control)) {
9e39f7c5
JP
2492 DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2493 ring->dev->name);
1da177e4
LT
2494 goto end;
2495 }
0425b46a
SH
2496 if (off && (off == ring->rxd_count)) {
2497 ring->rx_curr_put_info.block_index++;
2498 if (ring->rx_curr_put_info.block_index ==
d44570e4 2499 ring->block_count)
0425b46a
SH
2500 ring->rx_curr_put_info.block_index = 0;
2501 block_no = ring->rx_curr_put_info.block_index;
2502 off = 0;
2503 ring->rx_curr_put_info.offset = off;
2504 rxdp = ring->rx_blocks[block_no].block_virt_addr;
1da177e4 2505 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
0425b46a
SH
2506 ring->dev->name, rxdp);
2507
1da177e4 2508 }
c9fcbf47 2509
da6971d8 2510 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
d44570e4
JP
2511 ((ring->rxd_mode == RXD_MODE_3B) &&
2512 (rxdp->Control_2 & s2BIT(0)))) {
0425b46a 2513 ring->rx_curr_put_info.offset = off;
1da177e4
LT
2514 goto end;
2515 }
da6971d8 2516 /* calculate size of skb based on ring mode */
d44570e4
JP
2517 size = ring->mtu +
2518 HEADER_ETHERNET_II_802_3_SIZE +
2519 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
0425b46a 2520 if (ring->rxd_mode == RXD_MODE_1)
da6971d8 2521 size += NET_IP_ALIGN;
da6971d8 2522 else
0425b46a 2523 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
1da177e4 2524
da6971d8 2525 /* allocate skb */
c056b734 2526 skb = netdev_alloc_skb(nic->dev, size);
d44570e4 2527 if (!skb) {
9e39f7c5
JP
2528 DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2529 ring->dev->name);
303bcb4b
K
2530 if (first_rxdp) {
2531 wmb();
2532 first_rxdp->Control_1 |= RXD_OWN_XENA;
2533 }
ffb5df6c 2534 swstats->mem_alloc_fail_cnt++;
7d2e3cb7 2535
da6971d8
AR
2536 return -ENOMEM ;
2537 }
ffb5df6c 2538 swstats->mem_allocated += skb->truesize;
0425b46a
SH
2539
2540 if (ring->rxd_mode == RXD_MODE_1) {
da6971d8 2541 /* 1 buffer mode - normal operation mode */
d44570e4 2542 rxdp1 = (struct RxD1 *)rxdp;
1ee6dd77 2543 memset(rxdp, 0, sizeof(struct RxD1));
da6971d8 2544 skb_reserve(skb, NET_IP_ALIGN);
d44570e4
JP
2545 rxdp1->Buffer0_ptr =
2546 pci_map_single(ring->pdev, skb->data,
2547 size - NET_IP_ALIGN,
2548 PCI_DMA_FROMDEVICE);
8d8bb39b 2549 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2550 rxdp1->Buffer0_ptr))
491abf25
VP
2551 goto pci_map_failed;
2552
8a4bdbaa 2553 rxdp->Control_2 =
491976b2 2554 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
d44570e4 2555 rxdp->Host_Control = (unsigned long)skb;
0425b46a 2556 } else if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8 2557 /*
6d517a27
VP
2558 * 2 buffer mode -
2559 * 2 buffer mode provides 128
da6971d8 2560 * byte aligned receive buffers.
da6971d8
AR
2561 */
2562
d44570e4 2563 rxdp3 = (struct RxD3 *)rxdp;
491976b2 2564 /* save buffer pointers to avoid frequent dma mapping */
6d517a27
VP
2565 Buffer0_ptr = rxdp3->Buffer0_ptr;
2566 Buffer1_ptr = rxdp3->Buffer1_ptr;
1ee6dd77 2567 memset(rxdp, 0, sizeof(struct RxD3));
363dc367 2568 /* restore the buffer pointers for dma sync*/
6d517a27
VP
2569 rxdp3->Buffer0_ptr = Buffer0_ptr;
2570 rxdp3->Buffer1_ptr = Buffer1_ptr;
363dc367 2571
0425b46a 2572 ba = &ring->ba[block_no][off];
da6971d8 2573 skb_reserve(skb, BUF0_LEN);
d44570e4 2574 tmp = (u64)(unsigned long)skb->data;
da6971d8
AR
2575 tmp += ALIGN_SIZE;
2576 tmp &= ~ALIGN_SIZE;
2577 skb->data = (void *) (unsigned long)tmp;
27a884dc 2578 skb_reset_tail_pointer(skb);
da6971d8 2579
3f78d885 2580 if (from_card_up) {
6d517a27 2581 rxdp3->Buffer0_ptr =
d44570e4
JP
2582 pci_map_single(ring->pdev, ba->ba_0,
2583 BUF0_LEN,
2584 PCI_DMA_FROMDEVICE);
2585 if (pci_dma_mapping_error(nic->pdev,
2586 rxdp3->Buffer0_ptr))
3f78d885
SH
2587 goto pci_map_failed;
2588 } else
0425b46a 2589 pci_dma_sync_single_for_device(ring->pdev,
d44570e4
JP
2590 (dma_addr_t)rxdp3->Buffer0_ptr,
2591 BUF0_LEN,
2592 PCI_DMA_FROMDEVICE);
491abf25 2593
da6971d8 2594 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
0425b46a 2595 if (ring->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
2596 /* Two buffer mode */
2597
2598 /*
6aa20a22 2599 * Buffer2 will have L3/L4 header plus
da6971d8
AR
2600 * L4 payload
2601 */
d44570e4
JP
2602 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2603 skb->data,
2604 ring->mtu + 4,
2605 PCI_DMA_FROMDEVICE);
da6971d8 2606
8d8bb39b 2607 if (pci_dma_mapping_error(nic->pdev,
d44570e4 2608 rxdp3->Buffer2_ptr))
491abf25
VP
2609 goto pci_map_failed;
2610
3f78d885 2611 if (from_card_up) {
0425b46a
SH
2612 rxdp3->Buffer1_ptr =
2613 pci_map_single(ring->pdev,
d44570e4
JP
2614 ba->ba_1,
2615 BUF1_LEN,
2616 PCI_DMA_FROMDEVICE);
0425b46a 2617
8d8bb39b 2618 if (pci_dma_mapping_error(nic->pdev,
d44570e4
JP
2619 rxdp3->Buffer1_ptr)) {
2620 pci_unmap_single(ring->pdev,
2621 (dma_addr_t)(unsigned long)
2622 skb->data,
2623 ring->mtu + 4,
2624 PCI_DMA_FROMDEVICE);
3f78d885
SH
2625 goto pci_map_failed;
2626 }
75c30b13 2627 }
da6971d8
AR
2628 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2629 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
d44570e4 2630 (ring->mtu + 4);
da6971d8 2631 }
b7b5a128 2632 rxdp->Control_2 |= s2BIT(0);
0425b46a 2633 rxdp->Host_Control = (unsigned long) (skb);
1da177e4 2634 }
303bcb4b
K
2635 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2636 rxdp->Control_1 |= RXD_OWN_XENA;
1da177e4 2637 off++;
0425b46a 2638 if (off == (ring->rxd_count + 1))
da6971d8 2639 off = 0;
0425b46a 2640 ring->rx_curr_put_info.offset = off;
20346722 2641
da6971d8 2642 rxdp->Control_2 |= SET_RXD_MARKER;
303bcb4b
K
2643 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2644 if (first_rxdp) {
2645 wmb();
2646 first_rxdp->Control_1 |= RXD_OWN_XENA;
2647 }
2648 first_rxdp = rxdp;
2649 }
0425b46a 2650 ring->rx_bufs_left += 1;
1da177e4
LT
2651 alloc_tab++;
2652 }
2653
d44570e4 2654end:
303bcb4b
K
2655 /* Transfer ownership of first descriptor to adapter just before
2656 * exiting. Before that, use memory barrier so that ownership
2657 * and other fields are seen by adapter correctly.
2658 */
2659 if (first_rxdp) {
2660 wmb();
2661 first_rxdp->Control_1 |= RXD_OWN_XENA;
2662 }
2663
1da177e4 2664 return SUCCESS;
d44570e4 2665
491abf25 2666pci_map_failed:
ffb5df6c
JP
2667 swstats->pci_map_fail_cnt++;
2668 swstats->mem_freed += skb->truesize;
491abf25
VP
2669 dev_kfree_skb_irq(skb);
2670 return -ENOMEM;
1da177e4
LT
2671}
2672
da6971d8
AR
2673static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2674{
2675 struct net_device *dev = sp->dev;
2676 int j;
2677 struct sk_buff *skb;
1ee6dd77 2678 struct RxD_t *rxdp;
6d517a27
VP
2679 struct RxD1 *rxdp1;
2680 struct RxD3 *rxdp3;
ffb5df6c
JP
2681 struct mac_info *mac_control = &sp->mac_control;
2682 struct stat_block *stats = mac_control->stats_info;
2683 struct swStat *swstats = &stats->sw_stat;
da6971d8 2684
da6971d8
AR
2685 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2686 rxdp = mac_control->rings[ring_no].
d44570e4
JP
2687 rx_blocks[blk].rxds[j].virt_addr;
2688 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2689 if (!skb)
da6971d8 2690 continue;
da6971d8 2691 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4
JP
2692 rxdp1 = (struct RxD1 *)rxdp;
2693 pci_unmap_single(sp->pdev,
2694 (dma_addr_t)rxdp1->Buffer0_ptr,
2695 dev->mtu +
2696 HEADER_ETHERNET_II_802_3_SIZE +
2697 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2698 PCI_DMA_FROMDEVICE);
1ee6dd77 2699 memset(rxdp, 0, sizeof(struct RxD1));
d44570e4
JP
2700 } else if (sp->rxd_mode == RXD_MODE_3B) {
2701 rxdp3 = (struct RxD3 *)rxdp;
d44570e4
JP
2702 pci_unmap_single(sp->pdev,
2703 (dma_addr_t)rxdp3->Buffer0_ptr,
2704 BUF0_LEN,
2705 PCI_DMA_FROMDEVICE);
2706 pci_unmap_single(sp->pdev,
2707 (dma_addr_t)rxdp3->Buffer1_ptr,
2708 BUF1_LEN,
2709 PCI_DMA_FROMDEVICE);
2710 pci_unmap_single(sp->pdev,
2711 (dma_addr_t)rxdp3->Buffer2_ptr,
2712 dev->mtu + 4,
2713 PCI_DMA_FROMDEVICE);
1ee6dd77 2714 memset(rxdp, 0, sizeof(struct RxD3));
da6971d8 2715 }
ffb5df6c 2716 swstats->mem_freed += skb->truesize;
da6971d8 2717 dev_kfree_skb(skb);
0425b46a 2718 mac_control->rings[ring_no].rx_bufs_left -= 1;
da6971d8
AR
2719 }
2720}
2721
1da177e4 2722/**
20346722 2723 * free_rx_buffers - Frees all Rx buffers
1da177e4 2724 * @sp: device private variable.
20346722 2725 * Description:
1da177e4
LT
2726 * This function will free all Rx buffers allocated by host.
2727 * Return Value:
2728 * NONE.
2729 */
2730
2731static void free_rx_buffers(struct s2io_nic *sp)
2732{
2733 struct net_device *dev = sp->dev;
da6971d8 2734 int i, blk = 0, buf_cnt = 0;
ffb5df6c
JP
2735 struct config_param *config = &sp->config;
2736 struct mac_info *mac_control = &sp->mac_control;
1da177e4
LT
2737
2738 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2739 struct ring_info *ring = &mac_control->rings[i];
2740
da6971d8 2741 for (blk = 0; blk < rx_ring_sz[i]; blk++)
d44570e4 2742 free_rxd_blk(sp, i, blk);
1da177e4 2743
13d866a9
JP
2744 ring->rx_curr_put_info.block_index = 0;
2745 ring->rx_curr_get_info.block_index = 0;
2746 ring->rx_curr_put_info.offset = 0;
2747 ring->rx_curr_get_info.offset = 0;
2748 ring->rx_bufs_left = 0;
9e39f7c5 2749 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
1da177e4
LT
2750 dev->name, buf_cnt, i);
2751 }
2752}
2753
8d8bb39b 2754static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
f61e0a35 2755{
8d8bb39b 2756 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2757 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2758 ring->dev->name);
f61e0a35
SH
2759 }
2760 return 0;
2761}
2762
1da177e4
LT
2763/**
2764 * s2io_poll - Rx interrupt handler for NAPI support
bea3348e 2765 * @napi : pointer to the napi structure.
20346722 2766 * @budget : The number of packets that were budgeted to be processed
1da177e4
LT
2767 * during one pass through the 'Poll" function.
2768 * Description:
2769 * Comes into picture only if NAPI support has been incorporated. It does
2770 * the same thing that rx_intr_handler does, but not in a interrupt context
2771 * also It will process only a given number of packets.
2772 * Return value:
2773 * 0 on success and 1 if there are No Rx packets to be processed.
2774 */
2775
f61e0a35 2776static int s2io_poll_msix(struct napi_struct *napi, int budget)
1da177e4 2777{
f61e0a35
SH
2778 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2779 struct net_device *dev = ring->dev;
f61e0a35 2780 int pkts_processed = 0;
1a79d1c3
AV
2781 u8 __iomem *addr = NULL;
2782 u8 val8 = 0;
4cf1653a 2783 struct s2io_nic *nic = netdev_priv(dev);
1ee6dd77 2784 struct XENA_dev_config __iomem *bar0 = nic->bar0;
f61e0a35 2785 int budget_org = budget;
1da177e4 2786
f61e0a35
SH
2787 if (unlikely(!is_s2io_card_up(nic)))
2788 return 0;
1da177e4 2789
f61e0a35 2790 pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2791 s2io_chk_rx_buffers(nic, ring);
1da177e4 2792
f61e0a35 2793 if (pkts_processed < budget_org) {
288379f0 2794 napi_complete(napi);
f61e0a35 2795 /*Re Enable MSI-Rx Vector*/
1a79d1c3 2796 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
2797 addr += 7 - ring->ring_no;
2798 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2799 writeb(val8, addr);
2800 val8 = readb(addr);
1da177e4 2801 }
f61e0a35
SH
2802 return pkts_processed;
2803}
d44570e4 2804
f61e0a35
SH
2805static int s2io_poll_inta(struct napi_struct *napi, int budget)
2806{
2807 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
f61e0a35
SH
2808 int pkts_processed = 0;
2809 int ring_pkts_processed, i;
2810 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2811 int budget_org = budget;
ffb5df6c
JP
2812 struct config_param *config = &nic->config;
2813 struct mac_info *mac_control = &nic->mac_control;
1da177e4 2814
f61e0a35
SH
2815 if (unlikely(!is_s2io_card_up(nic)))
2816 return 0;
1da177e4 2817
1da177e4 2818 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9 2819 struct ring_info *ring = &mac_control->rings[i];
f61e0a35 2820 ring_pkts_processed = rx_intr_handler(ring, budget);
8d8bb39b 2821 s2io_chk_rx_buffers(nic, ring);
f61e0a35
SH
2822 pkts_processed += ring_pkts_processed;
2823 budget -= ring_pkts_processed;
2824 if (budget <= 0)
1da177e4 2825 break;
1da177e4 2826 }
f61e0a35 2827 if (pkts_processed < budget_org) {
288379f0 2828 napi_complete(napi);
f61e0a35
SH
2829 /* Re enable the Rx interrupts for the ring */
2830 writeq(0, &bar0->rx_traffic_mask);
2831 readl(&bar0->rx_traffic_mask);
2832 }
2833 return pkts_processed;
1da177e4 2834}
20346722 2835
b41477f3 2836#ifdef CONFIG_NET_POLL_CONTROLLER
612eff0e 2837/**
b41477f3 2838 * s2io_netpoll - netpoll event handler entry point
612eff0e
BH
2839 * @dev : pointer to the device structure.
2840 * Description:
b41477f3
AR
2841 * This function will be called by upper layer to check for events on the
2842 * interface in situations where interrupts are disabled. It is used for
2843 * specific in-kernel networking tasks, such as remote consoles and kernel
2844 * debugging over the network (example netdump in RedHat).
612eff0e 2845 */
612eff0e
BH
2846static void s2io_netpoll(struct net_device *dev)
2847{
4cf1653a 2848 struct s2io_nic *nic = netdev_priv(dev);
80777c54 2849 const int irq = nic->pdev->irq;
1ee6dd77 2850 struct XENA_dev_config __iomem *bar0 = nic->bar0;
b41477f3 2851 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
612eff0e 2852 int i;
ffb5df6c
JP
2853 struct config_param *config = &nic->config;
2854 struct mac_info *mac_control = &nic->mac_control;
612eff0e 2855
d796fdb7
LV
2856 if (pci_channel_offline(nic->pdev))
2857 return;
2858
80777c54 2859 disable_irq(irq);
612eff0e 2860
612eff0e 2861 writeq(val64, &bar0->rx_traffic_int);
b41477f3
AR
2862 writeq(val64, &bar0->tx_traffic_int);
2863
6aa20a22 2864 /* we need to free up the transmitted skbufs or else netpoll will
b41477f3
AR
2865 * run out of skbs and will fail and eventually netpoll application such
2866 * as netdump will fail.
2867 */
2868 for (i = 0; i < config->tx_fifo_num; i++)
2869 tx_intr_handler(&mac_control->fifos[i]);
612eff0e 2870
b41477f3 2871 /* check for received packet and indicate up to network */
13d866a9
JP
2872 for (i = 0; i < config->rx_ring_num; i++) {
2873 struct ring_info *ring = &mac_control->rings[i];
2874
2875 rx_intr_handler(ring, 0);
2876 }
612eff0e
BH
2877
2878 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
2879 struct ring_info *ring = &mac_control->rings[i];
2880
2881 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
9e39f7c5
JP
2882 DBG_PRINT(INFO_DBG,
2883 "%s: Out of memory in Rx Netpoll!!\n",
2884 dev->name);
612eff0e
BH
2885 break;
2886 }
2887 }
80777c54 2888 enable_irq(irq);
612eff0e
BH
2889}
2890#endif
2891
20346722 2892/**
1da177e4 2893 * rx_intr_handler - Rx interrupt handler
f61e0a35
SH
2894 * @ring_info: per ring structure.
2895 * @budget: budget for napi processing.
20346722
K
2896 * Description:
2897 * If the interrupt is because of a received frame or if the
1da177e4 2898 * receive ring contains fresh as yet un-processed frames,this function is
20346722
K
2899 * called. It picks out the RxD at which place the last Rx processing had
2900 * stopped and sends the skb to the OSM's Rx handler and then increments
1da177e4
LT
2901 * the offset.
2902 * Return Value:
f61e0a35 2903 * No. of napi packets processed.
1da177e4 2904 */
f61e0a35 2905static int rx_intr_handler(struct ring_info *ring_data, int budget)
1da177e4 2906{
c9fcbf47 2907 int get_block, put_block;
1ee6dd77
RB
2908 struct rx_curr_get_info get_info, put_info;
2909 struct RxD_t *rxdp;
1da177e4 2910 struct sk_buff *skb;
f61e0a35 2911 int pkt_cnt = 0, napi_pkts = 0;
7d3d0439 2912 int i;
d44570e4
JP
2913 struct RxD1 *rxdp1;
2914 struct RxD3 *rxdp3;
7d3d0439 2915
20346722
K
2916 get_info = ring_data->rx_curr_get_info;
2917 get_block = get_info.block_index;
1ee6dd77 2918 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
20346722 2919 put_block = put_info.block_index;
da6971d8 2920 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
db874e65 2921
da6971d8 2922 while (RXD_IS_UP2DT(rxdp)) {
db874e65
SS
2923 /*
2924 * If your are next to put index then it's
2925 * FIFO full condition
2926 */
da6971d8
AR
2927 if ((get_block == put_block) &&
2928 (get_info.offset + 1) == put_info.offset) {
0425b46a 2929 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
d44570e4 2930 ring_data->dev->name);
da6971d8
AR
2931 break;
2932 }
d44570e4 2933 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
20346722 2934 if (skb == NULL) {
9e39f7c5 2935 DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
0425b46a 2936 ring_data->dev->name);
f61e0a35 2937 return 0;
1da177e4 2938 }
0425b46a 2939 if (ring_data->rxd_mode == RXD_MODE_1) {
d44570e4 2940 rxdp1 = (struct RxD1 *)rxdp;
0425b46a 2941 pci_unmap_single(ring_data->pdev, (dma_addr_t)
d44570e4
JP
2942 rxdp1->Buffer0_ptr,
2943 ring_data->mtu +
2944 HEADER_ETHERNET_II_802_3_SIZE +
2945 HEADER_802_2_SIZE +
2946 HEADER_SNAP_SIZE,
2947 PCI_DMA_FROMDEVICE);
0425b46a 2948 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
d44570e4
JP
2949 rxdp3 = (struct RxD3 *)rxdp;
2950 pci_dma_sync_single_for_cpu(ring_data->pdev,
2951 (dma_addr_t)rxdp3->Buffer0_ptr,
2952 BUF0_LEN,
2953 PCI_DMA_FROMDEVICE);
2954 pci_unmap_single(ring_data->pdev,
2955 (dma_addr_t)rxdp3->Buffer2_ptr,
2956 ring_data->mtu + 4,
2957 PCI_DMA_FROMDEVICE);
da6971d8 2958 }
863c11a9 2959 prefetch(skb->data);
20346722
K
2960 rx_osm_handler(ring_data, rxdp);
2961 get_info.offset++;
da6971d8
AR
2962 ring_data->rx_curr_get_info.offset = get_info.offset;
2963 rxdp = ring_data->rx_blocks[get_block].
d44570e4 2964 rxds[get_info.offset].virt_addr;
0425b46a 2965 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
20346722 2966 get_info.offset = 0;
da6971d8 2967 ring_data->rx_curr_get_info.offset = get_info.offset;
20346722 2968 get_block++;
da6971d8
AR
2969 if (get_block == ring_data->block_count)
2970 get_block = 0;
2971 ring_data->rx_curr_get_info.block_index = get_block;
20346722
K
2972 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2973 }
1da177e4 2974
f61e0a35
SH
2975 if (ring_data->nic->config.napi) {
2976 budget--;
2977 napi_pkts++;
2978 if (!budget)
0425b46a
SH
2979 break;
2980 }
20346722 2981 pkt_cnt++;
1da177e4
LT
2982 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2983 break;
2984 }
0425b46a 2985 if (ring_data->lro) {
7d3d0439 2986 /* Clear all LRO sessions before exiting */
d44570e4 2987 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 2988 struct lro *lro = &ring_data->lro0_n[i];
7d3d0439 2989 if (lro->in_use) {
0425b46a 2990 update_L3L4_header(ring_data->nic, lro);
cdb5bf02 2991 queue_rx_frame(lro->parent, lro->vlan_tag);
7d3d0439
RA
2992 clear_lro_session(lro);
2993 }
2994 }
2995 }
d44570e4 2996 return napi_pkts;
1da177e4 2997}
20346722
K
2998
2999/**
1da177e4
LT
3000 * tx_intr_handler - Transmit interrupt handler
3001 * @nic : device private variable
20346722
K
3002 * Description:
3003 * If an interrupt was raised to indicate DMA complete of the
3004 * Tx packet, this function is called. It identifies the last TxD
3005 * whose buffer was freed and frees all skbs whose data have already
1da177e4
LT
3006 * DMA'ed into the NICs internal memory.
3007 * Return Value:
3008 * NONE
3009 */
3010
1ee6dd77 3011static void tx_intr_handler(struct fifo_info *fifo_data)
1da177e4 3012{
1ee6dd77 3013 struct s2io_nic *nic = fifo_data->nic;
1ee6dd77 3014 struct tx_curr_get_info get_info, put_info;
3a3d5756 3015 struct sk_buff *skb = NULL;
1ee6dd77 3016 struct TxD *txdlp;
3a3d5756 3017 int pkt_cnt = 0;
2fda096d 3018 unsigned long flags = 0;
f9046eb3 3019 u8 err_mask;
ffb5df6c
JP
3020 struct stat_block *stats = nic->mac_control.stats_info;
3021 struct swStat *swstats = &stats->sw_stat;
1da177e4 3022
2fda096d 3023 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
d44570e4 3024 return;
2fda096d 3025
20346722 3026 get_info = fifo_data->tx_curr_get_info;
1ee6dd77 3027 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
43d620c8 3028 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
20346722
K
3029 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3030 (get_info.offset != put_info.offset) &&
3031 (txdlp->Host_Control)) {
3032 /* Check for TxD errors */
3033 if (txdlp->Control_1 & TXD_T_CODE) {
3034 unsigned long long err;
3035 err = txdlp->Control_1 & TXD_T_CODE;
bd1034f0 3036 if (err & 0x1) {
ffb5df6c 3037 swstats->parity_err_cnt++;
bd1034f0 3038 }
491976b2
SH
3039
3040 /* update t_code statistics */
f9046eb3 3041 err_mask = err >> 48;
d44570e4
JP
3042 switch (err_mask) {
3043 case 2:
ffb5df6c 3044 swstats->tx_buf_abort_cnt++;
491976b2
SH
3045 break;
3046
d44570e4 3047 case 3:
ffb5df6c 3048 swstats->tx_desc_abort_cnt++;
491976b2
SH
3049 break;
3050
d44570e4 3051 case 7:
ffb5df6c 3052 swstats->tx_parity_err_cnt++;
491976b2
SH
3053 break;
3054
d44570e4 3055 case 10:
ffb5df6c 3056 swstats->tx_link_loss_cnt++;
491976b2
SH
3057 break;
3058
d44570e4 3059 case 15:
ffb5df6c 3060 swstats->tx_list_proc_err_cnt++;
491976b2 3061 break;
d44570e4 3062 }
20346722 3063 }
1da177e4 3064
fed5eccd 3065 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
20346722 3066 if (skb == NULL) {
2fda096d 3067 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
9e39f7c5
JP
3068 DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3069 __func__);
20346722
K
3070 return;
3071 }
3a3d5756 3072 pkt_cnt++;
20346722 3073
20346722 3074 /* Updating the statistics block */
ffb5df6c 3075 swstats->mem_freed += skb->truesize;
20346722
K
3076 dev_kfree_skb_irq(skb);
3077
3078 get_info.offset++;
863c11a9
AR
3079 if (get_info.offset == get_info.fifo_len + 1)
3080 get_info.offset = 0;
43d620c8 3081 txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
d44570e4 3082 fifo_data->tx_curr_get_info.offset = get_info.offset;
1da177e4
LT
3083 }
3084
3a3d5756 3085 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
2fda096d
SR
3086
3087 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
1da177e4
LT
3088}
3089
bd1034f0
AR
3090/**
3091 * s2io_mdio_write - Function to write in to MDIO registers
3092 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3093 * @addr : address value
3094 * @value : data value
3095 * @dev : pointer to net_device structure
3096 * Description:
3097 * This function is used to write values to the MDIO registers
3098 * NONE
3099 */
d44570e4
JP
3100static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3101 struct net_device *dev)
bd1034f0 3102{
d44570e4 3103 u64 val64;
4cf1653a 3104 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3105 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0 3106
d44570e4
JP
3107 /* address transaction */
3108 val64 = MDIO_MMD_INDX_ADDR(addr) |
3109 MDIO_MMD_DEV_ADDR(mmd_type) |
3110 MDIO_MMS_PRT_ADDR(0x0);
bd1034f0
AR
3111 writeq(val64, &bar0->mdio_control);
3112 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3113 writeq(val64, &bar0->mdio_control);
3114 udelay(100);
3115
d44570e4
JP
3116 /* Data transaction */
3117 val64 = MDIO_MMD_INDX_ADDR(addr) |
3118 MDIO_MMD_DEV_ADDR(mmd_type) |
3119 MDIO_MMS_PRT_ADDR(0x0) |
3120 MDIO_MDIO_DATA(value) |
3121 MDIO_OP(MDIO_OP_WRITE_TRANS);
bd1034f0
AR
3122 writeq(val64, &bar0->mdio_control);
3123 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3124 writeq(val64, &bar0->mdio_control);
3125 udelay(100);
3126
d44570e4
JP
3127 val64 = MDIO_MMD_INDX_ADDR(addr) |
3128 MDIO_MMD_DEV_ADDR(mmd_type) |
3129 MDIO_MMS_PRT_ADDR(0x0) |
3130 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3131 writeq(val64, &bar0->mdio_control);
3132 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3133 writeq(val64, &bar0->mdio_control);
3134 udelay(100);
bd1034f0
AR
3135}
3136
3137/**
3138 * s2io_mdio_read - Function to write in to MDIO registers
3139 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3140 * @addr : address value
3141 * @dev : pointer to net_device structure
3142 * Description:
3143 * This function is used to read values to the MDIO registers
3144 * NONE
3145 */
3146static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3147{
3148 u64 val64 = 0x0;
3149 u64 rval64 = 0x0;
4cf1653a 3150 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 3151 struct XENA_dev_config __iomem *bar0 = sp->bar0;
bd1034f0
AR
3152
3153 /* address transaction */
d44570e4
JP
3154 val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3155 | MDIO_MMD_DEV_ADDR(mmd_type)
3156 | MDIO_MMS_PRT_ADDR(0x0));
bd1034f0
AR
3157 writeq(val64, &bar0->mdio_control);
3158 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3159 writeq(val64, &bar0->mdio_control);
3160 udelay(100);
3161
3162 /* Data transaction */
d44570e4
JP
3163 val64 = MDIO_MMD_INDX_ADDR(addr) |
3164 MDIO_MMD_DEV_ADDR(mmd_type) |
3165 MDIO_MMS_PRT_ADDR(0x0) |
3166 MDIO_OP(MDIO_OP_READ_TRANS);
bd1034f0
AR
3167 writeq(val64, &bar0->mdio_control);
3168 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3169 writeq(val64, &bar0->mdio_control);
3170 udelay(100);
3171
3172 /* Read the value from regs */
3173 rval64 = readq(&bar0->mdio_control);
3174 rval64 = rval64 & 0xFFFF0000;
3175 rval64 = rval64 >> 16;
3176 return rval64;
3177}
d44570e4 3178
bd1034f0
AR
3179/**
3180 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
fbfecd37 3181 * @counter : counter value to be updated
bd1034f0
AR
3182 * @flag : flag to indicate the status
3183 * @type : counter type
3184 * Description:
3185 * This function is to check the status of the xpak counters value
3186 * NONE
3187 */
3188
d44570e4
JP
3189static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3190 u16 flag, u16 type)
bd1034f0
AR
3191{
3192 u64 mask = 0x3;
3193 u64 val64;
3194 int i;
d44570e4 3195 for (i = 0; i < index; i++)
bd1034f0
AR
3196 mask = mask << 0x2;
3197
d44570e4 3198 if (flag > 0) {
bd1034f0
AR
3199 *counter = *counter + 1;
3200 val64 = *regs_stat & mask;
3201 val64 = val64 >> (index * 0x2);
3202 val64 = val64 + 1;
d44570e4
JP
3203 if (val64 == 3) {
3204 switch (type) {
bd1034f0 3205 case 1:
9e39f7c5
JP
3206 DBG_PRINT(ERR_DBG,
3207 "Take Xframe NIC out of service.\n");
3208 DBG_PRINT(ERR_DBG,
3209"Excessive temperatures may result in premature transceiver failure.\n");
d44570e4 3210 break;
bd1034f0 3211 case 2:
9e39f7c5
JP
3212 DBG_PRINT(ERR_DBG,
3213 "Take Xframe NIC out of service.\n");
3214 DBG_PRINT(ERR_DBG,
3215"Excessive bias currents may indicate imminent laser diode failure.\n");
d44570e4 3216 break;
bd1034f0 3217 case 3:
9e39f7c5
JP
3218 DBG_PRINT(ERR_DBG,
3219 "Take Xframe NIC out of service.\n");
3220 DBG_PRINT(ERR_DBG,
3221"Excessive laser output power may saturate far-end receiver.\n");
d44570e4 3222 break;
bd1034f0 3223 default:
d44570e4
JP
3224 DBG_PRINT(ERR_DBG,
3225 "Incorrect XPAK Alarm type\n");
bd1034f0
AR
3226 }
3227 val64 = 0x0;
3228 }
3229 val64 = val64 << (index * 0x2);
3230 *regs_stat = (*regs_stat & (~mask)) | (val64);
3231
3232 } else {
3233 *regs_stat = *regs_stat & (~mask);
3234 }
3235}
3236
3237/**
3238 * s2io_updt_xpak_counter - Function to update the xpak counters
3239 * @dev : pointer to net_device struct
3240 * Description:
3241 * This function is to upate the status of the xpak counters value
3242 * NONE
3243 */
3244static void s2io_updt_xpak_counter(struct net_device *dev)
3245{
3246 u16 flag = 0x0;
3247 u16 type = 0x0;
3248 u16 val16 = 0x0;
3249 u64 val64 = 0x0;
3250 u64 addr = 0x0;
3251
4cf1653a 3252 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
3253 struct stat_block *stats = sp->mac_control.stats_info;
3254 struct xpakStat *xstats = &stats->xpak_stat;
bd1034f0
AR
3255
3256 /* Check the communication with the MDIO slave */
40239396 3257 addr = MDIO_CTRL1;
bd1034f0 3258 val64 = 0x0;
40239396 3259 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
d44570e4 3260 if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
9e39f7c5
JP
3261 DBG_PRINT(ERR_DBG,
3262 "ERR: MDIO slave access failed - Returned %llx\n",
3263 (unsigned long long)val64);
bd1034f0
AR
3264 return;
3265 }
3266
40239396 3267 /* Check for the expected value of control reg 1 */
d44570e4 3268 if (val64 != MDIO_CTRL1_SPEED10G) {
9e39f7c5
JP
3269 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3270 "Returned: %llx- Expected: 0x%x\n",
40239396 3271 (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
bd1034f0
AR
3272 return;
3273 }
3274
3275 /* Loading the DOM register to MDIO register */
3276 addr = 0xA100;
40239396
BH
3277 s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3278 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3279
3280 /* Reading the Alarm flags */
3281 addr = 0xA070;
3282 val64 = 0x0;
40239396 3283 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0
AR
3284
3285 flag = CHECKBIT(val64, 0x7);
3286 type = 1;
ffb5df6c
JP
3287 s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3288 &xstats->xpak_regs_stat,
d44570e4 3289 0x0, flag, type);
bd1034f0 3290
d44570e4 3291 if (CHECKBIT(val64, 0x6))
ffb5df6c 3292 xstats->alarm_transceiver_temp_low++;
bd1034f0
AR
3293
3294 flag = CHECKBIT(val64, 0x3);
3295 type = 2;
ffb5df6c
JP
3296 s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3297 &xstats->xpak_regs_stat,
d44570e4 3298 0x2, flag, type);
bd1034f0 3299
d44570e4 3300 if (CHECKBIT(val64, 0x2))
ffb5df6c 3301 xstats->alarm_laser_bias_current_low++;
bd1034f0
AR
3302
3303 flag = CHECKBIT(val64, 0x1);
3304 type = 3;
ffb5df6c
JP
3305 s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3306 &xstats->xpak_regs_stat,
d44570e4 3307 0x4, flag, type);
bd1034f0 3308
d44570e4 3309 if (CHECKBIT(val64, 0x0))
ffb5df6c 3310 xstats->alarm_laser_output_power_low++;
bd1034f0
AR
3311
3312 /* Reading the Warning flags */
3313 addr = 0xA074;
3314 val64 = 0x0;
40239396 3315 val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
bd1034f0 3316
d44570e4 3317 if (CHECKBIT(val64, 0x7))
ffb5df6c 3318 xstats->warn_transceiver_temp_high++;
bd1034f0 3319
d44570e4 3320 if (CHECKBIT(val64, 0x6))
ffb5df6c 3321 xstats->warn_transceiver_temp_low++;
bd1034f0 3322
d44570e4 3323 if (CHECKBIT(val64, 0x3))
ffb5df6c 3324 xstats->warn_laser_bias_current_high++;
bd1034f0 3325
d44570e4 3326 if (CHECKBIT(val64, 0x2))
ffb5df6c 3327 xstats->warn_laser_bias_current_low++;
bd1034f0 3328
d44570e4 3329 if (CHECKBIT(val64, 0x1))
ffb5df6c 3330 xstats->warn_laser_output_power_high++;
bd1034f0 3331
d44570e4 3332 if (CHECKBIT(val64, 0x0))
ffb5df6c 3333 xstats->warn_laser_output_power_low++;
bd1034f0
AR
3334}
3335
20346722 3336/**
1da177e4 3337 * wait_for_cmd_complete - waits for a command to complete.
20346722 3338 * @sp : private member of the device structure, which is a pointer to the
1da177e4 3339 * s2io_nic structure.
20346722
K
3340 * Description: Function that waits for a command to Write into RMAC
3341 * ADDR DATA registers to be completed and returns either success or
3342 * error depending on whether the command was complete or not.
1da177e4
LT
3343 * Return value:
3344 * SUCCESS on success and FAILURE on failure.
3345 */
3346
9fc93a41 3347static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
d44570e4 3348 int bit_state)
1da177e4 3349{
9fc93a41 3350 int ret = FAILURE, cnt = 0, delay = 1;
1da177e4
LT
3351 u64 val64;
3352
9fc93a41
SS
3353 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3354 return FAILURE;
3355
3356 do {
c92ca04b 3357 val64 = readq(addr);
9fc93a41
SS
3358 if (bit_state == S2IO_BIT_RESET) {
3359 if (!(val64 & busy_bit)) {
3360 ret = SUCCESS;
3361 break;
3362 }
3363 } else {
2d146eb1 3364 if (val64 & busy_bit) {
9fc93a41
SS
3365 ret = SUCCESS;
3366 break;
3367 }
1da177e4 3368 }
c92ca04b 3369
d44570e4 3370 if (in_interrupt())
9fc93a41 3371 mdelay(delay);
c92ca04b 3372 else
9fc93a41 3373 msleep(delay);
c92ca04b 3374
9fc93a41
SS
3375 if (++cnt >= 10)
3376 delay = 50;
3377 } while (cnt < 20);
1da177e4
LT
3378 return ret;
3379}
49ce9c2c 3380/**
19a60522
SS
3381 * check_pci_device_id - Checks if the device id is supported
3382 * @id : device id
3383 * Description: Function to check if the pci device id is supported by driver.
3384 * Return value: Actual device id if supported else PCI_ANY_ID
3385 */
3386static u16 check_pci_device_id(u16 id)
3387{
3388 switch (id) {
3389 case PCI_DEVICE_ID_HERC_WIN:
3390 case PCI_DEVICE_ID_HERC_UNI:
3391 return XFRAME_II_DEVICE;
3392 case PCI_DEVICE_ID_S2IO_UNI:
3393 case PCI_DEVICE_ID_S2IO_WIN:
3394 return XFRAME_I_DEVICE;
3395 default:
3396 return PCI_ANY_ID;
3397 }
3398}
1da177e4 3399
20346722
K
3400/**
3401 * s2io_reset - Resets the card.
1da177e4
LT
3402 * @sp : private member of the device structure.
3403 * Description: Function to Reset the card. This function then also
20346722 3404 * restores the previously saved PCI configuration space registers as
1da177e4
LT
3405 * the card reset also resets the configuration space.
3406 * Return value:
3407 * void.
3408 */
3409
d44570e4 3410static void s2io_reset(struct s2io_nic *sp)
1da177e4 3411{
1ee6dd77 3412 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 3413 u64 val64;
5e25b9dd 3414 u16 subid, pci_cmd;
19a60522
SS
3415 int i;
3416 u16 val16;
491976b2
SH
3417 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3418 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
ffb5df6c
JP
3419 struct stat_block *stats;
3420 struct swStat *swstats;
491976b2 3421
9e39f7c5 3422 DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3a22813a 3423 __func__, pci_name(sp->pdev));
1da177e4 3424
0b1f7ebe 3425 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
e960fc5c 3426 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
0b1f7ebe 3427
1da177e4
LT
3428 val64 = SW_RESET_ALL;
3429 writeq(val64, &bar0->sw_reset);
d44570e4 3430 if (strstr(sp->product_name, "CX4"))
c92ca04b 3431 msleep(750);
19a60522
SS
3432 msleep(250);
3433 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
1da177e4 3434
19a60522
SS
3435 /* Restore the PCI state saved during initialization. */
3436 pci_restore_state(sp->pdev);
b8a623bf 3437 pci_save_state(sp->pdev);
19a60522
SS
3438 pci_read_config_word(sp->pdev, 0x2, &val16);
3439 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3440 break;
3441 msleep(200);
3442 }
1da177e4 3443
d44570e4
JP
3444 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3445 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
19a60522
SS
3446
3447 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3448
3449 s2io_init_pci(sp);
1da177e4 3450
20346722
K
3451 /* Set swapper to enable I/O register access */
3452 s2io_set_swapper(sp);
3453
faa4f796
SH
3454 /* restore mac_addr entries */
3455 do_s2io_restore_unicast_mc(sp);
3456
cc6e7c44
RA
3457 /* Restore the MSIX table entries from local variables */
3458 restore_xmsi_data(sp);
3459
5e25b9dd 3460 /* Clear certain PCI/PCI-X fields after reset */
303bcb4b 3461 if (sp->device_type == XFRAME_II_DEVICE) {
b41477f3 3462 /* Clear "detected parity error" bit */
303bcb4b 3463 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
5e25b9dd 3464
303bcb4b
K
3465 /* Clearing PCIX Ecc status register */
3466 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
5e25b9dd 3467
303bcb4b 3468 /* Clearing PCI_STATUS error reflected here */
b7b5a128 3469 writeq(s2BIT(62), &bar0->txpic_int_reg);
303bcb4b 3470 }
5e25b9dd 3471
20346722 3472 /* Reset device statistics maintained by OS */
d44570e4 3473 memset(&sp->stats, 0, sizeof(struct net_device_stats));
8a4bdbaa 3474
ffb5df6c
JP
3475 stats = sp->mac_control.stats_info;
3476 swstats = &stats->sw_stat;
3477
491976b2 3478 /* save link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3479 up_cnt = swstats->link_up_cnt;
3480 down_cnt = swstats->link_down_cnt;
3481 up_time = swstats->link_up_time;
3482 down_time = swstats->link_down_time;
3483 reset_cnt = swstats->soft_reset_cnt;
3484 mem_alloc_cnt = swstats->mem_allocated;
3485 mem_free_cnt = swstats->mem_freed;
3486 watchdog_cnt = swstats->watchdog_timer_cnt;
3487
3488 memset(stats, 0, sizeof(struct stat_block));
3489
491976b2 3490 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
ffb5df6c
JP
3491 swstats->link_up_cnt = up_cnt;
3492 swstats->link_down_cnt = down_cnt;
3493 swstats->link_up_time = up_time;
3494 swstats->link_down_time = down_time;
3495 swstats->soft_reset_cnt = reset_cnt;
3496 swstats->mem_allocated = mem_alloc_cnt;
3497 swstats->mem_freed = mem_free_cnt;
3498 swstats->watchdog_timer_cnt = watchdog_cnt;
20346722 3499
1da177e4
LT
3500 /* SXE-002: Configure link and activity LED to turn it off */
3501 subid = sp->pdev->subsystem_device;
541ae68f
K
3502 if (((subid & 0xFF) >= 0x07) &&
3503 (sp->device_type == XFRAME_I_DEVICE)) {
1da177e4
LT
3504 val64 = readq(&bar0->gpio_control);
3505 val64 |= 0x0000800000000000ULL;
3506 writeq(val64, &bar0->gpio_control);
3507 val64 = 0x0411040400000000ULL;
509a2671 3508 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
3509 }
3510
541ae68f 3511 /*
25985edc 3512 * Clear spurious ECC interrupts that would have occurred on
541ae68f
K
3513 * XFRAME II cards after reset.
3514 */
3515 if (sp->device_type == XFRAME_II_DEVICE) {
3516 val64 = readq(&bar0->pcc_err_reg);
3517 writeq(val64, &bar0->pcc_err_reg);
3518 }
3519
f957bcf0 3520 sp->device_enabled_once = false;
1da177e4
LT
3521}
3522
3523/**
20346722
K
3524 * s2io_set_swapper - to set the swapper controle on the card
3525 * @sp : private member of the device structure,
1da177e4 3526 * pointer to the s2io_nic structure.
20346722 3527 * Description: Function to set the swapper control on the card
1da177e4
LT
3528 * correctly depending on the 'endianness' of the system.
3529 * Return value:
3530 * SUCCESS on success and FAILURE on failure.
3531 */
3532
d44570e4 3533static int s2io_set_swapper(struct s2io_nic *sp)
1da177e4
LT
3534{
3535 struct net_device *dev = sp->dev;
1ee6dd77 3536 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
3537 u64 val64, valt, valr;
3538
20346722 3539 /*
1da177e4
LT
3540 * Set proper endian settings and verify the same by reading
3541 * the PIF Feed-back register.
3542 */
3543
3544 val64 = readq(&bar0->pif_rd_swapper_fb);
3545 if (val64 != 0x0123456789ABCDEFULL) {
3546 int i = 0;
85a56498
JM
3547 static const u64 value[] = {
3548 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3549 0x8100008181000081ULL, /* FE=1, SE=0 */
3550 0x4200004242000042ULL, /* FE=0, SE=1 */
3551 0 /* FE=0, SE=0 */
3552 };
1da177e4 3553
d44570e4 3554 while (i < 4) {
1da177e4
LT
3555 writeq(value[i], &bar0->swapper_ctrl);
3556 val64 = readq(&bar0->pif_rd_swapper_fb);
3557 if (val64 == 0x0123456789ABCDEFULL)
3558 break;
3559 i++;
3560 }
3561 if (i == 4) {
9e39f7c5
JP
3562 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3563 "feedback read %llx\n",
3564 dev->name, (unsigned long long)val64);
1da177e4
LT
3565 return FAILURE;
3566 }
3567 valr = value[i];
3568 } else {
3569 valr = readq(&bar0->swapper_ctrl);
3570 }
3571
3572 valt = 0x0123456789ABCDEFULL;
3573 writeq(valt, &bar0->xmsi_address);
3574 val64 = readq(&bar0->xmsi_address);
3575
d44570e4 3576 if (val64 != valt) {
1da177e4 3577 int i = 0;
85a56498
JM
3578 static const u64 value[] = {
3579 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3580 0x0081810000818100ULL, /* FE=1, SE=0 */
3581 0x0042420000424200ULL, /* FE=0, SE=1 */
3582 0 /* FE=0, SE=0 */
3583 };
1da177e4 3584
d44570e4 3585 while (i < 4) {
1da177e4
LT
3586 writeq((value[i] | valr), &bar0->swapper_ctrl);
3587 writeq(valt, &bar0->xmsi_address);
3588 val64 = readq(&bar0->xmsi_address);
d44570e4 3589 if (val64 == valt)
1da177e4
LT
3590 break;
3591 i++;
3592 }
d44570e4 3593 if (i == 4) {
20346722 3594 unsigned long long x = val64;
9e39f7c5
JP
3595 DBG_PRINT(ERR_DBG,
3596 "Write failed, Xmsi_addr reads:0x%llx\n", x);
1da177e4
LT
3597 return FAILURE;
3598 }
3599 }
3600 val64 = readq(&bar0->swapper_ctrl);
3601 val64 &= 0xFFFF000000000000ULL;
3602
d44570e4 3603#ifdef __BIG_ENDIAN
20346722
K
3604 /*
3605 * The device by default set to a big endian format, so a
1da177e4
LT
3606 * big endian driver need not set anything.
3607 */
3608 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3609 SWAPPER_CTRL_TXP_SE |
3610 SWAPPER_CTRL_TXD_R_FE |
3611 SWAPPER_CTRL_TXD_W_FE |
3612 SWAPPER_CTRL_TXF_R_FE |
3613 SWAPPER_CTRL_RXD_R_FE |
3614 SWAPPER_CTRL_RXD_W_FE |
3615 SWAPPER_CTRL_RXF_W_FE |
3616 SWAPPER_CTRL_XMSI_FE |
3617 SWAPPER_CTRL_STATS_FE |
3618 SWAPPER_CTRL_STATS_SE);
eaae7f72 3619 if (sp->config.intr_type == INTA)
cc6e7c44 3620 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3621 writeq(val64, &bar0->swapper_ctrl);
3622#else
20346722 3623 /*
1da177e4 3624 * Initially we enable all bits to make it accessible by the
20346722 3625 * driver, then we selectively enable only those bits that
1da177e4
LT
3626 * we want to set.
3627 */
3628 val64 |= (SWAPPER_CTRL_TXP_FE |
d44570e4
JP
3629 SWAPPER_CTRL_TXP_SE |
3630 SWAPPER_CTRL_TXD_R_FE |
3631 SWAPPER_CTRL_TXD_R_SE |
3632 SWAPPER_CTRL_TXD_W_FE |
3633 SWAPPER_CTRL_TXD_W_SE |
3634 SWAPPER_CTRL_TXF_R_FE |
3635 SWAPPER_CTRL_RXD_R_FE |
3636 SWAPPER_CTRL_RXD_R_SE |
3637 SWAPPER_CTRL_RXD_W_FE |
3638 SWAPPER_CTRL_RXD_W_SE |
3639 SWAPPER_CTRL_RXF_W_FE |
3640 SWAPPER_CTRL_XMSI_FE |
3641 SWAPPER_CTRL_STATS_FE |
3642 SWAPPER_CTRL_STATS_SE);
eaae7f72 3643 if (sp->config.intr_type == INTA)
cc6e7c44 3644 val64 |= SWAPPER_CTRL_XMSI_SE;
1da177e4
LT
3645 writeq(val64, &bar0->swapper_ctrl);
3646#endif
3647 val64 = readq(&bar0->swapper_ctrl);
3648
20346722
K
3649 /*
3650 * Verifying if endian settings are accurate by reading a
1da177e4
LT
3651 * feedback register.
3652 */
3653 val64 = readq(&bar0->pif_rd_swapper_fb);
3654 if (val64 != 0x0123456789ABCDEFULL) {
3655 /* Endian settings are incorrect, calls for another dekko. */
9e39f7c5
JP
3656 DBG_PRINT(ERR_DBG,
3657 "%s: Endian settings are wrong, feedback read %llx\n",
3658 dev->name, (unsigned long long)val64);
1da177e4
LT
3659 return FAILURE;
3660 }
3661
3662 return SUCCESS;
3663}
3664
1ee6dd77 3665static int wait_for_msix_trans(struct s2io_nic *nic, int i)
cc6e7c44 3666{
1ee6dd77 3667 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44
RA
3668 u64 val64;
3669 int ret = 0, cnt = 0;
3670
3671 do {
3672 val64 = readq(&bar0->xmsi_access);
b7b5a128 3673 if (!(val64 & s2BIT(15)))
cc6e7c44
RA
3674 break;
3675 mdelay(1);
3676 cnt++;
d44570e4 3677 } while (cnt < 5);
cc6e7c44
RA
3678 if (cnt == 5) {
3679 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3680 ret = 1;
3681 }
3682
3683 return ret;
3684}
3685
1ee6dd77 3686static void restore_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3687{
1ee6dd77 3688 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3689 u64 val64;
f61e0a35
SH
3690 int i, msix_index;
3691
f61e0a35
SH
3692 if (nic->device_type == XFRAME_I_DEVICE)
3693 return;
cc6e7c44 3694
d44570e4
JP
3695 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3696 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
cc6e7c44
RA
3697 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3698 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
f61e0a35 3699 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3700 writeq(val64, &bar0->xmsi_access);
f61e0a35 3701 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3702 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3703 __func__, msix_index);
cc6e7c44
RA
3704 continue;
3705 }
3706 }
3707}
3708
1ee6dd77 3709static void store_xmsi_data(struct s2io_nic *nic)
cc6e7c44 3710{
1ee6dd77 3711 struct XENA_dev_config __iomem *bar0 = nic->bar0;
cc6e7c44 3712 u64 val64, addr, data;
f61e0a35
SH
3713 int i, msix_index;
3714
3715 if (nic->device_type == XFRAME_I_DEVICE)
3716 return;
cc6e7c44
RA
3717
3718 /* Store and display */
d44570e4
JP
3719 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3720 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
f61e0a35 3721 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
cc6e7c44 3722 writeq(val64, &bar0->xmsi_access);
f61e0a35 3723 if (wait_for_msix_trans(nic, msix_index)) {
9e39f7c5
JP
3724 DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3725 __func__, msix_index);
cc6e7c44
RA
3726 continue;
3727 }
3728 addr = readq(&bar0->xmsi_address);
3729 data = readq(&bar0->xmsi_data);
3730 if (addr && data) {
3731 nic->msix_info[i].addr = addr;
3732 nic->msix_info[i].data = data;
3733 }
3734 }
3735}
3736
1ee6dd77 3737static int s2io_enable_msi_x(struct s2io_nic *nic)
cc6e7c44 3738{
1ee6dd77 3739 struct XENA_dev_config __iomem *bar0 = nic->bar0;
ac731ab6 3740 u64 rx_mat;
cc6e7c44
RA
3741 u16 msi_control; /* Temp variable */
3742 int ret, i, j, msix_indx = 1;
4f870320 3743 int size;
ffb5df6c
JP
3744 struct stat_block *stats = nic->mac_control.stats_info;
3745 struct swStat *swstats = &stats->sw_stat;
cc6e7c44 3746
4f870320 3747 size = nic->num_entries * sizeof(struct msix_entry);
44364a03 3748 nic->entries = kzalloc(size, GFP_KERNEL);
bd684e43 3749 if (!nic->entries) {
d44570e4
JP
3750 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3751 __func__);
ffb5df6c 3752 swstats->mem_alloc_fail_cnt++;
cc6e7c44
RA
3753 return -ENOMEM;
3754 }
ffb5df6c 3755 swstats->mem_allocated += size;
f61e0a35 3756
4f870320 3757 size = nic->num_entries * sizeof(struct s2io_msix_entry);
44364a03 3758 nic->s2io_entries = kzalloc(size, GFP_KERNEL);
bd684e43 3759 if (!nic->s2io_entries) {
8a4bdbaa 3760 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
d44570e4 3761 __func__);
ffb5df6c 3762 swstats->mem_alloc_fail_cnt++;
cc6e7c44 3763 kfree(nic->entries);
ffb5df6c 3764 swstats->mem_freed
f61e0a35 3765 += (nic->num_entries * sizeof(struct msix_entry));
cc6e7c44
RA
3766 return -ENOMEM;
3767 }
ffb5df6c 3768 swstats->mem_allocated += size;
cc6e7c44 3769
ac731ab6
SH
3770 nic->entries[0].entry = 0;
3771 nic->s2io_entries[0].entry = 0;
3772 nic->s2io_entries[0].in_use = MSIX_FLG;
3773 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3774 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3775
f61e0a35
SH
3776 for (i = 1; i < nic->num_entries; i++) {
3777 nic->entries[i].entry = ((i - 1) * 8) + 1;
3778 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
cc6e7c44
RA
3779 nic->s2io_entries[i].arg = NULL;
3780 nic->s2io_entries[i].in_use = 0;
3781 }
3782
8a4bdbaa 3783 rx_mat = readq(&bar0->rx_mat);
f61e0a35 3784 for (j = 0; j < nic->config.rx_ring_num; j++) {
8a4bdbaa 3785 rx_mat |= RX_MAT_SET(j, msix_indx);
f61e0a35
SH
3786 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3787 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3788 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3789 msix_indx += 8;
cc6e7c44 3790 }
8a4bdbaa 3791 writeq(rx_mat, &bar0->rx_mat);
f61e0a35 3792 readq(&bar0->rx_mat);
cc6e7c44 3793
f61e0a35 3794 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
c92ca04b 3795 /* We fail init if error or we get less vectors than min required */
cc6e7c44 3796 if (ret) {
9e39f7c5 3797 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
cc6e7c44 3798 kfree(nic->entries);
ffb5df6c
JP
3799 swstats->mem_freed += nic->num_entries *
3800 sizeof(struct msix_entry);
cc6e7c44 3801 kfree(nic->s2io_entries);
ffb5df6c
JP
3802 swstats->mem_freed += nic->num_entries *
3803 sizeof(struct s2io_msix_entry);
cc6e7c44
RA
3804 nic->entries = NULL;
3805 nic->s2io_entries = NULL;
3806 return -ENOMEM;
3807 }
3808
3809 /*
3810 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3811 * in the herc NIC. (Temp change, needs to be removed later)
3812 */
3813 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3814 msi_control |= 0x1; /* Enable MSI */
3815 pci_write_config_word(nic->pdev, 0x42, msi_control);
3816
3817 return 0;
3818}
3819
8abc4d5b 3820/* Handle software interrupt used during MSI(X) test */
33390a70 3821static irqreturn_t s2io_test_intr(int irq, void *dev_id)
8abc4d5b
SS
3822{
3823 struct s2io_nic *sp = dev_id;
3824
3825 sp->msi_detected = 1;
3826 wake_up(&sp->msi_wait);
3827
3828 return IRQ_HANDLED;
3829}
3830
3831/* Test interrupt path by forcing a a software IRQ */
33390a70 3832static int s2io_test_msi(struct s2io_nic *sp)
8abc4d5b
SS
3833{
3834 struct pci_dev *pdev = sp->pdev;
3835 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3836 int err;
3837 u64 val64, saved64;
3838
3839 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
d44570e4 3840 sp->name, sp);
8abc4d5b
SS
3841 if (err) {
3842 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
d44570e4 3843 sp->dev->name, pci_name(pdev), pdev->irq);
8abc4d5b
SS
3844 return err;
3845 }
3846
d44570e4 3847 init_waitqueue_head(&sp->msi_wait);
8abc4d5b
SS
3848 sp->msi_detected = 0;
3849
3850 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3851 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3852 val64 |= SCHED_INT_CTRL_TIMER_EN;
3853 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3854 writeq(val64, &bar0->scheduled_int_ctrl);
3855
3856 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3857
3858 if (!sp->msi_detected) {
3859 /* MSI(X) test failed, go back to INTx mode */
2450022a 3860 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
9e39f7c5
JP
3861 "using MSI(X) during test\n",
3862 sp->dev->name, pci_name(pdev));
8abc4d5b
SS
3863
3864 err = -EOPNOTSUPP;
3865 }
3866
3867 free_irq(sp->entries[1].vector, sp);
3868
3869 writeq(saved64, &bar0->scheduled_int_ctrl);
3870
3871 return err;
3872}
18b2b7bd
SH
3873
3874static void remove_msix_isr(struct s2io_nic *sp)
3875{
3876 int i;
3877 u16 msi_control;
3878
f61e0a35 3879 for (i = 0; i < sp->num_entries; i++) {
d44570e4 3880 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
18b2b7bd
SH
3881 int vector = sp->entries[i].vector;
3882 void *arg = sp->s2io_entries[i].arg;
3883 free_irq(vector, arg);
3884 }
3885 }
3886
3887 kfree(sp->entries);
3888 kfree(sp->s2io_entries);
3889 sp->entries = NULL;
3890 sp->s2io_entries = NULL;
3891
3892 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3893 msi_control &= 0xFFFE; /* Disable MSI */
3894 pci_write_config_word(sp->pdev, 0x42, msi_control);
3895
3896 pci_disable_msix(sp->pdev);
3897}
3898
3899static void remove_inta_isr(struct s2io_nic *sp)
3900{
80777c54 3901 free_irq(sp->pdev->irq, sp->dev);
18b2b7bd
SH
3902}
3903
1da177e4
LT
3904/* ********************************************************* *
3905 * Functions defined below concern the OS part of the driver *
3906 * ********************************************************* */
3907
20346722 3908/**
1da177e4
LT
3909 * s2io_open - open entry point of the driver
3910 * @dev : pointer to the device structure.
3911 * Description:
3912 * This function is the open entry point of the driver. It mainly calls a
3913 * function to allocate Rx buffers and inserts them into the buffer
20346722 3914 * descriptors and then enables the Rx part of the NIC.
1da177e4
LT
3915 * Return value:
3916 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3917 * file on failure.
3918 */
3919
ac1f60db 3920static int s2io_open(struct net_device *dev)
1da177e4 3921{
4cf1653a 3922 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 3923 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
3924 int err = 0;
3925
20346722
K
3926 /*
3927 * Make sure you have link off by default every time
1da177e4
LT
3928 * Nic is initialized
3929 */
3930 netif_carrier_off(dev);
0b1f7ebe 3931 sp->last_link_state = 0;
1da177e4
LT
3932
3933 /* Initialize H/W and enable interrupts */
c92ca04b
AR
3934 err = s2io_card_up(sp);
3935 if (err) {
1da177e4
LT
3936 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3937 dev->name);
e6a8fee2 3938 goto hw_init_failed;
1da177e4
LT
3939 }
3940
2fd37688 3941 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
1da177e4 3942 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
e6a8fee2 3943 s2io_card_down(sp);
20346722 3944 err = -ENODEV;
e6a8fee2 3945 goto hw_init_failed;
1da177e4 3946 }
3a3d5756 3947 s2io_start_all_tx_queue(sp);
1da177e4 3948 return 0;
20346722 3949
20346722 3950hw_init_failed:
eaae7f72 3951 if (sp->config.intr_type == MSI_X) {
491976b2 3952 if (sp->entries) {
cc6e7c44 3953 kfree(sp->entries);
ffb5df6c
JP
3954 swstats->mem_freed += sp->num_entries *
3955 sizeof(struct msix_entry);
491976b2
SH
3956 }
3957 if (sp->s2io_entries) {
cc6e7c44 3958 kfree(sp->s2io_entries);
ffb5df6c
JP
3959 swstats->mem_freed += sp->num_entries *
3960 sizeof(struct s2io_msix_entry);
491976b2 3961 }
cc6e7c44 3962 }
20346722 3963 return err;
1da177e4
LT
3964}
3965
3966/**
3967 * s2io_close -close entry point of the driver
3968 * @dev : device pointer.
3969 * Description:
3970 * This is the stop entry point of the driver. It needs to undo exactly
3971 * whatever was done by the open entry point,thus it's usually referred to
3972 * as the close function.Among other things this function mainly stops the
3973 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3974 * Return value:
3975 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3976 * file on failure.
3977 */
3978
ac1f60db 3979static int s2io_close(struct net_device *dev)
1da177e4 3980{
4cf1653a 3981 struct s2io_nic *sp = netdev_priv(dev);
faa4f796
SH
3982 struct config_param *config = &sp->config;
3983 u64 tmp64;
3984 int offset;
cc6e7c44 3985
9f74ffde 3986 /* Return if the device is already closed *
d44570e4
JP
3987 * Can happen when s2io_card_up failed in change_mtu *
3988 */
9f74ffde
SH
3989 if (!is_s2io_card_up(sp))
3990 return 0;
3991
3a3d5756 3992 s2io_stop_all_tx_queue(sp);
faa4f796
SH
3993 /* delete all populated mac entries */
3994 for (offset = 1; offset < config->max_mc_addr; offset++) {
3995 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3996 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3997 do_s2io_delete_unicast_mc(sp, tmp64);
3998 }
3999
e6a8fee2 4000 s2io_card_down(sp);
cc6e7c44 4001
1da177e4
LT
4002 return 0;
4003}
4004
4005/**
4006 * s2io_xmit - Tx entry point of te driver
4007 * @skb : the socket buffer containing the Tx data.
4008 * @dev : device pointer.
4009 * Description :
4010 * This function is the Tx entry point of the driver. S2IO NIC supports
4011 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
25985edc 4012 * NOTE: when device can't queue the pkt,just the trans_start variable will
1da177e4
LT
4013 * not be upadted.
4014 * Return value:
4015 * 0 on success & 1 on failure.
4016 */
4017
61357325 4018static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
1da177e4 4019{
4cf1653a 4020 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
4021 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4022 register u64 val64;
1ee6dd77
RB
4023 struct TxD *txdp;
4024 struct TxFIFO_element __iomem *tx_fifo;
2fda096d 4025 unsigned long flags = 0;
be3a6b02 4026 u16 vlan_tag = 0;
2fda096d 4027 struct fifo_info *fifo = NULL;
6cfc482b 4028 int do_spin_lock = 1;
75c30b13 4029 int offload_type;
6cfc482b 4030 int enable_per_list_interrupt = 0;
ffb5df6c
JP
4031 struct config_param *config = &sp->config;
4032 struct mac_info *mac_control = &sp->mac_control;
4033 struct stat_block *stats = mac_control->stats_info;
4034 struct swStat *swstats = &stats->sw_stat;
1da177e4 4035
20346722 4036 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
491976b2
SH
4037
4038 if (unlikely(skb->len <= 0)) {
9e39f7c5 4039 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
491976b2 4040 dev_kfree_skb_any(skb);
6ed10654 4041 return NETDEV_TX_OK;
2fda096d 4042 }
491976b2 4043
92b84437 4044 if (!is_s2io_card_up(sp)) {
20346722 4045 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
1da177e4 4046 dev->name);
20346722 4047 dev_kfree_skb(skb);
6ed10654 4048 return NETDEV_TX_OK;
1da177e4
LT
4049 }
4050
4051 queue = 0;
eab6d18d 4052 if (vlan_tx_tag_present(skb))
be3a6b02 4053 vlan_tag = vlan_tx_tag_get(skb);
6cfc482b
SH
4054 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4055 if (skb->protocol == htons(ETH_P_IP)) {
4056 struct iphdr *ip;
4057 struct tcphdr *th;
4058 ip = ip_hdr(skb);
4059
56f8a75c 4060 if (!ip_is_fragment(ip)) {
6cfc482b 4061 th = (struct tcphdr *)(((unsigned char *)ip) +
d44570e4 4062 ip->ihl*4);
6cfc482b
SH
4063
4064 if (ip->protocol == IPPROTO_TCP) {
4065 queue_len = sp->total_tcp_fifos;
4066 queue = (ntohs(th->source) +
d44570e4
JP
4067 ntohs(th->dest)) &
4068 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4069 if (queue >= queue_len)
4070 queue = queue_len - 1;
4071 } else if (ip->protocol == IPPROTO_UDP) {
4072 queue_len = sp->total_udp_fifos;
4073 queue = (ntohs(th->source) +
d44570e4
JP
4074 ntohs(th->dest)) &
4075 sp->fifo_selector[queue_len - 1];
6cfc482b
SH
4076 if (queue >= queue_len)
4077 queue = queue_len - 1;
4078 queue += sp->udp_fifo_idx;
4079 if (skb->len > 1024)
4080 enable_per_list_interrupt = 1;
4081 do_spin_lock = 0;
4082 }
4083 }
4084 }
4085 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4086 /* get fifo number based on skb->priority value */
4087 queue = config->fifo_mapping
d44570e4 4088 [skb->priority & (MAX_TX_FIFOS - 1)];
6cfc482b 4089 fifo = &mac_control->fifos[queue];
3a3d5756 4090
6cfc482b
SH
4091 if (do_spin_lock)
4092 spin_lock_irqsave(&fifo->tx_lock, flags);
4093 else {
4094 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4095 return NETDEV_TX_LOCKED;
4096 }
be3a6b02 4097
3a3d5756
SH
4098 if (sp->config.multiq) {
4099 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4100 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4101 return NETDEV_TX_BUSY;
4102 }
b19fa1fa 4103 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
3a3d5756
SH
4104 if (netif_queue_stopped(dev)) {
4105 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4106 return NETDEV_TX_BUSY;
4107 }
4108 }
4109
d44570e4
JP
4110 put_off = (u16)fifo->tx_curr_put_info.offset;
4111 get_off = (u16)fifo->tx_curr_get_info.offset;
43d620c8 4112 txdp = fifo->list_info[put_off].list_virt_addr;
20346722 4113
2fda096d 4114 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
1da177e4 4115 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4116 if (txdp->Host_Control ||
d44570e4 4117 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
776bd20f 4118 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3a3d5756 4119 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4120 dev_kfree_skb(skb);
2fda096d 4121 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4122 return NETDEV_TX_OK;
1da177e4 4123 }
0b1f7ebe 4124
75c30b13 4125 offload_type = s2io_offload_type(skb);
75c30b13 4126 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
1da177e4 4127 txdp->Control_1 |= TXD_TCP_LSO_EN;
75c30b13 4128 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
1da177e4 4129 }
84fa7933 4130 if (skb->ip_summed == CHECKSUM_PARTIAL) {
d44570e4
JP
4131 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4132 TXD_TX_CKO_TCP_EN |
4133 TXD_TX_CKO_UDP_EN);
1da177e4 4134 }
fed5eccd
AR
4135 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4136 txdp->Control_1 |= TXD_LIST_OWN_XENA;
2fda096d 4137 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
6cfc482b
SH
4138 if (enable_per_list_interrupt)
4139 if (put_off & (queue_len >> 5))
4140 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
3a3d5756 4141 if (vlan_tag) {
be3a6b02
K
4142 txdp->Control_2 |= TXD_VLAN_ENABLE;
4143 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4144 }
4145
e743d313 4146 frg_len = skb_headlen(skb);
75c30b13 4147 if (offload_type == SKB_GSO_UDP) {
fed5eccd
AR
4148 int ufo_size;
4149
75c30b13 4150 ufo_size = s2io_udp_mss(skb);
fed5eccd
AR
4151 ufo_size &= ~7;
4152 txdp->Control_1 |= TXD_UFO_EN;
4153 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4154 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4155#ifdef __BIG_ENDIAN
3459feb8 4156 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
2fda096d 4157 fifo->ufo_in_band_v[put_off] =
d44570e4 4158 (__force u64)skb_shinfo(skb)->ip6_frag_id;
fed5eccd 4159#else
2fda096d 4160 fifo->ufo_in_band_v[put_off] =
d44570e4 4161 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
fed5eccd 4162#endif
2fda096d 4163 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
fed5eccd 4164 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
d44570e4
JP
4165 fifo->ufo_in_band_v,
4166 sizeof(u64),
4167 PCI_DMA_TODEVICE);
8d8bb39b 4168 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25 4169 goto pci_map_failed;
fed5eccd 4170 txdp++;
fed5eccd 4171 }
1da177e4 4172
d44570e4
JP
4173 txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4174 frg_len, PCI_DMA_TODEVICE);
8d8bb39b 4175 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
491abf25
VP
4176 goto pci_map_failed;
4177
d44570e4 4178 txdp->Host_Control = (unsigned long)skb;
fed5eccd 4179 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
75c30b13 4180 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4181 txdp->Control_1 |= TXD_UFO_EN;
4182
4183 frg_cnt = skb_shinfo(skb)->nr_frags;
1da177e4
LT
4184 /* For fragmented SKB. */
4185 for (i = 0; i < frg_cnt; i++) {
9e903e08 4186 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
0b1f7ebe 4187 /* A '0' length fragment will be ignored */
9e903e08 4188 if (!skb_frag_size(frag))
0b1f7ebe 4189 continue;
1da177e4 4190 txdp++;
f0d06d82
IC
4191 txdp->Buffer_Pointer = (u64)skb_frag_dma_map(&sp->pdev->dev,
4192 frag, 0,
9e903e08 4193 skb_frag_size(frag),
5d6bcdfe 4194 DMA_TO_DEVICE);
9e903e08 4195 txdp->Control_1 = TXD_BUFFER0_SIZE(skb_frag_size(frag));
75c30b13 4196 if (offload_type == SKB_GSO_UDP)
fed5eccd 4197 txdp->Control_1 |= TXD_UFO_EN;
1da177e4
LT
4198 }
4199 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4200
75c30b13 4201 if (offload_type == SKB_GSO_UDP)
fed5eccd
AR
4202 frg_cnt++; /* as Txd0 was used for inband header */
4203
1da177e4 4204 tx_fifo = mac_control->tx_FIFO_start[queue];
2fda096d 4205 val64 = fifo->list_info[put_off].list_phy_addr;
1da177e4
LT
4206 writeq(val64, &tx_fifo->TxDL_Pointer);
4207
4208 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4209 TX_FIFO_LAST_LIST);
75c30b13 4210 if (offload_type)
fed5eccd 4211 val64 |= TX_FIFO_SPECIAL_FUNC;
75c30b13 4212
1da177e4
LT
4213 writeq(val64, &tx_fifo->List_Control);
4214
303bcb4b
K
4215 mmiowb();
4216
1da177e4 4217 put_off++;
2fda096d 4218 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
863c11a9 4219 put_off = 0;
2fda096d 4220 fifo->tx_curr_put_info.offset = put_off;
1da177e4
LT
4221
4222 /* Avoid "put" pointer going beyond "get" pointer */
863c11a9 4223 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
ffb5df6c 4224 swstats->fifo_full_cnt++;
1da177e4
LT
4225 DBG_PRINT(TX_DBG,
4226 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4227 put_off, get_off);
3a3d5756 4228 s2io_stop_tx_queue(sp, fifo->fifo_no);
1da177e4 4229 }
ffb5df6c 4230 swstats->mem_allocated += skb->truesize;
2fda096d 4231 spin_unlock_irqrestore(&fifo->tx_lock, flags);
1da177e4 4232
f6f4bfa3
SH
4233 if (sp->config.intr_type == MSI_X)
4234 tx_intr_handler(fifo);
4235
6ed10654 4236 return NETDEV_TX_OK;
ffb5df6c 4237
491abf25 4238pci_map_failed:
ffb5df6c 4239 swstats->pci_map_fail_cnt++;
3a3d5756 4240 s2io_stop_tx_queue(sp, fifo->fifo_no);
ffb5df6c 4241 swstats->mem_freed += skb->truesize;
491abf25 4242 dev_kfree_skb(skb);
2fda096d 4243 spin_unlock_irqrestore(&fifo->tx_lock, flags);
6ed10654 4244 return NETDEV_TX_OK;
1da177e4
LT
4245}
4246
25fff88e
K
4247static void
4248s2io_alarm_handle(unsigned long data)
4249{
1ee6dd77 4250 struct s2io_nic *sp = (struct s2io_nic *)data;
8116f3cf 4251 struct net_device *dev = sp->dev;
25fff88e 4252
8116f3cf 4253 s2io_handle_errors(dev);
25fff88e
K
4254 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4255}
4256
7d12e780 4257static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
cc6e7c44 4258{
1ee6dd77
RB
4259 struct ring_info *ring = (struct ring_info *)dev_id;
4260 struct s2io_nic *sp = ring->nic;
f61e0a35 4261 struct XENA_dev_config __iomem *bar0 = sp->bar0;
cc6e7c44 4262
f61e0a35 4263 if (unlikely(!is_s2io_card_up(sp)))
92b84437 4264 return IRQ_HANDLED;
92b84437 4265
f61e0a35 4266 if (sp->config.napi) {
1a79d1c3
AV
4267 u8 __iomem *addr = NULL;
4268 u8 val8 = 0;
f61e0a35 4269
1a79d1c3 4270 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
f61e0a35
SH
4271 addr += (7 - ring->ring_no);
4272 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4273 writeb(val8, addr);
4274 val8 = readb(addr);
288379f0 4275 napi_schedule(&ring->napi);
f61e0a35
SH
4276 } else {
4277 rx_intr_handler(ring, 0);
8d8bb39b 4278 s2io_chk_rx_buffers(sp, ring);
f61e0a35 4279 }
7d3d0439 4280
cc6e7c44
RA
4281 return IRQ_HANDLED;
4282}
4283
7d12e780 4284static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
cc6e7c44 4285{
ac731ab6
SH
4286 int i;
4287 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4288 struct s2io_nic *sp = fifos->nic;
4289 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4290 struct config_param *config = &sp->config;
4291 u64 reason;
cc6e7c44 4292
ac731ab6
SH
4293 if (unlikely(!is_s2io_card_up(sp)))
4294 return IRQ_NONE;
4295
4296 reason = readq(&bar0->general_int_status);
4297 if (unlikely(reason == S2IO_MINUS_ONE))
4298 /* Nothing much can be done. Get out */
92b84437 4299 return IRQ_HANDLED;
92b84437 4300
01e16faa
SH
4301 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4302 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
ac731ab6 4303
01e16faa
SH
4304 if (reason & GEN_INTR_TXPIC)
4305 s2io_txpic_intr_handle(sp);
ac731ab6 4306
01e16faa
SH
4307 if (reason & GEN_INTR_TXTRAFFIC)
4308 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
ac731ab6 4309
01e16faa
SH
4310 for (i = 0; i < config->tx_fifo_num; i++)
4311 tx_intr_handler(&fifos[i]);
ac731ab6 4312
01e16faa
SH
4313 writeq(sp->general_int_mask, &bar0->general_int_mask);
4314 readl(&bar0->general_int_status);
4315 return IRQ_HANDLED;
4316 }
4317 /* The interrupt was not raised by us */
4318 return IRQ_NONE;
cc6e7c44 4319}
ac731ab6 4320
1ee6dd77 4321static void s2io_txpic_intr_handle(struct s2io_nic *sp)
a371a07d 4322{
1ee6dd77 4323 struct XENA_dev_config __iomem *bar0 = sp->bar0;
a371a07d
K
4324 u64 val64;
4325
4326 val64 = readq(&bar0->pic_int_status);
4327 if (val64 & PIC_INT_GPIO) {
4328 val64 = readq(&bar0->gpio_int_reg);
4329 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4330 (val64 & GPIO_INT_REG_LINK_UP)) {
c92ca04b
AR
4331 /*
4332 * This is unstable state so clear both up/down
4333 * interrupt and adapter to re-evaluate the link state.
4334 */
d44570e4 4335 val64 |= GPIO_INT_REG_LINK_DOWN;
a371a07d
K
4336 val64 |= GPIO_INT_REG_LINK_UP;
4337 writeq(val64, &bar0->gpio_int_reg);
a371a07d 4338 val64 = readq(&bar0->gpio_int_mask);
c92ca04b
AR
4339 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4340 GPIO_INT_MASK_LINK_DOWN);
a371a07d 4341 writeq(val64, &bar0->gpio_int_mask);
d44570e4 4342 } else if (val64 & GPIO_INT_REG_LINK_UP) {
c92ca04b 4343 val64 = readq(&bar0->adapter_status);
d44570e4 4344 /* Enable Adapter */
19a60522
SS
4345 val64 = readq(&bar0->adapter_control);
4346 val64 |= ADAPTER_CNTL_EN;
4347 writeq(val64, &bar0->adapter_control);
4348 val64 |= ADAPTER_LED_ON;
4349 writeq(val64, &bar0->adapter_control);
4350 if (!sp->device_enabled_once)
4351 sp->device_enabled_once = 1;
c92ca04b 4352
19a60522
SS
4353 s2io_link(sp, LINK_UP);
4354 /*
4355 * unmask link down interrupt and mask link-up
4356 * intr
4357 */
4358 val64 = readq(&bar0->gpio_int_mask);
4359 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4360 val64 |= GPIO_INT_MASK_LINK_UP;
4361 writeq(val64, &bar0->gpio_int_mask);
c92ca04b 4362
d44570e4 4363 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
c92ca04b 4364 val64 = readq(&bar0->adapter_status);
19a60522
SS
4365 s2io_link(sp, LINK_DOWN);
4366 /* Link is down so unmaks link up interrupt */
4367 val64 = readq(&bar0->gpio_int_mask);
4368 val64 &= ~GPIO_INT_MASK_LINK_UP;
4369 val64 |= GPIO_INT_MASK_LINK_DOWN;
4370 writeq(val64, &bar0->gpio_int_mask);
ac1f90d6
SS
4371
4372 /* turn off LED */
4373 val64 = readq(&bar0->adapter_control);
d44570e4 4374 val64 = val64 & (~ADAPTER_LED_ON);
ac1f90d6 4375 writeq(val64, &bar0->adapter_control);
a371a07d
K
4376 }
4377 }
c92ca04b 4378 val64 = readq(&bar0->gpio_int_mask);
a371a07d
K
4379}
4380
8116f3cf
SS
4381/**
4382 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4383 * @value: alarm bits
4384 * @addr: address value
4385 * @cnt: counter variable
4386 * Description: Check for alarm and increment the counter
4387 * Return Value:
4388 * 1 - if alarm bit set
4389 * 0 - if alarm bit is not set
4390 */
d44570e4
JP
4391static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4392 unsigned long long *cnt)
8116f3cf
SS
4393{
4394 u64 val64;
4395 val64 = readq(addr);
d44570e4 4396 if (val64 & value) {
8116f3cf
SS
4397 writeq(val64, addr);
4398 (*cnt)++;
4399 return 1;
4400 }
4401 return 0;
4402
4403}
4404
4405/**
4406 * s2io_handle_errors - Xframe error indication handler
4407 * @nic: device private variable
4408 * Description: Handle alarms such as loss of link, single or
4409 * double ECC errors, critical and serious errors.
4410 * Return Value:
4411 * NONE
4412 */
d44570e4 4413static void s2io_handle_errors(void *dev_id)
8116f3cf 4414{
d44570e4 4415 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4416 struct s2io_nic *sp = netdev_priv(dev);
8116f3cf 4417 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d44570e4 4418 u64 temp64 = 0, val64 = 0;
8116f3cf
SS
4419 int i = 0;
4420
4421 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4422 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4423
92b84437 4424 if (!is_s2io_card_up(sp))
8116f3cf
SS
4425 return;
4426
4427 if (pci_channel_offline(sp->pdev))
4428 return;
4429
4430 memset(&sw_stat->ring_full_cnt, 0,
d44570e4 4431 sizeof(sw_stat->ring_full_cnt));
8116f3cf
SS
4432
4433 /* Handling the XPAK counters update */
d44570e4 4434 if (stats->xpak_timer_count < 72000) {
8116f3cf
SS
4435 /* waiting for an hour */
4436 stats->xpak_timer_count++;
4437 } else {
4438 s2io_updt_xpak_counter(dev);
4439 /* reset the count to zero */
4440 stats->xpak_timer_count = 0;
4441 }
4442
4443 /* Handling link status change error Intr */
4444 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4445 val64 = readq(&bar0->mac_rmac_err_reg);
4446 writeq(val64, &bar0->mac_rmac_err_reg);
4447 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4448 schedule_work(&sp->set_link_task);
4449 }
4450
4451 /* In case of a serious error, the device will be Reset. */
4452 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
d44570e4 4453 &sw_stat->serious_err_cnt))
8116f3cf
SS
4454 goto reset;
4455
4456 /* Check for data parity error */
4457 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
d44570e4 4458 &sw_stat->parity_err_cnt))
8116f3cf
SS
4459 goto reset;
4460
4461 /* Check for ring full counter */
4462 if (sp->device_type == XFRAME_II_DEVICE) {
4463 val64 = readq(&bar0->ring_bump_counter1);
d44570e4
JP
4464 for (i = 0; i < 4; i++) {
4465 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf
SS
4466 temp64 >>= 64 - ((i+1)*16);
4467 sw_stat->ring_full_cnt[i] += temp64;
4468 }
4469
4470 val64 = readq(&bar0->ring_bump_counter2);
d44570e4
JP
4471 for (i = 0; i < 4; i++) {
4472 temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
8116f3cf 4473 temp64 >>= 64 - ((i+1)*16);
d44570e4 4474 sw_stat->ring_full_cnt[i+4] += temp64;
8116f3cf
SS
4475 }
4476 }
4477
4478 val64 = readq(&bar0->txdma_int_status);
4479 /*check for pfc_err*/
4480 if (val64 & TXDMA_PFC_INT) {
d44570e4
JP
4481 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4482 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4483 PFC_PCIX_ERR,
4484 &bar0->pfc_err_reg,
4485 &sw_stat->pfc_err_cnt))
8116f3cf 4486 goto reset;
d44570e4
JP
4487 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4488 &bar0->pfc_err_reg,
4489 &sw_stat->pfc_err_cnt);
8116f3cf
SS
4490 }
4491
4492 /*check for tda_err*/
4493 if (val64 & TXDMA_TDA_INT) {
d44570e4
JP
4494 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4495 TDA_SM0_ERR_ALARM |
4496 TDA_SM1_ERR_ALARM,
4497 &bar0->tda_err_reg,
4498 &sw_stat->tda_err_cnt))
8116f3cf
SS
4499 goto reset;
4500 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
d44570e4
JP
4501 &bar0->tda_err_reg,
4502 &sw_stat->tda_err_cnt);
8116f3cf
SS
4503 }
4504 /*check for pcc_err*/
4505 if (val64 & TXDMA_PCC_INT) {
d44570e4
JP
4506 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4507 PCC_N_SERR | PCC_6_COF_OV_ERR |
4508 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4509 PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4510 PCC_TXB_ECC_DB_ERR,
4511 &bar0->pcc_err_reg,
4512 &sw_stat->pcc_err_cnt))
8116f3cf
SS
4513 goto reset;
4514 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
d44570e4
JP
4515 &bar0->pcc_err_reg,
4516 &sw_stat->pcc_err_cnt);
8116f3cf
SS
4517 }
4518
4519 /*check for tti_err*/
4520 if (val64 & TXDMA_TTI_INT) {
d44570e4
JP
4521 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4522 &bar0->tti_err_reg,
4523 &sw_stat->tti_err_cnt))
8116f3cf
SS
4524 goto reset;
4525 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
d44570e4
JP
4526 &bar0->tti_err_reg,
4527 &sw_stat->tti_err_cnt);
8116f3cf
SS
4528 }
4529
4530 /*check for lso_err*/
4531 if (val64 & TXDMA_LSO_INT) {
d44570e4
JP
4532 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4533 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4534 &bar0->lso_err_reg,
4535 &sw_stat->lso_err_cnt))
8116f3cf
SS
4536 goto reset;
4537 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
d44570e4
JP
4538 &bar0->lso_err_reg,
4539 &sw_stat->lso_err_cnt);
8116f3cf
SS
4540 }
4541
4542 /*check for tpa_err*/
4543 if (val64 & TXDMA_TPA_INT) {
d44570e4
JP
4544 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4545 &bar0->tpa_err_reg,
4546 &sw_stat->tpa_err_cnt))
8116f3cf 4547 goto reset;
d44570e4
JP
4548 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4549 &bar0->tpa_err_reg,
4550 &sw_stat->tpa_err_cnt);
8116f3cf
SS
4551 }
4552
4553 /*check for sm_err*/
4554 if (val64 & TXDMA_SM_INT) {
d44570e4
JP
4555 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4556 &bar0->sm_err_reg,
4557 &sw_stat->sm_err_cnt))
8116f3cf
SS
4558 goto reset;
4559 }
4560
4561 val64 = readq(&bar0->mac_int_status);
4562 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4563 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
d44570e4
JP
4564 &bar0->mac_tmac_err_reg,
4565 &sw_stat->mac_tmac_err_cnt))
8116f3cf 4566 goto reset;
d44570e4
JP
4567 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4568 TMAC_DESC_ECC_SG_ERR |
4569 TMAC_DESC_ECC_DB_ERR,
4570 &bar0->mac_tmac_err_reg,
4571 &sw_stat->mac_tmac_err_cnt);
8116f3cf
SS
4572 }
4573
4574 val64 = readq(&bar0->xgxs_int_status);
4575 if (val64 & XGXS_INT_STATUS_TXGXS) {
4576 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
d44570e4
JP
4577 &bar0->xgxs_txgxs_err_reg,
4578 &sw_stat->xgxs_txgxs_err_cnt))
8116f3cf
SS
4579 goto reset;
4580 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
d44570e4
JP
4581 &bar0->xgxs_txgxs_err_reg,
4582 &sw_stat->xgxs_txgxs_err_cnt);
8116f3cf
SS
4583 }
4584
4585 val64 = readq(&bar0->rxdma_int_status);
4586 if (val64 & RXDMA_INT_RC_INT_M) {
d44570e4
JP
4587 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4588 RC_FTC_ECC_DB_ERR |
4589 RC_PRCn_SM_ERR_ALARM |
4590 RC_FTC_SM_ERR_ALARM,
4591 &bar0->rc_err_reg,
4592 &sw_stat->rc_err_cnt))
8116f3cf 4593 goto reset;
d44570e4
JP
4594 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4595 RC_FTC_ECC_SG_ERR |
4596 RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4597 &sw_stat->rc_err_cnt);
4598 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4599 PRC_PCI_AB_WR_Rn |
4600 PRC_PCI_AB_F_WR_Rn,
4601 &bar0->prc_pcix_err_reg,
4602 &sw_stat->prc_pcix_err_cnt))
8116f3cf 4603 goto reset;
d44570e4
JP
4604 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4605 PRC_PCI_DP_WR_Rn |
4606 PRC_PCI_DP_F_WR_Rn,
4607 &bar0->prc_pcix_err_reg,
4608 &sw_stat->prc_pcix_err_cnt);
8116f3cf
SS
4609 }
4610
4611 if (val64 & RXDMA_INT_RPA_INT_M) {
4612 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
d44570e4
JP
4613 &bar0->rpa_err_reg,
4614 &sw_stat->rpa_err_cnt))
8116f3cf
SS
4615 goto reset;
4616 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
d44570e4
JP
4617 &bar0->rpa_err_reg,
4618 &sw_stat->rpa_err_cnt);
8116f3cf
SS
4619 }
4620
4621 if (val64 & RXDMA_INT_RDA_INT_M) {
d44570e4
JP
4622 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4623 RDA_FRM_ECC_DB_N_AERR |
4624 RDA_SM1_ERR_ALARM |
4625 RDA_SM0_ERR_ALARM |
4626 RDA_RXD_ECC_DB_SERR,
4627 &bar0->rda_err_reg,
4628 &sw_stat->rda_err_cnt))
8116f3cf 4629 goto reset;
d44570e4
JP
4630 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4631 RDA_FRM_ECC_SG_ERR |
4632 RDA_MISC_ERR |
4633 RDA_PCIX_ERR,
4634 &bar0->rda_err_reg,
4635 &sw_stat->rda_err_cnt);
8116f3cf
SS
4636 }
4637
4638 if (val64 & RXDMA_INT_RTI_INT_M) {
d44570e4
JP
4639 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4640 &bar0->rti_err_reg,
4641 &sw_stat->rti_err_cnt))
8116f3cf
SS
4642 goto reset;
4643 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
d44570e4
JP
4644 &bar0->rti_err_reg,
4645 &sw_stat->rti_err_cnt);
8116f3cf
SS
4646 }
4647
4648 val64 = readq(&bar0->mac_int_status);
4649 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4650 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
d44570e4
JP
4651 &bar0->mac_rmac_err_reg,
4652 &sw_stat->mac_rmac_err_cnt))
8116f3cf 4653 goto reset;
d44570e4
JP
4654 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4655 RMAC_SINGLE_ECC_ERR |
4656 RMAC_DOUBLE_ECC_ERR,
4657 &bar0->mac_rmac_err_reg,
4658 &sw_stat->mac_rmac_err_cnt);
8116f3cf
SS
4659 }
4660
4661 val64 = readq(&bar0->xgxs_int_status);
4662 if (val64 & XGXS_INT_STATUS_RXGXS) {
4663 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
d44570e4
JP
4664 &bar0->xgxs_rxgxs_err_reg,
4665 &sw_stat->xgxs_rxgxs_err_cnt))
8116f3cf
SS
4666 goto reset;
4667 }
4668
4669 val64 = readq(&bar0->mc_int_status);
d44570e4
JP
4670 if (val64 & MC_INT_STATUS_MC_INT) {
4671 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4672 &bar0->mc_err_reg,
4673 &sw_stat->mc_err_cnt))
8116f3cf
SS
4674 goto reset;
4675
4676 /* Handling Ecc errors */
4677 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4678 writeq(val64, &bar0->mc_err_reg);
4679 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4680 sw_stat->double_ecc_errs++;
4681 if (sp->device_type != XFRAME_II_DEVICE) {
4682 /*
4683 * Reset XframeI only if critical error
4684 */
4685 if (val64 &
d44570e4
JP
4686 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4687 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4688 goto reset;
4689 }
8116f3cf
SS
4690 } else
4691 sw_stat->single_ecc_errs++;
4692 }
4693 }
4694 return;
4695
4696reset:
3a3d5756 4697 s2io_stop_all_tx_queue(sp);
8116f3cf
SS
4698 schedule_work(&sp->rst_timer_task);
4699 sw_stat->soft_reset_cnt++;
8116f3cf
SS
4700}
4701
1da177e4
LT
4702/**
4703 * s2io_isr - ISR handler of the device .
4704 * @irq: the irq of the device.
4705 * @dev_id: a void pointer to the dev structure of the NIC.
20346722
K
4706 * Description: This function is the ISR handler of the device. It
4707 * identifies the reason for the interrupt and calls the relevant
4708 * service routines. As a contongency measure, this ISR allocates the
1da177e4
LT
4709 * recv buffers, if their numbers are below the panic value which is
4710 * presently set to 25% of the original number of rcv buffers allocated.
4711 * Return value:
20346722 4712 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
1da177e4
LT
4713 * IRQ_NONE: will be returned if interrupt is not from our device
4714 */
7d12e780 4715static irqreturn_t s2io_isr(int irq, void *dev_id)
1da177e4 4716{
d44570e4 4717 struct net_device *dev = (struct net_device *)dev_id;
4cf1653a 4718 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4719 struct XENA_dev_config __iomem *bar0 = sp->bar0;
20346722 4720 int i;
19a60522 4721 u64 reason = 0;
1ee6dd77 4722 struct mac_info *mac_control;
1da177e4
LT
4723 struct config_param *config;
4724
d796fdb7
LV
4725 /* Pretend we handled any irq's from a disconnected card */
4726 if (pci_channel_offline(sp->pdev))
4727 return IRQ_NONE;
4728
596c5c97 4729 if (!is_s2io_card_up(sp))
92b84437 4730 return IRQ_NONE;
92b84437 4731
1da177e4 4732 config = &sp->config;
ffb5df6c 4733 mac_control = &sp->mac_control;
1da177e4 4734
20346722 4735 /*
1da177e4
LT
4736 * Identify the cause for interrupt and call the appropriate
4737 * interrupt handler. Causes for the interrupt could be;
4738 * 1. Rx of packet.
4739 * 2. Tx complete.
4740 * 3. Link down.
1da177e4
LT
4741 */
4742 reason = readq(&bar0->general_int_status);
4743
d44570e4
JP
4744 if (unlikely(reason == S2IO_MINUS_ONE))
4745 return IRQ_HANDLED; /* Nothing much can be done. Get out */
5d3213cc 4746
d44570e4
JP
4747 if (reason &
4748 (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
596c5c97
SS
4749 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4750
4751 if (config->napi) {
4752 if (reason & GEN_INTR_RXTRAFFIC) {
288379f0 4753 napi_schedule(&sp->napi);
f61e0a35
SH
4754 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4755 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4756 readl(&bar0->rx_traffic_int);
db874e65 4757 }
596c5c97
SS
4758 } else {
4759 /*
4760 * rx_traffic_int reg is an R1 register, writing all 1's
4761 * will ensure that the actual interrupt causing bit
4762 * get's cleared and hence a read can be avoided.
4763 */
4764 if (reason & GEN_INTR_RXTRAFFIC)
19a60522 4765 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
596c5c97 4766
13d866a9
JP
4767 for (i = 0; i < config->rx_ring_num; i++) {
4768 struct ring_info *ring = &mac_control->rings[i];
4769
4770 rx_intr_handler(ring, 0);
4771 }
db874e65 4772 }
596c5c97 4773
db874e65 4774 /*
596c5c97 4775 * tx_traffic_int reg is an R1 register, writing all 1's
db874e65
SS
4776 * will ensure that the actual interrupt causing bit get's
4777 * cleared and hence a read can be avoided.
4778 */
596c5c97
SS
4779 if (reason & GEN_INTR_TXTRAFFIC)
4780 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
19a60522 4781
596c5c97
SS
4782 for (i = 0; i < config->tx_fifo_num; i++)
4783 tx_intr_handler(&mac_control->fifos[i]);
1da177e4 4784
596c5c97
SS
4785 if (reason & GEN_INTR_TXPIC)
4786 s2io_txpic_intr_handle(sp);
fe113638 4787
596c5c97
SS
4788 /*
4789 * Reallocate the buffers from the interrupt handler itself.
4790 */
4791 if (!config->napi) {
13d866a9
JP
4792 for (i = 0; i < config->rx_ring_num; i++) {
4793 struct ring_info *ring = &mac_control->rings[i];
4794
4795 s2io_chk_rx_buffers(sp, ring);
4796 }
596c5c97
SS
4797 }
4798 writeq(sp->general_int_mask, &bar0->general_int_mask);
4799 readl(&bar0->general_int_status);
20346722 4800
596c5c97 4801 return IRQ_HANDLED;
db874e65 4802
d44570e4 4803 } else if (!reason) {
596c5c97
SS
4804 /* The interrupt was not raised by us */
4805 return IRQ_NONE;
4806 }
db874e65 4807
1da177e4
LT
4808 return IRQ_HANDLED;
4809}
4810
7ba013ac
K
4811/**
4812 * s2io_updt_stats -
4813 */
1ee6dd77 4814static void s2io_updt_stats(struct s2io_nic *sp)
7ba013ac 4815{
1ee6dd77 4816 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7ba013ac
K
4817 u64 val64;
4818 int cnt = 0;
4819
92b84437 4820 if (is_s2io_card_up(sp)) {
7ba013ac
K
4821 /* Apprx 30us on a 133 MHz bus */
4822 val64 = SET_UPDT_CLICKS(10) |
4823 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4824 writeq(val64, &bar0->stat_cfg);
4825 do {
4826 udelay(100);
4827 val64 = readq(&bar0->stat_cfg);
b7b5a128 4828 if (!(val64 & s2BIT(0)))
7ba013ac
K
4829 break;
4830 cnt++;
4831 if (cnt == 5)
4832 break; /* Updt failed */
d44570e4 4833 } while (1);
8a4bdbaa 4834 }
7ba013ac
K
4835}
4836
1da177e4 4837/**
20346722 4838 * s2io_get_stats - Updates the device statistics structure.
1da177e4
LT
4839 * @dev : pointer to the device structure.
4840 * Description:
20346722 4841 * This function updates the device statistics structure in the s2io_nic
1da177e4
LT
4842 * structure and returns a pointer to the same.
4843 * Return value:
4844 * pointer to the updated net_device_stats structure.
4845 */
ac1f60db 4846static struct net_device_stats *s2io_get_stats(struct net_device *dev)
1da177e4 4847{
4cf1653a 4848 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
4849 struct mac_info *mac_control = &sp->mac_control;
4850 struct stat_block *stats = mac_control->stats_info;
4a490432 4851 u64 delta;
1da177e4 4852
7ba013ac
K
4853 /* Configure Stats for immediate updt */
4854 s2io_updt_stats(sp);
4855
4a490432
JM
4856 /* A device reset will cause the on-adapter statistics to be zero'ed.
4857 * This can be done while running by changing the MTU. To prevent the
4858 * system from having the stats zero'ed, the driver keeps a copy of the
4859 * last update to the system (which is also zero'ed on reset). This
4860 * enables the driver to accurately know the delta between the last
4861 * update and the current update.
4862 */
4863 delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4864 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4865 sp->stats.rx_packets += delta;
4866 dev->stats.rx_packets += delta;
4867
4868 delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4869 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4870 sp->stats.tx_packets += delta;
4871 dev->stats.tx_packets += delta;
4872
4873 delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4874 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4875 sp->stats.rx_bytes += delta;
4876 dev->stats.rx_bytes += delta;
4877
4878 delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4879 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4880 sp->stats.tx_bytes += delta;
4881 dev->stats.tx_bytes += delta;
4882
4883 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4884 sp->stats.rx_errors += delta;
4885 dev->stats.rx_errors += delta;
4886
4887 delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4888 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4889 sp->stats.tx_errors += delta;
4890 dev->stats.tx_errors += delta;
4891
4892 delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4893 sp->stats.rx_dropped += delta;
4894 dev->stats.rx_dropped += delta;
4895
4896 delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4897 sp->stats.tx_dropped += delta;
4898 dev->stats.tx_dropped += delta;
4899
4900 /* The adapter MAC interprets pause frames as multicast packets, but
4901 * does not pass them up. This erroneously increases the multicast
4902 * packet count and needs to be deducted when the multicast frame count
4903 * is queried.
4904 */
4905 delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4906 le32_to_cpu(stats->rmac_vld_mcst_frms);
4907 delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4908 delta -= sp->stats.multicast;
4909 sp->stats.multicast += delta;
4910 dev->stats.multicast += delta;
1da177e4 4911
4a490432
JM
4912 delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4913 le32_to_cpu(stats->rmac_usized_frms)) +
4914 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4915 sp->stats.rx_length_errors += delta;
4916 dev->stats.rx_length_errors += delta;
13d866a9 4917
4a490432
JM
4918 delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4919 sp->stats.rx_crc_errors += delta;
4920 dev->stats.rx_crc_errors += delta;
0425b46a 4921
d44570e4 4922 return &dev->stats;
1da177e4
LT
4923}
4924
4925/**
4926 * s2io_set_multicast - entry point for multicast address enable/disable.
4927 * @dev : pointer to the device structure
4928 * Description:
20346722
K
4929 * This function is a driver entry point which gets called by the kernel
4930 * whenever multicast addresses must be enabled/disabled. This also gets
1da177e4
LT
4931 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4932 * determine, if multicast address must be enabled or if promiscuous mode
4933 * is to be disabled etc.
4934 * Return value:
4935 * void.
4936 */
4937
4938static void s2io_set_multicast(struct net_device *dev)
4939{
4940 int i, j, prev_cnt;
22bedad3 4941 struct netdev_hw_addr *ha;
4cf1653a 4942 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 4943 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 4944 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
d44570e4 4945 0xfeffffffffffULL;
faa4f796 4946 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
1da177e4 4947 void __iomem *add;
faa4f796 4948 struct config_param *config = &sp->config;
1da177e4
LT
4949
4950 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4951 /* Enable all Multicast addresses */
4952 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4953 &bar0->rmac_addr_data0_mem);
4954 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4955 &bar0->rmac_addr_data1_mem);
4956 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
4957 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4958 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
1da177e4
LT
4959 writeq(val64, &bar0->rmac_addr_cmd_mem);
4960 /* Wait till command completes */
c92ca04b 4961 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
4962 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4963 S2IO_BIT_RESET);
1da177e4
LT
4964
4965 sp->m_cast_flg = 1;
faa4f796 4966 sp->all_multi_pos = config->max_mc_addr - 1;
1da177e4
LT
4967 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4968 /* Disable all Multicast addresses */
4969 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4970 &bar0->rmac_addr_data0_mem);
5e25b9dd
K
4971 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4972 &bar0->rmac_addr_data1_mem);
1da177e4 4973 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
4974 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4975 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
1da177e4
LT
4976 writeq(val64, &bar0->rmac_addr_cmd_mem);
4977 /* Wait till command completes */
c92ca04b 4978 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
4979 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4980 S2IO_BIT_RESET);
1da177e4
LT
4981
4982 sp->m_cast_flg = 0;
4983 sp->all_multi_pos = 0;
4984 }
4985
4986 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4987 /* Put the NIC into promiscuous mode */
4988 add = &bar0->mac_cfg;
4989 val64 = readq(&bar0->mac_cfg);
4990 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4991
4992 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 4993 writel((u32)val64, add);
1da177e4
LT
4994 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4995 writel((u32) (val64 >> 32), (add + 4));
4996
926930b2
SS
4997 if (vlan_tag_strip != 1) {
4998 val64 = readq(&bar0->rx_pa_cfg);
4999 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5000 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5001 sp->vlan_strip_flag = 0;
926930b2
SS
5002 }
5003
1da177e4
LT
5004 val64 = readq(&bar0->mac_cfg);
5005 sp->promisc_flg = 1;
776bd20f 5006 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
1da177e4
LT
5007 dev->name);
5008 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5009 /* Remove the NIC from promiscuous mode */
5010 add = &bar0->mac_cfg;
5011 val64 = readq(&bar0->mac_cfg);
5012 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5013
5014 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
d44570e4 5015 writel((u32)val64, add);
1da177e4
LT
5016 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5017 writel((u32) (val64 >> 32), (add + 4));
5018
926930b2
SS
5019 if (vlan_tag_strip != 0) {
5020 val64 = readq(&bar0->rx_pa_cfg);
5021 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5022 writeq(val64, &bar0->rx_pa_cfg);
cd0fce03 5023 sp->vlan_strip_flag = 1;
926930b2
SS
5024 }
5025
1da177e4
LT
5026 val64 = readq(&bar0->mac_cfg);
5027 sp->promisc_flg = 0;
9e39f7c5 5028 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
1da177e4
LT
5029 }
5030
5031 /* Update individual M_CAST address list */
4cd24eaf
JP
5032 if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5033 if (netdev_mc_count(dev) >
faa4f796 5034 (config->max_mc_addr - config->max_mac_addr)) {
9e39f7c5
JP
5035 DBG_PRINT(ERR_DBG,
5036 "%s: No more Rx filters can be added - "
5037 "please enable ALL_MULTI instead\n",
1da177e4 5038 dev->name);
1da177e4
LT
5039 return;
5040 }
5041
5042 prev_cnt = sp->mc_addr_count;
4cd24eaf 5043 sp->mc_addr_count = netdev_mc_count(dev);
1da177e4
LT
5044
5045 /* Clear out the previous list of Mc in the H/W. */
5046 for (i = 0; i < prev_cnt; i++) {
5047 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5048 &bar0->rmac_addr_data0_mem);
5049 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5050 &bar0->rmac_addr_data1_mem);
1da177e4 5051 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5052 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5053 RMAC_ADDR_CMD_MEM_OFFSET
5054 (config->mc_start_offset + i);
1da177e4
LT
5055 writeq(val64, &bar0->rmac_addr_cmd_mem);
5056
5057 /* Wait for command completes */
c92ca04b 5058 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5059 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5060 S2IO_BIT_RESET)) {
9e39f7c5
JP
5061 DBG_PRINT(ERR_DBG,
5062 "%s: Adding Multicasts failed\n",
5063 dev->name);
1da177e4
LT
5064 return;
5065 }
5066 }
5067
5068 /* Create the new Rx filter list and update the same in H/W. */
5508590c 5069 i = 0;
22bedad3 5070 netdev_for_each_mc_addr(ha, dev) {
a7a80d5a 5071 mac_addr = 0;
1da177e4 5072 for (j = 0; j < ETH_ALEN; j++) {
22bedad3 5073 mac_addr |= ha->addr[j];
1da177e4
LT
5074 mac_addr <<= 8;
5075 }
5076 mac_addr >>= 8;
5077 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5078 &bar0->rmac_addr_data0_mem);
5079 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
d44570e4 5080 &bar0->rmac_addr_data1_mem);
1da177e4 5081 val64 = RMAC_ADDR_CMD_MEM_WE |
d44570e4
JP
5082 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5083 RMAC_ADDR_CMD_MEM_OFFSET
5084 (i + config->mc_start_offset);
1da177e4
LT
5085 writeq(val64, &bar0->rmac_addr_cmd_mem);
5086
5087 /* Wait for command completes */
c92ca04b 5088 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5089 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5090 S2IO_BIT_RESET)) {
9e39f7c5
JP
5091 DBG_PRINT(ERR_DBG,
5092 "%s: Adding Multicasts failed\n",
5093 dev->name);
1da177e4
LT
5094 return;
5095 }
5508590c 5096 i++;
1da177e4
LT
5097 }
5098 }
5099}
5100
faa4f796
SH
5101/* read from CAM unicast & multicast addresses and store it in
5102 * def_mac_addr structure
5103 */
dac499f9 5104static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
faa4f796
SH
5105{
5106 int offset;
5107 u64 mac_addr = 0x0;
5108 struct config_param *config = &sp->config;
5109
5110 /* store unicast & multicast mac addresses */
5111 for (offset = 0; offset < config->max_mc_addr; offset++) {
5112 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5113 /* if read fails disable the entry */
5114 if (mac_addr == FAILURE)
5115 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5116 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5117 }
5118}
5119
5120/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5121static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5122{
5123 int offset;
5124 struct config_param *config = &sp->config;
5125 /* restore unicast mac address */
5126 for (offset = 0; offset < config->max_mac_addr; offset++)
5127 do_s2io_prog_unicast(sp->dev,
d44570e4 5128 sp->def_mac_addr[offset].mac_addr);
faa4f796
SH
5129
5130 /* restore multicast mac address */
5131 for (offset = config->mc_start_offset;
d44570e4 5132 offset < config->max_mc_addr; offset++)
faa4f796
SH
5133 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5134}
5135
5136/* add a multicast MAC address to CAM */
5137static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5138{
5139 int i;
5140 u64 mac_addr = 0;
5141 struct config_param *config = &sp->config;
5142
5143 for (i = 0; i < ETH_ALEN; i++) {
5144 mac_addr <<= 8;
5145 mac_addr |= addr[i];
5146 }
5147 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5148 return SUCCESS;
5149
5150 /* check if the multicast mac already preset in CAM */
5151 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5152 u64 tmp64;
5153 tmp64 = do_s2io_read_unicast_mc(sp, i);
5154 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5155 break;
5156
5157 if (tmp64 == mac_addr)
5158 return SUCCESS;
5159 }
5160 if (i == config->max_mc_addr) {
5161 DBG_PRINT(ERR_DBG,
d44570e4 5162 "CAM full no space left for multicast MAC\n");
faa4f796
SH
5163 return FAILURE;
5164 }
5165 /* Update the internal structure with this new mac address */
5166 do_s2io_copy_mac_addr(sp, i, mac_addr);
5167
d44570e4 5168 return do_s2io_add_mac(sp, mac_addr, i);
faa4f796
SH
5169}
5170
5171/* add MAC address to CAM */
5172static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
2fd37688
SS
5173{
5174 u64 val64;
5175 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5176
5177 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
d44570e4 5178 &bar0->rmac_addr_data0_mem);
2fd37688 5179
d44570e4 5180 val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
2fd37688
SS
5181 RMAC_ADDR_CMD_MEM_OFFSET(off);
5182 writeq(val64, &bar0->rmac_addr_cmd_mem);
5183
5184 /* Wait till command completes */
5185 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5186 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5187 S2IO_BIT_RESET)) {
faa4f796 5188 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
2fd37688
SS
5189 return FAILURE;
5190 }
5191 return SUCCESS;
5192}
faa4f796
SH
5193/* deletes a specified unicast/multicast mac entry from CAM */
5194static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5195{
5196 int offset;
5197 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5198 struct config_param *config = &sp->config;
5199
5200 for (offset = 1;
d44570e4 5201 offset < config->max_mc_addr; offset++) {
faa4f796
SH
5202 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5203 if (tmp64 == addr) {
5204 /* disable the entry by writing 0xffffffffffffULL */
5205 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5206 return FAILURE;
5207 /* store the new mac list from CAM */
5208 do_s2io_store_unicast_mc(sp);
5209 return SUCCESS;
5210 }
5211 }
5212 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
d44570e4 5213 (unsigned long long)addr);
faa4f796
SH
5214 return FAILURE;
5215}
5216
5217/* read mac entries from CAM */
5218static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5219{
5220 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5221 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5222
5223 /* read mac addr */
d44570e4 5224 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
faa4f796
SH
5225 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5226 writeq(val64, &bar0->rmac_addr_cmd_mem);
5227
5228 /* Wait till command completes */
5229 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
5230 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5231 S2IO_BIT_RESET)) {
faa4f796
SH
5232 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5233 return FAILURE;
5234 }
5235 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4
JP
5236
5237 return tmp64 >> 16;
faa4f796 5238}
2fd37688
SS
5239
5240/**
49ce9c2c 5241 * s2io_set_mac_addr - driver entry point
2fd37688 5242 */
faa4f796 5243
2fd37688
SS
5244static int s2io_set_mac_addr(struct net_device *dev, void *p)
5245{
5246 struct sockaddr *addr = p;
5247
5248 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 5249 return -EADDRNOTAVAIL;
2fd37688
SS
5250
5251 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5252
5253 /* store the MAC address in CAM */
d44570e4 5254 return do_s2io_prog_unicast(dev, dev->dev_addr);
2fd37688 5255}
1da177e4 5256/**
2fd37688 5257 * do_s2io_prog_unicast - Programs the Xframe mac address
1da177e4
LT
5258 * @dev : pointer to the device structure.
5259 * @addr: a uchar pointer to the new mac address which is to be set.
20346722 5260 * Description : This procedure will program the Xframe to receive
1da177e4 5261 * frames with new Mac Address
20346722 5262 * Return value: SUCCESS on success and an appropriate (-)ve integer
1da177e4
LT
5263 * as defined in errno.h file on failure.
5264 */
faa4f796 5265
2fd37688 5266static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
1da177e4 5267{
4cf1653a 5268 struct s2io_nic *sp = netdev_priv(dev);
2fd37688 5269 register u64 mac_addr = 0, perm_addr = 0;
1da177e4 5270 int i;
faa4f796
SH
5271 u64 tmp64;
5272 struct config_param *config = &sp->config;
1da177e4 5273
20346722 5274 /*
d44570e4
JP
5275 * Set the new MAC address as the new unicast filter and reflect this
5276 * change on the device address registered with the OS. It will be
5277 * at offset 0.
5278 */
1da177e4
LT
5279 for (i = 0; i < ETH_ALEN; i++) {
5280 mac_addr <<= 8;
5281 mac_addr |= addr[i];
2fd37688
SS
5282 perm_addr <<= 8;
5283 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
d8d70caf
SS
5284 }
5285
2fd37688
SS
5286 /* check if the dev_addr is different than perm_addr */
5287 if (mac_addr == perm_addr)
d8d70caf
SS
5288 return SUCCESS;
5289
faa4f796
SH
5290 /* check if the mac already preset in CAM */
5291 for (i = 1; i < config->max_mac_addr; i++) {
5292 tmp64 = do_s2io_read_unicast_mc(sp, i);
5293 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5294 break;
5295
5296 if (tmp64 == mac_addr) {
5297 DBG_PRINT(INFO_DBG,
d44570e4
JP
5298 "MAC addr:0x%llx already present in CAM\n",
5299 (unsigned long long)mac_addr);
faa4f796
SH
5300 return SUCCESS;
5301 }
5302 }
5303 if (i == config->max_mac_addr) {
5304 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5305 return FAILURE;
5306 }
d8d70caf 5307 /* Update the internal structure with this new mac address */
faa4f796 5308 do_s2io_copy_mac_addr(sp, i, mac_addr);
d44570e4
JP
5309
5310 return do_s2io_add_mac(sp, mac_addr, i);
1da177e4
LT
5311}
5312
5313/**
20346722 5314 * s2io_ethtool_sset - Sets different link parameters.
1da177e4
LT
5315 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5316 * @info: pointer to the structure with parameters given by ethtool to set
5317 * link information.
5318 * Description:
20346722 5319 * The function sets different link parameters provided by the user onto
1da177e4
LT
5320 * the NIC.
5321 * Return value:
5322 * 0 on success.
d44570e4 5323 */
1da177e4
LT
5324
5325static int s2io_ethtool_sset(struct net_device *dev,
5326 struct ethtool_cmd *info)
5327{
4cf1653a 5328 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5329 if ((info->autoneg == AUTONEG_ENABLE) ||
25db0338 5330 (ethtool_cmd_speed(info) != SPEED_10000) ||
d44570e4 5331 (info->duplex != DUPLEX_FULL))
1da177e4
LT
5332 return -EINVAL;
5333 else {
5334 s2io_close(sp->dev);
5335 s2io_open(sp->dev);
5336 }
5337
5338 return 0;
5339}
5340
5341/**
20346722 5342 * s2io_ethtol_gset - Return link specific information.
1da177e4
LT
5343 * @sp : private member of the device structure, pointer to the
5344 * s2io_nic structure.
5345 * @info : pointer to the structure with parameters given by ethtool
5346 * to return link information.
5347 * Description:
5348 * Returns link specific information like speed, duplex etc.. to ethtool.
5349 * Return value :
5350 * return 0 on success.
5351 */
5352
5353static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5354{
4cf1653a 5355 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5356 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5357 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5358 info->port = PORT_FIBRE;
1a7eb72b
SS
5359
5360 /* info->transceiver */
5361 info->transceiver = XCVR_EXTERNAL;
1da177e4
LT
5362
5363 if (netif_carrier_ok(sp->dev)) {
70739497 5364 ethtool_cmd_speed_set(info, SPEED_10000);
1da177e4
LT
5365 info->duplex = DUPLEX_FULL;
5366 } else {
70739497 5367 ethtool_cmd_speed_set(info, -1);
1da177e4
LT
5368 info->duplex = -1;
5369 }
5370
5371 info->autoneg = AUTONEG_DISABLE;
5372 return 0;
5373}
5374
5375/**
20346722
K
5376 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5377 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5378 * s2io_nic structure.
5379 * @info : pointer to the structure with parameters given by ethtool to
5380 * return driver information.
5381 * Description:
5382 * Returns driver specefic information like name, version etc.. to ethtool.
5383 * Return value:
5384 * void
5385 */
5386
5387static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5388 struct ethtool_drvinfo *info)
5389{
4cf1653a 5390 struct s2io_nic *sp = netdev_priv(dev);
1da177e4 5391
68aad78c
RJ
5392 strlcpy(info->driver, s2io_driver_name, sizeof(info->driver));
5393 strlcpy(info->version, s2io_driver_version, sizeof(info->version));
68aad78c 5394 strlcpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
1da177e4
LT
5395 info->regdump_len = XENA_REG_SPACE;
5396 info->eedump_len = XENA_EEPROM_SPACE;
1da177e4
LT
5397}
5398
5399/**
5400 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
20346722 5401 * @sp: private member of the device structure, which is a pointer to the
1da177e4 5402 * s2io_nic structure.
20346722 5403 * @regs : pointer to the structure with parameters given by ethtool for
1da177e4
LT
5404 * dumping the registers.
5405 * @reg_space: The input argumnet into which all the registers are dumped.
5406 * Description:
5407 * Dumps the entire register space of xFrame NIC into the user given
5408 * buffer area.
5409 * Return value :
5410 * void .
d44570e4 5411 */
1da177e4
LT
5412
5413static void s2io_ethtool_gregs(struct net_device *dev,
5414 struct ethtool_regs *regs, void *space)
5415{
5416 int i;
5417 u64 reg;
d44570e4 5418 u8 *reg_space = (u8 *)space;
4cf1653a 5419 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5420
5421 regs->len = XENA_REG_SPACE;
5422 regs->version = sp->pdev->subsystem_device;
5423
5424 for (i = 0; i < regs->len; i += 8) {
5425 reg = readq(sp->bar0 + i);
5426 memcpy((reg_space + i), &reg, 8);
5427 }
5428}
5429
034e3450 5430/*
5431 * s2io_set_led - control NIC led
d44570e4 5432 */
034e3450 5433static void s2io_set_led(struct s2io_nic *sp, bool on)
1da177e4 5434{
1ee6dd77 5435 struct XENA_dev_config __iomem *bar0 = sp->bar0;
034e3450 5436 u16 subid = sp->pdev->subsystem_device;
5437 u64 val64;
1da177e4 5438
541ae68f 5439 if ((sp->device_type == XFRAME_II_DEVICE) ||
d44570e4 5440 ((subid & 0xFF) >= 0x07)) {
1da177e4 5441 val64 = readq(&bar0->gpio_control);
034e3450 5442 if (on)
5443 val64 |= GPIO_CTRL_GPIO_0;
5444 else
5445 val64 &= ~GPIO_CTRL_GPIO_0;
5446
1da177e4
LT
5447 writeq(val64, &bar0->gpio_control);
5448 } else {
5449 val64 = readq(&bar0->adapter_control);
034e3450 5450 if (on)
5451 val64 |= ADAPTER_LED_ON;
5452 else
5453 val64 &= ~ADAPTER_LED_ON;
5454
1da177e4
LT
5455 writeq(val64, &bar0->adapter_control);
5456 }
5457
1da177e4
LT
5458}
5459
5460/**
034e3450 5461 * s2io_ethtool_set_led - To physically identify the nic on the system.
5462 * @dev : network device
5463 * @state: led setting
5464 *
1da177e4 5465 * Description: Used to physically identify the NIC on the system.
20346722 5466 * The Link LED will blink for a time specified by the user for
1da177e4 5467 * identification.
20346722 5468 * NOTE: The Link has to be Up to be able to blink the LED. Hence
1da177e4 5469 * identification is possible only if it's link is up.
1da177e4
LT
5470 */
5471
034e3450 5472static int s2io_ethtool_set_led(struct net_device *dev,
5473 enum ethtool_phys_id_state state)
1da177e4 5474{
4cf1653a 5475 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5476 struct XENA_dev_config __iomem *bar0 = sp->bar0;
034e3450 5477 u16 subid = sp->pdev->subsystem_device;
1da177e4 5478
d44570e4 5479 if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
034e3450 5480 u64 val64 = readq(&bar0->adapter_control);
1da177e4 5481 if (!(val64 & ADAPTER_CNTL_EN)) {
6cef2b8e 5482 pr_err("Adapter Link down, cannot blink LED\n");
034e3450 5483 return -EAGAIN;
1da177e4
LT
5484 }
5485 }
1da177e4 5486
034e3450 5487 switch (state) {
5488 case ETHTOOL_ID_ACTIVE:
5489 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
fce55922 5490 return 1; /* cycle on/off once per second */
034e3450 5491
5492 case ETHTOOL_ID_ON:
5493 s2io_set_led(sp, true);
5494 break;
5495
5496 case ETHTOOL_ID_OFF:
5497 s2io_set_led(sp, false);
5498 break;
5499
5500 case ETHTOOL_ID_INACTIVE:
5501 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5502 writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
1da177e4
LT
5503 }
5504
5505 return 0;
5506}
5507
0cec35eb 5508static void s2io_ethtool_gringparam(struct net_device *dev,
d44570e4 5509 struct ethtool_ringparam *ering)
0cec35eb 5510{
4cf1653a 5511 struct s2io_nic *sp = netdev_priv(dev);
d44570e4 5512 int i, tx_desc_count = 0, rx_desc_count = 0;
0cec35eb 5513
1853e2e1 5514 if (sp->rxd_mode == RXD_MODE_1) {
0cec35eb 5515 ering->rx_max_pending = MAX_RX_DESC_1;
1853e2e1
JM
5516 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5517 } else {
0cec35eb 5518 ering->rx_max_pending = MAX_RX_DESC_2;
1853e2e1
JM
5519 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5520 }
0cec35eb
SH
5521
5522 ering->tx_max_pending = MAX_TX_DESC;
8a4bdbaa 5523
1853e2e1 5524 for (i = 0; i < sp->config.rx_ring_num; i++)
0cec35eb 5525 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
0cec35eb 5526 ering->rx_pending = rx_desc_count;
0cec35eb 5527 ering->rx_jumbo_pending = rx_desc_count;
1853e2e1
JM
5528
5529 for (i = 0; i < sp->config.tx_fifo_num; i++)
5530 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5531 ering->tx_pending = tx_desc_count;
5532 DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
0cec35eb
SH
5533}
5534
1da177e4
LT
5535/**
5536 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
20346722
K
5537 * @sp : private member of the device structure, which is a pointer to the
5538 * s2io_nic structure.
1da177e4
LT
5539 * @ep : pointer to the structure with pause parameters given by ethtool.
5540 * Description:
5541 * Returns the Pause frame generation and reception capability of the NIC.
5542 * Return value:
5543 * void
5544 */
5545static void s2io_ethtool_getpause_data(struct net_device *dev,
5546 struct ethtool_pauseparam *ep)
5547{
5548 u64 val64;
4cf1653a 5549 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5550 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5551
5552 val64 = readq(&bar0->rmac_pause_cfg);
5553 if (val64 & RMAC_PAUSE_GEN_ENABLE)
f957bcf0 5554 ep->tx_pause = true;
1da177e4 5555 if (val64 & RMAC_PAUSE_RX_ENABLE)
f957bcf0
TK
5556 ep->rx_pause = true;
5557 ep->autoneg = false;
1da177e4
LT
5558}
5559
5560/**
5561 * s2io_ethtool_setpause_data - set/reset pause frame generation.
20346722 5562 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5563 * s2io_nic structure.
5564 * @ep : pointer to the structure with pause parameters given by ethtool.
5565 * Description:
5566 * It can be used to set or reset Pause frame generation or reception
5567 * support of the NIC.
5568 * Return value:
5569 * int, returns 0 on Success
5570 */
5571
5572static int s2io_ethtool_setpause_data(struct net_device *dev,
d44570e4 5573 struct ethtool_pauseparam *ep)
1da177e4
LT
5574{
5575 u64 val64;
4cf1653a 5576 struct s2io_nic *sp = netdev_priv(dev);
1ee6dd77 5577 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
5578
5579 val64 = readq(&bar0->rmac_pause_cfg);
5580 if (ep->tx_pause)
5581 val64 |= RMAC_PAUSE_GEN_ENABLE;
5582 else
5583 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5584 if (ep->rx_pause)
5585 val64 |= RMAC_PAUSE_RX_ENABLE;
5586 else
5587 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5588 writeq(val64, &bar0->rmac_pause_cfg);
5589 return 0;
5590}
5591
5592/**
5593 * read_eeprom - reads 4 bytes of data from user given offset.
20346722 5594 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5595 * s2io_nic structure.
5596 * @off : offset at which the data must be written
5597 * @data : Its an output parameter where the data read at the given
20346722 5598 * offset is stored.
1da177e4 5599 * Description:
20346722 5600 * Will read 4 bytes of data from the user given offset and return the
1da177e4
LT
5601 * read data.
5602 * NOTE: Will allow to read only part of the EEPROM visible through the
5603 * I2C bus.
5604 * Return value:
5605 * -1 on failure and 0 on success.
5606 */
5607
5608#define S2IO_DEV_ID 5
d44570e4 5609static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
1da177e4
LT
5610{
5611 int ret = -1;
5612 u32 exit_cnt = 0;
5613 u64 val64;
1ee6dd77 5614 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5615
ad4ebed0 5616 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5617 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5618 I2C_CONTROL_ADDR(off) |
5619 I2C_CONTROL_BYTE_CNT(0x3) |
5620 I2C_CONTROL_READ |
5621 I2C_CONTROL_CNTL_START;
ad4ebed0 5622 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
1da177e4 5623
ad4ebed0 5624 while (exit_cnt < 5) {
5625 val64 = readq(&bar0->i2c_control);
5626 if (I2C_CONTROL_CNTL_END(val64)) {
5627 *data = I2C_CONTROL_GET_DATA(val64);
5628 ret = 0;
5629 break;
5630 }
5631 msleep(50);
5632 exit_cnt++;
1da177e4 5633 }
1da177e4
LT
5634 }
5635
ad4ebed0 5636 if (sp->device_type == XFRAME_II_DEVICE) {
5637 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5638 SPI_CONTROL_BYTECNT(0x3) |
ad4ebed0 5639 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5640 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5641 val64 |= SPI_CONTROL_REQ;
5642 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5643 while (exit_cnt < 5) {
5644 val64 = readq(&bar0->spi_control);
5645 if (val64 & SPI_CONTROL_NACK) {
5646 ret = 1;
5647 break;
5648 } else if (val64 & SPI_CONTROL_DONE) {
5649 *data = readq(&bar0->spi_data);
5650 *data &= 0xffffff;
5651 ret = 0;
5652 break;
5653 }
5654 msleep(50);
5655 exit_cnt++;
5656 }
5657 }
1da177e4
LT
5658 return ret;
5659}
5660
5661/**
5662 * write_eeprom - actually writes the relevant part of the data value.
5663 * @sp : private member of the device structure, which is a pointer to the
5664 * s2io_nic structure.
5665 * @off : offset at which the data must be written
5666 * @data : The data that is to be written
20346722 5667 * @cnt : Number of bytes of the data that are actually to be written into
1da177e4
LT
5668 * the Eeprom. (max of 3)
5669 * Description:
5670 * Actually writes the relevant part of the data value into the Eeprom
5671 * through the I2C bus.
5672 * Return value:
5673 * 0 on success, -1 on failure.
5674 */
5675
d44570e4 5676static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
1da177e4
LT
5677{
5678 int exit_cnt = 0, ret = -1;
5679 u64 val64;
1ee6dd77 5680 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 5681
ad4ebed0 5682 if (sp->device_type == XFRAME_I_DEVICE) {
d44570e4
JP
5683 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5684 I2C_CONTROL_ADDR(off) |
5685 I2C_CONTROL_BYTE_CNT(cnt) |
5686 I2C_CONTROL_SET_DATA((u32)data) |
5687 I2C_CONTROL_CNTL_START;
ad4ebed0 5688 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5689
5690 while (exit_cnt < 5) {
5691 val64 = readq(&bar0->i2c_control);
5692 if (I2C_CONTROL_CNTL_END(val64)) {
5693 if (!(val64 & I2C_CONTROL_NACK))
5694 ret = 0;
5695 break;
5696 }
5697 msleep(50);
5698 exit_cnt++;
5699 }
5700 }
1da177e4 5701
ad4ebed0 5702 if (sp->device_type == XFRAME_II_DEVICE) {
5703 int write_cnt = (cnt == 8) ? 0 : cnt;
d44570e4 5704 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
ad4ebed0 5705
5706 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
6aa20a22 5707 SPI_CONTROL_BYTECNT(write_cnt) |
ad4ebed0 5708 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5709 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5710 val64 |= SPI_CONTROL_REQ;
5711 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5712 while (exit_cnt < 5) {
5713 val64 = readq(&bar0->spi_control);
5714 if (val64 & SPI_CONTROL_NACK) {
5715 ret = 1;
5716 break;
5717 } else if (val64 & SPI_CONTROL_DONE) {
1da177e4 5718 ret = 0;
ad4ebed0 5719 break;
5720 }
5721 msleep(50);
5722 exit_cnt++;
1da177e4 5723 }
1da177e4 5724 }
1da177e4
LT
5725 return ret;
5726}
1ee6dd77 5727static void s2io_vpd_read(struct s2io_nic *nic)
9dc737a7 5728{
b41477f3
AR
5729 u8 *vpd_data;
5730 u8 data;
9c179780 5731 int i = 0, cnt, len, fail = 0;
9dc737a7 5732 int vpd_addr = 0x80;
ffb5df6c 5733 struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
9dc737a7
AR
5734
5735 if (nic->device_type == XFRAME_II_DEVICE) {
5736 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5737 vpd_addr = 0x80;
d44570e4 5738 } else {
9dc737a7
AR
5739 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5740 vpd_addr = 0x50;
5741 }
19a60522 5742 strcpy(nic->serial_num, "NOT AVAILABLE");
9dc737a7 5743
b41477f3 5744 vpd_data = kmalloc(256, GFP_KERNEL);
c53d4945 5745 if (!vpd_data) {
ffb5df6c 5746 swstats->mem_alloc_fail_cnt++;
b41477f3 5747 return;
c53d4945 5748 }
ffb5df6c 5749 swstats->mem_allocated += 256;
b41477f3 5750
d44570e4 5751 for (i = 0; i < 256; i += 4) {
9dc737a7
AR
5752 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5753 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5754 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
d44570e4 5755 for (cnt = 0; cnt < 5; cnt++) {
9dc737a7
AR
5756 msleep(2);
5757 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5758 if (data == 0x80)
5759 break;
5760 }
5761 if (cnt >= 5) {
5762 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5763 fail = 1;
5764 break;
5765 }
5766 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5767 (u32 *)&vpd_data[i]);
5768 }
19a60522 5769
d44570e4 5770 if (!fail) {
19a60522 5771 /* read serial number of adapter */
9c179780 5772 for (cnt = 0; cnt < 252; cnt++) {
d44570e4 5773 if ((vpd_data[cnt] == 'S') &&
9c179780
KV
5774 (vpd_data[cnt+1] == 'N')) {
5775 len = vpd_data[cnt+2];
5776 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5777 memcpy(nic->serial_num,
5778 &vpd_data[cnt + 3],
5779 len);
5780 memset(nic->serial_num+len,
5781 0,
5782 VPD_STRING_LEN-len);
5783 break;
5784 }
19a60522
SS
5785 }
5786 }
5787 }
5788
9c179780
KV
5789 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5790 len = vpd_data[1];
5791 memcpy(nic->product_name, &vpd_data[3], len);
5792 nic->product_name[len] = 0;
5793 }
b41477f3 5794 kfree(vpd_data);
ffb5df6c 5795 swstats->mem_freed += 256;
9dc737a7
AR
5796}
5797
1da177e4
LT
5798/**
5799 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5800 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
20346722 5801 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5802 * containing all relevant information.
5803 * @data_buf : user defined value to be written into Eeprom.
5804 * Description: Reads the values stored in the Eeprom at given offset
5805 * for a given length. Stores these values int the input argument data
5806 * buffer 'data_buf' and returns these to the caller (ethtool.)
5807 * Return value:
5808 * int 0 on success
5809 */
5810
5811static int s2io_ethtool_geeprom(struct net_device *dev,
d44570e4 5812 struct ethtool_eeprom *eeprom, u8 * data_buf)
1da177e4 5813{
ad4ebed0 5814 u32 i, valid;
5815 u64 data;
4cf1653a 5816 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5817
5818 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5819
5820 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5821 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5822
5823 for (i = 0; i < eeprom->len; i += 4) {
5824 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5825 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5826 return -EFAULT;
5827 }
5828 valid = INV(data);
5829 memcpy((data_buf + i), &valid, 4);
5830 }
5831 return 0;
5832}
5833
5834/**
5835 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5836 * @sp : private member of the device structure, which is a pointer to the
5837 * s2io_nic structure.
20346722 5838 * @eeprom : pointer to the user level structure provided by ethtool,
1da177e4
LT
5839 * containing all relevant information.
5840 * @data_buf ; user defined value to be written into Eeprom.
5841 * Description:
5842 * Tries to write the user provided value in the Eeprom, at the offset
5843 * given by the user.
5844 * Return value:
5845 * 0 on success, -EFAULT on failure.
5846 */
5847
5848static int s2io_ethtool_seeprom(struct net_device *dev,
5849 struct ethtool_eeprom *eeprom,
d44570e4 5850 u8 *data_buf)
1da177e4
LT
5851{
5852 int len = eeprom->len, cnt = 0;
ad4ebed0 5853 u64 valid = 0, data;
4cf1653a 5854 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
5855
5856 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5857 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5858 "ETHTOOL_WRITE_EEPROM Err: "
5859 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5860 (sp->pdev->vendor | (sp->pdev->device << 16)),
5861 eeprom->magic);
1da177e4
LT
5862 return -EFAULT;
5863 }
5864
5865 while (len) {
d44570e4
JP
5866 data = (u32)data_buf[cnt] & 0x000000FF;
5867 if (data)
5868 valid = (u32)(data << 24);
5869 else
1da177e4
LT
5870 valid = data;
5871
5872 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5873 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
5874 "ETHTOOL_WRITE_EEPROM Err: "
5875 "Cannot write into the specified offset\n");
1da177e4
LT
5876 return -EFAULT;
5877 }
5878 cnt++;
5879 len--;
5880 }
5881
5882 return 0;
5883}
5884
5885/**
20346722
K
5886 * s2io_register_test - reads and writes into all clock domains.
5887 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
5888 * s2io_nic structure.
5889 * @data : variable that returns the result of each of the test conducted b
5890 * by the driver.
5891 * Description:
5892 * Read and write into all clock domains. The NIC has 3 clock domains,
5893 * see that registers in all the three regions are accessible.
5894 * Return value:
5895 * 0 on success.
5896 */
5897
d44570e4 5898static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 5899{
1ee6dd77 5900 struct XENA_dev_config __iomem *bar0 = sp->bar0;
ad4ebed0 5901 u64 val64 = 0, exp_val;
1da177e4
LT
5902 int fail = 0;
5903
20346722
K
5904 val64 = readq(&bar0->pif_rd_swapper_fb);
5905 if (val64 != 0x123456789abcdefULL) {
1da177e4 5906 fail = 1;
9e39f7c5 5907 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
1da177e4
LT
5908 }
5909
5910 val64 = readq(&bar0->rmac_pause_cfg);
5911 if (val64 != 0xc000ffff00000000ULL) {
5912 fail = 1;
9e39f7c5 5913 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
1da177e4
LT
5914 }
5915
5916 val64 = readq(&bar0->rx_queue_cfg);
ad4ebed0 5917 if (sp->device_type == XFRAME_II_DEVICE)
5918 exp_val = 0x0404040404040404ULL;
5919 else
5920 exp_val = 0x0808080808080808ULL;
5921 if (val64 != exp_val) {
1da177e4 5922 fail = 1;
9e39f7c5 5923 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
1da177e4
LT
5924 }
5925
5926 val64 = readq(&bar0->xgxs_efifo_cfg);
5927 if (val64 != 0x000000001923141EULL) {
5928 fail = 1;
9e39f7c5 5929 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
1da177e4
LT
5930 }
5931
5932 val64 = 0x5A5A5A5A5A5A5A5AULL;
5933 writeq(val64, &bar0->xmsi_data);
5934 val64 = readq(&bar0->xmsi_data);
5935 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5936 fail = 1;
9e39f7c5 5937 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
1da177e4
LT
5938 }
5939
5940 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5941 writeq(val64, &bar0->xmsi_data);
5942 val64 = readq(&bar0->xmsi_data);
5943 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5944 fail = 1;
9e39f7c5 5945 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
1da177e4
LT
5946 }
5947
5948 *data = fail;
ad4ebed0 5949 return fail;
1da177e4
LT
5950}
5951
5952/**
20346722 5953 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
1da177e4
LT
5954 * @sp : private member of the device structure, which is a pointer to the
5955 * s2io_nic structure.
5956 * @data:variable that returns the result of each of the test conducted by
5957 * the driver.
5958 * Description:
20346722 5959 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
1da177e4
LT
5960 * register.
5961 * Return value:
5962 * 0 on success.
5963 */
5964
d44570e4 5965static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
5966{
5967 int fail = 0;
ad4ebed0 5968 u64 ret_data, org_4F0, org_7F0;
5969 u8 saved_4F0 = 0, saved_7F0 = 0;
5970 struct net_device *dev = sp->dev;
1da177e4
LT
5971
5972 /* Test Write Error at offset 0 */
ad4ebed0 5973 /* Note that SPI interface allows write access to all areas
5974 * of EEPROM. Hence doing all negative testing only for Xframe I.
5975 */
5976 if (sp->device_type == XFRAME_I_DEVICE)
5977 if (!write_eeprom(sp, 0, 0, 3))
5978 fail = 1;
5979
5980 /* Save current values at offsets 0x4F0 and 0x7F0 */
5981 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5982 saved_4F0 = 1;
5983 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5984 saved_7F0 = 1;
1da177e4
LT
5985
5986 /* Test Write at offset 4f0 */
ad4ebed0 5987 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
1da177e4
LT
5988 fail = 1;
5989 if (read_eeprom(sp, 0x4F0, &ret_data))
5990 fail = 1;
5991
ad4ebed0 5992 if (ret_data != 0x012345) {
26b7625c 5993 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
d44570e4
JP
5994 "Data written %llx Data read %llx\n",
5995 dev->name, (unsigned long long)0x12345,
5996 (unsigned long long)ret_data);
1da177e4 5997 fail = 1;
ad4ebed0 5998 }
1da177e4
LT
5999
6000 /* Reset the EEPROM data go FFFF */
ad4ebed0 6001 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
1da177e4
LT
6002
6003 /* Test Write Request Error at offset 0x7c */
ad4ebed0 6004 if (sp->device_type == XFRAME_I_DEVICE)
6005 if (!write_eeprom(sp, 0x07C, 0, 3))
6006 fail = 1;
1da177e4 6007
ad4ebed0 6008 /* Test Write Request at offset 0x7f0 */
6009 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
1da177e4 6010 fail = 1;
ad4ebed0 6011 if (read_eeprom(sp, 0x7F0, &ret_data))
1da177e4
LT
6012 fail = 1;
6013
ad4ebed0 6014 if (ret_data != 0x012345) {
26b7625c 6015 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
d44570e4
JP
6016 "Data written %llx Data read %llx\n",
6017 dev->name, (unsigned long long)0x12345,
6018 (unsigned long long)ret_data);
1da177e4 6019 fail = 1;
ad4ebed0 6020 }
1da177e4
LT
6021
6022 /* Reset the EEPROM data go FFFF */
ad4ebed0 6023 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
1da177e4 6024
ad4ebed0 6025 if (sp->device_type == XFRAME_I_DEVICE) {
6026 /* Test Write Error at offset 0x80 */
6027 if (!write_eeprom(sp, 0x080, 0, 3))
6028 fail = 1;
1da177e4 6029
ad4ebed0 6030 /* Test Write Error at offset 0xfc */
6031 if (!write_eeprom(sp, 0x0FC, 0, 3))
6032 fail = 1;
1da177e4 6033
ad4ebed0 6034 /* Test Write Error at offset 0x100 */
6035 if (!write_eeprom(sp, 0x100, 0, 3))
6036 fail = 1;
1da177e4 6037
ad4ebed0 6038 /* Test Write Error at offset 4ec */
6039 if (!write_eeprom(sp, 0x4EC, 0, 3))
6040 fail = 1;
6041 }
6042
6043 /* Restore values at offsets 0x4F0 and 0x7F0 */
6044 if (saved_4F0)
6045 write_eeprom(sp, 0x4F0, org_4F0, 3);
6046 if (saved_7F0)
6047 write_eeprom(sp, 0x7F0, org_7F0, 3);
1da177e4
LT
6048
6049 *data = fail;
ad4ebed0 6050 return fail;
1da177e4
LT
6051}
6052
6053/**
6054 * s2io_bist_test - invokes the MemBist test of the card .
20346722 6055 * @sp : private member of the device structure, which is a pointer to the
1da177e4 6056 * s2io_nic structure.
20346722 6057 * @data:variable that returns the result of each of the test conducted by
1da177e4
LT
6058 * the driver.
6059 * Description:
6060 * This invokes the MemBist test of the card. We give around
6061 * 2 secs time for the Test to complete. If it's still not complete
20346722 6062 * within this peiod, we consider that the test failed.
1da177e4
LT
6063 * Return value:
6064 * 0 on success and -1 on failure.
6065 */
6066
d44570e4 6067static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
1da177e4
LT
6068{
6069 u8 bist = 0;
6070 int cnt = 0, ret = -1;
6071
6072 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6073 bist |= PCI_BIST_START;
6074 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6075
6076 while (cnt < 20) {
6077 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6078 if (!(bist & PCI_BIST_START)) {
6079 *data = (bist & PCI_BIST_CODE_MASK);
6080 ret = 0;
6081 break;
6082 }
6083 msleep(100);
6084 cnt++;
6085 }
6086
6087 return ret;
6088}
6089
6090/**
49ce9c2c 6091 * s2io_link_test - verifies the link state of the nic
20346722 6092 * @sp ; private member of the device structure, which is a pointer to the
1da177e4
LT
6093 * s2io_nic structure.
6094 * @data: variable that returns the result of each of the test conducted by
6095 * the driver.
6096 * Description:
20346722 6097 * The function verifies the link state of the NIC and updates the input
1da177e4
LT
6098 * argument 'data' appropriately.
6099 * Return value:
6100 * 0 on success.
6101 */
6102
d44570e4 6103static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6104{
1ee6dd77 6105 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4
LT
6106 u64 val64;
6107
6108 val64 = readq(&bar0->adapter_status);
d44570e4 6109 if (!(LINK_IS_UP(val64)))
1da177e4 6110 *data = 1;
c92ca04b
AR
6111 else
6112 *data = 0;
1da177e4 6113
b41477f3 6114 return *data;
1da177e4
LT
6115}
6116
6117/**
20346722 6118 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
49ce9c2c 6119 * @sp: private member of the device structure, which is a pointer to the
1da177e4 6120 * s2io_nic structure.
49ce9c2c 6121 * @data: variable that returns the result of each of the test
1da177e4
LT
6122 * conducted by the driver.
6123 * Description:
20346722 6124 * This is one of the offline test that tests the read and write
1da177e4
LT
6125 * access to the RldRam chip on the NIC.
6126 * Return value:
6127 * 0 on success.
6128 */
6129
d44570e4 6130static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
1da177e4 6131{
1ee6dd77 6132 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1da177e4 6133 u64 val64;
ad4ebed0 6134 int cnt, iteration = 0, test_fail = 0;
1da177e4
LT
6135
6136 val64 = readq(&bar0->adapter_control);
6137 val64 &= ~ADAPTER_ECC_EN;
6138 writeq(val64, &bar0->adapter_control);
6139
6140 val64 = readq(&bar0->mc_rldram_test_ctrl);
6141 val64 |= MC_RLDRAM_TEST_MODE;
ad4ebed0 6142 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6143
6144 val64 = readq(&bar0->mc_rldram_mrs);
6145 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6146 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6147
6148 val64 |= MC_RLDRAM_MRS_ENABLE;
6149 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6150
6151 while (iteration < 2) {
6152 val64 = 0x55555555aaaa0000ULL;
d44570e4 6153 if (iteration == 1)
1da177e4 6154 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6155 writeq(val64, &bar0->mc_rldram_test_d0);
6156
6157 val64 = 0xaaaa5a5555550000ULL;
d44570e4 6158 if (iteration == 1)
1da177e4 6159 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6160 writeq(val64, &bar0->mc_rldram_test_d1);
6161
6162 val64 = 0x55aaaaaaaa5a0000ULL;
d44570e4 6163 if (iteration == 1)
1da177e4 6164 val64 ^= 0xFFFFFFFFFFFF0000ULL;
1da177e4
LT
6165 writeq(val64, &bar0->mc_rldram_test_d2);
6166
ad4ebed0 6167 val64 = (u64) (0x0000003ffffe0100ULL);
1da177e4
LT
6168 writeq(val64, &bar0->mc_rldram_test_add);
6169
d44570e4
JP
6170 val64 = MC_RLDRAM_TEST_MODE |
6171 MC_RLDRAM_TEST_WRITE |
6172 MC_RLDRAM_TEST_GO;
ad4ebed0 6173 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6174
6175 for (cnt = 0; cnt < 5; cnt++) {
6176 val64 = readq(&bar0->mc_rldram_test_ctrl);
6177 if (val64 & MC_RLDRAM_TEST_DONE)
6178 break;
6179 msleep(200);
6180 }
6181
6182 if (cnt == 5)
6183 break;
6184
ad4ebed0 6185 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6186 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
1da177e4
LT
6187
6188 for (cnt = 0; cnt < 5; cnt++) {
6189 val64 = readq(&bar0->mc_rldram_test_ctrl);
6190 if (val64 & MC_RLDRAM_TEST_DONE)
6191 break;
6192 msleep(500);
6193 }
6194
6195 if (cnt == 5)
6196 break;
6197
6198 val64 = readq(&bar0->mc_rldram_test_ctrl);
ad4ebed0 6199 if (!(val64 & MC_RLDRAM_TEST_PASS))
6200 test_fail = 1;
1da177e4
LT
6201
6202 iteration++;
6203 }
6204
ad4ebed0 6205 *data = test_fail;
1da177e4 6206
ad4ebed0 6207 /* Bring the adapter out of test mode */
6208 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6209
6210 return test_fail;
1da177e4
LT
6211}
6212
6213/**
6214 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6215 * @sp : private member of the device structure, which is a pointer to the
6216 * s2io_nic structure.
6217 * @ethtest : pointer to a ethtool command specific structure that will be
6218 * returned to the user.
20346722 6219 * @data : variable that returns the result of each of the test
1da177e4
LT
6220 * conducted by the driver.
6221 * Description:
6222 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6223 * the health of the card.
6224 * Return value:
6225 * void
6226 */
6227
6228static void s2io_ethtool_test(struct net_device *dev,
6229 struct ethtool_test *ethtest,
d44570e4 6230 uint64_t *data)
1da177e4 6231{
4cf1653a 6232 struct s2io_nic *sp = netdev_priv(dev);
1da177e4
LT
6233 int orig_state = netif_running(sp->dev);
6234
6235 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6236 /* Offline Tests. */
20346722 6237 if (orig_state)
1da177e4 6238 s2io_close(sp->dev);
1da177e4
LT
6239
6240 if (s2io_register_test(sp, &data[0]))
6241 ethtest->flags |= ETH_TEST_FL_FAILED;
6242
6243 s2io_reset(sp);
1da177e4
LT
6244
6245 if (s2io_rldram_test(sp, &data[3]))
6246 ethtest->flags |= ETH_TEST_FL_FAILED;
6247
6248 s2io_reset(sp);
1da177e4
LT
6249
6250 if (s2io_eeprom_test(sp, &data[1]))
6251 ethtest->flags |= ETH_TEST_FL_FAILED;
6252
6253 if (s2io_bist_test(sp, &data[4]))
6254 ethtest->flags |= ETH_TEST_FL_FAILED;
6255
6256 if (orig_state)
6257 s2io_open(sp->dev);
6258
6259 data[2] = 0;
6260 } else {
6261 /* Online Tests. */
6262 if (!orig_state) {
d44570e4 6263 DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
1da177e4
LT
6264 dev->name);
6265 data[0] = -1;
6266 data[1] = -1;
6267 data[2] = -1;
6268 data[3] = -1;
6269 data[4] = -1;
6270 }
6271
6272 if (s2io_link_test(sp, &data[2]))
6273 ethtest->flags |= ETH_TEST_FL_FAILED;
6274
6275 data[0] = 0;
6276 data[1] = 0;
6277 data[3] = 0;
6278 data[4] = 0;
6279 }
6280}
6281
6282static void s2io_get_ethtool_stats(struct net_device *dev,
6283 struct ethtool_stats *estats,
d44570e4 6284 u64 *tmp_stats)
1da177e4 6285{
8116f3cf 6286 int i = 0, k;
4cf1653a 6287 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c
JP
6288 struct stat_block *stats = sp->mac_control.stats_info;
6289 struct swStat *swstats = &stats->sw_stat;
6290 struct xpakStat *xstats = &stats->xpak_stat;
1da177e4 6291
7ba013ac 6292 s2io_updt_stats(sp);
541ae68f 6293 tmp_stats[i++] =
ffb5df6c
JP
6294 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
6295 le32_to_cpu(stats->tmac_frms);
541ae68f 6296 tmp_stats[i++] =
ffb5df6c
JP
6297 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6298 le32_to_cpu(stats->tmac_data_octets);
6299 tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
541ae68f 6300 tmp_stats[i++] =
ffb5df6c
JP
6301 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6302 le32_to_cpu(stats->tmac_mcst_frms);
541ae68f 6303 tmp_stats[i++] =
ffb5df6c
JP
6304 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6305 le32_to_cpu(stats->tmac_bcst_frms);
6306 tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
bd1034f0 6307 tmp_stats[i++] =
ffb5df6c
JP
6308 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6309 le32_to_cpu(stats->tmac_ttl_octets);
bd1034f0 6310 tmp_stats[i++] =
ffb5df6c
JP
6311 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6312 le32_to_cpu(stats->tmac_ucst_frms);
d44570e4 6313 tmp_stats[i++] =
ffb5df6c
JP
6314 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6315 le32_to_cpu(stats->tmac_nucst_frms);
541ae68f 6316 tmp_stats[i++] =
ffb5df6c
JP
6317 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6318 le32_to_cpu(stats->tmac_any_err_frms);
6319 tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6320 tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
541ae68f 6321 tmp_stats[i++] =
ffb5df6c
JP
6322 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6323 le32_to_cpu(stats->tmac_vld_ip);
541ae68f 6324 tmp_stats[i++] =
ffb5df6c
JP
6325 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6326 le32_to_cpu(stats->tmac_drop_ip);
541ae68f 6327 tmp_stats[i++] =
ffb5df6c
JP
6328 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6329 le32_to_cpu(stats->tmac_icmp);
541ae68f 6330 tmp_stats[i++] =
ffb5df6c
JP
6331 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6332 le32_to_cpu(stats->tmac_rst_tcp);
6333 tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6334 tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6335 le32_to_cpu(stats->tmac_udp);
541ae68f 6336 tmp_stats[i++] =
ffb5df6c
JP
6337 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6338 le32_to_cpu(stats->rmac_vld_frms);
541ae68f 6339 tmp_stats[i++] =
ffb5df6c
JP
6340 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6341 le32_to_cpu(stats->rmac_data_octets);
6342 tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6343 tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
541ae68f 6344 tmp_stats[i++] =
ffb5df6c
JP
6345 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6346 le32_to_cpu(stats->rmac_vld_mcst_frms);
541ae68f 6347 tmp_stats[i++] =
ffb5df6c
JP
6348 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6349 le32_to_cpu(stats->rmac_vld_bcst_frms);
6350 tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6351 tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6352 tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6353 tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6354 tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
d44570e4 6355 tmp_stats[i++] =
ffb5df6c
JP
6356 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6357 le32_to_cpu(stats->rmac_ttl_octets);
bd1034f0 6358 tmp_stats[i++] =
ffb5df6c
JP
6359 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6360 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
d44570e4 6361 tmp_stats[i++] =
ffb5df6c
JP
6362 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6363 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
541ae68f 6364 tmp_stats[i++] =
ffb5df6c
JP
6365 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6366 le32_to_cpu(stats->rmac_discarded_frms);
d44570e4 6367 tmp_stats[i++] =
ffb5df6c
JP
6368 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6369 << 32 | le32_to_cpu(stats->rmac_drop_events);
6370 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6371 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
541ae68f 6372 tmp_stats[i++] =
ffb5df6c
JP
6373 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6374 le32_to_cpu(stats->rmac_usized_frms);
541ae68f 6375 tmp_stats[i++] =
ffb5df6c
JP
6376 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6377 le32_to_cpu(stats->rmac_osized_frms);
541ae68f 6378 tmp_stats[i++] =
ffb5df6c
JP
6379 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6380 le32_to_cpu(stats->rmac_frag_frms);
541ae68f 6381 tmp_stats[i++] =
ffb5df6c
JP
6382 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6383 le32_to_cpu(stats->rmac_jabber_frms);
6384 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6385 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6386 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6387 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6388 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6389 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
bd1034f0 6390 tmp_stats[i++] =
ffb5df6c
JP
6391 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6392 le32_to_cpu(stats->rmac_ip);
6393 tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6394 tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
bd1034f0 6395 tmp_stats[i++] =
ffb5df6c
JP
6396 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6397 le32_to_cpu(stats->rmac_drop_ip);
bd1034f0 6398 tmp_stats[i++] =
ffb5df6c
JP
6399 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6400 le32_to_cpu(stats->rmac_icmp);
6401 tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
bd1034f0 6402 tmp_stats[i++] =
ffb5df6c
JP
6403 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6404 le32_to_cpu(stats->rmac_udp);
541ae68f 6405 tmp_stats[i++] =
ffb5df6c
JP
6406 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6407 le32_to_cpu(stats->rmac_err_drp_udp);
6408 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6409 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6410 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6411 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6412 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6413 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6414 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6415 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6416 tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6417 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6418 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6419 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6420 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6421 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6422 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6423 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6424 tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
541ae68f 6425 tmp_stats[i++] =
ffb5df6c
JP
6426 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6427 le32_to_cpu(stats->rmac_pause_cnt);
6428 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6429 tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
541ae68f 6430 tmp_stats[i++] =
ffb5df6c
JP
6431 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6432 le32_to_cpu(stats->rmac_accepted_ip);
6433 tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6434 tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6435 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6436 tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6437 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6438 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6439 tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6440 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6441 tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6442 tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6443 tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6444 tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6445 tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6446 tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6447 tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6448 tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6449 tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6450 tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6451 tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
fa1f0cb3
SS
6452
6453 /* Enhanced statistics exist only for Hercules */
d44570e4 6454 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6455 tmp_stats[i++] =
ffb5df6c 6456 le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
fa1f0cb3 6457 tmp_stats[i++] =
ffb5df6c 6458 le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
fa1f0cb3 6459 tmp_stats[i++] =
ffb5df6c
JP
6460 le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6461 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6462 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6463 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6464 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6465 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6466 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6467 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6468 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6469 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6470 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6471 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6472 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6473 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
fa1f0cb3
SS
6474 }
6475
7ba013ac 6476 tmp_stats[i++] = 0;
ffb5df6c
JP
6477 tmp_stats[i++] = swstats->single_ecc_errs;
6478 tmp_stats[i++] = swstats->double_ecc_errs;
6479 tmp_stats[i++] = swstats->parity_err_cnt;
6480 tmp_stats[i++] = swstats->serious_err_cnt;
6481 tmp_stats[i++] = swstats->soft_reset_cnt;
6482 tmp_stats[i++] = swstats->fifo_full_cnt;
8116f3cf 6483 for (k = 0; k < MAX_RX_RINGS; k++)
ffb5df6c
JP
6484 tmp_stats[i++] = swstats->ring_full_cnt[k];
6485 tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6486 tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6487 tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6488 tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6489 tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6490 tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6491 tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6492 tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6493 tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6494 tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6495 tmp_stats[i++] = xstats->warn_laser_output_power_high;
6496 tmp_stats[i++] = xstats->warn_laser_output_power_low;
6497 tmp_stats[i++] = swstats->clubbed_frms_cnt;
6498 tmp_stats[i++] = swstats->sending_both;
6499 tmp_stats[i++] = swstats->outof_sequence_pkts;
6500 tmp_stats[i++] = swstats->flush_max_pkts;
6501 if (swstats->num_aggregations) {
6502 u64 tmp = swstats->sum_avg_pkts_aggregated;
bd1034f0 6503 int count = 0;
6aa20a22 6504 /*
bd1034f0
AR
6505 * Since 64-bit divide does not work on all platforms,
6506 * do repeated subtraction.
6507 */
ffb5df6c
JP
6508 while (tmp >= swstats->num_aggregations) {
6509 tmp -= swstats->num_aggregations;
bd1034f0
AR
6510 count++;
6511 }
6512 tmp_stats[i++] = count;
d44570e4 6513 } else
bd1034f0 6514 tmp_stats[i++] = 0;
ffb5df6c
JP
6515 tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6516 tmp_stats[i++] = swstats->pci_map_fail_cnt;
6517 tmp_stats[i++] = swstats->watchdog_timer_cnt;
6518 tmp_stats[i++] = swstats->mem_allocated;
6519 tmp_stats[i++] = swstats->mem_freed;
6520 tmp_stats[i++] = swstats->link_up_cnt;
6521 tmp_stats[i++] = swstats->link_down_cnt;
6522 tmp_stats[i++] = swstats->link_up_time;
6523 tmp_stats[i++] = swstats->link_down_time;
6524
6525 tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6526 tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6527 tmp_stats[i++] = swstats->tx_parity_err_cnt;
6528 tmp_stats[i++] = swstats->tx_link_loss_cnt;
6529 tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6530
6531 tmp_stats[i++] = swstats->rx_parity_err_cnt;
6532 tmp_stats[i++] = swstats->rx_abort_cnt;
6533 tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6534 tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6535 tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6536 tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6537 tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6538 tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6539 tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6540 tmp_stats[i++] = swstats->tda_err_cnt;
6541 tmp_stats[i++] = swstats->pfc_err_cnt;
6542 tmp_stats[i++] = swstats->pcc_err_cnt;
6543 tmp_stats[i++] = swstats->tti_err_cnt;
6544 tmp_stats[i++] = swstats->tpa_err_cnt;
6545 tmp_stats[i++] = swstats->sm_err_cnt;
6546 tmp_stats[i++] = swstats->lso_err_cnt;
6547 tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6548 tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6549 tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6550 tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6551 tmp_stats[i++] = swstats->rc_err_cnt;
6552 tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6553 tmp_stats[i++] = swstats->rpa_err_cnt;
6554 tmp_stats[i++] = swstats->rda_err_cnt;
6555 tmp_stats[i++] = swstats->rti_err_cnt;
6556 tmp_stats[i++] = swstats->mc_err_cnt;
1da177e4
LT
6557}
6558
ac1f60db 6559static int s2io_ethtool_get_regs_len(struct net_device *dev)
1da177e4 6560{
d44570e4 6561 return XENA_REG_SPACE;
1da177e4
LT
6562}
6563
6564
ac1f60db 6565static int s2io_get_eeprom_len(struct net_device *dev)
1da177e4 6566{
d44570e4 6567 return XENA_EEPROM_SPACE;
1da177e4
LT
6568}
6569
b9f2c044 6570static int s2io_get_sset_count(struct net_device *dev, int sset)
1da177e4 6571{
4cf1653a 6572 struct s2io_nic *sp = netdev_priv(dev);
b9f2c044
JG
6573
6574 switch (sset) {
6575 case ETH_SS_TEST:
6576 return S2IO_TEST_LEN;
6577 case ETH_SS_STATS:
d44570e4 6578 switch (sp->device_type) {
b9f2c044
JG
6579 case XFRAME_I_DEVICE:
6580 return XFRAME_I_STAT_LEN;
6581 case XFRAME_II_DEVICE:
6582 return XFRAME_II_STAT_LEN;
6583 default:
6584 return 0;
6585 }
6586 default:
6587 return -EOPNOTSUPP;
6588 }
1da177e4 6589}
ac1f60db
AB
6590
6591static void s2io_ethtool_get_strings(struct net_device *dev,
d44570e4 6592 u32 stringset, u8 *data)
1da177e4 6593{
fa1f0cb3 6594 int stat_size = 0;
4cf1653a 6595 struct s2io_nic *sp = netdev_priv(dev);
fa1f0cb3 6596
1da177e4
LT
6597 switch (stringset) {
6598 case ETH_SS_TEST:
6599 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6600 break;
6601 case ETH_SS_STATS:
fa1f0cb3 6602 stat_size = sizeof(ethtool_xena_stats_keys);
d44570e4
JP
6603 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6604 if (sp->device_type == XFRAME_II_DEVICE) {
fa1f0cb3 6605 memcpy(data + stat_size,
d44570e4
JP
6606 &ethtool_enhanced_stats_keys,
6607 sizeof(ethtool_enhanced_stats_keys));
fa1f0cb3
SS
6608 stat_size += sizeof(ethtool_enhanced_stats_keys);
6609 }
6610
6611 memcpy(data + stat_size, &ethtool_driver_stats_keys,
d44570e4 6612 sizeof(ethtool_driver_stats_keys));
1da177e4
LT
6613 }
6614}
1da177e4 6615
c8f44aff 6616static int s2io_set_features(struct net_device *dev, netdev_features_t features)
958de193
JM
6617{
6618 struct s2io_nic *sp = netdev_priv(dev);
c8f44aff 6619 netdev_features_t changed = (features ^ dev->features) & NETIF_F_LRO;
958de193
JM
6620
6621 if (changed && netif_running(dev)) {
b437a8cc
MM
6622 int rc;
6623
958de193
JM
6624 s2io_stop_all_tx_queue(sp);
6625 s2io_card_down(sp);
b437a8cc 6626 dev->features = features;
958de193
JM
6627 rc = s2io_card_up(sp);
6628 if (rc)
6629 s2io_reset(sp);
6630 else
6631 s2io_start_all_tx_queue(sp);
b437a8cc
MM
6632
6633 return rc ? rc : 1;
958de193
JM
6634 }
6635
b437a8cc 6636 return 0;
958de193
JM
6637}
6638
7282d491 6639static const struct ethtool_ops netdev_ethtool_ops = {
1da177e4
LT
6640 .get_settings = s2io_ethtool_gset,
6641 .set_settings = s2io_ethtool_sset,
6642 .get_drvinfo = s2io_ethtool_gdrvinfo,
6643 .get_regs_len = s2io_ethtool_get_regs_len,
6644 .get_regs = s2io_ethtool_gregs,
6645 .get_link = ethtool_op_get_link,
6646 .get_eeprom_len = s2io_get_eeprom_len,
6647 .get_eeprom = s2io_ethtool_geeprom,
6648 .set_eeprom = s2io_ethtool_seeprom,
0cec35eb 6649 .get_ringparam = s2io_ethtool_gringparam,
1da177e4
LT
6650 .get_pauseparam = s2io_ethtool_getpause_data,
6651 .set_pauseparam = s2io_ethtool_setpause_data,
1da177e4
LT
6652 .self_test = s2io_ethtool_test,
6653 .get_strings = s2io_ethtool_get_strings,
034e3450 6654 .set_phys_id = s2io_ethtool_set_led,
b9f2c044
JG
6655 .get_ethtool_stats = s2io_get_ethtool_stats,
6656 .get_sset_count = s2io_get_sset_count,
1da177e4
LT
6657};
6658
6659/**
20346722 6660 * s2io_ioctl - Entry point for the Ioctl
1da177e4
LT
6661 * @dev : Device pointer.
6662 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6663 * a proprietary structure used to pass information to the driver.
6664 * @cmd : This is used to distinguish between the different commands that
6665 * can be passed to the IOCTL functions.
6666 * Description:
20346722
K
6667 * Currently there are no special functionality supported in IOCTL, hence
6668 * function always return EOPNOTSUPPORTED
1da177e4
LT
6669 */
6670
ac1f60db 6671static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1da177e4
LT
6672{
6673 return -EOPNOTSUPP;
6674}
6675
6676/**
6677 * s2io_change_mtu - entry point to change MTU size for the device.
6678 * @dev : device pointer.
6679 * @new_mtu : the new MTU size for the device.
6680 * Description: A driver entry point to change MTU size for the device.
6681 * Before changing the MTU the device must be stopped.
6682 * Return value:
6683 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6684 * file on failure.
6685 */
6686
ac1f60db 6687static int s2io_change_mtu(struct net_device *dev, int new_mtu)
1da177e4 6688{
4cf1653a 6689 struct s2io_nic *sp = netdev_priv(dev);
9f74ffde 6690 int ret = 0;
1da177e4
LT
6691
6692 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
d44570e4 6693 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
1da177e4
LT
6694 return -EPERM;
6695 }
6696
1da177e4 6697 dev->mtu = new_mtu;
d8892c6e 6698 if (netif_running(dev)) {
3a3d5756 6699 s2io_stop_all_tx_queue(sp);
e6a8fee2 6700 s2io_card_down(sp);
9f74ffde
SH
6701 ret = s2io_card_up(sp);
6702 if (ret) {
d8892c6e 6703 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
b39d66a8 6704 __func__);
9f74ffde 6705 return ret;
d8892c6e 6706 }
3a3d5756 6707 s2io_wake_all_tx_queue(sp);
d8892c6e 6708 } else { /* Device is down */
1ee6dd77 6709 struct XENA_dev_config __iomem *bar0 = sp->bar0;
d8892c6e
K
6710 u64 val64 = new_mtu;
6711
6712 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6713 }
1da177e4 6714
9f74ffde 6715 return ret;
1da177e4
LT
6716}
6717
1da177e4
LT
6718/**
6719 * s2io_set_link - Set the LInk status
6720 * @data: long pointer to device private structue
6721 * Description: Sets the link status for the adapter
6722 */
6723
c4028958 6724static void s2io_set_link(struct work_struct *work)
1da177e4 6725{
d44570e4
JP
6726 struct s2io_nic *nic = container_of(work, struct s2io_nic,
6727 set_link_task);
1da177e4 6728 struct net_device *dev = nic->dev;
1ee6dd77 6729 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1da177e4
LT
6730 register u64 val64;
6731 u16 subid;
6732
22747d6b
FR
6733 rtnl_lock();
6734
6735 if (!netif_running(dev))
6736 goto out_unlock;
6737
92b84437 6738 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
1da177e4 6739 /* The card is being reset, no point doing anything */
22747d6b 6740 goto out_unlock;
1da177e4
LT
6741 }
6742
6743 subid = nic->pdev->subsystem_device;
a371a07d
K
6744 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6745 /*
6746 * Allow a small delay for the NICs self initiated
6747 * cleanup to complete.
6748 */
6749 msleep(100);
6750 }
1da177e4
LT
6751
6752 val64 = readq(&bar0->adapter_status);
19a60522
SS
6753 if (LINK_IS_UP(val64)) {
6754 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6755 if (verify_xena_quiescence(nic)) {
6756 val64 = readq(&bar0->adapter_control);
6757 val64 |= ADAPTER_CNTL_EN;
1da177e4 6758 writeq(val64, &bar0->adapter_control);
19a60522 6759 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
d44570e4 6760 nic->device_type, subid)) {
19a60522
SS
6761 val64 = readq(&bar0->gpio_control);
6762 val64 |= GPIO_CTRL_GPIO_0;
6763 writeq(val64, &bar0->gpio_control);
6764 val64 = readq(&bar0->gpio_control);
6765 } else {
6766 val64 |= ADAPTER_LED_ON;
6767 writeq(val64, &bar0->adapter_control);
a371a07d 6768 }
f957bcf0 6769 nic->device_enabled_once = true;
19a60522 6770 } else {
9e39f7c5
JP
6771 DBG_PRINT(ERR_DBG,
6772 "%s: Error: device is not Quiescent\n",
6773 dev->name);
3a3d5756 6774 s2io_stop_all_tx_queue(nic);
1da177e4 6775 }
19a60522 6776 }
92c48799
SS
6777 val64 = readq(&bar0->adapter_control);
6778 val64 |= ADAPTER_LED_ON;
6779 writeq(val64, &bar0->adapter_control);
6780 s2io_link(nic, LINK_UP);
19a60522
SS
6781 } else {
6782 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6783 subid)) {
6784 val64 = readq(&bar0->gpio_control);
6785 val64 &= ~GPIO_CTRL_GPIO_0;
6786 writeq(val64, &bar0->gpio_control);
6787 val64 = readq(&bar0->gpio_control);
1da177e4 6788 }
92c48799
SS
6789 /* turn off LED */
6790 val64 = readq(&bar0->adapter_control);
d44570e4 6791 val64 = val64 & (~ADAPTER_LED_ON);
92c48799 6792 writeq(val64, &bar0->adapter_control);
19a60522 6793 s2io_link(nic, LINK_DOWN);
1da177e4 6794 }
92b84437 6795 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
22747d6b
FR
6796
6797out_unlock:
d8d70caf 6798 rtnl_unlock();
1da177e4
LT
6799}
6800
1ee6dd77 6801static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
d44570e4
JP
6802 struct buffAdd *ba,
6803 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6804 u64 *temp2, int size)
5d3213cc
AR
6805{
6806 struct net_device *dev = sp->dev;
491abf25 6807 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
5d3213cc
AR
6808
6809 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6d517a27 6810 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
5d3213cc
AR
6811 /* allocate skb */
6812 if (*skb) {
6813 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6814 /*
6815 * As Rx frame are not going to be processed,
6816 * using same mapped address for the Rxd
6817 * buffer pointer
6818 */
6d517a27 6819 rxdp1->Buffer0_ptr = *temp0;
5d3213cc 6820 } else {
c056b734 6821 *skb = netdev_alloc_skb(dev, size);
5d3213cc 6822 if (!(*skb)) {
9e39f7c5
JP
6823 DBG_PRINT(INFO_DBG,
6824 "%s: Out of memory to allocate %s\n",
6825 dev->name, "1 buf mode SKBs");
ffb5df6c 6826 stats->mem_alloc_fail_cnt++;
5d3213cc
AR
6827 return -ENOMEM ;
6828 }
ffb5df6c 6829 stats->mem_allocated += (*skb)->truesize;
5d3213cc
AR
6830 /* storing the mapped addr in a temp variable
6831 * such it will be used for next rxd whose
6832 * Host Control is NULL
6833 */
6d517a27 6834 rxdp1->Buffer0_ptr = *temp0 =
d44570e4
JP
6835 pci_map_single(sp->pdev, (*skb)->data,
6836 size - NET_IP_ALIGN,
6837 PCI_DMA_FROMDEVICE);
8d8bb39b 6838 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
491abf25 6839 goto memalloc_failed;
5d3213cc
AR
6840 rxdp->Host_Control = (unsigned long) (*skb);
6841 }
6842 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6d517a27 6843 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
5d3213cc
AR
6844 /* Two buffer Mode */
6845 if (*skb) {
6d517a27
VP
6846 rxdp3->Buffer2_ptr = *temp2;
6847 rxdp3->Buffer0_ptr = *temp0;
6848 rxdp3->Buffer1_ptr = *temp1;
5d3213cc 6849 } else {
c056b734 6850 *skb = netdev_alloc_skb(dev, size);
2ceaac75 6851 if (!(*skb)) {
9e39f7c5
JP
6852 DBG_PRINT(INFO_DBG,
6853 "%s: Out of memory to allocate %s\n",
6854 dev->name,
6855 "2 buf mode SKBs");
ffb5df6c 6856 stats->mem_alloc_fail_cnt++;
2ceaac75
DR
6857 return -ENOMEM;
6858 }
ffb5df6c 6859 stats->mem_allocated += (*skb)->truesize;
6d517a27 6860 rxdp3->Buffer2_ptr = *temp2 =
5d3213cc
AR
6861 pci_map_single(sp->pdev, (*skb)->data,
6862 dev->mtu + 4,
6863 PCI_DMA_FROMDEVICE);
8d8bb39b 6864 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
491abf25 6865 goto memalloc_failed;
6d517a27 6866 rxdp3->Buffer0_ptr = *temp0 =
d44570e4
JP
6867 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6868 PCI_DMA_FROMDEVICE);
8d8bb39b 6869 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
6870 rxdp3->Buffer0_ptr)) {
6871 pci_unmap_single(sp->pdev,
6872 (dma_addr_t)rxdp3->Buffer2_ptr,
6873 dev->mtu + 4,
6874 PCI_DMA_FROMDEVICE);
491abf25
VP
6875 goto memalloc_failed;
6876 }
5d3213cc
AR
6877 rxdp->Host_Control = (unsigned long) (*skb);
6878
6879 /* Buffer-1 will be dummy buffer not used */
6d517a27 6880 rxdp3->Buffer1_ptr = *temp1 =
5d3213cc 6881 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
d44570e4 6882 PCI_DMA_FROMDEVICE);
8d8bb39b 6883 if (pci_dma_mapping_error(sp->pdev,
d44570e4
JP
6884 rxdp3->Buffer1_ptr)) {
6885 pci_unmap_single(sp->pdev,
6886 (dma_addr_t)rxdp3->Buffer0_ptr,
6887 BUF0_LEN, PCI_DMA_FROMDEVICE);
6888 pci_unmap_single(sp->pdev,
6889 (dma_addr_t)rxdp3->Buffer2_ptr,
6890 dev->mtu + 4,
6891 PCI_DMA_FROMDEVICE);
491abf25
VP
6892 goto memalloc_failed;
6893 }
5d3213cc
AR
6894 }
6895 }
6896 return 0;
d44570e4
JP
6897
6898memalloc_failed:
6899 stats->pci_map_fail_cnt++;
6900 stats->mem_freed += (*skb)->truesize;
6901 dev_kfree_skb(*skb);
6902 return -ENOMEM;
5d3213cc 6903}
491abf25 6904
1ee6dd77
RB
6905static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6906 int size)
5d3213cc
AR
6907{
6908 struct net_device *dev = sp->dev;
6909 if (sp->rxd_mode == RXD_MODE_1) {
d44570e4 6910 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
5d3213cc
AR
6911 } else if (sp->rxd_mode == RXD_MODE_3B) {
6912 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6913 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
d44570e4 6914 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
5d3213cc
AR
6915 }
6916}
6917
1ee6dd77 6918static int rxd_owner_bit_reset(struct s2io_nic *sp)
5d3213cc
AR
6919{
6920 int i, j, k, blk_cnt = 0, size;
5d3213cc 6921 struct config_param *config = &sp->config;
ffb5df6c 6922 struct mac_info *mac_control = &sp->mac_control;
5d3213cc 6923 struct net_device *dev = sp->dev;
1ee6dd77 6924 struct RxD_t *rxdp = NULL;
5d3213cc 6925 struct sk_buff *skb = NULL;
1ee6dd77 6926 struct buffAdd *ba = NULL;
5d3213cc
AR
6927 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6928
6929 /* Calculate the size based on ring mode */
6930 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6931 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6932 if (sp->rxd_mode == RXD_MODE_1)
6933 size += NET_IP_ALIGN;
6934 else if (sp->rxd_mode == RXD_MODE_3B)
6935 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
5d3213cc
AR
6936
6937 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
6938 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6939 struct ring_info *ring = &mac_control->rings[i];
6940
d44570e4 6941 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
5d3213cc
AR
6942
6943 for (j = 0; j < blk_cnt; j++) {
6944 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
d44570e4
JP
6945 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6946 if (sp->rxd_mode == RXD_MODE_3B)
13d866a9 6947 ba = &ring->ba[j][k];
d44570e4 6948 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
64699336
JP
6949 &temp0_64,
6950 &temp1_64,
6951 &temp2_64,
d44570e4 6952 size) == -ENOMEM) {
ac1f90d6
SS
6953 return 0;
6954 }
5d3213cc
AR
6955
6956 set_rxd_buffer_size(sp, rxdp, size);
6957 wmb();
6958 /* flip the Ownership bit to Hardware */
6959 rxdp->Control_1 |= RXD_OWN_XENA;
6960 }
6961 }
6962 }
6963 return 0;
6964
6965}
6966
d44570e4 6967static int s2io_add_isr(struct s2io_nic *sp)
1da177e4 6968{
e6a8fee2 6969 int ret = 0;
c92ca04b 6970 struct net_device *dev = sp->dev;
e6a8fee2 6971 int err = 0;
1da177e4 6972
eaae7f72 6973 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
6974 ret = s2io_enable_msi_x(sp);
6975 if (ret) {
6976 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
eaae7f72 6977 sp->config.intr_type = INTA;
20346722 6978 }
1da177e4 6979
d44570e4
JP
6980 /*
6981 * Store the values of the MSIX table in
6982 * the struct s2io_nic structure
6983 */
e6a8fee2 6984 store_xmsi_data(sp);
c92ca04b 6985
e6a8fee2 6986 /* After proper initialization of H/W, register ISR */
eaae7f72 6987 if (sp->config.intr_type == MSI_X) {
ac731ab6
SH
6988 int i, msix_rx_cnt = 0;
6989
f61e0a35
SH
6990 for (i = 0; i < sp->num_entries; i++) {
6991 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6992 if (sp->s2io_entries[i].type ==
d44570e4 6993 MSIX_RING_TYPE) {
ac731ab6
SH
6994 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6995 dev->name, i);
6996 err = request_irq(sp->entries[i].vector,
d44570e4
JP
6997 s2io_msix_ring_handle,
6998 0,
6999 sp->desc[i],
7000 sp->s2io_entries[i].arg);
ac731ab6 7001 } else if (sp->s2io_entries[i].type ==
d44570e4 7002 MSIX_ALARM_TYPE) {
ac731ab6 7003 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
d44570e4 7004 dev->name, i);
ac731ab6 7005 err = request_irq(sp->entries[i].vector,
d44570e4
JP
7006 s2io_msix_fifo_handle,
7007 0,
7008 sp->desc[i],
7009 sp->s2io_entries[i].arg);
ac731ab6 7010
fb6a825b 7011 }
ac731ab6
SH
7012 /* if either data or addr is zero print it. */
7013 if (!(sp->msix_info[i].addr &&
d44570e4 7014 sp->msix_info[i].data)) {
ac731ab6 7015 DBG_PRINT(ERR_DBG,
d44570e4
JP
7016 "%s @Addr:0x%llx Data:0x%llx\n",
7017 sp->desc[i],
7018 (unsigned long long)
7019 sp->msix_info[i].addr,
7020 (unsigned long long)
7021 ntohl(sp->msix_info[i].data));
ac731ab6 7022 } else
fb6a825b 7023 msix_rx_cnt++;
ac731ab6
SH
7024 if (err) {
7025 remove_msix_isr(sp);
7026
7027 DBG_PRINT(ERR_DBG,
d44570e4
JP
7028 "%s:MSI-X-%d registration "
7029 "failed\n", dev->name, i);
ac731ab6
SH
7030
7031 DBG_PRINT(ERR_DBG,
d44570e4
JP
7032 "%s: Defaulting to INTA\n",
7033 dev->name);
ac731ab6
SH
7034 sp->config.intr_type = INTA;
7035 break;
fb6a825b 7036 }
ac731ab6
SH
7037 sp->s2io_entries[i].in_use =
7038 MSIX_REGISTERED_SUCCESS;
c92ca04b 7039 }
e6a8fee2 7040 }
18b2b7bd 7041 if (!err) {
6cef2b8e 7042 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
9e39f7c5
JP
7043 DBG_PRINT(INFO_DBG,
7044 "MSI-X-TX entries enabled through alarm vector\n");
18b2b7bd 7045 }
e6a8fee2 7046 }
eaae7f72 7047 if (sp->config.intr_type == INTA) {
80777c54 7048 err = request_irq(sp->pdev->irq, s2io_isr, IRQF_SHARED,
d44570e4 7049 sp->name, dev);
e6a8fee2
AR
7050 if (err) {
7051 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7052 dev->name);
7053 return -1;
7054 }
7055 }
7056 return 0;
7057}
d44570e4
JP
7058
7059static void s2io_rem_isr(struct s2io_nic *sp)
e6a8fee2 7060{
18b2b7bd
SH
7061 if (sp->config.intr_type == MSI_X)
7062 remove_msix_isr(sp);
7063 else
7064 remove_inta_isr(sp);
e6a8fee2
AR
7065}
7066
d44570e4 7067static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
e6a8fee2
AR
7068{
7069 int cnt = 0;
1ee6dd77 7070 struct XENA_dev_config __iomem *bar0 = sp->bar0;
e6a8fee2 7071 register u64 val64 = 0;
5f490c96
SH
7072 struct config_param *config;
7073 config = &sp->config;
e6a8fee2 7074
9f74ffde
SH
7075 if (!is_s2io_card_up(sp))
7076 return;
7077
e6a8fee2
AR
7078 del_timer_sync(&sp->alarm_timer);
7079 /* If s2io_set_link task is executing, wait till it completes. */
d44570e4 7080 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
e6a8fee2 7081 msleep(50);
92b84437 7082 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
e6a8fee2 7083
5f490c96 7084 /* Disable napi */
f61e0a35
SH
7085 if (sp->config.napi) {
7086 int off = 0;
7087 if (config->intr_type == MSI_X) {
7088 for (; off < sp->config.rx_ring_num; off++)
7089 napi_disable(&sp->mac_control.rings[off].napi);
d44570e4 7090 }
f61e0a35
SH
7091 else
7092 napi_disable(&sp->napi);
7093 }
5f490c96 7094
e6a8fee2 7095 /* disable Tx and Rx traffic on the NIC */
d796fdb7
LV
7096 if (do_io)
7097 stop_nic(sp);
e6a8fee2
AR
7098
7099 s2io_rem_isr(sp);
1da177e4 7100
01e16faa
SH
7101 /* stop the tx queue, indicate link down */
7102 s2io_link(sp, LINK_DOWN);
7103
1da177e4 7104 /* Check if the device is Quiescent and then Reset the NIC */
d44570e4 7105 while (do_io) {
5d3213cc
AR
7106 /* As per the HW requirement we need to replenish the
7107 * receive buffer to avoid the ring bump. Since there is
7108 * no intention of processing the Rx frame at this pointwe are
70f23fd6 7109 * just setting the ownership bit of rxd in Each Rx
5d3213cc
AR
7110 * ring to HW and set the appropriate buffer size
7111 * based on the ring mode
7112 */
7113 rxd_owner_bit_reset(sp);
7114
1da177e4 7115 val64 = readq(&bar0->adapter_status);
19a60522 7116 if (verify_xena_quiescence(sp)) {
d44570e4
JP
7117 if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7118 break;
1da177e4
LT
7119 }
7120
7121 msleep(50);
7122 cnt++;
7123 if (cnt == 10) {
9e39f7c5
JP
7124 DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7125 "adapter status reads 0x%llx\n",
d44570e4 7126 (unsigned long long)val64);
1da177e4
LT
7127 break;
7128 }
d796fdb7
LV
7129 }
7130 if (do_io)
7131 s2io_reset(sp);
1da177e4 7132
7ba013ac 7133 /* Free all Tx buffers */
1da177e4 7134 free_tx_buffers(sp);
7ba013ac
K
7135
7136 /* Free all Rx buffers */
1da177e4
LT
7137 free_rx_buffers(sp);
7138
92b84437 7139 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
1da177e4
LT
7140}
7141
d44570e4 7142static void s2io_card_down(struct s2io_nic *sp)
d796fdb7
LV
7143{
7144 do_s2io_card_down(sp, 1);
7145}
7146
d44570e4 7147static int s2io_card_up(struct s2io_nic *sp)
1da177e4 7148{
cc6e7c44 7149 int i, ret = 0;
1da177e4 7150 struct config_param *config;
ffb5df6c 7151 struct mac_info *mac_control;
64699336 7152 struct net_device *dev = sp->dev;
e6a8fee2 7153 u16 interruptible;
1da177e4
LT
7154
7155 /* Initialize the H/W I/O registers */
9f74ffde
SH
7156 ret = init_nic(sp);
7157 if (ret != 0) {
1da177e4
LT
7158 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7159 dev->name);
9f74ffde
SH
7160 if (ret != -EIO)
7161 s2io_reset(sp);
7162 return ret;
1da177e4
LT
7163 }
7164
20346722
K
7165 /*
7166 * Initializing the Rx buffers. For now we are considering only 1
1da177e4
LT
7167 * Rx ring and initializing buffers into 30 Rx blocks
7168 */
1da177e4 7169 config = &sp->config;
ffb5df6c 7170 mac_control = &sp->mac_control;
1da177e4
LT
7171
7172 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7173 struct ring_info *ring = &mac_control->rings[i];
7174
7175 ring->mtu = dev->mtu;
f0c54ace 7176 ring->lro = !!(dev->features & NETIF_F_LRO);
13d866a9 7177 ret = fill_rx_buffers(sp, ring, 1);
0425b46a 7178 if (ret) {
1da177e4
LT
7179 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7180 dev->name);
7181 s2io_reset(sp);
7182 free_rx_buffers(sp);
7183 return -ENOMEM;
7184 }
7185 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
13d866a9 7186 ring->rx_bufs_left);
1da177e4 7187 }
5f490c96
SH
7188
7189 /* Initialise napi */
f61e0a35 7190 if (config->napi) {
f61e0a35
SH
7191 if (config->intr_type == MSI_X) {
7192 for (i = 0; i < sp->config.rx_ring_num; i++)
7193 napi_enable(&sp->mac_control.rings[i].napi);
7194 } else {
7195 napi_enable(&sp->napi);
7196 }
7197 }
5f490c96 7198
19a60522
SS
7199 /* Maintain the state prior to the open */
7200 if (sp->promisc_flg)
7201 sp->promisc_flg = 0;
7202 if (sp->m_cast_flg) {
7203 sp->m_cast_flg = 0;
d44570e4 7204 sp->all_multi_pos = 0;
19a60522 7205 }
1da177e4
LT
7206
7207 /* Setting its receive mode */
7208 s2io_set_multicast(dev);
7209
f0c54ace 7210 if (dev->features & NETIF_F_LRO) {
b41477f3 7211 /* Initialize max aggregatable pkts per session based on MTU */
7d3d0439 7212 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
d44570e4 7213 /* Check if we can use (if specified) user provided value */
7d3d0439
RA
7214 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7215 sp->lro_max_aggr_per_sess = lro_max_pkts;
7216 }
7217
1da177e4
LT
7218 /* Enable Rx Traffic and interrupts on the NIC */
7219 if (start_nic(sp)) {
7220 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
1da177e4 7221 s2io_reset(sp);
e6a8fee2
AR
7222 free_rx_buffers(sp);
7223 return -ENODEV;
7224 }
7225
7226 /* Add interrupt service routine */
7227 if (s2io_add_isr(sp) != 0) {
eaae7f72 7228 if (sp->config.intr_type == MSI_X)
e6a8fee2
AR
7229 s2io_rem_isr(sp);
7230 s2io_reset(sp);
1da177e4
LT
7231 free_rx_buffers(sp);
7232 return -ENODEV;
7233 }
7234
25fff88e
K
7235 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7236
01e16faa
SH
7237 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7238
e6a8fee2 7239 /* Enable select interrupts */
9caab458 7240 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
01e16faa
SH
7241 if (sp->config.intr_type != INTA) {
7242 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7243 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7244 } else {
e6a8fee2 7245 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
9caab458 7246 interruptible |= TX_PIC_INTR;
e6a8fee2
AR
7247 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7248 }
7249
1da177e4
LT
7250 return 0;
7251}
7252
20346722 7253/**
1da177e4
LT
7254 * s2io_restart_nic - Resets the NIC.
7255 * @data : long pointer to the device private structure
7256 * Description:
7257 * This function is scheduled to be run by the s2io_tx_watchdog
20346722 7258 * function after 0.5 secs to reset the NIC. The idea is to reduce
1da177e4
LT
7259 * the run time of the watch dog routine which is run holding a
7260 * spin lock.
7261 */
7262
c4028958 7263static void s2io_restart_nic(struct work_struct *work)
1da177e4 7264{
1ee6dd77 7265 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
c4028958 7266 struct net_device *dev = sp->dev;
1da177e4 7267
22747d6b
FR
7268 rtnl_lock();
7269
7270 if (!netif_running(dev))
7271 goto out_unlock;
7272
e6a8fee2 7273 s2io_card_down(sp);
1da177e4 7274 if (s2io_card_up(sp)) {
d44570e4 7275 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
1da177e4 7276 }
3a3d5756 7277 s2io_wake_all_tx_queue(sp);
d44570e4 7278 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
22747d6b
FR
7279out_unlock:
7280 rtnl_unlock();
1da177e4
LT
7281}
7282
20346722
K
7283/**
7284 * s2io_tx_watchdog - Watchdog for transmit side.
1da177e4
LT
7285 * @dev : Pointer to net device structure
7286 * Description:
7287 * This function is triggered if the Tx Queue is stopped
7288 * for a pre-defined amount of time when the Interface is still up.
7289 * If the Interface is jammed in such a situation, the hardware is
7290 * reset (by s2io_close) and restarted again (by s2io_open) to
7291 * overcome any problem that might have been caused in the hardware.
7292 * Return value:
7293 * void
7294 */
7295
7296static void s2io_tx_watchdog(struct net_device *dev)
7297{
4cf1653a 7298 struct s2io_nic *sp = netdev_priv(dev);
ffb5df6c 7299 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7300
7301 if (netif_carrier_ok(dev)) {
ffb5df6c 7302 swstats->watchdog_timer_cnt++;
1da177e4 7303 schedule_work(&sp->rst_timer_task);
ffb5df6c 7304 swstats->soft_reset_cnt++;
1da177e4
LT
7305 }
7306}
7307
7308/**
7309 * rx_osm_handler - To perform some OS related operations on SKB.
7310 * @sp: private member of the device structure,pointer to s2io_nic structure.
7311 * @skb : the socket buffer pointer.
7312 * @len : length of the packet
7313 * @cksum : FCS checksum of the frame.
7314 * @ring_no : the ring from which this RxD was extracted.
20346722 7315 * Description:
b41477f3 7316 * This function is called by the Rx interrupt serivce routine to perform
1da177e4
LT
7317 * some OS related operations on the SKB before passing it to the upper
7318 * layers. It mainly checks if the checksum is OK, if so adds it to the
7319 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7320 * to the upper layer. If the checksum is wrong, it increments the Rx
7321 * packet error count, frees the SKB and returns error.
7322 * Return value:
7323 * SUCCESS on success and -1 on failure.
7324 */
1ee6dd77 7325static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
1da177e4 7326{
1ee6dd77 7327 struct s2io_nic *sp = ring_data->nic;
64699336 7328 struct net_device *dev = ring_data->dev;
20346722 7329 struct sk_buff *skb = (struct sk_buff *)
d44570e4 7330 ((unsigned long)rxdp->Host_Control);
20346722 7331 int ring_no = ring_data->ring_no;
1da177e4 7332 u16 l3_csum, l4_csum;
863c11a9 7333 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
2e6a684b 7334 struct lro *uninitialized_var(lro);
f9046eb3 7335 u8 err_mask;
ffb5df6c 7336 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
da6971d8 7337
20346722 7338 skb->dev = dev;
c92ca04b 7339
863c11a9 7340 if (err) {
bd1034f0 7341 /* Check for parity error */
d44570e4 7342 if (err & 0x1)
ffb5df6c 7343 swstats->parity_err_cnt++;
d44570e4 7344
f9046eb3 7345 err_mask = err >> 48;
d44570e4
JP
7346 switch (err_mask) {
7347 case 1:
ffb5df6c 7348 swstats->rx_parity_err_cnt++;
491976b2
SH
7349 break;
7350
d44570e4 7351 case 2:
ffb5df6c 7352 swstats->rx_abort_cnt++;
491976b2
SH
7353 break;
7354
d44570e4 7355 case 3:
ffb5df6c 7356 swstats->rx_parity_abort_cnt++;
491976b2
SH
7357 break;
7358
d44570e4 7359 case 4:
ffb5df6c 7360 swstats->rx_rda_fail_cnt++;
491976b2
SH
7361 break;
7362
d44570e4 7363 case 5:
ffb5df6c 7364 swstats->rx_unkn_prot_cnt++;
491976b2
SH
7365 break;
7366
d44570e4 7367 case 6:
ffb5df6c 7368 swstats->rx_fcs_err_cnt++;
491976b2 7369 break;
bd1034f0 7370
d44570e4 7371 case 7:
ffb5df6c 7372 swstats->rx_buf_size_err_cnt++;
491976b2
SH
7373 break;
7374
d44570e4 7375 case 8:
ffb5df6c 7376 swstats->rx_rxd_corrupt_cnt++;
491976b2
SH
7377 break;
7378
d44570e4 7379 case 15:
ffb5df6c 7380 swstats->rx_unkn_err_cnt++;
491976b2
SH
7381 break;
7382 }
863c11a9 7383 /*
d44570e4
JP
7384 * Drop the packet if bad transfer code. Exception being
7385 * 0x5, which could be due to unsupported IPv6 extension header.
7386 * In this case, we let stack handle the packet.
7387 * Note that in this case, since checksum will be incorrect,
7388 * stack will validate the same.
7389 */
f9046eb3
OH
7390 if (err_mask != 0x5) {
7391 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
d44570e4 7392 dev->name, err_mask);
dc56e634 7393 dev->stats.rx_crc_errors++;
ffb5df6c 7394 swstats->mem_freed
491976b2 7395 += skb->truesize;
863c11a9 7396 dev_kfree_skb(skb);
0425b46a 7397 ring_data->rx_bufs_left -= 1;
863c11a9
AR
7398 rxdp->Host_Control = 0;
7399 return 0;
7400 }
20346722 7401 }
1da177e4 7402
20346722 7403 rxdp->Host_Control = 0;
da6971d8
AR
7404 if (sp->rxd_mode == RXD_MODE_1) {
7405 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
20346722 7406
da6971d8 7407 skb_put(skb, len);
6d517a27 7408 } else if (sp->rxd_mode == RXD_MODE_3B) {
da6971d8
AR
7409 int get_block = ring_data->rx_curr_get_info.block_index;
7410 int get_off = ring_data->rx_curr_get_info.offset;
7411 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7412 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7413 unsigned char *buff = skb_push(skb, buf0_len);
7414
1ee6dd77 7415 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
da6971d8 7416 memcpy(buff, ba->ba_0, buf0_len);
6d517a27 7417 skb_put(skb, buf2_len);
da6971d8 7418 }
20346722 7419
d44570e4
JP
7420 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7421 ((!ring_data->lro) ||
7422 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
b437a8cc 7423 (dev->features & NETIF_F_RXCSUM)) {
20346722 7424 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
1da177e4
LT
7425 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7426 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
20346722 7427 /*
1da177e4
LT
7428 * NIC verifies if the Checksum of the received
7429 * frame is Ok or not and accordingly returns
7430 * a flag in the RxD.
7431 */
7432 skb->ip_summed = CHECKSUM_UNNECESSARY;
0425b46a 7433 if (ring_data->lro) {
06f0c139 7434 u32 tcp_len = 0;
7d3d0439
RA
7435 u8 *tcp;
7436 int ret = 0;
7437
0425b46a 7438 ret = s2io_club_tcp_session(ring_data,
d44570e4
JP
7439 skb->data, &tcp,
7440 &tcp_len, &lro,
7441 rxdp, sp);
7d3d0439 7442 switch (ret) {
d44570e4
JP
7443 case 3: /* Begin anew */
7444 lro->parent = skb;
7445 goto aggregate;
7446 case 1: /* Aggregate */
7447 lro_append_pkt(sp, lro, skb, tcp_len);
7448 goto aggregate;
7449 case 4: /* Flush session */
7450 lro_append_pkt(sp, lro, skb, tcp_len);
7451 queue_rx_frame(lro->parent,
7452 lro->vlan_tag);
7453 clear_lro_session(lro);
ffb5df6c 7454 swstats->flush_max_pkts++;
d44570e4
JP
7455 goto aggregate;
7456 case 2: /* Flush both */
7457 lro->parent->data_len = lro->frags_len;
ffb5df6c 7458 swstats->sending_both++;
d44570e4
JP
7459 queue_rx_frame(lro->parent,
7460 lro->vlan_tag);
7461 clear_lro_session(lro);
7462 goto send_up;
7463 case 0: /* sessions exceeded */
7464 case -1: /* non-TCP or not L2 aggregatable */
7465 case 5: /*
7466 * First pkt in session not
7467 * L3/L4 aggregatable
7468 */
7469 break;
7470 default:
7471 DBG_PRINT(ERR_DBG,
7472 "%s: Samadhana!!\n",
7473 __func__);
7474 BUG();
7d3d0439
RA
7475 }
7476 }
1da177e4 7477 } else {
20346722
K
7478 /*
7479 * Packet with erroneous checksum, let the
1da177e4
LT
7480 * upper layers deal with it.
7481 */
bc8acf2c 7482 skb_checksum_none_assert(skb);
1da177e4 7483 }
cdb5bf02 7484 } else
bc8acf2c 7485 skb_checksum_none_assert(skb);
cdb5bf02 7486
ffb5df6c 7487 swstats->mem_freed += skb->truesize;
7d3d0439 7488send_up:
0c8dfc83 7489 skb_record_rx_queue(skb, ring_no);
cdb5bf02 7490 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7d3d0439 7491aggregate:
0425b46a 7492 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
1da177e4
LT
7493 return SUCCESS;
7494}
7495
7496/**
7497 * s2io_link - stops/starts the Tx queue.
7498 * @sp : private member of the device structure, which is a pointer to the
7499 * s2io_nic structure.
7500 * @link : inidicates whether link is UP/DOWN.
7501 * Description:
7502 * This function stops/starts the Tx queue depending on whether the link
20346722
K
7503 * status of the NIC is is down or up. This is called by the Alarm
7504 * interrupt handler whenever a link change interrupt comes up.
1da177e4
LT
7505 * Return value:
7506 * void.
7507 */
7508
d44570e4 7509static void s2io_link(struct s2io_nic *sp, int link)
1da177e4 7510{
64699336 7511 struct net_device *dev = sp->dev;
ffb5df6c 7512 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
1da177e4
LT
7513
7514 if (link != sp->last_link_state) {
b7c5678f 7515 init_tti(sp, link);
1da177e4
LT
7516 if (link == LINK_DOWN) {
7517 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
3a3d5756 7518 s2io_stop_all_tx_queue(sp);
1da177e4 7519 netif_carrier_off(dev);
ffb5df6c
JP
7520 if (swstats->link_up_cnt)
7521 swstats->link_up_time =
7522 jiffies - sp->start_time;
7523 swstats->link_down_cnt++;
1da177e4
LT
7524 } else {
7525 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
ffb5df6c
JP
7526 if (swstats->link_down_cnt)
7527 swstats->link_down_time =
d44570e4 7528 jiffies - sp->start_time;
ffb5df6c 7529 swstats->link_up_cnt++;
1da177e4 7530 netif_carrier_on(dev);
3a3d5756 7531 s2io_wake_all_tx_queue(sp);
1da177e4
LT
7532 }
7533 }
7534 sp->last_link_state = link;
491976b2 7535 sp->start_time = jiffies;
1da177e4
LT
7536}
7537
20346722
K
7538/**
7539 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7540 * @sp : private member of the device structure, which is a pointer to the
1da177e4
LT
7541 * s2io_nic structure.
7542 * Description:
7543 * This function initializes a few of the PCI and PCI-X configuration registers
7544 * with recommended values.
7545 * Return value:
7546 * void
7547 */
7548
d44570e4 7549static void s2io_init_pci(struct s2io_nic *sp)
1da177e4 7550{
20346722 7551 u16 pci_cmd = 0, pcix_cmd = 0;
1da177e4
LT
7552
7553 /* Enable Data Parity Error Recovery in PCI-X command register. */
7554 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7555 &(pcix_cmd));
1da177e4 7556 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7557 (pcix_cmd | 1));
1da177e4 7558 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
20346722 7559 &(pcix_cmd));
1da177e4
LT
7560
7561 /* Set the PErr Response bit in PCI command register. */
7562 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7563 pci_write_config_word(sp->pdev, PCI_COMMAND,
7564 (pci_cmd | PCI_COMMAND_PARITY));
7565 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
1da177e4
LT
7566}
7567
3a3d5756 7568static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
d44570e4 7569 u8 *dev_multiq)
9dc737a7 7570{
1853e2e1
JM
7571 int i;
7572
d44570e4 7573 if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
9e39f7c5 7574 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
d44570e4 7575 "(%d) not supported\n", tx_fifo_num);
6cfc482b
SH
7576
7577 if (tx_fifo_num < 1)
7578 tx_fifo_num = 1;
7579 else
7580 tx_fifo_num = MAX_TX_FIFOS;
7581
9e39f7c5 7582 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
9dc737a7 7583 }
2fda096d 7584
6cfc482b 7585 if (multiq)
3a3d5756 7586 *dev_multiq = multiq;
6cfc482b
SH
7587
7588 if (tx_steering_type && (1 == tx_fifo_num)) {
7589 if (tx_steering_type != TX_DEFAULT_STEERING)
7590 DBG_PRINT(ERR_DBG,
9e39f7c5 7591 "Tx steering is not supported with "
d44570e4 7592 "one fifo. Disabling Tx steering.\n");
6cfc482b
SH
7593 tx_steering_type = NO_STEERING;
7594 }
7595
7596 if ((tx_steering_type < NO_STEERING) ||
d44570e4
JP
7597 (tx_steering_type > TX_DEFAULT_STEERING)) {
7598 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7599 "Requested transmit steering not supported\n");
7600 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
6cfc482b 7601 tx_steering_type = NO_STEERING;
3a3d5756
SH
7602 }
7603
0425b46a 7604 if (rx_ring_num > MAX_RX_RINGS) {
d44570e4 7605 DBG_PRINT(ERR_DBG,
9e39f7c5
JP
7606 "Requested number of rx rings not supported\n");
7607 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
d44570e4 7608 MAX_RX_RINGS);
0425b46a 7609 rx_ring_num = MAX_RX_RINGS;
9dc737a7 7610 }
0425b46a 7611
eccb8628 7612 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
9e39f7c5 7613 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
9dc737a7
AR
7614 "Defaulting to INTA\n");
7615 *dev_intr_type = INTA;
7616 }
596c5c97 7617
9dc737a7 7618 if ((*dev_intr_type == MSI_X) &&
d44570e4
JP
7619 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7620 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
9e39f7c5 7621 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
d44570e4 7622 "Defaulting to INTA\n");
9dc737a7
AR
7623 *dev_intr_type = INTA;
7624 }
fb6a825b 7625
6d517a27 7626 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
9e39f7c5
JP
7627 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7628 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
6d517a27 7629 rx_ring_mode = 1;
9dc737a7 7630 }
1853e2e1
JM
7631
7632 for (i = 0; i < MAX_RX_RINGS; i++)
7633 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7634 DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7635 "supported\nDefaulting to %d\n",
7636 MAX_RX_BLOCKS_PER_RING);
7637 rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7638 }
7639
9dc737a7
AR
7640 return SUCCESS;
7641}
7642
9fc93a41
SS
7643/**
7644 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7645 * or Traffic class respectively.
b7c5678f 7646 * @nic: device private variable
9fc93a41
SS
7647 * Description: The function configures the receive steering to
7648 * desired receive ring.
7649 * Return Value: SUCCESS on success and
7650 * '-1' on failure (endian settings incorrect).
7651 */
7652static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7653{
7654 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7655 register u64 val64 = 0;
7656
7657 if (ds_codepoint > 63)
7658 return FAILURE;
7659
7660 val64 = RTS_DS_MEM_DATA(ring);
7661 writeq(val64, &bar0->rts_ds_mem_data);
7662
7663 val64 = RTS_DS_MEM_CTRL_WE |
7664 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7665 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7666
7667 writeq(val64, &bar0->rts_ds_mem_ctrl);
7668
7669 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
d44570e4
JP
7670 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7671 S2IO_BIT_RESET);
9fc93a41
SS
7672}
7673
04025095
SH
7674static const struct net_device_ops s2io_netdev_ops = {
7675 .ndo_open = s2io_open,
7676 .ndo_stop = s2io_close,
7677 .ndo_get_stats = s2io_get_stats,
7678 .ndo_start_xmit = s2io_xmit,
7679 .ndo_validate_addr = eth_validate_addr,
afc4b13d 7680 .ndo_set_rx_mode = s2io_set_multicast,
04025095
SH
7681 .ndo_do_ioctl = s2io_ioctl,
7682 .ndo_set_mac_address = s2io_set_mac_addr,
7683 .ndo_change_mtu = s2io_change_mtu,
b437a8cc 7684 .ndo_set_features = s2io_set_features,
04025095
SH
7685 .ndo_tx_timeout = s2io_tx_watchdog,
7686#ifdef CONFIG_NET_POLL_CONTROLLER
7687 .ndo_poll_controller = s2io_netpoll,
7688#endif
7689};
7690
1da177e4 7691/**
20346722 7692 * s2io_init_nic - Initialization of the adapter .
1da177e4
LT
7693 * @pdev : structure containing the PCI related information of the device.
7694 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7695 * Description:
7696 * The function initializes an adapter identified by the pci_dec structure.
20346722
K
7697 * All OS related initialization including memory and device structure and
7698 * initlaization of the device private variable is done. Also the swapper
7699 * control register is initialized to enable read and write into the I/O
1da177e4
LT
7700 * registers of the device.
7701 * Return value:
7702 * returns 0 on success and negative on failure.
7703 */
7704
3a036ce5 7705static int
1da177e4
LT
7706s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7707{
1ee6dd77 7708 struct s2io_nic *sp;
1da177e4 7709 struct net_device *dev;
1da177e4 7710 int i, j, ret;
f957bcf0 7711 int dma_flag = false;
1da177e4
LT
7712 u32 mac_up, mac_down;
7713 u64 val64 = 0, tmp64 = 0;
1ee6dd77 7714 struct XENA_dev_config __iomem *bar0 = NULL;
1da177e4 7715 u16 subid;
1da177e4 7716 struct config_param *config;
ffb5df6c 7717 struct mac_info *mac_control;
541ae68f 7718 int mode;
cc6e7c44 7719 u8 dev_intr_type = intr_type;
3a3d5756 7720 u8 dev_multiq = 0;
1da177e4 7721
3a3d5756
SH
7722 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7723 if (ret)
9dc737a7 7724 return ret;
1da177e4 7725
d44570e4
JP
7726 ret = pci_enable_device(pdev);
7727 if (ret) {
1da177e4 7728 DBG_PRINT(ERR_DBG,
9e39f7c5 7729 "%s: pci_enable_device failed\n", __func__);
1da177e4
LT
7730 return ret;
7731 }
7732
6a35528a 7733 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
9e39f7c5 7734 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
f957bcf0 7735 dma_flag = true;
d44570e4 7736 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1da177e4 7737 DBG_PRINT(ERR_DBG,
d44570e4
JP
7738 "Unable to obtain 64bit DMA "
7739 "for consistent allocations\n");
1da177e4
LT
7740 pci_disable_device(pdev);
7741 return -ENOMEM;
7742 }
284901a9 7743 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
9e39f7c5 7744 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
1da177e4
LT
7745 } else {
7746 pci_disable_device(pdev);
7747 return -ENOMEM;
7748 }
d44570e4
JP
7749 ret = pci_request_regions(pdev, s2io_driver_name);
7750 if (ret) {
9e39f7c5 7751 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
d44570e4 7752 __func__, ret);
eccb8628
VP
7753 pci_disable_device(pdev);
7754 return -ENODEV;
1da177e4 7755 }
3a3d5756 7756 if (dev_multiq)
6cfc482b 7757 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
3a3d5756 7758 else
b19fa1fa 7759 dev = alloc_etherdev(sizeof(struct s2io_nic));
1da177e4 7760 if (dev == NULL) {
1da177e4
LT
7761 pci_disable_device(pdev);
7762 pci_release_regions(pdev);
7763 return -ENODEV;
7764 }
7765
7766 pci_set_master(pdev);
7767 pci_set_drvdata(pdev, dev);
1da177e4
LT
7768 SET_NETDEV_DEV(dev, &pdev->dev);
7769
7770 /* Private member variable initialized to s2io NIC structure */
4cf1653a 7771 sp = netdev_priv(dev);
1da177e4
LT
7772 sp->dev = dev;
7773 sp->pdev = pdev;
1da177e4 7774 sp->high_dma_flag = dma_flag;
f957bcf0 7775 sp->device_enabled_once = false;
da6971d8
AR
7776 if (rx_ring_mode == 1)
7777 sp->rxd_mode = RXD_MODE_1;
7778 if (rx_ring_mode == 2)
7779 sp->rxd_mode = RXD_MODE_3B;
da6971d8 7780
eaae7f72 7781 sp->config.intr_type = dev_intr_type;
1da177e4 7782
541ae68f 7783 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
d44570e4 7784 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
541ae68f
K
7785 sp->device_type = XFRAME_II_DEVICE;
7786 else
7787 sp->device_type = XFRAME_I_DEVICE;
7788
6aa20a22 7789
1da177e4
LT
7790 /* Initialize some PCI/PCI-X fields of the NIC. */
7791 s2io_init_pci(sp);
7792
20346722 7793 /*
1da177e4 7794 * Setting the device configuration parameters.
20346722
K
7795 * Most of these parameters can be specified by the user during
7796 * module insertion as they are module loadable parameters. If
7797 * these parameters are not not specified during load time, they
1da177e4
LT
7798 * are initialized with default values.
7799 */
1da177e4 7800 config = &sp->config;
ffb5df6c 7801 mac_control = &sp->mac_control;
1da177e4 7802
596c5c97 7803 config->napi = napi;
6cfc482b 7804 config->tx_steering_type = tx_steering_type;
596c5c97 7805
1da177e4 7806 /* Tx side parameters. */
6cfc482b
SH
7807 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7808 config->tx_fifo_num = MAX_TX_FIFOS;
7809 else
7810 config->tx_fifo_num = tx_fifo_num;
7811
7812 /* Initialize the fifos used for tx steering */
7813 if (config->tx_fifo_num < 5) {
d44570e4
JP
7814 if (config->tx_fifo_num == 1)
7815 sp->total_tcp_fifos = 1;
7816 else
7817 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7818 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7819 sp->total_udp_fifos = 1;
7820 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
6cfc482b
SH
7821 } else {
7822 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
d44570e4 7823 FIFO_OTHER_MAX_NUM);
6cfc482b
SH
7824 sp->udp_fifo_idx = sp->total_tcp_fifos;
7825 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7826 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7827 }
7828
3a3d5756 7829 config->multiq = dev_multiq;
6cfc482b 7830 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7831 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7832
7833 tx_cfg->fifo_len = tx_fifo_len[i];
7834 tx_cfg->fifo_priority = i;
1da177e4
LT
7835 }
7836
20346722
K
7837 /* mapping the QoS priority to the configured fifos */
7838 for (i = 0; i < MAX_TX_FIFOS; i++)
3a3d5756 7839 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
20346722 7840
6cfc482b
SH
7841 /* map the hashing selector table to the configured fifos */
7842 for (i = 0; i < config->tx_fifo_num; i++)
7843 sp->fifo_selector[i] = fifo_selector[i];
7844
7845
1da177e4
LT
7846 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7847 for (i = 0; i < config->tx_fifo_num; i++) {
13d866a9
JP
7848 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7849
7850 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7851 if (tx_cfg->fifo_len < 65) {
1da177e4
LT
7852 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7853 break;
7854 }
7855 }
fed5eccd
AR
7856 /* + 2 because one Txd for skb->data and one Txd for UFO */
7857 config->max_txds = MAX_SKB_FRAGS + 2;
1da177e4
LT
7858
7859 /* Rx side parameters. */
1da177e4 7860 config->rx_ring_num = rx_ring_num;
0425b46a 7861 for (i = 0; i < config->rx_ring_num; i++) {
13d866a9
JP
7862 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7863 struct ring_info *ring = &mac_control->rings[i];
7864
7865 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7866 rx_cfg->ring_priority = i;
7867 ring->rx_bufs_left = 0;
7868 ring->rxd_mode = sp->rxd_mode;
7869 ring->rxd_count = rxd_count[sp->rxd_mode];
7870 ring->pdev = sp->pdev;
7871 ring->dev = sp->dev;
1da177e4
LT
7872 }
7873
7874 for (i = 0; i < rx_ring_num; i++) {
13d866a9
JP
7875 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7876
7877 rx_cfg->ring_org = RING_ORG_BUFF1;
7878 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
1da177e4
LT
7879 }
7880
7881 /* Setting Mac Control parameters */
7882 mac_control->rmac_pause_time = rmac_pause_time;
7883 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7884 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7885
7886
1da177e4
LT
7887 /* initialize the shared memory used by the NIC and the host */
7888 if (init_shared_mem(sp)) {
d44570e4 7889 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
1da177e4
LT
7890 ret = -ENOMEM;
7891 goto mem_alloc_failed;
7892 }
7893
275f165f 7894 sp->bar0 = pci_ioremap_bar(pdev, 0);
1da177e4 7895 if (!sp->bar0) {
19a60522 7896 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
1da177e4
LT
7897 dev->name);
7898 ret = -ENOMEM;
7899 goto bar0_remap_failed;
7900 }
7901
275f165f 7902 sp->bar1 = pci_ioremap_bar(pdev, 2);
1da177e4 7903 if (!sp->bar1) {
19a60522 7904 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
1da177e4
LT
7905 dev->name);
7906 ret = -ENOMEM;
7907 goto bar1_remap_failed;
7908 }
7909
1da177e4
LT
7910 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7911 for (j = 0; j < MAX_TX_FIFOS; j++) {
43d620c8 7912 mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
1da177e4
LT
7913 }
7914
7915 /* Driver entry points */
04025095 7916 dev->netdev_ops = &s2io_netdev_ops;
1da177e4 7917 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
b437a8cc
MM
7918 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7919 NETIF_F_TSO | NETIF_F_TSO6 |
7920 NETIF_F_RXCSUM | NETIF_F_LRO;
7921 dev->features |= dev->hw_features |
7922 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7923 if (sp->device_type & XFRAME_II_DEVICE) {
7924 dev->hw_features |= NETIF_F_UFO;
7925 if (ufo)
7926 dev->features |= NETIF_F_UFO;
7927 }
f957bcf0 7928 if (sp->high_dma_flag == true)
1da177e4 7929 dev->features |= NETIF_F_HIGHDMA;
1da177e4 7930 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
c4028958
DH
7931 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7932 INIT_WORK(&sp->set_link_task, s2io_set_link);
1da177e4 7933
e960fc5c 7934 pci_save_state(sp->pdev);
1da177e4
LT
7935
7936 /* Setting swapper control on the NIC, for proper reset operation */
7937 if (s2io_set_swapper(sp)) {
9e39f7c5 7938 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
1da177e4
LT
7939 dev->name);
7940 ret = -EAGAIN;
7941 goto set_swap_failed;
7942 }
7943
541ae68f
K
7944 /* Verify if the Herc works on the slot its placed into */
7945 if (sp->device_type & XFRAME_II_DEVICE) {
7946 mode = s2io_verify_pci_mode(sp);
7947 if (mode < 0) {
9e39f7c5
JP
7948 DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7949 __func__);
541ae68f
K
7950 ret = -EBADSLT;
7951 goto set_swap_failed;
7952 }
7953 }
7954
f61e0a35
SH
7955 if (sp->config.intr_type == MSI_X) {
7956 sp->num_entries = config->rx_ring_num + 1;
7957 ret = s2io_enable_msi_x(sp);
7958
7959 if (!ret) {
7960 ret = s2io_test_msi(sp);
7961 /* rollback MSI-X, will re-enable during add_isr() */
7962 remove_msix_isr(sp);
7963 }
7964 if (ret) {
7965
7966 DBG_PRINT(ERR_DBG,
9e39f7c5 7967 "MSI-X requested but failed to enable\n");
f61e0a35
SH
7968 sp->config.intr_type = INTA;
7969 }
7970 }
7971
7972 if (config->intr_type == MSI_X) {
13d866a9
JP
7973 for (i = 0; i < config->rx_ring_num ; i++) {
7974 struct ring_info *ring = &mac_control->rings[i];
7975
7976 netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7977 }
f61e0a35
SH
7978 } else {
7979 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7980 }
7981
541ae68f
K
7982 /* Not needed for Herc */
7983 if (sp->device_type & XFRAME_I_DEVICE) {
7984 /*
7985 * Fix for all "FFs" MAC address problems observed on
7986 * Alpha platforms
7987 */
7988 fix_mac_address(sp);
7989 s2io_reset(sp);
7990 }
1da177e4
LT
7991
7992 /*
1da177e4
LT
7993 * MAC address initialization.
7994 * For now only one mac address will be read and used.
7995 */
7996 bar0 = sp->bar0;
7997 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
d44570e4 7998 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
1da177e4 7999 writeq(val64, &bar0->rmac_addr_cmd_mem);
c92ca04b 8000 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
d44570e4
JP
8001 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8002 S2IO_BIT_RESET);
1da177e4 8003 tmp64 = readq(&bar0->rmac_addr_data0_mem);
d44570e4 8004 mac_down = (u32)tmp64;
1da177e4
LT
8005 mac_up = (u32) (tmp64 >> 32);
8006
1da177e4
LT
8007 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8008 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8009 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8010 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8011 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8012 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8013
1da177e4
LT
8014 /* Set the factory defined MAC address initially */
8015 dev->addr_len = ETH_ALEN;
8016 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8017
faa4f796
SH
8018 /* initialize number of multicast & unicast MAC entries variables */
8019 if (sp->device_type == XFRAME_I_DEVICE) {
8020 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8021 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8022 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8023 } else if (sp->device_type == XFRAME_II_DEVICE) {
8024 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8025 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8026 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8027 }
8028
8029 /* store mac addresses from CAM to s2io_nic structure */
8030 do_s2io_store_unicast_mc(sp);
8031
f61e0a35
SH
8032 /* Configure MSIX vector for number of rings configured plus one */
8033 if ((sp->device_type == XFRAME_II_DEVICE) &&
d44570e4 8034 (config->intr_type == MSI_X))
f61e0a35
SH
8035 sp->num_entries = config->rx_ring_num + 1;
8036
d44570e4 8037 /* Store the values of the MSIX table in the s2io_nic structure */
c77dd43e 8038 store_xmsi_data(sp);
b41477f3
AR
8039 /* reset Nic and bring it to known state */
8040 s2io_reset(sp);
8041
1da177e4 8042 /*
99993af6 8043 * Initialize link state flags
541ae68f 8044 * and the card state parameter
1da177e4 8045 */
92b84437 8046 sp->state = 0;
1da177e4 8047
1da177e4 8048 /* Initialize spinlocks */
13d866a9
JP
8049 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8050 struct fifo_info *fifo = &mac_control->fifos[i];
8051
8052 spin_lock_init(&fifo->tx_lock);
8053 }
db874e65 8054
20346722
K
8055 /*
8056 * SXE-002: Configure link and activity LED to init state
8057 * on driver load.
1da177e4
LT
8058 */
8059 subid = sp->pdev->subsystem_device;
8060 if ((subid & 0xFF) >= 0x07) {
8061 val64 = readq(&bar0->gpio_control);
8062 val64 |= 0x0000800000000000ULL;
8063 writeq(val64, &bar0->gpio_control);
8064 val64 = 0x0411040400000000ULL;
d44570e4 8065 writeq(val64, (void __iomem *)bar0 + 0x2700);
1da177e4
LT
8066 val64 = readq(&bar0->gpio_control);
8067 }
8068
8069 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8070
8071 if (register_netdev(dev)) {
8072 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8073 ret = -ENODEV;
8074 goto register_failed;
8075 }
9dc737a7 8076 s2io_vpd_read(sp);
926bd900 8077 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
d44570e4 8078 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
44c10138 8079 sp->product_name, pdev->revision);
b41477f3
AR
8080 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8081 s2io_driver_version);
9e39f7c5
JP
8082 DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8083 DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
9dc737a7 8084 if (sp->device_type & XFRAME_II_DEVICE) {
0b1f7ebe 8085 mode = s2io_print_pci_mode(sp);
541ae68f 8086 if (mode < 0) {
541ae68f 8087 ret = -EBADSLT;
9dc737a7 8088 unregister_netdev(dev);
541ae68f
K
8089 goto set_swap_failed;
8090 }
541ae68f 8091 }
d44570e4
JP
8092 switch (sp->rxd_mode) {
8093 case RXD_MODE_1:
8094 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8095 dev->name);
8096 break;
8097 case RXD_MODE_3B:
8098 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8099 dev->name);
8100 break;
9dc737a7 8101 }
db874e65 8102
f61e0a35
SH
8103 switch (sp->config.napi) {
8104 case 0:
8105 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8106 break;
8107 case 1:
db874e65 8108 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
f61e0a35
SH
8109 break;
8110 }
3a3d5756
SH
8111
8112 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
d44570e4 8113 sp->config.tx_fifo_num);
3a3d5756 8114
0425b46a
SH
8115 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8116 sp->config.rx_ring_num);
8117
d44570e4
JP
8118 switch (sp->config.intr_type) {
8119 case INTA:
8120 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8121 break;
8122 case MSI_X:
8123 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8124 break;
9dc737a7 8125 }
3a3d5756 8126 if (sp->config.multiq) {
13d866a9
JP
8127 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8128 struct fifo_info *fifo = &mac_control->fifos[i];
8129
8130 fifo->multiq = config->multiq;
8131 }
3a3d5756 8132 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
d44570e4 8133 dev->name);
3a3d5756
SH
8134 } else
8135 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
d44570e4 8136 dev->name);
3a3d5756 8137
6cfc482b
SH
8138 switch (sp->config.tx_steering_type) {
8139 case NO_STEERING:
d44570e4
JP
8140 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8141 dev->name);
8142 break;
6cfc482b 8143 case TX_PRIORITY_STEERING:
d44570e4
JP
8144 DBG_PRINT(ERR_DBG,
8145 "%s: Priority steering enabled for transmit\n",
8146 dev->name);
6cfc482b
SH
8147 break;
8148 case TX_DEFAULT_STEERING:
d44570e4
JP
8149 DBG_PRINT(ERR_DBG,
8150 "%s: Default steering enabled for transmit\n",
8151 dev->name);
6cfc482b
SH
8152 }
8153
f0c54ace
AW
8154 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8155 dev->name);
db874e65 8156 if (ufo)
d44570e4
JP
8157 DBG_PRINT(ERR_DBG,
8158 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8159 dev->name);
7ba013ac 8160 /* Initialize device name */
9dc737a7 8161 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7ba013ac 8162
cd0fce03
BL
8163 if (vlan_tag_strip)
8164 sp->vlan_strip_flag = 1;
8165 else
8166 sp->vlan_strip_flag = 0;
8167
20346722
K
8168 /*
8169 * Make Link state as off at this point, when the Link change
8170 * interrupt comes the state will be automatically changed to
1da177e4
LT
8171 * the right state.
8172 */
8173 netif_carrier_off(dev);
1da177e4
LT
8174
8175 return 0;
8176
d44570e4
JP
8177register_failed:
8178set_swap_failed:
1da177e4 8179 iounmap(sp->bar1);
d44570e4 8180bar1_remap_failed:
1da177e4 8181 iounmap(sp->bar0);
d44570e4
JP
8182bar0_remap_failed:
8183mem_alloc_failed:
1da177e4
LT
8184 free_shared_mem(sp);
8185 pci_disable_device(pdev);
eccb8628 8186 pci_release_regions(pdev);
1da177e4
LT
8187 pci_set_drvdata(pdev, NULL);
8188 free_netdev(dev);
8189
8190 return ret;
8191}
8192
8193/**
20346722 8194 * s2io_rem_nic - Free the PCI device
1da177e4 8195 * @pdev: structure containing the PCI related information of the device.
20346722 8196 * Description: This function is called by the Pci subsystem to release a
1da177e4 8197 * PCI device and free up all resource held up by the device. This could
20346722 8198 * be in response to a Hot plug event or when the driver is to be removed
1da177e4
LT
8199 * from memory.
8200 */
8201
3a036ce5 8202static void s2io_rem_nic(struct pci_dev *pdev)
1da177e4 8203{
a31ff388 8204 struct net_device *dev = pci_get_drvdata(pdev);
1ee6dd77 8205 struct s2io_nic *sp;
1da177e4
LT
8206
8207 if (dev == NULL) {
8208 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8209 return;
8210 }
8211
4cf1653a 8212 sp = netdev_priv(dev);
23f333a2
TH
8213
8214 cancel_work_sync(&sp->rst_timer_task);
8215 cancel_work_sync(&sp->set_link_task);
8216
1da177e4
LT
8217 unregister_netdev(dev);
8218
8219 free_shared_mem(sp);
8220 iounmap(sp->bar0);
8221 iounmap(sp->bar1);
eccb8628 8222 pci_release_regions(pdev);
1da177e4 8223 pci_set_drvdata(pdev, NULL);
1da177e4 8224 free_netdev(dev);
19a60522 8225 pci_disable_device(pdev);
1da177e4
LT
8226}
8227
8228/**
8229 * s2io_starter - Entry point for the driver
8230 * Description: This function is the entry point for the driver. It verifies
8231 * the module loadable parameters and initializes PCI configuration space.
8232 */
8233
43b7c451 8234static int __init s2io_starter(void)
1da177e4 8235{
29917620 8236 return pci_register_driver(&s2io_driver);
1da177e4
LT
8237}
8238
8239/**
20346722 8240 * s2io_closer - Cleanup routine for the driver
7f2cd328
YH
8241 * Description: This function is the cleanup routine for the driver. It
8242 * unregisters the driver.
1da177e4
LT
8243 */
8244
372cc597 8245static __exit void s2io_closer(void)
1da177e4
LT
8246{
8247 pci_unregister_driver(&s2io_driver);
8248 DBG_PRINT(INIT_DBG, "cleanup done\n");
8249}
8250
8251module_init(s2io_starter);
8252module_exit(s2io_closer);
7d3d0439 8253
6aa20a22 8254static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
d44570e4
JP
8255 struct tcphdr **tcp, struct RxD_t *rxdp,
8256 struct s2io_nic *sp)
7d3d0439
RA
8257{
8258 int ip_off;
8259 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8260
8261 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
d44570e4
JP
8262 DBG_PRINT(INIT_DBG,
8263 "%s: Non-TCP frames not supported for LRO\n",
b39d66a8 8264 __func__);
7d3d0439
RA
8265 return -1;
8266 }
8267
cdb5bf02 8268 /* Checking for DIX type or DIX type with VLAN */
d44570e4 8269 if ((l2_type == 0) || (l2_type == 4)) {
cdb5bf02
SH
8270 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8271 /*
8272 * If vlan stripping is disabled and the frame is VLAN tagged,
8273 * shift the offset by the VLAN header size bytes.
8274 */
cd0fce03 8275 if ((!sp->vlan_strip_flag) &&
d44570e4 8276 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
cdb5bf02
SH
8277 ip_off += HEADER_VLAN_SIZE;
8278 } else {
7d3d0439 8279 /* LLC, SNAP etc are considered non-mergeable */
cdb5bf02 8280 return -1;
7d3d0439
RA
8281 }
8282
64699336 8283 *ip = (struct iphdr *)(buffer + ip_off);
7d3d0439
RA
8284 ip_len = (u8)((*ip)->ihl);
8285 ip_len <<= 2;
8286 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8287
8288 return 0;
8289}
8290
1ee6dd77 8291static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7d3d0439
RA
8292 struct tcphdr *tcp)
8293{
d44570e4
JP
8294 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8295 if ((lro->iph->saddr != ip->saddr) ||
8296 (lro->iph->daddr != ip->daddr) ||
8297 (lro->tcph->source != tcp->source) ||
8298 (lro->tcph->dest != tcp->dest))
7d3d0439
RA
8299 return -1;
8300 return 0;
8301}
8302
8303static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8304{
d44570e4 8305 return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
7d3d0439
RA
8306}
8307
1ee6dd77 8308static void initiate_new_session(struct lro *lro, u8 *l2h,
d44570e4
JP
8309 struct iphdr *ip, struct tcphdr *tcp,
8310 u32 tcp_pyld_len, u16 vlan_tag)
7d3d0439 8311{
d44570e4 8312 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8313 lro->l2h = l2h;
8314 lro->iph = ip;
8315 lro->tcph = tcp;
8316 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
c8855953 8317 lro->tcp_ack = tcp->ack_seq;
7d3d0439
RA
8318 lro->sg_num = 1;
8319 lro->total_len = ntohs(ip->tot_len);
8320 lro->frags_len = 0;
cdb5bf02 8321 lro->vlan_tag = vlan_tag;
6aa20a22 8322 /*
d44570e4
JP
8323 * Check if we saw TCP timestamp.
8324 * Other consistency checks have already been done.
8325 */
7d3d0439 8326 if (tcp->doff == 8) {
c8855953
SR
8327 __be32 *ptr;
8328 ptr = (__be32 *)(tcp+1);
7d3d0439 8329 lro->saw_ts = 1;
c8855953 8330 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8331 lro->cur_tsecr = *(ptr+2);
8332 }
8333 lro->in_use = 1;
8334}
8335
1ee6dd77 8336static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7d3d0439
RA
8337{
8338 struct iphdr *ip = lro->iph;
8339 struct tcphdr *tcp = lro->tcph;
bd4f3ae1 8340 __sum16 nchk;
ffb5df6c
JP
8341 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8342
d44570e4 8343 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8344
8345 /* Update L3 header */
8346 ip->tot_len = htons(lro->total_len);
8347 ip->check = 0;
8348 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8349 ip->check = nchk;
8350
8351 /* Update L4 header */
8352 tcp->ack_seq = lro->tcp_ack;
8353 tcp->window = lro->window;
8354
8355 /* Update tsecr field if this session has timestamps enabled */
8356 if (lro->saw_ts) {
c8855953 8357 __be32 *ptr = (__be32 *)(tcp + 1);
7d3d0439
RA
8358 *(ptr+2) = lro->cur_tsecr;
8359 }
8360
8361 /* Update counters required for calculation of
8362 * average no. of packets aggregated.
8363 */
ffb5df6c
JP
8364 swstats->sum_avg_pkts_aggregated += lro->sg_num;
8365 swstats->num_aggregations++;
7d3d0439
RA
8366}
8367
1ee6dd77 8368static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
d44570e4 8369 struct tcphdr *tcp, u32 l4_pyld)
7d3d0439 8370{
d44570e4 8371 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
7d3d0439
RA
8372 lro->total_len += l4_pyld;
8373 lro->frags_len += l4_pyld;
8374 lro->tcp_next_seq += l4_pyld;
8375 lro->sg_num++;
8376
8377 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8378 lro->tcp_ack = tcp->ack_seq;
8379 lro->window = tcp->window;
6aa20a22 8380
7d3d0439 8381 if (lro->saw_ts) {
c8855953 8382 __be32 *ptr;
7d3d0439 8383 /* Update tsecr and tsval from this packet */
c8855953
SR
8384 ptr = (__be32 *)(tcp+1);
8385 lro->cur_tsval = ntohl(*(ptr+1));
7d3d0439
RA
8386 lro->cur_tsecr = *(ptr + 2);
8387 }
8388}
8389
1ee6dd77 8390static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7d3d0439
RA
8391 struct tcphdr *tcp, u32 tcp_pyld_len)
8392{
7d3d0439
RA
8393 u8 *ptr;
8394
d44570e4 8395 DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
79dc1901 8396
7d3d0439
RA
8397 if (!tcp_pyld_len) {
8398 /* Runt frame or a pure ack */
8399 return -1;
8400 }
8401
8402 if (ip->ihl != 5) /* IP has options */
8403 return -1;
8404
75c30b13
AR
8405 /* If we see CE codepoint in IP header, packet is not mergeable */
8406 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8407 return -1;
8408
8409 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
d44570e4
JP
8410 if (tcp->urg || tcp->psh || tcp->rst ||
8411 tcp->syn || tcp->fin ||
8412 tcp->ece || tcp->cwr || !tcp->ack) {
7d3d0439
RA
8413 /*
8414 * Currently recognize only the ack control word and
8415 * any other control field being set would result in
8416 * flushing the LRO session
8417 */
8418 return -1;
8419 }
8420
6aa20a22 8421 /*
7d3d0439
RA
8422 * Allow only one TCP timestamp option. Don't aggregate if
8423 * any other options are detected.
8424 */
8425 if (tcp->doff != 5 && tcp->doff != 8)
8426 return -1;
8427
8428 if (tcp->doff == 8) {
6aa20a22 8429 ptr = (u8 *)(tcp + 1);
7d3d0439
RA
8430 while (*ptr == TCPOPT_NOP)
8431 ptr++;
8432 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8433 return -1;
8434
8435 /* Ensure timestamp value increases monotonically */
8436 if (l_lro)
c8855953 8437 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
7d3d0439
RA
8438 return -1;
8439
8440 /* timestamp echo reply should be non-zero */
c8855953 8441 if (*((__be32 *)(ptr+6)) == 0)
7d3d0439
RA
8442 return -1;
8443 }
8444
8445 return 0;
8446}
8447
d44570e4
JP
8448static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8449 u8 **tcp, u32 *tcp_len, struct lro **lro,
8450 struct RxD_t *rxdp, struct s2io_nic *sp)
7d3d0439
RA
8451{
8452 struct iphdr *ip;
8453 struct tcphdr *tcph;
8454 int ret = 0, i;
cdb5bf02 8455 u16 vlan_tag = 0;
ffb5df6c 8456 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439 8457
d44570e4
JP
8458 ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8459 rxdp, sp);
8460 if (ret)
7d3d0439 8461 return ret;
7d3d0439 8462
d44570e4
JP
8463 DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8464
cdb5bf02 8465 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
7d3d0439
RA
8466 tcph = (struct tcphdr *)*tcp;
8467 *tcp_len = get_l4_pyld_length(ip, tcph);
d44570e4 8468 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8469 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8470 if (l_lro->in_use) {
8471 if (check_for_socket_match(l_lro, ip, tcph))
8472 continue;
8473 /* Sock pair matched */
8474 *lro = l_lro;
8475
8476 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
9e39f7c5
JP
8477 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8478 "expected 0x%x, actual 0x%x\n",
8479 __func__,
7d3d0439
RA
8480 (*lro)->tcp_next_seq,
8481 ntohl(tcph->seq));
8482
ffb5df6c 8483 swstats->outof_sequence_pkts++;
7d3d0439
RA
8484 ret = 2;
8485 break;
8486 }
8487
d44570e4
JP
8488 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8489 *tcp_len))
7d3d0439
RA
8490 ret = 1; /* Aggregate */
8491 else
8492 ret = 2; /* Flush both */
8493 break;
8494 }
8495 }
8496
8497 if (ret == 0) {
8498 /* Before searching for available LRO objects,
8499 * check if the pkt is L3/L4 aggregatable. If not
8500 * don't create new LRO session. Just send this
8501 * packet up.
8502 */
d44570e4 8503 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
7d3d0439 8504 return 5;
7d3d0439 8505
d44570e4 8506 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
0425b46a 8507 struct lro *l_lro = &ring_data->lro0_n[i];
7d3d0439
RA
8508 if (!(l_lro->in_use)) {
8509 *lro = l_lro;
8510 ret = 3; /* Begin anew */
8511 break;
8512 }
8513 }
8514 }
8515
8516 if (ret == 0) { /* sessions exceeded */
9e39f7c5 8517 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
b39d66a8 8518 __func__);
7d3d0439
RA
8519 *lro = NULL;
8520 return ret;
8521 }
8522
8523 switch (ret) {
d44570e4
JP
8524 case 3:
8525 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8526 vlan_tag);
8527 break;
8528 case 2:
8529 update_L3L4_header(sp, *lro);
8530 break;
8531 case 1:
8532 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8533 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7d3d0439 8534 update_L3L4_header(sp, *lro);
d44570e4
JP
8535 ret = 4; /* Flush the LRO */
8536 }
8537 break;
8538 default:
9e39f7c5 8539 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
d44570e4 8540 break;
7d3d0439
RA
8541 }
8542
8543 return ret;
8544}
8545
1ee6dd77 8546static void clear_lro_session(struct lro *lro)
7d3d0439 8547{
1ee6dd77 8548 static u16 lro_struct_size = sizeof(struct lro);
7d3d0439
RA
8549
8550 memset(lro, 0, lro_struct_size);
8551}
8552
cdb5bf02 8553static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
7d3d0439
RA
8554{
8555 struct net_device *dev = skb->dev;
4cf1653a 8556 struct s2io_nic *sp = netdev_priv(dev);
7d3d0439
RA
8557
8558 skb->protocol = eth_type_trans(skb, dev);
b85da2c0
JP
8559 if (vlan_tag && sp->vlan_strip_flag)
8560 __vlan_hwaccel_put_tag(skb, vlan_tag);
8561 if (sp->config.napi)
8562 netif_receive_skb(skb);
8563 else
8564 netif_rx(skb);
7d3d0439
RA
8565}
8566
1ee6dd77 8567static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
d44570e4 8568 struct sk_buff *skb, u32 tcp_len)
7d3d0439 8569{
75c30b13 8570 struct sk_buff *first = lro->parent;
ffb5df6c 8571 struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7d3d0439
RA
8572
8573 first->len += tcp_len;
8574 first->data_len = lro->frags_len;
8575 skb_pull(skb, (skb->len - tcp_len));
75c30b13
AR
8576 if (skb_shinfo(first)->frag_list)
8577 lro->last_frag->next = skb;
7d3d0439
RA
8578 else
8579 skb_shinfo(first)->frag_list = skb;
372cc597 8580 first->truesize += skb->truesize;
75c30b13 8581 lro->last_frag = skb;
ffb5df6c 8582 swstats->clubbed_frms_cnt++;
7d3d0439 8583}
d796fdb7
LV
8584
8585/**
8586 * s2io_io_error_detected - called when PCI error is detected
8587 * @pdev: Pointer to PCI device
8453d43f 8588 * @state: The current pci connection state
d796fdb7
LV
8589 *
8590 * This function is called after a PCI bus error affecting
8591 * this device has been detected.
8592 */
8593static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
d44570e4 8594 pci_channel_state_t state)
d796fdb7
LV
8595{
8596 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8597 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8598
8599 netif_device_detach(netdev);
8600
1e3c8bd6
DN
8601 if (state == pci_channel_io_perm_failure)
8602 return PCI_ERS_RESULT_DISCONNECT;
8603
d796fdb7
LV
8604 if (netif_running(netdev)) {
8605 /* Bring down the card, while avoiding PCI I/O */
8606 do_s2io_card_down(sp, 0);
d796fdb7
LV
8607 }
8608 pci_disable_device(pdev);
8609
8610 return PCI_ERS_RESULT_NEED_RESET;
8611}
8612
8613/**
8614 * s2io_io_slot_reset - called after the pci bus has been reset.
8615 * @pdev: Pointer to PCI device
8616 *
8617 * Restart the card from scratch, as if from a cold-boot.
8618 * At this point, the card has exprienced a hard reset,
8619 * followed by fixups by BIOS, and has its config space
8620 * set up identically to what it was at cold boot.
8621 */
8622static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8623{
8624 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8625 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8626
8627 if (pci_enable_device(pdev)) {
6cef2b8e 8628 pr_err("Cannot re-enable PCI device after reset.\n");
d796fdb7
LV
8629 return PCI_ERS_RESULT_DISCONNECT;
8630 }
8631
8632 pci_set_master(pdev);
8633 s2io_reset(sp);
8634
8635 return PCI_ERS_RESULT_RECOVERED;
8636}
8637
8638/**
8639 * s2io_io_resume - called when traffic can start flowing again.
8640 * @pdev: Pointer to PCI device
8641 *
8642 * This callback is called when the error recovery driver tells
8643 * us that its OK to resume normal operation.
8644 */
8645static void s2io_io_resume(struct pci_dev *pdev)
8646{
8647 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 8648 struct s2io_nic *sp = netdev_priv(netdev);
d796fdb7
LV
8649
8650 if (netif_running(netdev)) {
8651 if (s2io_card_up(sp)) {
6cef2b8e 8652 pr_err("Can't bring device back up after reset.\n");
d796fdb7
LV
8653 return;
8654 }
8655
8656 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8657 s2io_card_down(sp);
6cef2b8e 8658 pr_err("Can't restore mac addr after reset.\n");
d796fdb7
LV
8659 return;
8660 }
8661 }
8662
8663 netif_device_attach(netdev);
fd2ea0a7 8664 netif_tx_wake_all_queues(netdev);
d796fdb7 8665}