igb: Consolidate creation of Tx context descriptors into a single function
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4297f99b 4 Copyright(c) 2007-2011 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
b2cb09b1 31#include <linux/bitops.h>
9d5c8243
AK
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/netdevice.h>
9d5c8243 35#include <linux/ipv6.h>
5a0e3ad6 36#include <linux/slab.h>
9d5c8243
AK
37#include <net/checksum.h>
38#include <net/ip6_checksum.h>
c6cb090b 39#include <linux/net_tstamp.h>
9d5c8243
AK
40#include <linux/mii.h>
41#include <linux/ethtool.h>
01789349 42#include <linux/if.h>
9d5c8243
AK
43#include <linux/if_vlan.h>
44#include <linux/pci.h>
c54106bb 45#include <linux/pci-aspm.h>
9d5c8243
AK
46#include <linux/delay.h>
47#include <linux/interrupt.h>
7d13a7d0
AD
48#include <linux/ip.h>
49#include <linux/tcp.h>
50#include <linux/sctp.h>
9d5c8243 51#include <linux/if_ether.h>
40a914fa 52#include <linux/aer.h>
70c71606 53#include <linux/prefetch.h>
421e02f0 54#ifdef CONFIG_IGB_DCA
fe4506b6
JC
55#include <linux/dca.h>
56#endif
9d5c8243
AK
57#include "igb.h"
58
0d1fe82d
CW
59#define MAJ 3
60#define MIN 0
61#define BUILD 6
0d1fe82d 62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 63__stringify(BUILD) "-k"
9d5c8243
AK
64char igb_driver_name[] = "igb";
65char igb_driver_version[] = DRV_VERSION;
66static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
4c4b42cb 68static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
9d5c8243 69
9d5c8243
AK
70static const struct e1000_info *igb_info_tbl[] = {
71 [board_82575] = &e1000_82575_info,
72};
73
a3aa1884 74static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
100 /* required last entry */
101 {0, }
102};
103
104MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
105
106void igb_reset(struct igb_adapter *);
107static int igb_setup_all_tx_resources(struct igb_adapter *);
108static int igb_setup_all_rx_resources(struct igb_adapter *);
109static void igb_free_all_tx_resources(struct igb_adapter *);
110static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 111static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
112static int igb_probe(struct pci_dev *, const struct pci_device_id *);
113static void __devexit igb_remove(struct pci_dev *pdev);
673b8b70 114static void igb_init_hw_timer(struct igb_adapter *adapter);
9d5c8243
AK
115static int igb_sw_init(struct igb_adapter *);
116static int igb_open(struct net_device *);
117static int igb_close(struct net_device *);
118static void igb_configure_tx(struct igb_adapter *);
119static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
120static void igb_clean_all_tx_rings(struct igb_adapter *);
121static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
122static void igb_clean_tx_ring(struct igb_ring *);
123static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 124static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
125static void igb_update_phy_info(unsigned long);
126static void igb_watchdog(unsigned long);
127static void igb_watchdog_task(struct work_struct *);
cd392f5c 128static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
129static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
130 struct rtnl_link_stats64 *stats);
9d5c8243
AK
131static int igb_change_mtu(struct net_device *, int);
132static int igb_set_mac(struct net_device *, void *);
68d480c4 133static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
134static irqreturn_t igb_intr(int irq, void *);
135static irqreturn_t igb_intr_msi(int irq, void *);
136static irqreturn_t igb_msix_other(int irq, void *);
047e0030 137static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 138#ifdef CONFIG_IGB_DCA
047e0030 139static void igb_update_dca(struct igb_q_vector *);
fe4506b6 140static void igb_setup_dca(struct igb_adapter *);
421e02f0 141#endif /* CONFIG_IGB_DCA */
661086df 142static int igb_poll(struct napi_struct *, int);
13fde97a 143static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 144static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
145static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
146static void igb_tx_timeout(struct net_device *);
147static void igb_reset_task(struct work_struct *);
b2cb09b1 148static void igb_vlan_mode(struct net_device *netdev, u32 features);
9d5c8243
AK
149static void igb_vlan_rx_add_vid(struct net_device *, u16);
150static void igb_vlan_rx_kill_vid(struct net_device *, u16);
151static void igb_restore_vlan(struct igb_adapter *);
26ad9178 152static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
153static void igb_ping_all_vfs(struct igb_adapter *);
154static void igb_msg_task(struct igb_adapter *);
4ae196df 155static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 156static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 157static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
158static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
159static int igb_ndo_set_vf_vlan(struct net_device *netdev,
160 int vf, u16 vlan, u8 qos);
161static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
162static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
163 struct ifla_vf_info *ivi);
17dc566c 164static void igb_check_vf_rate_limit(struct igb_adapter *);
9d5c8243 165
9d5c8243 166#ifdef CONFIG_PM
3fe7c4c9 167static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
168static int igb_resume(struct pci_dev *);
169#endif
170static void igb_shutdown(struct pci_dev *);
421e02f0 171#ifdef CONFIG_IGB_DCA
fe4506b6
JC
172static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
173static struct notifier_block dca_notifier = {
174 .notifier_call = igb_notify_dca,
175 .next = NULL,
176 .priority = 0
177};
178#endif
9d5c8243
AK
179#ifdef CONFIG_NET_POLL_CONTROLLER
180/* for netdump / net console */
181static void igb_netpoll(struct net_device *);
182#endif
37680117 183#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
184static unsigned int max_vfs = 0;
185module_param(max_vfs, uint, 0);
186MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
187 "per physical function");
188#endif /* CONFIG_PCI_IOV */
189
9d5c8243
AK
190static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
191 pci_channel_state_t);
192static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
193static void igb_io_resume(struct pci_dev *);
194
195static struct pci_error_handlers igb_err_handler = {
196 .error_detected = igb_io_error_detected,
197 .slot_reset = igb_io_slot_reset,
198 .resume = igb_io_resume,
199};
200
201
202static struct pci_driver igb_driver = {
203 .name = igb_driver_name,
204 .id_table = igb_pci_tbl,
205 .probe = igb_probe,
206 .remove = __devexit_p(igb_remove),
207#ifdef CONFIG_PM
25985edc 208 /* Power Management Hooks */
9d5c8243
AK
209 .suspend = igb_suspend,
210 .resume = igb_resume,
211#endif
212 .shutdown = igb_shutdown,
213 .err_handler = &igb_err_handler
214};
215
216MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
217MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
218MODULE_LICENSE("GPL");
219MODULE_VERSION(DRV_VERSION);
220
c97ec42a
TI
221struct igb_reg_info {
222 u32 ofs;
223 char *name;
224};
225
226static const struct igb_reg_info igb_reg_info_tbl[] = {
227
228 /* General Registers */
229 {E1000_CTRL, "CTRL"},
230 {E1000_STATUS, "STATUS"},
231 {E1000_CTRL_EXT, "CTRL_EXT"},
232
233 /* Interrupt Registers */
234 {E1000_ICR, "ICR"},
235
236 /* RX Registers */
237 {E1000_RCTL, "RCTL"},
238 {E1000_RDLEN(0), "RDLEN"},
239 {E1000_RDH(0), "RDH"},
240 {E1000_RDT(0), "RDT"},
241 {E1000_RXDCTL(0), "RXDCTL"},
242 {E1000_RDBAL(0), "RDBAL"},
243 {E1000_RDBAH(0), "RDBAH"},
244
245 /* TX Registers */
246 {E1000_TCTL, "TCTL"},
247 {E1000_TDBAL(0), "TDBAL"},
248 {E1000_TDBAH(0), "TDBAH"},
249 {E1000_TDLEN(0), "TDLEN"},
250 {E1000_TDH(0), "TDH"},
251 {E1000_TDT(0), "TDT"},
252 {E1000_TXDCTL(0), "TXDCTL"},
253 {E1000_TDFH, "TDFH"},
254 {E1000_TDFT, "TDFT"},
255 {E1000_TDFHS, "TDFHS"},
256 {E1000_TDFPC, "TDFPC"},
257
258 /* List Terminator */
259 {}
260};
261
262/*
263 * igb_regdump - register printout routine
264 */
265static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
266{
267 int n = 0;
268 char rname[16];
269 u32 regs[8];
270
271 switch (reginfo->ofs) {
272 case E1000_RDLEN(0):
273 for (n = 0; n < 4; n++)
274 regs[n] = rd32(E1000_RDLEN(n));
275 break;
276 case E1000_RDH(0):
277 for (n = 0; n < 4; n++)
278 regs[n] = rd32(E1000_RDH(n));
279 break;
280 case E1000_RDT(0):
281 for (n = 0; n < 4; n++)
282 regs[n] = rd32(E1000_RDT(n));
283 break;
284 case E1000_RXDCTL(0):
285 for (n = 0; n < 4; n++)
286 regs[n] = rd32(E1000_RXDCTL(n));
287 break;
288 case E1000_RDBAL(0):
289 for (n = 0; n < 4; n++)
290 regs[n] = rd32(E1000_RDBAL(n));
291 break;
292 case E1000_RDBAH(0):
293 for (n = 0; n < 4; n++)
294 regs[n] = rd32(E1000_RDBAH(n));
295 break;
296 case E1000_TDBAL(0):
297 for (n = 0; n < 4; n++)
298 regs[n] = rd32(E1000_RDBAL(n));
299 break;
300 case E1000_TDBAH(0):
301 for (n = 0; n < 4; n++)
302 regs[n] = rd32(E1000_TDBAH(n));
303 break;
304 case E1000_TDLEN(0):
305 for (n = 0; n < 4; n++)
306 regs[n] = rd32(E1000_TDLEN(n));
307 break;
308 case E1000_TDH(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_TDH(n));
311 break;
312 case E1000_TDT(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_TDT(n));
315 break;
316 case E1000_TXDCTL(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_TXDCTL(n));
319 break;
320 default:
321 printk(KERN_INFO "%-15s %08x\n",
322 reginfo->name, rd32(reginfo->ofs));
323 return;
324 }
325
326 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
327 printk(KERN_INFO "%-15s ", rname);
328 for (n = 0; n < 4; n++)
329 printk(KERN_CONT "%08x ", regs[n]);
330 printk(KERN_CONT "\n");
331}
332
333/*
334 * igb_dump - Print registers, tx-rings and rx-rings
335 */
336static void igb_dump(struct igb_adapter *adapter)
337{
338 struct net_device *netdev = adapter->netdev;
339 struct e1000_hw *hw = &adapter->hw;
340 struct igb_reg_info *reginfo;
341 int n = 0;
342 struct igb_ring *tx_ring;
343 union e1000_adv_tx_desc *tx_desc;
344 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
345 struct igb_ring *rx_ring;
346 union e1000_adv_rx_desc *rx_desc;
347 u32 staterr;
348 int i = 0;
349
350 if (!netif_msg_hw(adapter))
351 return;
352
353 /* Print netdevice Info */
354 if (netdev) {
355 dev_info(&adapter->pdev->dev, "Net device Info\n");
356 printk(KERN_INFO "Device Name state "
357 "trans_start last_rx\n");
358 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
359 netdev->name,
360 netdev->state,
361 netdev->trans_start,
362 netdev->last_rx);
363 }
364
365 /* Print Registers */
366 dev_info(&adapter->pdev->dev, "Register Dump\n");
367 printk(KERN_INFO " Register Name Value\n");
368 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
369 reginfo->name; reginfo++) {
370 igb_regdump(hw, reginfo);
371 }
372
373 /* Print TX Ring Summary */
374 if (!netdev || !netif_running(netdev))
375 goto exit;
376
377 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
378 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
379 " leng ntw timestamp\n");
380 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 381 struct igb_tx_buffer *buffer_info;
c97ec42a 382 tx_ring = adapter->tx_ring[n];
06034649 383 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
c97ec42a
TI
384 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
385 n, tx_ring->next_to_use, tx_ring->next_to_clean,
386 (u64)buffer_info->dma,
387 buffer_info->length,
388 buffer_info->next_to_watch,
389 (u64)buffer_info->time_stamp);
390 }
391
392 /* Print TX Rings */
393 if (!netif_msg_tx_done(adapter))
394 goto rx_ring_summary;
395
396 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
397
398 /* Transmit Descriptor Formats
399 *
400 * Advanced Transmit Descriptor
401 * +--------------------------------------------------------------+
402 * 0 | Buffer Address [63:0] |
403 * +--------------------------------------------------------------+
404 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
405 * +--------------------------------------------------------------+
406 * 63 46 45 40 39 38 36 35 32 31 24 15 0
407 */
408
409 for (n = 0; n < adapter->num_tx_queues; n++) {
410 tx_ring = adapter->tx_ring[n];
411 printk(KERN_INFO "------------------------------------\n");
412 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
413 printk(KERN_INFO "------------------------------------\n");
414 printk(KERN_INFO "T [desc] [address 63:0 ] "
415 "[PlPOCIStDDM Ln] [bi->dma ] "
416 "leng ntw timestamp bi->skb\n");
417
418 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
06034649 419 struct igb_tx_buffer *buffer_info;
60136906 420 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 421 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a
TI
422 u0 = (struct my_u0 *)tx_desc;
423 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
424 " %04X %3X %016llX %p", i,
425 le64_to_cpu(u0->a),
426 le64_to_cpu(u0->b),
427 (u64)buffer_info->dma,
428 buffer_info->length,
429 buffer_info->next_to_watch,
430 (u64)buffer_info->time_stamp,
431 buffer_info->skb);
432 if (i == tx_ring->next_to_use &&
433 i == tx_ring->next_to_clean)
434 printk(KERN_CONT " NTC/U\n");
435 else if (i == tx_ring->next_to_use)
436 printk(KERN_CONT " NTU\n");
437 else if (i == tx_ring->next_to_clean)
438 printk(KERN_CONT " NTC\n");
439 else
440 printk(KERN_CONT "\n");
441
442 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
443 print_hex_dump(KERN_INFO, "",
444 DUMP_PREFIX_ADDRESS,
445 16, 1, phys_to_virt(buffer_info->dma),
446 buffer_info->length, true);
447 }
448 }
449
450 /* Print RX Rings Summary */
451rx_ring_summary:
452 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
453 printk(KERN_INFO "Queue [NTU] [NTC]\n");
454 for (n = 0; n < adapter->num_rx_queues; n++) {
455 rx_ring = adapter->rx_ring[n];
456 printk(KERN_INFO " %5d %5X %5X\n", n,
457 rx_ring->next_to_use, rx_ring->next_to_clean);
458 }
459
460 /* Print RX Rings */
461 if (!netif_msg_rx_status(adapter))
462 goto exit;
463
464 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
465
466 /* Advanced Receive Descriptor (Read) Format
467 * 63 1 0
468 * +-----------------------------------------------------+
469 * 0 | Packet Buffer Address [63:1] |A0/NSE|
470 * +----------------------------------------------+------+
471 * 8 | Header Buffer Address [63:1] | DD |
472 * +-----------------------------------------------------+
473 *
474 *
475 * Advanced Receive Descriptor (Write-Back) Format
476 *
477 * 63 48 47 32 31 30 21 20 17 16 4 3 0
478 * +------------------------------------------------------+
479 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
480 * | Checksum Ident | | | | Type | Type |
481 * +------------------------------------------------------+
482 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
483 * +------------------------------------------------------+
484 * 63 48 47 32 31 20 19 0
485 */
486
487 for (n = 0; n < adapter->num_rx_queues; n++) {
488 rx_ring = adapter->rx_ring[n];
489 printk(KERN_INFO "------------------------------------\n");
490 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
491 printk(KERN_INFO "------------------------------------\n");
492 printk(KERN_INFO "R [desc] [ PktBuf A0] "
493 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
494 "<-- Adv Rx Read format\n");
495 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
496 "[vl er S cks ln] ---------------- [bi->skb] "
497 "<-- Adv Rx Write-Back format\n");
498
499 for (i = 0; i < rx_ring->count; i++) {
06034649
AD
500 struct igb_rx_buffer *buffer_info;
501 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 502 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
503 u0 = (struct my_u0 *)rx_desc;
504 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
505 if (staterr & E1000_RXD_STAT_DD) {
506 /* Descriptor Done */
507 printk(KERN_INFO "RWB[0x%03X] %016llX "
508 "%016llX ---------------- %p", i,
509 le64_to_cpu(u0->a),
510 le64_to_cpu(u0->b),
511 buffer_info->skb);
512 } else {
513 printk(KERN_INFO "R [0x%03X] %016llX "
514 "%016llX %016llX %p", i,
515 le64_to_cpu(u0->a),
516 le64_to_cpu(u0->b),
517 (u64)buffer_info->dma,
518 buffer_info->skb);
519
520 if (netif_msg_pktdata(adapter)) {
521 print_hex_dump(KERN_INFO, "",
522 DUMP_PREFIX_ADDRESS,
523 16, 1,
524 phys_to_virt(buffer_info->dma),
44390ca6
AD
525 IGB_RX_HDR_LEN, true);
526 print_hex_dump(KERN_INFO, "",
527 DUMP_PREFIX_ADDRESS,
528 16, 1,
529 phys_to_virt(
530 buffer_info->page_dma +
531 buffer_info->page_offset),
532 PAGE_SIZE/2, true);
c97ec42a
TI
533 }
534 }
535
536 if (i == rx_ring->next_to_use)
537 printk(KERN_CONT " NTU\n");
538 else if (i == rx_ring->next_to_clean)
539 printk(KERN_CONT " NTC\n");
540 else
541 printk(KERN_CONT "\n");
542
543 }
544 }
545
546exit:
547 return;
548}
549
550
38c845c7
PO
551/**
552 * igb_read_clock - read raw cycle counter (to be used by time counter)
553 */
554static cycle_t igb_read_clock(const struct cyclecounter *tc)
555{
556 struct igb_adapter *adapter =
557 container_of(tc, struct igb_adapter, cycles);
558 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
559 u64 stamp = 0;
560 int shift = 0;
38c845c7 561
55cac248
AD
562 /*
563 * The timestamp latches on lowest register read. For the 82580
564 * the lowest register is SYSTIMR instead of SYSTIML. However we never
565 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
566 */
567 if (hw->mac.type == e1000_82580) {
568 stamp = rd32(E1000_SYSTIMR) >> 8;
569 shift = IGB_82580_TSYNC_SHIFT;
570 }
571
c5b9bd5e
AD
572 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
573 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
574 return stamp;
575}
576
9d5c8243 577/**
c041076a 578 * igb_get_hw_dev - return device
9d5c8243
AK
579 * used by hardware layer to print debugging information
580 **/
c041076a 581struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
582{
583 struct igb_adapter *adapter = hw->back;
c041076a 584 return adapter->netdev;
9d5c8243 585}
38c845c7 586
9d5c8243
AK
587/**
588 * igb_init_module - Driver Registration Routine
589 *
590 * igb_init_module is the first routine called when the driver is
591 * loaded. All it does is register with the PCI subsystem.
592 **/
593static int __init igb_init_module(void)
594{
595 int ret;
596 printk(KERN_INFO "%s - version %s\n",
597 igb_driver_string, igb_driver_version);
598
599 printk(KERN_INFO "%s\n", igb_copyright);
600
421e02f0 601#ifdef CONFIG_IGB_DCA
fe4506b6
JC
602 dca_register_notify(&dca_notifier);
603#endif
bbd98fe4 604 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
605 return ret;
606}
607
608module_init(igb_init_module);
609
610/**
611 * igb_exit_module - Driver Exit Cleanup Routine
612 *
613 * igb_exit_module is called just before the driver is removed
614 * from memory.
615 **/
616static void __exit igb_exit_module(void)
617{
421e02f0 618#ifdef CONFIG_IGB_DCA
fe4506b6
JC
619 dca_unregister_notify(&dca_notifier);
620#endif
9d5c8243
AK
621 pci_unregister_driver(&igb_driver);
622}
623
624module_exit(igb_exit_module);
625
26bc19ec
AD
626#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
627/**
628 * igb_cache_ring_register - Descriptor ring to register mapping
629 * @adapter: board private structure to initialize
630 *
631 * Once we know the feature-set enabled for the device, we'll cache
632 * the register offset the descriptor ring is assigned to.
633 **/
634static void igb_cache_ring_register(struct igb_adapter *adapter)
635{
ee1b9f06 636 int i = 0, j = 0;
047e0030 637 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
638
639 switch (adapter->hw.mac.type) {
640 case e1000_82576:
641 /* The queues are allocated for virtualization such that VF 0
642 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
643 * In order to avoid collision we start at the first free queue
644 * and continue consuming queues in the same sequence
645 */
ee1b9f06 646 if (adapter->vfs_allocated_count) {
a99955fc 647 for (; i < adapter->rss_queues; i++)
3025a446
AD
648 adapter->rx_ring[i]->reg_idx = rbase_offset +
649 Q_IDX_82576(i);
ee1b9f06 650 }
26bc19ec 651 case e1000_82575:
55cac248 652 case e1000_82580:
d2ba2ed8 653 case e1000_i350:
26bc19ec 654 default:
ee1b9f06 655 for (; i < adapter->num_rx_queues; i++)
3025a446 656 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 657 for (; j < adapter->num_tx_queues; j++)
3025a446 658 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
659 break;
660 }
661}
662
047e0030
AD
663static void igb_free_queues(struct igb_adapter *adapter)
664{
3025a446 665 int i;
047e0030 666
3025a446
AD
667 for (i = 0; i < adapter->num_tx_queues; i++) {
668 kfree(adapter->tx_ring[i]);
669 adapter->tx_ring[i] = NULL;
670 }
671 for (i = 0; i < adapter->num_rx_queues; i++) {
672 kfree(adapter->rx_ring[i]);
673 adapter->rx_ring[i] = NULL;
674 }
047e0030
AD
675 adapter->num_rx_queues = 0;
676 adapter->num_tx_queues = 0;
677}
678
9d5c8243
AK
679/**
680 * igb_alloc_queues - Allocate memory for all rings
681 * @adapter: board private structure to initialize
682 *
683 * We allocate one ring per queue at run-time since we don't know the
684 * number of queues at compile-time.
685 **/
686static int igb_alloc_queues(struct igb_adapter *adapter)
687{
3025a446 688 struct igb_ring *ring;
9d5c8243
AK
689 int i;
690
661086df 691 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
692 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
693 if (!ring)
694 goto err;
68fd9910 695 ring->count = adapter->tx_ring_count;
661086df 696 ring->queue_index = i;
59d71989 697 ring->dev = &adapter->pdev->dev;
e694e964 698 ring->netdev = adapter->netdev;
85ad76b2
AD
699 /* For 82575, context index must be unique per ring. */
700 if (adapter->hw.mac.type == e1000_82575)
701 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
3025a446 702 adapter->tx_ring[i] = ring;
661086df 703 }
85ad76b2 704
9d5c8243 705 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446
AD
706 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
707 if (!ring)
708 goto err;
68fd9910 709 ring->count = adapter->rx_ring_count;
844290e5 710 ring->queue_index = i;
59d71989 711 ring->dev = &adapter->pdev->dev;
e694e964 712 ring->netdev = adapter->netdev;
85ad76b2
AD
713 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
714 /* set flag indicating ring supports SCTP checksum offload */
715 if (adapter->hw.mac.type >= e1000_82576)
716 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
3025a446 717 adapter->rx_ring[i] = ring;
9d5c8243 718 }
26bc19ec
AD
719
720 igb_cache_ring_register(adapter);
9d5c8243 721
047e0030 722 return 0;
a88f10ec 723
047e0030
AD
724err:
725 igb_free_queues(adapter);
d1a8c9e1 726
047e0030 727 return -ENOMEM;
a88f10ec
AD
728}
729
9d5c8243 730#define IGB_N0_QUEUE -1
047e0030 731static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
732{
733 u32 msixbm = 0;
047e0030 734 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 735 struct e1000_hw *hw = &adapter->hw;
2d064c06 736 u32 ivar, index;
047e0030
AD
737 int rx_queue = IGB_N0_QUEUE;
738 int tx_queue = IGB_N0_QUEUE;
739
740 if (q_vector->rx_ring)
741 rx_queue = q_vector->rx_ring->reg_idx;
742 if (q_vector->tx_ring)
743 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
744
745 switch (hw->mac.type) {
746 case e1000_82575:
9d5c8243
AK
747 /* The 82575 assigns vectors using a bitmask, which matches the
748 bitmask for the EICR/EIMS/EIMC registers. To assign one
749 or more queues to a vector, we write the appropriate bits
750 into the MSIXBM register for that vector. */
047e0030 751 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 752 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 753 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 754 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
755 if (!adapter->msix_entries && msix_vector == 0)
756 msixbm |= E1000_EIMS_OTHER;
9d5c8243 757 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 758 q_vector->eims_value = msixbm;
2d064c06
AD
759 break;
760 case e1000_82576:
26bc19ec 761 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
762 Each queue has a single entry in the table to which we write
763 a vector number along with a "valid" bit. Sadly, the layout
764 of the table is somewhat counterintuitive. */
765 if (rx_queue > IGB_N0_QUEUE) {
047e0030 766 index = (rx_queue & 0x7);
2d064c06 767 ivar = array_rd32(E1000_IVAR0, index);
047e0030 768 if (rx_queue < 8) {
26bc19ec
AD
769 /* vector goes into low byte of register */
770 ivar = ivar & 0xFFFFFF00;
771 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
772 } else {
773 /* vector goes into third byte of register */
774 ivar = ivar & 0xFF00FFFF;
775 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 776 }
2d064c06
AD
777 array_wr32(E1000_IVAR0, index, ivar);
778 }
779 if (tx_queue > IGB_N0_QUEUE) {
047e0030 780 index = (tx_queue & 0x7);
2d064c06 781 ivar = array_rd32(E1000_IVAR0, index);
047e0030 782 if (tx_queue < 8) {
26bc19ec
AD
783 /* vector goes into second byte of register */
784 ivar = ivar & 0xFFFF00FF;
785 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
786 } else {
787 /* vector goes into high byte of register */
788 ivar = ivar & 0x00FFFFFF;
789 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 790 }
2d064c06
AD
791 array_wr32(E1000_IVAR0, index, ivar);
792 }
047e0030 793 q_vector->eims_value = 1 << msix_vector;
2d064c06 794 break;
55cac248 795 case e1000_82580:
d2ba2ed8 796 case e1000_i350:
55cac248
AD
797 /* 82580 uses the same table-based approach as 82576 but has fewer
798 entries as a result we carry over for queues greater than 4. */
799 if (rx_queue > IGB_N0_QUEUE) {
800 index = (rx_queue >> 1);
801 ivar = array_rd32(E1000_IVAR0, index);
802 if (rx_queue & 0x1) {
803 /* vector goes into third byte of register */
804 ivar = ivar & 0xFF00FFFF;
805 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
806 } else {
807 /* vector goes into low byte of register */
808 ivar = ivar & 0xFFFFFF00;
809 ivar |= msix_vector | E1000_IVAR_VALID;
810 }
811 array_wr32(E1000_IVAR0, index, ivar);
812 }
813 if (tx_queue > IGB_N0_QUEUE) {
814 index = (tx_queue >> 1);
815 ivar = array_rd32(E1000_IVAR0, index);
816 if (tx_queue & 0x1) {
817 /* vector goes into high byte of register */
818 ivar = ivar & 0x00FFFFFF;
819 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
820 } else {
821 /* vector goes into second byte of register */
822 ivar = ivar & 0xFFFF00FF;
823 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
824 }
825 array_wr32(E1000_IVAR0, index, ivar);
826 }
827 q_vector->eims_value = 1 << msix_vector;
828 break;
2d064c06
AD
829 default:
830 BUG();
831 break;
832 }
26b39276
AD
833
834 /* add q_vector eims value to global eims_enable_mask */
835 adapter->eims_enable_mask |= q_vector->eims_value;
836
837 /* configure q_vector to set itr on first interrupt */
838 q_vector->set_itr = 1;
9d5c8243
AK
839}
840
841/**
842 * igb_configure_msix - Configure MSI-X hardware
843 *
844 * igb_configure_msix sets up the hardware to properly
845 * generate MSI-X interrupts.
846 **/
847static void igb_configure_msix(struct igb_adapter *adapter)
848{
849 u32 tmp;
850 int i, vector = 0;
851 struct e1000_hw *hw = &adapter->hw;
852
853 adapter->eims_enable_mask = 0;
9d5c8243
AK
854
855 /* set vector for other causes, i.e. link changes */
2d064c06
AD
856 switch (hw->mac.type) {
857 case e1000_82575:
9d5c8243
AK
858 tmp = rd32(E1000_CTRL_EXT);
859 /* enable MSI-X PBA support*/
860 tmp |= E1000_CTRL_EXT_PBA_CLR;
861
862 /* Auto-Mask interrupts upon ICR read. */
863 tmp |= E1000_CTRL_EXT_EIAME;
864 tmp |= E1000_CTRL_EXT_IRCA;
865
866 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
867
868 /* enable msix_other interrupt */
869 array_wr32(E1000_MSIXBM(0), vector++,
870 E1000_EIMS_OTHER);
844290e5 871 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 872
2d064c06
AD
873 break;
874
875 case e1000_82576:
55cac248 876 case e1000_82580:
d2ba2ed8 877 case e1000_i350:
047e0030
AD
878 /* Turn on MSI-X capability first, or our settings
879 * won't stick. And it will take days to debug. */
880 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
881 E1000_GPIE_PBA | E1000_GPIE_EIAME |
882 E1000_GPIE_NSICR);
883
884 /* enable msix_other interrupt */
885 adapter->eims_other = 1 << vector;
2d064c06 886 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 887
047e0030 888 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
889 break;
890 default:
891 /* do nothing, since nothing else supports MSI-X */
892 break;
893 } /* switch (hw->mac.type) */
047e0030
AD
894
895 adapter->eims_enable_mask |= adapter->eims_other;
896
26b39276
AD
897 for (i = 0; i < adapter->num_q_vectors; i++)
898 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 899
9d5c8243
AK
900 wrfl();
901}
902
903/**
904 * igb_request_msix - Initialize MSI-X interrupts
905 *
906 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
907 * kernel.
908 **/
909static int igb_request_msix(struct igb_adapter *adapter)
910{
911 struct net_device *netdev = adapter->netdev;
047e0030 912 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
913 int i, err = 0, vector = 0;
914
047e0030 915 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 916 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
917 if (err)
918 goto out;
919 vector++;
920
921 for (i = 0; i < adapter->num_q_vectors; i++) {
922 struct igb_q_vector *q_vector = adapter->q_vector[i];
923
924 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
925
926 if (q_vector->rx_ring && q_vector->tx_ring)
927 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
928 q_vector->rx_ring->queue_index);
929 else if (q_vector->tx_ring)
930 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
931 q_vector->tx_ring->queue_index);
932 else if (q_vector->rx_ring)
933 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
934 q_vector->rx_ring->queue_index);
9d5c8243 935 else
047e0030
AD
936 sprintf(q_vector->name, "%s-unused", netdev->name);
937
9d5c8243 938 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 939 igb_msix_ring, 0, q_vector->name,
047e0030 940 q_vector);
9d5c8243
AK
941 if (err)
942 goto out;
9d5c8243
AK
943 vector++;
944 }
945
9d5c8243
AK
946 igb_configure_msix(adapter);
947 return 0;
948out:
949 return err;
950}
951
952static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
953{
954 if (adapter->msix_entries) {
955 pci_disable_msix(adapter->pdev);
956 kfree(adapter->msix_entries);
957 adapter->msix_entries = NULL;
047e0030 958 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 959 pci_disable_msi(adapter->pdev);
047e0030 960 }
9d5c8243
AK
961}
962
047e0030
AD
963/**
964 * igb_free_q_vectors - Free memory allocated for interrupt vectors
965 * @adapter: board private structure to initialize
966 *
967 * This function frees the memory allocated to the q_vectors. In addition if
968 * NAPI is enabled it will delete any references to the NAPI struct prior
969 * to freeing the q_vector.
970 **/
971static void igb_free_q_vectors(struct igb_adapter *adapter)
972{
973 int v_idx;
974
975 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
976 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
977 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
978 if (!q_vector)
979 continue;
047e0030
AD
980 netif_napi_del(&q_vector->napi);
981 kfree(q_vector);
982 }
983 adapter->num_q_vectors = 0;
984}
985
986/**
987 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
988 *
989 * This function resets the device so that it has 0 rx queues, tx queues, and
990 * MSI-X interrupts allocated.
991 */
992static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
993{
994 igb_free_queues(adapter);
995 igb_free_q_vectors(adapter);
996 igb_reset_interrupt_capability(adapter);
997}
9d5c8243
AK
998
999/**
1000 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1001 *
1002 * Attempt to configure interrupts using the best available
1003 * capabilities of the hardware and kernel.
1004 **/
21adef3e 1005static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
1006{
1007 int err;
1008 int numvecs, i;
1009
83b7180d 1010 /* Number of supported queues. */
a99955fc 1011 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1012 if (adapter->vfs_allocated_count)
1013 adapter->num_tx_queues = 1;
1014 else
1015 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1016
047e0030
AD
1017 /* start with one vector for every rx queue */
1018 numvecs = adapter->num_rx_queues;
1019
3ad2f3fb 1020 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1021 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1022 numvecs += adapter->num_tx_queues;
047e0030
AD
1023
1024 /* store the number of vectors reserved for queues */
1025 adapter->num_q_vectors = numvecs;
1026
1027 /* add 1 vector for link status interrupts */
1028 numvecs++;
9d5c8243
AK
1029 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1030 GFP_KERNEL);
1031 if (!adapter->msix_entries)
1032 goto msi_only;
1033
1034 for (i = 0; i < numvecs; i++)
1035 adapter->msix_entries[i].entry = i;
1036
1037 err = pci_enable_msix(adapter->pdev,
1038 adapter->msix_entries,
1039 numvecs);
1040 if (err == 0)
34a20e89 1041 goto out;
9d5c8243
AK
1042
1043 igb_reset_interrupt_capability(adapter);
1044
1045 /* If we can't do MSI-X, try MSI */
1046msi_only:
2a3abf6d
AD
1047#ifdef CONFIG_PCI_IOV
1048 /* disable SR-IOV for non MSI-X configurations */
1049 if (adapter->vf_data) {
1050 struct e1000_hw *hw = &adapter->hw;
1051 /* disable iov and allow time for transactions to clear */
1052 pci_disable_sriov(adapter->pdev);
1053 msleep(500);
1054
1055 kfree(adapter->vf_data);
1056 adapter->vf_data = NULL;
1057 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1058 wrfl();
2a3abf6d
AD
1059 msleep(100);
1060 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1061 }
1062#endif
4fc82adf 1063 adapter->vfs_allocated_count = 0;
a99955fc 1064 adapter->rss_queues = 1;
4fc82adf 1065 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1066 adapter->num_rx_queues = 1;
661086df 1067 adapter->num_tx_queues = 1;
047e0030 1068 adapter->num_q_vectors = 1;
9d5c8243 1069 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1070 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1071out:
21adef3e
BH
1072 /* Notify the stack of the (possibly) reduced queue counts. */
1073 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1074 return netif_set_real_num_rx_queues(adapter->netdev,
1075 adapter->num_rx_queues);
9d5c8243
AK
1076}
1077
047e0030
AD
1078/**
1079 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1080 * @adapter: board private structure to initialize
1081 *
1082 * We allocate one q_vector per queue interrupt. If allocation fails we
1083 * return -ENOMEM.
1084 **/
1085static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1086{
1087 struct igb_q_vector *q_vector;
1088 struct e1000_hw *hw = &adapter->hw;
1089 int v_idx;
1090
1091 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1092 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1093 if (!q_vector)
1094 goto err_out;
1095 q_vector->adapter = adapter;
047e0030
AD
1096 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1097 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1098 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1099 adapter->q_vector[v_idx] = q_vector;
1100 }
1101 return 0;
1102
1103err_out:
fe0592b4 1104 igb_free_q_vectors(adapter);
047e0030
AD
1105 return -ENOMEM;
1106}
1107
1108static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1109 int ring_idx, int v_idx)
1110{
3025a446 1111 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1112
3025a446 1113 q_vector->rx_ring = adapter->rx_ring[ring_idx];
047e0030 1114 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
1115 q_vector->itr_val = adapter->rx_itr_setting;
1116 if (q_vector->itr_val && q_vector->itr_val <= 3)
1117 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1118}
1119
1120static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1121 int ring_idx, int v_idx)
1122{
3025a446 1123 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1124
3025a446 1125 q_vector->tx_ring = adapter->tx_ring[ring_idx];
047e0030 1126 q_vector->tx_ring->q_vector = q_vector;
4fc82adf 1127 q_vector->itr_val = adapter->tx_itr_setting;
13fde97a 1128 q_vector->tx_work_limit = adapter->tx_work_limit;
4fc82adf
AD
1129 if (q_vector->itr_val && q_vector->itr_val <= 3)
1130 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1131}
1132
1133/**
1134 * igb_map_ring_to_vector - maps allocated queues to vectors
1135 *
1136 * This function maps the recently allocated queues to vectors.
1137 **/
1138static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1139{
1140 int i;
1141 int v_idx = 0;
1142
1143 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1144 (adapter->num_q_vectors < adapter->num_tx_queues))
1145 return -ENOMEM;
1146
1147 if (adapter->num_q_vectors >=
1148 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1149 for (i = 0; i < adapter->num_rx_queues; i++)
1150 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1151 for (i = 0; i < adapter->num_tx_queues; i++)
1152 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1153 } else {
1154 for (i = 0; i < adapter->num_rx_queues; i++) {
1155 if (i < adapter->num_tx_queues)
1156 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1157 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1158 }
1159 for (; i < adapter->num_tx_queues; i++)
1160 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1161 }
1162 return 0;
1163}
1164
1165/**
1166 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1167 *
1168 * This function initializes the interrupts and allocates all of the queues.
1169 **/
1170static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1171{
1172 struct pci_dev *pdev = adapter->pdev;
1173 int err;
1174
21adef3e
BH
1175 err = igb_set_interrupt_capability(adapter);
1176 if (err)
1177 return err;
047e0030
AD
1178
1179 err = igb_alloc_q_vectors(adapter);
1180 if (err) {
1181 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1182 goto err_alloc_q_vectors;
1183 }
1184
1185 err = igb_alloc_queues(adapter);
1186 if (err) {
1187 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1188 goto err_alloc_queues;
1189 }
1190
1191 err = igb_map_ring_to_vector(adapter);
1192 if (err) {
1193 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1194 goto err_map_queues;
1195 }
1196
1197
1198 return 0;
1199err_map_queues:
1200 igb_free_queues(adapter);
1201err_alloc_queues:
1202 igb_free_q_vectors(adapter);
1203err_alloc_q_vectors:
1204 igb_reset_interrupt_capability(adapter);
1205 return err;
1206}
1207
9d5c8243
AK
1208/**
1209 * igb_request_irq - initialize interrupts
1210 *
1211 * Attempts to configure interrupts using the best available
1212 * capabilities of the hardware and kernel.
1213 **/
1214static int igb_request_irq(struct igb_adapter *adapter)
1215{
1216 struct net_device *netdev = adapter->netdev;
047e0030 1217 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1218 int err = 0;
1219
1220 if (adapter->msix_entries) {
1221 err = igb_request_msix(adapter);
844290e5 1222 if (!err)
9d5c8243 1223 goto request_done;
9d5c8243 1224 /* fall back to MSI */
047e0030 1225 igb_clear_interrupt_scheme(adapter);
9d5c8243 1226 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1227 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1228 igb_free_all_tx_resources(adapter);
1229 igb_free_all_rx_resources(adapter);
047e0030 1230 adapter->num_tx_queues = 1;
9d5c8243 1231 adapter->num_rx_queues = 1;
047e0030
AD
1232 adapter->num_q_vectors = 1;
1233 err = igb_alloc_q_vectors(adapter);
1234 if (err) {
1235 dev_err(&pdev->dev,
1236 "Unable to allocate memory for vectors\n");
1237 goto request_done;
1238 }
1239 err = igb_alloc_queues(adapter);
1240 if (err) {
1241 dev_err(&pdev->dev,
1242 "Unable to allocate memory for queues\n");
1243 igb_free_q_vectors(adapter);
1244 goto request_done;
1245 }
1246 igb_setup_all_tx_resources(adapter);
1247 igb_setup_all_rx_resources(adapter);
844290e5 1248 } else {
feeb2721 1249 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1250 }
844290e5 1251
7dfc16fa 1252 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1253 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1254 netdev->name, adapter);
9d5c8243
AK
1255 if (!err)
1256 goto request_done;
047e0030 1257
9d5c8243
AK
1258 /* fall back to legacy interrupts */
1259 igb_reset_interrupt_capability(adapter);
7dfc16fa 1260 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1261 }
1262
a0607fd3 1263 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1264 netdev->name, adapter);
9d5c8243 1265
6cb5e577 1266 if (err)
9d5c8243
AK
1267 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1268 err);
9d5c8243
AK
1269
1270request_done:
1271 return err;
1272}
1273
1274static void igb_free_irq(struct igb_adapter *adapter)
1275{
9d5c8243
AK
1276 if (adapter->msix_entries) {
1277 int vector = 0, i;
1278
047e0030 1279 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1280
047e0030
AD
1281 for (i = 0; i < adapter->num_q_vectors; i++) {
1282 struct igb_q_vector *q_vector = adapter->q_vector[i];
1283 free_irq(adapter->msix_entries[vector++].vector,
1284 q_vector);
1285 }
1286 } else {
1287 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1288 }
9d5c8243
AK
1289}
1290
1291/**
1292 * igb_irq_disable - Mask off interrupt generation on the NIC
1293 * @adapter: board private structure
1294 **/
1295static void igb_irq_disable(struct igb_adapter *adapter)
1296{
1297 struct e1000_hw *hw = &adapter->hw;
1298
25568a53
AD
1299 /*
1300 * we need to be careful when disabling interrupts. The VFs are also
1301 * mapped into these registers and so clearing the bits can cause
1302 * issues on the VF drivers so we only need to clear what we set
1303 */
9d5c8243 1304 if (adapter->msix_entries) {
2dfd1212
AD
1305 u32 regval = rd32(E1000_EIAM);
1306 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1307 wr32(E1000_EIMC, adapter->eims_enable_mask);
1308 regval = rd32(E1000_EIAC);
1309 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1310 }
844290e5
PW
1311
1312 wr32(E1000_IAM, 0);
9d5c8243
AK
1313 wr32(E1000_IMC, ~0);
1314 wrfl();
81a61859
ET
1315 if (adapter->msix_entries) {
1316 int i;
1317 for (i = 0; i < adapter->num_q_vectors; i++)
1318 synchronize_irq(adapter->msix_entries[i].vector);
1319 } else {
1320 synchronize_irq(adapter->pdev->irq);
1321 }
9d5c8243
AK
1322}
1323
1324/**
1325 * igb_irq_enable - Enable default interrupt generation settings
1326 * @adapter: board private structure
1327 **/
1328static void igb_irq_enable(struct igb_adapter *adapter)
1329{
1330 struct e1000_hw *hw = &adapter->hw;
1331
1332 if (adapter->msix_entries) {
25568a53 1333 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1334 u32 regval = rd32(E1000_EIAC);
1335 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1336 regval = rd32(E1000_EIAM);
1337 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1338 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1339 if (adapter->vfs_allocated_count) {
4ae196df 1340 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1341 ims |= E1000_IMS_VMMB;
1342 }
55cac248
AD
1343 if (adapter->hw.mac.type == e1000_82580)
1344 ims |= E1000_IMS_DRSTA;
1345
25568a53 1346 wr32(E1000_IMS, ims);
844290e5 1347 } else {
55cac248
AD
1348 wr32(E1000_IMS, IMS_ENABLE_MASK |
1349 E1000_IMS_DRSTA);
1350 wr32(E1000_IAM, IMS_ENABLE_MASK |
1351 E1000_IMS_DRSTA);
844290e5 1352 }
9d5c8243
AK
1353}
1354
1355static void igb_update_mng_vlan(struct igb_adapter *adapter)
1356{
51466239 1357 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1358 u16 vid = adapter->hw.mng_cookie.vlan_id;
1359 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1360
1361 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1362 /* add VID to filter table */
1363 igb_vfta_set(hw, vid, true);
1364 adapter->mng_vlan_id = vid;
1365 } else {
1366 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1367 }
1368
1369 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1370 (vid != old_vid) &&
b2cb09b1 1371 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1372 /* remove VID from filter table */
1373 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1374 }
1375}
1376
1377/**
1378 * igb_release_hw_control - release control of the h/w to f/w
1379 * @adapter: address of board private structure
1380 *
1381 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1382 * For ASF and Pass Through versions of f/w this means that the
1383 * driver is no longer loaded.
1384 *
1385 **/
1386static void igb_release_hw_control(struct igb_adapter *adapter)
1387{
1388 struct e1000_hw *hw = &adapter->hw;
1389 u32 ctrl_ext;
1390
1391 /* Let firmware take over control of h/w */
1392 ctrl_ext = rd32(E1000_CTRL_EXT);
1393 wr32(E1000_CTRL_EXT,
1394 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1395}
1396
9d5c8243
AK
1397/**
1398 * igb_get_hw_control - get control of the h/w from f/w
1399 * @adapter: address of board private structure
1400 *
1401 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1402 * For ASF and Pass Through versions of f/w this means that
1403 * the driver is loaded.
1404 *
1405 **/
1406static void igb_get_hw_control(struct igb_adapter *adapter)
1407{
1408 struct e1000_hw *hw = &adapter->hw;
1409 u32 ctrl_ext;
1410
1411 /* Let firmware know the driver has taken over */
1412 ctrl_ext = rd32(E1000_CTRL_EXT);
1413 wr32(E1000_CTRL_EXT,
1414 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1415}
1416
9d5c8243
AK
1417/**
1418 * igb_configure - configure the hardware for RX and TX
1419 * @adapter: private board structure
1420 **/
1421static void igb_configure(struct igb_adapter *adapter)
1422{
1423 struct net_device *netdev = adapter->netdev;
1424 int i;
1425
1426 igb_get_hw_control(adapter);
ff41f8dc 1427 igb_set_rx_mode(netdev);
9d5c8243
AK
1428
1429 igb_restore_vlan(adapter);
9d5c8243 1430
85b430b4 1431 igb_setup_tctl(adapter);
06cf2666 1432 igb_setup_mrqc(adapter);
9d5c8243 1433 igb_setup_rctl(adapter);
85b430b4
AD
1434
1435 igb_configure_tx(adapter);
9d5c8243 1436 igb_configure_rx(adapter);
662d7205
AD
1437
1438 igb_rx_fifo_flush_82575(&adapter->hw);
1439
c493ea45 1440 /* call igb_desc_unused which always leaves
9d5c8243
AK
1441 * at least 1 descriptor unused to make sure
1442 * next_to_use != next_to_clean */
1443 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1444 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1445 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1446 }
9d5c8243
AK
1447}
1448
88a268c1
NN
1449/**
1450 * igb_power_up_link - Power up the phy/serdes link
1451 * @adapter: address of board private structure
1452 **/
1453void igb_power_up_link(struct igb_adapter *adapter)
1454{
1455 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1456 igb_power_up_phy_copper(&adapter->hw);
1457 else
1458 igb_power_up_serdes_link_82575(&adapter->hw);
1459}
1460
1461/**
1462 * igb_power_down_link - Power down the phy/serdes link
1463 * @adapter: address of board private structure
1464 */
1465static void igb_power_down_link(struct igb_adapter *adapter)
1466{
1467 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1468 igb_power_down_phy_copper_82575(&adapter->hw);
1469 else
1470 igb_shutdown_serdes_link_82575(&adapter->hw);
1471}
9d5c8243
AK
1472
1473/**
1474 * igb_up - Open the interface and prepare it to handle traffic
1475 * @adapter: board private structure
1476 **/
9d5c8243
AK
1477int igb_up(struct igb_adapter *adapter)
1478{
1479 struct e1000_hw *hw = &adapter->hw;
1480 int i;
1481
1482 /* hardware has been reset, we need to reload some things */
1483 igb_configure(adapter);
1484
1485 clear_bit(__IGB_DOWN, &adapter->state);
1486
047e0030
AD
1487 for (i = 0; i < adapter->num_q_vectors; i++) {
1488 struct igb_q_vector *q_vector = adapter->q_vector[i];
1489 napi_enable(&q_vector->napi);
1490 }
844290e5 1491 if (adapter->msix_entries)
9d5c8243 1492 igb_configure_msix(adapter);
feeb2721
AD
1493 else
1494 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1495
1496 /* Clear any pending interrupts. */
1497 rd32(E1000_ICR);
1498 igb_irq_enable(adapter);
1499
d4960307
AD
1500 /* notify VFs that reset has been completed */
1501 if (adapter->vfs_allocated_count) {
1502 u32 reg_data = rd32(E1000_CTRL_EXT);
1503 reg_data |= E1000_CTRL_EXT_PFRSTD;
1504 wr32(E1000_CTRL_EXT, reg_data);
1505 }
1506
4cb9be7a
JB
1507 netif_tx_start_all_queues(adapter->netdev);
1508
25568a53
AD
1509 /* start the watchdog. */
1510 hw->mac.get_link_status = 1;
1511 schedule_work(&adapter->watchdog_task);
1512
9d5c8243
AK
1513 return 0;
1514}
1515
1516void igb_down(struct igb_adapter *adapter)
1517{
9d5c8243 1518 struct net_device *netdev = adapter->netdev;
330a6d6a 1519 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1520 u32 tctl, rctl;
1521 int i;
1522
1523 /* signal that we're down so the interrupt handler does not
1524 * reschedule our watchdog timer */
1525 set_bit(__IGB_DOWN, &adapter->state);
1526
1527 /* disable receives in the hardware */
1528 rctl = rd32(E1000_RCTL);
1529 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1530 /* flush and sleep below */
1531
fd2ea0a7 1532 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1533
1534 /* disable transmits in the hardware */
1535 tctl = rd32(E1000_TCTL);
1536 tctl &= ~E1000_TCTL_EN;
1537 wr32(E1000_TCTL, tctl);
1538 /* flush both disables and wait for them to finish */
1539 wrfl();
1540 msleep(10);
1541
047e0030
AD
1542 for (i = 0; i < adapter->num_q_vectors; i++) {
1543 struct igb_q_vector *q_vector = adapter->q_vector[i];
1544 napi_disable(&q_vector->napi);
1545 }
9d5c8243 1546
9d5c8243
AK
1547 igb_irq_disable(adapter);
1548
1549 del_timer_sync(&adapter->watchdog_timer);
1550 del_timer_sync(&adapter->phy_info_timer);
1551
9d5c8243 1552 netif_carrier_off(netdev);
04fe6358
AD
1553
1554 /* record the stats before reset*/
12dcd86b
ED
1555 spin_lock(&adapter->stats64_lock);
1556 igb_update_stats(adapter, &adapter->stats64);
1557 spin_unlock(&adapter->stats64_lock);
04fe6358 1558
9d5c8243
AK
1559 adapter->link_speed = 0;
1560 adapter->link_duplex = 0;
1561
3023682e
JK
1562 if (!pci_channel_offline(adapter->pdev))
1563 igb_reset(adapter);
9d5c8243
AK
1564 igb_clean_all_tx_rings(adapter);
1565 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1566#ifdef CONFIG_IGB_DCA
1567
1568 /* since we reset the hardware DCA settings were cleared */
1569 igb_setup_dca(adapter);
1570#endif
9d5c8243
AK
1571}
1572
1573void igb_reinit_locked(struct igb_adapter *adapter)
1574{
1575 WARN_ON(in_interrupt());
1576 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1577 msleep(1);
1578 igb_down(adapter);
1579 igb_up(adapter);
1580 clear_bit(__IGB_RESETTING, &adapter->state);
1581}
1582
1583void igb_reset(struct igb_adapter *adapter)
1584{
090b1795 1585 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1586 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1587 struct e1000_mac_info *mac = &hw->mac;
1588 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1589 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1590 u16 hwm;
1591
1592 /* Repartition Pba for greater than 9k mtu
1593 * To take effect CTRL.RST is required.
1594 */
fa4dfae0 1595 switch (mac->type) {
d2ba2ed8 1596 case e1000_i350:
55cac248
AD
1597 case e1000_82580:
1598 pba = rd32(E1000_RXPBS);
1599 pba = igb_rxpbs_adjust_82580(pba);
1600 break;
fa4dfae0 1601 case e1000_82576:
d249be54
AD
1602 pba = rd32(E1000_RXPBS);
1603 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1604 break;
1605 case e1000_82575:
1606 default:
1607 pba = E1000_PBA_34K;
1608 break;
2d064c06 1609 }
9d5c8243 1610
2d064c06
AD
1611 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1612 (mac->type < e1000_82576)) {
9d5c8243
AK
1613 /* adjust PBA for jumbo frames */
1614 wr32(E1000_PBA, pba);
1615
1616 /* To maintain wire speed transmits, the Tx FIFO should be
1617 * large enough to accommodate two full transmit packets,
1618 * rounded up to the next 1KB and expressed in KB. Likewise,
1619 * the Rx FIFO should be large enough to accommodate at least
1620 * one full receive packet and is similarly rounded up and
1621 * expressed in KB. */
1622 pba = rd32(E1000_PBA);
1623 /* upper 16 bits has Tx packet buffer allocation size in KB */
1624 tx_space = pba >> 16;
1625 /* lower 16 bits has Rx packet buffer allocation size in KB */
1626 pba &= 0xffff;
1627 /* the tx fifo also stores 16 bytes of information about the tx
1628 * but don't include ethernet FCS because hardware appends it */
1629 min_tx_space = (adapter->max_frame_size +
85e8d004 1630 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1631 ETH_FCS_LEN) * 2;
1632 min_tx_space = ALIGN(min_tx_space, 1024);
1633 min_tx_space >>= 10;
1634 /* software strips receive CRC, so leave room for it */
1635 min_rx_space = adapter->max_frame_size;
1636 min_rx_space = ALIGN(min_rx_space, 1024);
1637 min_rx_space >>= 10;
1638
1639 /* If current Tx allocation is less than the min Tx FIFO size,
1640 * and the min Tx FIFO size is less than the current Rx FIFO
1641 * allocation, take space away from current Rx allocation */
1642 if (tx_space < min_tx_space &&
1643 ((min_tx_space - tx_space) < pba)) {
1644 pba = pba - (min_tx_space - tx_space);
1645
1646 /* if short on rx space, rx wins and must trump tx
1647 * adjustment */
1648 if (pba < min_rx_space)
1649 pba = min_rx_space;
1650 }
2d064c06 1651 wr32(E1000_PBA, pba);
9d5c8243 1652 }
9d5c8243
AK
1653
1654 /* flow control settings */
1655 /* The high water mark must be low enough to fit one full frame
1656 * (or the size used for early receive) above it in the Rx FIFO.
1657 * Set it to the lower of:
1658 * - 90% of the Rx FIFO size, or
1659 * - the full Rx FIFO size minus one full frame */
1660 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1661 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1662
d405ea3e
AD
1663 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1664 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1665 fc->pause_time = 0xFFFF;
1666 fc->send_xon = 1;
0cce119a 1667 fc->current_mode = fc->requested_mode;
9d5c8243 1668
4ae196df
AD
1669 /* disable receive for all VFs and wait one second */
1670 if (adapter->vfs_allocated_count) {
1671 int i;
1672 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1673 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1674
1675 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1676 igb_ping_all_vfs(adapter);
4ae196df
AD
1677
1678 /* disable transmits and receives */
1679 wr32(E1000_VFRE, 0);
1680 wr32(E1000_VFTE, 0);
1681 }
1682
9d5c8243 1683 /* Allow time for pending master requests to run */
330a6d6a 1684 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1685 wr32(E1000_WUC, 0);
1686
330a6d6a 1687 if (hw->mac.ops.init_hw(hw))
090b1795 1688 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4
CW
1689 if (hw->mac.type > e1000_82580) {
1690 if (adapter->flags & IGB_FLAG_DMAC) {
1691 u32 reg;
1692
1693 /*
1694 * DMA Coalescing high water mark needs to be higher
1695 * than * the * Rx threshold. The Rx threshold is
1696 * currently * pba - 6, so we * should use a high water
1697 * mark of pba * - 4. */
1698 hwm = (pba - 4) << 10;
1699
1700 reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
1701 & E1000_DMACR_DMACTHR_MASK);
1702
1703 /* transition to L0x or L1 if available..*/
1704 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1705
1706 /* watchdog timer= +-1000 usec in 32usec intervals */
1707 reg |= (1000 >> 5);
1708 wr32(E1000_DMACR, reg);
1709
1710 /* no lower threshold to disable coalescing(smart fifb)
1711 * -UTRESH=0*/
1712 wr32(E1000_DMCRTRH, 0);
1713
1714 /* set hwm to PBA - 2 * max frame size */
1715 wr32(E1000_FCRTC, hwm);
1716
1717 /*
1718 * This sets the time to wait before requesting tran-
1719 * sition to * low power state to number of usecs needed
1720 * to receive 1 512 * byte frame at gigabit line rate
1721 */
1722 reg = rd32(E1000_DMCTLX);
1723 reg |= IGB_DMCTLX_DCFLUSH_DIS;
1724
1725 /* Delay 255 usec before entering Lx state. */
1726 reg |= 0xFF;
1727 wr32(E1000_DMCTLX, reg);
1728
1729 /* free space in Tx packet buffer to wake from DMAC */
1730 wr32(E1000_DMCTXTH,
1731 (IGB_MIN_TXPBSIZE -
1732 (IGB_TX_BUF_4096 + adapter->max_frame_size))
1733 >> 6);
1734
1735 /* make low power state decision controlled by DMAC */
1736 reg = rd32(E1000_PCIEMISC);
1737 reg |= E1000_PCIEMISC_LX_DECISION;
1738 wr32(E1000_PCIEMISC, reg);
1739 } /* end if IGB_FLAG_DMAC set */
1740 }
55cac248
AD
1741 if (hw->mac.type == e1000_82580) {
1742 u32 reg = rd32(E1000_PCIEMISC);
1743 wr32(E1000_PCIEMISC,
1744 reg & ~E1000_PCIEMISC_LX_DECISION);
1745 }
88a268c1
NN
1746 if (!netif_running(adapter->netdev))
1747 igb_power_down_link(adapter);
1748
9d5c8243
AK
1749 igb_update_mng_vlan(adapter);
1750
1751 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1752 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1753
330a6d6a 1754 igb_get_phy_info(hw);
9d5c8243
AK
1755}
1756
b2cb09b1
JP
1757static u32 igb_fix_features(struct net_device *netdev, u32 features)
1758{
1759 /*
1760 * Since there is no support for separate rx/tx vlan accel
1761 * enable/disable make sure tx flag is always in same state as rx.
1762 */
1763 if (features & NETIF_F_HW_VLAN_RX)
1764 features |= NETIF_F_HW_VLAN_TX;
1765 else
1766 features &= ~NETIF_F_HW_VLAN_TX;
1767
1768 return features;
1769}
1770
ac52caa3
MM
1771static int igb_set_features(struct net_device *netdev, u32 features)
1772{
1773 struct igb_adapter *adapter = netdev_priv(netdev);
1774 int i;
b2cb09b1 1775 u32 changed = netdev->features ^ features;
ac52caa3
MM
1776
1777 for (i = 0; i < adapter->num_rx_queues; i++) {
1778 if (features & NETIF_F_RXCSUM)
1779 adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM;
1780 else
1781 adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM;
1782 }
1783
b2cb09b1
JP
1784 if (changed & NETIF_F_HW_VLAN_RX)
1785 igb_vlan_mode(netdev, features);
1786
ac52caa3
MM
1787 return 0;
1788}
1789
2e5c6922 1790static const struct net_device_ops igb_netdev_ops = {
559e9c49 1791 .ndo_open = igb_open,
2e5c6922 1792 .ndo_stop = igb_close,
cd392f5c 1793 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 1794 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1795 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1796 .ndo_set_mac_address = igb_set_mac,
1797 .ndo_change_mtu = igb_change_mtu,
1798 .ndo_do_ioctl = igb_ioctl,
1799 .ndo_tx_timeout = igb_tx_timeout,
1800 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1801 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1802 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1803 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1804 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1805 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1806 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1807#ifdef CONFIG_NET_POLL_CONTROLLER
1808 .ndo_poll_controller = igb_netpoll,
1809#endif
b2cb09b1
JP
1810 .ndo_fix_features = igb_fix_features,
1811 .ndo_set_features = igb_set_features,
2e5c6922
SH
1812};
1813
9d5c8243
AK
1814/**
1815 * igb_probe - Device Initialization Routine
1816 * @pdev: PCI device information struct
1817 * @ent: entry in igb_pci_tbl
1818 *
1819 * Returns 0 on success, negative on failure
1820 *
1821 * igb_probe initializes an adapter identified by a pci_dev structure.
1822 * The OS initialization, configuring of the adapter private structure,
1823 * and a hardware reset occur.
1824 **/
1825static int __devinit igb_probe(struct pci_dev *pdev,
1826 const struct pci_device_id *ent)
1827{
1828 struct net_device *netdev;
1829 struct igb_adapter *adapter;
1830 struct e1000_hw *hw;
4337e993 1831 u16 eeprom_data = 0;
9835fd73 1832 s32 ret_val;
4337e993 1833 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1834 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1835 unsigned long mmio_start, mmio_len;
2d6a5e95 1836 int err, pci_using_dac;
9d5c8243 1837 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1838 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1839
bded64a7
AG
1840 /* Catch broken hardware that put the wrong VF device ID in
1841 * the PCIe SR-IOV capability.
1842 */
1843 if (pdev->is_virtfn) {
1844 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1845 pci_name(pdev), pdev->vendor, pdev->device);
1846 return -EINVAL;
1847 }
1848
aed5dec3 1849 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1850 if (err)
1851 return err;
1852
1853 pci_using_dac = 0;
59d71989 1854 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1855 if (!err) {
59d71989 1856 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1857 if (!err)
1858 pci_using_dac = 1;
1859 } else {
59d71989 1860 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1861 if (err) {
59d71989 1862 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1863 if (err) {
1864 dev_err(&pdev->dev, "No usable DMA "
1865 "configuration, aborting\n");
1866 goto err_dma;
1867 }
1868 }
1869 }
1870
aed5dec3
AD
1871 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1872 IORESOURCE_MEM),
1873 igb_driver_name);
9d5c8243
AK
1874 if (err)
1875 goto err_pci_reg;
1876
19d5afd4 1877 pci_enable_pcie_error_reporting(pdev);
40a914fa 1878
9d5c8243 1879 pci_set_master(pdev);
c682fc23 1880 pci_save_state(pdev);
9d5c8243
AK
1881
1882 err = -ENOMEM;
1bfaf07b 1883 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 1884 IGB_MAX_TX_QUEUES);
9d5c8243
AK
1885 if (!netdev)
1886 goto err_alloc_etherdev;
1887
1888 SET_NETDEV_DEV(netdev, &pdev->dev);
1889
1890 pci_set_drvdata(pdev, netdev);
1891 adapter = netdev_priv(netdev);
1892 adapter->netdev = netdev;
1893 adapter->pdev = pdev;
1894 hw = &adapter->hw;
1895 hw->back = adapter;
1896 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1897
1898 mmio_start = pci_resource_start(pdev, 0);
1899 mmio_len = pci_resource_len(pdev, 0);
1900
1901 err = -EIO;
28b0759c
AD
1902 hw->hw_addr = ioremap(mmio_start, mmio_len);
1903 if (!hw->hw_addr)
9d5c8243
AK
1904 goto err_ioremap;
1905
2e5c6922 1906 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1907 igb_set_ethtool_ops(netdev);
9d5c8243 1908 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1909
1910 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1911
1912 netdev->mem_start = mmio_start;
1913 netdev->mem_end = mmio_start + mmio_len;
1914
9d5c8243
AK
1915 /* PCI config space info */
1916 hw->vendor_id = pdev->vendor;
1917 hw->device_id = pdev->device;
1918 hw->revision_id = pdev->revision;
1919 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1920 hw->subsystem_device_id = pdev->subsystem_device;
1921
9d5c8243
AK
1922 /* Copy the default MAC, PHY and NVM function pointers */
1923 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1924 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1925 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1926 /* Initialize skew-specific constants */
1927 err = ei->get_invariants(hw);
1928 if (err)
450c87c8 1929 goto err_sw_init;
9d5c8243 1930
450c87c8 1931 /* setup the private structure */
9d5c8243
AK
1932 err = igb_sw_init(adapter);
1933 if (err)
1934 goto err_sw_init;
1935
1936 igb_get_bus_info_pcie(hw);
1937
1938 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1939
1940 /* Copper options */
1941 if (hw->phy.media_type == e1000_media_type_copper) {
1942 hw->phy.mdix = AUTO_ALL_MODES;
1943 hw->phy.disable_polarity_correction = false;
1944 hw->phy.ms_type = e1000_ms_hw_default;
1945 }
1946
1947 if (igb_check_reset_block(hw))
1948 dev_info(&pdev->dev,
1949 "PHY reset is blocked due to SOL/IDER session.\n");
1950
ac52caa3 1951 netdev->hw_features = NETIF_F_SG |
7d8eb29e 1952 NETIF_F_IP_CSUM |
ac52caa3
MM
1953 NETIF_F_IPV6_CSUM |
1954 NETIF_F_TSO |
1955 NETIF_F_TSO6 |
b2cb09b1
JP
1956 NETIF_F_RXCSUM |
1957 NETIF_F_HW_VLAN_RX;
ac52caa3
MM
1958
1959 netdev->features = netdev->hw_features |
9d5c8243 1960 NETIF_F_HW_VLAN_TX |
9d5c8243
AK
1961 NETIF_F_HW_VLAN_FILTER;
1962
48f29ffc
JK
1963 netdev->vlan_features |= NETIF_F_TSO;
1964 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1965 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1966 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1967 netdev->vlan_features |= NETIF_F_SG;
1968
7b872a55 1969 if (pci_using_dac) {
9d5c8243 1970 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1971 netdev->vlan_features |= NETIF_F_HIGHDMA;
1972 }
9d5c8243 1973
ac52caa3
MM
1974 if (hw->mac.type >= e1000_82576) {
1975 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 1976 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 1977 }
b9473560 1978
01789349
JP
1979 netdev->priv_flags |= IFF_UNICAST_FLT;
1980
330a6d6a 1981 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1982
1983 /* before reading the NVM, reset the controller to put the device in a
1984 * known good starting state */
1985 hw->mac.ops.reset_hw(hw);
1986
1987 /* make sure the NVM is good */
4322e561 1988 if (hw->nvm.ops.validate(hw) < 0) {
9d5c8243
AK
1989 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1990 err = -EIO;
1991 goto err_eeprom;
1992 }
1993
1994 /* copy the MAC address out of the NVM */
1995 if (hw->mac.ops.read_mac_addr(hw))
1996 dev_err(&pdev->dev, "NVM Read Error\n");
1997
1998 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1999 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2000
2001 if (!is_valid_ether_addr(netdev->perm_addr)) {
2002 dev_err(&pdev->dev, "Invalid MAC Address\n");
2003 err = -EIO;
2004 goto err_eeprom;
2005 }
2006
c061b18d 2007 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 2008 (unsigned long) adapter);
c061b18d 2009 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 2010 (unsigned long) adapter);
9d5c8243
AK
2011
2012 INIT_WORK(&adapter->reset_task, igb_reset_task);
2013 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2014
450c87c8 2015 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2016 adapter->fc_autoneg = true;
2017 hw->mac.autoneg = true;
2018 hw->phy.autoneg_advertised = 0x2f;
2019
0cce119a
AD
2020 hw->fc.requested_mode = e1000_fc_default;
2021 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2022
9d5c8243
AK
2023 igb_validate_mdi_setting(hw);
2024
9d5c8243
AK
2025 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2026 * enable the ACPI Magic Packet filter
2027 */
2028
a2cf8b6c 2029 if (hw->bus.func == 0)
312c75ae 2030 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6d337dce 2031 else if (hw->mac.type >= e1000_82580)
55cac248
AD
2032 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2033 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2034 &eeprom_data);
a2cf8b6c
AD
2035 else if (hw->bus.func == 1)
2036 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
2037
2038 if (eeprom_data & eeprom_apme_mask)
2039 adapter->eeprom_wol |= E1000_WUFC_MAG;
2040
2041 /* now that we have the eeprom settings, apply the special cases where
2042 * the eeprom may be wrong or the board simply won't support wake on
2043 * lan on a particular port */
2044 switch (pdev->device) {
2045 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2046 adapter->eeprom_wol = 0;
2047 break;
2048 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2049 case E1000_DEV_ID_82576_FIBER:
2050 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2051 /* Wake events only supported on port A for dual fiber
2052 * regardless of eeprom setting */
2053 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2054 adapter->eeprom_wol = 0;
2055 break;
c8ea5ea9 2056 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2057 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2058 /* if quad port adapter, disable WoL on all but port A */
2059 if (global_quad_port_a != 0)
2060 adapter->eeprom_wol = 0;
2061 else
2062 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2063 /* Reset for multiple quad port adapters */
2064 if (++global_quad_port_a == 4)
2065 global_quad_port_a = 0;
2066 break;
9d5c8243
AK
2067 }
2068
2069 /* initialize the wol settings based on the eeprom settings */
2070 adapter->wol = adapter->eeprom_wol;
e1b86d84 2071 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
2072
2073 /* reset the hardware with the new settings */
2074 igb_reset(adapter);
2075
2076 /* let the f/w know that the h/w is now under the control of the
2077 * driver. */
2078 igb_get_hw_control(adapter);
2079
9d5c8243
AK
2080 strcpy(netdev->name, "eth%d");
2081 err = register_netdev(netdev);
2082 if (err)
2083 goto err_register;
2084
b2cb09b1
JP
2085 igb_vlan_mode(netdev, netdev->features);
2086
b168dfc5
JB
2087 /* carrier off reporting is important to ethtool even BEFORE open */
2088 netif_carrier_off(netdev);
2089
421e02f0 2090#ifdef CONFIG_IGB_DCA
bbd98fe4 2091 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2092 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2093 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2094 igb_setup_dca(adapter);
2095 }
fe4506b6 2096
38c845c7 2097#endif
673b8b70
AB
2098 /* do hw tstamp init after resetting */
2099 igb_init_hw_timer(adapter);
2100
9d5c8243
AK
2101 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2102 /* print bus type/speed/width info */
7c510e4b 2103 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2104 netdev->name,
559e9c49 2105 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2106 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2107 "unknown"),
59c3de89
AD
2108 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2109 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2110 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2111 "unknown"),
7c510e4b 2112 netdev->dev_addr);
9d5c8243 2113
9835fd73
CW
2114 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2115 if (ret_val)
2116 strcpy(part_str, "Unknown");
2117 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2118 dev_info(&pdev->dev,
2119 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2120 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2121 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2122 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2123 switch (hw->mac.type) {
2124 case e1000_i350:
2125 igb_set_eee_i350(hw);
2126 break;
2127 default:
2128 break;
2129 }
9d5c8243
AK
2130 return 0;
2131
2132err_register:
2133 igb_release_hw_control(adapter);
2134err_eeprom:
2135 if (!igb_check_reset_block(hw))
f5f4cf08 2136 igb_reset_phy(hw);
9d5c8243
AK
2137
2138 if (hw->flash_address)
2139 iounmap(hw->flash_address);
9d5c8243 2140err_sw_init:
047e0030 2141 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2142 iounmap(hw->hw_addr);
2143err_ioremap:
2144 free_netdev(netdev);
2145err_alloc_etherdev:
559e9c49
AD
2146 pci_release_selected_regions(pdev,
2147 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2148err_pci_reg:
2149err_dma:
2150 pci_disable_device(pdev);
2151 return err;
2152}
2153
2154/**
2155 * igb_remove - Device Removal Routine
2156 * @pdev: PCI device information struct
2157 *
2158 * igb_remove is called by the PCI subsystem to alert the driver
2159 * that it should release a PCI device. The could be caused by a
2160 * Hot-Plug event, or because the driver is going to be removed from
2161 * memory.
2162 **/
2163static void __devexit igb_remove(struct pci_dev *pdev)
2164{
2165 struct net_device *netdev = pci_get_drvdata(pdev);
2166 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2167 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2168
760141a5
TH
2169 /*
2170 * The watchdog timer may be rescheduled, so explicitly
2171 * disable watchdog from being rescheduled.
2172 */
9d5c8243
AK
2173 set_bit(__IGB_DOWN, &adapter->state);
2174 del_timer_sync(&adapter->watchdog_timer);
2175 del_timer_sync(&adapter->phy_info_timer);
2176
760141a5
TH
2177 cancel_work_sync(&adapter->reset_task);
2178 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2179
421e02f0 2180#ifdef CONFIG_IGB_DCA
7dfc16fa 2181 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2182 dev_info(&pdev->dev, "DCA disabled\n");
2183 dca_remove_requester(&pdev->dev);
7dfc16fa 2184 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2185 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2186 }
2187#endif
2188
9d5c8243
AK
2189 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2190 * would have already happened in close and is redundant. */
2191 igb_release_hw_control(adapter);
2192
2193 unregister_netdev(netdev);
2194
047e0030 2195 igb_clear_interrupt_scheme(adapter);
9d5c8243 2196
37680117
AD
2197#ifdef CONFIG_PCI_IOV
2198 /* reclaim resources allocated to VFs */
2199 if (adapter->vf_data) {
2200 /* disable iov and allow time for transactions to clear */
2201 pci_disable_sriov(pdev);
2202 msleep(500);
2203
2204 kfree(adapter->vf_data);
2205 adapter->vf_data = NULL;
2206 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 2207 wrfl();
37680117
AD
2208 msleep(100);
2209 dev_info(&pdev->dev, "IOV Disabled\n");
2210 }
2211#endif
559e9c49 2212
28b0759c
AD
2213 iounmap(hw->hw_addr);
2214 if (hw->flash_address)
2215 iounmap(hw->flash_address);
559e9c49
AD
2216 pci_release_selected_regions(pdev,
2217 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2218
2219 free_netdev(netdev);
2220
19d5afd4 2221 pci_disable_pcie_error_reporting(pdev);
40a914fa 2222
9d5c8243
AK
2223 pci_disable_device(pdev);
2224}
2225
a6b623e0
AD
2226/**
2227 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2228 * @adapter: board private structure to initialize
2229 *
2230 * This function initializes the vf specific data storage and then attempts to
2231 * allocate the VFs. The reason for ordering it this way is because it is much
2232 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2233 * the memory for the VFs.
2234 **/
2235static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2236{
2237#ifdef CONFIG_PCI_IOV
2238 struct pci_dev *pdev = adapter->pdev;
2239
a6b623e0
AD
2240 if (adapter->vfs_allocated_count) {
2241 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2242 sizeof(struct vf_data_storage),
2243 GFP_KERNEL);
2244 /* if allocation failed then we do not support SR-IOV */
2245 if (!adapter->vf_data) {
2246 adapter->vfs_allocated_count = 0;
2247 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2248 "Data Storage\n");
2249 }
2250 }
2251
2252 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2253 kfree(adapter->vf_data);
2254 adapter->vf_data = NULL;
2255#endif /* CONFIG_PCI_IOV */
2256 adapter->vfs_allocated_count = 0;
2257#ifdef CONFIG_PCI_IOV
2258 } else {
2259 unsigned char mac_addr[ETH_ALEN];
2260 int i;
2261 dev_info(&pdev->dev, "%d vfs allocated\n",
2262 adapter->vfs_allocated_count);
2263 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2264 random_ether_addr(mac_addr);
2265 igb_set_vf_mac(adapter, i, mac_addr);
2266 }
831ec0b4
CW
2267 /* DMA Coalescing is not supported in IOV mode. */
2268 if (adapter->flags & IGB_FLAG_DMAC)
2269 adapter->flags &= ~IGB_FLAG_DMAC;
a6b623e0
AD
2270 }
2271#endif /* CONFIG_PCI_IOV */
2272}
2273
115f459a
AD
2274
2275/**
2276 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2277 * @adapter: board private structure to initialize
2278 *
2279 * igb_init_hw_timer initializes the function pointer and values for the hw
2280 * timer found in hardware.
2281 **/
2282static void igb_init_hw_timer(struct igb_adapter *adapter)
2283{
2284 struct e1000_hw *hw = &adapter->hw;
2285
2286 switch (hw->mac.type) {
d2ba2ed8 2287 case e1000_i350:
55cac248
AD
2288 case e1000_82580:
2289 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2290 adapter->cycles.read = igb_read_clock;
2291 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2292 adapter->cycles.mult = 1;
2293 /*
2294 * The 82580 timesync updates the system timer every 8ns by 8ns
2295 * and the value cannot be shifted. Instead we need to shift
2296 * the registers to generate a 64bit timer value. As a result
2297 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2298 * 24 in order to generate a larger value for synchronization.
2299 */
2300 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2301 /* disable system timer temporarily by setting bit 31 */
2302 wr32(E1000_TSAUXC, 0x80000000);
2303 wrfl();
2304
2305 /* Set registers so that rollover occurs soon to test this. */
2306 wr32(E1000_SYSTIMR, 0x00000000);
2307 wr32(E1000_SYSTIML, 0x80000000);
2308 wr32(E1000_SYSTIMH, 0x000000FF);
2309 wrfl();
2310
2311 /* enable system timer by clearing bit 31 */
2312 wr32(E1000_TSAUXC, 0x0);
2313 wrfl();
2314
2315 timecounter_init(&adapter->clock,
2316 &adapter->cycles,
2317 ktime_to_ns(ktime_get_real()));
2318 /*
2319 * Synchronize our NIC clock against system wall clock. NIC
2320 * time stamp reading requires ~3us per sample, each sample
2321 * was pretty stable even under load => only require 10
2322 * samples for each offset comparison.
2323 */
2324 memset(&adapter->compare, 0, sizeof(adapter->compare));
2325 adapter->compare.source = &adapter->clock;
2326 adapter->compare.target = ktime_get_real;
2327 adapter->compare.num_samples = 10;
2328 timecompare_update(&adapter->compare, 0);
2329 break;
115f459a
AD
2330 case e1000_82576:
2331 /*
2332 * Initialize hardware timer: we keep it running just in case
2333 * that some program needs it later on.
2334 */
2335 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2336 adapter->cycles.read = igb_read_clock;
2337 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2338 adapter->cycles.mult = 1;
2339 /**
2340 * Scale the NIC clock cycle by a large factor so that
2341 * relatively small clock corrections can be added or
25985edc 2342 * subtracted at each clock tick. The drawbacks of a large
115f459a
AD
2343 * factor are a) that the clock register overflows more quickly
2344 * (not such a big deal) and b) that the increment per tick has
2345 * to fit into 24 bits. As a result we need to use a shift of
2346 * 19 so we can fit a value of 16 into the TIMINCA register.
2347 */
2348 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2349 wr32(E1000_TIMINCA,
2350 (1 << E1000_TIMINCA_16NS_SHIFT) |
2351 (16 << IGB_82576_TSYNC_SHIFT));
2352
2353 /* Set registers so that rollover occurs soon to test this. */
2354 wr32(E1000_SYSTIML, 0x00000000);
2355 wr32(E1000_SYSTIMH, 0xFF800000);
2356 wrfl();
2357
2358 timecounter_init(&adapter->clock,
2359 &adapter->cycles,
2360 ktime_to_ns(ktime_get_real()));
2361 /*
2362 * Synchronize our NIC clock against system wall clock. NIC
2363 * time stamp reading requires ~3us per sample, each sample
2364 * was pretty stable even under load => only require 10
2365 * samples for each offset comparison.
2366 */
2367 memset(&adapter->compare, 0, sizeof(adapter->compare));
2368 adapter->compare.source = &adapter->clock;
2369 adapter->compare.target = ktime_get_real;
2370 adapter->compare.num_samples = 10;
2371 timecompare_update(&adapter->compare, 0);
2372 break;
2373 case e1000_82575:
2374 /* 82575 does not support timesync */
2375 default:
2376 break;
2377 }
2378
2379}
2380
9d5c8243
AK
2381/**
2382 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2383 * @adapter: board private structure to initialize
2384 *
2385 * igb_sw_init initializes the Adapter private data structure.
2386 * Fields are initialized based on PCI device information and
2387 * OS network device settings (MTU size).
2388 **/
2389static int __devinit igb_sw_init(struct igb_adapter *adapter)
2390{
2391 struct e1000_hw *hw = &adapter->hw;
2392 struct net_device *netdev = adapter->netdev;
2393 struct pci_dev *pdev = adapter->pdev;
2394
2395 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2396
13fde97a 2397 /* set default ring sizes */
68fd9910
AD
2398 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2399 adapter->rx_ring_count = IGB_DEFAULT_RXD;
13fde97a
AD
2400
2401 /* set default ITR values */
4fc82adf
AD
2402 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2403 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2404
13fde97a
AD
2405 /* set default work limits */
2406 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2407
153285f9
AD
2408 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2409 VLAN_HLEN;
9d5c8243
AK
2410 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2411
12dcd86b 2412 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2413#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2414 switch (hw->mac.type) {
2415 case e1000_82576:
2416 case e1000_i350:
9b082d73
SA
2417 if (max_vfs > 7) {
2418 dev_warn(&pdev->dev,
2419 "Maximum of 7 VFs per PF, using max\n");
2420 adapter->vfs_allocated_count = 7;
2421 } else
2422 adapter->vfs_allocated_count = max_vfs;
6b78bb1d
CW
2423 break;
2424 default:
2425 break;
2426 }
a6b623e0 2427#endif /* CONFIG_PCI_IOV */
a99955fc 2428 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
665c8c8e
WM
2429 /* i350 cannot do RSS and SR-IOV at the same time */
2430 if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
2431 adapter->rss_queues = 1;
a99955fc
AD
2432
2433 /*
2434 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2435 * then we should combine the queues into a queue pair in order to
2436 * conserve interrupts due to limited supply
2437 */
2438 if ((adapter->rss_queues > 4) ||
2439 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2440 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2441
a6b623e0 2442 /* This call may decrease the number of queues */
047e0030 2443 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2444 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2445 return -ENOMEM;
2446 }
2447
a6b623e0
AD
2448 igb_probe_vfs(adapter);
2449
9d5c8243
AK
2450 /* Explicitly disable IRQ since the NIC can be in any state. */
2451 igb_irq_disable(adapter);
2452
831ec0b4
CW
2453 if (hw->mac.type == e1000_i350)
2454 adapter->flags &= ~IGB_FLAG_DMAC;
2455
9d5c8243
AK
2456 set_bit(__IGB_DOWN, &adapter->state);
2457 return 0;
2458}
2459
2460/**
2461 * igb_open - Called when a network interface is made active
2462 * @netdev: network interface device structure
2463 *
2464 * Returns 0 on success, negative value on failure
2465 *
2466 * The open entry point is called when a network interface is made
2467 * active by the system (IFF_UP). At this point all resources needed
2468 * for transmit and receive operations are allocated, the interrupt
2469 * handler is registered with the OS, the watchdog timer is started,
2470 * and the stack is notified that the interface is ready.
2471 **/
2472static int igb_open(struct net_device *netdev)
2473{
2474 struct igb_adapter *adapter = netdev_priv(netdev);
2475 struct e1000_hw *hw = &adapter->hw;
2476 int err;
2477 int i;
2478
2479 /* disallow open during test */
2480 if (test_bit(__IGB_TESTING, &adapter->state))
2481 return -EBUSY;
2482
b168dfc5
JB
2483 netif_carrier_off(netdev);
2484
9d5c8243
AK
2485 /* allocate transmit descriptors */
2486 err = igb_setup_all_tx_resources(adapter);
2487 if (err)
2488 goto err_setup_tx;
2489
2490 /* allocate receive descriptors */
2491 err = igb_setup_all_rx_resources(adapter);
2492 if (err)
2493 goto err_setup_rx;
2494
88a268c1 2495 igb_power_up_link(adapter);
9d5c8243 2496
9d5c8243
AK
2497 /* before we allocate an interrupt, we must be ready to handle it.
2498 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2499 * as soon as we call pci_request_irq, so we have to setup our
2500 * clean_rx handler before we do so. */
2501 igb_configure(adapter);
2502
2503 err = igb_request_irq(adapter);
2504 if (err)
2505 goto err_req_irq;
2506
2507 /* From here on the code is the same as igb_up() */
2508 clear_bit(__IGB_DOWN, &adapter->state);
2509
047e0030
AD
2510 for (i = 0; i < adapter->num_q_vectors; i++) {
2511 struct igb_q_vector *q_vector = adapter->q_vector[i];
2512 napi_enable(&q_vector->napi);
2513 }
9d5c8243
AK
2514
2515 /* Clear any pending interrupts. */
2516 rd32(E1000_ICR);
844290e5
PW
2517
2518 igb_irq_enable(adapter);
2519
d4960307
AD
2520 /* notify VFs that reset has been completed */
2521 if (adapter->vfs_allocated_count) {
2522 u32 reg_data = rd32(E1000_CTRL_EXT);
2523 reg_data |= E1000_CTRL_EXT_PFRSTD;
2524 wr32(E1000_CTRL_EXT, reg_data);
2525 }
2526
d55b53ff
JK
2527 netif_tx_start_all_queues(netdev);
2528
25568a53
AD
2529 /* start the watchdog. */
2530 hw->mac.get_link_status = 1;
2531 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2532
2533 return 0;
2534
2535err_req_irq:
2536 igb_release_hw_control(adapter);
88a268c1 2537 igb_power_down_link(adapter);
9d5c8243
AK
2538 igb_free_all_rx_resources(adapter);
2539err_setup_rx:
2540 igb_free_all_tx_resources(adapter);
2541err_setup_tx:
2542 igb_reset(adapter);
2543
2544 return err;
2545}
2546
2547/**
2548 * igb_close - Disables a network interface
2549 * @netdev: network interface device structure
2550 *
2551 * Returns 0, this is not allowed to fail
2552 *
2553 * The close entry point is called when an interface is de-activated
2554 * by the OS. The hardware is still under the driver's control, but
2555 * needs to be disabled. A global MAC reset is issued to stop the
2556 * hardware, and all transmit and receive resources are freed.
2557 **/
2558static int igb_close(struct net_device *netdev)
2559{
2560 struct igb_adapter *adapter = netdev_priv(netdev);
2561
2562 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2563 igb_down(adapter);
2564
2565 igb_free_irq(adapter);
2566
2567 igb_free_all_tx_resources(adapter);
2568 igb_free_all_rx_resources(adapter);
2569
9d5c8243
AK
2570 return 0;
2571}
2572
2573/**
2574 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2575 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2576 *
2577 * Return 0 on success, negative on failure
2578 **/
80785298 2579int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2580{
59d71989 2581 struct device *dev = tx_ring->dev;
9d5c8243
AK
2582 int size;
2583
06034649
AD
2584 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2585 tx_ring->tx_buffer_info = vzalloc(size);
2586 if (!tx_ring->tx_buffer_info)
9d5c8243 2587 goto err;
9d5c8243
AK
2588
2589 /* round up to nearest 4K */
85e8d004 2590 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2591 tx_ring->size = ALIGN(tx_ring->size, 4096);
2592
59d71989
AD
2593 tx_ring->desc = dma_alloc_coherent(dev,
2594 tx_ring->size,
2595 &tx_ring->dma,
2596 GFP_KERNEL);
9d5c8243
AK
2597
2598 if (!tx_ring->desc)
2599 goto err;
2600
9d5c8243
AK
2601 tx_ring->next_to_use = 0;
2602 tx_ring->next_to_clean = 0;
9d5c8243
AK
2603 return 0;
2604
2605err:
06034649 2606 vfree(tx_ring->tx_buffer_info);
59d71989 2607 dev_err(dev,
9d5c8243
AK
2608 "Unable to allocate memory for the transmit descriptor ring\n");
2609 return -ENOMEM;
2610}
2611
2612/**
2613 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2614 * (Descriptors) for all queues
2615 * @adapter: board private structure
2616 *
2617 * Return 0 on success, negative on failure
2618 **/
2619static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2620{
439705e1 2621 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2622 int i, err = 0;
2623
2624 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2625 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2626 if (err) {
439705e1 2627 dev_err(&pdev->dev,
9d5c8243
AK
2628 "Allocation for Tx Queue %u failed\n", i);
2629 for (i--; i >= 0; i--)
3025a446 2630 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2631 break;
2632 }
2633 }
2634
2635 return err;
2636}
2637
2638/**
85b430b4
AD
2639 * igb_setup_tctl - configure the transmit control registers
2640 * @adapter: Board private structure
9d5c8243 2641 **/
d7ee5b3a 2642void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2643{
9d5c8243
AK
2644 struct e1000_hw *hw = &adapter->hw;
2645 u32 tctl;
9d5c8243 2646
85b430b4
AD
2647 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2648 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2649
2650 /* Program the Transmit Control Register */
9d5c8243
AK
2651 tctl = rd32(E1000_TCTL);
2652 tctl &= ~E1000_TCTL_CT;
2653 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2654 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2655
2656 igb_config_collision_dist(hw);
2657
9d5c8243
AK
2658 /* Enable transmits */
2659 tctl |= E1000_TCTL_EN;
2660
2661 wr32(E1000_TCTL, tctl);
2662}
2663
85b430b4
AD
2664/**
2665 * igb_configure_tx_ring - Configure transmit ring after Reset
2666 * @adapter: board private structure
2667 * @ring: tx ring to configure
2668 *
2669 * Configure a transmit ring after a reset.
2670 **/
d7ee5b3a
AD
2671void igb_configure_tx_ring(struct igb_adapter *adapter,
2672 struct igb_ring *ring)
85b430b4
AD
2673{
2674 struct e1000_hw *hw = &adapter->hw;
a74420e0 2675 u32 txdctl = 0;
85b430b4
AD
2676 u64 tdba = ring->dma;
2677 int reg_idx = ring->reg_idx;
2678
2679 /* disable the queue */
a74420e0 2680 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2681 wrfl();
2682 mdelay(10);
2683
2684 wr32(E1000_TDLEN(reg_idx),
2685 ring->count * sizeof(union e1000_adv_tx_desc));
2686 wr32(E1000_TDBAL(reg_idx),
2687 tdba & 0x00000000ffffffffULL);
2688 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2689
fce99e34 2690 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 2691 wr32(E1000_TDH(reg_idx), 0);
fce99e34 2692 writel(0, ring->tail);
85b430b4
AD
2693
2694 txdctl |= IGB_TX_PTHRESH;
2695 txdctl |= IGB_TX_HTHRESH << 8;
2696 txdctl |= IGB_TX_WTHRESH << 16;
2697
2698 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2699 wr32(E1000_TXDCTL(reg_idx), txdctl);
2700}
2701
2702/**
2703 * igb_configure_tx - Configure transmit Unit after Reset
2704 * @adapter: board private structure
2705 *
2706 * Configure the Tx unit of the MAC after a reset.
2707 **/
2708static void igb_configure_tx(struct igb_adapter *adapter)
2709{
2710 int i;
2711
2712 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2713 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2714}
2715
9d5c8243
AK
2716/**
2717 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2718 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2719 *
2720 * Returns 0 on success, negative on failure
2721 **/
80785298 2722int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2723{
59d71989 2724 struct device *dev = rx_ring->dev;
9d5c8243
AK
2725 int size, desc_len;
2726
06034649
AD
2727 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2728 rx_ring->rx_buffer_info = vzalloc(size);
2729 if (!rx_ring->rx_buffer_info)
9d5c8243 2730 goto err;
9d5c8243
AK
2731
2732 desc_len = sizeof(union e1000_adv_rx_desc);
2733
2734 /* Round up to nearest 4K */
2735 rx_ring->size = rx_ring->count * desc_len;
2736 rx_ring->size = ALIGN(rx_ring->size, 4096);
2737
59d71989
AD
2738 rx_ring->desc = dma_alloc_coherent(dev,
2739 rx_ring->size,
2740 &rx_ring->dma,
2741 GFP_KERNEL);
9d5c8243
AK
2742
2743 if (!rx_ring->desc)
2744 goto err;
2745
2746 rx_ring->next_to_clean = 0;
2747 rx_ring->next_to_use = 0;
9d5c8243 2748
9d5c8243
AK
2749 return 0;
2750
2751err:
06034649
AD
2752 vfree(rx_ring->rx_buffer_info);
2753 rx_ring->rx_buffer_info = NULL;
59d71989
AD
2754 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2755 " ring\n");
9d5c8243
AK
2756 return -ENOMEM;
2757}
2758
2759/**
2760 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2761 * (Descriptors) for all queues
2762 * @adapter: board private structure
2763 *
2764 * Return 0 on success, negative on failure
2765 **/
2766static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2767{
439705e1 2768 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2769 int i, err = 0;
2770
2771 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2772 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2773 if (err) {
439705e1 2774 dev_err(&pdev->dev,
9d5c8243
AK
2775 "Allocation for Rx Queue %u failed\n", i);
2776 for (i--; i >= 0; i--)
3025a446 2777 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2778 break;
2779 }
2780 }
2781
2782 return err;
2783}
2784
06cf2666
AD
2785/**
2786 * igb_setup_mrqc - configure the multiple receive queue control registers
2787 * @adapter: Board private structure
2788 **/
2789static void igb_setup_mrqc(struct igb_adapter *adapter)
2790{
2791 struct e1000_hw *hw = &adapter->hw;
2792 u32 mrqc, rxcsum;
2793 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2794 union e1000_reta {
2795 u32 dword;
2796 u8 bytes[4];
2797 } reta;
2798 static const u8 rsshash[40] = {
2799 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2800 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2801 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2802 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2803
2804 /* Fill out hash function seeds */
2805 for (j = 0; j < 10; j++) {
2806 u32 rsskey = rsshash[(j * 4)];
2807 rsskey |= rsshash[(j * 4) + 1] << 8;
2808 rsskey |= rsshash[(j * 4) + 2] << 16;
2809 rsskey |= rsshash[(j * 4) + 3] << 24;
2810 array_wr32(E1000_RSSRK(0), j, rsskey);
2811 }
2812
a99955fc 2813 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2814
2815 if (adapter->vfs_allocated_count) {
2816 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2817 switch (hw->mac.type) {
d2ba2ed8 2818 case e1000_i350:
55cac248
AD
2819 case e1000_82580:
2820 num_rx_queues = 1;
2821 shift = 0;
2822 break;
06cf2666
AD
2823 case e1000_82576:
2824 shift = 3;
2825 num_rx_queues = 2;
2826 break;
2827 case e1000_82575:
2828 shift = 2;
2829 shift2 = 6;
2830 default:
2831 break;
2832 }
2833 } else {
2834 if (hw->mac.type == e1000_82575)
2835 shift = 6;
2836 }
2837
2838 for (j = 0; j < (32 * 4); j++) {
2839 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2840 if (shift2)
2841 reta.bytes[j & 3] |= num_rx_queues << shift2;
2842 if ((j & 3) == 3)
2843 wr32(E1000_RETA(j >> 2), reta.dword);
2844 }
2845
2846 /*
2847 * Disable raw packet checksumming so that RSS hash is placed in
2848 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2849 * offloads as they are enabled by default
2850 */
2851 rxcsum = rd32(E1000_RXCSUM);
2852 rxcsum |= E1000_RXCSUM_PCSD;
2853
2854 if (adapter->hw.mac.type >= e1000_82576)
2855 /* Enable Receive Checksum Offload for SCTP */
2856 rxcsum |= E1000_RXCSUM_CRCOFL;
2857
2858 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2859 wr32(E1000_RXCSUM, rxcsum);
2860
2861 /* If VMDq is enabled then we set the appropriate mode for that, else
2862 * we default to RSS so that an RSS hash is calculated per packet even
2863 * if we are only using one queue */
2864 if (adapter->vfs_allocated_count) {
2865 if (hw->mac.type > e1000_82575) {
2866 /* Set the default pool for the PF's first queue */
2867 u32 vtctl = rd32(E1000_VT_CTL);
2868 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2869 E1000_VT_CTL_DISABLE_DEF_POOL);
2870 vtctl |= adapter->vfs_allocated_count <<
2871 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2872 wr32(E1000_VT_CTL, vtctl);
2873 }
a99955fc 2874 if (adapter->rss_queues > 1)
06cf2666
AD
2875 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2876 else
2877 mrqc = E1000_MRQC_ENABLE_VMDQ;
2878 } else {
2879 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2880 }
2881 igb_vmm_control(adapter);
2882
4478a9cd
AD
2883 /*
2884 * Generate RSS hash based on TCP port numbers and/or
2885 * IPv4/v6 src and dst addresses since UDP cannot be
2886 * hashed reliably due to IP fragmentation
2887 */
2888 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2889 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2890 E1000_MRQC_RSS_FIELD_IPV6 |
2891 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2892 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2893
2894 wr32(E1000_MRQC, mrqc);
2895}
2896
9d5c8243
AK
2897/**
2898 * igb_setup_rctl - configure the receive control registers
2899 * @adapter: Board private structure
2900 **/
d7ee5b3a 2901void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2902{
2903 struct e1000_hw *hw = &adapter->hw;
2904 u32 rctl;
9d5c8243
AK
2905
2906 rctl = rd32(E1000_RCTL);
2907
2908 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2909 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2910
69d728ba 2911 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2912 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2913
87cb7e8c
AK
2914 /*
2915 * enable stripping of CRC. It's unlikely this will break BMC
2916 * redirection as it did with e1000. Newer features require
2917 * that the HW strips the CRC.
73cd78f1 2918 */
87cb7e8c 2919 rctl |= E1000_RCTL_SECRC;
9d5c8243 2920
559e9c49 2921 /* disable store bad packets and clear size bits. */
ec54d7d6 2922 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2923
6ec43fe6
AD
2924 /* enable LPE to prevent packets larger than max_frame_size */
2925 rctl |= E1000_RCTL_LPE;
9d5c8243 2926
952f72a8
AD
2927 /* disable queue 0 to prevent tail write w/o re-config */
2928 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2929
e1739522
AD
2930 /* Attention!!! For SR-IOV PF driver operations you must enable
2931 * queue drop for all VF and PF queues to prevent head of line blocking
2932 * if an un-trusted VF does not provide descriptors to hardware.
2933 */
2934 if (adapter->vfs_allocated_count) {
e1739522
AD
2935 /* set all queue drop enable bits */
2936 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2937 }
2938
9d5c8243
AK
2939 wr32(E1000_RCTL, rctl);
2940}
2941
7d5753f0
AD
2942static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2943 int vfn)
2944{
2945 struct e1000_hw *hw = &adapter->hw;
2946 u32 vmolr;
2947
2948 /* if it isn't the PF check to see if VFs are enabled and
2949 * increase the size to support vlan tags */
2950 if (vfn < adapter->vfs_allocated_count &&
2951 adapter->vf_data[vfn].vlans_enabled)
2952 size += VLAN_TAG_SIZE;
2953
2954 vmolr = rd32(E1000_VMOLR(vfn));
2955 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2956 vmolr |= size | E1000_VMOLR_LPE;
2957 wr32(E1000_VMOLR(vfn), vmolr);
2958
2959 return 0;
2960}
2961
e1739522
AD
2962/**
2963 * igb_rlpml_set - set maximum receive packet size
2964 * @adapter: board private structure
2965 *
2966 * Configure maximum receivable packet size.
2967 **/
2968static void igb_rlpml_set(struct igb_adapter *adapter)
2969{
153285f9 2970 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
2971 struct e1000_hw *hw = &adapter->hw;
2972 u16 pf_id = adapter->vfs_allocated_count;
2973
e1739522
AD
2974 if (pf_id) {
2975 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
153285f9
AD
2976 /*
2977 * If we're in VMDQ or SR-IOV mode, then set global RLPML
2978 * to our max jumbo frame size, in case we need to enable
2979 * jumbo frames on one of the rings later.
2980 * This will not pass over-length frames into the default
2981 * queue because it's gated by the VMOLR.RLPML.
2982 */
7d5753f0 2983 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2984 }
2985
2986 wr32(E1000_RLPML, max_frame_size);
2987}
2988
8151d294
WM
2989static inline void igb_set_vmolr(struct igb_adapter *adapter,
2990 int vfn, bool aupe)
7d5753f0
AD
2991{
2992 struct e1000_hw *hw = &adapter->hw;
2993 u32 vmolr;
2994
2995 /*
2996 * This register exists only on 82576 and newer so if we are older then
2997 * we should exit and do nothing
2998 */
2999 if (hw->mac.type < e1000_82576)
3000 return;
3001
3002 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
3003 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3004 if (aupe)
3005 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3006 else
3007 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3008
3009 /* clear all bits that might not be set */
3010 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3011
a99955fc 3012 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
3013 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3014 /*
3015 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3016 * multicast packets
3017 */
3018 if (vfn <= adapter->vfs_allocated_count)
3019 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3020
3021 wr32(E1000_VMOLR(vfn), vmolr);
3022}
3023
85b430b4
AD
3024/**
3025 * igb_configure_rx_ring - Configure a receive ring after Reset
3026 * @adapter: board private structure
3027 * @ring: receive ring to be configured
3028 *
3029 * Configure the Rx unit of the MAC after a reset.
3030 **/
d7ee5b3a
AD
3031void igb_configure_rx_ring(struct igb_adapter *adapter,
3032 struct igb_ring *ring)
85b430b4
AD
3033{
3034 struct e1000_hw *hw = &adapter->hw;
3035 u64 rdba = ring->dma;
3036 int reg_idx = ring->reg_idx;
a74420e0 3037 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3038
3039 /* disable the queue */
a74420e0 3040 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3041
3042 /* Set DMA base address registers */
3043 wr32(E1000_RDBAL(reg_idx),
3044 rdba & 0x00000000ffffffffULL);
3045 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3046 wr32(E1000_RDLEN(reg_idx),
3047 ring->count * sizeof(union e1000_adv_rx_desc));
3048
3049 /* initialize head and tail */
fce99e34 3050 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3051 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3052 writel(0, ring->tail);
85b430b4 3053
952f72a8 3054 /* set descriptor configuration */
44390ca6 3055 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
952f72a8 3056#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
44390ca6 3057 srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3058#else
44390ca6 3059 srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3060#endif
44390ca6 3061 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
757b77e2
NN
3062 if (hw->mac.type == e1000_82580)
3063 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3064 /* Only set Drop Enable if we are supporting multiple queues */
3065 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3066 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3067
3068 wr32(E1000_SRRCTL(reg_idx), srrctl);
3069
7d5753f0 3070 /* set filtering for VMDQ pools */
8151d294 3071 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3072
85b430b4
AD
3073 rxdctl |= IGB_RX_PTHRESH;
3074 rxdctl |= IGB_RX_HTHRESH << 8;
3075 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3076
3077 /* enable receive descriptor fetching */
3078 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3079 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3080}
3081
9d5c8243
AK
3082/**
3083 * igb_configure_rx - Configure receive Unit after Reset
3084 * @adapter: board private structure
3085 *
3086 * Configure the Rx unit of the MAC after a reset.
3087 **/
3088static void igb_configure_rx(struct igb_adapter *adapter)
3089{
9107584e 3090 int i;
9d5c8243 3091
68d480c4
AD
3092 /* set UTA to appropriate mode */
3093 igb_set_uta(adapter);
3094
26ad9178
AD
3095 /* set the correct pool for the PF default MAC address in entry 0 */
3096 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3097 adapter->vfs_allocated_count);
3098
06cf2666
AD
3099 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3100 * the Base and Length of the Rx Descriptor Ring */
3101 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3102 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3103}
3104
3105/**
3106 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3107 * @tx_ring: Tx descriptor ring for a specific queue
3108 *
3109 * Free all transmit software resources
3110 **/
68fd9910 3111void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3112{
3b644cf6 3113 igb_clean_tx_ring(tx_ring);
9d5c8243 3114
06034649
AD
3115 vfree(tx_ring->tx_buffer_info);
3116 tx_ring->tx_buffer_info = NULL;
9d5c8243 3117
439705e1
AD
3118 /* if not set, then don't free */
3119 if (!tx_ring->desc)
3120 return;
3121
59d71989
AD
3122 dma_free_coherent(tx_ring->dev, tx_ring->size,
3123 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3124
3125 tx_ring->desc = NULL;
3126}
3127
3128/**
3129 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3130 * @adapter: board private structure
3131 *
3132 * Free all transmit software resources
3133 **/
3134static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3135{
3136 int i;
3137
3138 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3139 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3140}
3141
b1a436c3 3142void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
06034649 3143 struct igb_tx_buffer *buffer_info)
9d5c8243 3144{
6366ad33
AD
3145 if (buffer_info->dma) {
3146 if (buffer_info->mapped_as_page)
59d71989 3147 dma_unmap_page(tx_ring->dev,
6366ad33
AD
3148 buffer_info->dma,
3149 buffer_info->length,
59d71989 3150 DMA_TO_DEVICE);
6366ad33 3151 else
59d71989 3152 dma_unmap_single(tx_ring->dev,
6366ad33
AD
3153 buffer_info->dma,
3154 buffer_info->length,
59d71989 3155 DMA_TO_DEVICE);
6366ad33
AD
3156 buffer_info->dma = 0;
3157 }
9d5c8243
AK
3158 if (buffer_info->skb) {
3159 dev_kfree_skb_any(buffer_info->skb);
3160 buffer_info->skb = NULL;
3161 }
3162 buffer_info->time_stamp = 0;
6366ad33
AD
3163 buffer_info->length = 0;
3164 buffer_info->next_to_watch = 0;
3165 buffer_info->mapped_as_page = false;
9d5c8243
AK
3166}
3167
3168/**
3169 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3170 * @tx_ring: ring to be cleaned
3171 **/
3b644cf6 3172static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3173{
06034649 3174 struct igb_tx_buffer *buffer_info;
9d5c8243
AK
3175 unsigned long size;
3176 unsigned int i;
3177
06034649 3178 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3179 return;
3180 /* Free all the Tx ring sk_buffs */
3181
3182 for (i = 0; i < tx_ring->count; i++) {
06034649 3183 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3184 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3185 }
3186
06034649
AD
3187 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3188 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3189
3190 /* Zero out the descriptor ring */
9d5c8243
AK
3191 memset(tx_ring->desc, 0, tx_ring->size);
3192
3193 tx_ring->next_to_use = 0;
3194 tx_ring->next_to_clean = 0;
9d5c8243
AK
3195}
3196
3197/**
3198 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3199 * @adapter: board private structure
3200 **/
3201static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3202{
3203 int i;
3204
3205 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3206 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3207}
3208
3209/**
3210 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3211 * @rx_ring: ring to clean the resources from
3212 *
3213 * Free all receive software resources
3214 **/
68fd9910 3215void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3216{
3b644cf6 3217 igb_clean_rx_ring(rx_ring);
9d5c8243 3218
06034649
AD
3219 vfree(rx_ring->rx_buffer_info);
3220 rx_ring->rx_buffer_info = NULL;
9d5c8243 3221
439705e1
AD
3222 /* if not set, then don't free */
3223 if (!rx_ring->desc)
3224 return;
3225
59d71989
AD
3226 dma_free_coherent(rx_ring->dev, rx_ring->size,
3227 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3228
3229 rx_ring->desc = NULL;
3230}
3231
3232/**
3233 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3234 * @adapter: board private structure
3235 *
3236 * Free all receive software resources
3237 **/
3238static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3239{
3240 int i;
3241
3242 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3243 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3244}
3245
3246/**
3247 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3248 * @rx_ring: ring to free buffers from
3249 **/
3b644cf6 3250static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3251{
9d5c8243 3252 unsigned long size;
c023cd88 3253 u16 i;
9d5c8243 3254
06034649 3255 if (!rx_ring->rx_buffer_info)
9d5c8243 3256 return;
439705e1 3257
9d5c8243
AK
3258 /* Free all the Rx ring sk_buffs */
3259 for (i = 0; i < rx_ring->count; i++) {
06034649 3260 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3261 if (buffer_info->dma) {
59d71989 3262 dma_unmap_single(rx_ring->dev,
80785298 3263 buffer_info->dma,
44390ca6 3264 IGB_RX_HDR_LEN,
59d71989 3265 DMA_FROM_DEVICE);
9d5c8243
AK
3266 buffer_info->dma = 0;
3267 }
3268
3269 if (buffer_info->skb) {
3270 dev_kfree_skb(buffer_info->skb);
3271 buffer_info->skb = NULL;
3272 }
6ec43fe6 3273 if (buffer_info->page_dma) {
59d71989 3274 dma_unmap_page(rx_ring->dev,
80785298 3275 buffer_info->page_dma,
6ec43fe6 3276 PAGE_SIZE / 2,
59d71989 3277 DMA_FROM_DEVICE);
6ec43fe6
AD
3278 buffer_info->page_dma = 0;
3279 }
9d5c8243 3280 if (buffer_info->page) {
9d5c8243
AK
3281 put_page(buffer_info->page);
3282 buffer_info->page = NULL;
bf36c1a0 3283 buffer_info->page_offset = 0;
9d5c8243
AK
3284 }
3285 }
3286
06034649
AD
3287 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3288 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3289
3290 /* Zero out the descriptor ring */
3291 memset(rx_ring->desc, 0, rx_ring->size);
3292
3293 rx_ring->next_to_clean = 0;
3294 rx_ring->next_to_use = 0;
9d5c8243
AK
3295}
3296
3297/**
3298 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3299 * @adapter: board private structure
3300 **/
3301static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3302{
3303 int i;
3304
3305 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3306 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3307}
3308
3309/**
3310 * igb_set_mac - Change the Ethernet Address of the NIC
3311 * @netdev: network interface device structure
3312 * @p: pointer to an address structure
3313 *
3314 * Returns 0 on success, negative on failure
3315 **/
3316static int igb_set_mac(struct net_device *netdev, void *p)
3317{
3318 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3319 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3320 struct sockaddr *addr = p;
3321
3322 if (!is_valid_ether_addr(addr->sa_data))
3323 return -EADDRNOTAVAIL;
3324
3325 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3326 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3327
26ad9178
AD
3328 /* set the correct pool for the new PF MAC address in entry 0 */
3329 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3330 adapter->vfs_allocated_count);
e1739522 3331
9d5c8243
AK
3332 return 0;
3333}
3334
3335/**
68d480c4 3336 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3337 * @netdev: network interface device structure
3338 *
68d480c4
AD
3339 * Writes multicast address list to the MTA hash table.
3340 * Returns: -ENOMEM on failure
3341 * 0 on no addresses written
3342 * X on writing X addresses to MTA
9d5c8243 3343 **/
68d480c4 3344static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3345{
3346 struct igb_adapter *adapter = netdev_priv(netdev);
3347 struct e1000_hw *hw = &adapter->hw;
22bedad3 3348 struct netdev_hw_addr *ha;
68d480c4 3349 u8 *mta_list;
9d5c8243
AK
3350 int i;
3351
4cd24eaf 3352 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3353 /* nothing to program, so clear mc list */
3354 igb_update_mc_addr_list(hw, NULL, 0);
3355 igb_restore_vf_multicasts(adapter);
3356 return 0;
3357 }
9d5c8243 3358
4cd24eaf 3359 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3360 if (!mta_list)
3361 return -ENOMEM;
ff41f8dc 3362
68d480c4 3363 /* The shared function expects a packed array of only addresses. */
48e2f183 3364 i = 0;
22bedad3
JP
3365 netdev_for_each_mc_addr(ha, netdev)
3366 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3367
68d480c4
AD
3368 igb_update_mc_addr_list(hw, mta_list, i);
3369 kfree(mta_list);
3370
4cd24eaf 3371 return netdev_mc_count(netdev);
68d480c4
AD
3372}
3373
3374/**
3375 * igb_write_uc_addr_list - write unicast addresses to RAR table
3376 * @netdev: network interface device structure
3377 *
3378 * Writes unicast address list to the RAR table.
3379 * Returns: -ENOMEM on failure/insufficient address space
3380 * 0 on no addresses written
3381 * X on writing X addresses to the RAR table
3382 **/
3383static int igb_write_uc_addr_list(struct net_device *netdev)
3384{
3385 struct igb_adapter *adapter = netdev_priv(netdev);
3386 struct e1000_hw *hw = &adapter->hw;
3387 unsigned int vfn = adapter->vfs_allocated_count;
3388 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3389 int count = 0;
3390
3391 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3392 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3393 return -ENOMEM;
9d5c8243 3394
32e7bfc4 3395 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3396 struct netdev_hw_addr *ha;
32e7bfc4
JP
3397
3398 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3399 if (!rar_entries)
3400 break;
26ad9178
AD
3401 igb_rar_set_qsel(adapter, ha->addr,
3402 rar_entries--,
68d480c4
AD
3403 vfn);
3404 count++;
ff41f8dc
AD
3405 }
3406 }
3407 /* write the addresses in reverse order to avoid write combining */
3408 for (; rar_entries > 0 ; rar_entries--) {
3409 wr32(E1000_RAH(rar_entries), 0);
3410 wr32(E1000_RAL(rar_entries), 0);
3411 }
3412 wrfl();
3413
68d480c4
AD
3414 return count;
3415}
3416
3417/**
3418 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3419 * @netdev: network interface device structure
3420 *
3421 * The set_rx_mode entry point is called whenever the unicast or multicast
3422 * address lists or the network interface flags are updated. This routine is
3423 * responsible for configuring the hardware for proper unicast, multicast,
3424 * promiscuous mode, and all-multi behavior.
3425 **/
3426static void igb_set_rx_mode(struct net_device *netdev)
3427{
3428 struct igb_adapter *adapter = netdev_priv(netdev);
3429 struct e1000_hw *hw = &adapter->hw;
3430 unsigned int vfn = adapter->vfs_allocated_count;
3431 u32 rctl, vmolr = 0;
3432 int count;
3433
3434 /* Check for Promiscuous and All Multicast modes */
3435 rctl = rd32(E1000_RCTL);
3436
3437 /* clear the effected bits */
3438 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3439
3440 if (netdev->flags & IFF_PROMISC) {
3441 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3442 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3443 } else {
3444 if (netdev->flags & IFF_ALLMULTI) {
3445 rctl |= E1000_RCTL_MPE;
3446 vmolr |= E1000_VMOLR_MPME;
3447 } else {
3448 /*
3449 * Write addresses to the MTA, if the attempt fails
25985edc 3450 * then we should just turn on promiscuous mode so
68d480c4
AD
3451 * that we can at least receive multicast traffic
3452 */
3453 count = igb_write_mc_addr_list(netdev);
3454 if (count < 0) {
3455 rctl |= E1000_RCTL_MPE;
3456 vmolr |= E1000_VMOLR_MPME;
3457 } else if (count) {
3458 vmolr |= E1000_VMOLR_ROMPE;
3459 }
3460 }
3461 /*
3462 * Write addresses to available RAR registers, if there is not
3463 * sufficient space to store all the addresses then enable
25985edc 3464 * unicast promiscuous mode
68d480c4
AD
3465 */
3466 count = igb_write_uc_addr_list(netdev);
3467 if (count < 0) {
3468 rctl |= E1000_RCTL_UPE;
3469 vmolr |= E1000_VMOLR_ROPE;
3470 }
3471 rctl |= E1000_RCTL_VFE;
28fc06f5 3472 }
68d480c4 3473 wr32(E1000_RCTL, rctl);
28fc06f5 3474
68d480c4
AD
3475 /*
3476 * In order to support SR-IOV and eventually VMDq it is necessary to set
3477 * the VMOLR to enable the appropriate modes. Without this workaround
3478 * we will have issues with VLAN tag stripping not being done for frames
3479 * that are only arriving because we are the default pool
3480 */
3481 if (hw->mac.type < e1000_82576)
28fc06f5 3482 return;
9d5c8243 3483
68d480c4
AD
3484 vmolr |= rd32(E1000_VMOLR(vfn)) &
3485 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3486 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3487 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3488}
3489
13800469
GR
3490static void igb_check_wvbr(struct igb_adapter *adapter)
3491{
3492 struct e1000_hw *hw = &adapter->hw;
3493 u32 wvbr = 0;
3494
3495 switch (hw->mac.type) {
3496 case e1000_82576:
3497 case e1000_i350:
3498 if (!(wvbr = rd32(E1000_WVBR)))
3499 return;
3500 break;
3501 default:
3502 break;
3503 }
3504
3505 adapter->wvbr |= wvbr;
3506}
3507
3508#define IGB_STAGGERED_QUEUE_OFFSET 8
3509
3510static void igb_spoof_check(struct igb_adapter *adapter)
3511{
3512 int j;
3513
3514 if (!adapter->wvbr)
3515 return;
3516
3517 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3518 if (adapter->wvbr & (1 << j) ||
3519 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3520 dev_warn(&adapter->pdev->dev,
3521 "Spoof event(s) detected on VF %d\n", j);
3522 adapter->wvbr &=
3523 ~((1 << j) |
3524 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3525 }
3526 }
3527}
3528
9d5c8243
AK
3529/* Need to wait a few seconds after link up to get diagnostic information from
3530 * the phy */
3531static void igb_update_phy_info(unsigned long data)
3532{
3533 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3534 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3535}
3536
4d6b725e
AD
3537/**
3538 * igb_has_link - check shared code for link and determine up/down
3539 * @adapter: pointer to driver private info
3540 **/
3145535a 3541bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3542{
3543 struct e1000_hw *hw = &adapter->hw;
3544 bool link_active = false;
3545 s32 ret_val = 0;
3546
3547 /* get_link_status is set on LSC (link status) interrupt or
3548 * rx sequence error interrupt. get_link_status will stay
3549 * false until the e1000_check_for_link establishes link
3550 * for copper adapters ONLY
3551 */
3552 switch (hw->phy.media_type) {
3553 case e1000_media_type_copper:
3554 if (hw->mac.get_link_status) {
3555 ret_val = hw->mac.ops.check_for_link(hw);
3556 link_active = !hw->mac.get_link_status;
3557 } else {
3558 link_active = true;
3559 }
3560 break;
4d6b725e
AD
3561 case e1000_media_type_internal_serdes:
3562 ret_val = hw->mac.ops.check_for_link(hw);
3563 link_active = hw->mac.serdes_has_link;
3564 break;
3565 default:
3566 case e1000_media_type_unknown:
3567 break;
3568 }
3569
3570 return link_active;
3571}
3572
563988dc
SA
3573static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3574{
3575 bool ret = false;
3576 u32 ctrl_ext, thstat;
3577
3578 /* check for thermal sensor event on i350, copper only */
3579 if (hw->mac.type == e1000_i350) {
3580 thstat = rd32(E1000_THSTAT);
3581 ctrl_ext = rd32(E1000_CTRL_EXT);
3582
3583 if ((hw->phy.media_type == e1000_media_type_copper) &&
3584 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3585 ret = !!(thstat & event);
3586 }
3587 }
3588
3589 return ret;
3590}
3591
9d5c8243
AK
3592/**
3593 * igb_watchdog - Timer Call-back
3594 * @data: pointer to adapter cast into an unsigned long
3595 **/
3596static void igb_watchdog(unsigned long data)
3597{
3598 struct igb_adapter *adapter = (struct igb_adapter *)data;
3599 /* Do the rest outside of interrupt context */
3600 schedule_work(&adapter->watchdog_task);
3601}
3602
3603static void igb_watchdog_task(struct work_struct *work)
3604{
3605 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3606 struct igb_adapter,
3607 watchdog_task);
9d5c8243 3608 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3609 struct net_device *netdev = adapter->netdev;
563988dc 3610 u32 link;
7a6ea550 3611 int i;
9d5c8243 3612
4d6b725e 3613 link = igb_has_link(adapter);
9d5c8243
AK
3614 if (link) {
3615 if (!netif_carrier_ok(netdev)) {
3616 u32 ctrl;
330a6d6a
AD
3617 hw->mac.ops.get_speed_and_duplex(hw,
3618 &adapter->link_speed,
3619 &adapter->link_duplex);
9d5c8243
AK
3620
3621 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3622 /* Links status message must follow this format */
3623 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3624 "Flow Control: %s\n",
559e9c49
AD
3625 netdev->name,
3626 adapter->link_speed,
3627 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3628 "Full Duplex" : "Half Duplex",
559e9c49
AD
3629 ((ctrl & E1000_CTRL_TFCE) &&
3630 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3631 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3632 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3633
563988dc
SA
3634 /* check for thermal sensor event */
3635 if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
3636 printk(KERN_INFO "igb: %s The network adapter "
3637 "link speed was downshifted "
3638 "because it overheated.\n",
3639 netdev->name);
7ef5ed1c 3640 }
563988dc 3641
d07f3e37 3642 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3643 adapter->tx_timeout_factor = 1;
3644 switch (adapter->link_speed) {
3645 case SPEED_10:
9d5c8243
AK
3646 adapter->tx_timeout_factor = 14;
3647 break;
3648 case SPEED_100:
9d5c8243
AK
3649 /* maybe add some timeout factor ? */
3650 break;
3651 }
3652
3653 netif_carrier_on(netdev);
9d5c8243 3654
4ae196df 3655 igb_ping_all_vfs(adapter);
17dc566c 3656 igb_check_vf_rate_limit(adapter);
4ae196df 3657
4b1a9877 3658 /* link state has changed, schedule phy info update */
9d5c8243
AK
3659 if (!test_bit(__IGB_DOWN, &adapter->state))
3660 mod_timer(&adapter->phy_info_timer,
3661 round_jiffies(jiffies + 2 * HZ));
3662 }
3663 } else {
3664 if (netif_carrier_ok(netdev)) {
3665 adapter->link_speed = 0;
3666 adapter->link_duplex = 0;
563988dc
SA
3667
3668 /* check for thermal sensor event */
3669 if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
3670 printk(KERN_ERR "igb: %s The network adapter "
3671 "was stopped because it "
3672 "overheated.\n",
7ef5ed1c 3673 netdev->name);
7ef5ed1c 3674 }
563988dc 3675
527d47c1
AD
3676 /* Links status message must follow this format */
3677 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3678 netdev->name);
9d5c8243 3679 netif_carrier_off(netdev);
4b1a9877 3680
4ae196df
AD
3681 igb_ping_all_vfs(adapter);
3682
4b1a9877 3683 /* link state has changed, schedule phy info update */
9d5c8243
AK
3684 if (!test_bit(__IGB_DOWN, &adapter->state))
3685 mod_timer(&adapter->phy_info_timer,
3686 round_jiffies(jiffies + 2 * HZ));
3687 }
3688 }
3689
12dcd86b
ED
3690 spin_lock(&adapter->stats64_lock);
3691 igb_update_stats(adapter, &adapter->stats64);
3692 spin_unlock(&adapter->stats64_lock);
9d5c8243 3693
dbabb065 3694 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3695 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3696 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3697 /* We've lost link, so the controller stops DMA,
3698 * but we've got queued Tx work that's never going
3699 * to get done, so reset controller to flush Tx.
3700 * (Do the reset outside of interrupt context). */
dbabb065
AD
3701 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3702 adapter->tx_timeout_count++;
3703 schedule_work(&adapter->reset_task);
3704 /* return immediately since reset is imminent */
3705 return;
3706 }
9d5c8243 3707 }
9d5c8243 3708
dbabb065
AD
3709 /* Force detection of hung controller every watchdog period */
3710 tx_ring->detect_tx_hung = true;
3711 }
f7ba205e 3712
9d5c8243 3713 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3714 if (adapter->msix_entries) {
047e0030
AD
3715 u32 eics = 0;
3716 for (i = 0; i < adapter->num_q_vectors; i++) {
3717 struct igb_q_vector *q_vector = adapter->q_vector[i];
3718 eics |= q_vector->eims_value;
3719 }
7a6ea550
AD
3720 wr32(E1000_EICS, eics);
3721 } else {
3722 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3723 }
9d5c8243 3724
13800469
GR
3725 igb_spoof_check(adapter);
3726
9d5c8243
AK
3727 /* Reset the timer */
3728 if (!test_bit(__IGB_DOWN, &adapter->state))
3729 mod_timer(&adapter->watchdog_timer,
3730 round_jiffies(jiffies + 2 * HZ));
3731}
3732
3733enum latency_range {
3734 lowest_latency = 0,
3735 low_latency = 1,
3736 bulk_latency = 2,
3737 latency_invalid = 255
3738};
3739
6eb5a7f1
AD
3740/**
3741 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3742 *
3743 * Stores a new ITR value based on strictly on packet size. This
3744 * algorithm is less sophisticated than that used in igb_update_itr,
3745 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3746 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3747 * were determined based on theoretical maximum wire speed and testing
3748 * data, in order to minimize response time while increasing bulk
3749 * throughput.
3750 * This functionality is controlled by the InterruptThrottleRate module
3751 * parameter (see igb_param.c)
3752 * NOTE: This function is called only when operating in a multiqueue
3753 * receive environment.
047e0030 3754 * @q_vector: pointer to q_vector
6eb5a7f1 3755 **/
047e0030 3756static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3757{
047e0030 3758 int new_val = q_vector->itr_val;
6eb5a7f1 3759 int avg_wire_size = 0;
047e0030 3760 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b
ED
3761 struct igb_ring *ring;
3762 unsigned int packets;
9d5c8243 3763
6eb5a7f1
AD
3764 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3765 * ints/sec - ITR timer value of 120 ticks.
3766 */
3767 if (adapter->link_speed != SPEED_1000) {
047e0030 3768 new_val = 976;
6eb5a7f1 3769 goto set_itr_val;
9d5c8243 3770 }
047e0030 3771
12dcd86b
ED
3772 ring = q_vector->rx_ring;
3773 if (ring) {
3774 packets = ACCESS_ONCE(ring->total_packets);
3775
3776 if (packets)
3777 avg_wire_size = ring->total_bytes / packets;
047e0030
AD
3778 }
3779
12dcd86b
ED
3780 ring = q_vector->tx_ring;
3781 if (ring) {
3782 packets = ACCESS_ONCE(ring->total_packets);
3783
3784 if (packets)
3785 avg_wire_size = max_t(u32, avg_wire_size,
3786 ring->total_bytes / packets);
047e0030
AD
3787 }
3788
3789 /* if avg_wire_size isn't set no work was done */
3790 if (!avg_wire_size)
3791 goto clear_counts;
9d5c8243 3792
6eb5a7f1
AD
3793 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3794 avg_wire_size += 24;
3795
3796 /* Don't starve jumbo frames */
3797 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3798
6eb5a7f1
AD
3799 /* Give a little boost to mid-size frames */
3800 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3801 new_val = avg_wire_size / 3;
3802 else
3803 new_val = avg_wire_size / 2;
9d5c8243 3804
abe1c363
NN
3805 /* when in itr mode 3 do not exceed 20K ints/sec */
3806 if (adapter->rx_itr_setting == 3 && new_val < 196)
3807 new_val = 196;
3808
6eb5a7f1 3809set_itr_val:
047e0030
AD
3810 if (new_val != q_vector->itr_val) {
3811 q_vector->itr_val = new_val;
3812 q_vector->set_itr = 1;
9d5c8243 3813 }
6eb5a7f1 3814clear_counts:
047e0030
AD
3815 if (q_vector->rx_ring) {
3816 q_vector->rx_ring->total_bytes = 0;
3817 q_vector->rx_ring->total_packets = 0;
3818 }
3819 if (q_vector->tx_ring) {
3820 q_vector->tx_ring->total_bytes = 0;
3821 q_vector->tx_ring->total_packets = 0;
3822 }
9d5c8243
AK
3823}
3824
3825/**
3826 * igb_update_itr - update the dynamic ITR value based on statistics
3827 * Stores a new ITR value based on packets and byte
3828 * counts during the last interrupt. The advantage of per interrupt
3829 * computation is faster updates and more accurate ITR for the current
3830 * traffic pattern. Constants in this function were computed
3831 * based on theoretical maximum wire speed and thresholds were set based
3832 * on testing data as well as attempting to minimize response time
3833 * while increasing bulk throughput.
3834 * this functionality is controlled by the InterruptThrottleRate module
3835 * parameter (see igb_param.c)
3836 * NOTE: These calculations are only valid when operating in a single-
3837 * queue environment.
3838 * @adapter: pointer to adapter
047e0030 3839 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3840 * @packets: the number of packets during this measurement interval
3841 * @bytes: the number of bytes during this measurement interval
3842 **/
3843static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3844 int packets, int bytes)
3845{
3846 unsigned int retval = itr_setting;
3847
3848 if (packets == 0)
3849 goto update_itr_done;
3850
3851 switch (itr_setting) {
3852 case lowest_latency:
3853 /* handle TSO and jumbo frames */
3854 if (bytes/packets > 8000)
3855 retval = bulk_latency;
3856 else if ((packets < 5) && (bytes > 512))
3857 retval = low_latency;
3858 break;
3859 case low_latency: /* 50 usec aka 20000 ints/s */
3860 if (bytes > 10000) {
3861 /* this if handles the TSO accounting */
3862 if (bytes/packets > 8000) {
3863 retval = bulk_latency;
3864 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3865 retval = bulk_latency;
3866 } else if ((packets > 35)) {
3867 retval = lowest_latency;
3868 }
3869 } else if (bytes/packets > 2000) {
3870 retval = bulk_latency;
3871 } else if (packets <= 2 && bytes < 512) {
3872 retval = lowest_latency;
3873 }
3874 break;
3875 case bulk_latency: /* 250 usec aka 4000 ints/s */
3876 if (bytes > 25000) {
3877 if (packets > 35)
3878 retval = low_latency;
1e5c3d21 3879 } else if (bytes < 1500) {
9d5c8243
AK
3880 retval = low_latency;
3881 }
3882 break;
3883 }
3884
3885update_itr_done:
3886 return retval;
3887}
3888
6eb5a7f1 3889static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3890{
047e0030 3891 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3892 u16 current_itr;
047e0030 3893 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3894
3895 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3896 if (adapter->link_speed != SPEED_1000) {
3897 current_itr = 0;
3898 new_itr = 4000;
3899 goto set_itr_now;
3900 }
3901
3902 adapter->rx_itr = igb_update_itr(adapter,
3903 adapter->rx_itr,
3025a446
AD
3904 q_vector->rx_ring->total_packets,
3905 q_vector->rx_ring->total_bytes);
9d5c8243 3906
047e0030
AD
3907 adapter->tx_itr = igb_update_itr(adapter,
3908 adapter->tx_itr,
3025a446
AD
3909 q_vector->tx_ring->total_packets,
3910 q_vector->tx_ring->total_bytes);
047e0030 3911 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3912
6eb5a7f1 3913 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3914 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3915 current_itr = low_latency;
3916
9d5c8243
AK
3917 switch (current_itr) {
3918 /* counts and packets in update_itr are dependent on these numbers */
3919 case lowest_latency:
78b1f607 3920 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3921 break;
3922 case low_latency:
78b1f607 3923 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3924 break;
3925 case bulk_latency:
78b1f607 3926 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3927 break;
3928 default:
3929 break;
3930 }
3931
3932set_itr_now:
3025a446
AD
3933 q_vector->rx_ring->total_bytes = 0;
3934 q_vector->rx_ring->total_packets = 0;
3935 q_vector->tx_ring->total_bytes = 0;
3936 q_vector->tx_ring->total_packets = 0;
6eb5a7f1 3937
047e0030 3938 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3939 /* this attempts to bias the interrupt rate towards Bulk
3940 * by adding intermediate steps when interrupt rate is
3941 * increasing */
047e0030
AD
3942 new_itr = new_itr > q_vector->itr_val ?
3943 max((new_itr * q_vector->itr_val) /
3944 (new_itr + (q_vector->itr_val >> 2)),
3945 new_itr) :
9d5c8243
AK
3946 new_itr;
3947 /* Don't write the value here; it resets the adapter's
3948 * internal timer, and causes us to delay far longer than
3949 * we should between interrupts. Instead, we write the ITR
3950 * value at the beginning of the next interrupt so the timing
3951 * ends up being correct.
3952 */
047e0030
AD
3953 q_vector->itr_val = new_itr;
3954 q_vector->set_itr = 1;
9d5c8243 3955 }
9d5c8243
AK
3956}
3957
9d5c8243
AK
3958#define IGB_TX_FLAGS_CSUM 0x00000001
3959#define IGB_TX_FLAGS_VLAN 0x00000002
3960#define IGB_TX_FLAGS_TSO 0x00000004
3961#define IGB_TX_FLAGS_IPV4 0x00000008
cdfd01fc
AD
3962#define IGB_TX_FLAGS_TSTAMP 0x00000010
3963#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3964#define IGB_TX_FLAGS_VLAN_SHIFT 16
9d5c8243 3965
7d13a7d0
AD
3966void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
3967 u32 type_tucmd, u32 mss_l4len_idx)
3968{
3969 struct e1000_adv_tx_context_desc *context_desc;
3970 u16 i = tx_ring->next_to_use;
3971
3972 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
3973
3974 i++;
3975 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3976
3977 /* set bits to identify this as an advanced context descriptor */
3978 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
3979
3980 /* For 82575, context index must be unique per ring. */
3981 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3982 mss_l4len_idx |= tx_ring->reg_idx << 4;
3983
3984 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
3985 context_desc->seqnum_seed = 0;
3986 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
3987 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3988}
3989
cd392f5c
AD
3990static inline int igb_tso(struct igb_ring *tx_ring,
3991 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
9d5c8243 3992{
9d5c8243 3993 int err;
7d13a7d0
AD
3994 u32 vlan_macip_lens, type_tucmd;
3995 u32 mss_l4len_idx, l4len;
3996
3997 if (!skb_is_gso(skb))
3998 return 0;
9d5c8243
AK
3999
4000 if (skb_header_cloned(skb)) {
4001 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4002 if (err)
4003 return err;
4004 }
4005
7d13a7d0
AD
4006 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4007 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243
AK
4008
4009 if (skb->protocol == htons(ETH_P_IP)) {
4010 struct iphdr *iph = ip_hdr(skb);
4011 iph->tot_len = 0;
4012 iph->check = 0;
4013 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4014 iph->daddr, 0,
4015 IPPROTO_TCP,
4016 0);
7d13a7d0 4017 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
8e1e8a47 4018 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4019 ipv6_hdr(skb)->payload_len = 0;
4020 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4021 &ipv6_hdr(skb)->daddr,
4022 0, IPPROTO_TCP, 0);
4023 }
4024
7d13a7d0
AD
4025 l4len = tcp_hdrlen(skb);
4026 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243
AK
4027
4028 /* MSS L4LEN IDX */
7d13a7d0
AD
4029 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4030 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4031
7d13a7d0
AD
4032 /* VLAN MACLEN IPLEN */
4033 vlan_macip_lens = skb_network_header_len(skb);
4034 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4035 vlan_macip_lens |= tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4036
7d13a7d0 4037 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4038
7d13a7d0 4039 return 1;
9d5c8243
AK
4040}
4041
cd392f5c
AD
4042static inline bool igb_tx_csum(struct igb_ring *tx_ring,
4043 struct sk_buff *skb, u32 tx_flags)
9d5c8243 4044{
7d13a7d0
AD
4045 u32 vlan_macip_lens = 0;
4046 u32 mss_l4len_idx = 0;
4047 u32 type_tucmd = 0;
9d5c8243 4048
7d13a7d0
AD
4049 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4050 if (!(tx_flags & IGB_TX_FLAGS_VLAN))
4051 return false;
4052 } else {
4053 u8 l4_hdr = 0;
4054 switch (skb->protocol) {
4055 case __constant_htons(ETH_P_IP):
4056 vlan_macip_lens |= skb_network_header_len(skb);
4057 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4058 l4_hdr = ip_hdr(skb)->protocol;
4059 break;
4060 case __constant_htons(ETH_P_IPV6):
4061 vlan_macip_lens |= skb_network_header_len(skb);
4062 l4_hdr = ipv6_hdr(skb)->nexthdr;
4063 break;
4064 default:
4065 if (unlikely(net_ratelimit())) {
4066 dev_warn(tx_ring->dev,
4067 "partial checksum but proto=%x!\n",
4068 skb->protocol);
fa4a7ef3 4069 }
7d13a7d0
AD
4070 break;
4071 }
fa4a7ef3 4072
7d13a7d0
AD
4073 switch (l4_hdr) {
4074 case IPPROTO_TCP:
4075 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4076 mss_l4len_idx = tcp_hdrlen(skb) <<
4077 E1000_ADVTXD_L4LEN_SHIFT;
4078 break;
4079 case IPPROTO_SCTP:
4080 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4081 mss_l4len_idx = sizeof(struct sctphdr) <<
4082 E1000_ADVTXD_L4LEN_SHIFT;
4083 break;
4084 case IPPROTO_UDP:
4085 mss_l4len_idx = sizeof(struct udphdr) <<
4086 E1000_ADVTXD_L4LEN_SHIFT;
4087 break;
4088 default:
4089 if (unlikely(net_ratelimit())) {
4090 dev_warn(tx_ring->dev,
4091 "partial checksum but l4 proto=%x!\n",
4092 l4_hdr);
44b0cda3 4093 }
7d13a7d0 4094 break;
9d5c8243 4095 }
7d13a7d0 4096 }
9d5c8243 4097
7d13a7d0
AD
4098 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4099 vlan_macip_lens |= tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4100
7d13a7d0 4101 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4102
7d13a7d0 4103 return (skb->ip_summed == CHECKSUM_PARTIAL);
9d5c8243
AK
4104}
4105
4106#define IGB_MAX_TXD_PWR 16
4107#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
4108
cd392f5c
AD
4109static inline int igb_tx_map(struct igb_ring *tx_ring, struct sk_buff *skb,
4110 unsigned int first)
9d5c8243 4111{
06034649 4112 struct igb_tx_buffer *buffer_info;
59d71989 4113 struct device *dev = tx_ring->dev;
2873957d 4114 unsigned int hlen = skb_headlen(skb);
9d5c8243
AK
4115 unsigned int count = 0, i;
4116 unsigned int f;
2873957d 4117 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
9d5c8243
AK
4118
4119 i = tx_ring->next_to_use;
4120
06034649 4121 buffer_info = &tx_ring->tx_buffer_info[i];
2873957d
NN
4122 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
4123 buffer_info->length = hlen;
0e014cb1 4124 buffer_info->next_to_watch = i;
2873957d 4125 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
59d71989
AD
4126 DMA_TO_DEVICE);
4127 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33 4128 goto dma_error;
9d5c8243
AK
4129
4130 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2873957d
NN
4131 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
4132 unsigned int len = frag->size;
9d5c8243 4133
8581145f 4134 count++;
65689fef
AD
4135 i++;
4136 if (i == tx_ring->count)
4137 i = 0;
4138
06034649 4139 buffer_info = &tx_ring->tx_buffer_info[i];
9d5c8243
AK
4140 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
4141 buffer_info->length = len;
0e014cb1 4142 buffer_info->next_to_watch = i;
6366ad33 4143 buffer_info->mapped_as_page = true;
877749bf 4144 buffer_info->dma = skb_frag_dma_map(dev, frag, 0, len,
59d71989
AD
4145 DMA_TO_DEVICE);
4146 if (dma_mapping_error(dev, buffer_info->dma))
6366ad33
AD
4147 goto dma_error;
4148
9d5c8243
AK
4149 }
4150
06034649
AD
4151 buffer_info->skb = skb;
4152 buffer_info->tx_flags = skb_shinfo(skb)->tx_flags;
2873957d 4153 /* multiply data chunks by size of headers */
06034649
AD
4154 buffer_info->bytecount = ((gso_segs - 1) * hlen) + skb->len;
4155 buffer_info->gso_segs = gso_segs;
4156 tx_ring->tx_buffer_info[first].next_to_watch = i;
7d13a7d0 4157 tx_ring->tx_buffer_info[first].time_stamp = jiffies;
9d5c8243 4158
cdfd01fc 4159 return ++count;
6366ad33
AD
4160
4161dma_error:
59d71989 4162 dev_err(dev, "TX DMA map failed\n");
6366ad33
AD
4163
4164 /* clear timestamp and dma mappings for failed buffer_info mapping */
4165 buffer_info->dma = 0;
4166 buffer_info->time_stamp = 0;
4167 buffer_info->length = 0;
4168 buffer_info->next_to_watch = 0;
4169 buffer_info->mapped_as_page = false;
6366ad33
AD
4170
4171 /* clear timestamp and dma mappings for remaining portion of packet */
a77ff709
NN
4172 while (count--) {
4173 if (i == 0)
4174 i = tx_ring->count;
6366ad33 4175 i--;
06034649 4176 buffer_info = &tx_ring->tx_buffer_info[i];
6366ad33
AD
4177 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4178 }
4179
4180 return 0;
9d5c8243
AK
4181}
4182
cd392f5c
AD
4183static inline void igb_tx_queue(struct igb_ring *tx_ring,
4184 u32 tx_flags, int count, u32 paylen,
4185 u8 hdr_len)
9d5c8243 4186{
cdfd01fc 4187 union e1000_adv_tx_desc *tx_desc;
06034649 4188 struct igb_tx_buffer *buffer_info;
9d5c8243 4189 u32 olinfo_status = 0, cmd_type_len;
cdfd01fc 4190 unsigned int i = tx_ring->next_to_use;
9d5c8243
AK
4191
4192 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
4193 E1000_ADVTXD_DCMD_DEXT);
4194
4195 if (tx_flags & IGB_TX_FLAGS_VLAN)
4196 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
4197
33af6bcc
PO
4198 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4199 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
4200
9d5c8243
AK
4201 if (tx_flags & IGB_TX_FLAGS_TSO) {
4202 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
4203
4204 /* insert tcp checksum */
4205 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4206
4207 /* insert ip checksum */
4208 if (tx_flags & IGB_TX_FLAGS_IPV4)
4209 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4210
4211 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
4212 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4213 }
4214
85ad76b2
AD
4215 if ((tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX) &&
4216 (tx_flags & (IGB_TX_FLAGS_CSUM |
4217 IGB_TX_FLAGS_TSO |
7dfc16fa 4218 IGB_TX_FLAGS_VLAN)))
85ad76b2 4219 olinfo_status |= tx_ring->reg_idx << 4;
9d5c8243
AK
4220
4221 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
4222
cdfd01fc 4223 do {
06034649 4224 buffer_info = &tx_ring->tx_buffer_info[i];
60136906 4225 tx_desc = IGB_TX_DESC(tx_ring, i);
9d5c8243
AK
4226 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4227 tx_desc->read.cmd_type_len =
4228 cpu_to_le32(cmd_type_len | buffer_info->length);
4229 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
cdfd01fc 4230 count--;
9d5c8243
AK
4231 i++;
4232 if (i == tx_ring->count)
4233 i = 0;
cdfd01fc 4234 } while (count > 0);
9d5c8243 4235
85ad76b2 4236 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_ADVTXD_DCMD);
9d5c8243
AK
4237 /* Force memory writes to complete before letting h/w
4238 * know there are new descriptors to fetch. (Only
4239 * applicable for weak-ordered memory model archs,
4240 * such as IA-64). */
4241 wmb();
4242
4243 tx_ring->next_to_use = i;
fce99e34 4244 writel(i, tx_ring->tail);
9d5c8243
AK
4245 /* we need this if more than one processor can write to our tail
4246 * at a time, it syncronizes IO on IA64/Altix systems */
4247 mmiowb();
4248}
4249
e694e964 4250static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4251{
e694e964
AD
4252 struct net_device *netdev = tx_ring->netdev;
4253
661086df 4254 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4255
9d5c8243
AK
4256 /* Herbert's original patch had:
4257 * smp_mb__after_netif_stop_queue();
4258 * but since that doesn't exist yet, just open code it. */
4259 smp_mb();
4260
4261 /* We need to check again in a case another CPU has just
4262 * made room available. */
c493ea45 4263 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4264 return -EBUSY;
4265
4266 /* A reprieve! */
661086df 4267 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4268
4269 u64_stats_update_begin(&tx_ring->tx_syncp2);
4270 tx_ring->tx_stats.restart_queue2++;
4271 u64_stats_update_end(&tx_ring->tx_syncp2);
4272
9d5c8243
AK
4273 return 0;
4274}
4275
717ba089 4276static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4277{
c493ea45 4278 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4279 return 0;
e694e964 4280 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4281}
4282
cd392f5c
AD
4283netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4284 struct igb_ring *tx_ring)
9d5c8243 4285{
7d13a7d0 4286 int tso, count;
91d4ee33
NN
4287 u32 tx_flags = 0;
4288 u16 first;
4289 u8 hdr_len = 0;
9d5c8243 4290
9d5c8243
AK
4291 /* need: 1 descriptor per page,
4292 * + 2 desc gap to keep tail from touching head,
4293 * + 1 desc for skb->data,
4294 * + 1 desc for context descriptor,
4295 * otherwise try next time */
e694e964 4296 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4297 /* this is a hard error */
9d5c8243
AK
4298 return NETDEV_TX_BUSY;
4299 }
33af6bcc 4300
2244d07b
OH
4301 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4302 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4303 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4304 }
9d5c8243 4305
eab6d18d 4306 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4307 tx_flags |= IGB_TX_FLAGS_VLAN;
4308 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4309 }
4310
661086df
PWJ
4311 if (skb->protocol == htons(ETH_P_IP))
4312 tx_flags |= IGB_TX_FLAGS_IPV4;
4313
0e014cb1 4314 first = tx_ring->next_to_use;
cdfd01fc 4315
7d13a7d0 4316 tso = igb_tso(tx_ring, skb, tx_flags, &hdr_len);
9d5c8243 4317
7d13a7d0
AD
4318 if (tso < 0)
4319 goto out_drop;
4320 else if (tso)
9d5c8243 4321 tx_flags |= IGB_TX_FLAGS_TSO;
cd392f5c 4322 else if (igb_tx_csum(tx_ring, skb, tx_flags) &&
bc1cbd34
AD
4323 (skb->ip_summed == CHECKSUM_PARTIAL))
4324 tx_flags |= IGB_TX_FLAGS_CSUM;
9d5c8243 4325
65689fef 4326 /*
cdfd01fc 4327 * count reflects descriptors mapped, if 0 or less then mapping error
25985edc 4328 * has occurred and we need to rewind the descriptor queue
65689fef 4329 */
cd392f5c 4330 count = igb_tx_map(tx_ring, skb, first);
6366ad33 4331 if (!count) {
65689fef 4332 dev_kfree_skb_any(skb);
06034649 4333 tx_ring->tx_buffer_info[first].time_stamp = 0;
65689fef 4334 tx_ring->next_to_use = first;
85ad76b2 4335 return NETDEV_TX_OK;
65689fef 4336 }
9d5c8243 4337
cd392f5c 4338 igb_tx_queue(tx_ring, tx_flags, count, skb->len, hdr_len);
85ad76b2
AD
4339
4340 /* Make sure there is space in the ring for the next send. */
e694e964 4341 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4342
9d5c8243 4343 return NETDEV_TX_OK;
7d13a7d0
AD
4344
4345out_drop:
4346 dev_kfree_skb_any(skb);
4347 return NETDEV_TX_OK;
9d5c8243
AK
4348}
4349
1cc3bd87
AD
4350static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4351 struct sk_buff *skb)
4352{
4353 unsigned int r_idx = skb->queue_mapping;
4354
4355 if (r_idx >= adapter->num_tx_queues)
4356 r_idx = r_idx % adapter->num_tx_queues;
4357
4358 return adapter->tx_ring[r_idx];
4359}
4360
cd392f5c
AD
4361static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4362 struct net_device *netdev)
9d5c8243
AK
4363{
4364 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4365
4366 if (test_bit(__IGB_DOWN, &adapter->state)) {
4367 dev_kfree_skb_any(skb);
4368 return NETDEV_TX_OK;
4369 }
4370
4371 if (skb->len <= 0) {
4372 dev_kfree_skb_any(skb);
4373 return NETDEV_TX_OK;
4374 }
4375
1cc3bd87
AD
4376 /*
4377 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4378 * in order to meet this minimum size requirement.
4379 */
4380 if (skb->len < 17) {
4381 if (skb_padto(skb, 17))
4382 return NETDEV_TX_OK;
4383 skb->len = 17;
4384 }
9d5c8243 4385
1cc3bd87 4386 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4387}
4388
4389/**
4390 * igb_tx_timeout - Respond to a Tx Hang
4391 * @netdev: network interface device structure
4392 **/
4393static void igb_tx_timeout(struct net_device *netdev)
4394{
4395 struct igb_adapter *adapter = netdev_priv(netdev);
4396 struct e1000_hw *hw = &adapter->hw;
4397
4398 /* Do the reset outside of interrupt context */
4399 adapter->tx_timeout_count++;
f7ba205e 4400
55cac248
AD
4401 if (hw->mac.type == e1000_82580)
4402 hw->dev_spec._82575.global_device_reset = true;
4403
9d5c8243 4404 schedule_work(&adapter->reset_task);
265de409
AD
4405 wr32(E1000_EICS,
4406 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4407}
4408
4409static void igb_reset_task(struct work_struct *work)
4410{
4411 struct igb_adapter *adapter;
4412 adapter = container_of(work, struct igb_adapter, reset_task);
4413
c97ec42a
TI
4414 igb_dump(adapter);
4415 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4416 igb_reinit_locked(adapter);
4417}
4418
4419/**
12dcd86b 4420 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4421 * @netdev: network interface device structure
12dcd86b 4422 * @stats: rtnl_link_stats64 pointer
9d5c8243 4423 *
9d5c8243 4424 **/
12dcd86b
ED
4425static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4426 struct rtnl_link_stats64 *stats)
9d5c8243 4427{
12dcd86b
ED
4428 struct igb_adapter *adapter = netdev_priv(netdev);
4429
4430 spin_lock(&adapter->stats64_lock);
4431 igb_update_stats(adapter, &adapter->stats64);
4432 memcpy(stats, &adapter->stats64, sizeof(*stats));
4433 spin_unlock(&adapter->stats64_lock);
4434
4435 return stats;
9d5c8243
AK
4436}
4437
4438/**
4439 * igb_change_mtu - Change the Maximum Transfer Unit
4440 * @netdev: network interface device structure
4441 * @new_mtu: new value for maximum frame size
4442 *
4443 * Returns 0 on success, negative on failure
4444 **/
4445static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4446{
4447 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4448 struct pci_dev *pdev = adapter->pdev;
153285f9 4449 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 4450
c809d227 4451 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4452 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4453 return -EINVAL;
4454 }
4455
153285f9 4456#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 4457 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4458 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4459 return -EINVAL;
4460 }
4461
4462 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4463 msleep(1);
73cd78f1 4464
9d5c8243
AK
4465 /* igb_down has a dependency on max_frame_size */
4466 adapter->max_frame_size = max_frame;
559e9c49 4467
4c844851
AD
4468 if (netif_running(netdev))
4469 igb_down(adapter);
9d5c8243 4470
090b1795 4471 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4472 netdev->mtu, new_mtu);
4473 netdev->mtu = new_mtu;
4474
4475 if (netif_running(netdev))
4476 igb_up(adapter);
4477 else
4478 igb_reset(adapter);
4479
4480 clear_bit(__IGB_RESETTING, &adapter->state);
4481
4482 return 0;
4483}
4484
4485/**
4486 * igb_update_stats - Update the board statistics counters
4487 * @adapter: board private structure
4488 **/
4489
12dcd86b
ED
4490void igb_update_stats(struct igb_adapter *adapter,
4491 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4492{
4493 struct e1000_hw *hw = &adapter->hw;
4494 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4495 u32 reg, mpc;
9d5c8243 4496 u16 phy_tmp;
3f9c0164
AD
4497 int i;
4498 u64 bytes, packets;
12dcd86b
ED
4499 unsigned int start;
4500 u64 _bytes, _packets;
9d5c8243
AK
4501
4502#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4503
4504 /*
4505 * Prevent stats update while adapter is being reset, or if the pci
4506 * connection is down.
4507 */
4508 if (adapter->link_speed == 0)
4509 return;
4510 if (pci_channel_offline(pdev))
4511 return;
4512
3f9c0164
AD
4513 bytes = 0;
4514 packets = 0;
4515 for (i = 0; i < adapter->num_rx_queues; i++) {
4516 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4517 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4518
3025a446 4519 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4520 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4521
4522 do {
4523 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4524 _bytes = ring->rx_stats.bytes;
4525 _packets = ring->rx_stats.packets;
4526 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4527 bytes += _bytes;
4528 packets += _packets;
3f9c0164
AD
4529 }
4530
128e45eb
AD
4531 net_stats->rx_bytes = bytes;
4532 net_stats->rx_packets = packets;
3f9c0164
AD
4533
4534 bytes = 0;
4535 packets = 0;
4536 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4537 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4538 do {
4539 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4540 _bytes = ring->tx_stats.bytes;
4541 _packets = ring->tx_stats.packets;
4542 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4543 bytes += _bytes;
4544 packets += _packets;
3f9c0164 4545 }
128e45eb
AD
4546 net_stats->tx_bytes = bytes;
4547 net_stats->tx_packets = packets;
3f9c0164
AD
4548
4549 /* read stats registers */
9d5c8243
AK
4550 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4551 adapter->stats.gprc += rd32(E1000_GPRC);
4552 adapter->stats.gorc += rd32(E1000_GORCL);
4553 rd32(E1000_GORCH); /* clear GORCL */
4554 adapter->stats.bprc += rd32(E1000_BPRC);
4555 adapter->stats.mprc += rd32(E1000_MPRC);
4556 adapter->stats.roc += rd32(E1000_ROC);
4557
4558 adapter->stats.prc64 += rd32(E1000_PRC64);
4559 adapter->stats.prc127 += rd32(E1000_PRC127);
4560 adapter->stats.prc255 += rd32(E1000_PRC255);
4561 adapter->stats.prc511 += rd32(E1000_PRC511);
4562 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4563 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4564 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4565 adapter->stats.sec += rd32(E1000_SEC);
4566
fa3d9a6d
MW
4567 mpc = rd32(E1000_MPC);
4568 adapter->stats.mpc += mpc;
4569 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4570 adapter->stats.scc += rd32(E1000_SCC);
4571 adapter->stats.ecol += rd32(E1000_ECOL);
4572 adapter->stats.mcc += rd32(E1000_MCC);
4573 adapter->stats.latecol += rd32(E1000_LATECOL);
4574 adapter->stats.dc += rd32(E1000_DC);
4575 adapter->stats.rlec += rd32(E1000_RLEC);
4576 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4577 adapter->stats.xontxc += rd32(E1000_XONTXC);
4578 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4579 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4580 adapter->stats.fcruc += rd32(E1000_FCRUC);
4581 adapter->stats.gptc += rd32(E1000_GPTC);
4582 adapter->stats.gotc += rd32(E1000_GOTCL);
4583 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4584 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4585 adapter->stats.ruc += rd32(E1000_RUC);
4586 adapter->stats.rfc += rd32(E1000_RFC);
4587 adapter->stats.rjc += rd32(E1000_RJC);
4588 adapter->stats.tor += rd32(E1000_TORH);
4589 adapter->stats.tot += rd32(E1000_TOTH);
4590 adapter->stats.tpr += rd32(E1000_TPR);
4591
4592 adapter->stats.ptc64 += rd32(E1000_PTC64);
4593 adapter->stats.ptc127 += rd32(E1000_PTC127);
4594 adapter->stats.ptc255 += rd32(E1000_PTC255);
4595 adapter->stats.ptc511 += rd32(E1000_PTC511);
4596 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4597 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4598
4599 adapter->stats.mptc += rd32(E1000_MPTC);
4600 adapter->stats.bptc += rd32(E1000_BPTC);
4601
2d0b0f69
NN
4602 adapter->stats.tpt += rd32(E1000_TPT);
4603 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4604
4605 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4606 /* read internal phy specific stats */
4607 reg = rd32(E1000_CTRL_EXT);
4608 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4609 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4610 adapter->stats.tncrs += rd32(E1000_TNCRS);
4611 }
4612
9d5c8243
AK
4613 adapter->stats.tsctc += rd32(E1000_TSCTC);
4614 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4615
4616 adapter->stats.iac += rd32(E1000_IAC);
4617 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4618 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4619 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4620 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4621 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4622 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4623 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4624 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4625
4626 /* Fill out the OS statistics structure */
128e45eb
AD
4627 net_stats->multicast = adapter->stats.mprc;
4628 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4629
4630 /* Rx Errors */
4631
4632 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4633 * our own version based on RUC and ROC */
128e45eb 4634 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4635 adapter->stats.crcerrs + adapter->stats.algnerrc +
4636 adapter->stats.ruc + adapter->stats.roc +
4637 adapter->stats.cexterr;
128e45eb
AD
4638 net_stats->rx_length_errors = adapter->stats.ruc +
4639 adapter->stats.roc;
4640 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4641 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4642 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4643
4644 /* Tx Errors */
128e45eb
AD
4645 net_stats->tx_errors = adapter->stats.ecol +
4646 adapter->stats.latecol;
4647 net_stats->tx_aborted_errors = adapter->stats.ecol;
4648 net_stats->tx_window_errors = adapter->stats.latecol;
4649 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4650
4651 /* Tx Dropped needs to be maintained elsewhere */
4652
4653 /* Phy Stats */
4654 if (hw->phy.media_type == e1000_media_type_copper) {
4655 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4656 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4657 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4658 adapter->phy_stats.idle_errors += phy_tmp;
4659 }
4660 }
4661
4662 /* Management Stats */
4663 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4664 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4665 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4666
4667 /* OS2BMC Stats */
4668 reg = rd32(E1000_MANC);
4669 if (reg & E1000_MANC_EN_BMC2OS) {
4670 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4671 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4672 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4673 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4674 }
9d5c8243
AK
4675}
4676
9d5c8243
AK
4677static irqreturn_t igb_msix_other(int irq, void *data)
4678{
047e0030 4679 struct igb_adapter *adapter = data;
9d5c8243 4680 struct e1000_hw *hw = &adapter->hw;
844290e5 4681 u32 icr = rd32(E1000_ICR);
844290e5 4682 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4683
7f081d40
AD
4684 if (icr & E1000_ICR_DRSTA)
4685 schedule_work(&adapter->reset_task);
4686
047e0030 4687 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4688 /* HW is reporting DMA is out of sync */
4689 adapter->stats.doosync++;
13800469
GR
4690 /* The DMA Out of Sync is also indication of a spoof event
4691 * in IOV mode. Check the Wrong VM Behavior register to
4692 * see if it is really a spoof event. */
4693 igb_check_wvbr(adapter);
dda0e083 4694 }
eebbbdba 4695
4ae196df
AD
4696 /* Check for a mailbox event */
4697 if (icr & E1000_ICR_VMMB)
4698 igb_msg_task(adapter);
4699
4700 if (icr & E1000_ICR_LSC) {
4701 hw->mac.get_link_status = 1;
4702 /* guard against interrupt when we're going down */
4703 if (!test_bit(__IGB_DOWN, &adapter->state))
4704 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4705 }
4706
25568a53
AD
4707 if (adapter->vfs_allocated_count)
4708 wr32(E1000_IMS, E1000_IMS_LSC |
4709 E1000_IMS_VMMB |
4710 E1000_IMS_DOUTSYNC);
4711 else
4712 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4713 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4714
4715 return IRQ_HANDLED;
4716}
4717
047e0030 4718static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4719{
26b39276 4720 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4721 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4722
047e0030
AD
4723 if (!q_vector->set_itr)
4724 return;
73cd78f1 4725
047e0030
AD
4726 if (!itr_val)
4727 itr_val = 0x4;
661086df 4728
26b39276
AD
4729 if (adapter->hw.mac.type == e1000_82575)
4730 itr_val |= itr_val << 16;
661086df 4731 else
047e0030 4732 itr_val |= 0x8000000;
661086df 4733
047e0030
AD
4734 writel(itr_val, q_vector->itr_register);
4735 q_vector->set_itr = 0;
6eb5a7f1
AD
4736}
4737
047e0030 4738static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4739{
047e0030 4740 struct igb_q_vector *q_vector = data;
9d5c8243 4741
047e0030
AD
4742 /* Write the ITR value calculated from the previous interrupt. */
4743 igb_write_itr(q_vector);
9d5c8243 4744
047e0030 4745 napi_schedule(&q_vector->napi);
844290e5 4746
047e0030 4747 return IRQ_HANDLED;
fe4506b6
JC
4748}
4749
421e02f0 4750#ifdef CONFIG_IGB_DCA
047e0030 4751static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4752{
047e0030 4753 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4754 struct e1000_hw *hw = &adapter->hw;
4755 int cpu = get_cpu();
fe4506b6 4756
047e0030
AD
4757 if (q_vector->cpu == cpu)
4758 goto out_no_update;
4759
4760 if (q_vector->tx_ring) {
4761 int q = q_vector->tx_ring->reg_idx;
4762 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4763 if (hw->mac.type == e1000_82575) {
4764 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4765 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4766 } else {
047e0030
AD
4767 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4768 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4769 E1000_DCA_TXCTRL_CPUID_SHIFT;
4770 }
4771 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4772 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4773 }
4774 if (q_vector->rx_ring) {
4775 int q = q_vector->rx_ring->reg_idx;
4776 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4777 if (hw->mac.type == e1000_82575) {
2d064c06 4778 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4779 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4780 } else {
4781 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4782 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4783 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4784 }
fe4506b6
JC
4785 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4786 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4787 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4788 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4789 }
047e0030
AD
4790 q_vector->cpu = cpu;
4791out_no_update:
fe4506b6
JC
4792 put_cpu();
4793}
4794
4795static void igb_setup_dca(struct igb_adapter *adapter)
4796{
7e0e99ef 4797 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4798 int i;
4799
7dfc16fa 4800 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4801 return;
4802
7e0e99ef
AD
4803 /* Always use CB2 mode, difference is masked in the CB driver. */
4804 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4805
047e0030 4806 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4807 adapter->q_vector[i]->cpu = -1;
4808 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4809 }
4810}
4811
4812static int __igb_notify_dca(struct device *dev, void *data)
4813{
4814 struct net_device *netdev = dev_get_drvdata(dev);
4815 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4816 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4817 struct e1000_hw *hw = &adapter->hw;
4818 unsigned long event = *(unsigned long *)data;
4819
4820 switch (event) {
4821 case DCA_PROVIDER_ADD:
4822 /* if already enabled, don't do it again */
7dfc16fa 4823 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4824 break;
fe4506b6 4825 if (dca_add_requester(dev) == 0) {
bbd98fe4 4826 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4827 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4828 igb_setup_dca(adapter);
4829 break;
4830 }
4831 /* Fall Through since DCA is disabled. */
4832 case DCA_PROVIDER_REMOVE:
7dfc16fa 4833 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4834 /* without this a class_device is left
047e0030 4835 * hanging around in the sysfs model */
fe4506b6 4836 dca_remove_requester(dev);
090b1795 4837 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4838 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4839 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4840 }
4841 break;
4842 }
bbd98fe4 4843
fe4506b6 4844 return 0;
9d5c8243
AK
4845}
4846
fe4506b6
JC
4847static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4848 void *p)
4849{
4850 int ret_val;
4851
4852 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4853 __igb_notify_dca);
4854
4855 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4856}
421e02f0 4857#endif /* CONFIG_IGB_DCA */
9d5c8243 4858
4ae196df
AD
4859static void igb_ping_all_vfs(struct igb_adapter *adapter)
4860{
4861 struct e1000_hw *hw = &adapter->hw;
4862 u32 ping;
4863 int i;
4864
4865 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4866 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4867 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4868 ping |= E1000_VT_MSGTYPE_CTS;
4869 igb_write_mbx(hw, &ping, 1, i);
4870 }
4871}
4872
7d5753f0
AD
4873static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4874{
4875 struct e1000_hw *hw = &adapter->hw;
4876 u32 vmolr = rd32(E1000_VMOLR(vf));
4877 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4878
d85b9004 4879 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
4880 IGB_VF_FLAG_MULTI_PROMISC);
4881 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4882
4883 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4884 vmolr |= E1000_VMOLR_MPME;
d85b9004 4885 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
4886 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4887 } else {
4888 /*
4889 * if we have hashes and we are clearing a multicast promisc
4890 * flag we need to write the hashes to the MTA as this step
4891 * was previously skipped
4892 */
4893 if (vf_data->num_vf_mc_hashes > 30) {
4894 vmolr |= E1000_VMOLR_MPME;
4895 } else if (vf_data->num_vf_mc_hashes) {
4896 int j;
4897 vmolr |= E1000_VMOLR_ROMPE;
4898 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4899 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4900 }
4901 }
4902
4903 wr32(E1000_VMOLR(vf), vmolr);
4904
4905 /* there are flags left unprocessed, likely not supported */
4906 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4907 return -EINVAL;
4908
4909 return 0;
4910
4911}
4912
4ae196df
AD
4913static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4914 u32 *msgbuf, u32 vf)
4915{
4916 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4917 u16 *hash_list = (u16 *)&msgbuf[1];
4918 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4919 int i;
4920
7d5753f0 4921 /* salt away the number of multicast addresses assigned
4ae196df
AD
4922 * to this VF for later use to restore when the PF multi cast
4923 * list changes
4924 */
4925 vf_data->num_vf_mc_hashes = n;
4926
7d5753f0
AD
4927 /* only up to 30 hash values supported */
4928 if (n > 30)
4929 n = 30;
4930
4931 /* store the hashes for later use */
4ae196df 4932 for (i = 0; i < n; i++)
a419aef8 4933 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4934
4935 /* Flush and reset the mta with the new values */
ff41f8dc 4936 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4937
4938 return 0;
4939}
4940
4941static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4942{
4943 struct e1000_hw *hw = &adapter->hw;
4944 struct vf_data_storage *vf_data;
4945 int i, j;
4946
4947 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4948 u32 vmolr = rd32(E1000_VMOLR(i));
4949 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4950
4ae196df 4951 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4952
4953 if ((vf_data->num_vf_mc_hashes > 30) ||
4954 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4955 vmolr |= E1000_VMOLR_MPME;
4956 } else if (vf_data->num_vf_mc_hashes) {
4957 vmolr |= E1000_VMOLR_ROMPE;
4958 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4959 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4960 }
4961 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4962 }
4963}
4964
4965static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4966{
4967 struct e1000_hw *hw = &adapter->hw;
4968 u32 pool_mask, reg, vid;
4969 int i;
4970
4971 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4972
4973 /* Find the vlan filter for this id */
4974 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4975 reg = rd32(E1000_VLVF(i));
4976
4977 /* remove the vf from the pool */
4978 reg &= ~pool_mask;
4979
4980 /* if pool is empty then remove entry from vfta */
4981 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4982 (reg & E1000_VLVF_VLANID_ENABLE)) {
4983 reg = 0;
4984 vid = reg & E1000_VLVF_VLANID_MASK;
4985 igb_vfta_set(hw, vid, false);
4986 }
4987
4988 wr32(E1000_VLVF(i), reg);
4989 }
ae641bdc
AD
4990
4991 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
4992}
4993
4994static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4995{
4996 struct e1000_hw *hw = &adapter->hw;
4997 u32 reg, i;
4998
51466239
AD
4999 /* The vlvf table only exists on 82576 hardware and newer */
5000 if (hw->mac.type < e1000_82576)
5001 return -1;
5002
5003 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5004 if (!adapter->vfs_allocated_count)
5005 return -1;
5006
5007 /* Find the vlan filter for this id */
5008 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5009 reg = rd32(E1000_VLVF(i));
5010 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5011 vid == (reg & E1000_VLVF_VLANID_MASK))
5012 break;
5013 }
5014
5015 if (add) {
5016 if (i == E1000_VLVF_ARRAY_SIZE) {
5017 /* Did not find a matching VLAN ID entry that was
5018 * enabled. Search for a free filter entry, i.e.
5019 * one without the enable bit set
5020 */
5021 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5022 reg = rd32(E1000_VLVF(i));
5023 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5024 break;
5025 }
5026 }
5027 if (i < E1000_VLVF_ARRAY_SIZE) {
5028 /* Found an enabled/available entry */
5029 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5030
5031 /* if !enabled we need to set this up in vfta */
5032 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5033 /* add VID to filter table */
5034 igb_vfta_set(hw, vid, true);
4ae196df
AD
5035 reg |= E1000_VLVF_VLANID_ENABLE;
5036 }
cad6d05f
AD
5037 reg &= ~E1000_VLVF_VLANID_MASK;
5038 reg |= vid;
4ae196df 5039 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5040
5041 /* do not modify RLPML for PF devices */
5042 if (vf >= adapter->vfs_allocated_count)
5043 return 0;
5044
5045 if (!adapter->vf_data[vf].vlans_enabled) {
5046 u32 size;
5047 reg = rd32(E1000_VMOLR(vf));
5048 size = reg & E1000_VMOLR_RLPML_MASK;
5049 size += 4;
5050 reg &= ~E1000_VMOLR_RLPML_MASK;
5051 reg |= size;
5052 wr32(E1000_VMOLR(vf), reg);
5053 }
ae641bdc 5054
51466239 5055 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5056 return 0;
5057 }
5058 } else {
5059 if (i < E1000_VLVF_ARRAY_SIZE) {
5060 /* remove vf from the pool */
5061 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5062 /* if pool is empty then remove entry from vfta */
5063 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5064 reg = 0;
5065 igb_vfta_set(hw, vid, false);
5066 }
5067 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5068
5069 /* do not modify RLPML for PF devices */
5070 if (vf >= adapter->vfs_allocated_count)
5071 return 0;
5072
5073 adapter->vf_data[vf].vlans_enabled--;
5074 if (!adapter->vf_data[vf].vlans_enabled) {
5075 u32 size;
5076 reg = rd32(E1000_VMOLR(vf));
5077 size = reg & E1000_VMOLR_RLPML_MASK;
5078 size -= 4;
5079 reg &= ~E1000_VMOLR_RLPML_MASK;
5080 reg |= size;
5081 wr32(E1000_VMOLR(vf), reg);
5082 }
4ae196df
AD
5083 }
5084 }
8151d294
WM
5085 return 0;
5086}
5087
5088static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5089{
5090 struct e1000_hw *hw = &adapter->hw;
5091
5092 if (vid)
5093 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5094 else
5095 wr32(E1000_VMVIR(vf), 0);
5096}
5097
5098static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5099 int vf, u16 vlan, u8 qos)
5100{
5101 int err = 0;
5102 struct igb_adapter *adapter = netdev_priv(netdev);
5103
5104 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5105 return -EINVAL;
5106 if (vlan || qos) {
5107 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5108 if (err)
5109 goto out;
5110 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5111 igb_set_vmolr(adapter, vf, !vlan);
5112 adapter->vf_data[vf].pf_vlan = vlan;
5113 adapter->vf_data[vf].pf_qos = qos;
5114 dev_info(&adapter->pdev->dev,
5115 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5116 if (test_bit(__IGB_DOWN, &adapter->state)) {
5117 dev_warn(&adapter->pdev->dev,
5118 "The VF VLAN has been set,"
5119 " but the PF device is not up.\n");
5120 dev_warn(&adapter->pdev->dev,
5121 "Bring the PF device up before"
5122 " attempting to use the VF device.\n");
5123 }
5124 } else {
5125 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5126 false, vf);
5127 igb_set_vmvir(adapter, vlan, vf);
5128 igb_set_vmolr(adapter, vf, true);
5129 adapter->vf_data[vf].pf_vlan = 0;
5130 adapter->vf_data[vf].pf_qos = 0;
5131 }
5132out:
5133 return err;
4ae196df
AD
5134}
5135
5136static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5137{
5138 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5139 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5140
5141 return igb_vlvf_set(adapter, vid, add, vf);
5142}
5143
f2ca0dbe 5144static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5145{
8fa7e0f7
GR
5146 /* clear flags - except flag that indicates PF has set the MAC */
5147 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5148 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5149
5150 /* reset offloads to defaults */
8151d294 5151 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5152
5153 /* reset vlans for device */
5154 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5155 if (adapter->vf_data[vf].pf_vlan)
5156 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5157 adapter->vf_data[vf].pf_vlan,
5158 adapter->vf_data[vf].pf_qos);
5159 else
5160 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5161
5162 /* reset multicast table array for vf */
5163 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5164
5165 /* Flush and reset the mta with the new values */
ff41f8dc 5166 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5167}
5168
f2ca0dbe
AD
5169static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5170{
5171 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5172
5173 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
5174 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5175 random_ether_addr(vf_mac);
f2ca0dbe
AD
5176
5177 /* process remaining reset events */
5178 igb_vf_reset(adapter, vf);
5179}
5180
5181static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5182{
5183 struct e1000_hw *hw = &adapter->hw;
5184 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5185 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5186 u32 reg, msgbuf[3];
5187 u8 *addr = (u8 *)(&msgbuf[1]);
5188
5189 /* process all the same items cleared in a function level reset */
f2ca0dbe 5190 igb_vf_reset(adapter, vf);
4ae196df
AD
5191
5192 /* set vf mac address */
26ad9178 5193 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5194
5195 /* enable transmit and receive for vf */
5196 reg = rd32(E1000_VFTE);
5197 wr32(E1000_VFTE, reg | (1 << vf));
5198 reg = rd32(E1000_VFRE);
5199 wr32(E1000_VFRE, reg | (1 << vf));
5200
8fa7e0f7 5201 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5202
5203 /* reply to reset with ack and vf mac address */
5204 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5205 memcpy(addr, vf_mac, 6);
5206 igb_write_mbx(hw, msgbuf, 3, vf);
5207}
5208
5209static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5210{
de42edde
GR
5211 /*
5212 * The VF MAC Address is stored in a packed array of bytes
5213 * starting at the second 32 bit word of the msg array
5214 */
f2ca0dbe
AD
5215 unsigned char *addr = (char *)&msg[1];
5216 int err = -1;
4ae196df 5217
f2ca0dbe
AD
5218 if (is_valid_ether_addr(addr))
5219 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5220
f2ca0dbe 5221 return err;
4ae196df
AD
5222}
5223
5224static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5225{
5226 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5227 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5228 u32 msg = E1000_VT_MSGTYPE_NACK;
5229
5230 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5231 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5232 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5233 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5234 vf_data->last_nack = jiffies;
4ae196df
AD
5235 }
5236}
5237
f2ca0dbe 5238static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5239{
f2ca0dbe
AD
5240 struct pci_dev *pdev = adapter->pdev;
5241 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5242 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5243 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5244 s32 retval;
5245
f2ca0dbe 5246 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5247
fef45f4c
AD
5248 if (retval) {
5249 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5250 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5251 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5252 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5253 return;
5254 goto out;
5255 }
4ae196df
AD
5256
5257 /* this is a message we already processed, do nothing */
5258 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5259 return;
4ae196df
AD
5260
5261 /*
5262 * until the vf completes a reset it should not be
5263 * allowed to start any configuration.
5264 */
5265
5266 if (msgbuf[0] == E1000_VF_RESET) {
5267 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5268 return;
4ae196df
AD
5269 }
5270
f2ca0dbe 5271 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5272 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5273 return;
5274 retval = -1;
5275 goto out;
4ae196df
AD
5276 }
5277
5278 switch ((msgbuf[0] & 0xFFFF)) {
5279 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5280 retval = -EINVAL;
5281 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5282 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5283 else
5284 dev_warn(&pdev->dev,
5285 "VF %d attempted to override administratively "
5286 "set MAC address\nReload the VF driver to "
5287 "resume operations\n", vf);
4ae196df 5288 break;
7d5753f0
AD
5289 case E1000_VF_SET_PROMISC:
5290 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5291 break;
4ae196df
AD
5292 case E1000_VF_SET_MULTICAST:
5293 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5294 break;
5295 case E1000_VF_SET_LPE:
5296 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5297 break;
5298 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5299 retval = -1;
5300 if (vf_data->pf_vlan)
5301 dev_warn(&pdev->dev,
5302 "VF %d attempted to override administratively "
5303 "set VLAN tag\nReload the VF driver to "
5304 "resume operations\n", vf);
8151d294
WM
5305 else
5306 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5307 break;
5308 default:
090b1795 5309 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5310 retval = -1;
5311 break;
5312 }
5313
fef45f4c
AD
5314 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5315out:
4ae196df
AD
5316 /* notify the VF of the results of what it sent us */
5317 if (retval)
5318 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5319 else
5320 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5321
4ae196df 5322 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5323}
4ae196df 5324
f2ca0dbe
AD
5325static void igb_msg_task(struct igb_adapter *adapter)
5326{
5327 struct e1000_hw *hw = &adapter->hw;
5328 u32 vf;
5329
5330 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5331 /* process any reset requests */
5332 if (!igb_check_for_rst(hw, vf))
5333 igb_vf_reset_event(adapter, vf);
5334
5335 /* process any messages pending */
5336 if (!igb_check_for_msg(hw, vf))
5337 igb_rcv_msg_from_vf(adapter, vf);
5338
5339 /* process any acks */
5340 if (!igb_check_for_ack(hw, vf))
5341 igb_rcv_ack_from_vf(adapter, vf);
5342 }
4ae196df
AD
5343}
5344
68d480c4
AD
5345/**
5346 * igb_set_uta - Set unicast filter table address
5347 * @adapter: board private structure
5348 *
5349 * The unicast table address is a register array of 32-bit registers.
5350 * The table is meant to be used in a way similar to how the MTA is used
5351 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5352 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5353 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5354 **/
5355static void igb_set_uta(struct igb_adapter *adapter)
5356{
5357 struct e1000_hw *hw = &adapter->hw;
5358 int i;
5359
5360 /* The UTA table only exists on 82576 hardware and newer */
5361 if (hw->mac.type < e1000_82576)
5362 return;
5363
5364 /* we only need to do this if VMDq is enabled */
5365 if (!adapter->vfs_allocated_count)
5366 return;
5367
5368 for (i = 0; i < hw->mac.uta_reg_count; i++)
5369 array_wr32(E1000_UTA, i, ~0);
5370}
5371
9d5c8243
AK
5372/**
5373 * igb_intr_msi - Interrupt Handler
5374 * @irq: interrupt number
5375 * @data: pointer to a network interface device structure
5376 **/
5377static irqreturn_t igb_intr_msi(int irq, void *data)
5378{
047e0030
AD
5379 struct igb_adapter *adapter = data;
5380 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5381 struct e1000_hw *hw = &adapter->hw;
5382 /* read ICR disables interrupts using IAM */
5383 u32 icr = rd32(E1000_ICR);
5384
047e0030 5385 igb_write_itr(q_vector);
9d5c8243 5386
7f081d40
AD
5387 if (icr & E1000_ICR_DRSTA)
5388 schedule_work(&adapter->reset_task);
5389
047e0030 5390 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5391 /* HW is reporting DMA is out of sync */
5392 adapter->stats.doosync++;
5393 }
5394
9d5c8243
AK
5395 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5396 hw->mac.get_link_status = 1;
5397 if (!test_bit(__IGB_DOWN, &adapter->state))
5398 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5399 }
5400
047e0030 5401 napi_schedule(&q_vector->napi);
9d5c8243
AK
5402
5403 return IRQ_HANDLED;
5404}
5405
5406/**
4a3c6433 5407 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5408 * @irq: interrupt number
5409 * @data: pointer to a network interface device structure
5410 **/
5411static irqreturn_t igb_intr(int irq, void *data)
5412{
047e0030
AD
5413 struct igb_adapter *adapter = data;
5414 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5415 struct e1000_hw *hw = &adapter->hw;
5416 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5417 * need for the IMC write */
5418 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5419 if (!icr)
5420 return IRQ_NONE; /* Not our interrupt */
5421
047e0030 5422 igb_write_itr(q_vector);
9d5c8243
AK
5423
5424 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5425 * not set, then the adapter didn't send an interrupt */
5426 if (!(icr & E1000_ICR_INT_ASSERTED))
5427 return IRQ_NONE;
5428
7f081d40
AD
5429 if (icr & E1000_ICR_DRSTA)
5430 schedule_work(&adapter->reset_task);
5431
047e0030 5432 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5433 /* HW is reporting DMA is out of sync */
5434 adapter->stats.doosync++;
5435 }
5436
9d5c8243
AK
5437 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5438 hw->mac.get_link_status = 1;
5439 /* guard against interrupt when we're going down */
5440 if (!test_bit(__IGB_DOWN, &adapter->state))
5441 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5442 }
5443
047e0030 5444 napi_schedule(&q_vector->napi);
9d5c8243
AK
5445
5446 return IRQ_HANDLED;
5447}
5448
047e0030 5449static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5450{
047e0030 5451 struct igb_adapter *adapter = q_vector->adapter;
46544258 5452 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5453
4fc82adf
AD
5454 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5455 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 5456 if (!adapter->msix_entries)
6eb5a7f1 5457 igb_set_itr(adapter);
46544258 5458 else
047e0030 5459 igb_update_ring_itr(q_vector);
9d5c8243
AK
5460 }
5461
46544258
AD
5462 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5463 if (adapter->msix_entries)
047e0030 5464 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5465 else
5466 igb_irq_enable(adapter);
5467 }
9d5c8243
AK
5468}
5469
46544258
AD
5470/**
5471 * igb_poll - NAPI Rx polling callback
5472 * @napi: napi polling structure
5473 * @budget: count of how many packets we should handle
5474 **/
5475static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5476{
047e0030
AD
5477 struct igb_q_vector *q_vector = container_of(napi,
5478 struct igb_q_vector,
5479 napi);
16eb8815 5480 bool clean_complete = true;
9d5c8243 5481
421e02f0 5482#ifdef CONFIG_IGB_DCA
047e0030
AD
5483 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5484 igb_update_dca(q_vector);
fe4506b6 5485#endif
047e0030 5486 if (q_vector->tx_ring)
13fde97a 5487 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5488
047e0030 5489 if (q_vector->rx_ring)
cd392f5c 5490 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 5491
16eb8815
AD
5492 /* If all work not completed, return budget and keep polling */
5493 if (!clean_complete)
5494 return budget;
46544258 5495
9d5c8243 5496 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
5497 napi_complete(napi);
5498 igb_ring_irq_enable(q_vector);
9d5c8243 5499
16eb8815 5500 return 0;
9d5c8243 5501}
6d8126f9 5502
33af6bcc 5503/**
c5b9bd5e 5504 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5505 * @adapter: board private structure
c5b9bd5e
AD
5506 * @shhwtstamps: timestamp structure to update
5507 * @regval: unsigned 64bit system time value.
5508 *
5509 * We need to convert the system time value stored in the RX/TXSTMP registers
5510 * into a hwtstamp which can be used by the upper level timestamping functions
5511 */
5512static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5513 struct skb_shared_hwtstamps *shhwtstamps,
5514 u64 regval)
5515{
5516 u64 ns;
5517
55cac248
AD
5518 /*
5519 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5520 * 24 to match clock shift we setup earlier.
5521 */
5522 if (adapter->hw.mac.type == e1000_82580)
5523 regval <<= IGB_82580_TSYNC_SHIFT;
5524
c5b9bd5e
AD
5525 ns = timecounter_cyc2time(&adapter->clock, regval);
5526 timecompare_update(&adapter->compare, ns);
5527 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5528 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5529 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5530}
5531
5532/**
5533 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5534 * @q_vector: pointer to q_vector containing needed info
06034649 5535 * @buffer: pointer to igb_tx_buffer structure
33af6bcc
PO
5536 *
5537 * If we were asked to do hardware stamping and such a time stamp is
5538 * available, then it must have been for this skb here because we only
5539 * allow only one such packet into the queue.
5540 */
06034649
AD
5541static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
5542 struct igb_tx_buffer *buffer_info)
33af6bcc 5543{
c5b9bd5e 5544 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5545 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5546 struct skb_shared_hwtstamps shhwtstamps;
5547 u64 regval;
33af6bcc 5548
c5b9bd5e 5549 /* if skb does not support hw timestamp or TX stamp not valid exit */
2244d07b 5550 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
c5b9bd5e
AD
5551 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5552 return;
5553
5554 regval = rd32(E1000_TXSTMPL);
5555 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5556
5557 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5558 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5559}
5560
9d5c8243
AK
5561/**
5562 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5563 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5564 * returns true if ring is completely cleaned
5565 **/
047e0030 5566static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5567{
047e0030
AD
5568 struct igb_adapter *adapter = q_vector->adapter;
5569 struct igb_ring *tx_ring = q_vector->tx_ring;
06034649 5570 struct igb_tx_buffer *tx_buffer;
13fde97a 5571 union e1000_adv_tx_desc *tx_desc;
9d5c8243 5572 unsigned int total_bytes = 0, total_packets = 0;
13fde97a
AD
5573 unsigned int budget = q_vector->tx_work_limit;
5574 u16 i = tx_ring->next_to_clean;
9d5c8243 5575
13fde97a
AD
5576 if (test_bit(__IGB_DOWN, &adapter->state))
5577 return true;
0e014cb1 5578
06034649 5579 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 5580 tx_desc = IGB_TX_DESC(tx_ring, i);
9d5c8243 5581
13fde97a
AD
5582 for (; budget; budget--) {
5583 u16 eop = tx_buffer->next_to_watch;
5584 union e1000_adv_tx_desc *eop_desc;
5585
5586 eop_desc = IGB_TX_DESC(tx_ring, eop);
5587
5588 /* if DD is not set pending work has not been completed */
5589 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5590 break;
5591
5592 /* prevent any other reads prior to eop_desc being verified */
5593 rmb();
9d5c8243 5594
13fde97a 5595 do {
0e014cb1 5596 tx_desc->wb.status = 0;
13fde97a
AD
5597 if (likely(tx_desc == eop_desc)) {
5598 eop_desc = NULL;
5599
5600 total_bytes += tx_buffer->bytecount;
5601 total_packets += tx_buffer->gso_segs;
5602 igb_tx_hwtstamp(q_vector, tx_buffer);
5603 }
5604
5605 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
9d5c8243 5606
13fde97a
AD
5607 tx_buffer++;
5608 tx_desc++;
9d5c8243 5609 i++;
13fde97a 5610 if (unlikely(i == tx_ring->count)) {
9d5c8243 5611 i = 0;
06034649 5612 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
5613 tx_desc = IGB_TX_DESC(tx_ring, 0);
5614 }
5615 } while (eop_desc);
0e014cb1
AD
5616 }
5617
9d5c8243 5618 tx_ring->next_to_clean = i;
13fde97a
AD
5619 u64_stats_update_begin(&tx_ring->tx_syncp);
5620 tx_ring->tx_stats.bytes += total_bytes;
5621 tx_ring->tx_stats.packets += total_packets;
5622 u64_stats_update_end(&tx_ring->tx_syncp);
5623 tx_ring->total_bytes += total_bytes;
5624 tx_ring->total_packets += total_packets;
9d5c8243 5625
13fde97a
AD
5626 if (tx_ring->detect_tx_hung) {
5627 struct e1000_hw *hw = &adapter->hw;
06034649 5628 u16 eop = tx_ring->tx_buffer_info[i].next_to_watch;
13fde97a 5629 union e1000_adv_tx_desc *eop_desc;
12dcd86b 5630
13fde97a 5631 eop_desc = IGB_TX_DESC(tx_ring, eop);
9d5c8243 5632
9d5c8243
AK
5633 /* Detect a transmit hang in hardware, this serializes the
5634 * check with the clearing of time_stamp and movement of i */
5635 tx_ring->detect_tx_hung = false;
06034649
AD
5636 if (tx_ring->tx_buffer_info[i].time_stamp &&
5637 time_after(jiffies, tx_ring->tx_buffer_info[i].time_stamp +
8e95a202
JP
5638 (adapter->tx_timeout_factor * HZ)) &&
5639 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5640
9d5c8243 5641 /* detected Tx unit hang */
59d71989 5642 dev_err(tx_ring->dev,
9d5c8243 5643 "Detected Tx Unit Hang\n"
2d064c06 5644 " Tx Queue <%d>\n"
9d5c8243
AK
5645 " TDH <%x>\n"
5646 " TDT <%x>\n"
5647 " next_to_use <%x>\n"
5648 " next_to_clean <%x>\n"
9d5c8243
AK
5649 "buffer_info[next_to_clean]\n"
5650 " time_stamp <%lx>\n"
0e014cb1 5651 " next_to_watch <%x>\n"
9d5c8243
AK
5652 " jiffies <%lx>\n"
5653 " desc.status <%x>\n",
2d064c06 5654 tx_ring->queue_index,
238ac817 5655 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 5656 readl(tx_ring->tail),
9d5c8243
AK
5657 tx_ring->next_to_use,
5658 tx_ring->next_to_clean,
06034649 5659 tx_ring->tx_buffer_info[eop].time_stamp,
0e014cb1 5660 eop,
9d5c8243 5661 jiffies,
0e014cb1 5662 eop_desc->wb.status);
13fde97a
AD
5663 netif_stop_subqueue(tx_ring->netdev,
5664 tx_ring->queue_index);
5665
5666 /* we are about to reset, no point in enabling stuff */
5667 return true;
9d5c8243
AK
5668 }
5669 }
13fde97a
AD
5670
5671 if (unlikely(total_packets &&
5672 netif_carrier_ok(tx_ring->netdev) &&
5673 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5674 /* Make sure that anybody stopping the queue after this
5675 * sees the new next_to_clean.
5676 */
5677 smp_mb();
5678 if (__netif_subqueue_stopped(tx_ring->netdev,
5679 tx_ring->queue_index) &&
5680 !(test_bit(__IGB_DOWN, &adapter->state))) {
5681 netif_wake_subqueue(tx_ring->netdev,
5682 tx_ring->queue_index);
5683
5684 u64_stats_update_begin(&tx_ring->tx_syncp);
5685 tx_ring->tx_stats.restart_queue++;
5686 u64_stats_update_end(&tx_ring->tx_syncp);
5687 }
5688 }
5689
5690 return !!budget;
9d5c8243
AK
5691}
5692
cd392f5c
AD
5693static inline void igb_rx_checksum(struct igb_ring *ring,
5694 u32 status_err, struct sk_buff *skb)
9d5c8243 5695{
bc8acf2c 5696 skb_checksum_none_assert(skb);
9d5c8243
AK
5697
5698 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5699 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5700 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5701 return;
85ad76b2 5702
9d5c8243
AK
5703 /* TCP/UDP checksum error bit is set */
5704 if (status_err &
5705 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5706 /*
5707 * work around errata with sctp packets where the TCPE aka
5708 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5709 * packets, (aka let the stack check the crc32c)
5710 */
85ad76b2 5711 if ((skb->len == 60) &&
12dcd86b
ED
5712 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
5713 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5714 ring->rx_stats.csum_err++;
12dcd86b
ED
5715 u64_stats_update_end(&ring->rx_syncp);
5716 }
9d5c8243 5717 /* let the stack verify checksum errors */
9d5c8243
AK
5718 return;
5719 }
5720 /* It must be a TCP or UDP packet with a valid checksum */
5721 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5722 skb->ip_summed = CHECKSUM_UNNECESSARY;
5723
59d71989 5724 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5725}
5726
757b77e2 5727static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
c5b9bd5e
AD
5728 struct sk_buff *skb)
5729{
5730 struct igb_adapter *adapter = q_vector->adapter;
5731 struct e1000_hw *hw = &adapter->hw;
5732 u64 regval;
5733
5734 /*
5735 * If this bit is set, then the RX registers contain the time stamp. No
5736 * other packet will be time stamped until we read these registers, so
5737 * read the registers to make them available again. Because only one
5738 * packet can be time stamped at a time, we know that the register
5739 * values must belong to this one here and therefore we don't need to
5740 * compare any of the additional attributes stored for it.
5741 *
2244d07b 5742 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
5743 * can turn into a skb_shared_hwtstamps.
5744 */
757b77e2
NN
5745 if (staterr & E1000_RXDADV_STAT_TSIP) {
5746 u32 *stamp = (u32 *)skb->data;
5747 regval = le32_to_cpu(*(stamp + 2));
5748 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5749 skb_pull(skb, IGB_TS_HDR_LEN);
5750 } else {
5751 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5752 return;
c5b9bd5e 5753
757b77e2
NN
5754 regval = rd32(E1000_RXSTMPL);
5755 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5756 }
c5b9bd5e
AD
5757
5758 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5759}
44390ca6 5760static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
2d94d8ab
AD
5761{
5762 /* HW will not DMA in data larger than the given buffer, even if it
5763 * parses the (NFS, of course) header to be larger. In that case, it
5764 * fills the header buffer and spills the rest into the page.
5765 */
5766 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5767 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
44390ca6
AD
5768 if (hlen > IGB_RX_HDR_LEN)
5769 hlen = IGB_RX_HDR_LEN;
2d94d8ab
AD
5770 return hlen;
5771}
5772
cd392f5c 5773static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
9d5c8243 5774{
047e0030 5775 struct igb_ring *rx_ring = q_vector->rx_ring;
16eb8815
AD
5776 union e1000_adv_rx_desc *rx_desc;
5777 const int current_node = numa_node_id();
9d5c8243 5778 unsigned int total_bytes = 0, total_packets = 0;
2d94d8ab 5779 u32 staterr;
16eb8815
AD
5780 u16 cleaned_count = igb_desc_unused(rx_ring);
5781 u16 i = rx_ring->next_to_clean;
9d5c8243 5782
60136906 5783 rx_desc = IGB_RX_DESC(rx_ring, i);
9d5c8243
AK
5784 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5785
5786 while (staterr & E1000_RXD_STAT_DD) {
06034649 5787 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
16eb8815
AD
5788 struct sk_buff *skb = buffer_info->skb;
5789 union e1000_adv_rx_desc *next_rxd;
9d5c8243 5790
69d3ca53 5791 buffer_info->skb = NULL;
16eb8815 5792 prefetch(skb->data);
69d3ca53
AD
5793
5794 i++;
5795 if (i == rx_ring->count)
5796 i = 0;
42d0781a 5797
60136906 5798 next_rxd = IGB_RX_DESC(rx_ring, i);
69d3ca53 5799 prefetch(next_rxd);
9d5c8243 5800
16eb8815
AD
5801 /*
5802 * This memory barrier is needed to keep us from reading
5803 * any other fields out of the rx_desc until we know the
5804 * RXD_STAT_DD bit is set
5805 */
5806 rmb();
9d5c8243 5807
16eb8815
AD
5808 if (!skb_is_nonlinear(skb)) {
5809 __skb_put(skb, igb_get_hlen(rx_desc));
5810 dma_unmap_single(rx_ring->dev, buffer_info->dma,
44390ca6 5811 IGB_RX_HDR_LEN,
59d71989 5812 DMA_FROM_DEVICE);
91615f76 5813 buffer_info->dma = 0;
bf36c1a0
AD
5814 }
5815
16eb8815
AD
5816 if (rx_desc->wb.upper.length) {
5817 u16 length = le16_to_cpu(rx_desc->wb.upper.length);
bf36c1a0 5818
aa913403 5819 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5820 buffer_info->page,
5821 buffer_info->page_offset,
5822 length);
5823
16eb8815
AD
5824 skb->len += length;
5825 skb->data_len += length;
5826 skb->truesize += length;
5827
d1eff350
AD
5828 if ((page_count(buffer_info->page) != 1) ||
5829 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5830 buffer_info->page = NULL;
5831 else
5832 get_page(buffer_info->page);
9d5c8243 5833
16eb8815
AD
5834 dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
5835 PAGE_SIZE / 2, DMA_FROM_DEVICE);
5836 buffer_info->page_dma = 0;
9d5c8243 5837 }
9d5c8243 5838
bf36c1a0 5839 if (!(staterr & E1000_RXD_STAT_EOP)) {
06034649
AD
5840 struct igb_rx_buffer *next_buffer;
5841 next_buffer = &rx_ring->rx_buffer_info[i];
b2d56536
AD
5842 buffer_info->skb = next_buffer->skb;
5843 buffer_info->dma = next_buffer->dma;
5844 next_buffer->skb = skb;
5845 next_buffer->dma = 0;
bf36c1a0
AD
5846 goto next_desc;
5847 }
44390ca6 5848
9d5c8243 5849 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
16eb8815 5850 dev_kfree_skb_any(skb);
9d5c8243
AK
5851 goto next_desc;
5852 }
9d5c8243 5853
757b77e2
NN
5854 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5855 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5856 total_bytes += skb->len;
5857 total_packets++;
5858
cd392f5c 5859 igb_rx_checksum(rx_ring, staterr, skb);
9d5c8243 5860
16eb8815 5861 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
047e0030 5862
b2cb09b1
JP
5863 if (staterr & E1000_RXD_STAT_VP) {
5864 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
9d5c8243 5865
b2cb09b1
JP
5866 __vlan_hwaccel_put_tag(skb, vid);
5867 }
5868 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 5869
16eb8815 5870 budget--;
9d5c8243 5871next_desc:
16eb8815
AD
5872 if (!budget)
5873 break;
5874
5875 cleaned_count++;
9d5c8243
AK
5876 /* return some buffers to hardware, one at a time is too slow */
5877 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
cd392f5c 5878 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9d5c8243
AK
5879 cleaned_count = 0;
5880 }
5881
5882 /* use prefetched values */
5883 rx_desc = next_rxd;
9d5c8243
AK
5884 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5885 }
bf36c1a0 5886
9d5c8243 5887 rx_ring->next_to_clean = i;
12dcd86b 5888 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
5889 rx_ring->rx_stats.packets += total_packets;
5890 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 5891 u64_stats_update_end(&rx_ring->rx_syncp);
c023cd88
AD
5892 rx_ring->total_packets += total_packets;
5893 rx_ring->total_bytes += total_bytes;
5894
5895 if (cleaned_count)
cd392f5c 5896 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 5897
16eb8815 5898 return !!budget;
9d5c8243
AK
5899}
5900
c023cd88 5901static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
06034649 5902 struct igb_rx_buffer *bi)
c023cd88
AD
5903{
5904 struct sk_buff *skb = bi->skb;
5905 dma_addr_t dma = bi->dma;
5906
5907 if (dma)
5908 return true;
5909
5910 if (likely(!skb)) {
5911 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
5912 IGB_RX_HDR_LEN);
5913 bi->skb = skb;
5914 if (!skb) {
5915 rx_ring->rx_stats.alloc_failed++;
5916 return false;
5917 }
5918
5919 /* initialize skb for ring */
5920 skb_record_rx_queue(skb, rx_ring->queue_index);
5921 }
5922
5923 dma = dma_map_single(rx_ring->dev, skb->data,
5924 IGB_RX_HDR_LEN, DMA_FROM_DEVICE);
5925
5926 if (dma_mapping_error(rx_ring->dev, dma)) {
5927 rx_ring->rx_stats.alloc_failed++;
5928 return false;
5929 }
5930
5931 bi->dma = dma;
5932 return true;
5933}
5934
5935static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 5936 struct igb_rx_buffer *bi)
c023cd88
AD
5937{
5938 struct page *page = bi->page;
5939 dma_addr_t page_dma = bi->page_dma;
5940 unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
5941
5942 if (page_dma)
5943 return true;
5944
5945 if (!page) {
5946 page = netdev_alloc_page(rx_ring->netdev);
5947 bi->page = page;
5948 if (unlikely(!page)) {
5949 rx_ring->rx_stats.alloc_failed++;
5950 return false;
5951 }
5952 }
5953
5954 page_dma = dma_map_page(rx_ring->dev, page,
5955 page_offset, PAGE_SIZE / 2,
5956 DMA_FROM_DEVICE);
5957
5958 if (dma_mapping_error(rx_ring->dev, page_dma)) {
5959 rx_ring->rx_stats.alloc_failed++;
5960 return false;
5961 }
5962
5963 bi->page_dma = page_dma;
5964 bi->page_offset = page_offset;
5965 return true;
5966}
5967
9d5c8243 5968/**
cd392f5c 5969 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
9d5c8243
AK
5970 * @adapter: address of board private structure
5971 **/
cd392f5c 5972void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 5973{
9d5c8243 5974 union e1000_adv_rx_desc *rx_desc;
06034649 5975 struct igb_rx_buffer *bi;
c023cd88 5976 u16 i = rx_ring->next_to_use;
9d5c8243 5977
60136906 5978 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 5979 bi = &rx_ring->rx_buffer_info[i];
c023cd88 5980 i -= rx_ring->count;
9d5c8243
AK
5981
5982 while (cleaned_count--) {
c023cd88
AD
5983 if (!igb_alloc_mapped_skb(rx_ring, bi))
5984 break;
9d5c8243 5985
c023cd88
AD
5986 /* Refresh the desc even if buffer_addrs didn't change
5987 * because each write-back erases this info. */
5988 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
9d5c8243 5989
c023cd88
AD
5990 if (!igb_alloc_mapped_page(rx_ring, bi))
5991 break;
5992
5993 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
9d5c8243 5994
c023cd88
AD
5995 rx_desc++;
5996 bi++;
9d5c8243 5997 i++;
c023cd88 5998 if (unlikely(!i)) {
60136906 5999 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 6000 bi = rx_ring->rx_buffer_info;
c023cd88
AD
6001 i -= rx_ring->count;
6002 }
6003
6004 /* clear the hdr_addr for the next_to_use descriptor */
6005 rx_desc->read.hdr_addr = 0;
9d5c8243
AK
6006 }
6007
c023cd88
AD
6008 i += rx_ring->count;
6009
9d5c8243
AK
6010 if (rx_ring->next_to_use != i) {
6011 rx_ring->next_to_use = i;
9d5c8243
AK
6012
6013 /* Force memory writes to complete before letting h/w
6014 * know there are new descriptors to fetch. (Only
6015 * applicable for weak-ordered memory model archs,
6016 * such as IA-64). */
6017 wmb();
fce99e34 6018 writel(i, rx_ring->tail);
9d5c8243
AK
6019 }
6020}
6021
6022/**
6023 * igb_mii_ioctl -
6024 * @netdev:
6025 * @ifreq:
6026 * @cmd:
6027 **/
6028static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6029{
6030 struct igb_adapter *adapter = netdev_priv(netdev);
6031 struct mii_ioctl_data *data = if_mii(ifr);
6032
6033 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6034 return -EOPNOTSUPP;
6035
6036 switch (cmd) {
6037 case SIOCGMIIPHY:
6038 data->phy_id = adapter->hw.phy.addr;
6039 break;
6040 case SIOCGMIIREG:
f5f4cf08
AD
6041 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6042 &data->val_out))
9d5c8243
AK
6043 return -EIO;
6044 break;
6045 case SIOCSMIIREG:
6046 default:
6047 return -EOPNOTSUPP;
6048 }
6049 return 0;
6050}
6051
c6cb090b
PO
6052/**
6053 * igb_hwtstamp_ioctl - control hardware time stamping
6054 * @netdev:
6055 * @ifreq:
6056 * @cmd:
6057 *
33af6bcc
PO
6058 * Outgoing time stamping can be enabled and disabled. Play nice and
6059 * disable it when requested, although it shouldn't case any overhead
6060 * when no packet needs it. At most one packet in the queue may be
6061 * marked for time stamping, otherwise it would be impossible to tell
6062 * for sure to which packet the hardware time stamp belongs.
6063 *
6064 * Incoming time stamping has to be configured via the hardware
6065 * filters. Not all combinations are supported, in particular event
6066 * type has to be specified. Matching the kind of event packet is
6067 * not supported, with the exception of "all V2 events regardless of
6068 * level 2 or 4".
6069 *
c6cb090b
PO
6070 **/
6071static int igb_hwtstamp_ioctl(struct net_device *netdev,
6072 struct ifreq *ifr, int cmd)
6073{
33af6bcc
PO
6074 struct igb_adapter *adapter = netdev_priv(netdev);
6075 struct e1000_hw *hw = &adapter->hw;
c6cb090b 6076 struct hwtstamp_config config;
c5b9bd5e
AD
6077 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6078 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 6079 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
6080 bool is_l4 = false;
6081 bool is_l2 = false;
33af6bcc 6082 u32 regval;
c6cb090b
PO
6083
6084 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6085 return -EFAULT;
6086
6087 /* reserved for future extensions */
6088 if (config.flags)
6089 return -EINVAL;
6090
33af6bcc
PO
6091 switch (config.tx_type) {
6092 case HWTSTAMP_TX_OFF:
c5b9bd5e 6093 tsync_tx_ctl = 0;
33af6bcc 6094 case HWTSTAMP_TX_ON:
33af6bcc
PO
6095 break;
6096 default:
6097 return -ERANGE;
6098 }
6099
6100 switch (config.rx_filter) {
6101 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 6102 tsync_rx_ctl = 0;
33af6bcc
PO
6103 break;
6104 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6105 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6106 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6107 case HWTSTAMP_FILTER_ALL:
6108 /*
6109 * register TSYNCRXCFG must be set, therefore it is not
6110 * possible to time stamp both Sync and Delay_Req messages
6111 * => fall back to time stamping all packets
6112 */
c5b9bd5e 6113 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
6114 config.rx_filter = HWTSTAMP_FILTER_ALL;
6115 break;
6116 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 6117 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6118 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 6119 is_l4 = true;
33af6bcc
PO
6120 break;
6121 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 6122 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6123 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 6124 is_l4 = true;
33af6bcc
PO
6125 break;
6126 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6127 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 6128 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6129 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
6130 is_l2 = true;
6131 is_l4 = true;
33af6bcc
PO
6132 config.rx_filter = HWTSTAMP_FILTER_SOME;
6133 break;
6134 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6135 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 6136 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6137 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
6138 is_l2 = true;
6139 is_l4 = true;
33af6bcc
PO
6140 config.rx_filter = HWTSTAMP_FILTER_SOME;
6141 break;
6142 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6143 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6144 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 6145 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 6146 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 6147 is_l2 = true;
33af6bcc
PO
6148 break;
6149 default:
6150 return -ERANGE;
6151 }
6152
c5b9bd5e
AD
6153 if (hw->mac.type == e1000_82575) {
6154 if (tsync_rx_ctl | tsync_tx_ctl)
6155 return -EINVAL;
6156 return 0;
6157 }
6158
757b77e2
NN
6159 /*
6160 * Per-packet timestamping only works if all packets are
6161 * timestamped, so enable timestamping in all packets as
6162 * long as one rx filter was configured.
6163 */
6164 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6165 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6166 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6167 }
6168
33af6bcc
PO
6169 /* enable/disable TX */
6170 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
6171 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6172 regval |= tsync_tx_ctl;
33af6bcc
PO
6173 wr32(E1000_TSYNCTXCTL, regval);
6174
c5b9bd5e 6175 /* enable/disable RX */
33af6bcc 6176 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
6177 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6178 regval |= tsync_rx_ctl;
33af6bcc 6179 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 6180
c5b9bd5e
AD
6181 /* define which PTP packets are time stamped */
6182 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 6183
c5b9bd5e
AD
6184 /* define ethertype filter for timestamped packets */
6185 if (is_l2)
6186 wr32(E1000_ETQF(3),
6187 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6188 E1000_ETQF_1588 | /* enable timestamping */
6189 ETH_P_1588)); /* 1588 eth protocol type */
6190 else
6191 wr32(E1000_ETQF(3), 0);
6192
6193#define PTP_PORT 319
6194 /* L4 Queue Filter[3]: filter by destination port and protocol */
6195 if (is_l4) {
6196 u32 ftqf = (IPPROTO_UDP /* UDP */
6197 | E1000_FTQF_VF_BP /* VF not compared */
6198 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6199 | E1000_FTQF_MASK); /* mask all inputs */
6200 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6201
6202 wr32(E1000_IMIR(3), htons(PTP_PORT));
6203 wr32(E1000_IMIREXT(3),
6204 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6205 if (hw->mac.type == e1000_82576) {
6206 /* enable source port check */
6207 wr32(E1000_SPQF(3), htons(PTP_PORT));
6208 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6209 }
6210 wr32(E1000_FTQF(3), ftqf);
6211 } else {
6212 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6213 }
33af6bcc
PO
6214 wrfl();
6215
6216 adapter->hwtstamp_config = config;
6217
6218 /* clear TX/RX time stamp registers, just to be sure */
6219 regval = rd32(E1000_TXSTMPH);
6220 regval = rd32(E1000_RXSTMPH);
c6cb090b 6221
33af6bcc
PO
6222 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6223 -EFAULT : 0;
c6cb090b
PO
6224}
6225
9d5c8243
AK
6226/**
6227 * igb_ioctl -
6228 * @netdev:
6229 * @ifreq:
6230 * @cmd:
6231 **/
6232static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6233{
6234 switch (cmd) {
6235 case SIOCGMIIPHY:
6236 case SIOCGMIIREG:
6237 case SIOCSMIIREG:
6238 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6239 case SIOCSHWTSTAMP:
6240 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6241 default:
6242 return -EOPNOTSUPP;
6243 }
6244}
6245
009bc06e
AD
6246s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6247{
6248 struct igb_adapter *adapter = hw->back;
6249 u16 cap_offset;
6250
bdaae04c 6251 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6252 if (!cap_offset)
6253 return -E1000_ERR_CONFIG;
6254
6255 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6256
6257 return 0;
6258}
6259
6260s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6261{
6262 struct igb_adapter *adapter = hw->back;
6263 u16 cap_offset;
6264
bdaae04c 6265 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6266 if (!cap_offset)
6267 return -E1000_ERR_CONFIG;
6268
6269 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6270
6271 return 0;
6272}
6273
b2cb09b1 6274static void igb_vlan_mode(struct net_device *netdev, u32 features)
9d5c8243
AK
6275{
6276 struct igb_adapter *adapter = netdev_priv(netdev);
6277 struct e1000_hw *hw = &adapter->hw;
6278 u32 ctrl, rctl;
6279
6280 igb_irq_disable(adapter);
9d5c8243 6281
b2cb09b1 6282 if (features & NETIF_F_HW_VLAN_RX) {
9d5c8243
AK
6283 /* enable VLAN tag insert/strip */
6284 ctrl = rd32(E1000_CTRL);
6285 ctrl |= E1000_CTRL_VME;
6286 wr32(E1000_CTRL, ctrl);
6287
51466239 6288 /* Disable CFI check */
9d5c8243 6289 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6290 rctl &= ~E1000_RCTL_CFIEN;
6291 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6292 } else {
6293 /* disable VLAN tag insert/strip */
6294 ctrl = rd32(E1000_CTRL);
6295 ctrl &= ~E1000_CTRL_VME;
6296 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6297 }
6298
e1739522
AD
6299 igb_rlpml_set(adapter);
6300
9d5c8243
AK
6301 if (!test_bit(__IGB_DOWN, &adapter->state))
6302 igb_irq_enable(adapter);
6303}
6304
6305static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6306{
6307 struct igb_adapter *adapter = netdev_priv(netdev);
6308 struct e1000_hw *hw = &adapter->hw;
4ae196df 6309 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6310
51466239
AD
6311 /* attempt to add filter to vlvf array */
6312 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6313
51466239
AD
6314 /* add the filter since PF can receive vlans w/o entry in vlvf */
6315 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6316
6317 set_bit(vid, adapter->active_vlans);
9d5c8243
AK
6318}
6319
6320static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6321{
6322 struct igb_adapter *adapter = netdev_priv(netdev);
6323 struct e1000_hw *hw = &adapter->hw;
4ae196df 6324 int pf_id = adapter->vfs_allocated_count;
51466239 6325 s32 err;
9d5c8243
AK
6326
6327 igb_irq_disable(adapter);
9d5c8243
AK
6328
6329 if (!test_bit(__IGB_DOWN, &adapter->state))
6330 igb_irq_enable(adapter);
6331
51466239
AD
6332 /* remove vlan from VLVF table array */
6333 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6334
51466239
AD
6335 /* if vid was not present in VLVF just remove it from table */
6336 if (err)
4ae196df 6337 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6338
6339 clear_bit(vid, adapter->active_vlans);
9d5c8243
AK
6340}
6341
6342static void igb_restore_vlan(struct igb_adapter *adapter)
6343{
b2cb09b1 6344 u16 vid;
9d5c8243 6345
b2cb09b1
JP
6346 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6347 igb_vlan_rx_add_vid(adapter->netdev, vid);
9d5c8243
AK
6348}
6349
14ad2513 6350int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6351{
090b1795 6352 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6353 struct e1000_mac_info *mac = &adapter->hw.mac;
6354
6355 mac->autoneg = 0;
6356
14ad2513
DD
6357 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6358 * for the switch() below to work */
6359 if ((spd & 1) || (dplx & ~1))
6360 goto err_inval;
6361
cd2638a8
CW
6362 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6363 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
14ad2513
DD
6364 spd != SPEED_1000 &&
6365 dplx != DUPLEX_FULL)
6366 goto err_inval;
cd2638a8 6367
14ad2513 6368 switch (spd + dplx) {
9d5c8243
AK
6369 case SPEED_10 + DUPLEX_HALF:
6370 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6371 break;
6372 case SPEED_10 + DUPLEX_FULL:
6373 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6374 break;
6375 case SPEED_100 + DUPLEX_HALF:
6376 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6377 break;
6378 case SPEED_100 + DUPLEX_FULL:
6379 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6380 break;
6381 case SPEED_1000 + DUPLEX_FULL:
6382 mac->autoneg = 1;
6383 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6384 break;
6385 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6386 default:
14ad2513 6387 goto err_inval;
9d5c8243
AK
6388 }
6389 return 0;
14ad2513
DD
6390
6391err_inval:
6392 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6393 return -EINVAL;
9d5c8243
AK
6394}
6395
3fe7c4c9 6396static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6397{
6398 struct net_device *netdev = pci_get_drvdata(pdev);
6399 struct igb_adapter *adapter = netdev_priv(netdev);
6400 struct e1000_hw *hw = &adapter->hw;
2d064c06 6401 u32 ctrl, rctl, status;
9d5c8243
AK
6402 u32 wufc = adapter->wol;
6403#ifdef CONFIG_PM
6404 int retval = 0;
6405#endif
6406
6407 netif_device_detach(netdev);
6408
a88f10ec
AD
6409 if (netif_running(netdev))
6410 igb_close(netdev);
6411
047e0030 6412 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6413
6414#ifdef CONFIG_PM
6415 retval = pci_save_state(pdev);
6416 if (retval)
6417 return retval;
6418#endif
6419
6420 status = rd32(E1000_STATUS);
6421 if (status & E1000_STATUS_LU)
6422 wufc &= ~E1000_WUFC_LNKC;
6423
6424 if (wufc) {
6425 igb_setup_rctl(adapter);
ff41f8dc 6426 igb_set_rx_mode(netdev);
9d5c8243
AK
6427
6428 /* turn on all-multi mode if wake on multicast is enabled */
6429 if (wufc & E1000_WUFC_MC) {
6430 rctl = rd32(E1000_RCTL);
6431 rctl |= E1000_RCTL_MPE;
6432 wr32(E1000_RCTL, rctl);
6433 }
6434
6435 ctrl = rd32(E1000_CTRL);
6436 /* advertise wake from D3Cold */
6437 #define E1000_CTRL_ADVD3WUC 0x00100000
6438 /* phy power management enable */
6439 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6440 ctrl |= E1000_CTRL_ADVD3WUC;
6441 wr32(E1000_CTRL, ctrl);
6442
9d5c8243 6443 /* Allow time for pending master requests to run */
330a6d6a 6444 igb_disable_pcie_master(hw);
9d5c8243
AK
6445
6446 wr32(E1000_WUC, E1000_WUC_PME_EN);
6447 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6448 } else {
6449 wr32(E1000_WUC, 0);
6450 wr32(E1000_WUFC, 0);
9d5c8243
AK
6451 }
6452
3fe7c4c9
RW
6453 *enable_wake = wufc || adapter->en_mng_pt;
6454 if (!*enable_wake)
88a268c1
NN
6455 igb_power_down_link(adapter);
6456 else
6457 igb_power_up_link(adapter);
9d5c8243
AK
6458
6459 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6460 * would have already happened in close and is redundant. */
6461 igb_release_hw_control(adapter);
6462
6463 pci_disable_device(pdev);
6464
9d5c8243
AK
6465 return 0;
6466}
6467
6468#ifdef CONFIG_PM
3fe7c4c9
RW
6469static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6470{
6471 int retval;
6472 bool wake;
6473
6474 retval = __igb_shutdown(pdev, &wake);
6475 if (retval)
6476 return retval;
6477
6478 if (wake) {
6479 pci_prepare_to_sleep(pdev);
6480 } else {
6481 pci_wake_from_d3(pdev, false);
6482 pci_set_power_state(pdev, PCI_D3hot);
6483 }
6484
6485 return 0;
6486}
6487
9d5c8243
AK
6488static int igb_resume(struct pci_dev *pdev)
6489{
6490 struct net_device *netdev = pci_get_drvdata(pdev);
6491 struct igb_adapter *adapter = netdev_priv(netdev);
6492 struct e1000_hw *hw = &adapter->hw;
6493 u32 err;
6494
6495 pci_set_power_state(pdev, PCI_D0);
6496 pci_restore_state(pdev);
b94f2d77 6497 pci_save_state(pdev);
42bfd33a 6498
aed5dec3 6499 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6500 if (err) {
6501 dev_err(&pdev->dev,
6502 "igb: Cannot enable PCI device from suspend\n");
6503 return err;
6504 }
6505 pci_set_master(pdev);
6506
6507 pci_enable_wake(pdev, PCI_D3hot, 0);
6508 pci_enable_wake(pdev, PCI_D3cold, 0);
6509
047e0030 6510 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6511 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6512 return -ENOMEM;
9d5c8243
AK
6513 }
6514
9d5c8243 6515 igb_reset(adapter);
a8564f03
AD
6516
6517 /* let the f/w know that the h/w is now under the control of the
6518 * driver. */
6519 igb_get_hw_control(adapter);
6520
9d5c8243
AK
6521 wr32(E1000_WUS, ~0);
6522
a88f10ec
AD
6523 if (netif_running(netdev)) {
6524 err = igb_open(netdev);
6525 if (err)
6526 return err;
6527 }
9d5c8243
AK
6528
6529 netif_device_attach(netdev);
6530
9d5c8243
AK
6531 return 0;
6532}
6533#endif
6534
6535static void igb_shutdown(struct pci_dev *pdev)
6536{
3fe7c4c9
RW
6537 bool wake;
6538
6539 __igb_shutdown(pdev, &wake);
6540
6541 if (system_state == SYSTEM_POWER_OFF) {
6542 pci_wake_from_d3(pdev, wake);
6543 pci_set_power_state(pdev, PCI_D3hot);
6544 }
9d5c8243
AK
6545}
6546
6547#ifdef CONFIG_NET_POLL_CONTROLLER
6548/*
6549 * Polling 'interrupt' - used by things like netconsole to send skbs
6550 * without having to re-enable interrupts. It's not called while
6551 * the interrupt routine is executing.
6552 */
6553static void igb_netpoll(struct net_device *netdev)
6554{
6555 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6556 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6557 int i;
9d5c8243 6558
eebbbdba 6559 if (!adapter->msix_entries) {
047e0030 6560 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 6561 igb_irq_disable(adapter);
047e0030 6562 napi_schedule(&q_vector->napi);
eebbbdba
AD
6563 return;
6564 }
9d5c8243 6565
047e0030
AD
6566 for (i = 0; i < adapter->num_q_vectors; i++) {
6567 struct igb_q_vector *q_vector = adapter->q_vector[i];
6568 wr32(E1000_EIMC, q_vector->eims_value);
6569 napi_schedule(&q_vector->napi);
eebbbdba 6570 }
9d5c8243
AK
6571}
6572#endif /* CONFIG_NET_POLL_CONTROLLER */
6573
6574/**
6575 * igb_io_error_detected - called when PCI error is detected
6576 * @pdev: Pointer to PCI device
6577 * @state: The current pci connection state
6578 *
6579 * This function is called after a PCI bus error affecting
6580 * this device has been detected.
6581 */
6582static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6583 pci_channel_state_t state)
6584{
6585 struct net_device *netdev = pci_get_drvdata(pdev);
6586 struct igb_adapter *adapter = netdev_priv(netdev);
6587
6588 netif_device_detach(netdev);
6589
59ed6eec
AD
6590 if (state == pci_channel_io_perm_failure)
6591 return PCI_ERS_RESULT_DISCONNECT;
6592
9d5c8243
AK
6593 if (netif_running(netdev))
6594 igb_down(adapter);
6595 pci_disable_device(pdev);
6596
6597 /* Request a slot slot reset. */
6598 return PCI_ERS_RESULT_NEED_RESET;
6599}
6600
6601/**
6602 * igb_io_slot_reset - called after the pci bus has been reset.
6603 * @pdev: Pointer to PCI device
6604 *
6605 * Restart the card from scratch, as if from a cold-boot. Implementation
6606 * resembles the first-half of the igb_resume routine.
6607 */
6608static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6609{
6610 struct net_device *netdev = pci_get_drvdata(pdev);
6611 struct igb_adapter *adapter = netdev_priv(netdev);
6612 struct e1000_hw *hw = &adapter->hw;
40a914fa 6613 pci_ers_result_t result;
42bfd33a 6614 int err;
9d5c8243 6615
aed5dec3 6616 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6617 dev_err(&pdev->dev,
6618 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6619 result = PCI_ERS_RESULT_DISCONNECT;
6620 } else {
6621 pci_set_master(pdev);
6622 pci_restore_state(pdev);
b94f2d77 6623 pci_save_state(pdev);
9d5c8243 6624
40a914fa
AD
6625 pci_enable_wake(pdev, PCI_D3hot, 0);
6626 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6627
40a914fa
AD
6628 igb_reset(adapter);
6629 wr32(E1000_WUS, ~0);
6630 result = PCI_ERS_RESULT_RECOVERED;
6631 }
9d5c8243 6632
ea943d41
JK
6633 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6634 if (err) {
6635 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6636 "failed 0x%0x\n", err);
6637 /* non-fatal, continue */
6638 }
40a914fa
AD
6639
6640 return result;
9d5c8243
AK
6641}
6642
6643/**
6644 * igb_io_resume - called when traffic can start flowing again.
6645 * @pdev: Pointer to PCI device
6646 *
6647 * This callback is called when the error recovery driver tells us that
6648 * its OK to resume normal operation. Implementation resembles the
6649 * second-half of the igb_resume routine.
6650 */
6651static void igb_io_resume(struct pci_dev *pdev)
6652{
6653 struct net_device *netdev = pci_get_drvdata(pdev);
6654 struct igb_adapter *adapter = netdev_priv(netdev);
6655
9d5c8243
AK
6656 if (netif_running(netdev)) {
6657 if (igb_up(adapter)) {
6658 dev_err(&pdev->dev, "igb_up failed after reset\n");
6659 return;
6660 }
6661 }
6662
6663 netif_device_attach(netdev);
6664
6665 /* let the f/w know that the h/w is now under the control of the
6666 * driver. */
6667 igb_get_hw_control(adapter);
9d5c8243
AK
6668}
6669
26ad9178
AD
6670static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6671 u8 qsel)
6672{
6673 u32 rar_low, rar_high;
6674 struct e1000_hw *hw = &adapter->hw;
6675
6676 /* HW expects these in little endian so we reverse the byte order
6677 * from network order (big endian) to little endian
6678 */
6679 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6680 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6681 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6682
6683 /* Indicate to hardware the Address is Valid. */
6684 rar_high |= E1000_RAH_AV;
6685
6686 if (hw->mac.type == e1000_82575)
6687 rar_high |= E1000_RAH_POOL_1 * qsel;
6688 else
6689 rar_high |= E1000_RAH_POOL_1 << qsel;
6690
6691 wr32(E1000_RAL(index), rar_low);
6692 wrfl();
6693 wr32(E1000_RAH(index), rar_high);
6694 wrfl();
6695}
6696
4ae196df
AD
6697static int igb_set_vf_mac(struct igb_adapter *adapter,
6698 int vf, unsigned char *mac_addr)
6699{
6700 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6701 /* VF MAC addresses start at end of receive addresses and moves
6702 * torwards the first, as a result a collision should not be possible */
6703 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6704
37680117 6705 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6706
26ad9178 6707 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6708
6709 return 0;
6710}
6711
8151d294
WM
6712static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6713{
6714 struct igb_adapter *adapter = netdev_priv(netdev);
6715 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6716 return -EINVAL;
6717 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6718 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6719 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6720 " change effective.");
6721 if (test_bit(__IGB_DOWN, &adapter->state)) {
6722 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6723 " but the PF device is not up.\n");
6724 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6725 " attempting to use the VF device.\n");
6726 }
6727 return igb_set_vf_mac(adapter, vf, mac);
6728}
6729
17dc566c
LL
6730static int igb_link_mbps(int internal_link_speed)
6731{
6732 switch (internal_link_speed) {
6733 case SPEED_100:
6734 return 100;
6735 case SPEED_1000:
6736 return 1000;
6737 default:
6738 return 0;
6739 }
6740}
6741
6742static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6743 int link_speed)
6744{
6745 int rf_dec, rf_int;
6746 u32 bcnrc_val;
6747
6748 if (tx_rate != 0) {
6749 /* Calculate the rate factor values to set */
6750 rf_int = link_speed / tx_rate;
6751 rf_dec = (link_speed - (rf_int * tx_rate));
6752 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6753
6754 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6755 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6756 E1000_RTTBCNRC_RF_INT_MASK);
6757 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6758 } else {
6759 bcnrc_val = 0;
6760 }
6761
6762 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6763 wr32(E1000_RTTBCNRC, bcnrc_val);
6764}
6765
6766static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6767{
6768 int actual_link_speed, i;
6769 bool reset_rate = false;
6770
6771 /* VF TX rate limit was not set or not supported */
6772 if ((adapter->vf_rate_link_speed == 0) ||
6773 (adapter->hw.mac.type != e1000_82576))
6774 return;
6775
6776 actual_link_speed = igb_link_mbps(adapter->link_speed);
6777 if (actual_link_speed != adapter->vf_rate_link_speed) {
6778 reset_rate = true;
6779 adapter->vf_rate_link_speed = 0;
6780 dev_info(&adapter->pdev->dev,
6781 "Link speed has been changed. VF Transmit "
6782 "rate is disabled\n");
6783 }
6784
6785 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6786 if (reset_rate)
6787 adapter->vf_data[i].tx_rate = 0;
6788
6789 igb_set_vf_rate_limit(&adapter->hw, i,
6790 adapter->vf_data[i].tx_rate,
6791 actual_link_speed);
6792 }
6793}
6794
8151d294
WM
6795static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6796{
17dc566c
LL
6797 struct igb_adapter *adapter = netdev_priv(netdev);
6798 struct e1000_hw *hw = &adapter->hw;
6799 int actual_link_speed;
6800
6801 if (hw->mac.type != e1000_82576)
6802 return -EOPNOTSUPP;
6803
6804 actual_link_speed = igb_link_mbps(adapter->link_speed);
6805 if ((vf >= adapter->vfs_allocated_count) ||
6806 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6807 (tx_rate < 0) || (tx_rate > actual_link_speed))
6808 return -EINVAL;
6809
6810 adapter->vf_rate_link_speed = actual_link_speed;
6811 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6812 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6813
6814 return 0;
8151d294
WM
6815}
6816
6817static int igb_ndo_get_vf_config(struct net_device *netdev,
6818 int vf, struct ifla_vf_info *ivi)
6819{
6820 struct igb_adapter *adapter = netdev_priv(netdev);
6821 if (vf >= adapter->vfs_allocated_count)
6822 return -EINVAL;
6823 ivi->vf = vf;
6824 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 6825 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
6826 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6827 ivi->qos = adapter->vf_data[vf].pf_qos;
6828 return 0;
6829}
6830
4ae196df
AD
6831static void igb_vmm_control(struct igb_adapter *adapter)
6832{
6833 struct e1000_hw *hw = &adapter->hw;
10d8e907 6834 u32 reg;
4ae196df 6835
52a1dd4d
AD
6836 switch (hw->mac.type) {
6837 case e1000_82575:
6838 default:
6839 /* replication is not supported for 82575 */
4ae196df 6840 return;
52a1dd4d
AD
6841 case e1000_82576:
6842 /* notify HW that the MAC is adding vlan tags */
6843 reg = rd32(E1000_DTXCTL);
6844 reg |= E1000_DTXCTL_VLAN_ADDED;
6845 wr32(E1000_DTXCTL, reg);
6846 case e1000_82580:
6847 /* enable replication vlan tag stripping */
6848 reg = rd32(E1000_RPLOLR);
6849 reg |= E1000_RPLOLR_STRVLAN;
6850 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6851 case e1000_i350:
6852 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6853 break;
6854 }
10d8e907 6855
d4960307
AD
6856 if (adapter->vfs_allocated_count) {
6857 igb_vmdq_set_loopback_pf(hw, true);
6858 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
6859 igb_vmdq_set_anti_spoofing_pf(hw, true,
6860 adapter->vfs_allocated_count);
d4960307
AD
6861 } else {
6862 igb_vmdq_set_loopback_pf(hw, false);
6863 igb_vmdq_set_replication_pf(hw, false);
6864 }
4ae196df
AD
6865}
6866
9d5c8243 6867/* igb_main.c */