igb: Update RXDCTL/TXDCTL configurations
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4297f99b 4 Copyright(c) 2007-2011 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
b2cb09b1 31#include <linux/bitops.h>
9d5c8243
AK
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/netdevice.h>
9d5c8243 35#include <linux/ipv6.h>
5a0e3ad6 36#include <linux/slab.h>
9d5c8243
AK
37#include <net/checksum.h>
38#include <net/ip6_checksum.h>
c6cb090b 39#include <linux/net_tstamp.h>
9d5c8243
AK
40#include <linux/mii.h>
41#include <linux/ethtool.h>
01789349 42#include <linux/if.h>
9d5c8243
AK
43#include <linux/if_vlan.h>
44#include <linux/pci.h>
c54106bb 45#include <linux/pci-aspm.h>
9d5c8243
AK
46#include <linux/delay.h>
47#include <linux/interrupt.h>
48#include <linux/if_ether.h>
40a914fa 49#include <linux/aer.h>
70c71606 50#include <linux/prefetch.h>
421e02f0 51#ifdef CONFIG_IGB_DCA
fe4506b6
JC
52#include <linux/dca.h>
53#endif
9d5c8243
AK
54#include "igb.h"
55
0d1fe82d
CW
56#define MAJ 3
57#define MIN 0
58#define BUILD 6
0d1fe82d 59#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 60__stringify(BUILD) "-k"
9d5c8243
AK
61char igb_driver_name[] = "igb";
62char igb_driver_version[] = DRV_VERSION;
63static const char igb_driver_string[] =
64 "Intel(R) Gigabit Ethernet Network Driver";
4c4b42cb 65static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
9d5c8243 66
9d5c8243
AK
67static const struct e1000_info *igb_info_tbl[] = {
68 [board_82575] = &e1000_82575_info,
69};
70
a3aa1884 71static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
97 /* required last entry */
98 {0, }
99};
100
101MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
102
103void igb_reset(struct igb_adapter *);
104static int igb_setup_all_tx_resources(struct igb_adapter *);
105static int igb_setup_all_rx_resources(struct igb_adapter *);
106static void igb_free_all_tx_resources(struct igb_adapter *);
107static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 108static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
109static int igb_probe(struct pci_dev *, const struct pci_device_id *);
110static void __devexit igb_remove(struct pci_dev *pdev);
673b8b70 111static void igb_init_hw_timer(struct igb_adapter *adapter);
9d5c8243
AK
112static int igb_sw_init(struct igb_adapter *);
113static int igb_open(struct net_device *);
114static int igb_close(struct net_device *);
115static void igb_configure_tx(struct igb_adapter *);
116static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
117static void igb_clean_all_tx_rings(struct igb_adapter *);
118static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
119static void igb_clean_tx_ring(struct igb_ring *);
120static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 121static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
122static void igb_update_phy_info(unsigned long);
123static void igb_watchdog(unsigned long);
124static void igb_watchdog_task(struct work_struct *);
b1a436c3 125static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
126static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
127 struct rtnl_link_stats64 *stats);
9d5c8243
AK
128static int igb_change_mtu(struct net_device *, int);
129static int igb_set_mac(struct net_device *, void *);
68d480c4 130static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
131static irqreturn_t igb_intr(int irq, void *);
132static irqreturn_t igb_intr_msi(int irq, void *);
133static irqreturn_t igb_msix_other(int irq, void *);
047e0030 134static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 135#ifdef CONFIG_IGB_DCA
047e0030 136static void igb_update_dca(struct igb_q_vector *);
fe4506b6 137static void igb_setup_dca(struct igb_adapter *);
421e02f0 138#endif /* CONFIG_IGB_DCA */
047e0030 139static bool igb_clean_tx_irq(struct igb_q_vector *);
661086df 140static int igb_poll(struct napi_struct *, int);
047e0030 141static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
9d5c8243
AK
142static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
143static void igb_tx_timeout(struct net_device *);
144static void igb_reset_task(struct work_struct *);
b2cb09b1 145static void igb_vlan_mode(struct net_device *netdev, u32 features);
9d5c8243
AK
146static void igb_vlan_rx_add_vid(struct net_device *, u16);
147static void igb_vlan_rx_kill_vid(struct net_device *, u16);
148static void igb_restore_vlan(struct igb_adapter *);
26ad9178 149static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
150static void igb_ping_all_vfs(struct igb_adapter *);
151static void igb_msg_task(struct igb_adapter *);
4ae196df 152static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 153static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 154static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
155static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
156static int igb_ndo_set_vf_vlan(struct net_device *netdev,
157 int vf, u16 vlan, u8 qos);
158static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
159static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
160 struct ifla_vf_info *ivi);
17dc566c 161static void igb_check_vf_rate_limit(struct igb_adapter *);
9d5c8243 162
9d5c8243 163#ifdef CONFIG_PM
3fe7c4c9 164static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
165static int igb_resume(struct pci_dev *);
166#endif
167static void igb_shutdown(struct pci_dev *);
421e02f0 168#ifdef CONFIG_IGB_DCA
fe4506b6
JC
169static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
170static struct notifier_block dca_notifier = {
171 .notifier_call = igb_notify_dca,
172 .next = NULL,
173 .priority = 0
174};
175#endif
9d5c8243
AK
176#ifdef CONFIG_NET_POLL_CONTROLLER
177/* for netdump / net console */
178static void igb_netpoll(struct net_device *);
179#endif
37680117 180#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
181static unsigned int max_vfs = 0;
182module_param(max_vfs, uint, 0);
183MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
184 "per physical function");
185#endif /* CONFIG_PCI_IOV */
186
9d5c8243
AK
187static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
188 pci_channel_state_t);
189static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
190static void igb_io_resume(struct pci_dev *);
191
192static struct pci_error_handlers igb_err_handler = {
193 .error_detected = igb_io_error_detected,
194 .slot_reset = igb_io_slot_reset,
195 .resume = igb_io_resume,
196};
197
198
199static struct pci_driver igb_driver = {
200 .name = igb_driver_name,
201 .id_table = igb_pci_tbl,
202 .probe = igb_probe,
203 .remove = __devexit_p(igb_remove),
204#ifdef CONFIG_PM
25985edc 205 /* Power Management Hooks */
9d5c8243
AK
206 .suspend = igb_suspend,
207 .resume = igb_resume,
208#endif
209 .shutdown = igb_shutdown,
210 .err_handler = &igb_err_handler
211};
212
213MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
214MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
215MODULE_LICENSE("GPL");
216MODULE_VERSION(DRV_VERSION);
217
c97ec42a
TI
218struct igb_reg_info {
219 u32 ofs;
220 char *name;
221};
222
223static const struct igb_reg_info igb_reg_info_tbl[] = {
224
225 /* General Registers */
226 {E1000_CTRL, "CTRL"},
227 {E1000_STATUS, "STATUS"},
228 {E1000_CTRL_EXT, "CTRL_EXT"},
229
230 /* Interrupt Registers */
231 {E1000_ICR, "ICR"},
232
233 /* RX Registers */
234 {E1000_RCTL, "RCTL"},
235 {E1000_RDLEN(0), "RDLEN"},
236 {E1000_RDH(0), "RDH"},
237 {E1000_RDT(0), "RDT"},
238 {E1000_RXDCTL(0), "RXDCTL"},
239 {E1000_RDBAL(0), "RDBAL"},
240 {E1000_RDBAH(0), "RDBAH"},
241
242 /* TX Registers */
243 {E1000_TCTL, "TCTL"},
244 {E1000_TDBAL(0), "TDBAL"},
245 {E1000_TDBAH(0), "TDBAH"},
246 {E1000_TDLEN(0), "TDLEN"},
247 {E1000_TDH(0), "TDH"},
248 {E1000_TDT(0), "TDT"},
249 {E1000_TXDCTL(0), "TXDCTL"},
250 {E1000_TDFH, "TDFH"},
251 {E1000_TDFT, "TDFT"},
252 {E1000_TDFHS, "TDFHS"},
253 {E1000_TDFPC, "TDFPC"},
254
255 /* List Terminator */
256 {}
257};
258
259/*
260 * igb_regdump - register printout routine
261 */
262static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
263{
264 int n = 0;
265 char rname[16];
266 u32 regs[8];
267
268 switch (reginfo->ofs) {
269 case E1000_RDLEN(0):
270 for (n = 0; n < 4; n++)
271 regs[n] = rd32(E1000_RDLEN(n));
272 break;
273 case E1000_RDH(0):
274 for (n = 0; n < 4; n++)
275 regs[n] = rd32(E1000_RDH(n));
276 break;
277 case E1000_RDT(0):
278 for (n = 0; n < 4; n++)
279 regs[n] = rd32(E1000_RDT(n));
280 break;
281 case E1000_RXDCTL(0):
282 for (n = 0; n < 4; n++)
283 regs[n] = rd32(E1000_RXDCTL(n));
284 break;
285 case E1000_RDBAL(0):
286 for (n = 0; n < 4; n++)
287 regs[n] = rd32(E1000_RDBAL(n));
288 break;
289 case E1000_RDBAH(0):
290 for (n = 0; n < 4; n++)
291 regs[n] = rd32(E1000_RDBAH(n));
292 break;
293 case E1000_TDBAL(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_RDBAL(n));
296 break;
297 case E1000_TDBAH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_TDBAH(n));
300 break;
301 case E1000_TDLEN(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_TDLEN(n));
304 break;
305 case E1000_TDH(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_TDH(n));
308 break;
309 case E1000_TDT(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_TDT(n));
312 break;
313 case E1000_TXDCTL(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_TXDCTL(n));
316 break;
317 default:
318 printk(KERN_INFO "%-15s %08x\n",
319 reginfo->name, rd32(reginfo->ofs));
320 return;
321 }
322
323 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
324 printk(KERN_INFO "%-15s ", rname);
325 for (n = 0; n < 4; n++)
326 printk(KERN_CONT "%08x ", regs[n]);
327 printk(KERN_CONT "\n");
328}
329
330/*
331 * igb_dump - Print registers, tx-rings and rx-rings
332 */
333static void igb_dump(struct igb_adapter *adapter)
334{
335 struct net_device *netdev = adapter->netdev;
336 struct e1000_hw *hw = &adapter->hw;
337 struct igb_reg_info *reginfo;
338 int n = 0;
339 struct igb_ring *tx_ring;
340 union e1000_adv_tx_desc *tx_desc;
341 struct my_u0 { u64 a; u64 b; } *u0;
342 struct igb_buffer *buffer_info;
343 struct igb_ring *rx_ring;
344 union e1000_adv_rx_desc *rx_desc;
345 u32 staterr;
346 int i = 0;
347
348 if (!netif_msg_hw(adapter))
349 return;
350
351 /* Print netdevice Info */
352 if (netdev) {
353 dev_info(&adapter->pdev->dev, "Net device Info\n");
354 printk(KERN_INFO "Device Name state "
355 "trans_start last_rx\n");
356 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
357 netdev->name,
358 netdev->state,
359 netdev->trans_start,
360 netdev->last_rx);
361 }
362
363 /* Print Registers */
364 dev_info(&adapter->pdev->dev, "Register Dump\n");
365 printk(KERN_INFO " Register Name Value\n");
366 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
367 reginfo->name; reginfo++) {
368 igb_regdump(hw, reginfo);
369 }
370
371 /* Print TX Ring Summary */
372 if (!netdev || !netif_running(netdev))
373 goto exit;
374
375 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
376 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
377 " leng ntw timestamp\n");
378 for (n = 0; n < adapter->num_tx_queues; n++) {
379 tx_ring = adapter->tx_ring[n];
380 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
381 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
382 n, tx_ring->next_to_use, tx_ring->next_to_clean,
383 (u64)buffer_info->dma,
384 buffer_info->length,
385 buffer_info->next_to_watch,
386 (u64)buffer_info->time_stamp);
387 }
388
389 /* Print TX Rings */
390 if (!netif_msg_tx_done(adapter))
391 goto rx_ring_summary;
392
393 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
394
395 /* Transmit Descriptor Formats
396 *
397 * Advanced Transmit Descriptor
398 * +--------------------------------------------------------------+
399 * 0 | Buffer Address [63:0] |
400 * +--------------------------------------------------------------+
401 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
402 * +--------------------------------------------------------------+
403 * 63 46 45 40 39 38 36 35 32 31 24 15 0
404 */
405
406 for (n = 0; n < adapter->num_tx_queues; n++) {
407 tx_ring = adapter->tx_ring[n];
408 printk(KERN_INFO "------------------------------------\n");
409 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
410 printk(KERN_INFO "------------------------------------\n");
411 printk(KERN_INFO "T [desc] [address 63:0 ] "
412 "[PlPOCIStDDM Ln] [bi->dma ] "
413 "leng ntw timestamp bi->skb\n");
414
415 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
416 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
417 buffer_info = &tx_ring->buffer_info[i];
418 u0 = (struct my_u0 *)tx_desc;
419 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
420 " %04X %3X %016llX %p", i,
421 le64_to_cpu(u0->a),
422 le64_to_cpu(u0->b),
423 (u64)buffer_info->dma,
424 buffer_info->length,
425 buffer_info->next_to_watch,
426 (u64)buffer_info->time_stamp,
427 buffer_info->skb);
428 if (i == tx_ring->next_to_use &&
429 i == tx_ring->next_to_clean)
430 printk(KERN_CONT " NTC/U\n");
431 else if (i == tx_ring->next_to_use)
432 printk(KERN_CONT " NTU\n");
433 else if (i == tx_ring->next_to_clean)
434 printk(KERN_CONT " NTC\n");
435 else
436 printk(KERN_CONT "\n");
437
438 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
439 print_hex_dump(KERN_INFO, "",
440 DUMP_PREFIX_ADDRESS,
441 16, 1, phys_to_virt(buffer_info->dma),
442 buffer_info->length, true);
443 }
444 }
445
446 /* Print RX Rings Summary */
447rx_ring_summary:
448 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
449 printk(KERN_INFO "Queue [NTU] [NTC]\n");
450 for (n = 0; n < adapter->num_rx_queues; n++) {
451 rx_ring = adapter->rx_ring[n];
452 printk(KERN_INFO " %5d %5X %5X\n", n,
453 rx_ring->next_to_use, rx_ring->next_to_clean);
454 }
455
456 /* Print RX Rings */
457 if (!netif_msg_rx_status(adapter))
458 goto exit;
459
460 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
461
462 /* Advanced Receive Descriptor (Read) Format
463 * 63 1 0
464 * +-----------------------------------------------------+
465 * 0 | Packet Buffer Address [63:1] |A0/NSE|
466 * +----------------------------------------------+------+
467 * 8 | Header Buffer Address [63:1] | DD |
468 * +-----------------------------------------------------+
469 *
470 *
471 * Advanced Receive Descriptor (Write-Back) Format
472 *
473 * 63 48 47 32 31 30 21 20 17 16 4 3 0
474 * +------------------------------------------------------+
475 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
476 * | Checksum Ident | | | | Type | Type |
477 * +------------------------------------------------------+
478 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
479 * +------------------------------------------------------+
480 * 63 48 47 32 31 20 19 0
481 */
482
483 for (n = 0; n < adapter->num_rx_queues; n++) {
484 rx_ring = adapter->rx_ring[n];
485 printk(KERN_INFO "------------------------------------\n");
486 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
487 printk(KERN_INFO "------------------------------------\n");
488 printk(KERN_INFO "R [desc] [ PktBuf A0] "
489 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
490 "<-- Adv Rx Read format\n");
491 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
492 "[vl er S cks ln] ---------------- [bi->skb] "
493 "<-- Adv Rx Write-Back format\n");
494
495 for (i = 0; i < rx_ring->count; i++) {
496 buffer_info = &rx_ring->buffer_info[i];
497 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
498 u0 = (struct my_u0 *)rx_desc;
499 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
500 if (staterr & E1000_RXD_STAT_DD) {
501 /* Descriptor Done */
502 printk(KERN_INFO "RWB[0x%03X] %016llX "
503 "%016llX ---------------- %p", i,
504 le64_to_cpu(u0->a),
505 le64_to_cpu(u0->b),
506 buffer_info->skb);
507 } else {
508 printk(KERN_INFO "R [0x%03X] %016llX "
509 "%016llX %016llX %p", i,
510 le64_to_cpu(u0->a),
511 le64_to_cpu(u0->b),
512 (u64)buffer_info->dma,
513 buffer_info->skb);
514
515 if (netif_msg_pktdata(adapter)) {
516 print_hex_dump(KERN_INFO, "",
517 DUMP_PREFIX_ADDRESS,
518 16, 1,
519 phys_to_virt(buffer_info->dma),
520 rx_ring->rx_buffer_len, true);
521 if (rx_ring->rx_buffer_len
522 < IGB_RXBUFFER_1024)
523 print_hex_dump(KERN_INFO, "",
524 DUMP_PREFIX_ADDRESS,
525 16, 1,
526 phys_to_virt(
527 buffer_info->page_dma +
528 buffer_info->page_offset),
529 PAGE_SIZE/2, true);
530 }
531 }
532
533 if (i == rx_ring->next_to_use)
534 printk(KERN_CONT " NTU\n");
535 else if (i == rx_ring->next_to_clean)
536 printk(KERN_CONT " NTC\n");
537 else
538 printk(KERN_CONT "\n");
539
540 }
541 }
542
543exit:
544 return;
545}
546
547
38c845c7
PO
548/**
549 * igb_read_clock - read raw cycle counter (to be used by time counter)
550 */
551static cycle_t igb_read_clock(const struct cyclecounter *tc)
552{
553 struct igb_adapter *adapter =
554 container_of(tc, struct igb_adapter, cycles);
555 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
556 u64 stamp = 0;
557 int shift = 0;
38c845c7 558
55cac248
AD
559 /*
560 * The timestamp latches on lowest register read. For the 82580
561 * the lowest register is SYSTIMR instead of SYSTIML. However we never
562 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
563 */
564 if (hw->mac.type == e1000_82580) {
565 stamp = rd32(E1000_SYSTIMR) >> 8;
566 shift = IGB_82580_TSYNC_SHIFT;
567 }
568
c5b9bd5e
AD
569 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
570 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
571 return stamp;
572}
573
9d5c8243 574/**
c041076a 575 * igb_get_hw_dev - return device
9d5c8243
AK
576 * used by hardware layer to print debugging information
577 **/
c041076a 578struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
579{
580 struct igb_adapter *adapter = hw->back;
c041076a 581 return adapter->netdev;
9d5c8243 582}
38c845c7 583
9d5c8243
AK
584/**
585 * igb_init_module - Driver Registration Routine
586 *
587 * igb_init_module is the first routine called when the driver is
588 * loaded. All it does is register with the PCI subsystem.
589 **/
590static int __init igb_init_module(void)
591{
592 int ret;
593 printk(KERN_INFO "%s - version %s\n",
594 igb_driver_string, igb_driver_version);
595
596 printk(KERN_INFO "%s\n", igb_copyright);
597
421e02f0 598#ifdef CONFIG_IGB_DCA
fe4506b6
JC
599 dca_register_notify(&dca_notifier);
600#endif
bbd98fe4 601 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
602 return ret;
603}
604
605module_init(igb_init_module);
606
607/**
608 * igb_exit_module - Driver Exit Cleanup Routine
609 *
610 * igb_exit_module is called just before the driver is removed
611 * from memory.
612 **/
613static void __exit igb_exit_module(void)
614{
421e02f0 615#ifdef CONFIG_IGB_DCA
fe4506b6
JC
616 dca_unregister_notify(&dca_notifier);
617#endif
9d5c8243
AK
618 pci_unregister_driver(&igb_driver);
619}
620
621module_exit(igb_exit_module);
622
26bc19ec
AD
623#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
624/**
625 * igb_cache_ring_register - Descriptor ring to register mapping
626 * @adapter: board private structure to initialize
627 *
628 * Once we know the feature-set enabled for the device, we'll cache
629 * the register offset the descriptor ring is assigned to.
630 **/
631static void igb_cache_ring_register(struct igb_adapter *adapter)
632{
ee1b9f06 633 int i = 0, j = 0;
047e0030 634 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
635
636 switch (adapter->hw.mac.type) {
637 case e1000_82576:
638 /* The queues are allocated for virtualization such that VF 0
639 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
640 * In order to avoid collision we start at the first free queue
641 * and continue consuming queues in the same sequence
642 */
ee1b9f06 643 if (adapter->vfs_allocated_count) {
a99955fc 644 for (; i < adapter->rss_queues; i++)
3025a446
AD
645 adapter->rx_ring[i]->reg_idx = rbase_offset +
646 Q_IDX_82576(i);
ee1b9f06 647 }
26bc19ec 648 case e1000_82575:
55cac248 649 case e1000_82580:
d2ba2ed8 650 case e1000_i350:
26bc19ec 651 default:
ee1b9f06 652 for (; i < adapter->num_rx_queues; i++)
3025a446 653 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 654 for (; j < adapter->num_tx_queues; j++)
3025a446 655 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
656 break;
657 }
658}
659
047e0030
AD
660static void igb_free_queues(struct igb_adapter *adapter)
661{
3025a446 662 int i;
047e0030 663
3025a446
AD
664 for (i = 0; i < adapter->num_tx_queues; i++) {
665 kfree(adapter->tx_ring[i]);
666 adapter->tx_ring[i] = NULL;
667 }
668 for (i = 0; i < adapter->num_rx_queues; i++) {
669 kfree(adapter->rx_ring[i]);
670 adapter->rx_ring[i] = NULL;
671 }
047e0030
AD
672 adapter->num_rx_queues = 0;
673 adapter->num_tx_queues = 0;
674}
675
9d5c8243
AK
676/**
677 * igb_alloc_queues - Allocate memory for all rings
678 * @adapter: board private structure to initialize
679 *
680 * We allocate one ring per queue at run-time since we don't know the
681 * number of queues at compile-time.
682 **/
683static int igb_alloc_queues(struct igb_adapter *adapter)
684{
3025a446 685 struct igb_ring *ring;
9d5c8243
AK
686 int i;
687
661086df 688 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
689 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
690 if (!ring)
691 goto err;
68fd9910 692 ring->count = adapter->tx_ring_count;
661086df 693 ring->queue_index = i;
59d71989 694 ring->dev = &adapter->pdev->dev;
e694e964 695 ring->netdev = adapter->netdev;
85ad76b2
AD
696 /* For 82575, context index must be unique per ring. */
697 if (adapter->hw.mac.type == e1000_82575)
698 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
3025a446 699 adapter->tx_ring[i] = ring;
661086df 700 }
85ad76b2 701
9d5c8243 702 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446
AD
703 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
704 if (!ring)
705 goto err;
68fd9910 706 ring->count = adapter->rx_ring_count;
844290e5 707 ring->queue_index = i;
59d71989 708 ring->dev = &adapter->pdev->dev;
e694e964 709 ring->netdev = adapter->netdev;
4c844851 710 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
85ad76b2
AD
711 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
712 /* set flag indicating ring supports SCTP checksum offload */
713 if (adapter->hw.mac.type >= e1000_82576)
714 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
3025a446 715 adapter->rx_ring[i] = ring;
9d5c8243 716 }
26bc19ec
AD
717
718 igb_cache_ring_register(adapter);
9d5c8243 719
047e0030 720 return 0;
a88f10ec 721
047e0030
AD
722err:
723 igb_free_queues(adapter);
d1a8c9e1 724
047e0030 725 return -ENOMEM;
a88f10ec
AD
726}
727
9d5c8243 728#define IGB_N0_QUEUE -1
047e0030 729static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
730{
731 u32 msixbm = 0;
047e0030 732 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 733 struct e1000_hw *hw = &adapter->hw;
2d064c06 734 u32 ivar, index;
047e0030
AD
735 int rx_queue = IGB_N0_QUEUE;
736 int tx_queue = IGB_N0_QUEUE;
737
738 if (q_vector->rx_ring)
739 rx_queue = q_vector->rx_ring->reg_idx;
740 if (q_vector->tx_ring)
741 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
742
743 switch (hw->mac.type) {
744 case e1000_82575:
9d5c8243
AK
745 /* The 82575 assigns vectors using a bitmask, which matches the
746 bitmask for the EICR/EIMS/EIMC registers. To assign one
747 or more queues to a vector, we write the appropriate bits
748 into the MSIXBM register for that vector. */
047e0030 749 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 750 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 751 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 752 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
753 if (!adapter->msix_entries && msix_vector == 0)
754 msixbm |= E1000_EIMS_OTHER;
9d5c8243 755 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 756 q_vector->eims_value = msixbm;
2d064c06
AD
757 break;
758 case e1000_82576:
26bc19ec 759 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
760 Each queue has a single entry in the table to which we write
761 a vector number along with a "valid" bit. Sadly, the layout
762 of the table is somewhat counterintuitive. */
763 if (rx_queue > IGB_N0_QUEUE) {
047e0030 764 index = (rx_queue & 0x7);
2d064c06 765 ivar = array_rd32(E1000_IVAR0, index);
047e0030 766 if (rx_queue < 8) {
26bc19ec
AD
767 /* vector goes into low byte of register */
768 ivar = ivar & 0xFFFFFF00;
769 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
770 } else {
771 /* vector goes into third byte of register */
772 ivar = ivar & 0xFF00FFFF;
773 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 774 }
2d064c06
AD
775 array_wr32(E1000_IVAR0, index, ivar);
776 }
777 if (tx_queue > IGB_N0_QUEUE) {
047e0030 778 index = (tx_queue & 0x7);
2d064c06 779 ivar = array_rd32(E1000_IVAR0, index);
047e0030 780 if (tx_queue < 8) {
26bc19ec
AD
781 /* vector goes into second byte of register */
782 ivar = ivar & 0xFFFF00FF;
783 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
784 } else {
785 /* vector goes into high byte of register */
786 ivar = ivar & 0x00FFFFFF;
787 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 788 }
2d064c06
AD
789 array_wr32(E1000_IVAR0, index, ivar);
790 }
047e0030 791 q_vector->eims_value = 1 << msix_vector;
2d064c06 792 break;
55cac248 793 case e1000_82580:
d2ba2ed8 794 case e1000_i350:
55cac248
AD
795 /* 82580 uses the same table-based approach as 82576 but has fewer
796 entries as a result we carry over for queues greater than 4. */
797 if (rx_queue > IGB_N0_QUEUE) {
798 index = (rx_queue >> 1);
799 ivar = array_rd32(E1000_IVAR0, index);
800 if (rx_queue & 0x1) {
801 /* vector goes into third byte of register */
802 ivar = ivar & 0xFF00FFFF;
803 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
804 } else {
805 /* vector goes into low byte of register */
806 ivar = ivar & 0xFFFFFF00;
807 ivar |= msix_vector | E1000_IVAR_VALID;
808 }
809 array_wr32(E1000_IVAR0, index, ivar);
810 }
811 if (tx_queue > IGB_N0_QUEUE) {
812 index = (tx_queue >> 1);
813 ivar = array_rd32(E1000_IVAR0, index);
814 if (tx_queue & 0x1) {
815 /* vector goes into high byte of register */
816 ivar = ivar & 0x00FFFFFF;
817 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
818 } else {
819 /* vector goes into second byte of register */
820 ivar = ivar & 0xFFFF00FF;
821 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
822 }
823 array_wr32(E1000_IVAR0, index, ivar);
824 }
825 q_vector->eims_value = 1 << msix_vector;
826 break;
2d064c06
AD
827 default:
828 BUG();
829 break;
830 }
26b39276
AD
831
832 /* add q_vector eims value to global eims_enable_mask */
833 adapter->eims_enable_mask |= q_vector->eims_value;
834
835 /* configure q_vector to set itr on first interrupt */
836 q_vector->set_itr = 1;
9d5c8243
AK
837}
838
839/**
840 * igb_configure_msix - Configure MSI-X hardware
841 *
842 * igb_configure_msix sets up the hardware to properly
843 * generate MSI-X interrupts.
844 **/
845static void igb_configure_msix(struct igb_adapter *adapter)
846{
847 u32 tmp;
848 int i, vector = 0;
849 struct e1000_hw *hw = &adapter->hw;
850
851 adapter->eims_enable_mask = 0;
9d5c8243
AK
852
853 /* set vector for other causes, i.e. link changes */
2d064c06
AD
854 switch (hw->mac.type) {
855 case e1000_82575:
9d5c8243
AK
856 tmp = rd32(E1000_CTRL_EXT);
857 /* enable MSI-X PBA support*/
858 tmp |= E1000_CTRL_EXT_PBA_CLR;
859
860 /* Auto-Mask interrupts upon ICR read. */
861 tmp |= E1000_CTRL_EXT_EIAME;
862 tmp |= E1000_CTRL_EXT_IRCA;
863
864 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
865
866 /* enable msix_other interrupt */
867 array_wr32(E1000_MSIXBM(0), vector++,
868 E1000_EIMS_OTHER);
844290e5 869 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 870
2d064c06
AD
871 break;
872
873 case e1000_82576:
55cac248 874 case e1000_82580:
d2ba2ed8 875 case e1000_i350:
047e0030
AD
876 /* Turn on MSI-X capability first, or our settings
877 * won't stick. And it will take days to debug. */
878 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
879 E1000_GPIE_PBA | E1000_GPIE_EIAME |
880 E1000_GPIE_NSICR);
881
882 /* enable msix_other interrupt */
883 adapter->eims_other = 1 << vector;
2d064c06 884 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 885
047e0030 886 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
887 break;
888 default:
889 /* do nothing, since nothing else supports MSI-X */
890 break;
891 } /* switch (hw->mac.type) */
047e0030
AD
892
893 adapter->eims_enable_mask |= adapter->eims_other;
894
26b39276
AD
895 for (i = 0; i < adapter->num_q_vectors; i++)
896 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 897
9d5c8243
AK
898 wrfl();
899}
900
901/**
902 * igb_request_msix - Initialize MSI-X interrupts
903 *
904 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
905 * kernel.
906 **/
907static int igb_request_msix(struct igb_adapter *adapter)
908{
909 struct net_device *netdev = adapter->netdev;
047e0030 910 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
911 int i, err = 0, vector = 0;
912
047e0030 913 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 914 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
915 if (err)
916 goto out;
917 vector++;
918
919 for (i = 0; i < adapter->num_q_vectors; i++) {
920 struct igb_q_vector *q_vector = adapter->q_vector[i];
921
922 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
923
924 if (q_vector->rx_ring && q_vector->tx_ring)
925 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
926 q_vector->rx_ring->queue_index);
927 else if (q_vector->tx_ring)
928 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
929 q_vector->tx_ring->queue_index);
930 else if (q_vector->rx_ring)
931 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
932 q_vector->rx_ring->queue_index);
9d5c8243 933 else
047e0030
AD
934 sprintf(q_vector->name, "%s-unused", netdev->name);
935
9d5c8243 936 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 937 igb_msix_ring, 0, q_vector->name,
047e0030 938 q_vector);
9d5c8243
AK
939 if (err)
940 goto out;
9d5c8243
AK
941 vector++;
942 }
943
9d5c8243
AK
944 igb_configure_msix(adapter);
945 return 0;
946out:
947 return err;
948}
949
950static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
951{
952 if (adapter->msix_entries) {
953 pci_disable_msix(adapter->pdev);
954 kfree(adapter->msix_entries);
955 adapter->msix_entries = NULL;
047e0030 956 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 957 pci_disable_msi(adapter->pdev);
047e0030 958 }
9d5c8243
AK
959}
960
047e0030
AD
961/**
962 * igb_free_q_vectors - Free memory allocated for interrupt vectors
963 * @adapter: board private structure to initialize
964 *
965 * This function frees the memory allocated to the q_vectors. In addition if
966 * NAPI is enabled it will delete any references to the NAPI struct prior
967 * to freeing the q_vector.
968 **/
969static void igb_free_q_vectors(struct igb_adapter *adapter)
970{
971 int v_idx;
972
973 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
974 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
975 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
976 if (!q_vector)
977 continue;
047e0030
AD
978 netif_napi_del(&q_vector->napi);
979 kfree(q_vector);
980 }
981 adapter->num_q_vectors = 0;
982}
983
984/**
985 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
986 *
987 * This function resets the device so that it has 0 rx queues, tx queues, and
988 * MSI-X interrupts allocated.
989 */
990static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
991{
992 igb_free_queues(adapter);
993 igb_free_q_vectors(adapter);
994 igb_reset_interrupt_capability(adapter);
995}
9d5c8243
AK
996
997/**
998 * igb_set_interrupt_capability - set MSI or MSI-X if supported
999 *
1000 * Attempt to configure interrupts using the best available
1001 * capabilities of the hardware and kernel.
1002 **/
21adef3e 1003static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
1004{
1005 int err;
1006 int numvecs, i;
1007
83b7180d 1008 /* Number of supported queues. */
a99955fc 1009 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1010 if (adapter->vfs_allocated_count)
1011 adapter->num_tx_queues = 1;
1012 else
1013 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1014
047e0030
AD
1015 /* start with one vector for every rx queue */
1016 numvecs = adapter->num_rx_queues;
1017
3ad2f3fb 1018 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1019 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1020 numvecs += adapter->num_tx_queues;
047e0030
AD
1021
1022 /* store the number of vectors reserved for queues */
1023 adapter->num_q_vectors = numvecs;
1024
1025 /* add 1 vector for link status interrupts */
1026 numvecs++;
9d5c8243
AK
1027 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1028 GFP_KERNEL);
1029 if (!adapter->msix_entries)
1030 goto msi_only;
1031
1032 for (i = 0; i < numvecs; i++)
1033 adapter->msix_entries[i].entry = i;
1034
1035 err = pci_enable_msix(adapter->pdev,
1036 adapter->msix_entries,
1037 numvecs);
1038 if (err == 0)
34a20e89 1039 goto out;
9d5c8243
AK
1040
1041 igb_reset_interrupt_capability(adapter);
1042
1043 /* If we can't do MSI-X, try MSI */
1044msi_only:
2a3abf6d
AD
1045#ifdef CONFIG_PCI_IOV
1046 /* disable SR-IOV for non MSI-X configurations */
1047 if (adapter->vf_data) {
1048 struct e1000_hw *hw = &adapter->hw;
1049 /* disable iov and allow time for transactions to clear */
1050 pci_disable_sriov(adapter->pdev);
1051 msleep(500);
1052
1053 kfree(adapter->vf_data);
1054 adapter->vf_data = NULL;
1055 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1056 wrfl();
2a3abf6d
AD
1057 msleep(100);
1058 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1059 }
1060#endif
4fc82adf 1061 adapter->vfs_allocated_count = 0;
a99955fc 1062 adapter->rss_queues = 1;
4fc82adf 1063 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1064 adapter->num_rx_queues = 1;
661086df 1065 adapter->num_tx_queues = 1;
047e0030 1066 adapter->num_q_vectors = 1;
9d5c8243 1067 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1068 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1069out:
21adef3e
BH
1070 /* Notify the stack of the (possibly) reduced queue counts. */
1071 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1072 return netif_set_real_num_rx_queues(adapter->netdev,
1073 adapter->num_rx_queues);
9d5c8243
AK
1074}
1075
047e0030
AD
1076/**
1077 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1078 * @adapter: board private structure to initialize
1079 *
1080 * We allocate one q_vector per queue interrupt. If allocation fails we
1081 * return -ENOMEM.
1082 **/
1083static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1084{
1085 struct igb_q_vector *q_vector;
1086 struct e1000_hw *hw = &adapter->hw;
1087 int v_idx;
1088
1089 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1090 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1091 if (!q_vector)
1092 goto err_out;
1093 q_vector->adapter = adapter;
047e0030
AD
1094 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1095 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1096 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1097 adapter->q_vector[v_idx] = q_vector;
1098 }
1099 return 0;
1100
1101err_out:
fe0592b4 1102 igb_free_q_vectors(adapter);
047e0030
AD
1103 return -ENOMEM;
1104}
1105
1106static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1107 int ring_idx, int v_idx)
1108{
3025a446 1109 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1110
3025a446 1111 q_vector->rx_ring = adapter->rx_ring[ring_idx];
047e0030 1112 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
1113 q_vector->itr_val = adapter->rx_itr_setting;
1114 if (q_vector->itr_val && q_vector->itr_val <= 3)
1115 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1116}
1117
1118static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1119 int ring_idx, int v_idx)
1120{
3025a446 1121 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1122
3025a446 1123 q_vector->tx_ring = adapter->tx_ring[ring_idx];
047e0030 1124 q_vector->tx_ring->q_vector = q_vector;
4fc82adf
AD
1125 q_vector->itr_val = adapter->tx_itr_setting;
1126 if (q_vector->itr_val && q_vector->itr_val <= 3)
1127 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1128}
1129
1130/**
1131 * igb_map_ring_to_vector - maps allocated queues to vectors
1132 *
1133 * This function maps the recently allocated queues to vectors.
1134 **/
1135static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1136{
1137 int i;
1138 int v_idx = 0;
1139
1140 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1141 (adapter->num_q_vectors < adapter->num_tx_queues))
1142 return -ENOMEM;
1143
1144 if (adapter->num_q_vectors >=
1145 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1146 for (i = 0; i < adapter->num_rx_queues; i++)
1147 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1148 for (i = 0; i < adapter->num_tx_queues; i++)
1149 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1150 } else {
1151 for (i = 0; i < adapter->num_rx_queues; i++) {
1152 if (i < adapter->num_tx_queues)
1153 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1154 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1155 }
1156 for (; i < adapter->num_tx_queues; i++)
1157 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1158 }
1159 return 0;
1160}
1161
1162/**
1163 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1164 *
1165 * This function initializes the interrupts and allocates all of the queues.
1166 **/
1167static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1168{
1169 struct pci_dev *pdev = adapter->pdev;
1170 int err;
1171
21adef3e
BH
1172 err = igb_set_interrupt_capability(adapter);
1173 if (err)
1174 return err;
047e0030
AD
1175
1176 err = igb_alloc_q_vectors(adapter);
1177 if (err) {
1178 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1179 goto err_alloc_q_vectors;
1180 }
1181
1182 err = igb_alloc_queues(adapter);
1183 if (err) {
1184 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1185 goto err_alloc_queues;
1186 }
1187
1188 err = igb_map_ring_to_vector(adapter);
1189 if (err) {
1190 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1191 goto err_map_queues;
1192 }
1193
1194
1195 return 0;
1196err_map_queues:
1197 igb_free_queues(adapter);
1198err_alloc_queues:
1199 igb_free_q_vectors(adapter);
1200err_alloc_q_vectors:
1201 igb_reset_interrupt_capability(adapter);
1202 return err;
1203}
1204
9d5c8243
AK
1205/**
1206 * igb_request_irq - initialize interrupts
1207 *
1208 * Attempts to configure interrupts using the best available
1209 * capabilities of the hardware and kernel.
1210 **/
1211static int igb_request_irq(struct igb_adapter *adapter)
1212{
1213 struct net_device *netdev = adapter->netdev;
047e0030 1214 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1215 int err = 0;
1216
1217 if (adapter->msix_entries) {
1218 err = igb_request_msix(adapter);
844290e5 1219 if (!err)
9d5c8243 1220 goto request_done;
9d5c8243 1221 /* fall back to MSI */
047e0030 1222 igb_clear_interrupt_scheme(adapter);
9d5c8243 1223 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1224 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1225 igb_free_all_tx_resources(adapter);
1226 igb_free_all_rx_resources(adapter);
047e0030 1227 adapter->num_tx_queues = 1;
9d5c8243 1228 adapter->num_rx_queues = 1;
047e0030
AD
1229 adapter->num_q_vectors = 1;
1230 err = igb_alloc_q_vectors(adapter);
1231 if (err) {
1232 dev_err(&pdev->dev,
1233 "Unable to allocate memory for vectors\n");
1234 goto request_done;
1235 }
1236 err = igb_alloc_queues(adapter);
1237 if (err) {
1238 dev_err(&pdev->dev,
1239 "Unable to allocate memory for queues\n");
1240 igb_free_q_vectors(adapter);
1241 goto request_done;
1242 }
1243 igb_setup_all_tx_resources(adapter);
1244 igb_setup_all_rx_resources(adapter);
844290e5 1245 } else {
feeb2721 1246 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1247 }
844290e5 1248
7dfc16fa 1249 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1250 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1251 netdev->name, adapter);
9d5c8243
AK
1252 if (!err)
1253 goto request_done;
047e0030 1254
9d5c8243
AK
1255 /* fall back to legacy interrupts */
1256 igb_reset_interrupt_capability(adapter);
7dfc16fa 1257 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1258 }
1259
a0607fd3 1260 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1261 netdev->name, adapter);
9d5c8243 1262
6cb5e577 1263 if (err)
9d5c8243
AK
1264 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1265 err);
9d5c8243
AK
1266
1267request_done:
1268 return err;
1269}
1270
1271static void igb_free_irq(struct igb_adapter *adapter)
1272{
9d5c8243
AK
1273 if (adapter->msix_entries) {
1274 int vector = 0, i;
1275
047e0030 1276 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1277
047e0030
AD
1278 for (i = 0; i < adapter->num_q_vectors; i++) {
1279 struct igb_q_vector *q_vector = adapter->q_vector[i];
1280 free_irq(adapter->msix_entries[vector++].vector,
1281 q_vector);
1282 }
1283 } else {
1284 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1285 }
9d5c8243
AK
1286}
1287
1288/**
1289 * igb_irq_disable - Mask off interrupt generation on the NIC
1290 * @adapter: board private structure
1291 **/
1292static void igb_irq_disable(struct igb_adapter *adapter)
1293{
1294 struct e1000_hw *hw = &adapter->hw;
1295
25568a53
AD
1296 /*
1297 * we need to be careful when disabling interrupts. The VFs are also
1298 * mapped into these registers and so clearing the bits can cause
1299 * issues on the VF drivers so we only need to clear what we set
1300 */
9d5c8243 1301 if (adapter->msix_entries) {
2dfd1212
AD
1302 u32 regval = rd32(E1000_EIAM);
1303 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1304 wr32(E1000_EIMC, adapter->eims_enable_mask);
1305 regval = rd32(E1000_EIAC);
1306 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1307 }
844290e5
PW
1308
1309 wr32(E1000_IAM, 0);
9d5c8243
AK
1310 wr32(E1000_IMC, ~0);
1311 wrfl();
81a61859
ET
1312 if (adapter->msix_entries) {
1313 int i;
1314 for (i = 0; i < adapter->num_q_vectors; i++)
1315 synchronize_irq(adapter->msix_entries[i].vector);
1316 } else {
1317 synchronize_irq(adapter->pdev->irq);
1318 }
9d5c8243
AK
1319}
1320
1321/**
1322 * igb_irq_enable - Enable default interrupt generation settings
1323 * @adapter: board private structure
1324 **/
1325static void igb_irq_enable(struct igb_adapter *adapter)
1326{
1327 struct e1000_hw *hw = &adapter->hw;
1328
1329 if (adapter->msix_entries) {
25568a53 1330 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1331 u32 regval = rd32(E1000_EIAC);
1332 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1333 regval = rd32(E1000_EIAM);
1334 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1335 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1336 if (adapter->vfs_allocated_count) {
4ae196df 1337 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1338 ims |= E1000_IMS_VMMB;
1339 }
55cac248
AD
1340 if (adapter->hw.mac.type == e1000_82580)
1341 ims |= E1000_IMS_DRSTA;
1342
25568a53 1343 wr32(E1000_IMS, ims);
844290e5 1344 } else {
55cac248
AD
1345 wr32(E1000_IMS, IMS_ENABLE_MASK |
1346 E1000_IMS_DRSTA);
1347 wr32(E1000_IAM, IMS_ENABLE_MASK |
1348 E1000_IMS_DRSTA);
844290e5 1349 }
9d5c8243
AK
1350}
1351
1352static void igb_update_mng_vlan(struct igb_adapter *adapter)
1353{
51466239 1354 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1355 u16 vid = adapter->hw.mng_cookie.vlan_id;
1356 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1357
1358 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1359 /* add VID to filter table */
1360 igb_vfta_set(hw, vid, true);
1361 adapter->mng_vlan_id = vid;
1362 } else {
1363 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1364 }
1365
1366 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1367 (vid != old_vid) &&
b2cb09b1 1368 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1369 /* remove VID from filter table */
1370 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1371 }
1372}
1373
1374/**
1375 * igb_release_hw_control - release control of the h/w to f/w
1376 * @adapter: address of board private structure
1377 *
1378 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1379 * For ASF and Pass Through versions of f/w this means that the
1380 * driver is no longer loaded.
1381 *
1382 **/
1383static void igb_release_hw_control(struct igb_adapter *adapter)
1384{
1385 struct e1000_hw *hw = &adapter->hw;
1386 u32 ctrl_ext;
1387
1388 /* Let firmware take over control of h/w */
1389 ctrl_ext = rd32(E1000_CTRL_EXT);
1390 wr32(E1000_CTRL_EXT,
1391 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1392}
1393
9d5c8243
AK
1394/**
1395 * igb_get_hw_control - get control of the h/w from f/w
1396 * @adapter: address of board private structure
1397 *
1398 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1399 * For ASF and Pass Through versions of f/w this means that
1400 * the driver is loaded.
1401 *
1402 **/
1403static void igb_get_hw_control(struct igb_adapter *adapter)
1404{
1405 struct e1000_hw *hw = &adapter->hw;
1406 u32 ctrl_ext;
1407
1408 /* Let firmware know the driver has taken over */
1409 ctrl_ext = rd32(E1000_CTRL_EXT);
1410 wr32(E1000_CTRL_EXT,
1411 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1412}
1413
9d5c8243
AK
1414/**
1415 * igb_configure - configure the hardware for RX and TX
1416 * @adapter: private board structure
1417 **/
1418static void igb_configure(struct igb_adapter *adapter)
1419{
1420 struct net_device *netdev = adapter->netdev;
1421 int i;
1422
1423 igb_get_hw_control(adapter);
ff41f8dc 1424 igb_set_rx_mode(netdev);
9d5c8243
AK
1425
1426 igb_restore_vlan(adapter);
9d5c8243 1427
85b430b4 1428 igb_setup_tctl(adapter);
06cf2666 1429 igb_setup_mrqc(adapter);
9d5c8243 1430 igb_setup_rctl(adapter);
85b430b4
AD
1431
1432 igb_configure_tx(adapter);
9d5c8243 1433 igb_configure_rx(adapter);
662d7205
AD
1434
1435 igb_rx_fifo_flush_82575(&adapter->hw);
1436
c493ea45 1437 /* call igb_desc_unused which always leaves
9d5c8243
AK
1438 * at least 1 descriptor unused to make sure
1439 * next_to_use != next_to_clean */
1440 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1441 struct igb_ring *ring = adapter->rx_ring[i];
c493ea45 1442 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
9d5c8243 1443 }
9d5c8243
AK
1444}
1445
88a268c1
NN
1446/**
1447 * igb_power_up_link - Power up the phy/serdes link
1448 * @adapter: address of board private structure
1449 **/
1450void igb_power_up_link(struct igb_adapter *adapter)
1451{
1452 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1453 igb_power_up_phy_copper(&adapter->hw);
1454 else
1455 igb_power_up_serdes_link_82575(&adapter->hw);
1456}
1457
1458/**
1459 * igb_power_down_link - Power down the phy/serdes link
1460 * @adapter: address of board private structure
1461 */
1462static void igb_power_down_link(struct igb_adapter *adapter)
1463{
1464 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1465 igb_power_down_phy_copper_82575(&adapter->hw);
1466 else
1467 igb_shutdown_serdes_link_82575(&adapter->hw);
1468}
9d5c8243
AK
1469
1470/**
1471 * igb_up - Open the interface and prepare it to handle traffic
1472 * @adapter: board private structure
1473 **/
9d5c8243
AK
1474int igb_up(struct igb_adapter *adapter)
1475{
1476 struct e1000_hw *hw = &adapter->hw;
1477 int i;
1478
1479 /* hardware has been reset, we need to reload some things */
1480 igb_configure(adapter);
1481
1482 clear_bit(__IGB_DOWN, &adapter->state);
1483
047e0030
AD
1484 for (i = 0; i < adapter->num_q_vectors; i++) {
1485 struct igb_q_vector *q_vector = adapter->q_vector[i];
1486 napi_enable(&q_vector->napi);
1487 }
844290e5 1488 if (adapter->msix_entries)
9d5c8243 1489 igb_configure_msix(adapter);
feeb2721
AD
1490 else
1491 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1492
1493 /* Clear any pending interrupts. */
1494 rd32(E1000_ICR);
1495 igb_irq_enable(adapter);
1496
d4960307
AD
1497 /* notify VFs that reset has been completed */
1498 if (adapter->vfs_allocated_count) {
1499 u32 reg_data = rd32(E1000_CTRL_EXT);
1500 reg_data |= E1000_CTRL_EXT_PFRSTD;
1501 wr32(E1000_CTRL_EXT, reg_data);
1502 }
1503
4cb9be7a
JB
1504 netif_tx_start_all_queues(adapter->netdev);
1505
25568a53
AD
1506 /* start the watchdog. */
1507 hw->mac.get_link_status = 1;
1508 schedule_work(&adapter->watchdog_task);
1509
9d5c8243
AK
1510 return 0;
1511}
1512
1513void igb_down(struct igb_adapter *adapter)
1514{
9d5c8243 1515 struct net_device *netdev = adapter->netdev;
330a6d6a 1516 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1517 u32 tctl, rctl;
1518 int i;
1519
1520 /* signal that we're down so the interrupt handler does not
1521 * reschedule our watchdog timer */
1522 set_bit(__IGB_DOWN, &adapter->state);
1523
1524 /* disable receives in the hardware */
1525 rctl = rd32(E1000_RCTL);
1526 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1527 /* flush and sleep below */
1528
fd2ea0a7 1529 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1530
1531 /* disable transmits in the hardware */
1532 tctl = rd32(E1000_TCTL);
1533 tctl &= ~E1000_TCTL_EN;
1534 wr32(E1000_TCTL, tctl);
1535 /* flush both disables and wait for them to finish */
1536 wrfl();
1537 msleep(10);
1538
047e0030
AD
1539 for (i = 0; i < adapter->num_q_vectors; i++) {
1540 struct igb_q_vector *q_vector = adapter->q_vector[i];
1541 napi_disable(&q_vector->napi);
1542 }
9d5c8243 1543
9d5c8243
AK
1544 igb_irq_disable(adapter);
1545
1546 del_timer_sync(&adapter->watchdog_timer);
1547 del_timer_sync(&adapter->phy_info_timer);
1548
9d5c8243 1549 netif_carrier_off(netdev);
04fe6358
AD
1550
1551 /* record the stats before reset*/
12dcd86b
ED
1552 spin_lock(&adapter->stats64_lock);
1553 igb_update_stats(adapter, &adapter->stats64);
1554 spin_unlock(&adapter->stats64_lock);
04fe6358 1555
9d5c8243
AK
1556 adapter->link_speed = 0;
1557 adapter->link_duplex = 0;
1558
3023682e
JK
1559 if (!pci_channel_offline(adapter->pdev))
1560 igb_reset(adapter);
9d5c8243
AK
1561 igb_clean_all_tx_rings(adapter);
1562 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1563#ifdef CONFIG_IGB_DCA
1564
1565 /* since we reset the hardware DCA settings were cleared */
1566 igb_setup_dca(adapter);
1567#endif
9d5c8243
AK
1568}
1569
1570void igb_reinit_locked(struct igb_adapter *adapter)
1571{
1572 WARN_ON(in_interrupt());
1573 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1574 msleep(1);
1575 igb_down(adapter);
1576 igb_up(adapter);
1577 clear_bit(__IGB_RESETTING, &adapter->state);
1578}
1579
1580void igb_reset(struct igb_adapter *adapter)
1581{
090b1795 1582 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1583 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1584 struct e1000_mac_info *mac = &hw->mac;
1585 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1586 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1587 u16 hwm;
1588
1589 /* Repartition Pba for greater than 9k mtu
1590 * To take effect CTRL.RST is required.
1591 */
fa4dfae0 1592 switch (mac->type) {
d2ba2ed8 1593 case e1000_i350:
55cac248
AD
1594 case e1000_82580:
1595 pba = rd32(E1000_RXPBS);
1596 pba = igb_rxpbs_adjust_82580(pba);
1597 break;
fa4dfae0 1598 case e1000_82576:
d249be54
AD
1599 pba = rd32(E1000_RXPBS);
1600 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1601 break;
1602 case e1000_82575:
1603 default:
1604 pba = E1000_PBA_34K;
1605 break;
2d064c06 1606 }
9d5c8243 1607
2d064c06
AD
1608 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1609 (mac->type < e1000_82576)) {
9d5c8243
AK
1610 /* adjust PBA for jumbo frames */
1611 wr32(E1000_PBA, pba);
1612
1613 /* To maintain wire speed transmits, the Tx FIFO should be
1614 * large enough to accommodate two full transmit packets,
1615 * rounded up to the next 1KB and expressed in KB. Likewise,
1616 * the Rx FIFO should be large enough to accommodate at least
1617 * one full receive packet and is similarly rounded up and
1618 * expressed in KB. */
1619 pba = rd32(E1000_PBA);
1620 /* upper 16 bits has Tx packet buffer allocation size in KB */
1621 tx_space = pba >> 16;
1622 /* lower 16 bits has Rx packet buffer allocation size in KB */
1623 pba &= 0xffff;
1624 /* the tx fifo also stores 16 bytes of information about the tx
1625 * but don't include ethernet FCS because hardware appends it */
1626 min_tx_space = (adapter->max_frame_size +
85e8d004 1627 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1628 ETH_FCS_LEN) * 2;
1629 min_tx_space = ALIGN(min_tx_space, 1024);
1630 min_tx_space >>= 10;
1631 /* software strips receive CRC, so leave room for it */
1632 min_rx_space = adapter->max_frame_size;
1633 min_rx_space = ALIGN(min_rx_space, 1024);
1634 min_rx_space >>= 10;
1635
1636 /* If current Tx allocation is less than the min Tx FIFO size,
1637 * and the min Tx FIFO size is less than the current Rx FIFO
1638 * allocation, take space away from current Rx allocation */
1639 if (tx_space < min_tx_space &&
1640 ((min_tx_space - tx_space) < pba)) {
1641 pba = pba - (min_tx_space - tx_space);
1642
1643 /* if short on rx space, rx wins and must trump tx
1644 * adjustment */
1645 if (pba < min_rx_space)
1646 pba = min_rx_space;
1647 }
2d064c06 1648 wr32(E1000_PBA, pba);
9d5c8243 1649 }
9d5c8243
AK
1650
1651 /* flow control settings */
1652 /* The high water mark must be low enough to fit one full frame
1653 * (or the size used for early receive) above it in the Rx FIFO.
1654 * Set it to the lower of:
1655 * - 90% of the Rx FIFO size, or
1656 * - the full Rx FIFO size minus one full frame */
1657 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1658 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1659
d405ea3e
AD
1660 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1661 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1662 fc->pause_time = 0xFFFF;
1663 fc->send_xon = 1;
0cce119a 1664 fc->current_mode = fc->requested_mode;
9d5c8243 1665
4ae196df
AD
1666 /* disable receive for all VFs and wait one second */
1667 if (adapter->vfs_allocated_count) {
1668 int i;
1669 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1670 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1671
1672 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1673 igb_ping_all_vfs(adapter);
4ae196df
AD
1674
1675 /* disable transmits and receives */
1676 wr32(E1000_VFRE, 0);
1677 wr32(E1000_VFTE, 0);
1678 }
1679
9d5c8243 1680 /* Allow time for pending master requests to run */
330a6d6a 1681 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1682 wr32(E1000_WUC, 0);
1683
330a6d6a 1684 if (hw->mac.ops.init_hw(hw))
090b1795 1685 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4
CW
1686 if (hw->mac.type > e1000_82580) {
1687 if (adapter->flags & IGB_FLAG_DMAC) {
1688 u32 reg;
1689
1690 /*
1691 * DMA Coalescing high water mark needs to be higher
1692 * than * the * Rx threshold. The Rx threshold is
1693 * currently * pba - 6, so we * should use a high water
1694 * mark of pba * - 4. */
1695 hwm = (pba - 4) << 10;
1696
1697 reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
1698 & E1000_DMACR_DMACTHR_MASK);
1699
1700 /* transition to L0x or L1 if available..*/
1701 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1702
1703 /* watchdog timer= +-1000 usec in 32usec intervals */
1704 reg |= (1000 >> 5);
1705 wr32(E1000_DMACR, reg);
1706
1707 /* no lower threshold to disable coalescing(smart fifb)
1708 * -UTRESH=0*/
1709 wr32(E1000_DMCRTRH, 0);
1710
1711 /* set hwm to PBA - 2 * max frame size */
1712 wr32(E1000_FCRTC, hwm);
1713
1714 /*
1715 * This sets the time to wait before requesting tran-
1716 * sition to * low power state to number of usecs needed
1717 * to receive 1 512 * byte frame at gigabit line rate
1718 */
1719 reg = rd32(E1000_DMCTLX);
1720 reg |= IGB_DMCTLX_DCFLUSH_DIS;
1721
1722 /* Delay 255 usec before entering Lx state. */
1723 reg |= 0xFF;
1724 wr32(E1000_DMCTLX, reg);
1725
1726 /* free space in Tx packet buffer to wake from DMAC */
1727 wr32(E1000_DMCTXTH,
1728 (IGB_MIN_TXPBSIZE -
1729 (IGB_TX_BUF_4096 + adapter->max_frame_size))
1730 >> 6);
1731
1732 /* make low power state decision controlled by DMAC */
1733 reg = rd32(E1000_PCIEMISC);
1734 reg |= E1000_PCIEMISC_LX_DECISION;
1735 wr32(E1000_PCIEMISC, reg);
1736 } /* end if IGB_FLAG_DMAC set */
1737 }
55cac248
AD
1738 if (hw->mac.type == e1000_82580) {
1739 u32 reg = rd32(E1000_PCIEMISC);
1740 wr32(E1000_PCIEMISC,
1741 reg & ~E1000_PCIEMISC_LX_DECISION);
1742 }
88a268c1
NN
1743 if (!netif_running(adapter->netdev))
1744 igb_power_down_link(adapter);
1745
9d5c8243
AK
1746 igb_update_mng_vlan(adapter);
1747
1748 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1749 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1750
330a6d6a 1751 igb_get_phy_info(hw);
9d5c8243
AK
1752}
1753
b2cb09b1
JP
1754static u32 igb_fix_features(struct net_device *netdev, u32 features)
1755{
1756 /*
1757 * Since there is no support for separate rx/tx vlan accel
1758 * enable/disable make sure tx flag is always in same state as rx.
1759 */
1760 if (features & NETIF_F_HW_VLAN_RX)
1761 features |= NETIF_F_HW_VLAN_TX;
1762 else
1763 features &= ~NETIF_F_HW_VLAN_TX;
1764
1765 return features;
1766}
1767
ac52caa3
MM
1768static int igb_set_features(struct net_device *netdev, u32 features)
1769{
1770 struct igb_adapter *adapter = netdev_priv(netdev);
1771 int i;
b2cb09b1 1772 u32 changed = netdev->features ^ features;
ac52caa3
MM
1773
1774 for (i = 0; i < adapter->num_rx_queues; i++) {
1775 if (features & NETIF_F_RXCSUM)
1776 adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM;
1777 else
1778 adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM;
1779 }
1780
b2cb09b1
JP
1781 if (changed & NETIF_F_HW_VLAN_RX)
1782 igb_vlan_mode(netdev, features);
1783
ac52caa3
MM
1784 return 0;
1785}
1786
2e5c6922 1787static const struct net_device_ops igb_netdev_ops = {
559e9c49 1788 .ndo_open = igb_open,
2e5c6922 1789 .ndo_stop = igb_close,
00829823 1790 .ndo_start_xmit = igb_xmit_frame_adv,
12dcd86b 1791 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1792 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1793 .ndo_set_mac_address = igb_set_mac,
1794 .ndo_change_mtu = igb_change_mtu,
1795 .ndo_do_ioctl = igb_ioctl,
1796 .ndo_tx_timeout = igb_tx_timeout,
1797 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1798 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1799 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1800 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1801 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1802 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1803 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1804#ifdef CONFIG_NET_POLL_CONTROLLER
1805 .ndo_poll_controller = igb_netpoll,
1806#endif
b2cb09b1
JP
1807 .ndo_fix_features = igb_fix_features,
1808 .ndo_set_features = igb_set_features,
2e5c6922
SH
1809};
1810
9d5c8243
AK
1811/**
1812 * igb_probe - Device Initialization Routine
1813 * @pdev: PCI device information struct
1814 * @ent: entry in igb_pci_tbl
1815 *
1816 * Returns 0 on success, negative on failure
1817 *
1818 * igb_probe initializes an adapter identified by a pci_dev structure.
1819 * The OS initialization, configuring of the adapter private structure,
1820 * and a hardware reset occur.
1821 **/
1822static int __devinit igb_probe(struct pci_dev *pdev,
1823 const struct pci_device_id *ent)
1824{
1825 struct net_device *netdev;
1826 struct igb_adapter *adapter;
1827 struct e1000_hw *hw;
4337e993 1828 u16 eeprom_data = 0;
9835fd73 1829 s32 ret_val;
4337e993 1830 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1831 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1832 unsigned long mmio_start, mmio_len;
2d6a5e95 1833 int err, pci_using_dac;
9d5c8243 1834 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1835 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1836
bded64a7
AG
1837 /* Catch broken hardware that put the wrong VF device ID in
1838 * the PCIe SR-IOV capability.
1839 */
1840 if (pdev->is_virtfn) {
1841 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1842 pci_name(pdev), pdev->vendor, pdev->device);
1843 return -EINVAL;
1844 }
1845
aed5dec3 1846 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1847 if (err)
1848 return err;
1849
1850 pci_using_dac = 0;
59d71989 1851 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1852 if (!err) {
59d71989 1853 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1854 if (!err)
1855 pci_using_dac = 1;
1856 } else {
59d71989 1857 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1858 if (err) {
59d71989 1859 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1860 if (err) {
1861 dev_err(&pdev->dev, "No usable DMA "
1862 "configuration, aborting\n");
1863 goto err_dma;
1864 }
1865 }
1866 }
1867
aed5dec3
AD
1868 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1869 IORESOURCE_MEM),
1870 igb_driver_name);
9d5c8243
AK
1871 if (err)
1872 goto err_pci_reg;
1873
19d5afd4 1874 pci_enable_pcie_error_reporting(pdev);
40a914fa 1875
9d5c8243 1876 pci_set_master(pdev);
c682fc23 1877 pci_save_state(pdev);
9d5c8243
AK
1878
1879 err = -ENOMEM;
1bfaf07b
AD
1880 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1881 IGB_ABS_MAX_TX_QUEUES);
9d5c8243
AK
1882 if (!netdev)
1883 goto err_alloc_etherdev;
1884
1885 SET_NETDEV_DEV(netdev, &pdev->dev);
1886
1887 pci_set_drvdata(pdev, netdev);
1888 adapter = netdev_priv(netdev);
1889 adapter->netdev = netdev;
1890 adapter->pdev = pdev;
1891 hw = &adapter->hw;
1892 hw->back = adapter;
1893 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1894
1895 mmio_start = pci_resource_start(pdev, 0);
1896 mmio_len = pci_resource_len(pdev, 0);
1897
1898 err = -EIO;
28b0759c
AD
1899 hw->hw_addr = ioremap(mmio_start, mmio_len);
1900 if (!hw->hw_addr)
9d5c8243
AK
1901 goto err_ioremap;
1902
2e5c6922 1903 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1904 igb_set_ethtool_ops(netdev);
9d5c8243 1905 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1906
1907 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1908
1909 netdev->mem_start = mmio_start;
1910 netdev->mem_end = mmio_start + mmio_len;
1911
9d5c8243
AK
1912 /* PCI config space info */
1913 hw->vendor_id = pdev->vendor;
1914 hw->device_id = pdev->device;
1915 hw->revision_id = pdev->revision;
1916 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1917 hw->subsystem_device_id = pdev->subsystem_device;
1918
9d5c8243
AK
1919 /* Copy the default MAC, PHY and NVM function pointers */
1920 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1921 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1922 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1923 /* Initialize skew-specific constants */
1924 err = ei->get_invariants(hw);
1925 if (err)
450c87c8 1926 goto err_sw_init;
9d5c8243 1927
450c87c8 1928 /* setup the private structure */
9d5c8243
AK
1929 err = igb_sw_init(adapter);
1930 if (err)
1931 goto err_sw_init;
1932
1933 igb_get_bus_info_pcie(hw);
1934
1935 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1936
1937 /* Copper options */
1938 if (hw->phy.media_type == e1000_media_type_copper) {
1939 hw->phy.mdix = AUTO_ALL_MODES;
1940 hw->phy.disable_polarity_correction = false;
1941 hw->phy.ms_type = e1000_ms_hw_default;
1942 }
1943
1944 if (igb_check_reset_block(hw))
1945 dev_info(&pdev->dev,
1946 "PHY reset is blocked due to SOL/IDER session.\n");
1947
ac52caa3 1948 netdev->hw_features = NETIF_F_SG |
7d8eb29e 1949 NETIF_F_IP_CSUM |
ac52caa3
MM
1950 NETIF_F_IPV6_CSUM |
1951 NETIF_F_TSO |
1952 NETIF_F_TSO6 |
b2cb09b1
JP
1953 NETIF_F_RXCSUM |
1954 NETIF_F_HW_VLAN_RX;
ac52caa3
MM
1955
1956 netdev->features = netdev->hw_features |
9d5c8243 1957 NETIF_F_HW_VLAN_TX |
9d5c8243
AK
1958 NETIF_F_HW_VLAN_FILTER;
1959
48f29ffc
JK
1960 netdev->vlan_features |= NETIF_F_TSO;
1961 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1962 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1963 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1964 netdev->vlan_features |= NETIF_F_SG;
1965
7b872a55 1966 if (pci_using_dac) {
9d5c8243 1967 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1968 netdev->vlan_features |= NETIF_F_HIGHDMA;
1969 }
9d5c8243 1970
ac52caa3
MM
1971 if (hw->mac.type >= e1000_82576) {
1972 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 1973 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 1974 }
b9473560 1975
01789349
JP
1976 netdev->priv_flags |= IFF_UNICAST_FLT;
1977
330a6d6a 1978 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1979
1980 /* before reading the NVM, reset the controller to put the device in a
1981 * known good starting state */
1982 hw->mac.ops.reset_hw(hw);
1983
1984 /* make sure the NVM is good */
4322e561 1985 if (hw->nvm.ops.validate(hw) < 0) {
9d5c8243
AK
1986 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1987 err = -EIO;
1988 goto err_eeprom;
1989 }
1990
1991 /* copy the MAC address out of the NVM */
1992 if (hw->mac.ops.read_mac_addr(hw))
1993 dev_err(&pdev->dev, "NVM Read Error\n");
1994
1995 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1996 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1997
1998 if (!is_valid_ether_addr(netdev->perm_addr)) {
1999 dev_err(&pdev->dev, "Invalid MAC Address\n");
2000 err = -EIO;
2001 goto err_eeprom;
2002 }
2003
c061b18d 2004 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 2005 (unsigned long) adapter);
c061b18d 2006 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 2007 (unsigned long) adapter);
9d5c8243
AK
2008
2009 INIT_WORK(&adapter->reset_task, igb_reset_task);
2010 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2011
450c87c8 2012 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2013 adapter->fc_autoneg = true;
2014 hw->mac.autoneg = true;
2015 hw->phy.autoneg_advertised = 0x2f;
2016
0cce119a
AD
2017 hw->fc.requested_mode = e1000_fc_default;
2018 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2019
9d5c8243
AK
2020 igb_validate_mdi_setting(hw);
2021
9d5c8243
AK
2022 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2023 * enable the ACPI Magic Packet filter
2024 */
2025
a2cf8b6c 2026 if (hw->bus.func == 0)
312c75ae 2027 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6d337dce 2028 else if (hw->mac.type >= e1000_82580)
55cac248
AD
2029 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2030 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2031 &eeprom_data);
a2cf8b6c
AD
2032 else if (hw->bus.func == 1)
2033 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
2034
2035 if (eeprom_data & eeprom_apme_mask)
2036 adapter->eeprom_wol |= E1000_WUFC_MAG;
2037
2038 /* now that we have the eeprom settings, apply the special cases where
2039 * the eeprom may be wrong or the board simply won't support wake on
2040 * lan on a particular port */
2041 switch (pdev->device) {
2042 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2043 adapter->eeprom_wol = 0;
2044 break;
2045 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2046 case E1000_DEV_ID_82576_FIBER:
2047 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2048 /* Wake events only supported on port A for dual fiber
2049 * regardless of eeprom setting */
2050 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2051 adapter->eeprom_wol = 0;
2052 break;
c8ea5ea9 2053 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2054 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2055 /* if quad port adapter, disable WoL on all but port A */
2056 if (global_quad_port_a != 0)
2057 adapter->eeprom_wol = 0;
2058 else
2059 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2060 /* Reset for multiple quad port adapters */
2061 if (++global_quad_port_a == 4)
2062 global_quad_port_a = 0;
2063 break;
9d5c8243
AK
2064 }
2065
2066 /* initialize the wol settings based on the eeprom settings */
2067 adapter->wol = adapter->eeprom_wol;
e1b86d84 2068 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
2069
2070 /* reset the hardware with the new settings */
2071 igb_reset(adapter);
2072
2073 /* let the f/w know that the h/w is now under the control of the
2074 * driver. */
2075 igb_get_hw_control(adapter);
2076
9d5c8243
AK
2077 strcpy(netdev->name, "eth%d");
2078 err = register_netdev(netdev);
2079 if (err)
2080 goto err_register;
2081
b2cb09b1
JP
2082 igb_vlan_mode(netdev, netdev->features);
2083
b168dfc5
JB
2084 /* carrier off reporting is important to ethtool even BEFORE open */
2085 netif_carrier_off(netdev);
2086
421e02f0 2087#ifdef CONFIG_IGB_DCA
bbd98fe4 2088 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2089 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2090 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2091 igb_setup_dca(adapter);
2092 }
fe4506b6 2093
38c845c7 2094#endif
673b8b70
AB
2095 /* do hw tstamp init after resetting */
2096 igb_init_hw_timer(adapter);
2097
9d5c8243
AK
2098 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2099 /* print bus type/speed/width info */
7c510e4b 2100 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2101 netdev->name,
559e9c49 2102 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2103 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2104 "unknown"),
59c3de89
AD
2105 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2106 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2107 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2108 "unknown"),
7c510e4b 2109 netdev->dev_addr);
9d5c8243 2110
9835fd73
CW
2111 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2112 if (ret_val)
2113 strcpy(part_str, "Unknown");
2114 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2115 dev_info(&pdev->dev,
2116 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2117 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2118 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2119 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2120 switch (hw->mac.type) {
2121 case e1000_i350:
2122 igb_set_eee_i350(hw);
2123 break;
2124 default:
2125 break;
2126 }
9d5c8243
AK
2127 return 0;
2128
2129err_register:
2130 igb_release_hw_control(adapter);
2131err_eeprom:
2132 if (!igb_check_reset_block(hw))
f5f4cf08 2133 igb_reset_phy(hw);
9d5c8243
AK
2134
2135 if (hw->flash_address)
2136 iounmap(hw->flash_address);
9d5c8243 2137err_sw_init:
047e0030 2138 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2139 iounmap(hw->hw_addr);
2140err_ioremap:
2141 free_netdev(netdev);
2142err_alloc_etherdev:
559e9c49
AD
2143 pci_release_selected_regions(pdev,
2144 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2145err_pci_reg:
2146err_dma:
2147 pci_disable_device(pdev);
2148 return err;
2149}
2150
2151/**
2152 * igb_remove - Device Removal Routine
2153 * @pdev: PCI device information struct
2154 *
2155 * igb_remove is called by the PCI subsystem to alert the driver
2156 * that it should release a PCI device. The could be caused by a
2157 * Hot-Plug event, or because the driver is going to be removed from
2158 * memory.
2159 **/
2160static void __devexit igb_remove(struct pci_dev *pdev)
2161{
2162 struct net_device *netdev = pci_get_drvdata(pdev);
2163 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2164 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2165
760141a5
TH
2166 /*
2167 * The watchdog timer may be rescheduled, so explicitly
2168 * disable watchdog from being rescheduled.
2169 */
9d5c8243
AK
2170 set_bit(__IGB_DOWN, &adapter->state);
2171 del_timer_sync(&adapter->watchdog_timer);
2172 del_timer_sync(&adapter->phy_info_timer);
2173
760141a5
TH
2174 cancel_work_sync(&adapter->reset_task);
2175 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2176
421e02f0 2177#ifdef CONFIG_IGB_DCA
7dfc16fa 2178 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2179 dev_info(&pdev->dev, "DCA disabled\n");
2180 dca_remove_requester(&pdev->dev);
7dfc16fa 2181 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2182 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2183 }
2184#endif
2185
9d5c8243
AK
2186 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2187 * would have already happened in close and is redundant. */
2188 igb_release_hw_control(adapter);
2189
2190 unregister_netdev(netdev);
2191
047e0030 2192 igb_clear_interrupt_scheme(adapter);
9d5c8243 2193
37680117
AD
2194#ifdef CONFIG_PCI_IOV
2195 /* reclaim resources allocated to VFs */
2196 if (adapter->vf_data) {
2197 /* disable iov and allow time for transactions to clear */
2198 pci_disable_sriov(pdev);
2199 msleep(500);
2200
2201 kfree(adapter->vf_data);
2202 adapter->vf_data = NULL;
2203 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 2204 wrfl();
37680117
AD
2205 msleep(100);
2206 dev_info(&pdev->dev, "IOV Disabled\n");
2207 }
2208#endif
559e9c49 2209
28b0759c
AD
2210 iounmap(hw->hw_addr);
2211 if (hw->flash_address)
2212 iounmap(hw->flash_address);
559e9c49
AD
2213 pci_release_selected_regions(pdev,
2214 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2215
2216 free_netdev(netdev);
2217
19d5afd4 2218 pci_disable_pcie_error_reporting(pdev);
40a914fa 2219
9d5c8243
AK
2220 pci_disable_device(pdev);
2221}
2222
a6b623e0
AD
2223/**
2224 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2225 * @adapter: board private structure to initialize
2226 *
2227 * This function initializes the vf specific data storage and then attempts to
2228 * allocate the VFs. The reason for ordering it this way is because it is much
2229 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2230 * the memory for the VFs.
2231 **/
2232static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2233{
2234#ifdef CONFIG_PCI_IOV
2235 struct pci_dev *pdev = adapter->pdev;
2236
a6b623e0
AD
2237 if (adapter->vfs_allocated_count) {
2238 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2239 sizeof(struct vf_data_storage),
2240 GFP_KERNEL);
2241 /* if allocation failed then we do not support SR-IOV */
2242 if (!adapter->vf_data) {
2243 adapter->vfs_allocated_count = 0;
2244 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2245 "Data Storage\n");
2246 }
2247 }
2248
2249 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2250 kfree(adapter->vf_data);
2251 adapter->vf_data = NULL;
2252#endif /* CONFIG_PCI_IOV */
2253 adapter->vfs_allocated_count = 0;
2254#ifdef CONFIG_PCI_IOV
2255 } else {
2256 unsigned char mac_addr[ETH_ALEN];
2257 int i;
2258 dev_info(&pdev->dev, "%d vfs allocated\n",
2259 adapter->vfs_allocated_count);
2260 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2261 random_ether_addr(mac_addr);
2262 igb_set_vf_mac(adapter, i, mac_addr);
2263 }
831ec0b4
CW
2264 /* DMA Coalescing is not supported in IOV mode. */
2265 if (adapter->flags & IGB_FLAG_DMAC)
2266 adapter->flags &= ~IGB_FLAG_DMAC;
a6b623e0
AD
2267 }
2268#endif /* CONFIG_PCI_IOV */
2269}
2270
115f459a
AD
2271
2272/**
2273 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2274 * @adapter: board private structure to initialize
2275 *
2276 * igb_init_hw_timer initializes the function pointer and values for the hw
2277 * timer found in hardware.
2278 **/
2279static void igb_init_hw_timer(struct igb_adapter *adapter)
2280{
2281 struct e1000_hw *hw = &adapter->hw;
2282
2283 switch (hw->mac.type) {
d2ba2ed8 2284 case e1000_i350:
55cac248
AD
2285 case e1000_82580:
2286 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2287 adapter->cycles.read = igb_read_clock;
2288 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2289 adapter->cycles.mult = 1;
2290 /*
2291 * The 82580 timesync updates the system timer every 8ns by 8ns
2292 * and the value cannot be shifted. Instead we need to shift
2293 * the registers to generate a 64bit timer value. As a result
2294 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2295 * 24 in order to generate a larger value for synchronization.
2296 */
2297 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2298 /* disable system timer temporarily by setting bit 31 */
2299 wr32(E1000_TSAUXC, 0x80000000);
2300 wrfl();
2301
2302 /* Set registers so that rollover occurs soon to test this. */
2303 wr32(E1000_SYSTIMR, 0x00000000);
2304 wr32(E1000_SYSTIML, 0x80000000);
2305 wr32(E1000_SYSTIMH, 0x000000FF);
2306 wrfl();
2307
2308 /* enable system timer by clearing bit 31 */
2309 wr32(E1000_TSAUXC, 0x0);
2310 wrfl();
2311
2312 timecounter_init(&adapter->clock,
2313 &adapter->cycles,
2314 ktime_to_ns(ktime_get_real()));
2315 /*
2316 * Synchronize our NIC clock against system wall clock. NIC
2317 * time stamp reading requires ~3us per sample, each sample
2318 * was pretty stable even under load => only require 10
2319 * samples for each offset comparison.
2320 */
2321 memset(&adapter->compare, 0, sizeof(adapter->compare));
2322 adapter->compare.source = &adapter->clock;
2323 adapter->compare.target = ktime_get_real;
2324 adapter->compare.num_samples = 10;
2325 timecompare_update(&adapter->compare, 0);
2326 break;
115f459a
AD
2327 case e1000_82576:
2328 /*
2329 * Initialize hardware timer: we keep it running just in case
2330 * that some program needs it later on.
2331 */
2332 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2333 adapter->cycles.read = igb_read_clock;
2334 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2335 adapter->cycles.mult = 1;
2336 /**
2337 * Scale the NIC clock cycle by a large factor so that
2338 * relatively small clock corrections can be added or
25985edc 2339 * subtracted at each clock tick. The drawbacks of a large
115f459a
AD
2340 * factor are a) that the clock register overflows more quickly
2341 * (not such a big deal) and b) that the increment per tick has
2342 * to fit into 24 bits. As a result we need to use a shift of
2343 * 19 so we can fit a value of 16 into the TIMINCA register.
2344 */
2345 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2346 wr32(E1000_TIMINCA,
2347 (1 << E1000_TIMINCA_16NS_SHIFT) |
2348 (16 << IGB_82576_TSYNC_SHIFT));
2349
2350 /* Set registers so that rollover occurs soon to test this. */
2351 wr32(E1000_SYSTIML, 0x00000000);
2352 wr32(E1000_SYSTIMH, 0xFF800000);
2353 wrfl();
2354
2355 timecounter_init(&adapter->clock,
2356 &adapter->cycles,
2357 ktime_to_ns(ktime_get_real()));
2358 /*
2359 * Synchronize our NIC clock against system wall clock. NIC
2360 * time stamp reading requires ~3us per sample, each sample
2361 * was pretty stable even under load => only require 10
2362 * samples for each offset comparison.
2363 */
2364 memset(&adapter->compare, 0, sizeof(adapter->compare));
2365 adapter->compare.source = &adapter->clock;
2366 adapter->compare.target = ktime_get_real;
2367 adapter->compare.num_samples = 10;
2368 timecompare_update(&adapter->compare, 0);
2369 break;
2370 case e1000_82575:
2371 /* 82575 does not support timesync */
2372 default:
2373 break;
2374 }
2375
2376}
2377
9d5c8243
AK
2378/**
2379 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2380 * @adapter: board private structure to initialize
2381 *
2382 * igb_sw_init initializes the Adapter private data structure.
2383 * Fields are initialized based on PCI device information and
2384 * OS network device settings (MTU size).
2385 **/
2386static int __devinit igb_sw_init(struct igb_adapter *adapter)
2387{
2388 struct e1000_hw *hw = &adapter->hw;
2389 struct net_device *netdev = adapter->netdev;
2390 struct pci_dev *pdev = adapter->pdev;
2391
2392 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2393
68fd9910
AD
2394 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2395 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4fc82adf
AD
2396 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2397 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2398
9d5c8243
AK
2399 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2400 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2401
12dcd86b 2402 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2403#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2404 switch (hw->mac.type) {
2405 case e1000_82576:
2406 case e1000_i350:
9b082d73
SA
2407 if (max_vfs > 7) {
2408 dev_warn(&pdev->dev,
2409 "Maximum of 7 VFs per PF, using max\n");
2410 adapter->vfs_allocated_count = 7;
2411 } else
2412 adapter->vfs_allocated_count = max_vfs;
6b78bb1d
CW
2413 break;
2414 default:
2415 break;
2416 }
a6b623e0 2417#endif /* CONFIG_PCI_IOV */
a99955fc 2418 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
665c8c8e
WM
2419 /* i350 cannot do RSS and SR-IOV at the same time */
2420 if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
2421 adapter->rss_queues = 1;
a99955fc
AD
2422
2423 /*
2424 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2425 * then we should combine the queues into a queue pair in order to
2426 * conserve interrupts due to limited supply
2427 */
2428 if ((adapter->rss_queues > 4) ||
2429 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2430 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2431
a6b623e0 2432 /* This call may decrease the number of queues */
047e0030 2433 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2434 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2435 return -ENOMEM;
2436 }
2437
a6b623e0
AD
2438 igb_probe_vfs(adapter);
2439
9d5c8243
AK
2440 /* Explicitly disable IRQ since the NIC can be in any state. */
2441 igb_irq_disable(adapter);
2442
831ec0b4
CW
2443 if (hw->mac.type == e1000_i350)
2444 adapter->flags &= ~IGB_FLAG_DMAC;
2445
9d5c8243
AK
2446 set_bit(__IGB_DOWN, &adapter->state);
2447 return 0;
2448}
2449
2450/**
2451 * igb_open - Called when a network interface is made active
2452 * @netdev: network interface device structure
2453 *
2454 * Returns 0 on success, negative value on failure
2455 *
2456 * The open entry point is called when a network interface is made
2457 * active by the system (IFF_UP). At this point all resources needed
2458 * for transmit and receive operations are allocated, the interrupt
2459 * handler is registered with the OS, the watchdog timer is started,
2460 * and the stack is notified that the interface is ready.
2461 **/
2462static int igb_open(struct net_device *netdev)
2463{
2464 struct igb_adapter *adapter = netdev_priv(netdev);
2465 struct e1000_hw *hw = &adapter->hw;
2466 int err;
2467 int i;
2468
2469 /* disallow open during test */
2470 if (test_bit(__IGB_TESTING, &adapter->state))
2471 return -EBUSY;
2472
b168dfc5
JB
2473 netif_carrier_off(netdev);
2474
9d5c8243
AK
2475 /* allocate transmit descriptors */
2476 err = igb_setup_all_tx_resources(adapter);
2477 if (err)
2478 goto err_setup_tx;
2479
2480 /* allocate receive descriptors */
2481 err = igb_setup_all_rx_resources(adapter);
2482 if (err)
2483 goto err_setup_rx;
2484
88a268c1 2485 igb_power_up_link(adapter);
9d5c8243 2486
9d5c8243
AK
2487 /* before we allocate an interrupt, we must be ready to handle it.
2488 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2489 * as soon as we call pci_request_irq, so we have to setup our
2490 * clean_rx handler before we do so. */
2491 igb_configure(adapter);
2492
2493 err = igb_request_irq(adapter);
2494 if (err)
2495 goto err_req_irq;
2496
2497 /* From here on the code is the same as igb_up() */
2498 clear_bit(__IGB_DOWN, &adapter->state);
2499
047e0030
AD
2500 for (i = 0; i < adapter->num_q_vectors; i++) {
2501 struct igb_q_vector *q_vector = adapter->q_vector[i];
2502 napi_enable(&q_vector->napi);
2503 }
9d5c8243
AK
2504
2505 /* Clear any pending interrupts. */
2506 rd32(E1000_ICR);
844290e5
PW
2507
2508 igb_irq_enable(adapter);
2509
d4960307
AD
2510 /* notify VFs that reset has been completed */
2511 if (adapter->vfs_allocated_count) {
2512 u32 reg_data = rd32(E1000_CTRL_EXT);
2513 reg_data |= E1000_CTRL_EXT_PFRSTD;
2514 wr32(E1000_CTRL_EXT, reg_data);
2515 }
2516
d55b53ff
JK
2517 netif_tx_start_all_queues(netdev);
2518
25568a53
AD
2519 /* start the watchdog. */
2520 hw->mac.get_link_status = 1;
2521 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2522
2523 return 0;
2524
2525err_req_irq:
2526 igb_release_hw_control(adapter);
88a268c1 2527 igb_power_down_link(adapter);
9d5c8243
AK
2528 igb_free_all_rx_resources(adapter);
2529err_setup_rx:
2530 igb_free_all_tx_resources(adapter);
2531err_setup_tx:
2532 igb_reset(adapter);
2533
2534 return err;
2535}
2536
2537/**
2538 * igb_close - Disables a network interface
2539 * @netdev: network interface device structure
2540 *
2541 * Returns 0, this is not allowed to fail
2542 *
2543 * The close entry point is called when an interface is de-activated
2544 * by the OS. The hardware is still under the driver's control, but
2545 * needs to be disabled. A global MAC reset is issued to stop the
2546 * hardware, and all transmit and receive resources are freed.
2547 **/
2548static int igb_close(struct net_device *netdev)
2549{
2550 struct igb_adapter *adapter = netdev_priv(netdev);
2551
2552 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2553 igb_down(adapter);
2554
2555 igb_free_irq(adapter);
2556
2557 igb_free_all_tx_resources(adapter);
2558 igb_free_all_rx_resources(adapter);
2559
9d5c8243
AK
2560 return 0;
2561}
2562
2563/**
2564 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2565 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2566 *
2567 * Return 0 on success, negative on failure
2568 **/
80785298 2569int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2570{
59d71989 2571 struct device *dev = tx_ring->dev;
9d5c8243
AK
2572 int size;
2573
2574 size = sizeof(struct igb_buffer) * tx_ring->count;
89bf67f1 2575 tx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2576 if (!tx_ring->buffer_info)
2577 goto err;
9d5c8243
AK
2578
2579 /* round up to nearest 4K */
85e8d004 2580 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2581 tx_ring->size = ALIGN(tx_ring->size, 4096);
2582
59d71989
AD
2583 tx_ring->desc = dma_alloc_coherent(dev,
2584 tx_ring->size,
2585 &tx_ring->dma,
2586 GFP_KERNEL);
9d5c8243
AK
2587
2588 if (!tx_ring->desc)
2589 goto err;
2590
9d5c8243
AK
2591 tx_ring->next_to_use = 0;
2592 tx_ring->next_to_clean = 0;
9d5c8243
AK
2593 return 0;
2594
2595err:
2596 vfree(tx_ring->buffer_info);
59d71989 2597 dev_err(dev,
9d5c8243
AK
2598 "Unable to allocate memory for the transmit descriptor ring\n");
2599 return -ENOMEM;
2600}
2601
2602/**
2603 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2604 * (Descriptors) for all queues
2605 * @adapter: board private structure
2606 *
2607 * Return 0 on success, negative on failure
2608 **/
2609static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2610{
439705e1 2611 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2612 int i, err = 0;
2613
2614 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2615 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2616 if (err) {
439705e1 2617 dev_err(&pdev->dev,
9d5c8243
AK
2618 "Allocation for Tx Queue %u failed\n", i);
2619 for (i--; i >= 0; i--)
3025a446 2620 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2621 break;
2622 }
2623 }
2624
a99955fc 2625 for (i = 0; i < IGB_ABS_MAX_TX_QUEUES; i++) {
439705e1 2626 int r_idx = i % adapter->num_tx_queues;
3025a446 2627 adapter->multi_tx_table[i] = adapter->tx_ring[r_idx];
eebbbdba 2628 }
9d5c8243
AK
2629 return err;
2630}
2631
2632/**
85b430b4
AD
2633 * igb_setup_tctl - configure the transmit control registers
2634 * @adapter: Board private structure
9d5c8243 2635 **/
d7ee5b3a 2636void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2637{
9d5c8243
AK
2638 struct e1000_hw *hw = &adapter->hw;
2639 u32 tctl;
9d5c8243 2640
85b430b4
AD
2641 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2642 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2643
2644 /* Program the Transmit Control Register */
9d5c8243
AK
2645 tctl = rd32(E1000_TCTL);
2646 tctl &= ~E1000_TCTL_CT;
2647 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2648 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2649
2650 igb_config_collision_dist(hw);
2651
9d5c8243
AK
2652 /* Enable transmits */
2653 tctl |= E1000_TCTL_EN;
2654
2655 wr32(E1000_TCTL, tctl);
2656}
2657
85b430b4
AD
2658/**
2659 * igb_configure_tx_ring - Configure transmit ring after Reset
2660 * @adapter: board private structure
2661 * @ring: tx ring to configure
2662 *
2663 * Configure a transmit ring after a reset.
2664 **/
d7ee5b3a
AD
2665void igb_configure_tx_ring(struct igb_adapter *adapter,
2666 struct igb_ring *ring)
85b430b4
AD
2667{
2668 struct e1000_hw *hw = &adapter->hw;
a74420e0 2669 u32 txdctl = 0;
85b430b4
AD
2670 u64 tdba = ring->dma;
2671 int reg_idx = ring->reg_idx;
2672
2673 /* disable the queue */
a74420e0 2674 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2675 wrfl();
2676 mdelay(10);
2677
2678 wr32(E1000_TDLEN(reg_idx),
2679 ring->count * sizeof(union e1000_adv_tx_desc));
2680 wr32(E1000_TDBAL(reg_idx),
2681 tdba & 0x00000000ffffffffULL);
2682 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2683
fce99e34
AD
2684 ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2685 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 2686 wr32(E1000_TDH(reg_idx), 0);
fce99e34 2687 writel(0, ring->tail);
85b430b4
AD
2688
2689 txdctl |= IGB_TX_PTHRESH;
2690 txdctl |= IGB_TX_HTHRESH << 8;
2691 txdctl |= IGB_TX_WTHRESH << 16;
2692
2693 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2694 wr32(E1000_TXDCTL(reg_idx), txdctl);
2695}
2696
2697/**
2698 * igb_configure_tx - Configure transmit Unit after Reset
2699 * @adapter: board private structure
2700 *
2701 * Configure the Tx unit of the MAC after a reset.
2702 **/
2703static void igb_configure_tx(struct igb_adapter *adapter)
2704{
2705 int i;
2706
2707 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2708 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2709}
2710
9d5c8243
AK
2711/**
2712 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2713 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2714 *
2715 * Returns 0 on success, negative on failure
2716 **/
80785298 2717int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2718{
59d71989 2719 struct device *dev = rx_ring->dev;
9d5c8243
AK
2720 int size, desc_len;
2721
2722 size = sizeof(struct igb_buffer) * rx_ring->count;
89bf67f1 2723 rx_ring->buffer_info = vzalloc(size);
9d5c8243
AK
2724 if (!rx_ring->buffer_info)
2725 goto err;
9d5c8243
AK
2726
2727 desc_len = sizeof(union e1000_adv_rx_desc);
2728
2729 /* Round up to nearest 4K */
2730 rx_ring->size = rx_ring->count * desc_len;
2731 rx_ring->size = ALIGN(rx_ring->size, 4096);
2732
59d71989
AD
2733 rx_ring->desc = dma_alloc_coherent(dev,
2734 rx_ring->size,
2735 &rx_ring->dma,
2736 GFP_KERNEL);
9d5c8243
AK
2737
2738 if (!rx_ring->desc)
2739 goto err;
2740
2741 rx_ring->next_to_clean = 0;
2742 rx_ring->next_to_use = 0;
9d5c8243 2743
9d5c8243
AK
2744 return 0;
2745
2746err:
2747 vfree(rx_ring->buffer_info);
439705e1 2748 rx_ring->buffer_info = NULL;
59d71989
AD
2749 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2750 " ring\n");
9d5c8243
AK
2751 return -ENOMEM;
2752}
2753
2754/**
2755 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2756 * (Descriptors) for all queues
2757 * @adapter: board private structure
2758 *
2759 * Return 0 on success, negative on failure
2760 **/
2761static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2762{
439705e1 2763 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2764 int i, err = 0;
2765
2766 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2767 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2768 if (err) {
439705e1 2769 dev_err(&pdev->dev,
9d5c8243
AK
2770 "Allocation for Rx Queue %u failed\n", i);
2771 for (i--; i >= 0; i--)
3025a446 2772 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2773 break;
2774 }
2775 }
2776
2777 return err;
2778}
2779
06cf2666
AD
2780/**
2781 * igb_setup_mrqc - configure the multiple receive queue control registers
2782 * @adapter: Board private structure
2783 **/
2784static void igb_setup_mrqc(struct igb_adapter *adapter)
2785{
2786 struct e1000_hw *hw = &adapter->hw;
2787 u32 mrqc, rxcsum;
2788 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2789 union e1000_reta {
2790 u32 dword;
2791 u8 bytes[4];
2792 } reta;
2793 static const u8 rsshash[40] = {
2794 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2795 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2796 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2797 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2798
2799 /* Fill out hash function seeds */
2800 for (j = 0; j < 10; j++) {
2801 u32 rsskey = rsshash[(j * 4)];
2802 rsskey |= rsshash[(j * 4) + 1] << 8;
2803 rsskey |= rsshash[(j * 4) + 2] << 16;
2804 rsskey |= rsshash[(j * 4) + 3] << 24;
2805 array_wr32(E1000_RSSRK(0), j, rsskey);
2806 }
2807
a99955fc 2808 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2809
2810 if (adapter->vfs_allocated_count) {
2811 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2812 switch (hw->mac.type) {
d2ba2ed8 2813 case e1000_i350:
55cac248
AD
2814 case e1000_82580:
2815 num_rx_queues = 1;
2816 shift = 0;
2817 break;
06cf2666
AD
2818 case e1000_82576:
2819 shift = 3;
2820 num_rx_queues = 2;
2821 break;
2822 case e1000_82575:
2823 shift = 2;
2824 shift2 = 6;
2825 default:
2826 break;
2827 }
2828 } else {
2829 if (hw->mac.type == e1000_82575)
2830 shift = 6;
2831 }
2832
2833 for (j = 0; j < (32 * 4); j++) {
2834 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2835 if (shift2)
2836 reta.bytes[j & 3] |= num_rx_queues << shift2;
2837 if ((j & 3) == 3)
2838 wr32(E1000_RETA(j >> 2), reta.dword);
2839 }
2840
2841 /*
2842 * Disable raw packet checksumming so that RSS hash is placed in
2843 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2844 * offloads as they are enabled by default
2845 */
2846 rxcsum = rd32(E1000_RXCSUM);
2847 rxcsum |= E1000_RXCSUM_PCSD;
2848
2849 if (adapter->hw.mac.type >= e1000_82576)
2850 /* Enable Receive Checksum Offload for SCTP */
2851 rxcsum |= E1000_RXCSUM_CRCOFL;
2852
2853 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2854 wr32(E1000_RXCSUM, rxcsum);
2855
2856 /* If VMDq is enabled then we set the appropriate mode for that, else
2857 * we default to RSS so that an RSS hash is calculated per packet even
2858 * if we are only using one queue */
2859 if (adapter->vfs_allocated_count) {
2860 if (hw->mac.type > e1000_82575) {
2861 /* Set the default pool for the PF's first queue */
2862 u32 vtctl = rd32(E1000_VT_CTL);
2863 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2864 E1000_VT_CTL_DISABLE_DEF_POOL);
2865 vtctl |= adapter->vfs_allocated_count <<
2866 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2867 wr32(E1000_VT_CTL, vtctl);
2868 }
a99955fc 2869 if (adapter->rss_queues > 1)
06cf2666
AD
2870 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2871 else
2872 mrqc = E1000_MRQC_ENABLE_VMDQ;
2873 } else {
2874 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2875 }
2876 igb_vmm_control(adapter);
2877
4478a9cd
AD
2878 /*
2879 * Generate RSS hash based on TCP port numbers and/or
2880 * IPv4/v6 src and dst addresses since UDP cannot be
2881 * hashed reliably due to IP fragmentation
2882 */
2883 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2884 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2885 E1000_MRQC_RSS_FIELD_IPV6 |
2886 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2887 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2888
2889 wr32(E1000_MRQC, mrqc);
2890}
2891
9d5c8243
AK
2892/**
2893 * igb_setup_rctl - configure the receive control registers
2894 * @adapter: Board private structure
2895 **/
d7ee5b3a 2896void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2897{
2898 struct e1000_hw *hw = &adapter->hw;
2899 u32 rctl;
9d5c8243
AK
2900
2901 rctl = rd32(E1000_RCTL);
2902
2903 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2904 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2905
69d728ba 2906 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2907 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2908
87cb7e8c
AK
2909 /*
2910 * enable stripping of CRC. It's unlikely this will break BMC
2911 * redirection as it did with e1000. Newer features require
2912 * that the HW strips the CRC.
73cd78f1 2913 */
87cb7e8c 2914 rctl |= E1000_RCTL_SECRC;
9d5c8243 2915
559e9c49 2916 /* disable store bad packets and clear size bits. */
ec54d7d6 2917 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2918
6ec43fe6
AD
2919 /* enable LPE to prevent packets larger than max_frame_size */
2920 rctl |= E1000_RCTL_LPE;
9d5c8243 2921
952f72a8
AD
2922 /* disable queue 0 to prevent tail write w/o re-config */
2923 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2924
e1739522
AD
2925 /* Attention!!! For SR-IOV PF driver operations you must enable
2926 * queue drop for all VF and PF queues to prevent head of line blocking
2927 * if an un-trusted VF does not provide descriptors to hardware.
2928 */
2929 if (adapter->vfs_allocated_count) {
e1739522
AD
2930 /* set all queue drop enable bits */
2931 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2932 }
2933
9d5c8243
AK
2934 wr32(E1000_RCTL, rctl);
2935}
2936
7d5753f0
AD
2937static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2938 int vfn)
2939{
2940 struct e1000_hw *hw = &adapter->hw;
2941 u32 vmolr;
2942
2943 /* if it isn't the PF check to see if VFs are enabled and
2944 * increase the size to support vlan tags */
2945 if (vfn < adapter->vfs_allocated_count &&
2946 adapter->vf_data[vfn].vlans_enabled)
2947 size += VLAN_TAG_SIZE;
2948
2949 vmolr = rd32(E1000_VMOLR(vfn));
2950 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2951 vmolr |= size | E1000_VMOLR_LPE;
2952 wr32(E1000_VMOLR(vfn), vmolr);
2953
2954 return 0;
2955}
2956
e1739522
AD
2957/**
2958 * igb_rlpml_set - set maximum receive packet size
2959 * @adapter: board private structure
2960 *
2961 * Configure maximum receivable packet size.
2962 **/
2963static void igb_rlpml_set(struct igb_adapter *adapter)
2964{
b2cb09b1 2965 u32 max_frame_size;
e1739522
AD
2966 struct e1000_hw *hw = &adapter->hw;
2967 u16 pf_id = adapter->vfs_allocated_count;
2968
b2cb09b1 2969 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
e1739522
AD
2970
2971 /* if vfs are enabled we set RLPML to the largest possible request
2972 * size and set the VMOLR RLPML to the size we need */
2973 if (pf_id) {
2974 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
7d5753f0 2975 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2976 }
2977
2978 wr32(E1000_RLPML, max_frame_size);
2979}
2980
8151d294
WM
2981static inline void igb_set_vmolr(struct igb_adapter *adapter,
2982 int vfn, bool aupe)
7d5753f0
AD
2983{
2984 struct e1000_hw *hw = &adapter->hw;
2985 u32 vmolr;
2986
2987 /*
2988 * This register exists only on 82576 and newer so if we are older then
2989 * we should exit and do nothing
2990 */
2991 if (hw->mac.type < e1000_82576)
2992 return;
2993
2994 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
2995 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
2996 if (aupe)
2997 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
2998 else
2999 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3000
3001 /* clear all bits that might not be set */
3002 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3003
a99955fc 3004 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
3005 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3006 /*
3007 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3008 * multicast packets
3009 */
3010 if (vfn <= adapter->vfs_allocated_count)
3011 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3012
3013 wr32(E1000_VMOLR(vfn), vmolr);
3014}
3015
85b430b4
AD
3016/**
3017 * igb_configure_rx_ring - Configure a receive ring after Reset
3018 * @adapter: board private structure
3019 * @ring: receive ring to be configured
3020 *
3021 * Configure the Rx unit of the MAC after a reset.
3022 **/
d7ee5b3a
AD
3023void igb_configure_rx_ring(struct igb_adapter *adapter,
3024 struct igb_ring *ring)
85b430b4
AD
3025{
3026 struct e1000_hw *hw = &adapter->hw;
3027 u64 rdba = ring->dma;
3028 int reg_idx = ring->reg_idx;
a74420e0 3029 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3030
3031 /* disable the queue */
a74420e0 3032 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3033
3034 /* Set DMA base address registers */
3035 wr32(E1000_RDBAL(reg_idx),
3036 rdba & 0x00000000ffffffffULL);
3037 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3038 wr32(E1000_RDLEN(reg_idx),
3039 ring->count * sizeof(union e1000_adv_rx_desc));
3040
3041 /* initialize head and tail */
fce99e34
AD
3042 ring->head = hw->hw_addr + E1000_RDH(reg_idx);
3043 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3044 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3045 writel(0, ring->tail);
85b430b4 3046
952f72a8 3047 /* set descriptor configuration */
4c844851
AD
3048 if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
3049 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
952f72a8
AD
3050 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3051#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3052 srrctl |= IGB_RXBUFFER_16384 >>
3053 E1000_SRRCTL_BSIZEPKT_SHIFT;
3054#else
3055 srrctl |= (PAGE_SIZE / 2) >>
3056 E1000_SRRCTL_BSIZEPKT_SHIFT;
3057#endif
3058 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
3059 } else {
4c844851 3060 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
952f72a8
AD
3061 E1000_SRRCTL_BSIZEPKT_SHIFT;
3062 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3063 }
757b77e2
NN
3064 if (hw->mac.type == e1000_82580)
3065 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3066 /* Only set Drop Enable if we are supporting multiple queues */
3067 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3068 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3069
3070 wr32(E1000_SRRCTL(reg_idx), srrctl);
3071
7d5753f0 3072 /* set filtering for VMDQ pools */
8151d294 3073 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3074
85b430b4
AD
3075 rxdctl |= IGB_RX_PTHRESH;
3076 rxdctl |= IGB_RX_HTHRESH << 8;
3077 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3078
3079 /* enable receive descriptor fetching */
3080 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3081 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3082}
3083
9d5c8243
AK
3084/**
3085 * igb_configure_rx - Configure receive Unit after Reset
3086 * @adapter: board private structure
3087 *
3088 * Configure the Rx unit of the MAC after a reset.
3089 **/
3090static void igb_configure_rx(struct igb_adapter *adapter)
3091{
9107584e 3092 int i;
9d5c8243 3093
68d480c4
AD
3094 /* set UTA to appropriate mode */
3095 igb_set_uta(adapter);
3096
26ad9178
AD
3097 /* set the correct pool for the PF default MAC address in entry 0 */
3098 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3099 adapter->vfs_allocated_count);
3100
06cf2666
AD
3101 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3102 * the Base and Length of the Rx Descriptor Ring */
3103 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3104 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3105}
3106
3107/**
3108 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3109 * @tx_ring: Tx descriptor ring for a specific queue
3110 *
3111 * Free all transmit software resources
3112 **/
68fd9910 3113void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3114{
3b644cf6 3115 igb_clean_tx_ring(tx_ring);
9d5c8243
AK
3116
3117 vfree(tx_ring->buffer_info);
3118 tx_ring->buffer_info = NULL;
3119
439705e1
AD
3120 /* if not set, then don't free */
3121 if (!tx_ring->desc)
3122 return;
3123
59d71989
AD
3124 dma_free_coherent(tx_ring->dev, tx_ring->size,
3125 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3126
3127 tx_ring->desc = NULL;
3128}
3129
3130/**
3131 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3132 * @adapter: board private structure
3133 *
3134 * Free all transmit software resources
3135 **/
3136static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3137{
3138 int i;
3139
3140 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3141 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3142}
3143
b1a436c3
AD
3144void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3145 struct igb_buffer *buffer_info)
9d5c8243 3146{
6366ad33
AD
3147 if (buffer_info->dma) {
3148 if (buffer_info->mapped_as_page)
59d71989 3149 dma_unmap_page(tx_ring->dev,
6366ad33
AD
3150 buffer_info->dma,
3151 buffer_info->length,
59d71989 3152 DMA_TO_DEVICE);
6366ad33 3153 else
59d71989 3154 dma_unmap_single(tx_ring->dev,
6366ad33
AD
3155 buffer_info->dma,
3156 buffer_info->length,
59d71989 3157 DMA_TO_DEVICE);
6366ad33
AD
3158 buffer_info->dma = 0;
3159 }
9d5c8243
AK
3160 if (buffer_info->skb) {
3161 dev_kfree_skb_any(buffer_info->skb);
3162 buffer_info->skb = NULL;
3163 }
3164 buffer_info->time_stamp = 0;
6366ad33
AD
3165 buffer_info->length = 0;
3166 buffer_info->next_to_watch = 0;
3167 buffer_info->mapped_as_page = false;
9d5c8243
AK
3168}
3169
3170/**
3171 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3172 * @tx_ring: ring to be cleaned
3173 **/
3b644cf6 3174static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243
AK
3175{
3176 struct igb_buffer *buffer_info;
3177 unsigned long size;
3178 unsigned int i;
3179
3180 if (!tx_ring->buffer_info)
3181 return;
3182 /* Free all the Tx ring sk_buffs */
3183
3184 for (i = 0; i < tx_ring->count; i++) {
3185 buffer_info = &tx_ring->buffer_info[i];
80785298 3186 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3187 }
3188
3189 size = sizeof(struct igb_buffer) * tx_ring->count;
3190 memset(tx_ring->buffer_info, 0, size);
3191
3192 /* Zero out the descriptor ring */
9d5c8243
AK
3193 memset(tx_ring->desc, 0, tx_ring->size);
3194
3195 tx_ring->next_to_use = 0;
3196 tx_ring->next_to_clean = 0;
9d5c8243
AK
3197}
3198
3199/**
3200 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3201 * @adapter: board private structure
3202 **/
3203static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3204{
3205 int i;
3206
3207 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3208 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3209}
3210
3211/**
3212 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3213 * @rx_ring: ring to clean the resources from
3214 *
3215 * Free all receive software resources
3216 **/
68fd9910 3217void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3218{
3b644cf6 3219 igb_clean_rx_ring(rx_ring);
9d5c8243
AK
3220
3221 vfree(rx_ring->buffer_info);
3222 rx_ring->buffer_info = NULL;
3223
439705e1
AD
3224 /* if not set, then don't free */
3225 if (!rx_ring->desc)
3226 return;
3227
59d71989
AD
3228 dma_free_coherent(rx_ring->dev, rx_ring->size,
3229 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3230
3231 rx_ring->desc = NULL;
3232}
3233
3234/**
3235 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3236 * @adapter: board private structure
3237 *
3238 * Free all receive software resources
3239 **/
3240static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3241{
3242 int i;
3243
3244 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3245 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3246}
3247
3248/**
3249 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3250 * @rx_ring: ring to free buffers from
3251 **/
3b644cf6 3252static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243
AK
3253{
3254 struct igb_buffer *buffer_info;
9d5c8243
AK
3255 unsigned long size;
3256 unsigned int i;
3257
3258 if (!rx_ring->buffer_info)
3259 return;
439705e1 3260
9d5c8243
AK
3261 /* Free all the Rx ring sk_buffs */
3262 for (i = 0; i < rx_ring->count; i++) {
3263 buffer_info = &rx_ring->buffer_info[i];
3264 if (buffer_info->dma) {
59d71989 3265 dma_unmap_single(rx_ring->dev,
80785298 3266 buffer_info->dma,
4c844851 3267 rx_ring->rx_buffer_len,
59d71989 3268 DMA_FROM_DEVICE);
9d5c8243
AK
3269 buffer_info->dma = 0;
3270 }
3271
3272 if (buffer_info->skb) {
3273 dev_kfree_skb(buffer_info->skb);
3274 buffer_info->skb = NULL;
3275 }
6ec43fe6 3276 if (buffer_info->page_dma) {
59d71989 3277 dma_unmap_page(rx_ring->dev,
80785298 3278 buffer_info->page_dma,
6ec43fe6 3279 PAGE_SIZE / 2,
59d71989 3280 DMA_FROM_DEVICE);
6ec43fe6
AD
3281 buffer_info->page_dma = 0;
3282 }
9d5c8243 3283 if (buffer_info->page) {
9d5c8243
AK
3284 put_page(buffer_info->page);
3285 buffer_info->page = NULL;
bf36c1a0 3286 buffer_info->page_offset = 0;
9d5c8243
AK
3287 }
3288 }
3289
9d5c8243
AK
3290 size = sizeof(struct igb_buffer) * rx_ring->count;
3291 memset(rx_ring->buffer_info, 0, size);
3292
3293 /* Zero out the descriptor ring */
3294 memset(rx_ring->desc, 0, rx_ring->size);
3295
3296 rx_ring->next_to_clean = 0;
3297 rx_ring->next_to_use = 0;
9d5c8243
AK
3298}
3299
3300/**
3301 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3302 * @adapter: board private structure
3303 **/
3304static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3305{
3306 int i;
3307
3308 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3309 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3310}
3311
3312/**
3313 * igb_set_mac - Change the Ethernet Address of the NIC
3314 * @netdev: network interface device structure
3315 * @p: pointer to an address structure
3316 *
3317 * Returns 0 on success, negative on failure
3318 **/
3319static int igb_set_mac(struct net_device *netdev, void *p)
3320{
3321 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3322 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3323 struct sockaddr *addr = p;
3324
3325 if (!is_valid_ether_addr(addr->sa_data))
3326 return -EADDRNOTAVAIL;
3327
3328 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3329 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3330
26ad9178
AD
3331 /* set the correct pool for the new PF MAC address in entry 0 */
3332 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3333 adapter->vfs_allocated_count);
e1739522 3334
9d5c8243
AK
3335 return 0;
3336}
3337
3338/**
68d480c4 3339 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3340 * @netdev: network interface device structure
3341 *
68d480c4
AD
3342 * Writes multicast address list to the MTA hash table.
3343 * Returns: -ENOMEM on failure
3344 * 0 on no addresses written
3345 * X on writing X addresses to MTA
9d5c8243 3346 **/
68d480c4 3347static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3348{
3349 struct igb_adapter *adapter = netdev_priv(netdev);
3350 struct e1000_hw *hw = &adapter->hw;
22bedad3 3351 struct netdev_hw_addr *ha;
68d480c4 3352 u8 *mta_list;
9d5c8243
AK
3353 int i;
3354
4cd24eaf 3355 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3356 /* nothing to program, so clear mc list */
3357 igb_update_mc_addr_list(hw, NULL, 0);
3358 igb_restore_vf_multicasts(adapter);
3359 return 0;
3360 }
9d5c8243 3361
4cd24eaf 3362 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3363 if (!mta_list)
3364 return -ENOMEM;
ff41f8dc 3365
68d480c4 3366 /* The shared function expects a packed array of only addresses. */
48e2f183 3367 i = 0;
22bedad3
JP
3368 netdev_for_each_mc_addr(ha, netdev)
3369 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3370
68d480c4
AD
3371 igb_update_mc_addr_list(hw, mta_list, i);
3372 kfree(mta_list);
3373
4cd24eaf 3374 return netdev_mc_count(netdev);
68d480c4
AD
3375}
3376
3377/**
3378 * igb_write_uc_addr_list - write unicast addresses to RAR table
3379 * @netdev: network interface device structure
3380 *
3381 * Writes unicast address list to the RAR table.
3382 * Returns: -ENOMEM on failure/insufficient address space
3383 * 0 on no addresses written
3384 * X on writing X addresses to the RAR table
3385 **/
3386static int igb_write_uc_addr_list(struct net_device *netdev)
3387{
3388 struct igb_adapter *adapter = netdev_priv(netdev);
3389 struct e1000_hw *hw = &adapter->hw;
3390 unsigned int vfn = adapter->vfs_allocated_count;
3391 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3392 int count = 0;
3393
3394 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3395 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3396 return -ENOMEM;
9d5c8243 3397
32e7bfc4 3398 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3399 struct netdev_hw_addr *ha;
32e7bfc4
JP
3400
3401 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3402 if (!rar_entries)
3403 break;
26ad9178
AD
3404 igb_rar_set_qsel(adapter, ha->addr,
3405 rar_entries--,
68d480c4
AD
3406 vfn);
3407 count++;
ff41f8dc
AD
3408 }
3409 }
3410 /* write the addresses in reverse order to avoid write combining */
3411 for (; rar_entries > 0 ; rar_entries--) {
3412 wr32(E1000_RAH(rar_entries), 0);
3413 wr32(E1000_RAL(rar_entries), 0);
3414 }
3415 wrfl();
3416
68d480c4
AD
3417 return count;
3418}
3419
3420/**
3421 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3422 * @netdev: network interface device structure
3423 *
3424 * The set_rx_mode entry point is called whenever the unicast or multicast
3425 * address lists or the network interface flags are updated. This routine is
3426 * responsible for configuring the hardware for proper unicast, multicast,
3427 * promiscuous mode, and all-multi behavior.
3428 **/
3429static void igb_set_rx_mode(struct net_device *netdev)
3430{
3431 struct igb_adapter *adapter = netdev_priv(netdev);
3432 struct e1000_hw *hw = &adapter->hw;
3433 unsigned int vfn = adapter->vfs_allocated_count;
3434 u32 rctl, vmolr = 0;
3435 int count;
3436
3437 /* Check for Promiscuous and All Multicast modes */
3438 rctl = rd32(E1000_RCTL);
3439
3440 /* clear the effected bits */
3441 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3442
3443 if (netdev->flags & IFF_PROMISC) {
3444 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3445 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3446 } else {
3447 if (netdev->flags & IFF_ALLMULTI) {
3448 rctl |= E1000_RCTL_MPE;
3449 vmolr |= E1000_VMOLR_MPME;
3450 } else {
3451 /*
3452 * Write addresses to the MTA, if the attempt fails
25985edc 3453 * then we should just turn on promiscuous mode so
68d480c4
AD
3454 * that we can at least receive multicast traffic
3455 */
3456 count = igb_write_mc_addr_list(netdev);
3457 if (count < 0) {
3458 rctl |= E1000_RCTL_MPE;
3459 vmolr |= E1000_VMOLR_MPME;
3460 } else if (count) {
3461 vmolr |= E1000_VMOLR_ROMPE;
3462 }
3463 }
3464 /*
3465 * Write addresses to available RAR registers, if there is not
3466 * sufficient space to store all the addresses then enable
25985edc 3467 * unicast promiscuous mode
68d480c4
AD
3468 */
3469 count = igb_write_uc_addr_list(netdev);
3470 if (count < 0) {
3471 rctl |= E1000_RCTL_UPE;
3472 vmolr |= E1000_VMOLR_ROPE;
3473 }
3474 rctl |= E1000_RCTL_VFE;
28fc06f5 3475 }
68d480c4 3476 wr32(E1000_RCTL, rctl);
28fc06f5 3477
68d480c4
AD
3478 /*
3479 * In order to support SR-IOV and eventually VMDq it is necessary to set
3480 * the VMOLR to enable the appropriate modes. Without this workaround
3481 * we will have issues with VLAN tag stripping not being done for frames
3482 * that are only arriving because we are the default pool
3483 */
3484 if (hw->mac.type < e1000_82576)
28fc06f5 3485 return;
9d5c8243 3486
68d480c4
AD
3487 vmolr |= rd32(E1000_VMOLR(vfn)) &
3488 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3489 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3490 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3491}
3492
13800469
GR
3493static void igb_check_wvbr(struct igb_adapter *adapter)
3494{
3495 struct e1000_hw *hw = &adapter->hw;
3496 u32 wvbr = 0;
3497
3498 switch (hw->mac.type) {
3499 case e1000_82576:
3500 case e1000_i350:
3501 if (!(wvbr = rd32(E1000_WVBR)))
3502 return;
3503 break;
3504 default:
3505 break;
3506 }
3507
3508 adapter->wvbr |= wvbr;
3509}
3510
3511#define IGB_STAGGERED_QUEUE_OFFSET 8
3512
3513static void igb_spoof_check(struct igb_adapter *adapter)
3514{
3515 int j;
3516
3517 if (!adapter->wvbr)
3518 return;
3519
3520 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3521 if (adapter->wvbr & (1 << j) ||
3522 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3523 dev_warn(&adapter->pdev->dev,
3524 "Spoof event(s) detected on VF %d\n", j);
3525 adapter->wvbr &=
3526 ~((1 << j) |
3527 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3528 }
3529 }
3530}
3531
9d5c8243
AK
3532/* Need to wait a few seconds after link up to get diagnostic information from
3533 * the phy */
3534static void igb_update_phy_info(unsigned long data)
3535{
3536 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3537 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3538}
3539
4d6b725e
AD
3540/**
3541 * igb_has_link - check shared code for link and determine up/down
3542 * @adapter: pointer to driver private info
3543 **/
3145535a 3544bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3545{
3546 struct e1000_hw *hw = &adapter->hw;
3547 bool link_active = false;
3548 s32 ret_val = 0;
3549
3550 /* get_link_status is set on LSC (link status) interrupt or
3551 * rx sequence error interrupt. get_link_status will stay
3552 * false until the e1000_check_for_link establishes link
3553 * for copper adapters ONLY
3554 */
3555 switch (hw->phy.media_type) {
3556 case e1000_media_type_copper:
3557 if (hw->mac.get_link_status) {
3558 ret_val = hw->mac.ops.check_for_link(hw);
3559 link_active = !hw->mac.get_link_status;
3560 } else {
3561 link_active = true;
3562 }
3563 break;
4d6b725e
AD
3564 case e1000_media_type_internal_serdes:
3565 ret_val = hw->mac.ops.check_for_link(hw);
3566 link_active = hw->mac.serdes_has_link;
3567 break;
3568 default:
3569 case e1000_media_type_unknown:
3570 break;
3571 }
3572
3573 return link_active;
3574}
3575
563988dc
SA
3576static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3577{
3578 bool ret = false;
3579 u32 ctrl_ext, thstat;
3580
3581 /* check for thermal sensor event on i350, copper only */
3582 if (hw->mac.type == e1000_i350) {
3583 thstat = rd32(E1000_THSTAT);
3584 ctrl_ext = rd32(E1000_CTRL_EXT);
3585
3586 if ((hw->phy.media_type == e1000_media_type_copper) &&
3587 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3588 ret = !!(thstat & event);
3589 }
3590 }
3591
3592 return ret;
3593}
3594
9d5c8243
AK
3595/**
3596 * igb_watchdog - Timer Call-back
3597 * @data: pointer to adapter cast into an unsigned long
3598 **/
3599static void igb_watchdog(unsigned long data)
3600{
3601 struct igb_adapter *adapter = (struct igb_adapter *)data;
3602 /* Do the rest outside of interrupt context */
3603 schedule_work(&adapter->watchdog_task);
3604}
3605
3606static void igb_watchdog_task(struct work_struct *work)
3607{
3608 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3609 struct igb_adapter,
3610 watchdog_task);
9d5c8243 3611 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3612 struct net_device *netdev = adapter->netdev;
563988dc 3613 u32 link;
7a6ea550 3614 int i;
9d5c8243 3615
4d6b725e 3616 link = igb_has_link(adapter);
9d5c8243
AK
3617 if (link) {
3618 if (!netif_carrier_ok(netdev)) {
3619 u32 ctrl;
330a6d6a
AD
3620 hw->mac.ops.get_speed_and_duplex(hw,
3621 &adapter->link_speed,
3622 &adapter->link_duplex);
9d5c8243
AK
3623
3624 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3625 /* Links status message must follow this format */
3626 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3627 "Flow Control: %s\n",
559e9c49
AD
3628 netdev->name,
3629 adapter->link_speed,
3630 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3631 "Full Duplex" : "Half Duplex",
559e9c49
AD
3632 ((ctrl & E1000_CTRL_TFCE) &&
3633 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3634 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3635 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3636
563988dc
SA
3637 /* check for thermal sensor event */
3638 if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
3639 printk(KERN_INFO "igb: %s The network adapter "
3640 "link speed was downshifted "
3641 "because it overheated.\n",
3642 netdev->name);
7ef5ed1c 3643 }
563988dc 3644
d07f3e37 3645 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3646 adapter->tx_timeout_factor = 1;
3647 switch (adapter->link_speed) {
3648 case SPEED_10:
9d5c8243
AK
3649 adapter->tx_timeout_factor = 14;
3650 break;
3651 case SPEED_100:
9d5c8243
AK
3652 /* maybe add some timeout factor ? */
3653 break;
3654 }
3655
3656 netif_carrier_on(netdev);
9d5c8243 3657
4ae196df 3658 igb_ping_all_vfs(adapter);
17dc566c 3659 igb_check_vf_rate_limit(adapter);
4ae196df 3660
4b1a9877 3661 /* link state has changed, schedule phy info update */
9d5c8243
AK
3662 if (!test_bit(__IGB_DOWN, &adapter->state))
3663 mod_timer(&adapter->phy_info_timer,
3664 round_jiffies(jiffies + 2 * HZ));
3665 }
3666 } else {
3667 if (netif_carrier_ok(netdev)) {
3668 adapter->link_speed = 0;
3669 adapter->link_duplex = 0;
563988dc
SA
3670
3671 /* check for thermal sensor event */
3672 if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
3673 printk(KERN_ERR "igb: %s The network adapter "
3674 "was stopped because it "
3675 "overheated.\n",
7ef5ed1c 3676 netdev->name);
7ef5ed1c 3677 }
563988dc 3678
527d47c1
AD
3679 /* Links status message must follow this format */
3680 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3681 netdev->name);
9d5c8243 3682 netif_carrier_off(netdev);
4b1a9877 3683
4ae196df
AD
3684 igb_ping_all_vfs(adapter);
3685
4b1a9877 3686 /* link state has changed, schedule phy info update */
9d5c8243
AK
3687 if (!test_bit(__IGB_DOWN, &adapter->state))
3688 mod_timer(&adapter->phy_info_timer,
3689 round_jiffies(jiffies + 2 * HZ));
3690 }
3691 }
3692
12dcd86b
ED
3693 spin_lock(&adapter->stats64_lock);
3694 igb_update_stats(adapter, &adapter->stats64);
3695 spin_unlock(&adapter->stats64_lock);
9d5c8243 3696
dbabb065 3697 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3698 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3699 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3700 /* We've lost link, so the controller stops DMA,
3701 * but we've got queued Tx work that's never going
3702 * to get done, so reset controller to flush Tx.
3703 * (Do the reset outside of interrupt context). */
dbabb065
AD
3704 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3705 adapter->tx_timeout_count++;
3706 schedule_work(&adapter->reset_task);
3707 /* return immediately since reset is imminent */
3708 return;
3709 }
9d5c8243 3710 }
9d5c8243 3711
dbabb065
AD
3712 /* Force detection of hung controller every watchdog period */
3713 tx_ring->detect_tx_hung = true;
3714 }
f7ba205e 3715
9d5c8243 3716 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3717 if (adapter->msix_entries) {
047e0030
AD
3718 u32 eics = 0;
3719 for (i = 0; i < adapter->num_q_vectors; i++) {
3720 struct igb_q_vector *q_vector = adapter->q_vector[i];
3721 eics |= q_vector->eims_value;
3722 }
7a6ea550
AD
3723 wr32(E1000_EICS, eics);
3724 } else {
3725 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3726 }
9d5c8243 3727
13800469
GR
3728 igb_spoof_check(adapter);
3729
9d5c8243
AK
3730 /* Reset the timer */
3731 if (!test_bit(__IGB_DOWN, &adapter->state))
3732 mod_timer(&adapter->watchdog_timer,
3733 round_jiffies(jiffies + 2 * HZ));
3734}
3735
3736enum latency_range {
3737 lowest_latency = 0,
3738 low_latency = 1,
3739 bulk_latency = 2,
3740 latency_invalid = 255
3741};
3742
6eb5a7f1
AD
3743/**
3744 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3745 *
3746 * Stores a new ITR value based on strictly on packet size. This
3747 * algorithm is less sophisticated than that used in igb_update_itr,
3748 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3749 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3750 * were determined based on theoretical maximum wire speed and testing
3751 * data, in order to minimize response time while increasing bulk
3752 * throughput.
3753 * This functionality is controlled by the InterruptThrottleRate module
3754 * parameter (see igb_param.c)
3755 * NOTE: This function is called only when operating in a multiqueue
3756 * receive environment.
047e0030 3757 * @q_vector: pointer to q_vector
6eb5a7f1 3758 **/
047e0030 3759static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3760{
047e0030 3761 int new_val = q_vector->itr_val;
6eb5a7f1 3762 int avg_wire_size = 0;
047e0030 3763 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b
ED
3764 struct igb_ring *ring;
3765 unsigned int packets;
9d5c8243 3766
6eb5a7f1
AD
3767 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3768 * ints/sec - ITR timer value of 120 ticks.
3769 */
3770 if (adapter->link_speed != SPEED_1000) {
047e0030 3771 new_val = 976;
6eb5a7f1 3772 goto set_itr_val;
9d5c8243 3773 }
047e0030 3774
12dcd86b
ED
3775 ring = q_vector->rx_ring;
3776 if (ring) {
3777 packets = ACCESS_ONCE(ring->total_packets);
3778
3779 if (packets)
3780 avg_wire_size = ring->total_bytes / packets;
047e0030
AD
3781 }
3782
12dcd86b
ED
3783 ring = q_vector->tx_ring;
3784 if (ring) {
3785 packets = ACCESS_ONCE(ring->total_packets);
3786
3787 if (packets)
3788 avg_wire_size = max_t(u32, avg_wire_size,
3789 ring->total_bytes / packets);
047e0030
AD
3790 }
3791
3792 /* if avg_wire_size isn't set no work was done */
3793 if (!avg_wire_size)
3794 goto clear_counts;
9d5c8243 3795
6eb5a7f1
AD
3796 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3797 avg_wire_size += 24;
3798
3799 /* Don't starve jumbo frames */
3800 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3801
6eb5a7f1
AD
3802 /* Give a little boost to mid-size frames */
3803 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3804 new_val = avg_wire_size / 3;
3805 else
3806 new_val = avg_wire_size / 2;
9d5c8243 3807
abe1c363
NN
3808 /* when in itr mode 3 do not exceed 20K ints/sec */
3809 if (adapter->rx_itr_setting == 3 && new_val < 196)
3810 new_val = 196;
3811
6eb5a7f1 3812set_itr_val:
047e0030
AD
3813 if (new_val != q_vector->itr_val) {
3814 q_vector->itr_val = new_val;
3815 q_vector->set_itr = 1;
9d5c8243 3816 }
6eb5a7f1 3817clear_counts:
047e0030
AD
3818 if (q_vector->rx_ring) {
3819 q_vector->rx_ring->total_bytes = 0;
3820 q_vector->rx_ring->total_packets = 0;
3821 }
3822 if (q_vector->tx_ring) {
3823 q_vector->tx_ring->total_bytes = 0;
3824 q_vector->tx_ring->total_packets = 0;
3825 }
9d5c8243
AK
3826}
3827
3828/**
3829 * igb_update_itr - update the dynamic ITR value based on statistics
3830 * Stores a new ITR value based on packets and byte
3831 * counts during the last interrupt. The advantage of per interrupt
3832 * computation is faster updates and more accurate ITR for the current
3833 * traffic pattern. Constants in this function were computed
3834 * based on theoretical maximum wire speed and thresholds were set based
3835 * on testing data as well as attempting to minimize response time
3836 * while increasing bulk throughput.
3837 * this functionality is controlled by the InterruptThrottleRate module
3838 * parameter (see igb_param.c)
3839 * NOTE: These calculations are only valid when operating in a single-
3840 * queue environment.
3841 * @adapter: pointer to adapter
047e0030 3842 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3843 * @packets: the number of packets during this measurement interval
3844 * @bytes: the number of bytes during this measurement interval
3845 **/
3846static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3847 int packets, int bytes)
3848{
3849 unsigned int retval = itr_setting;
3850
3851 if (packets == 0)
3852 goto update_itr_done;
3853
3854 switch (itr_setting) {
3855 case lowest_latency:
3856 /* handle TSO and jumbo frames */
3857 if (bytes/packets > 8000)
3858 retval = bulk_latency;
3859 else if ((packets < 5) && (bytes > 512))
3860 retval = low_latency;
3861 break;
3862 case low_latency: /* 50 usec aka 20000 ints/s */
3863 if (bytes > 10000) {
3864 /* this if handles the TSO accounting */
3865 if (bytes/packets > 8000) {
3866 retval = bulk_latency;
3867 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3868 retval = bulk_latency;
3869 } else if ((packets > 35)) {
3870 retval = lowest_latency;
3871 }
3872 } else if (bytes/packets > 2000) {
3873 retval = bulk_latency;
3874 } else if (packets <= 2 && bytes < 512) {
3875 retval = lowest_latency;
3876 }
3877 break;
3878 case bulk_latency: /* 250 usec aka 4000 ints/s */
3879 if (bytes > 25000) {
3880 if (packets > 35)
3881 retval = low_latency;
1e5c3d21 3882 } else if (bytes < 1500) {
9d5c8243
AK
3883 retval = low_latency;
3884 }
3885 break;
3886 }
3887
3888update_itr_done:
3889 return retval;
3890}
3891
6eb5a7f1 3892static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3893{
047e0030 3894 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3895 u16 current_itr;
047e0030 3896 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3897
3898 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3899 if (adapter->link_speed != SPEED_1000) {
3900 current_itr = 0;
3901 new_itr = 4000;
3902 goto set_itr_now;
3903 }
3904
3905 adapter->rx_itr = igb_update_itr(adapter,
3906 adapter->rx_itr,
3025a446
AD
3907 q_vector->rx_ring->total_packets,
3908 q_vector->rx_ring->total_bytes);
9d5c8243 3909
047e0030
AD
3910 adapter->tx_itr = igb_update_itr(adapter,
3911 adapter->tx_itr,
3025a446
AD
3912 q_vector->tx_ring->total_packets,
3913 q_vector->tx_ring->total_bytes);
047e0030 3914 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3915
6eb5a7f1 3916 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3917 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3918 current_itr = low_latency;
3919
9d5c8243
AK
3920 switch (current_itr) {
3921 /* counts and packets in update_itr are dependent on these numbers */
3922 case lowest_latency:
78b1f607 3923 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3924 break;
3925 case low_latency:
78b1f607 3926 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3927 break;
3928 case bulk_latency:
78b1f607 3929 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3930 break;
3931 default:
3932 break;
3933 }
3934
3935set_itr_now:
3025a446
AD
3936 q_vector->rx_ring->total_bytes = 0;
3937 q_vector->rx_ring->total_packets = 0;
3938 q_vector->tx_ring->total_bytes = 0;
3939 q_vector->tx_ring->total_packets = 0;
6eb5a7f1 3940
047e0030 3941 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3942 /* this attempts to bias the interrupt rate towards Bulk
3943 * by adding intermediate steps when interrupt rate is
3944 * increasing */
047e0030
AD
3945 new_itr = new_itr > q_vector->itr_val ?
3946 max((new_itr * q_vector->itr_val) /
3947 (new_itr + (q_vector->itr_val >> 2)),
3948 new_itr) :
9d5c8243
AK
3949 new_itr;
3950 /* Don't write the value here; it resets the adapter's
3951 * internal timer, and causes us to delay far longer than
3952 * we should between interrupts. Instead, we write the ITR
3953 * value at the beginning of the next interrupt so the timing
3954 * ends up being correct.
3955 */
047e0030
AD
3956 q_vector->itr_val = new_itr;
3957 q_vector->set_itr = 1;
9d5c8243 3958 }
9d5c8243
AK
3959}
3960
9d5c8243
AK
3961#define IGB_TX_FLAGS_CSUM 0x00000001
3962#define IGB_TX_FLAGS_VLAN 0x00000002
3963#define IGB_TX_FLAGS_TSO 0x00000004
3964#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3965#define IGB_TX_FLAGS_TSTAMP 0x00000010
3966#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3967#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3968
85ad76b2 3969static inline int igb_tso_adv(struct igb_ring *tx_ring,
9d5c8243
AK
3970 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3971{
3972 struct e1000_adv_tx_context_desc *context_desc;
3973 unsigned int i;
3974 int err;
3975 struct igb_buffer *buffer_info;
3976 u32 info = 0, tu_cmd = 0;
91d4ee33
NN
3977 u32 mss_l4len_idx;
3978 u8 l4len;
9d5c8243
AK
3979
3980 if (skb_header_cloned(skb)) {
3981 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3982 if (err)
3983 return err;
3984 }
3985
3986 l4len = tcp_hdrlen(skb);
3987 *hdr_len += l4len;
3988
3989 if (skb->protocol == htons(ETH_P_IP)) {
3990 struct iphdr *iph = ip_hdr(skb);
3991 iph->tot_len = 0;
3992 iph->check = 0;
3993 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3994 iph->daddr, 0,
3995 IPPROTO_TCP,
3996 0);
8e1e8a47 3997 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
3998 ipv6_hdr(skb)->payload_len = 0;
3999 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4000 &ipv6_hdr(skb)->daddr,
4001 0, IPPROTO_TCP, 0);
4002 }
4003
4004 i = tx_ring->next_to_use;
4005
4006 buffer_info = &tx_ring->buffer_info[i];
4007 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
4008 /* VLAN MACLEN IPLEN */
4009 if (tx_flags & IGB_TX_FLAGS_VLAN)
4010 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
4011 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
4012 *hdr_len += skb_network_offset(skb);
4013 info |= skb_network_header_len(skb);
4014 *hdr_len += skb_network_header_len(skb);
4015 context_desc->vlan_macip_lens = cpu_to_le32(info);
4016
4017 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4018 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
4019
4020 if (skb->protocol == htons(ETH_P_IP))
4021 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
4022 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4023
4024 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
4025
4026 /* MSS L4LEN IDX */
4027 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
4028 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
4029
73cd78f1 4030 /* For 82575, context index must be unique per ring. */
85ad76b2
AD
4031 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
4032 mss_l4len_idx |= tx_ring->reg_idx << 4;
9d5c8243
AK
4033
4034 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4035 context_desc->seqnum_seed = 0;
4036
4037 buffer_info->time_stamp = jiffies;
0e014cb1 4038 buffer_info->next_to_watch = i;
9d5c8243
AK
4039 buffer_info->dma = 0;
4040 i++;
4041 if (i == tx_ring->count)
4042 i = 0;
4043
4044 tx_ring->next_to_use = i;
4045
4046 return true;
4047}
4048
85ad76b2
AD
4049static inline bool igb_tx_csum_adv(struct igb_ring *tx_ring,
4050 struct sk_buff *skb, u32 tx_flags)
9d5c8243
AK
4051{
4052 struct e1000_adv_tx_context_desc *context_desc;
59d71989 4053 struct device *dev = tx_ring->dev;
9d5c8243
AK
4054 struct igb_buffer *buffer_info;
4055 u32 info = 0, tu_cmd = 0;
80785298 4056 unsigned int i;
9d5c8243
AK
4057
4058 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
4059 (tx_flags & IGB_TX_FLAGS_VLAN)) {
4060 i = tx_ring->next_to_use;
4061 buffer_info = &tx_ring->buffer_info[i];
4062 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
4063
4064 if (tx_flags & IGB_TX_FLAGS_VLAN)
4065 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
cdfd01fc 4066
9d5c8243
AK
4067 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
4068 if (skb->ip_summed == CHECKSUM_PARTIAL)
4069 info |= skb_network_header_len(skb);
4070
4071 context_desc->vlan_macip_lens = cpu_to_le32(info);
4072
4073 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
4074
4075 if (skb->ip_summed == CHECKSUM_PARTIAL) {
fa4a7ef3
AJ
4076 __be16 protocol;
4077
4078 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
4079 const struct vlan_ethhdr *vhdr =
4080 (const struct vlan_ethhdr*)skb->data;
4081
4082 protocol = vhdr->h_vlan_encapsulated_proto;
4083 } else {
4084 protocol = skb->protocol;
4085 }
4086
4087 switch (protocol) {
09640e63 4088 case cpu_to_be16(ETH_P_IP):
9d5c8243 4089 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
44b0cda3
MW
4090 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4091 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
4092 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
4093 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3 4094 break;
09640e63 4095 case cpu_to_be16(ETH_P_IPV6):
44b0cda3
MW
4096 /* XXX what about other V6 headers?? */
4097 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4098 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
b9473560
JB
4099 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
4100 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
44b0cda3
MW
4101 break;
4102 default:
4103 if (unlikely(net_ratelimit()))
59d71989 4104 dev_warn(dev,
44b0cda3
MW
4105 "partial checksum but proto=%x!\n",
4106 skb->protocol);
4107 break;
4108 }
9d5c8243
AK
4109 }
4110
4111 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
4112 context_desc->seqnum_seed = 0;
85ad76b2 4113 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
7dfc16fa 4114 context_desc->mss_l4len_idx =
85ad76b2 4115 cpu_to_le32(tx_ring->reg_idx << 4);
9d5c8243
AK
4116
4117 buffer_info->time_stamp = jiffies;
0e014cb1 4118 buffer_info->next_to_watch = i;
9d5c8243
AK
4119 buffer_info->dma = 0;
4120
4121 i++;
4122 if (i == tx_ring->count)
4123 i = 0;
4124 tx_ring->next_to_use = i;
4125
4126 return true;
4127 }
9d5c8243
AK
4128 return false;
4129}
4130
4131#define IGB_MAX_TXD_PWR 16
4132#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
4133
80785298 4134static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
0e014cb1 4135 unsigned int first)
9d5c8243
AK
4136{
4137 struct igb_buffer *buffer_info;
59d71989 4138 struct device *dev = tx_ring->dev;
2873957d 4139 unsigned int hlen = skb_headlen(skb);
9d5c8243
AK
4140 unsigned int count = 0, i;
4141 unsigned int f;
2873957d 4142 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
9d5c8243
AK
4143
4144 i = tx_ring->next_to_use;
4145
4146 buffer_info = &tx_ring->buffer_info[i];
2873957d
NN
4147 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
4148 buffer_info->length = hlen;
9d5c8243
AK
4149 /* set time_stamp *before* dma to help avoid a possible race */
4150 buffer_info->time_stamp = jiffies;
0e014cb1 4151 buffer_info->next_to_watch = i;
2873957d 4152 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
59d71989
AD
4153 DMA_TO_DEVICE);
4154 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33 4155 goto dma_error;
9d5c8243
AK
4156
4157 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2873957d
NN
4158 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
4159 unsigned int len = frag->size;
9d5c8243 4160
8581145f 4161 count++;
65689fef
AD
4162 i++;
4163 if (i == tx_ring->count)
4164 i = 0;
4165
9d5c8243
AK
4166 buffer_info = &tx_ring->buffer_info[i];
4167 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
4168 buffer_info->length = len;
4169 buffer_info->time_stamp = jiffies;
0e014cb1 4170 buffer_info->next_to_watch = i;
6366ad33 4171 buffer_info->mapped_as_page = true;
877749bf 4172 buffer_info->dma = skb_frag_dma_map(dev, frag, 0, len,
59d71989
AD
4173 DMA_TO_DEVICE);
4174 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33
AD
4175 goto dma_error;
4176
9d5c8243
AK
4177 }
4178
9d5c8243 4179 tx_ring->buffer_info[i].skb = skb;
2244d07b 4180 tx_ring->buffer_info[i].tx_flags = skb_shinfo(skb)->tx_flags;
2873957d
NN
4181 /* multiply data chunks by size of headers */
4182 tx_ring->buffer_info[i].bytecount = ((gso_segs - 1) * hlen) + skb->len;
4183 tx_ring->buffer_info[i].gso_segs = gso_segs;
0e014cb1 4184 tx_ring->buffer_info[first].next_to_watch = i;
9d5c8243 4185
cdfd01fc 4186 return ++count;
6366ad33
AD
4187
4188dma_error:
59d71989 4189 dev_err(dev, "TX DMA map failed\n");
6366ad33
AD
4190
4191 /* clear timestamp and dma mappings for failed buffer_info mapping */
4192 buffer_info->dma = 0;
4193 buffer_info->time_stamp = 0;
4194 buffer_info->length = 0;
4195 buffer_info->next_to_watch = 0;
4196 buffer_info->mapped_as_page = false;
6366ad33
AD
4197
4198 /* clear timestamp and dma mappings for remaining portion of packet */
a77ff709
NN
4199 while (count--) {
4200 if (i == 0)
4201 i = tx_ring->count;
6366ad33 4202 i--;
6366ad33
AD
4203 buffer_info = &tx_ring->buffer_info[i];
4204 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4205 }
4206
4207 return 0;
9d5c8243
AK
4208}
4209
85ad76b2 4210static inline void igb_tx_queue_adv(struct igb_ring *tx_ring,
91d4ee33 4211 u32 tx_flags, int count, u32 paylen,
9d5c8243
AK
4212 u8 hdr_len)
4213{
cdfd01fc 4214 union e1000_adv_tx_desc *tx_desc;
9d5c8243
AK
4215 struct igb_buffer *buffer_info;
4216 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 4217 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
4218
4219 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
4220 E1000_ADVTXD_DCMD_DEXT);
4221
4222 if (tx_flags & IGB_TX_FLAGS_VLAN)
4223 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4224
33af6bcc
PO
4225 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4226 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4227
9d5c8243
AK
4228 if (tx_flags & IGB_TX_FLAGS_TSO) {
4229 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4230
4231 /* insert tcp checksum */
4232 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4233
4234 /* insert ip checksum */
4235 if (tx_flags & IGB_TX_FLAGS_IPV4)
4236 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4237
4238 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4239 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4240 }
4241
85ad76b2
AD
4242 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4243 (tx_flags & (IGB_TX_FLAGS_CSUM |
4244 IGB_TX_FLAGS_TSO |
7dfc16fa 4245 IGB_TX_FLAGS_VLAN)))
85ad76b2 4246 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
4247
4248 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4249
cdfd01fc 4250 do {
9d5c8243
AK
4251 buffer_info = &tx_ring->buffer_info[i];
4252 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4253 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4254 tx_desc->read.cmd_type_len =
4255 cpu_to_le32(cmd_type_len | buffer_info->length);
4256 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 4257 count--;
9d5c8243
AK
4258 i++;
4259 if (i == tx_ring->count)
4260 i = 0;
cdfd01fc 4261 } while (count > 0);
9d5c8243 4262
85ad76b2 4263 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
4264 /* Force memory writes to complete before letting h/w
4265 * know there are new descriptors to fetch. (Only
4266 * applicable for weak-ordered memory model archs,
4267 * such as IA-64). */
4268 wmb();
4269
4270 tx_ring->next_to_use = i;
fce99e34 4271 writel(i, tx_ring->tail);
9d5c8243
AK
4272 /* we need this if more than one processor can write to our tail
4273 * at a time, it syncronizes IO on IA64/Altix systems */
4274 mmiowb();
4275}
4276
e694e964 4277static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4278{
e694e964
AD
4279 struct net_device *netdev = tx_ring->netdev;
4280
661086df 4281 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4282
9d5c8243
AK
4283 /* Herbert's original patch had:
4284 * smp_mb__after_netif_stop_queue();
4285 * but since that doesn't exist yet, just open code it. */
4286 smp_mb();
4287
4288 /* We need to check again in a case another CPU has just
4289 * made room available. */
c493ea45 4290 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4291 return -EBUSY;
4292
4293 /* A reprieve! */
661086df 4294 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4295
4296 u64_stats_update_begin(&tx_ring->tx_syncp2);
4297 tx_ring->tx_stats.restart_queue2++;
4298 u64_stats_update_end(&tx_ring->tx_syncp2);
4299
9d5c8243
AK
4300 return 0;
4301}
4302
717ba089 4303static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4304{
c493ea45 4305 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4306 return 0;
e694e964 4307 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4308}
4309
b1a436c3
AD
4310netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
4311 struct igb_ring *tx_ring)
9d5c8243 4312{
cdfd01fc 4313 int tso = 0, count;
91d4ee33
NN
4314 u32 tx_flags = 0;
4315 u16 first;
4316 u8 hdr_len = 0;
9d5c8243 4317
9d5c8243
AK
4318 /* need: 1 descriptor per page,
4319 * + 2 desc gap to keep tail from touching head,
4320 * + 1 desc for skb->data,
4321 * + 1 desc for context descriptor,
4322 * otherwise try next time */
e694e964 4323 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4324 /* this is a hard error */
9d5c8243
AK
4325 return NETDEV_TX_BUSY;
4326 }
33af6bcc 4327
2244d07b
OH
4328 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4329 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4330 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4331 }
9d5c8243 4332
eab6d18d 4333 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4334 tx_flags |= IGB_TX_FLAGS_VLAN;
4335 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4336 }
4337
661086df
PWJ
4338 if (skb->protocol == htons(ETH_P_IP))
4339 tx_flags |= IGB_TX_FLAGS_IPV4;
4340
0e014cb1 4341 first = tx_ring->next_to_use;
85ad76b2
AD
4342 if (skb_is_gso(skb)) {
4343 tso = igb_tso_adv(tx_ring, skb, tx_flags, &hdr_len);
cdfd01fc 4344
85ad76b2
AD
4345 if (tso < 0) {
4346 dev_kfree_skb_any(skb);
4347 return NETDEV_TX_OK;
4348 }
9d5c8243
AK
4349 }
4350
4351 if (tso)
4352 tx_flags |= IGB_TX_FLAGS_TSO;
85ad76b2 4353 else if (igb_tx_csum_adv(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
4354 (skb->ip_summed == CHECKSUM_PARTIAL))
4355 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 4356
65689fef 4357 /*
cdfd01fc 4358 * count reflects descriptors mapped, if 0 or less then mapping error
25985edc 4359 * has occurred and we need to rewind the descriptor queue
65689fef 4360 */
80785298 4361 count = igb_tx_map_adv(tx_ring, skb, first);
6366ad33 4362 if (!count) {
65689fef
AD
4363 dev_kfree_skb_any(skb);
4364 tx_ring->buffer_info[first].time_stamp = 0;
4365 tx_ring->next_to_use = first;
85ad76b2 4366 return NETDEV_TX_OK;
65689fef 4367 }
9d5c8243 4368
85ad76b2
AD
4369 igb_tx_queue_adv(tx_ring, tx_flags, count, skb->len, hdr_len);
4370
4371 /* Make sure there is space in the ring for the next send. */
e694e964 4372 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4373
9d5c8243
AK
4374 return NETDEV_TX_OK;
4375}
4376
3b29a56d
SH
4377static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
4378 struct net_device *netdev)
9d5c8243
AK
4379{
4380 struct igb_adapter *adapter = netdev_priv(netdev);
661086df 4381 struct igb_ring *tx_ring;
661086df 4382 int r_idx = 0;
b1a436c3
AD
4383
4384 if (test_bit(__IGB_DOWN, &adapter->state)) {
4385 dev_kfree_skb_any(skb);
4386 return NETDEV_TX_OK;
4387 }
4388
4389 if (skb->len <= 0) {
4390 dev_kfree_skb_any(skb);
4391 return NETDEV_TX_OK;
4392 }
4393
1bfaf07b 4394 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
661086df 4395 tx_ring = adapter->multi_tx_table[r_idx];
9d5c8243
AK
4396
4397 /* This goes back to the question of how to logically map a tx queue
4398 * to a flow. Right now, performance is impacted slightly negatively
4399 * if using multiple tx queues. If the stack breaks away from a
4400 * single qdisc implementation, we can look at this again. */
e694e964 4401 return igb_xmit_frame_ring_adv(skb, tx_ring);
9d5c8243
AK
4402}
4403
4404/**
4405 * igb_tx_timeout - Respond to a Tx Hang
4406 * @netdev: network interface device structure
4407 **/
4408static void igb_tx_timeout(struct net_device *netdev)
4409{
4410 struct igb_adapter *adapter = netdev_priv(netdev);
4411 struct e1000_hw *hw = &adapter->hw;
4412
4413 /* Do the reset outside of interrupt context */
4414 adapter->tx_timeout_count++;
f7ba205e 4415
55cac248
AD
4416 if (hw->mac.type == e1000_82580)
4417 hw->dev_spec._82575.global_device_reset = true;
4418
9d5c8243 4419 schedule_work(&adapter->reset_task);
265de409
AD
4420 wr32(E1000_EICS,
4421 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4422}
4423
4424static void igb_reset_task(struct work_struct *work)
4425{
4426 struct igb_adapter *adapter;
4427 adapter = container_of(work, struct igb_adapter, reset_task);
4428
c97ec42a
TI
4429 igb_dump(adapter);
4430 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4431 igb_reinit_locked(adapter);
4432}
4433
4434/**
12dcd86b 4435 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4436 * @netdev: network interface device structure
12dcd86b 4437 * @stats: rtnl_link_stats64 pointer
9d5c8243 4438 *
9d5c8243 4439 **/
12dcd86b
ED
4440static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4441 struct rtnl_link_stats64 *stats)
9d5c8243 4442{
12dcd86b
ED
4443 struct igb_adapter *adapter = netdev_priv(netdev);
4444
4445 spin_lock(&adapter->stats64_lock);
4446 igb_update_stats(adapter, &adapter->stats64);
4447 memcpy(stats, &adapter->stats64, sizeof(*stats));
4448 spin_unlock(&adapter->stats64_lock);
4449
4450 return stats;
9d5c8243
AK
4451}
4452
4453/**
4454 * igb_change_mtu - Change the Maximum Transfer Unit
4455 * @netdev: network interface device structure
4456 * @new_mtu: new value for maximum frame size
4457 *
4458 * Returns 0 on success, negative on failure
4459 **/
4460static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4461{
4462 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4463 struct pci_dev *pdev = adapter->pdev;
9d5c8243 4464 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4c844851 4465 u32 rx_buffer_len, i;
9d5c8243 4466
c809d227 4467 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4468 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4469 return -EINVAL;
4470 }
4471
9d5c8243 4472 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4473 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4474 return -EINVAL;
4475 }
4476
4477 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4478 msleep(1);
73cd78f1 4479
9d5c8243
AK
4480 /* igb_down has a dependency on max_frame_size */
4481 adapter->max_frame_size = max_frame;
559e9c49 4482
9d5c8243
AK
4483 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4484 * means we reserve 2 more, this pushes us to allocate from the next
4485 * larger slab size.
4486 * i.e. RXBUFFER_2048 --> size-4096 slab
4487 */
4488
757b77e2
NN
4489 if (adapter->hw.mac.type == e1000_82580)
4490 max_frame += IGB_TS_HDR_LEN;
4491
7d95b717 4492 if (max_frame <= IGB_RXBUFFER_1024)
4c844851 4493 rx_buffer_len = IGB_RXBUFFER_1024;
6ec43fe6 4494 else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
4c844851 4495 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
6ec43fe6 4496 else
4c844851
AD
4497 rx_buffer_len = IGB_RXBUFFER_128;
4498
757b77e2
NN
4499 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN + IGB_TS_HDR_LEN) ||
4500 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN))
4501 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE + IGB_TS_HDR_LEN;
4502
4503 if ((adapter->hw.mac.type == e1000_82580) &&
4504 (rx_buffer_len == IGB_RXBUFFER_128))
4505 rx_buffer_len += IGB_RXBUFFER_64;
4506
4c844851
AD
4507 if (netif_running(netdev))
4508 igb_down(adapter);
9d5c8243 4509
090b1795 4510 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4511 netdev->mtu, new_mtu);
4512 netdev->mtu = new_mtu;
4513
4c844851 4514 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 4515 adapter->rx_ring[i]->rx_buffer_len = rx_buffer_len;
4c844851 4516
9d5c8243
AK
4517 if (netif_running(netdev))
4518 igb_up(adapter);
4519 else
4520 igb_reset(adapter);
4521
4522 clear_bit(__IGB_RESETTING, &adapter->state);
4523
4524 return 0;
4525}
4526
4527/**
4528 * igb_update_stats - Update the board statistics counters
4529 * @adapter: board private structure
4530 **/
4531
12dcd86b
ED
4532void igb_update_stats(struct igb_adapter *adapter,
4533 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4534{
4535 struct e1000_hw *hw = &adapter->hw;
4536 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4537 u32 reg, mpc;
9d5c8243 4538 u16 phy_tmp;
3f9c0164
AD
4539 int i;
4540 u64 bytes, packets;
12dcd86b
ED
4541 unsigned int start;
4542 u64 _bytes, _packets;
9d5c8243
AK
4543
4544#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4545
4546 /*
4547 * Prevent stats update while adapter is being reset, or if the pci
4548 * connection is down.
4549 */
4550 if (adapter->link_speed == 0)
4551 return;
4552 if (pci_channel_offline(pdev))
4553 return;
4554
3f9c0164
AD
4555 bytes = 0;
4556 packets = 0;
4557 for (i = 0; i < adapter->num_rx_queues; i++) {
4558 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4559 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4560
3025a446 4561 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4562 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4563
4564 do {
4565 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4566 _bytes = ring->rx_stats.bytes;
4567 _packets = ring->rx_stats.packets;
4568 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4569 bytes += _bytes;
4570 packets += _packets;
3f9c0164
AD
4571 }
4572
128e45eb
AD
4573 net_stats->rx_bytes = bytes;
4574 net_stats->rx_packets = packets;
3f9c0164
AD
4575
4576 bytes = 0;
4577 packets = 0;
4578 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4579 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4580 do {
4581 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4582 _bytes = ring->tx_stats.bytes;
4583 _packets = ring->tx_stats.packets;
4584 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4585 bytes += _bytes;
4586 packets += _packets;
3f9c0164 4587 }
128e45eb
AD
4588 net_stats->tx_bytes = bytes;
4589 net_stats->tx_packets = packets;
3f9c0164
AD
4590
4591 /* read stats registers */
9d5c8243
AK
4592 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4593 adapter->stats.gprc += rd32(E1000_GPRC);
4594 adapter->stats.gorc += rd32(E1000_GORCL);
4595 rd32(E1000_GORCH); /* clear GORCL */
4596 adapter->stats.bprc += rd32(E1000_BPRC);
4597 adapter->stats.mprc += rd32(E1000_MPRC);
4598 adapter->stats.roc += rd32(E1000_ROC);
4599
4600 adapter->stats.prc64 += rd32(E1000_PRC64);
4601 adapter->stats.prc127 += rd32(E1000_PRC127);
4602 adapter->stats.prc255 += rd32(E1000_PRC255);
4603 adapter->stats.prc511 += rd32(E1000_PRC511);
4604 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4605 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4606 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4607 adapter->stats.sec += rd32(E1000_SEC);
4608
fa3d9a6d
MW
4609 mpc = rd32(E1000_MPC);
4610 adapter->stats.mpc += mpc;
4611 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4612 adapter->stats.scc += rd32(E1000_SCC);
4613 adapter->stats.ecol += rd32(E1000_ECOL);
4614 adapter->stats.mcc += rd32(E1000_MCC);
4615 adapter->stats.latecol += rd32(E1000_LATECOL);
4616 adapter->stats.dc += rd32(E1000_DC);
4617 adapter->stats.rlec += rd32(E1000_RLEC);
4618 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4619 adapter->stats.xontxc += rd32(E1000_XONTXC);
4620 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4621 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4622 adapter->stats.fcruc += rd32(E1000_FCRUC);
4623 adapter->stats.gptc += rd32(E1000_GPTC);
4624 adapter->stats.gotc += rd32(E1000_GOTCL);
4625 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4626 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4627 adapter->stats.ruc += rd32(E1000_RUC);
4628 adapter->stats.rfc += rd32(E1000_RFC);
4629 adapter->stats.rjc += rd32(E1000_RJC);
4630 adapter->stats.tor += rd32(E1000_TORH);
4631 adapter->stats.tot += rd32(E1000_TOTH);
4632 adapter->stats.tpr += rd32(E1000_TPR);
4633
4634 adapter->stats.ptc64 += rd32(E1000_PTC64);
4635 adapter->stats.ptc127 += rd32(E1000_PTC127);
4636 adapter->stats.ptc255 += rd32(E1000_PTC255);
4637 adapter->stats.ptc511 += rd32(E1000_PTC511);
4638 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4639 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4640
4641 adapter->stats.mptc += rd32(E1000_MPTC);
4642 adapter->stats.bptc += rd32(E1000_BPTC);
4643
2d0b0f69
NN
4644 adapter->stats.tpt += rd32(E1000_TPT);
4645 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4646
4647 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4648 /* read internal phy specific stats */
4649 reg = rd32(E1000_CTRL_EXT);
4650 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4651 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4652 adapter->stats.tncrs += rd32(E1000_TNCRS);
4653 }
4654
9d5c8243
AK
4655 adapter->stats.tsctc += rd32(E1000_TSCTC);
4656 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4657
4658 adapter->stats.iac += rd32(E1000_IAC);
4659 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4660 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4661 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4662 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4663 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4664 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4665 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4666 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4667
4668 /* Fill out the OS statistics structure */
128e45eb
AD
4669 net_stats->multicast = adapter->stats.mprc;
4670 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4671
4672 /* Rx Errors */
4673
4674 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4675 * our own version based on RUC and ROC */
128e45eb 4676 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4677 adapter->stats.crcerrs + adapter->stats.algnerrc +
4678 adapter->stats.ruc + adapter->stats.roc +
4679 adapter->stats.cexterr;
128e45eb
AD
4680 net_stats->rx_length_errors = adapter->stats.ruc +
4681 adapter->stats.roc;
4682 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4683 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4684 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4685
4686 /* Tx Errors */
128e45eb
AD
4687 net_stats->tx_errors = adapter->stats.ecol +
4688 adapter->stats.latecol;
4689 net_stats->tx_aborted_errors = adapter->stats.ecol;
4690 net_stats->tx_window_errors = adapter->stats.latecol;
4691 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4692
4693 /* Tx Dropped needs to be maintained elsewhere */
4694
4695 /* Phy Stats */
4696 if (hw->phy.media_type == e1000_media_type_copper) {
4697 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4698 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4699 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4700 adapter->phy_stats.idle_errors += phy_tmp;
4701 }
4702 }
4703
4704 /* Management Stats */
4705 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4706 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4707 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4708
4709 /* OS2BMC Stats */
4710 reg = rd32(E1000_MANC);
4711 if (reg & E1000_MANC_EN_BMC2OS) {
4712 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4713 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4714 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4715 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4716 }
9d5c8243
AK
4717}
4718
9d5c8243
AK
4719static irqreturn_t igb_msix_other(int irq, void *data)
4720{
047e0030 4721 struct igb_adapter *adapter = data;
9d5c8243 4722 struct e1000_hw *hw = &adapter->hw;
844290e5 4723 u32 icr = rd32(E1000_ICR);
844290e5 4724 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4725
7f081d40
AD
4726 if (icr & E1000_ICR_DRSTA)
4727 schedule_work(&adapter->reset_task);
4728
047e0030 4729 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4730 /* HW is reporting DMA is out of sync */
4731 adapter->stats.doosync++;
13800469
GR
4732 /* The DMA Out of Sync is also indication of a spoof event
4733 * in IOV mode. Check the Wrong VM Behavior register to
4734 * see if it is really a spoof event. */
4735 igb_check_wvbr(adapter);
dda0e083 4736 }
eebbbdba 4737
4ae196df
AD
4738 /* Check for a mailbox event */
4739 if (icr & E1000_ICR_VMMB)
4740 igb_msg_task(adapter);
4741
4742 if (icr & E1000_ICR_LSC) {
4743 hw->mac.get_link_status = 1;
4744 /* guard against interrupt when we're going down */
4745 if (!test_bit(__IGB_DOWN, &adapter->state))
4746 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4747 }
4748
25568a53
AD
4749 if (adapter->vfs_allocated_count)
4750 wr32(E1000_IMS, E1000_IMS_LSC |
4751 E1000_IMS_VMMB |
4752 E1000_IMS_DOUTSYNC);
4753 else
4754 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4755 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4756
4757 return IRQ_HANDLED;
4758}
4759
047e0030 4760static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4761{
26b39276 4762 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4763 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4764
047e0030
AD
4765 if (!q_vector->set_itr)
4766 return;
73cd78f1 4767
047e0030
AD
4768 if (!itr_val)
4769 itr_val = 0x4;
661086df 4770
26b39276
AD
4771 if (adapter->hw.mac.type == e1000_82575)
4772 itr_val |= itr_val << 16;
661086df 4773 else
047e0030 4774 itr_val |= 0x8000000;
661086df 4775
047e0030
AD
4776 writel(itr_val, q_vector->itr_register);
4777 q_vector->set_itr = 0;
6eb5a7f1
AD
4778}
4779
047e0030 4780static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4781{
047e0030 4782 struct igb_q_vector *q_vector = data;
9d5c8243 4783
047e0030
AD
4784 /* Write the ITR value calculated from the previous interrupt. */
4785 igb_write_itr(q_vector);
9d5c8243 4786
047e0030 4787 napi_schedule(&q_vector->napi);
844290e5 4788
047e0030 4789 return IRQ_HANDLED;
fe4506b6
JC
4790}
4791
421e02f0 4792#ifdef CONFIG_IGB_DCA
047e0030 4793static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4794{
047e0030 4795 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4796 struct e1000_hw *hw = &adapter->hw;
4797 int cpu = get_cpu();
fe4506b6 4798
047e0030
AD
4799 if (q_vector->cpu == cpu)
4800 goto out_no_update;
4801
4802 if (q_vector->tx_ring) {
4803 int q = q_vector->tx_ring->reg_idx;
4804 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4805 if (hw->mac.type == e1000_82575) {
4806 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4807 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4808 } else {
047e0030
AD
4809 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4810 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4811 E1000_DCA_TXCTRL_CPUID_SHIFT;
4812 }
4813 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4814 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4815 }
4816 if (q_vector->rx_ring) {
4817 int q = q_vector->rx_ring->reg_idx;
4818 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4819 if (hw->mac.type == e1000_82575) {
2d064c06 4820 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4821 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4822 } else {
4823 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4824 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4825 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4826 }
fe4506b6
JC
4827 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4828 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4829 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4830 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4831 }
047e0030
AD
4832 q_vector->cpu = cpu;
4833out_no_update:
fe4506b6
JC
4834 put_cpu();
4835}
4836
4837static void igb_setup_dca(struct igb_adapter *adapter)
4838{
7e0e99ef 4839 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4840 int i;
4841
7dfc16fa 4842 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4843 return;
4844
7e0e99ef
AD
4845 /* Always use CB2 mode, difference is masked in the CB driver. */
4846 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4847
047e0030 4848 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4849 adapter->q_vector[i]->cpu = -1;
4850 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4851 }
4852}
4853
4854static int __igb_notify_dca(struct device *dev, void *data)
4855{
4856 struct net_device *netdev = dev_get_drvdata(dev);
4857 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4858 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4859 struct e1000_hw *hw = &adapter->hw;
4860 unsigned long event = *(unsigned long *)data;
4861
4862 switch (event) {
4863 case DCA_PROVIDER_ADD:
4864 /* if already enabled, don't do it again */
7dfc16fa 4865 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4866 break;
fe4506b6 4867 if (dca_add_requester(dev) == 0) {
bbd98fe4 4868 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4869 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4870 igb_setup_dca(adapter);
4871 break;
4872 }
4873 /* Fall Through since DCA is disabled. */
4874 case DCA_PROVIDER_REMOVE:
7dfc16fa 4875 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4876 /* without this a class_device is left
047e0030 4877 * hanging around in the sysfs model */
fe4506b6 4878 dca_remove_requester(dev);
090b1795 4879 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4880 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4881 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4882 }
4883 break;
4884 }
bbd98fe4 4885
fe4506b6 4886 return 0;
9d5c8243
AK
4887}
4888
fe4506b6
JC
4889static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4890 void *p)
4891{
4892 int ret_val;
4893
4894 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4895 __igb_notify_dca);
4896
4897 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4898}
421e02f0 4899#endif /* CONFIG_IGB_DCA */
9d5c8243 4900
4ae196df
AD
4901static void igb_ping_all_vfs(struct igb_adapter *adapter)
4902{
4903 struct e1000_hw *hw = &adapter->hw;
4904 u32 ping;
4905 int i;
4906
4907 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4908 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4909 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4910 ping |= E1000_VT_MSGTYPE_CTS;
4911 igb_write_mbx(hw, &ping, 1, i);
4912 }
4913}
4914
7d5753f0
AD
4915static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4916{
4917 struct e1000_hw *hw = &adapter->hw;
4918 u32 vmolr = rd32(E1000_VMOLR(vf));
4919 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4920
d85b9004 4921 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
4922 IGB_VF_FLAG_MULTI_PROMISC);
4923 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4924
4925 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4926 vmolr |= E1000_VMOLR_MPME;
d85b9004 4927 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
4928 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4929 } else {
4930 /*
4931 * if we have hashes and we are clearing a multicast promisc
4932 * flag we need to write the hashes to the MTA as this step
4933 * was previously skipped
4934 */
4935 if (vf_data->num_vf_mc_hashes > 30) {
4936 vmolr |= E1000_VMOLR_MPME;
4937 } else if (vf_data->num_vf_mc_hashes) {
4938 int j;
4939 vmolr |= E1000_VMOLR_ROMPE;
4940 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4941 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4942 }
4943 }
4944
4945 wr32(E1000_VMOLR(vf), vmolr);
4946
4947 /* there are flags left unprocessed, likely not supported */
4948 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4949 return -EINVAL;
4950
4951 return 0;
4952
4953}
4954
4ae196df
AD
4955static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4956 u32 *msgbuf, u32 vf)
4957{
4958 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4959 u16 *hash_list = (u16 *)&msgbuf[1];
4960 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4961 int i;
4962
7d5753f0 4963 /* salt away the number of multicast addresses assigned
4ae196df
AD
4964 * to this VF for later use to restore when the PF multi cast
4965 * list changes
4966 */
4967 vf_data->num_vf_mc_hashes = n;
4968
7d5753f0
AD
4969 /* only up to 30 hash values supported */
4970 if (n > 30)
4971 n = 30;
4972
4973 /* store the hashes for later use */
4ae196df 4974 for (i = 0; i < n; i++)
a419aef8 4975 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4976
4977 /* Flush and reset the mta with the new values */
ff41f8dc 4978 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4979
4980 return 0;
4981}
4982
4983static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4984{
4985 struct e1000_hw *hw = &adapter->hw;
4986 struct vf_data_storage *vf_data;
4987 int i, j;
4988
4989 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4990 u32 vmolr = rd32(E1000_VMOLR(i));
4991 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4992
4ae196df 4993 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4994
4995 if ((vf_data->num_vf_mc_hashes > 30) ||
4996 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4997 vmolr |= E1000_VMOLR_MPME;
4998 } else if (vf_data->num_vf_mc_hashes) {
4999 vmolr |= E1000_VMOLR_ROMPE;
5000 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5001 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5002 }
5003 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5004 }
5005}
5006
5007static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5008{
5009 struct e1000_hw *hw = &adapter->hw;
5010 u32 pool_mask, reg, vid;
5011 int i;
5012
5013 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5014
5015 /* Find the vlan filter for this id */
5016 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5017 reg = rd32(E1000_VLVF(i));
5018
5019 /* remove the vf from the pool */
5020 reg &= ~pool_mask;
5021
5022 /* if pool is empty then remove entry from vfta */
5023 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5024 (reg & E1000_VLVF_VLANID_ENABLE)) {
5025 reg = 0;
5026 vid = reg & E1000_VLVF_VLANID_MASK;
5027 igb_vfta_set(hw, vid, false);
5028 }
5029
5030 wr32(E1000_VLVF(i), reg);
5031 }
ae641bdc
AD
5032
5033 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5034}
5035
5036static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5037{
5038 struct e1000_hw *hw = &adapter->hw;
5039 u32 reg, i;
5040
51466239
AD
5041 /* The vlvf table only exists on 82576 hardware and newer */
5042 if (hw->mac.type < e1000_82576)
5043 return -1;
5044
5045 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5046 if (!adapter->vfs_allocated_count)
5047 return -1;
5048
5049 /* Find the vlan filter for this id */
5050 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5051 reg = rd32(E1000_VLVF(i));
5052 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5053 vid == (reg & E1000_VLVF_VLANID_MASK))
5054 break;
5055 }
5056
5057 if (add) {
5058 if (i == E1000_VLVF_ARRAY_SIZE) {
5059 /* Did not find a matching VLAN ID entry that was
5060 * enabled. Search for a free filter entry, i.e.
5061 * one without the enable bit set
5062 */
5063 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5064 reg = rd32(E1000_VLVF(i));
5065 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5066 break;
5067 }
5068 }
5069 if (i < E1000_VLVF_ARRAY_SIZE) {
5070 /* Found an enabled/available entry */
5071 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5072
5073 /* if !enabled we need to set this up in vfta */
5074 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5075 /* add VID to filter table */
5076 igb_vfta_set(hw, vid, true);
4ae196df
AD
5077 reg |= E1000_VLVF_VLANID_ENABLE;
5078 }
cad6d05f
AD
5079 reg &= ~E1000_VLVF_VLANID_MASK;
5080 reg |= vid;
4ae196df 5081 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5082
5083 /* do not modify RLPML for PF devices */
5084 if (vf >= adapter->vfs_allocated_count)
5085 return 0;
5086
5087 if (!adapter->vf_data[vf].vlans_enabled) {
5088 u32 size;
5089 reg = rd32(E1000_VMOLR(vf));
5090 size = reg & E1000_VMOLR_RLPML_MASK;
5091 size += 4;
5092 reg &= ~E1000_VMOLR_RLPML_MASK;
5093 reg |= size;
5094 wr32(E1000_VMOLR(vf), reg);
5095 }
ae641bdc 5096
51466239 5097 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5098 return 0;
5099 }
5100 } else {
5101 if (i < E1000_VLVF_ARRAY_SIZE) {
5102 /* remove vf from the pool */
5103 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5104 /* if pool is empty then remove entry from vfta */
5105 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5106 reg = 0;
5107 igb_vfta_set(hw, vid, false);
5108 }
5109 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5110
5111 /* do not modify RLPML for PF devices */
5112 if (vf >= adapter->vfs_allocated_count)
5113 return 0;
5114
5115 adapter->vf_data[vf].vlans_enabled--;
5116 if (!adapter->vf_data[vf].vlans_enabled) {
5117 u32 size;
5118 reg = rd32(E1000_VMOLR(vf));
5119 size = reg & E1000_VMOLR_RLPML_MASK;
5120 size -= 4;
5121 reg &= ~E1000_VMOLR_RLPML_MASK;
5122 reg |= size;
5123 wr32(E1000_VMOLR(vf), reg);
5124 }
4ae196df
AD
5125 }
5126 }
8151d294
WM
5127 return 0;
5128}
5129
5130static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5131{
5132 struct e1000_hw *hw = &adapter->hw;
5133
5134 if (vid)
5135 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5136 else
5137 wr32(E1000_VMVIR(vf), 0);
5138}
5139
5140static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5141 int vf, u16 vlan, u8 qos)
5142{
5143 int err = 0;
5144 struct igb_adapter *adapter = netdev_priv(netdev);
5145
5146 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5147 return -EINVAL;
5148 if (vlan || qos) {
5149 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5150 if (err)
5151 goto out;
5152 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5153 igb_set_vmolr(adapter, vf, !vlan);
5154 adapter->vf_data[vf].pf_vlan = vlan;
5155 adapter->vf_data[vf].pf_qos = qos;
5156 dev_info(&adapter->pdev->dev,
5157 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5158 if (test_bit(__IGB_DOWN, &adapter->state)) {
5159 dev_warn(&adapter->pdev->dev,
5160 "The VF VLAN has been set,"
5161 " but the PF device is not up.\n");
5162 dev_warn(&adapter->pdev->dev,
5163 "Bring the PF device up before"
5164 " attempting to use the VF device.\n");
5165 }
5166 } else {
5167 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5168 false, vf);
5169 igb_set_vmvir(adapter, vlan, vf);
5170 igb_set_vmolr(adapter, vf, true);
5171 adapter->vf_data[vf].pf_vlan = 0;
5172 adapter->vf_data[vf].pf_qos = 0;
5173 }
5174out:
5175 return err;
4ae196df
AD
5176}
5177
5178static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5179{
5180 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5181 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5182
5183 return igb_vlvf_set(adapter, vid, add, vf);
5184}
5185
f2ca0dbe 5186static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5187{
8fa7e0f7
GR
5188 /* clear flags - except flag that indicates PF has set the MAC */
5189 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5190 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5191
5192 /* reset offloads to defaults */
8151d294 5193 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5194
5195 /* reset vlans for device */
5196 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5197 if (adapter->vf_data[vf].pf_vlan)
5198 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5199 adapter->vf_data[vf].pf_vlan,
5200 adapter->vf_data[vf].pf_qos);
5201 else
5202 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5203
5204 /* reset multicast table array for vf */
5205 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5206
5207 /* Flush and reset the mta with the new values */
ff41f8dc 5208 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5209}
5210
f2ca0dbe
AD
5211static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5212{
5213 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5214
5215 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
5216 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5217 random_ether_addr(vf_mac);
f2ca0dbe
AD
5218
5219 /* process remaining reset events */
5220 igb_vf_reset(adapter, vf);
5221}
5222
5223static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5224{
5225 struct e1000_hw *hw = &adapter->hw;
5226 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5227 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5228 u32 reg, msgbuf[3];
5229 u8 *addr = (u8 *)(&msgbuf[1]);
5230
5231 /* process all the same items cleared in a function level reset */
f2ca0dbe 5232 igb_vf_reset(adapter, vf);
4ae196df
AD
5233
5234 /* set vf mac address */
26ad9178 5235 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5236
5237 /* enable transmit and receive for vf */
5238 reg = rd32(E1000_VFTE);
5239 wr32(E1000_VFTE, reg | (1 << vf));
5240 reg = rd32(E1000_VFRE);
5241 wr32(E1000_VFRE, reg | (1 << vf));
5242
8fa7e0f7 5243 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5244
5245 /* reply to reset with ack and vf mac address */
5246 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5247 memcpy(addr, vf_mac, 6);
5248 igb_write_mbx(hw, msgbuf, 3, vf);
5249}
5250
5251static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5252{
de42edde
GR
5253 /*
5254 * The VF MAC Address is stored in a packed array of bytes
5255 * starting at the second 32 bit word of the msg array
5256 */
f2ca0dbe
AD
5257 unsigned char *addr = (char *)&msg[1];
5258 int err = -1;
4ae196df 5259
f2ca0dbe
AD
5260 if (is_valid_ether_addr(addr))
5261 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5262
f2ca0dbe 5263 return err;
4ae196df
AD
5264}
5265
5266static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5267{
5268 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5269 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5270 u32 msg = E1000_VT_MSGTYPE_NACK;
5271
5272 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5273 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5274 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5275 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5276 vf_data->last_nack = jiffies;
4ae196df
AD
5277 }
5278}
5279
f2ca0dbe 5280static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5281{
f2ca0dbe
AD
5282 struct pci_dev *pdev = adapter->pdev;
5283 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5284 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5285 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5286 s32 retval;
5287
f2ca0dbe 5288 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5289
fef45f4c
AD
5290 if (retval) {
5291 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5292 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5293 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5294 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5295 return;
5296 goto out;
5297 }
4ae196df
AD
5298
5299 /* this is a message we already processed, do nothing */
5300 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5301 return;
4ae196df
AD
5302
5303 /*
5304 * until the vf completes a reset it should not be
5305 * allowed to start any configuration.
5306 */
5307
5308 if (msgbuf[0] == E1000_VF_RESET) {
5309 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5310 return;
4ae196df
AD
5311 }
5312
f2ca0dbe 5313 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5314 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5315 return;
5316 retval = -1;
5317 goto out;
4ae196df
AD
5318 }
5319
5320 switch ((msgbuf[0] & 0xFFFF)) {
5321 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5322 retval = -EINVAL;
5323 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5324 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5325 else
5326 dev_warn(&pdev->dev,
5327 "VF %d attempted to override administratively "
5328 "set MAC address\nReload the VF driver to "
5329 "resume operations\n", vf);
4ae196df 5330 break;
7d5753f0
AD
5331 case E1000_VF_SET_PROMISC:
5332 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5333 break;
4ae196df
AD
5334 case E1000_VF_SET_MULTICAST:
5335 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5336 break;
5337 case E1000_VF_SET_LPE:
5338 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5339 break;
5340 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5341 retval = -1;
5342 if (vf_data->pf_vlan)
5343 dev_warn(&pdev->dev,
5344 "VF %d attempted to override administratively "
5345 "set VLAN tag\nReload the VF driver to "
5346 "resume operations\n", vf);
8151d294
WM
5347 else
5348 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5349 break;
5350 default:
090b1795 5351 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5352 retval = -1;
5353 break;
5354 }
5355
fef45f4c
AD
5356 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5357out:
4ae196df
AD
5358 /* notify the VF of the results of what it sent us */
5359 if (retval)
5360 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5361 else
5362 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5363
4ae196df 5364 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5365}
4ae196df 5366
f2ca0dbe
AD
5367static void igb_msg_task(struct igb_adapter *adapter)
5368{
5369 struct e1000_hw *hw = &adapter->hw;
5370 u32 vf;
5371
5372 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5373 /* process any reset requests */
5374 if (!igb_check_for_rst(hw, vf))
5375 igb_vf_reset_event(adapter, vf);
5376
5377 /* process any messages pending */
5378 if (!igb_check_for_msg(hw, vf))
5379 igb_rcv_msg_from_vf(adapter, vf);
5380
5381 /* process any acks */
5382 if (!igb_check_for_ack(hw, vf))
5383 igb_rcv_ack_from_vf(adapter, vf);
5384 }
4ae196df
AD
5385}
5386
68d480c4
AD
5387/**
5388 * igb_set_uta - Set unicast filter table address
5389 * @adapter: board private structure
5390 *
5391 * The unicast table address is a register array of 32-bit registers.
5392 * The table is meant to be used in a way similar to how the MTA is used
5393 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5394 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5395 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5396 **/
5397static void igb_set_uta(struct igb_adapter *adapter)
5398{
5399 struct e1000_hw *hw = &adapter->hw;
5400 int i;
5401
5402 /* The UTA table only exists on 82576 hardware and newer */
5403 if (hw->mac.type < e1000_82576)
5404 return;
5405
5406 /* we only need to do this if VMDq is enabled */
5407 if (!adapter->vfs_allocated_count)
5408 return;
5409
5410 for (i = 0; i < hw->mac.uta_reg_count; i++)
5411 array_wr32(E1000_UTA, i, ~0);
5412}
5413
9d5c8243
AK
5414/**
5415 * igb_intr_msi - Interrupt Handler
5416 * @irq: interrupt number
5417 * @data: pointer to a network interface device structure
5418 **/
5419static irqreturn_t igb_intr_msi(int irq, void *data)
5420{
047e0030
AD
5421 struct igb_adapter *adapter = data;
5422 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5423 struct e1000_hw *hw = &adapter->hw;
5424 /* read ICR disables interrupts using IAM */
5425 u32 icr = rd32(E1000_ICR);
5426
047e0030 5427 igb_write_itr(q_vector);
9d5c8243 5428
7f081d40
AD
5429 if (icr & E1000_ICR_DRSTA)
5430 schedule_work(&adapter->reset_task);
5431
047e0030 5432 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5433 /* HW is reporting DMA is out of sync */
5434 adapter->stats.doosync++;
5435 }
5436
9d5c8243
AK
5437 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5438 hw->mac.get_link_status = 1;
5439 if (!test_bit(__IGB_DOWN, &adapter->state))
5440 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5441 }
5442
047e0030 5443 napi_schedule(&q_vector->napi);
9d5c8243
AK
5444
5445 return IRQ_HANDLED;
5446}
5447
5448/**
4a3c6433 5449 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5450 * @irq: interrupt number
5451 * @data: pointer to a network interface device structure
5452 **/
5453static irqreturn_t igb_intr(int irq, void *data)
5454{
047e0030
AD
5455 struct igb_adapter *adapter = data;
5456 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5457 struct e1000_hw *hw = &adapter->hw;
5458 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5459 * need for the IMC write */
5460 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5461 if (!icr)
5462 return IRQ_NONE; /* Not our interrupt */
5463
047e0030 5464 igb_write_itr(q_vector);
9d5c8243
AK
5465
5466 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5467 * not set, then the adapter didn't send an interrupt */
5468 if (!(icr & E1000_ICR_INT_ASSERTED))
5469 return IRQ_NONE;
5470
7f081d40
AD
5471 if (icr & E1000_ICR_DRSTA)
5472 schedule_work(&adapter->reset_task);
5473
047e0030 5474 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5475 /* HW is reporting DMA is out of sync */
5476 adapter->stats.doosync++;
5477 }
5478
9d5c8243
AK
5479 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5480 hw->mac.get_link_status = 1;
5481 /* guard against interrupt when we're going down */
5482 if (!test_bit(__IGB_DOWN, &adapter->state))
5483 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5484 }
5485
047e0030 5486 napi_schedule(&q_vector->napi);
9d5c8243
AK
5487
5488 return IRQ_HANDLED;
5489}
5490
047e0030 5491static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5492{
047e0030 5493 struct igb_adapter *adapter = q_vector->adapter;
46544258 5494 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5495
4fc82adf
AD
5496 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5497 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 5498 if (!adapter->msix_entries)
6eb5a7f1 5499 igb_set_itr(adapter);
46544258 5500 else
047e0030 5501 igb_update_ring_itr(q_vector);
9d5c8243
AK
5502 }
5503
46544258
AD
5504 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5505 if (adapter->msix_entries)
047e0030 5506 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5507 else
5508 igb_irq_enable(adapter);
5509 }
9d5c8243
AK
5510}
5511
46544258
AD
5512/**
5513 * igb_poll - NAPI Rx polling callback
5514 * @napi: napi polling structure
5515 * @budget: count of how many packets we should handle
5516 **/
5517static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5518{
047e0030
AD
5519 struct igb_q_vector *q_vector = container_of(napi,
5520 struct igb_q_vector,
5521 napi);
5522 int tx_clean_complete = 1, work_done = 0;
9d5c8243 5523
421e02f0 5524#ifdef CONFIG_IGB_DCA
047e0030
AD
5525 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5526 igb_update_dca(q_vector);
fe4506b6 5527#endif
047e0030
AD
5528 if (q_vector->tx_ring)
5529 tx_clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5530
047e0030
AD
5531 if (q_vector->rx_ring)
5532 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
5533
5534 if (!tx_clean_complete)
5535 work_done = budget;
46544258 5536
9d5c8243 5537 /* If not enough Rx work done, exit the polling mode */
5e6d5b17 5538 if (work_done < budget) {
288379f0 5539 napi_complete(napi);
047e0030 5540 igb_ring_irq_enable(q_vector);
9d5c8243
AK
5541 }
5542
46544258 5543 return work_done;
9d5c8243 5544}
6d8126f9 5545
33af6bcc 5546/**
c5b9bd5e 5547 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5548 * @adapter: board private structure
c5b9bd5e
AD
5549 * @shhwtstamps: timestamp structure to update
5550 * @regval: unsigned 64bit system time value.
5551 *
5552 * We need to convert the system time value stored in the RX/TXSTMP registers
5553 * into a hwtstamp which can be used by the upper level timestamping functions
5554 */
5555static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5556 struct skb_shared_hwtstamps *shhwtstamps,
5557 u64 regval)
5558{
5559 u64 ns;
5560
55cac248
AD
5561 /*
5562 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5563 * 24 to match clock shift we setup earlier.
5564 */
5565 if (adapter->hw.mac.type == e1000_82580)
5566 regval <<= IGB_82580_TSYNC_SHIFT;
5567
c5b9bd5e
AD
5568 ns = timecounter_cyc2time(&adapter->clock, regval);
5569 timecompare_update(&adapter->compare, ns);
5570 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5571 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5572 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5573}
5574
5575/**
5576 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5577 * @q_vector: pointer to q_vector containing needed info
2873957d 5578 * @buffer: pointer to igb_buffer structure
33af6bcc
PO
5579 *
5580 * If we were asked to do hardware stamping and such a time stamp is
5581 * available, then it must have been for this skb here because we only
5582 * allow only one such packet into the queue.
5583 */
2873957d 5584static void igb_tx_hwtstamp(struct igb_q_vector *q_vector, struct igb_buffer *buffer_info)
33af6bcc 5585{
c5b9bd5e 5586 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5587 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5588 struct skb_shared_hwtstamps shhwtstamps;
5589 u64 regval;
33af6bcc 5590
c5b9bd5e 5591 /* if skb does not support hw timestamp or TX stamp not valid exit */
2244d07b 5592 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
c5b9bd5e
AD
5593 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5594 return;
5595
5596 regval = rd32(E1000_TXSTMPL);
5597 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5598
5599 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5600 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5601}
5602
9d5c8243
AK
5603/**
5604 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5605 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5606 * returns true if ring is completely cleaned
5607 **/
047e0030 5608static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5609{
047e0030
AD
5610 struct igb_adapter *adapter = q_vector->adapter;
5611 struct igb_ring *tx_ring = q_vector->tx_ring;
e694e964 5612 struct net_device *netdev = tx_ring->netdev;
0e014cb1 5613 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5614 struct igb_buffer *buffer_info;
0e014cb1 5615 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5616 unsigned int total_bytes = 0, total_packets = 0;
0e014cb1
AD
5617 unsigned int i, eop, count = 0;
5618 bool cleaned = false;
9d5c8243 5619
9d5c8243 5620 i = tx_ring->next_to_clean;
0e014cb1
AD
5621 eop = tx_ring->buffer_info[i].next_to_watch;
5622 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5623
5624 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
5625 (count < tx_ring->count)) {
2d0bb1c1 5626 rmb(); /* read buffer_info after eop_desc status */
0e014cb1
AD
5627 for (cleaned = false; !cleaned; count++) {
5628 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
9d5c8243 5629 buffer_info = &tx_ring->buffer_info[i];
0e014cb1 5630 cleaned = (i == eop);
9d5c8243 5631
2873957d
NN
5632 if (buffer_info->skb) {
5633 total_bytes += buffer_info->bytecount;
9d5c8243 5634 /* gso_segs is currently only valid for tcp */
2873957d
NN
5635 total_packets += buffer_info->gso_segs;
5636 igb_tx_hwtstamp(q_vector, buffer_info);
9d5c8243
AK
5637 }
5638
80785298 5639 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
0e014cb1 5640 tx_desc->wb.status = 0;
9d5c8243
AK
5641
5642 i++;
5643 if (i == tx_ring->count)
5644 i = 0;
9d5c8243 5645 }
0e014cb1
AD
5646 eop = tx_ring->buffer_info[i].next_to_watch;
5647 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
5648 }
5649
9d5c8243
AK
5650 tx_ring->next_to_clean = i;
5651
fc7d345d 5652 if (unlikely(count &&
9d5c8243 5653 netif_carrier_ok(netdev) &&
c493ea45 5654 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
9d5c8243
AK
5655 /* Make sure that anybody stopping the queue after this
5656 * sees the new next_to_clean.
5657 */
5658 smp_mb();
661086df
PWJ
5659 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
5660 !(test_bit(__IGB_DOWN, &adapter->state))) {
5661 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
5662
5663 u64_stats_update_begin(&tx_ring->tx_syncp);
04a5fcaa 5664 tx_ring->tx_stats.restart_queue++;
12dcd86b 5665 u64_stats_update_end(&tx_ring->tx_syncp);
661086df 5666 }
9d5c8243
AK
5667 }
5668
5669 if (tx_ring->detect_tx_hung) {
5670 /* Detect a transmit hang in hardware, this serializes the
5671 * check with the clearing of time_stamp and movement of i */
5672 tx_ring->detect_tx_hung = false;
5673 if (tx_ring->buffer_info[i].time_stamp &&
5674 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
8e95a202
JP
5675 (adapter->tx_timeout_factor * HZ)) &&
5676 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5677
9d5c8243 5678 /* detected Tx unit hang */
59d71989 5679 dev_err(tx_ring->dev,
9d5c8243 5680 "Detected Tx Unit Hang\n"
2d064c06 5681 " Tx Queue <%d>\n"
9d5c8243
AK
5682 " TDH <%x>\n"
5683 " TDT <%x>\n"
5684 " next_to_use <%x>\n"
5685 " next_to_clean <%x>\n"
9d5c8243
AK
5686 "buffer_info[next_to_clean]\n"
5687 " time_stamp <%lx>\n"
0e014cb1 5688 " next_to_watch <%x>\n"
9d5c8243
AK
5689 " jiffies <%lx>\n"
5690 " desc.status <%x>\n",
2d064c06 5691 tx_ring->queue_index,
fce99e34
AD
5692 readl(tx_ring->head),
5693 readl(tx_ring->tail),
9d5c8243
AK
5694 tx_ring->next_to_use,
5695 tx_ring->next_to_clean,
f7ba205e 5696 tx_ring->buffer_info[eop].time_stamp,
0e014cb1 5697 eop,
9d5c8243 5698 jiffies,
0e014cb1 5699 eop_desc->wb.status);
661086df 5700 netif_stop_subqueue(netdev, tx_ring->queue_index);
9d5c8243
AK
5701 }
5702 }
5703 tx_ring->total_bytes += total_bytes;
5704 tx_ring->total_packets += total_packets;
12dcd86b 5705 u64_stats_update_begin(&tx_ring->tx_syncp);
e21ed353
AD
5706 tx_ring->tx_stats.bytes += total_bytes;
5707 tx_ring->tx_stats.packets += total_packets;
12dcd86b 5708 u64_stats_update_end(&tx_ring->tx_syncp);
807540ba 5709 return count < tx_ring->count;
9d5c8243
AK
5710}
5711
04a5fcaa 5712static inline void igb_rx_checksum_adv(struct igb_ring *ring,
9d5c8243
AK
5713 u32 status_err, struct sk_buff *skb)
5714{
bc8acf2c 5715 skb_checksum_none_assert(skb);
9d5c8243
AK
5716
5717 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5718 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5719 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5720 return;
85ad76b2 5721
9d5c8243
AK
5722 /* TCP/UDP checksum error bit is set */
5723 if (status_err &
5724 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5725 /*
5726 * work around errata with sctp packets where the TCPE aka
5727 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5728 * packets, (aka let the stack check the crc32c)
5729 */
85ad76b2 5730 if ((skb->len == 60) &&
12dcd86b
ED
5731 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
5732 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5733 ring->rx_stats.csum_err++;
12dcd86b
ED
5734 u64_stats_update_end(&ring->rx_syncp);
5735 }
9d5c8243 5736 /* let the stack verify checksum errors */
9d5c8243
AK
5737 return;
5738 }
5739 /* It must be a TCP or UDP packet with a valid checksum */
5740 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5741 skb->ip_summed = CHECKSUM_UNNECESSARY;
5742
59d71989 5743 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5744}
5745
757b77e2 5746static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
c5b9bd5e
AD
5747 struct sk_buff *skb)
5748{
5749 struct igb_adapter *adapter = q_vector->adapter;
5750 struct e1000_hw *hw = &adapter->hw;
5751 u64 regval;
5752
5753 /*
5754 * If this bit is set, then the RX registers contain the time stamp. No
5755 * other packet will be time stamped until we read these registers, so
5756 * read the registers to make them available again. Because only one
5757 * packet can be time stamped at a time, we know that the register
5758 * values must belong to this one here and therefore we don't need to
5759 * compare any of the additional attributes stored for it.
5760 *
2244d07b 5761 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
5762 * can turn into a skb_shared_hwtstamps.
5763 */
757b77e2
NN
5764 if (staterr & E1000_RXDADV_STAT_TSIP) {
5765 u32 *stamp = (u32 *)skb->data;
5766 regval = le32_to_cpu(*(stamp + 2));
5767 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5768 skb_pull(skb, IGB_TS_HDR_LEN);
5769 } else {
5770 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5771 return;
c5b9bd5e 5772
757b77e2
NN
5773 regval = rd32(E1000_RXSTMPL);
5774 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5775 }
c5b9bd5e
AD
5776
5777 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5778}
4c844851 5779static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
2d94d8ab
AD
5780 union e1000_adv_rx_desc *rx_desc)
5781{
5782 /* HW will not DMA in data larger than the given buffer, even if it
5783 * parses the (NFS, of course) header to be larger. In that case, it
5784 * fills the header buffer and spills the rest into the page.
5785 */
5786 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5787 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4c844851
AD
5788 if (hlen > rx_ring->rx_buffer_len)
5789 hlen = rx_ring->rx_buffer_len;
2d94d8ab
AD
5790 return hlen;
5791}
5792
047e0030
AD
5793static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
5794 int *work_done, int budget)
9d5c8243 5795{
047e0030 5796 struct igb_ring *rx_ring = q_vector->rx_ring;
e694e964 5797 struct net_device *netdev = rx_ring->netdev;
59d71989 5798 struct device *dev = rx_ring->dev;
9d5c8243
AK
5799 union e1000_adv_rx_desc *rx_desc , *next_rxd;
5800 struct igb_buffer *buffer_info , *next_buffer;
5801 struct sk_buff *skb;
9d5c8243
AK
5802 bool cleaned = false;
5803 int cleaned_count = 0;
d1eff350 5804 int current_node = numa_node_id();
9d5c8243 5805 unsigned int total_bytes = 0, total_packets = 0;
73cd78f1 5806 unsigned int i;
2d94d8ab
AD
5807 u32 staterr;
5808 u16 length;
9d5c8243
AK
5809
5810 i = rx_ring->next_to_clean;
69d3ca53 5811 buffer_info = &rx_ring->buffer_info[i];
9d5c8243
AK
5812 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5813 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5814
5815 while (staterr & E1000_RXD_STAT_DD) {
5816 if (*work_done >= budget)
5817 break;
5818 (*work_done)++;
2d0bb1c1 5819 rmb(); /* read descriptor and rx_buffer_info after status DD */
9d5c8243 5820
69d3ca53
AD
5821 skb = buffer_info->skb;
5822 prefetch(skb->data - NET_IP_ALIGN);
5823 buffer_info->skb = NULL;
5824
5825 i++;
5826 if (i == rx_ring->count)
5827 i = 0;
42d0781a 5828
69d3ca53
AD
5829 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
5830 prefetch(next_rxd);
5831 next_buffer = &rx_ring->buffer_info[i];
9d5c8243
AK
5832
5833 length = le16_to_cpu(rx_desc->wb.upper.length);
5834 cleaned = true;
5835 cleaned_count++;
5836
2d94d8ab 5837 if (buffer_info->dma) {
59d71989 5838 dma_unmap_single(dev, buffer_info->dma,
4c844851 5839 rx_ring->rx_buffer_len,
59d71989 5840 DMA_FROM_DEVICE);
91615f76 5841 buffer_info->dma = 0;
4c844851 5842 if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
6ec43fe6
AD
5843 skb_put(skb, length);
5844 goto send_up;
5845 }
4c844851 5846 skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
bf36c1a0
AD
5847 }
5848
5849 if (length) {
59d71989
AD
5850 dma_unmap_page(dev, buffer_info->page_dma,
5851 PAGE_SIZE / 2, DMA_FROM_DEVICE);
9d5c8243 5852 buffer_info->page_dma = 0;
bf36c1a0 5853
aa913403 5854 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5855 buffer_info->page,
5856 buffer_info->page_offset,
5857 length);
5858
d1eff350
AD
5859 if ((page_count(buffer_info->page) != 1) ||
5860 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5861 buffer_info->page = NULL;
5862 else
5863 get_page(buffer_info->page);
9d5c8243
AK
5864
5865 skb->len += length;
5866 skb->data_len += length;
bf36c1a0 5867 skb->truesize += length;
9d5c8243 5868 }
9d5c8243 5869
bf36c1a0 5870 if (!(staterr & E1000_RXD_STAT_EOP)) {
b2d56536
AD
5871 buffer_info->skb = next_buffer->skb;
5872 buffer_info->dma = next_buffer->dma;
5873 next_buffer->skb = skb;
5874 next_buffer->dma = 0;
bf36c1a0
AD
5875 goto next_desc;
5876 }
69d3ca53 5877send_up:
9d5c8243
AK
5878 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5879 dev_kfree_skb_irq(skb);
5880 goto next_desc;
5881 }
9d5c8243 5882
757b77e2
NN
5883 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5884 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5885 total_bytes += skb->len;
5886 total_packets++;
5887
85ad76b2 5888 igb_rx_checksum_adv(rx_ring, staterr, skb);
9d5c8243
AK
5889
5890 skb->protocol = eth_type_trans(skb, netdev);
047e0030
AD
5891 skb_record_rx_queue(skb, rx_ring->queue_index);
5892
b2cb09b1
JP
5893 if (staterr & E1000_RXD_STAT_VP) {
5894 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
9d5c8243 5895
b2cb09b1
JP
5896 __vlan_hwaccel_put_tag(skb, vid);
5897 }
5898 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 5899
9d5c8243
AK
5900next_desc:
5901 rx_desc->wb.upper.status_error = 0;
5902
5903 /* return some buffers to hardware, one at a time is too slow */
5904 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3b644cf6 5905 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5906 cleaned_count = 0;
5907 }
5908
5909 /* use prefetched values */
5910 rx_desc = next_rxd;
5911 buffer_info = next_buffer;
9d5c8243
AK
5912 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5913 }
bf36c1a0 5914
9d5c8243 5915 rx_ring->next_to_clean = i;
c493ea45 5916 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243
AK
5917
5918 if (cleaned_count)
3b644cf6 5919 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
9d5c8243
AK
5920
5921 rx_ring->total_packets += total_packets;
5922 rx_ring->total_bytes += total_bytes;
12dcd86b 5923 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
5924 rx_ring->rx_stats.packets += total_packets;
5925 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 5926 u64_stats_update_end(&rx_ring->rx_syncp);
9d5c8243
AK
5927 return cleaned;
5928}
5929
9d5c8243
AK
5930/**
5931 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5932 * @adapter: address of board private structure
5933 **/
d7ee5b3a 5934void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring, int cleaned_count)
9d5c8243 5935{
e694e964 5936 struct net_device *netdev = rx_ring->netdev;
9d5c8243
AK
5937 union e1000_adv_rx_desc *rx_desc;
5938 struct igb_buffer *buffer_info;
5939 struct sk_buff *skb;
5940 unsigned int i;
db761762 5941 int bufsz;
9d5c8243
AK
5942
5943 i = rx_ring->next_to_use;
5944 buffer_info = &rx_ring->buffer_info[i];
5945
4c844851 5946 bufsz = rx_ring->rx_buffer_len;
db761762 5947
9d5c8243
AK
5948 while (cleaned_count--) {
5949 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5950
6ec43fe6 5951 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
9d5c8243 5952 if (!buffer_info->page) {
42d0781a 5953 buffer_info->page = netdev_alloc_page(netdev);
12dcd86b
ED
5954 if (unlikely(!buffer_info->page)) {
5955 u64_stats_update_begin(&rx_ring->rx_syncp);
04a5fcaa 5956 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5957 u64_stats_update_end(&rx_ring->rx_syncp);
bf36c1a0
AD
5958 goto no_buffers;
5959 }
5960 buffer_info->page_offset = 0;
5961 } else {
5962 buffer_info->page_offset ^= PAGE_SIZE / 2;
9d5c8243
AK
5963 }
5964 buffer_info->page_dma =
59d71989 5965 dma_map_page(rx_ring->dev, buffer_info->page,
bf36c1a0
AD
5966 buffer_info->page_offset,
5967 PAGE_SIZE / 2,
59d71989
AD
5968 DMA_FROM_DEVICE);
5969 if (dma_mapping_error(rx_ring->dev,
5970 buffer_info->page_dma)) {
42d0781a 5971 buffer_info->page_dma = 0;
12dcd86b 5972 u64_stats_update_begin(&rx_ring->rx_syncp);
42d0781a 5973 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5974 u64_stats_update_end(&rx_ring->rx_syncp);
42d0781a
AD
5975 goto no_buffers;
5976 }
9d5c8243
AK
5977 }
5978
42d0781a
AD
5979 skb = buffer_info->skb;
5980 if (!skb) {
89d71a66 5981 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
12dcd86b
ED
5982 if (unlikely(!skb)) {
5983 u64_stats_update_begin(&rx_ring->rx_syncp);
04a5fcaa 5984 rx_ring->rx_stats.alloc_failed++;
12dcd86b 5985 u64_stats_update_end(&rx_ring->rx_syncp);
9d5c8243
AK
5986 goto no_buffers;
5987 }
5988
9d5c8243 5989 buffer_info->skb = skb;
42d0781a
AD
5990 }
5991 if (!buffer_info->dma) {
59d71989 5992 buffer_info->dma = dma_map_single(rx_ring->dev,
80785298 5993 skb->data,
9d5c8243 5994 bufsz,
59d71989
AD
5995 DMA_FROM_DEVICE);
5996 if (dma_mapping_error(rx_ring->dev,
5997 buffer_info->dma)) {
42d0781a 5998 buffer_info->dma = 0;
12dcd86b 5999 u64_stats_update_begin(&rx_ring->rx_syncp);
42d0781a 6000 rx_ring->rx_stats.alloc_failed++;
12dcd86b 6001 u64_stats_update_end(&rx_ring->rx_syncp);
42d0781a
AD
6002 goto no_buffers;
6003 }
9d5c8243
AK
6004 }
6005 /* Refresh the desc even if buffer_addrs didn't change because
6006 * each write-back erases this info. */
6ec43fe6 6007 if (bufsz < IGB_RXBUFFER_1024) {
9d5c8243
AK
6008 rx_desc->read.pkt_addr =
6009 cpu_to_le64(buffer_info->page_dma);
6010 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
6011 } else {
42d0781a 6012 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
9d5c8243
AK
6013 rx_desc->read.hdr_addr = 0;
6014 }
6015
6016 i++;
6017 if (i == rx_ring->count)
6018 i = 0;
6019 buffer_info = &rx_ring->buffer_info[i];
6020 }
6021
6022no_buffers:
6023 if (rx_ring->next_to_use != i) {
6024 rx_ring->next_to_use = i;
6025 if (i == 0)
6026 i = (rx_ring->count - 1);
6027 else
6028 i--;
6029
6030 /* Force memory writes to complete before letting h/w
6031 * know there are new descriptors to fetch. (Only
6032 * applicable for weak-ordered memory model archs,
6033 * such as IA-64). */
6034 wmb();
fce99e34 6035 writel(i, rx_ring->tail);
9d5c8243
AK
6036 }
6037}
6038
6039/**
6040 * igb_mii_ioctl -
6041 * @netdev:
6042 * @ifreq:
6043 * @cmd:
6044 **/
6045static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6046{
6047 struct igb_adapter *adapter = netdev_priv(netdev);
6048 struct mii_ioctl_data *data = if_mii(ifr);
6049
6050 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6051 return -EOPNOTSUPP;
6052
6053 switch (cmd) {
6054 case SIOCGMIIPHY:
6055 data->phy_id = adapter->hw.phy.addr;
6056 break;
6057 case SIOCGMIIREG:
f5f4cf08
AD
6058 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6059 &data->val_out))
9d5c8243
AK
6060 return -EIO;
6061 break;
6062 case SIOCSMIIREG:
6063 default:
6064 return -EOPNOTSUPP;
6065 }
6066 return 0;
6067}
6068
c6cb090b
PO
6069/**
6070 * igb_hwtstamp_ioctl - control hardware time stamping
6071 * @netdev:
6072 * @ifreq:
6073 * @cmd:
6074 *
33af6bcc
PO
6075 * Outgoing time stamping can be enabled and disabled. Play nice and
6076 * disable it when requested, although it shouldn't case any overhead
6077 * when no packet needs it. At most one packet in the queue may be
6078 * marked for time stamping, otherwise it would be impossible to tell
6079 * for sure to which packet the hardware time stamp belongs.
6080 *
6081 * Incoming time stamping has to be configured via the hardware
6082 * filters. Not all combinations are supported, in particular event
6083 * type has to be specified. Matching the kind of event packet is
6084 * not supported, with the exception of "all V2 events regardless of
6085 * level 2 or 4".
6086 *
c6cb090b
PO
6087 **/
6088static int igb_hwtstamp_ioctl(struct net_device *netdev,
6089 struct ifreq *ifr, int cmd)
6090{
33af6bcc
PO
6091 struct igb_adapter *adapter = netdev_priv(netdev);
6092 struct e1000_hw *hw = &adapter->hw;
c6cb090b 6093 struct hwtstamp_config config;
c5b9bd5e
AD
6094 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6095 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 6096 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
6097 bool is_l4 = false;
6098 bool is_l2 = false;
33af6bcc 6099 u32 regval;
c6cb090b
PO
6100
6101 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6102 return -EFAULT;
6103
6104 /* reserved for future extensions */
6105 if (config.flags)
6106 return -EINVAL;
6107
33af6bcc
PO
6108 switch (config.tx_type) {
6109 case HWTSTAMP_TX_OFF:
c5b9bd5e 6110 tsync_tx_ctl = 0;
33af6bcc 6111 case HWTSTAMP_TX_ON:
33af6bcc
PO
6112 break;
6113 default:
6114 return -ERANGE;
6115 }
6116
6117 switch (config.rx_filter) {
6118 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 6119 tsync_rx_ctl = 0;
33af6bcc
PO
6120 break;
6121 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6122 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6123 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6124 case HWTSTAMP_FILTER_ALL:
6125 /*
6126 * register TSYNCRXCFG must be set, therefore it is not
6127 * possible to time stamp both Sync and Delay_Req messages
6128 * => fall back to time stamping all packets
6129 */
c5b9bd5e 6130 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
6131 config.rx_filter = HWTSTAMP_FILTER_ALL;
6132 break;
6133 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 6134 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6135 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 6136 is_l4 = true;
33af6bcc
PO
6137 break;
6138 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 6139 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6140 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 6141 is_l4 = true;
33af6bcc
PO
6142 break;
6143 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6144 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 6145 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6146 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
6147 is_l2 = true;
6148 is_l4 = true;
33af6bcc
PO
6149 config.rx_filter = HWTSTAMP_FILTER_SOME;
6150 break;
6151 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6152 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 6153 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6154 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
6155 is_l2 = true;
6156 is_l4 = true;
33af6bcc
PO
6157 config.rx_filter = HWTSTAMP_FILTER_SOME;
6158 break;
6159 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6160 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6161 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 6162 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 6163 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 6164 is_l2 = true;
33af6bcc
PO
6165 break;
6166 default:
6167 return -ERANGE;
6168 }
6169
c5b9bd5e
AD
6170 if (hw->mac.type == e1000_82575) {
6171 if (tsync_rx_ctl | tsync_tx_ctl)
6172 return -EINVAL;
6173 return 0;
6174 }
6175
757b77e2
NN
6176 /*
6177 * Per-packet timestamping only works if all packets are
6178 * timestamped, so enable timestamping in all packets as
6179 * long as one rx filter was configured.
6180 */
6181 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6182 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6183 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6184 }
6185
33af6bcc
PO
6186 /* enable/disable TX */
6187 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
6188 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6189 regval |= tsync_tx_ctl;
33af6bcc
PO
6190 wr32(E1000_TSYNCTXCTL, regval);
6191
c5b9bd5e 6192 /* enable/disable RX */
33af6bcc 6193 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
6194 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6195 regval |= tsync_rx_ctl;
33af6bcc 6196 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 6197
c5b9bd5e
AD
6198 /* define which PTP packets are time stamped */
6199 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 6200
c5b9bd5e
AD
6201 /* define ethertype filter for timestamped packets */
6202 if (is_l2)
6203 wr32(E1000_ETQF(3),
6204 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6205 E1000_ETQF_1588 | /* enable timestamping */
6206 ETH_P_1588)); /* 1588 eth protocol type */
6207 else
6208 wr32(E1000_ETQF(3), 0);
6209
6210#define PTP_PORT 319
6211 /* L4 Queue Filter[3]: filter by destination port and protocol */
6212 if (is_l4) {
6213 u32 ftqf = (IPPROTO_UDP /* UDP */
6214 | E1000_FTQF_VF_BP /* VF not compared */
6215 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6216 | E1000_FTQF_MASK); /* mask all inputs */
6217 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6218
6219 wr32(E1000_IMIR(3), htons(PTP_PORT));
6220 wr32(E1000_IMIREXT(3),
6221 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6222 if (hw->mac.type == e1000_82576) {
6223 /* enable source port check */
6224 wr32(E1000_SPQF(3), htons(PTP_PORT));
6225 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6226 }
6227 wr32(E1000_FTQF(3), ftqf);
6228 } else {
6229 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6230 }
33af6bcc
PO
6231 wrfl();
6232
6233 adapter->hwtstamp_config = config;
6234
6235 /* clear TX/RX time stamp registers, just to be sure */
6236 regval = rd32(E1000_TXSTMPH);
6237 regval = rd32(E1000_RXSTMPH);
c6cb090b 6238
33af6bcc
PO
6239 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6240 -EFAULT : 0;
c6cb090b
PO
6241}
6242
9d5c8243
AK
6243/**
6244 * igb_ioctl -
6245 * @netdev:
6246 * @ifreq:
6247 * @cmd:
6248 **/
6249static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6250{
6251 switch (cmd) {
6252 case SIOCGMIIPHY:
6253 case SIOCGMIIREG:
6254 case SIOCSMIIREG:
6255 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6256 case SIOCSHWTSTAMP:
6257 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6258 default:
6259 return -EOPNOTSUPP;
6260 }
6261}
6262
009bc06e
AD
6263s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6264{
6265 struct igb_adapter *adapter = hw->back;
6266 u16 cap_offset;
6267
bdaae04c 6268 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6269 if (!cap_offset)
6270 return -E1000_ERR_CONFIG;
6271
6272 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6273
6274 return 0;
6275}
6276
6277s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6278{
6279 struct igb_adapter *adapter = hw->back;
6280 u16 cap_offset;
6281
bdaae04c 6282 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6283 if (!cap_offset)
6284 return -E1000_ERR_CONFIG;
6285
6286 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6287
6288 return 0;
6289}
6290
b2cb09b1 6291static void igb_vlan_mode(struct net_device *netdev, u32 features)
9d5c8243
AK
6292{
6293 struct igb_adapter *adapter = netdev_priv(netdev);
6294 struct e1000_hw *hw = &adapter->hw;
6295 u32 ctrl, rctl;
6296
6297 igb_irq_disable(adapter);
9d5c8243 6298
b2cb09b1 6299 if (features & NETIF_F_HW_VLAN_RX) {
9d5c8243
AK
6300 /* enable VLAN tag insert/strip */
6301 ctrl = rd32(E1000_CTRL);
6302 ctrl |= E1000_CTRL_VME;
6303 wr32(E1000_CTRL, ctrl);
6304
51466239 6305 /* Disable CFI check */
9d5c8243 6306 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6307 rctl &= ~E1000_RCTL_CFIEN;
6308 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6309 } else {
6310 /* disable VLAN tag insert/strip */
6311 ctrl = rd32(E1000_CTRL);
6312 ctrl &= ~E1000_CTRL_VME;
6313 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6314 }
6315
e1739522
AD
6316 igb_rlpml_set(adapter);
6317
9d5c8243
AK
6318 if (!test_bit(__IGB_DOWN, &adapter->state))
6319 igb_irq_enable(adapter);
6320}
6321
6322static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6323{
6324 struct igb_adapter *adapter = netdev_priv(netdev);
6325 struct e1000_hw *hw = &adapter->hw;
4ae196df 6326 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6327
51466239
AD
6328 /* attempt to add filter to vlvf array */
6329 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6330
51466239
AD
6331 /* add the filter since PF can receive vlans w/o entry in vlvf */
6332 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6333
6334 set_bit(vid, adapter->active_vlans);
9d5c8243
AK
6335}
6336
6337static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6338{
6339 struct igb_adapter *adapter = netdev_priv(netdev);
6340 struct e1000_hw *hw = &adapter->hw;
4ae196df 6341 int pf_id = adapter->vfs_allocated_count;
51466239 6342 s32 err;
9d5c8243
AK
6343
6344 igb_irq_disable(adapter);
9d5c8243
AK
6345
6346 if (!test_bit(__IGB_DOWN, &adapter->state))
6347 igb_irq_enable(adapter);
6348
51466239
AD
6349 /* remove vlan from VLVF table array */
6350 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6351
51466239
AD
6352 /* if vid was not present in VLVF just remove it from table */
6353 if (err)
4ae196df 6354 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6355
6356 clear_bit(vid, adapter->active_vlans);
9d5c8243
AK
6357}
6358
6359static void igb_restore_vlan(struct igb_adapter *adapter)
6360{
b2cb09b1 6361 u16 vid;
9d5c8243 6362
b2cb09b1
JP
6363 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6364 igb_vlan_rx_add_vid(adapter->netdev, vid);
9d5c8243
AK
6365}
6366
14ad2513 6367int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6368{
090b1795 6369 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6370 struct e1000_mac_info *mac = &adapter->hw.mac;
6371
6372 mac->autoneg = 0;
6373
14ad2513
DD
6374 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6375 * for the switch() below to work */
6376 if ((spd & 1) || (dplx & ~1))
6377 goto err_inval;
6378
cd2638a8
CW
6379 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6380 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
14ad2513
DD
6381 spd != SPEED_1000 &&
6382 dplx != DUPLEX_FULL)
6383 goto err_inval;
cd2638a8 6384
14ad2513 6385 switch (spd + dplx) {
9d5c8243
AK
6386 case SPEED_10 + DUPLEX_HALF:
6387 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6388 break;
6389 case SPEED_10 + DUPLEX_FULL:
6390 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6391 break;
6392 case SPEED_100 + DUPLEX_HALF:
6393 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6394 break;
6395 case SPEED_100 + DUPLEX_FULL:
6396 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6397 break;
6398 case SPEED_1000 + DUPLEX_FULL:
6399 mac->autoneg = 1;
6400 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6401 break;
6402 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6403 default:
14ad2513 6404 goto err_inval;
9d5c8243
AK
6405 }
6406 return 0;
14ad2513
DD
6407
6408err_inval:
6409 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6410 return -EINVAL;
9d5c8243
AK
6411}
6412
3fe7c4c9 6413static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6414{
6415 struct net_device *netdev = pci_get_drvdata(pdev);
6416 struct igb_adapter *adapter = netdev_priv(netdev);
6417 struct e1000_hw *hw = &adapter->hw;
2d064c06 6418 u32 ctrl, rctl, status;
9d5c8243
AK
6419 u32 wufc = adapter->wol;
6420#ifdef CONFIG_PM
6421 int retval = 0;
6422#endif
6423
6424 netif_device_detach(netdev);
6425
a88f10ec
AD
6426 if (netif_running(netdev))
6427 igb_close(netdev);
6428
047e0030 6429 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6430
6431#ifdef CONFIG_PM
6432 retval = pci_save_state(pdev);
6433 if (retval)
6434 return retval;
6435#endif
6436
6437 status = rd32(E1000_STATUS);
6438 if (status & E1000_STATUS_LU)
6439 wufc &= ~E1000_WUFC_LNKC;
6440
6441 if (wufc) {
6442 igb_setup_rctl(adapter);
ff41f8dc 6443 igb_set_rx_mode(netdev);
9d5c8243
AK
6444
6445 /* turn on all-multi mode if wake on multicast is enabled */
6446 if (wufc & E1000_WUFC_MC) {
6447 rctl = rd32(E1000_RCTL);
6448 rctl |= E1000_RCTL_MPE;
6449 wr32(E1000_RCTL, rctl);
6450 }
6451
6452 ctrl = rd32(E1000_CTRL);
6453 /* advertise wake from D3Cold */
6454 #define E1000_CTRL_ADVD3WUC 0x00100000
6455 /* phy power management enable */
6456 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6457 ctrl |= E1000_CTRL_ADVD3WUC;
6458 wr32(E1000_CTRL, ctrl);
6459
9d5c8243 6460 /* Allow time for pending master requests to run */
330a6d6a 6461 igb_disable_pcie_master(hw);
9d5c8243
AK
6462
6463 wr32(E1000_WUC, E1000_WUC_PME_EN);
6464 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6465 } else {
6466 wr32(E1000_WUC, 0);
6467 wr32(E1000_WUFC, 0);
9d5c8243
AK
6468 }
6469
3fe7c4c9
RW
6470 *enable_wake = wufc || adapter->en_mng_pt;
6471 if (!*enable_wake)
88a268c1
NN
6472 igb_power_down_link(adapter);
6473 else
6474 igb_power_up_link(adapter);
9d5c8243
AK
6475
6476 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6477 * would have already happened in close and is redundant. */
6478 igb_release_hw_control(adapter);
6479
6480 pci_disable_device(pdev);
6481
9d5c8243
AK
6482 return 0;
6483}
6484
6485#ifdef CONFIG_PM
3fe7c4c9
RW
6486static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6487{
6488 int retval;
6489 bool wake;
6490
6491 retval = __igb_shutdown(pdev, &wake);
6492 if (retval)
6493 return retval;
6494
6495 if (wake) {
6496 pci_prepare_to_sleep(pdev);
6497 } else {
6498 pci_wake_from_d3(pdev, false);
6499 pci_set_power_state(pdev, PCI_D3hot);
6500 }
6501
6502 return 0;
6503}
6504
9d5c8243
AK
6505static int igb_resume(struct pci_dev *pdev)
6506{
6507 struct net_device *netdev = pci_get_drvdata(pdev);
6508 struct igb_adapter *adapter = netdev_priv(netdev);
6509 struct e1000_hw *hw = &adapter->hw;
6510 u32 err;
6511
6512 pci_set_power_state(pdev, PCI_D0);
6513 pci_restore_state(pdev);
b94f2d77 6514 pci_save_state(pdev);
42bfd33a 6515
aed5dec3 6516 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6517 if (err) {
6518 dev_err(&pdev->dev,
6519 "igb: Cannot enable PCI device from suspend\n");
6520 return err;
6521 }
6522 pci_set_master(pdev);
6523
6524 pci_enable_wake(pdev, PCI_D3hot, 0);
6525 pci_enable_wake(pdev, PCI_D3cold, 0);
6526
047e0030 6527 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6528 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6529 return -ENOMEM;
9d5c8243
AK
6530 }
6531
9d5c8243 6532 igb_reset(adapter);
a8564f03
AD
6533
6534 /* let the f/w know that the h/w is now under the control of the
6535 * driver. */
6536 igb_get_hw_control(adapter);
6537
9d5c8243
AK
6538 wr32(E1000_WUS, ~0);
6539
a88f10ec
AD
6540 if (netif_running(netdev)) {
6541 err = igb_open(netdev);
6542 if (err)
6543 return err;
6544 }
9d5c8243
AK
6545
6546 netif_device_attach(netdev);
6547
9d5c8243
AK
6548 return 0;
6549}
6550#endif
6551
6552static void igb_shutdown(struct pci_dev *pdev)
6553{
3fe7c4c9
RW
6554 bool wake;
6555
6556 __igb_shutdown(pdev, &wake);
6557
6558 if (system_state == SYSTEM_POWER_OFF) {
6559 pci_wake_from_d3(pdev, wake);
6560 pci_set_power_state(pdev, PCI_D3hot);
6561 }
9d5c8243
AK
6562}
6563
6564#ifdef CONFIG_NET_POLL_CONTROLLER
6565/*
6566 * Polling 'interrupt' - used by things like netconsole to send skbs
6567 * without having to re-enable interrupts. It's not called while
6568 * the interrupt routine is executing.
6569 */
6570static void igb_netpoll(struct net_device *netdev)
6571{
6572 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6573 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6574 int i;
9d5c8243 6575
eebbbdba 6576 if (!adapter->msix_entries) {
047e0030 6577 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 6578 igb_irq_disable(adapter);
047e0030 6579 napi_schedule(&q_vector->napi);
eebbbdba
AD
6580 return;
6581 }
9d5c8243 6582
047e0030
AD
6583 for (i = 0; i < adapter->num_q_vectors; i++) {
6584 struct igb_q_vector *q_vector = adapter->q_vector[i];
6585 wr32(E1000_EIMC, q_vector->eims_value);
6586 napi_schedule(&q_vector->napi);
eebbbdba 6587 }
9d5c8243
AK
6588}
6589#endif /* CONFIG_NET_POLL_CONTROLLER */
6590
6591/**
6592 * igb_io_error_detected - called when PCI error is detected
6593 * @pdev: Pointer to PCI device
6594 * @state: The current pci connection state
6595 *
6596 * This function is called after a PCI bus error affecting
6597 * this device has been detected.
6598 */
6599static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6600 pci_channel_state_t state)
6601{
6602 struct net_device *netdev = pci_get_drvdata(pdev);
6603 struct igb_adapter *adapter = netdev_priv(netdev);
6604
6605 netif_device_detach(netdev);
6606
59ed6eec
AD
6607 if (state == pci_channel_io_perm_failure)
6608 return PCI_ERS_RESULT_DISCONNECT;
6609
9d5c8243
AK
6610 if (netif_running(netdev))
6611 igb_down(adapter);
6612 pci_disable_device(pdev);
6613
6614 /* Request a slot slot reset. */
6615 return PCI_ERS_RESULT_NEED_RESET;
6616}
6617
6618/**
6619 * igb_io_slot_reset - called after the pci bus has been reset.
6620 * @pdev: Pointer to PCI device
6621 *
6622 * Restart the card from scratch, as if from a cold-boot. Implementation
6623 * resembles the first-half of the igb_resume routine.
6624 */
6625static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6626{
6627 struct net_device *netdev = pci_get_drvdata(pdev);
6628 struct igb_adapter *adapter = netdev_priv(netdev);
6629 struct e1000_hw *hw = &adapter->hw;
40a914fa 6630 pci_ers_result_t result;
42bfd33a 6631 int err;
9d5c8243 6632
aed5dec3 6633 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6634 dev_err(&pdev->dev,
6635 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6636 result = PCI_ERS_RESULT_DISCONNECT;
6637 } else {
6638 pci_set_master(pdev);
6639 pci_restore_state(pdev);
b94f2d77 6640 pci_save_state(pdev);
9d5c8243 6641
40a914fa
AD
6642 pci_enable_wake(pdev, PCI_D3hot, 0);
6643 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6644
40a914fa
AD
6645 igb_reset(adapter);
6646 wr32(E1000_WUS, ~0);
6647 result = PCI_ERS_RESULT_RECOVERED;
6648 }
9d5c8243 6649
ea943d41
JK
6650 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6651 if (err) {
6652 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6653 "failed 0x%0x\n", err);
6654 /* non-fatal, continue */
6655 }
40a914fa
AD
6656
6657 return result;
9d5c8243
AK
6658}
6659
6660/**
6661 * igb_io_resume - called when traffic can start flowing again.
6662 * @pdev: Pointer to PCI device
6663 *
6664 * This callback is called when the error recovery driver tells us that
6665 * its OK to resume normal operation. Implementation resembles the
6666 * second-half of the igb_resume routine.
6667 */
6668static void igb_io_resume(struct pci_dev *pdev)
6669{
6670 struct net_device *netdev = pci_get_drvdata(pdev);
6671 struct igb_adapter *adapter = netdev_priv(netdev);
6672
9d5c8243
AK
6673 if (netif_running(netdev)) {
6674 if (igb_up(adapter)) {
6675 dev_err(&pdev->dev, "igb_up failed after reset\n");
6676 return;
6677 }
6678 }
6679
6680 netif_device_attach(netdev);
6681
6682 /* let the f/w know that the h/w is now under the control of the
6683 * driver. */
6684 igb_get_hw_control(adapter);
9d5c8243
AK
6685}
6686
26ad9178
AD
6687static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6688 u8 qsel)
6689{
6690 u32 rar_low, rar_high;
6691 struct e1000_hw *hw = &adapter->hw;
6692
6693 /* HW expects these in little endian so we reverse the byte order
6694 * from network order (big endian) to little endian
6695 */
6696 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6697 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6698 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6699
6700 /* Indicate to hardware the Address is Valid. */
6701 rar_high |= E1000_RAH_AV;
6702
6703 if (hw->mac.type == e1000_82575)
6704 rar_high |= E1000_RAH_POOL_1 * qsel;
6705 else
6706 rar_high |= E1000_RAH_POOL_1 << qsel;
6707
6708 wr32(E1000_RAL(index), rar_low);
6709 wrfl();
6710 wr32(E1000_RAH(index), rar_high);
6711 wrfl();
6712}
6713
4ae196df
AD
6714static int igb_set_vf_mac(struct igb_adapter *adapter,
6715 int vf, unsigned char *mac_addr)
6716{
6717 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6718 /* VF MAC addresses start at end of receive addresses and moves
6719 * torwards the first, as a result a collision should not be possible */
6720 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6721
37680117 6722 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6723
26ad9178 6724 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6725
6726 return 0;
6727}
6728
8151d294
WM
6729static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6730{
6731 struct igb_adapter *adapter = netdev_priv(netdev);
6732 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6733 return -EINVAL;
6734 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6735 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6736 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6737 " change effective.");
6738 if (test_bit(__IGB_DOWN, &adapter->state)) {
6739 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6740 " but the PF device is not up.\n");
6741 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6742 " attempting to use the VF device.\n");
6743 }
6744 return igb_set_vf_mac(adapter, vf, mac);
6745}
6746
17dc566c
LL
6747static int igb_link_mbps(int internal_link_speed)
6748{
6749 switch (internal_link_speed) {
6750 case SPEED_100:
6751 return 100;
6752 case SPEED_1000:
6753 return 1000;
6754 default:
6755 return 0;
6756 }
6757}
6758
6759static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6760 int link_speed)
6761{
6762 int rf_dec, rf_int;
6763 u32 bcnrc_val;
6764
6765 if (tx_rate != 0) {
6766 /* Calculate the rate factor values to set */
6767 rf_int = link_speed / tx_rate;
6768 rf_dec = (link_speed - (rf_int * tx_rate));
6769 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6770
6771 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6772 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6773 E1000_RTTBCNRC_RF_INT_MASK);
6774 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6775 } else {
6776 bcnrc_val = 0;
6777 }
6778
6779 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6780 wr32(E1000_RTTBCNRC, bcnrc_val);
6781}
6782
6783static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6784{
6785 int actual_link_speed, i;
6786 bool reset_rate = false;
6787
6788 /* VF TX rate limit was not set or not supported */
6789 if ((adapter->vf_rate_link_speed == 0) ||
6790 (adapter->hw.mac.type != e1000_82576))
6791 return;
6792
6793 actual_link_speed = igb_link_mbps(adapter->link_speed);
6794 if (actual_link_speed != adapter->vf_rate_link_speed) {
6795 reset_rate = true;
6796 adapter->vf_rate_link_speed = 0;
6797 dev_info(&adapter->pdev->dev,
6798 "Link speed has been changed. VF Transmit "
6799 "rate is disabled\n");
6800 }
6801
6802 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6803 if (reset_rate)
6804 adapter->vf_data[i].tx_rate = 0;
6805
6806 igb_set_vf_rate_limit(&adapter->hw, i,
6807 adapter->vf_data[i].tx_rate,
6808 actual_link_speed);
6809 }
6810}
6811
8151d294
WM
6812static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6813{
17dc566c
LL
6814 struct igb_adapter *adapter = netdev_priv(netdev);
6815 struct e1000_hw *hw = &adapter->hw;
6816 int actual_link_speed;
6817
6818 if (hw->mac.type != e1000_82576)
6819 return -EOPNOTSUPP;
6820
6821 actual_link_speed = igb_link_mbps(adapter->link_speed);
6822 if ((vf >= adapter->vfs_allocated_count) ||
6823 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6824 (tx_rate < 0) || (tx_rate > actual_link_speed))
6825 return -EINVAL;
6826
6827 adapter->vf_rate_link_speed = actual_link_speed;
6828 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6829 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6830
6831 return 0;
8151d294
WM
6832}
6833
6834static int igb_ndo_get_vf_config(struct net_device *netdev,
6835 int vf, struct ifla_vf_info *ivi)
6836{
6837 struct igb_adapter *adapter = netdev_priv(netdev);
6838 if (vf >= adapter->vfs_allocated_count)
6839 return -EINVAL;
6840 ivi->vf = vf;
6841 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 6842 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
6843 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6844 ivi->qos = adapter->vf_data[vf].pf_qos;
6845 return 0;
6846}
6847
4ae196df
AD
6848static void igb_vmm_control(struct igb_adapter *adapter)
6849{
6850 struct e1000_hw *hw = &adapter->hw;
10d8e907 6851 u32 reg;
4ae196df 6852
52a1dd4d
AD
6853 switch (hw->mac.type) {
6854 case e1000_82575:
6855 default:
6856 /* replication is not supported for 82575 */
4ae196df 6857 return;
52a1dd4d
AD
6858 case e1000_82576:
6859 /* notify HW that the MAC is adding vlan tags */
6860 reg = rd32(E1000_DTXCTL);
6861 reg |= E1000_DTXCTL_VLAN_ADDED;
6862 wr32(E1000_DTXCTL, reg);
6863 case e1000_82580:
6864 /* enable replication vlan tag stripping */
6865 reg = rd32(E1000_RPLOLR);
6866 reg |= E1000_RPLOLR_STRVLAN;
6867 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6868 case e1000_i350:
6869 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6870 break;
6871 }
10d8e907 6872
d4960307
AD
6873 if (adapter->vfs_allocated_count) {
6874 igb_vmdq_set_loopback_pf(hw, true);
6875 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
6876 igb_vmdq_set_anti_spoofing_pf(hw, true,
6877 adapter->vfs_allocated_count);
d4960307
AD
6878 } else {
6879 igb_vmdq_set_loopback_pf(hw, false);
6880 igb_vmdq_set_replication_pf(hw, false);
6881 }
4ae196df
AD
6882}
6883
9d5c8243 6884/* igb_main.c */