Add ethtool -g support to 8139cp
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4297f99b 4 Copyright(c) 2007-2011 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
b2cb09b1 31#include <linux/bitops.h>
9d5c8243
AK
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/netdevice.h>
9d5c8243 35#include <linux/ipv6.h>
5a0e3ad6 36#include <linux/slab.h>
9d5c8243
AK
37#include <net/checksum.h>
38#include <net/ip6_checksum.h>
c6cb090b 39#include <linux/net_tstamp.h>
9d5c8243
AK
40#include <linux/mii.h>
41#include <linux/ethtool.h>
01789349 42#include <linux/if.h>
9d5c8243
AK
43#include <linux/if_vlan.h>
44#include <linux/pci.h>
c54106bb 45#include <linux/pci-aspm.h>
9d5c8243
AK
46#include <linux/delay.h>
47#include <linux/interrupt.h>
7d13a7d0
AD
48#include <linux/ip.h>
49#include <linux/tcp.h>
50#include <linux/sctp.h>
9d5c8243 51#include <linux/if_ether.h>
40a914fa 52#include <linux/aer.h>
70c71606 53#include <linux/prefetch.h>
421e02f0 54#ifdef CONFIG_IGB_DCA
fe4506b6
JC
55#include <linux/dca.h>
56#endif
9d5c8243
AK
57#include "igb.h"
58
0d1fe82d
CW
59#define MAJ 3
60#define MIN 0
61#define BUILD 6
0d1fe82d 62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 63__stringify(BUILD) "-k"
9d5c8243
AK
64char igb_driver_name[] = "igb";
65char igb_driver_version[] = DRV_VERSION;
66static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
4c4b42cb 68static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
9d5c8243 69
9d5c8243
AK
70static const struct e1000_info *igb_info_tbl[] = {
71 [board_82575] = &e1000_82575_info,
72};
73
a3aa1884 74static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
d2ba2ed8
AD
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
100 /* required last entry */
101 {0, }
102};
103
104MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
105
106void igb_reset(struct igb_adapter *);
107static int igb_setup_all_tx_resources(struct igb_adapter *);
108static int igb_setup_all_rx_resources(struct igb_adapter *);
109static void igb_free_all_tx_resources(struct igb_adapter *);
110static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 111static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243
AK
112static int igb_probe(struct pci_dev *, const struct pci_device_id *);
113static void __devexit igb_remove(struct pci_dev *pdev);
673b8b70 114static void igb_init_hw_timer(struct igb_adapter *adapter);
9d5c8243
AK
115static int igb_sw_init(struct igb_adapter *);
116static int igb_open(struct net_device *);
117static int igb_close(struct net_device *);
118static void igb_configure_tx(struct igb_adapter *);
119static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
120static void igb_clean_all_tx_rings(struct igb_adapter *);
121static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
122static void igb_clean_tx_ring(struct igb_ring *);
123static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 124static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
125static void igb_update_phy_info(unsigned long);
126static void igb_watchdog(unsigned long);
127static void igb_watchdog_task(struct work_struct *);
cd392f5c 128static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
129static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
130 struct rtnl_link_stats64 *stats);
9d5c8243
AK
131static int igb_change_mtu(struct net_device *, int);
132static int igb_set_mac(struct net_device *, void *);
68d480c4 133static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
134static irqreturn_t igb_intr(int irq, void *);
135static irqreturn_t igb_intr_msi(int irq, void *);
136static irqreturn_t igb_msix_other(int irq, void *);
047e0030 137static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 138#ifdef CONFIG_IGB_DCA
047e0030 139static void igb_update_dca(struct igb_q_vector *);
fe4506b6 140static void igb_setup_dca(struct igb_adapter *);
421e02f0 141#endif /* CONFIG_IGB_DCA */
661086df 142static int igb_poll(struct napi_struct *, int);
13fde97a 143static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 144static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
145static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
146static void igb_tx_timeout(struct net_device *);
147static void igb_reset_task(struct work_struct *);
b2cb09b1 148static void igb_vlan_mode(struct net_device *netdev, u32 features);
9d5c8243
AK
149static void igb_vlan_rx_add_vid(struct net_device *, u16);
150static void igb_vlan_rx_kill_vid(struct net_device *, u16);
151static void igb_restore_vlan(struct igb_adapter *);
26ad9178 152static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
153static void igb_ping_all_vfs(struct igb_adapter *);
154static void igb_msg_task(struct igb_adapter *);
4ae196df 155static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 156static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 157static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
158static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
159static int igb_ndo_set_vf_vlan(struct net_device *netdev,
160 int vf, u16 vlan, u8 qos);
161static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
162static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
163 struct ifla_vf_info *ivi);
17dc566c 164static void igb_check_vf_rate_limit(struct igb_adapter *);
9d5c8243 165
9d5c8243 166#ifdef CONFIG_PM
3fe7c4c9 167static int igb_suspend(struct pci_dev *, pm_message_t);
9d5c8243
AK
168static int igb_resume(struct pci_dev *);
169#endif
170static void igb_shutdown(struct pci_dev *);
421e02f0 171#ifdef CONFIG_IGB_DCA
fe4506b6
JC
172static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
173static struct notifier_block dca_notifier = {
174 .notifier_call = igb_notify_dca,
175 .next = NULL,
176 .priority = 0
177};
178#endif
9d5c8243
AK
179#ifdef CONFIG_NET_POLL_CONTROLLER
180/* for netdump / net console */
181static void igb_netpoll(struct net_device *);
182#endif
37680117 183#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
184static unsigned int max_vfs = 0;
185module_param(max_vfs, uint, 0);
186MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
187 "per physical function");
188#endif /* CONFIG_PCI_IOV */
189
9d5c8243
AK
190static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
191 pci_channel_state_t);
192static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
193static void igb_io_resume(struct pci_dev *);
194
195static struct pci_error_handlers igb_err_handler = {
196 .error_detected = igb_io_error_detected,
197 .slot_reset = igb_io_slot_reset,
198 .resume = igb_io_resume,
199};
200
201
202static struct pci_driver igb_driver = {
203 .name = igb_driver_name,
204 .id_table = igb_pci_tbl,
205 .probe = igb_probe,
206 .remove = __devexit_p(igb_remove),
207#ifdef CONFIG_PM
25985edc 208 /* Power Management Hooks */
9d5c8243
AK
209 .suspend = igb_suspend,
210 .resume = igb_resume,
211#endif
212 .shutdown = igb_shutdown,
213 .err_handler = &igb_err_handler
214};
215
216MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
217MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
218MODULE_LICENSE("GPL");
219MODULE_VERSION(DRV_VERSION);
220
c97ec42a
TI
221struct igb_reg_info {
222 u32 ofs;
223 char *name;
224};
225
226static const struct igb_reg_info igb_reg_info_tbl[] = {
227
228 /* General Registers */
229 {E1000_CTRL, "CTRL"},
230 {E1000_STATUS, "STATUS"},
231 {E1000_CTRL_EXT, "CTRL_EXT"},
232
233 /* Interrupt Registers */
234 {E1000_ICR, "ICR"},
235
236 /* RX Registers */
237 {E1000_RCTL, "RCTL"},
238 {E1000_RDLEN(0), "RDLEN"},
239 {E1000_RDH(0), "RDH"},
240 {E1000_RDT(0), "RDT"},
241 {E1000_RXDCTL(0), "RXDCTL"},
242 {E1000_RDBAL(0), "RDBAL"},
243 {E1000_RDBAH(0), "RDBAH"},
244
245 /* TX Registers */
246 {E1000_TCTL, "TCTL"},
247 {E1000_TDBAL(0), "TDBAL"},
248 {E1000_TDBAH(0), "TDBAH"},
249 {E1000_TDLEN(0), "TDLEN"},
250 {E1000_TDH(0), "TDH"},
251 {E1000_TDT(0), "TDT"},
252 {E1000_TXDCTL(0), "TXDCTL"},
253 {E1000_TDFH, "TDFH"},
254 {E1000_TDFT, "TDFT"},
255 {E1000_TDFHS, "TDFHS"},
256 {E1000_TDFPC, "TDFPC"},
257
258 /* List Terminator */
259 {}
260};
261
262/*
263 * igb_regdump - register printout routine
264 */
265static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
266{
267 int n = 0;
268 char rname[16];
269 u32 regs[8];
270
271 switch (reginfo->ofs) {
272 case E1000_RDLEN(0):
273 for (n = 0; n < 4; n++)
274 regs[n] = rd32(E1000_RDLEN(n));
275 break;
276 case E1000_RDH(0):
277 for (n = 0; n < 4; n++)
278 regs[n] = rd32(E1000_RDH(n));
279 break;
280 case E1000_RDT(0):
281 for (n = 0; n < 4; n++)
282 regs[n] = rd32(E1000_RDT(n));
283 break;
284 case E1000_RXDCTL(0):
285 for (n = 0; n < 4; n++)
286 regs[n] = rd32(E1000_RXDCTL(n));
287 break;
288 case E1000_RDBAL(0):
289 for (n = 0; n < 4; n++)
290 regs[n] = rd32(E1000_RDBAL(n));
291 break;
292 case E1000_RDBAH(0):
293 for (n = 0; n < 4; n++)
294 regs[n] = rd32(E1000_RDBAH(n));
295 break;
296 case E1000_TDBAL(0):
297 for (n = 0; n < 4; n++)
298 regs[n] = rd32(E1000_RDBAL(n));
299 break;
300 case E1000_TDBAH(0):
301 for (n = 0; n < 4; n++)
302 regs[n] = rd32(E1000_TDBAH(n));
303 break;
304 case E1000_TDLEN(0):
305 for (n = 0; n < 4; n++)
306 regs[n] = rd32(E1000_TDLEN(n));
307 break;
308 case E1000_TDH(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_TDH(n));
311 break;
312 case E1000_TDT(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_TDT(n));
315 break;
316 case E1000_TXDCTL(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_TXDCTL(n));
319 break;
320 default:
321 printk(KERN_INFO "%-15s %08x\n",
322 reginfo->name, rd32(reginfo->ofs));
323 return;
324 }
325
326 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
327 printk(KERN_INFO "%-15s ", rname);
328 for (n = 0; n < 4; n++)
329 printk(KERN_CONT "%08x ", regs[n]);
330 printk(KERN_CONT "\n");
331}
332
333/*
334 * igb_dump - Print registers, tx-rings and rx-rings
335 */
336static void igb_dump(struct igb_adapter *adapter)
337{
338 struct net_device *netdev = adapter->netdev;
339 struct e1000_hw *hw = &adapter->hw;
340 struct igb_reg_info *reginfo;
341 int n = 0;
342 struct igb_ring *tx_ring;
343 union e1000_adv_tx_desc *tx_desc;
344 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
345 struct igb_ring *rx_ring;
346 union e1000_adv_rx_desc *rx_desc;
347 u32 staterr;
348 int i = 0;
349
350 if (!netif_msg_hw(adapter))
351 return;
352
353 /* Print netdevice Info */
354 if (netdev) {
355 dev_info(&adapter->pdev->dev, "Net device Info\n");
356 printk(KERN_INFO "Device Name state "
357 "trans_start last_rx\n");
358 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
359 netdev->name,
360 netdev->state,
361 netdev->trans_start,
362 netdev->last_rx);
363 }
364
365 /* Print Registers */
366 dev_info(&adapter->pdev->dev, "Register Dump\n");
367 printk(KERN_INFO " Register Name Value\n");
368 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
369 reginfo->name; reginfo++) {
370 igb_regdump(hw, reginfo);
371 }
372
373 /* Print TX Ring Summary */
374 if (!netdev || !netif_running(netdev))
375 goto exit;
376
377 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
378 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
379 " leng ntw timestamp\n");
380 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 381 struct igb_tx_buffer *buffer_info;
c97ec42a 382 tx_ring = adapter->tx_ring[n];
06034649 383 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
8542db05 384 printk(KERN_INFO " %5d %5X %5X %016llX %04X %p %016llX\n",
c97ec42a
TI
385 n, tx_ring->next_to_use, tx_ring->next_to_clean,
386 (u64)buffer_info->dma,
387 buffer_info->length,
388 buffer_info->next_to_watch,
389 (u64)buffer_info->time_stamp);
390 }
391
392 /* Print TX Rings */
393 if (!netif_msg_tx_done(adapter))
394 goto rx_ring_summary;
395
396 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
397
398 /* Transmit Descriptor Formats
399 *
400 * Advanced Transmit Descriptor
401 * +--------------------------------------------------------------+
402 * 0 | Buffer Address [63:0] |
403 * +--------------------------------------------------------------+
404 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
405 * +--------------------------------------------------------------+
406 * 63 46 45 40 39 38 36 35 32 31 24 15 0
407 */
408
409 for (n = 0; n < adapter->num_tx_queues; n++) {
410 tx_ring = adapter->tx_ring[n];
411 printk(KERN_INFO "------------------------------------\n");
412 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
413 printk(KERN_INFO "------------------------------------\n");
414 printk(KERN_INFO "T [desc] [address 63:0 ] "
415 "[PlPOCIStDDM Ln] [bi->dma ] "
416 "leng ntw timestamp bi->skb\n");
417
418 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
06034649 419 struct igb_tx_buffer *buffer_info;
60136906 420 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 421 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a
TI
422 u0 = (struct my_u0 *)tx_desc;
423 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
8542db05 424 " %04X %p %016llX %p", i,
c97ec42a
TI
425 le64_to_cpu(u0->a),
426 le64_to_cpu(u0->b),
427 (u64)buffer_info->dma,
428 buffer_info->length,
429 buffer_info->next_to_watch,
430 (u64)buffer_info->time_stamp,
431 buffer_info->skb);
432 if (i == tx_ring->next_to_use &&
433 i == tx_ring->next_to_clean)
434 printk(KERN_CONT " NTC/U\n");
435 else if (i == tx_ring->next_to_use)
436 printk(KERN_CONT " NTU\n");
437 else if (i == tx_ring->next_to_clean)
438 printk(KERN_CONT " NTC\n");
439 else
440 printk(KERN_CONT "\n");
441
442 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
443 print_hex_dump(KERN_INFO, "",
444 DUMP_PREFIX_ADDRESS,
445 16, 1, phys_to_virt(buffer_info->dma),
446 buffer_info->length, true);
447 }
448 }
449
450 /* Print RX Rings Summary */
451rx_ring_summary:
452 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
453 printk(KERN_INFO "Queue [NTU] [NTC]\n");
454 for (n = 0; n < adapter->num_rx_queues; n++) {
455 rx_ring = adapter->rx_ring[n];
456 printk(KERN_INFO " %5d %5X %5X\n", n,
457 rx_ring->next_to_use, rx_ring->next_to_clean);
458 }
459
460 /* Print RX Rings */
461 if (!netif_msg_rx_status(adapter))
462 goto exit;
463
464 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
465
466 /* Advanced Receive Descriptor (Read) Format
467 * 63 1 0
468 * +-----------------------------------------------------+
469 * 0 | Packet Buffer Address [63:1] |A0/NSE|
470 * +----------------------------------------------+------+
471 * 8 | Header Buffer Address [63:1] | DD |
472 * +-----------------------------------------------------+
473 *
474 *
475 * Advanced Receive Descriptor (Write-Back) Format
476 *
477 * 63 48 47 32 31 30 21 20 17 16 4 3 0
478 * +------------------------------------------------------+
479 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
480 * | Checksum Ident | | | | Type | Type |
481 * +------------------------------------------------------+
482 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
483 * +------------------------------------------------------+
484 * 63 48 47 32 31 20 19 0
485 */
486
487 for (n = 0; n < adapter->num_rx_queues; n++) {
488 rx_ring = adapter->rx_ring[n];
489 printk(KERN_INFO "------------------------------------\n");
490 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
491 printk(KERN_INFO "------------------------------------\n");
492 printk(KERN_INFO "R [desc] [ PktBuf A0] "
493 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
494 "<-- Adv Rx Read format\n");
495 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
496 "[vl er S cks ln] ---------------- [bi->skb] "
497 "<-- Adv Rx Write-Back format\n");
498
499 for (i = 0; i < rx_ring->count; i++) {
06034649
AD
500 struct igb_rx_buffer *buffer_info;
501 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 502 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
503 u0 = (struct my_u0 *)rx_desc;
504 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
505 if (staterr & E1000_RXD_STAT_DD) {
506 /* Descriptor Done */
507 printk(KERN_INFO "RWB[0x%03X] %016llX "
508 "%016llX ---------------- %p", i,
509 le64_to_cpu(u0->a),
510 le64_to_cpu(u0->b),
511 buffer_info->skb);
512 } else {
513 printk(KERN_INFO "R [0x%03X] %016llX "
514 "%016llX %016llX %p", i,
515 le64_to_cpu(u0->a),
516 le64_to_cpu(u0->b),
517 (u64)buffer_info->dma,
518 buffer_info->skb);
519
520 if (netif_msg_pktdata(adapter)) {
521 print_hex_dump(KERN_INFO, "",
522 DUMP_PREFIX_ADDRESS,
523 16, 1,
524 phys_to_virt(buffer_info->dma),
44390ca6
AD
525 IGB_RX_HDR_LEN, true);
526 print_hex_dump(KERN_INFO, "",
527 DUMP_PREFIX_ADDRESS,
528 16, 1,
529 phys_to_virt(
530 buffer_info->page_dma +
531 buffer_info->page_offset),
532 PAGE_SIZE/2, true);
c97ec42a
TI
533 }
534 }
535
536 if (i == rx_ring->next_to_use)
537 printk(KERN_CONT " NTU\n");
538 else if (i == rx_ring->next_to_clean)
539 printk(KERN_CONT " NTC\n");
540 else
541 printk(KERN_CONT "\n");
542
543 }
544 }
545
546exit:
547 return;
548}
549
550
38c845c7
PO
551/**
552 * igb_read_clock - read raw cycle counter (to be used by time counter)
553 */
554static cycle_t igb_read_clock(const struct cyclecounter *tc)
555{
556 struct igb_adapter *adapter =
557 container_of(tc, struct igb_adapter, cycles);
558 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
559 u64 stamp = 0;
560 int shift = 0;
38c845c7 561
55cac248
AD
562 /*
563 * The timestamp latches on lowest register read. For the 82580
564 * the lowest register is SYSTIMR instead of SYSTIML. However we never
565 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
566 */
567 if (hw->mac.type == e1000_82580) {
568 stamp = rd32(E1000_SYSTIMR) >> 8;
569 shift = IGB_82580_TSYNC_SHIFT;
570 }
571
c5b9bd5e
AD
572 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
573 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
38c845c7
PO
574 return stamp;
575}
576
9d5c8243 577/**
c041076a 578 * igb_get_hw_dev - return device
9d5c8243
AK
579 * used by hardware layer to print debugging information
580 **/
c041076a 581struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
582{
583 struct igb_adapter *adapter = hw->back;
c041076a 584 return adapter->netdev;
9d5c8243 585}
38c845c7 586
9d5c8243
AK
587/**
588 * igb_init_module - Driver Registration Routine
589 *
590 * igb_init_module is the first routine called when the driver is
591 * loaded. All it does is register with the PCI subsystem.
592 **/
593static int __init igb_init_module(void)
594{
595 int ret;
596 printk(KERN_INFO "%s - version %s\n",
597 igb_driver_string, igb_driver_version);
598
599 printk(KERN_INFO "%s\n", igb_copyright);
600
421e02f0 601#ifdef CONFIG_IGB_DCA
fe4506b6
JC
602 dca_register_notify(&dca_notifier);
603#endif
bbd98fe4 604 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
605 return ret;
606}
607
608module_init(igb_init_module);
609
610/**
611 * igb_exit_module - Driver Exit Cleanup Routine
612 *
613 * igb_exit_module is called just before the driver is removed
614 * from memory.
615 **/
616static void __exit igb_exit_module(void)
617{
421e02f0 618#ifdef CONFIG_IGB_DCA
fe4506b6
JC
619 dca_unregister_notify(&dca_notifier);
620#endif
9d5c8243
AK
621 pci_unregister_driver(&igb_driver);
622}
623
624module_exit(igb_exit_module);
625
26bc19ec
AD
626#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
627/**
628 * igb_cache_ring_register - Descriptor ring to register mapping
629 * @adapter: board private structure to initialize
630 *
631 * Once we know the feature-set enabled for the device, we'll cache
632 * the register offset the descriptor ring is assigned to.
633 **/
634static void igb_cache_ring_register(struct igb_adapter *adapter)
635{
ee1b9f06 636 int i = 0, j = 0;
047e0030 637 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
638
639 switch (adapter->hw.mac.type) {
640 case e1000_82576:
641 /* The queues are allocated for virtualization such that VF 0
642 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
643 * In order to avoid collision we start at the first free queue
644 * and continue consuming queues in the same sequence
645 */
ee1b9f06 646 if (adapter->vfs_allocated_count) {
a99955fc 647 for (; i < adapter->rss_queues; i++)
3025a446
AD
648 adapter->rx_ring[i]->reg_idx = rbase_offset +
649 Q_IDX_82576(i);
ee1b9f06 650 }
26bc19ec 651 case e1000_82575:
55cac248 652 case e1000_82580:
d2ba2ed8 653 case e1000_i350:
26bc19ec 654 default:
ee1b9f06 655 for (; i < adapter->num_rx_queues; i++)
3025a446 656 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 657 for (; j < adapter->num_tx_queues; j++)
3025a446 658 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
659 break;
660 }
661}
662
047e0030
AD
663static void igb_free_queues(struct igb_adapter *adapter)
664{
3025a446 665 int i;
047e0030 666
3025a446
AD
667 for (i = 0; i < adapter->num_tx_queues; i++) {
668 kfree(adapter->tx_ring[i]);
669 adapter->tx_ring[i] = NULL;
670 }
671 for (i = 0; i < adapter->num_rx_queues; i++) {
672 kfree(adapter->rx_ring[i]);
673 adapter->rx_ring[i] = NULL;
674 }
047e0030
AD
675 adapter->num_rx_queues = 0;
676 adapter->num_tx_queues = 0;
677}
678
9d5c8243
AK
679/**
680 * igb_alloc_queues - Allocate memory for all rings
681 * @adapter: board private structure to initialize
682 *
683 * We allocate one ring per queue at run-time since we don't know the
684 * number of queues at compile-time.
685 **/
686static int igb_alloc_queues(struct igb_adapter *adapter)
687{
3025a446 688 struct igb_ring *ring;
9d5c8243
AK
689 int i;
690
661086df 691 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446
AD
692 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
693 if (!ring)
694 goto err;
68fd9910 695 ring->count = adapter->tx_ring_count;
661086df 696 ring->queue_index = i;
59d71989 697 ring->dev = &adapter->pdev->dev;
e694e964 698 ring->netdev = adapter->netdev;
85ad76b2
AD
699 /* For 82575, context index must be unique per ring. */
700 if (adapter->hw.mac.type == e1000_82575)
701 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
3025a446 702 adapter->tx_ring[i] = ring;
661086df 703 }
85ad76b2 704
9d5c8243 705 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446
AD
706 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
707 if (!ring)
708 goto err;
68fd9910 709 ring->count = adapter->rx_ring_count;
844290e5 710 ring->queue_index = i;
59d71989 711 ring->dev = &adapter->pdev->dev;
e694e964 712 ring->netdev = adapter->netdev;
85ad76b2
AD
713 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
714 /* set flag indicating ring supports SCTP checksum offload */
715 if (adapter->hw.mac.type >= e1000_82576)
716 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
3025a446 717 adapter->rx_ring[i] = ring;
9d5c8243 718 }
26bc19ec
AD
719
720 igb_cache_ring_register(adapter);
9d5c8243 721
047e0030 722 return 0;
a88f10ec 723
047e0030
AD
724err:
725 igb_free_queues(adapter);
d1a8c9e1 726
047e0030 727 return -ENOMEM;
a88f10ec
AD
728}
729
9d5c8243 730#define IGB_N0_QUEUE -1
047e0030 731static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243
AK
732{
733 u32 msixbm = 0;
047e0030 734 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 735 struct e1000_hw *hw = &adapter->hw;
2d064c06 736 u32 ivar, index;
047e0030
AD
737 int rx_queue = IGB_N0_QUEUE;
738 int tx_queue = IGB_N0_QUEUE;
739
740 if (q_vector->rx_ring)
741 rx_queue = q_vector->rx_ring->reg_idx;
742 if (q_vector->tx_ring)
743 tx_queue = q_vector->tx_ring->reg_idx;
2d064c06
AD
744
745 switch (hw->mac.type) {
746 case e1000_82575:
9d5c8243
AK
747 /* The 82575 assigns vectors using a bitmask, which matches the
748 bitmask for the EICR/EIMS/EIMC registers. To assign one
749 or more queues to a vector, we write the appropriate bits
750 into the MSIXBM register for that vector. */
047e0030 751 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 752 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 753 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 754 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
755 if (!adapter->msix_entries && msix_vector == 0)
756 msixbm |= E1000_EIMS_OTHER;
9d5c8243 757 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 758 q_vector->eims_value = msixbm;
2d064c06
AD
759 break;
760 case e1000_82576:
26bc19ec 761 /* 82576 uses a table-based method for assigning vectors.
2d064c06
AD
762 Each queue has a single entry in the table to which we write
763 a vector number along with a "valid" bit. Sadly, the layout
764 of the table is somewhat counterintuitive. */
765 if (rx_queue > IGB_N0_QUEUE) {
047e0030 766 index = (rx_queue & 0x7);
2d064c06 767 ivar = array_rd32(E1000_IVAR0, index);
047e0030 768 if (rx_queue < 8) {
26bc19ec
AD
769 /* vector goes into low byte of register */
770 ivar = ivar & 0xFFFFFF00;
771 ivar |= msix_vector | E1000_IVAR_VALID;
047e0030
AD
772 } else {
773 /* vector goes into third byte of register */
774 ivar = ivar & 0xFF00FFFF;
775 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
2d064c06 776 }
2d064c06
AD
777 array_wr32(E1000_IVAR0, index, ivar);
778 }
779 if (tx_queue > IGB_N0_QUEUE) {
047e0030 780 index = (tx_queue & 0x7);
2d064c06 781 ivar = array_rd32(E1000_IVAR0, index);
047e0030 782 if (tx_queue < 8) {
26bc19ec
AD
783 /* vector goes into second byte of register */
784 ivar = ivar & 0xFFFF00FF;
785 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
047e0030
AD
786 } else {
787 /* vector goes into high byte of register */
788 ivar = ivar & 0x00FFFFFF;
789 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
2d064c06 790 }
2d064c06
AD
791 array_wr32(E1000_IVAR0, index, ivar);
792 }
047e0030 793 q_vector->eims_value = 1 << msix_vector;
2d064c06 794 break;
55cac248 795 case e1000_82580:
d2ba2ed8 796 case e1000_i350:
55cac248
AD
797 /* 82580 uses the same table-based approach as 82576 but has fewer
798 entries as a result we carry over for queues greater than 4. */
799 if (rx_queue > IGB_N0_QUEUE) {
800 index = (rx_queue >> 1);
801 ivar = array_rd32(E1000_IVAR0, index);
802 if (rx_queue & 0x1) {
803 /* vector goes into third byte of register */
804 ivar = ivar & 0xFF00FFFF;
805 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
806 } else {
807 /* vector goes into low byte of register */
808 ivar = ivar & 0xFFFFFF00;
809 ivar |= msix_vector | E1000_IVAR_VALID;
810 }
811 array_wr32(E1000_IVAR0, index, ivar);
812 }
813 if (tx_queue > IGB_N0_QUEUE) {
814 index = (tx_queue >> 1);
815 ivar = array_rd32(E1000_IVAR0, index);
816 if (tx_queue & 0x1) {
817 /* vector goes into high byte of register */
818 ivar = ivar & 0x00FFFFFF;
819 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
820 } else {
821 /* vector goes into second byte of register */
822 ivar = ivar & 0xFFFF00FF;
823 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
824 }
825 array_wr32(E1000_IVAR0, index, ivar);
826 }
827 q_vector->eims_value = 1 << msix_vector;
828 break;
2d064c06
AD
829 default:
830 BUG();
831 break;
832 }
26b39276
AD
833
834 /* add q_vector eims value to global eims_enable_mask */
835 adapter->eims_enable_mask |= q_vector->eims_value;
836
837 /* configure q_vector to set itr on first interrupt */
838 q_vector->set_itr = 1;
9d5c8243
AK
839}
840
841/**
842 * igb_configure_msix - Configure MSI-X hardware
843 *
844 * igb_configure_msix sets up the hardware to properly
845 * generate MSI-X interrupts.
846 **/
847static void igb_configure_msix(struct igb_adapter *adapter)
848{
849 u32 tmp;
850 int i, vector = 0;
851 struct e1000_hw *hw = &adapter->hw;
852
853 adapter->eims_enable_mask = 0;
9d5c8243
AK
854
855 /* set vector for other causes, i.e. link changes */
2d064c06
AD
856 switch (hw->mac.type) {
857 case e1000_82575:
9d5c8243
AK
858 tmp = rd32(E1000_CTRL_EXT);
859 /* enable MSI-X PBA support*/
860 tmp |= E1000_CTRL_EXT_PBA_CLR;
861
862 /* Auto-Mask interrupts upon ICR read. */
863 tmp |= E1000_CTRL_EXT_EIAME;
864 tmp |= E1000_CTRL_EXT_IRCA;
865
866 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
867
868 /* enable msix_other interrupt */
869 array_wr32(E1000_MSIXBM(0), vector++,
870 E1000_EIMS_OTHER);
844290e5 871 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 872
2d064c06
AD
873 break;
874
875 case e1000_82576:
55cac248 876 case e1000_82580:
d2ba2ed8 877 case e1000_i350:
047e0030
AD
878 /* Turn on MSI-X capability first, or our settings
879 * won't stick. And it will take days to debug. */
880 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
881 E1000_GPIE_PBA | E1000_GPIE_EIAME |
882 E1000_GPIE_NSICR);
883
884 /* enable msix_other interrupt */
885 adapter->eims_other = 1 << vector;
2d064c06 886 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 887
047e0030 888 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
889 break;
890 default:
891 /* do nothing, since nothing else supports MSI-X */
892 break;
893 } /* switch (hw->mac.type) */
047e0030
AD
894
895 adapter->eims_enable_mask |= adapter->eims_other;
896
26b39276
AD
897 for (i = 0; i < adapter->num_q_vectors; i++)
898 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 899
9d5c8243
AK
900 wrfl();
901}
902
903/**
904 * igb_request_msix - Initialize MSI-X interrupts
905 *
906 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
907 * kernel.
908 **/
909static int igb_request_msix(struct igb_adapter *adapter)
910{
911 struct net_device *netdev = adapter->netdev;
047e0030 912 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
913 int i, err = 0, vector = 0;
914
047e0030 915 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 916 igb_msix_other, 0, netdev->name, adapter);
047e0030
AD
917 if (err)
918 goto out;
919 vector++;
920
921 for (i = 0; i < adapter->num_q_vectors; i++) {
922 struct igb_q_vector *q_vector = adapter->q_vector[i];
923
924 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
925
926 if (q_vector->rx_ring && q_vector->tx_ring)
927 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
928 q_vector->rx_ring->queue_index);
929 else if (q_vector->tx_ring)
930 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
931 q_vector->tx_ring->queue_index);
932 else if (q_vector->rx_ring)
933 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
934 q_vector->rx_ring->queue_index);
9d5c8243 935 else
047e0030
AD
936 sprintf(q_vector->name, "%s-unused", netdev->name);
937
9d5c8243 938 err = request_irq(adapter->msix_entries[vector].vector,
a0607fd3 939 igb_msix_ring, 0, q_vector->name,
047e0030 940 q_vector);
9d5c8243
AK
941 if (err)
942 goto out;
9d5c8243
AK
943 vector++;
944 }
945
9d5c8243
AK
946 igb_configure_msix(adapter);
947 return 0;
948out:
949 return err;
950}
951
952static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
953{
954 if (adapter->msix_entries) {
955 pci_disable_msix(adapter->pdev);
956 kfree(adapter->msix_entries);
957 adapter->msix_entries = NULL;
047e0030 958 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 959 pci_disable_msi(adapter->pdev);
047e0030 960 }
9d5c8243
AK
961}
962
047e0030
AD
963/**
964 * igb_free_q_vectors - Free memory allocated for interrupt vectors
965 * @adapter: board private structure to initialize
966 *
967 * This function frees the memory allocated to the q_vectors. In addition if
968 * NAPI is enabled it will delete any references to the NAPI struct prior
969 * to freeing the q_vector.
970 **/
971static void igb_free_q_vectors(struct igb_adapter *adapter)
972{
973 int v_idx;
974
975 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
976 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
977 adapter->q_vector[v_idx] = NULL;
fe0592b4
NN
978 if (!q_vector)
979 continue;
047e0030
AD
980 netif_napi_del(&q_vector->napi);
981 kfree(q_vector);
982 }
983 adapter->num_q_vectors = 0;
984}
985
986/**
987 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
988 *
989 * This function resets the device so that it has 0 rx queues, tx queues, and
990 * MSI-X interrupts allocated.
991 */
992static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
993{
994 igb_free_queues(adapter);
995 igb_free_q_vectors(adapter);
996 igb_reset_interrupt_capability(adapter);
997}
9d5c8243
AK
998
999/**
1000 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1001 *
1002 * Attempt to configure interrupts using the best available
1003 * capabilities of the hardware and kernel.
1004 **/
21adef3e 1005static int igb_set_interrupt_capability(struct igb_adapter *adapter)
9d5c8243
AK
1006{
1007 int err;
1008 int numvecs, i;
1009
83b7180d 1010 /* Number of supported queues. */
a99955fc 1011 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1012 if (adapter->vfs_allocated_count)
1013 adapter->num_tx_queues = 1;
1014 else
1015 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1016
047e0030
AD
1017 /* start with one vector for every rx queue */
1018 numvecs = adapter->num_rx_queues;
1019
3ad2f3fb 1020 /* if tx handler is separate add 1 for every tx queue */
a99955fc
AD
1021 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1022 numvecs += adapter->num_tx_queues;
047e0030
AD
1023
1024 /* store the number of vectors reserved for queues */
1025 adapter->num_q_vectors = numvecs;
1026
1027 /* add 1 vector for link status interrupts */
1028 numvecs++;
9d5c8243
AK
1029 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1030 GFP_KERNEL);
1031 if (!adapter->msix_entries)
1032 goto msi_only;
1033
1034 for (i = 0; i < numvecs; i++)
1035 adapter->msix_entries[i].entry = i;
1036
1037 err = pci_enable_msix(adapter->pdev,
1038 adapter->msix_entries,
1039 numvecs);
1040 if (err == 0)
34a20e89 1041 goto out;
9d5c8243
AK
1042
1043 igb_reset_interrupt_capability(adapter);
1044
1045 /* If we can't do MSI-X, try MSI */
1046msi_only:
2a3abf6d
AD
1047#ifdef CONFIG_PCI_IOV
1048 /* disable SR-IOV for non MSI-X configurations */
1049 if (adapter->vf_data) {
1050 struct e1000_hw *hw = &adapter->hw;
1051 /* disable iov and allow time for transactions to clear */
1052 pci_disable_sriov(adapter->pdev);
1053 msleep(500);
1054
1055 kfree(adapter->vf_data);
1056 adapter->vf_data = NULL;
1057 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1058 wrfl();
2a3abf6d
AD
1059 msleep(100);
1060 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1061 }
1062#endif
4fc82adf 1063 adapter->vfs_allocated_count = 0;
a99955fc 1064 adapter->rss_queues = 1;
4fc82adf 1065 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1066 adapter->num_rx_queues = 1;
661086df 1067 adapter->num_tx_queues = 1;
047e0030 1068 adapter->num_q_vectors = 1;
9d5c8243 1069 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1070 adapter->flags |= IGB_FLAG_HAS_MSI;
34a20e89 1071out:
21adef3e
BH
1072 /* Notify the stack of the (possibly) reduced queue counts. */
1073 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1074 return netif_set_real_num_rx_queues(adapter->netdev,
1075 adapter->num_rx_queues);
9d5c8243
AK
1076}
1077
047e0030
AD
1078/**
1079 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1080 * @adapter: board private structure to initialize
1081 *
1082 * We allocate one q_vector per queue interrupt. If allocation fails we
1083 * return -ENOMEM.
1084 **/
1085static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1086{
1087 struct igb_q_vector *q_vector;
1088 struct e1000_hw *hw = &adapter->hw;
1089 int v_idx;
1090
1091 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1092 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1093 if (!q_vector)
1094 goto err_out;
1095 q_vector->adapter = adapter;
047e0030
AD
1096 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1097 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1098 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1099 adapter->q_vector[v_idx] = q_vector;
1100 }
1101 return 0;
1102
1103err_out:
fe0592b4 1104 igb_free_q_vectors(adapter);
047e0030
AD
1105 return -ENOMEM;
1106}
1107
1108static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1109 int ring_idx, int v_idx)
1110{
3025a446 1111 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1112
3025a446 1113 q_vector->rx_ring = adapter->rx_ring[ring_idx];
047e0030 1114 q_vector->rx_ring->q_vector = q_vector;
4fc82adf
AD
1115 q_vector->itr_val = adapter->rx_itr_setting;
1116 if (q_vector->itr_val && q_vector->itr_val <= 3)
1117 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1118}
1119
1120static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1121 int ring_idx, int v_idx)
1122{
3025a446 1123 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
047e0030 1124
3025a446 1125 q_vector->tx_ring = adapter->tx_ring[ring_idx];
047e0030 1126 q_vector->tx_ring->q_vector = q_vector;
4fc82adf 1127 q_vector->itr_val = adapter->tx_itr_setting;
13fde97a 1128 q_vector->tx_work_limit = adapter->tx_work_limit;
4fc82adf
AD
1129 if (q_vector->itr_val && q_vector->itr_val <= 3)
1130 q_vector->itr_val = IGB_START_ITR;
047e0030
AD
1131}
1132
1133/**
1134 * igb_map_ring_to_vector - maps allocated queues to vectors
1135 *
1136 * This function maps the recently allocated queues to vectors.
1137 **/
1138static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1139{
1140 int i;
1141 int v_idx = 0;
1142
1143 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1144 (adapter->num_q_vectors < adapter->num_tx_queues))
1145 return -ENOMEM;
1146
1147 if (adapter->num_q_vectors >=
1148 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1149 for (i = 0; i < adapter->num_rx_queues; i++)
1150 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1151 for (i = 0; i < adapter->num_tx_queues; i++)
1152 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1153 } else {
1154 for (i = 0; i < adapter->num_rx_queues; i++) {
1155 if (i < adapter->num_tx_queues)
1156 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1157 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1158 }
1159 for (; i < adapter->num_tx_queues; i++)
1160 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1161 }
1162 return 0;
1163}
1164
1165/**
1166 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1167 *
1168 * This function initializes the interrupts and allocates all of the queues.
1169 **/
1170static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1171{
1172 struct pci_dev *pdev = adapter->pdev;
1173 int err;
1174
21adef3e
BH
1175 err = igb_set_interrupt_capability(adapter);
1176 if (err)
1177 return err;
047e0030
AD
1178
1179 err = igb_alloc_q_vectors(adapter);
1180 if (err) {
1181 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1182 goto err_alloc_q_vectors;
1183 }
1184
1185 err = igb_alloc_queues(adapter);
1186 if (err) {
1187 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1188 goto err_alloc_queues;
1189 }
1190
1191 err = igb_map_ring_to_vector(adapter);
1192 if (err) {
1193 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1194 goto err_map_queues;
1195 }
1196
1197
1198 return 0;
1199err_map_queues:
1200 igb_free_queues(adapter);
1201err_alloc_queues:
1202 igb_free_q_vectors(adapter);
1203err_alloc_q_vectors:
1204 igb_reset_interrupt_capability(adapter);
1205 return err;
1206}
1207
9d5c8243
AK
1208/**
1209 * igb_request_irq - initialize interrupts
1210 *
1211 * Attempts to configure interrupts using the best available
1212 * capabilities of the hardware and kernel.
1213 **/
1214static int igb_request_irq(struct igb_adapter *adapter)
1215{
1216 struct net_device *netdev = adapter->netdev;
047e0030 1217 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1218 int err = 0;
1219
1220 if (adapter->msix_entries) {
1221 err = igb_request_msix(adapter);
844290e5 1222 if (!err)
9d5c8243 1223 goto request_done;
9d5c8243 1224 /* fall back to MSI */
047e0030 1225 igb_clear_interrupt_scheme(adapter);
9d5c8243 1226 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1227 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1228 igb_free_all_tx_resources(adapter);
1229 igb_free_all_rx_resources(adapter);
047e0030 1230 adapter->num_tx_queues = 1;
9d5c8243 1231 adapter->num_rx_queues = 1;
047e0030
AD
1232 adapter->num_q_vectors = 1;
1233 err = igb_alloc_q_vectors(adapter);
1234 if (err) {
1235 dev_err(&pdev->dev,
1236 "Unable to allocate memory for vectors\n");
1237 goto request_done;
1238 }
1239 err = igb_alloc_queues(adapter);
1240 if (err) {
1241 dev_err(&pdev->dev,
1242 "Unable to allocate memory for queues\n");
1243 igb_free_q_vectors(adapter);
1244 goto request_done;
1245 }
1246 igb_setup_all_tx_resources(adapter);
1247 igb_setup_all_rx_resources(adapter);
844290e5 1248 } else {
feeb2721 1249 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243 1250 }
844290e5 1251
7dfc16fa 1252 if (adapter->flags & IGB_FLAG_HAS_MSI) {
a0607fd3 1253 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
047e0030 1254 netdev->name, adapter);
9d5c8243
AK
1255 if (!err)
1256 goto request_done;
047e0030 1257
9d5c8243
AK
1258 /* fall back to legacy interrupts */
1259 igb_reset_interrupt_capability(adapter);
7dfc16fa 1260 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1261 }
1262
a0607fd3 1263 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1264 netdev->name, adapter);
9d5c8243 1265
6cb5e577 1266 if (err)
9d5c8243
AK
1267 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1268 err);
9d5c8243
AK
1269
1270request_done:
1271 return err;
1272}
1273
1274static void igb_free_irq(struct igb_adapter *adapter)
1275{
9d5c8243
AK
1276 if (adapter->msix_entries) {
1277 int vector = 0, i;
1278
047e0030 1279 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1280
047e0030
AD
1281 for (i = 0; i < adapter->num_q_vectors; i++) {
1282 struct igb_q_vector *q_vector = adapter->q_vector[i];
1283 free_irq(adapter->msix_entries[vector++].vector,
1284 q_vector);
1285 }
1286 } else {
1287 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1288 }
9d5c8243
AK
1289}
1290
1291/**
1292 * igb_irq_disable - Mask off interrupt generation on the NIC
1293 * @adapter: board private structure
1294 **/
1295static void igb_irq_disable(struct igb_adapter *adapter)
1296{
1297 struct e1000_hw *hw = &adapter->hw;
1298
25568a53
AD
1299 /*
1300 * we need to be careful when disabling interrupts. The VFs are also
1301 * mapped into these registers and so clearing the bits can cause
1302 * issues on the VF drivers so we only need to clear what we set
1303 */
9d5c8243 1304 if (adapter->msix_entries) {
2dfd1212
AD
1305 u32 regval = rd32(E1000_EIAM);
1306 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1307 wr32(E1000_EIMC, adapter->eims_enable_mask);
1308 regval = rd32(E1000_EIAC);
1309 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1310 }
844290e5
PW
1311
1312 wr32(E1000_IAM, 0);
9d5c8243
AK
1313 wr32(E1000_IMC, ~0);
1314 wrfl();
81a61859
ET
1315 if (adapter->msix_entries) {
1316 int i;
1317 for (i = 0; i < adapter->num_q_vectors; i++)
1318 synchronize_irq(adapter->msix_entries[i].vector);
1319 } else {
1320 synchronize_irq(adapter->pdev->irq);
1321 }
9d5c8243
AK
1322}
1323
1324/**
1325 * igb_irq_enable - Enable default interrupt generation settings
1326 * @adapter: board private structure
1327 **/
1328static void igb_irq_enable(struct igb_adapter *adapter)
1329{
1330 struct e1000_hw *hw = &adapter->hw;
1331
1332 if (adapter->msix_entries) {
25568a53 1333 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
2dfd1212
AD
1334 u32 regval = rd32(E1000_EIAC);
1335 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1336 regval = rd32(E1000_EIAM);
1337 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1338 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1339 if (adapter->vfs_allocated_count) {
4ae196df 1340 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1341 ims |= E1000_IMS_VMMB;
1342 }
55cac248
AD
1343 if (adapter->hw.mac.type == e1000_82580)
1344 ims |= E1000_IMS_DRSTA;
1345
25568a53 1346 wr32(E1000_IMS, ims);
844290e5 1347 } else {
55cac248
AD
1348 wr32(E1000_IMS, IMS_ENABLE_MASK |
1349 E1000_IMS_DRSTA);
1350 wr32(E1000_IAM, IMS_ENABLE_MASK |
1351 E1000_IMS_DRSTA);
844290e5 1352 }
9d5c8243
AK
1353}
1354
1355static void igb_update_mng_vlan(struct igb_adapter *adapter)
1356{
51466239 1357 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1358 u16 vid = adapter->hw.mng_cookie.vlan_id;
1359 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1360
1361 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1362 /* add VID to filter table */
1363 igb_vfta_set(hw, vid, true);
1364 adapter->mng_vlan_id = vid;
1365 } else {
1366 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1367 }
1368
1369 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1370 (vid != old_vid) &&
b2cb09b1 1371 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1372 /* remove VID from filter table */
1373 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1374 }
1375}
1376
1377/**
1378 * igb_release_hw_control - release control of the h/w to f/w
1379 * @adapter: address of board private structure
1380 *
1381 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1382 * For ASF and Pass Through versions of f/w this means that the
1383 * driver is no longer loaded.
1384 *
1385 **/
1386static void igb_release_hw_control(struct igb_adapter *adapter)
1387{
1388 struct e1000_hw *hw = &adapter->hw;
1389 u32 ctrl_ext;
1390
1391 /* Let firmware take over control of h/w */
1392 ctrl_ext = rd32(E1000_CTRL_EXT);
1393 wr32(E1000_CTRL_EXT,
1394 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1395}
1396
9d5c8243
AK
1397/**
1398 * igb_get_hw_control - get control of the h/w from f/w
1399 * @adapter: address of board private structure
1400 *
1401 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1402 * For ASF and Pass Through versions of f/w this means that
1403 * the driver is loaded.
1404 *
1405 **/
1406static void igb_get_hw_control(struct igb_adapter *adapter)
1407{
1408 struct e1000_hw *hw = &adapter->hw;
1409 u32 ctrl_ext;
1410
1411 /* Let firmware know the driver has taken over */
1412 ctrl_ext = rd32(E1000_CTRL_EXT);
1413 wr32(E1000_CTRL_EXT,
1414 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1415}
1416
9d5c8243
AK
1417/**
1418 * igb_configure - configure the hardware for RX and TX
1419 * @adapter: private board structure
1420 **/
1421static void igb_configure(struct igb_adapter *adapter)
1422{
1423 struct net_device *netdev = adapter->netdev;
1424 int i;
1425
1426 igb_get_hw_control(adapter);
ff41f8dc 1427 igb_set_rx_mode(netdev);
9d5c8243
AK
1428
1429 igb_restore_vlan(adapter);
9d5c8243 1430
85b430b4 1431 igb_setup_tctl(adapter);
06cf2666 1432 igb_setup_mrqc(adapter);
9d5c8243 1433 igb_setup_rctl(adapter);
85b430b4
AD
1434
1435 igb_configure_tx(adapter);
9d5c8243 1436 igb_configure_rx(adapter);
662d7205
AD
1437
1438 igb_rx_fifo_flush_82575(&adapter->hw);
1439
c493ea45 1440 /* call igb_desc_unused which always leaves
9d5c8243
AK
1441 * at least 1 descriptor unused to make sure
1442 * next_to_use != next_to_clean */
1443 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1444 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1445 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1446 }
9d5c8243
AK
1447}
1448
88a268c1
NN
1449/**
1450 * igb_power_up_link - Power up the phy/serdes link
1451 * @adapter: address of board private structure
1452 **/
1453void igb_power_up_link(struct igb_adapter *adapter)
1454{
1455 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1456 igb_power_up_phy_copper(&adapter->hw);
1457 else
1458 igb_power_up_serdes_link_82575(&adapter->hw);
1459}
1460
1461/**
1462 * igb_power_down_link - Power down the phy/serdes link
1463 * @adapter: address of board private structure
1464 */
1465static void igb_power_down_link(struct igb_adapter *adapter)
1466{
1467 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1468 igb_power_down_phy_copper_82575(&adapter->hw);
1469 else
1470 igb_shutdown_serdes_link_82575(&adapter->hw);
1471}
9d5c8243
AK
1472
1473/**
1474 * igb_up - Open the interface and prepare it to handle traffic
1475 * @adapter: board private structure
1476 **/
9d5c8243
AK
1477int igb_up(struct igb_adapter *adapter)
1478{
1479 struct e1000_hw *hw = &adapter->hw;
1480 int i;
1481
1482 /* hardware has been reset, we need to reload some things */
1483 igb_configure(adapter);
1484
1485 clear_bit(__IGB_DOWN, &adapter->state);
1486
047e0030
AD
1487 for (i = 0; i < adapter->num_q_vectors; i++) {
1488 struct igb_q_vector *q_vector = adapter->q_vector[i];
1489 napi_enable(&q_vector->napi);
1490 }
844290e5 1491 if (adapter->msix_entries)
9d5c8243 1492 igb_configure_msix(adapter);
feeb2721
AD
1493 else
1494 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1495
1496 /* Clear any pending interrupts. */
1497 rd32(E1000_ICR);
1498 igb_irq_enable(adapter);
1499
d4960307
AD
1500 /* notify VFs that reset has been completed */
1501 if (adapter->vfs_allocated_count) {
1502 u32 reg_data = rd32(E1000_CTRL_EXT);
1503 reg_data |= E1000_CTRL_EXT_PFRSTD;
1504 wr32(E1000_CTRL_EXT, reg_data);
1505 }
1506
4cb9be7a
JB
1507 netif_tx_start_all_queues(adapter->netdev);
1508
25568a53
AD
1509 /* start the watchdog. */
1510 hw->mac.get_link_status = 1;
1511 schedule_work(&adapter->watchdog_task);
1512
9d5c8243
AK
1513 return 0;
1514}
1515
1516void igb_down(struct igb_adapter *adapter)
1517{
9d5c8243 1518 struct net_device *netdev = adapter->netdev;
330a6d6a 1519 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1520 u32 tctl, rctl;
1521 int i;
1522
1523 /* signal that we're down so the interrupt handler does not
1524 * reschedule our watchdog timer */
1525 set_bit(__IGB_DOWN, &adapter->state);
1526
1527 /* disable receives in the hardware */
1528 rctl = rd32(E1000_RCTL);
1529 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1530 /* flush and sleep below */
1531
fd2ea0a7 1532 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1533
1534 /* disable transmits in the hardware */
1535 tctl = rd32(E1000_TCTL);
1536 tctl &= ~E1000_TCTL_EN;
1537 wr32(E1000_TCTL, tctl);
1538 /* flush both disables and wait for them to finish */
1539 wrfl();
1540 msleep(10);
1541
047e0030
AD
1542 for (i = 0; i < adapter->num_q_vectors; i++) {
1543 struct igb_q_vector *q_vector = adapter->q_vector[i];
1544 napi_disable(&q_vector->napi);
1545 }
9d5c8243 1546
9d5c8243
AK
1547 igb_irq_disable(adapter);
1548
1549 del_timer_sync(&adapter->watchdog_timer);
1550 del_timer_sync(&adapter->phy_info_timer);
1551
9d5c8243 1552 netif_carrier_off(netdev);
04fe6358
AD
1553
1554 /* record the stats before reset*/
12dcd86b
ED
1555 spin_lock(&adapter->stats64_lock);
1556 igb_update_stats(adapter, &adapter->stats64);
1557 spin_unlock(&adapter->stats64_lock);
04fe6358 1558
9d5c8243
AK
1559 adapter->link_speed = 0;
1560 adapter->link_duplex = 0;
1561
3023682e
JK
1562 if (!pci_channel_offline(adapter->pdev))
1563 igb_reset(adapter);
9d5c8243
AK
1564 igb_clean_all_tx_rings(adapter);
1565 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1566#ifdef CONFIG_IGB_DCA
1567
1568 /* since we reset the hardware DCA settings were cleared */
1569 igb_setup_dca(adapter);
1570#endif
9d5c8243
AK
1571}
1572
1573void igb_reinit_locked(struct igb_adapter *adapter)
1574{
1575 WARN_ON(in_interrupt());
1576 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1577 msleep(1);
1578 igb_down(adapter);
1579 igb_up(adapter);
1580 clear_bit(__IGB_RESETTING, &adapter->state);
1581}
1582
1583void igb_reset(struct igb_adapter *adapter)
1584{
090b1795 1585 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1586 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1587 struct e1000_mac_info *mac = &hw->mac;
1588 struct e1000_fc_info *fc = &hw->fc;
9d5c8243
AK
1589 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1590 u16 hwm;
1591
1592 /* Repartition Pba for greater than 9k mtu
1593 * To take effect CTRL.RST is required.
1594 */
fa4dfae0 1595 switch (mac->type) {
d2ba2ed8 1596 case e1000_i350:
55cac248
AD
1597 case e1000_82580:
1598 pba = rd32(E1000_RXPBS);
1599 pba = igb_rxpbs_adjust_82580(pba);
1600 break;
fa4dfae0 1601 case e1000_82576:
d249be54
AD
1602 pba = rd32(E1000_RXPBS);
1603 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1604 break;
1605 case e1000_82575:
1606 default:
1607 pba = E1000_PBA_34K;
1608 break;
2d064c06 1609 }
9d5c8243 1610
2d064c06
AD
1611 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1612 (mac->type < e1000_82576)) {
9d5c8243
AK
1613 /* adjust PBA for jumbo frames */
1614 wr32(E1000_PBA, pba);
1615
1616 /* To maintain wire speed transmits, the Tx FIFO should be
1617 * large enough to accommodate two full transmit packets,
1618 * rounded up to the next 1KB and expressed in KB. Likewise,
1619 * the Rx FIFO should be large enough to accommodate at least
1620 * one full receive packet and is similarly rounded up and
1621 * expressed in KB. */
1622 pba = rd32(E1000_PBA);
1623 /* upper 16 bits has Tx packet buffer allocation size in KB */
1624 tx_space = pba >> 16;
1625 /* lower 16 bits has Rx packet buffer allocation size in KB */
1626 pba &= 0xffff;
1627 /* the tx fifo also stores 16 bytes of information about the tx
1628 * but don't include ethernet FCS because hardware appends it */
1629 min_tx_space = (adapter->max_frame_size +
85e8d004 1630 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1631 ETH_FCS_LEN) * 2;
1632 min_tx_space = ALIGN(min_tx_space, 1024);
1633 min_tx_space >>= 10;
1634 /* software strips receive CRC, so leave room for it */
1635 min_rx_space = adapter->max_frame_size;
1636 min_rx_space = ALIGN(min_rx_space, 1024);
1637 min_rx_space >>= 10;
1638
1639 /* If current Tx allocation is less than the min Tx FIFO size,
1640 * and the min Tx FIFO size is less than the current Rx FIFO
1641 * allocation, take space away from current Rx allocation */
1642 if (tx_space < min_tx_space &&
1643 ((min_tx_space - tx_space) < pba)) {
1644 pba = pba - (min_tx_space - tx_space);
1645
1646 /* if short on rx space, rx wins and must trump tx
1647 * adjustment */
1648 if (pba < min_rx_space)
1649 pba = min_rx_space;
1650 }
2d064c06 1651 wr32(E1000_PBA, pba);
9d5c8243 1652 }
9d5c8243
AK
1653
1654 /* flow control settings */
1655 /* The high water mark must be low enough to fit one full frame
1656 * (or the size used for early receive) above it in the Rx FIFO.
1657 * Set it to the lower of:
1658 * - 90% of the Rx FIFO size, or
1659 * - the full Rx FIFO size minus one full frame */
1660 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1661 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1662
d405ea3e
AD
1663 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1664 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1665 fc->pause_time = 0xFFFF;
1666 fc->send_xon = 1;
0cce119a 1667 fc->current_mode = fc->requested_mode;
9d5c8243 1668
4ae196df
AD
1669 /* disable receive for all VFs and wait one second */
1670 if (adapter->vfs_allocated_count) {
1671 int i;
1672 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1673 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1674
1675 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1676 igb_ping_all_vfs(adapter);
4ae196df
AD
1677
1678 /* disable transmits and receives */
1679 wr32(E1000_VFRE, 0);
1680 wr32(E1000_VFTE, 0);
1681 }
1682
9d5c8243 1683 /* Allow time for pending master requests to run */
330a6d6a 1684 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1685 wr32(E1000_WUC, 0);
1686
330a6d6a 1687 if (hw->mac.ops.init_hw(hw))
090b1795 1688 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4
CW
1689 if (hw->mac.type > e1000_82580) {
1690 if (adapter->flags & IGB_FLAG_DMAC) {
1691 u32 reg;
1692
1693 /*
1694 * DMA Coalescing high water mark needs to be higher
1695 * than * the * Rx threshold. The Rx threshold is
1696 * currently * pba - 6, so we * should use a high water
1697 * mark of pba * - 4. */
1698 hwm = (pba - 4) << 10;
1699
1700 reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
1701 & E1000_DMACR_DMACTHR_MASK);
1702
1703 /* transition to L0x or L1 if available..*/
1704 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1705
1706 /* watchdog timer= +-1000 usec in 32usec intervals */
1707 reg |= (1000 >> 5);
1708 wr32(E1000_DMACR, reg);
1709
1710 /* no lower threshold to disable coalescing(smart fifb)
1711 * -UTRESH=0*/
1712 wr32(E1000_DMCRTRH, 0);
1713
1714 /* set hwm to PBA - 2 * max frame size */
1715 wr32(E1000_FCRTC, hwm);
1716
1717 /*
1718 * This sets the time to wait before requesting tran-
1719 * sition to * low power state to number of usecs needed
1720 * to receive 1 512 * byte frame at gigabit line rate
1721 */
1722 reg = rd32(E1000_DMCTLX);
1723 reg |= IGB_DMCTLX_DCFLUSH_DIS;
1724
1725 /* Delay 255 usec before entering Lx state. */
1726 reg |= 0xFF;
1727 wr32(E1000_DMCTLX, reg);
1728
1729 /* free space in Tx packet buffer to wake from DMAC */
1730 wr32(E1000_DMCTXTH,
1731 (IGB_MIN_TXPBSIZE -
1732 (IGB_TX_BUF_4096 + adapter->max_frame_size))
1733 >> 6);
1734
1735 /* make low power state decision controlled by DMAC */
1736 reg = rd32(E1000_PCIEMISC);
1737 reg |= E1000_PCIEMISC_LX_DECISION;
1738 wr32(E1000_PCIEMISC, reg);
1739 } /* end if IGB_FLAG_DMAC set */
1740 }
55cac248
AD
1741 if (hw->mac.type == e1000_82580) {
1742 u32 reg = rd32(E1000_PCIEMISC);
1743 wr32(E1000_PCIEMISC,
1744 reg & ~E1000_PCIEMISC_LX_DECISION);
1745 }
88a268c1
NN
1746 if (!netif_running(adapter->netdev))
1747 igb_power_down_link(adapter);
1748
9d5c8243
AK
1749 igb_update_mng_vlan(adapter);
1750
1751 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1752 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1753
330a6d6a 1754 igb_get_phy_info(hw);
9d5c8243
AK
1755}
1756
b2cb09b1
JP
1757static u32 igb_fix_features(struct net_device *netdev, u32 features)
1758{
1759 /*
1760 * Since there is no support for separate rx/tx vlan accel
1761 * enable/disable make sure tx flag is always in same state as rx.
1762 */
1763 if (features & NETIF_F_HW_VLAN_RX)
1764 features |= NETIF_F_HW_VLAN_TX;
1765 else
1766 features &= ~NETIF_F_HW_VLAN_TX;
1767
1768 return features;
1769}
1770
ac52caa3
MM
1771static int igb_set_features(struct net_device *netdev, u32 features)
1772{
1773 struct igb_adapter *adapter = netdev_priv(netdev);
1774 int i;
b2cb09b1 1775 u32 changed = netdev->features ^ features;
ac52caa3
MM
1776
1777 for (i = 0; i < adapter->num_rx_queues; i++) {
1778 if (features & NETIF_F_RXCSUM)
1779 adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM;
1780 else
1781 adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM;
1782 }
1783
b2cb09b1
JP
1784 if (changed & NETIF_F_HW_VLAN_RX)
1785 igb_vlan_mode(netdev, features);
1786
ac52caa3
MM
1787 return 0;
1788}
1789
2e5c6922 1790static const struct net_device_ops igb_netdev_ops = {
559e9c49 1791 .ndo_open = igb_open,
2e5c6922 1792 .ndo_stop = igb_close,
cd392f5c 1793 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 1794 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1795 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1796 .ndo_set_mac_address = igb_set_mac,
1797 .ndo_change_mtu = igb_change_mtu,
1798 .ndo_do_ioctl = igb_ioctl,
1799 .ndo_tx_timeout = igb_tx_timeout,
1800 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1801 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1802 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1803 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1804 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1805 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1806 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1807#ifdef CONFIG_NET_POLL_CONTROLLER
1808 .ndo_poll_controller = igb_netpoll,
1809#endif
b2cb09b1
JP
1810 .ndo_fix_features = igb_fix_features,
1811 .ndo_set_features = igb_set_features,
2e5c6922
SH
1812};
1813
9d5c8243
AK
1814/**
1815 * igb_probe - Device Initialization Routine
1816 * @pdev: PCI device information struct
1817 * @ent: entry in igb_pci_tbl
1818 *
1819 * Returns 0 on success, negative on failure
1820 *
1821 * igb_probe initializes an adapter identified by a pci_dev structure.
1822 * The OS initialization, configuring of the adapter private structure,
1823 * and a hardware reset occur.
1824 **/
1825static int __devinit igb_probe(struct pci_dev *pdev,
1826 const struct pci_device_id *ent)
1827{
1828 struct net_device *netdev;
1829 struct igb_adapter *adapter;
1830 struct e1000_hw *hw;
4337e993 1831 u16 eeprom_data = 0;
9835fd73 1832 s32 ret_val;
4337e993 1833 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
1834 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1835 unsigned long mmio_start, mmio_len;
2d6a5e95 1836 int err, pci_using_dac;
9d5c8243 1837 u16 eeprom_apme_mask = IGB_EEPROM_APME;
9835fd73 1838 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 1839
bded64a7
AG
1840 /* Catch broken hardware that put the wrong VF device ID in
1841 * the PCIe SR-IOV capability.
1842 */
1843 if (pdev->is_virtfn) {
1844 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1845 pci_name(pdev), pdev->vendor, pdev->device);
1846 return -EINVAL;
1847 }
1848
aed5dec3 1849 err = pci_enable_device_mem(pdev);
9d5c8243
AK
1850 if (err)
1851 return err;
1852
1853 pci_using_dac = 0;
59d71989 1854 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 1855 if (!err) {
59d71989 1856 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
1857 if (!err)
1858 pci_using_dac = 1;
1859 } else {
59d71989 1860 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 1861 if (err) {
59d71989 1862 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243
AK
1863 if (err) {
1864 dev_err(&pdev->dev, "No usable DMA "
1865 "configuration, aborting\n");
1866 goto err_dma;
1867 }
1868 }
1869 }
1870
aed5dec3
AD
1871 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1872 IORESOURCE_MEM),
1873 igb_driver_name);
9d5c8243
AK
1874 if (err)
1875 goto err_pci_reg;
1876
19d5afd4 1877 pci_enable_pcie_error_reporting(pdev);
40a914fa 1878
9d5c8243 1879 pci_set_master(pdev);
c682fc23 1880 pci_save_state(pdev);
9d5c8243
AK
1881
1882 err = -ENOMEM;
1bfaf07b 1883 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 1884 IGB_MAX_TX_QUEUES);
9d5c8243
AK
1885 if (!netdev)
1886 goto err_alloc_etherdev;
1887
1888 SET_NETDEV_DEV(netdev, &pdev->dev);
1889
1890 pci_set_drvdata(pdev, netdev);
1891 adapter = netdev_priv(netdev);
1892 adapter->netdev = netdev;
1893 adapter->pdev = pdev;
1894 hw = &adapter->hw;
1895 hw->back = adapter;
1896 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1897
1898 mmio_start = pci_resource_start(pdev, 0);
1899 mmio_len = pci_resource_len(pdev, 0);
1900
1901 err = -EIO;
28b0759c
AD
1902 hw->hw_addr = ioremap(mmio_start, mmio_len);
1903 if (!hw->hw_addr)
9d5c8243
AK
1904 goto err_ioremap;
1905
2e5c6922 1906 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 1907 igb_set_ethtool_ops(netdev);
9d5c8243 1908 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
1909
1910 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1911
1912 netdev->mem_start = mmio_start;
1913 netdev->mem_end = mmio_start + mmio_len;
1914
9d5c8243
AK
1915 /* PCI config space info */
1916 hw->vendor_id = pdev->vendor;
1917 hw->device_id = pdev->device;
1918 hw->revision_id = pdev->revision;
1919 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1920 hw->subsystem_device_id = pdev->subsystem_device;
1921
9d5c8243
AK
1922 /* Copy the default MAC, PHY and NVM function pointers */
1923 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1924 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1925 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1926 /* Initialize skew-specific constants */
1927 err = ei->get_invariants(hw);
1928 if (err)
450c87c8 1929 goto err_sw_init;
9d5c8243 1930
450c87c8 1931 /* setup the private structure */
9d5c8243
AK
1932 err = igb_sw_init(adapter);
1933 if (err)
1934 goto err_sw_init;
1935
1936 igb_get_bus_info_pcie(hw);
1937
1938 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
1939
1940 /* Copper options */
1941 if (hw->phy.media_type == e1000_media_type_copper) {
1942 hw->phy.mdix = AUTO_ALL_MODES;
1943 hw->phy.disable_polarity_correction = false;
1944 hw->phy.ms_type = e1000_ms_hw_default;
1945 }
1946
1947 if (igb_check_reset_block(hw))
1948 dev_info(&pdev->dev,
1949 "PHY reset is blocked due to SOL/IDER session.\n");
1950
ac52caa3 1951 netdev->hw_features = NETIF_F_SG |
7d8eb29e 1952 NETIF_F_IP_CSUM |
ac52caa3
MM
1953 NETIF_F_IPV6_CSUM |
1954 NETIF_F_TSO |
1955 NETIF_F_TSO6 |
b2cb09b1
JP
1956 NETIF_F_RXCSUM |
1957 NETIF_F_HW_VLAN_RX;
ac52caa3
MM
1958
1959 netdev->features = netdev->hw_features |
9d5c8243 1960 NETIF_F_HW_VLAN_TX |
9d5c8243
AK
1961 NETIF_F_HW_VLAN_FILTER;
1962
48f29ffc
JK
1963 netdev->vlan_features |= NETIF_F_TSO;
1964 netdev->vlan_features |= NETIF_F_TSO6;
7d8eb29e 1965 netdev->vlan_features |= NETIF_F_IP_CSUM;
cd1da503 1966 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
48f29ffc
JK
1967 netdev->vlan_features |= NETIF_F_SG;
1968
7b872a55 1969 if (pci_using_dac) {
9d5c8243 1970 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1971 netdev->vlan_features |= NETIF_F_HIGHDMA;
1972 }
9d5c8243 1973
ac52caa3
MM
1974 if (hw->mac.type >= e1000_82576) {
1975 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 1976 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 1977 }
b9473560 1978
01789349
JP
1979 netdev->priv_flags |= IFF_UNICAST_FLT;
1980
330a6d6a 1981 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
1982
1983 /* before reading the NVM, reset the controller to put the device in a
1984 * known good starting state */
1985 hw->mac.ops.reset_hw(hw);
1986
1987 /* make sure the NVM is good */
4322e561 1988 if (hw->nvm.ops.validate(hw) < 0) {
9d5c8243
AK
1989 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1990 err = -EIO;
1991 goto err_eeprom;
1992 }
1993
1994 /* copy the MAC address out of the NVM */
1995 if (hw->mac.ops.read_mac_addr(hw))
1996 dev_err(&pdev->dev, "NVM Read Error\n");
1997
1998 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1999 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2000
2001 if (!is_valid_ether_addr(netdev->perm_addr)) {
2002 dev_err(&pdev->dev, "Invalid MAC Address\n");
2003 err = -EIO;
2004 goto err_eeprom;
2005 }
2006
c061b18d 2007 setup_timer(&adapter->watchdog_timer, igb_watchdog,
0e340485 2008 (unsigned long) adapter);
c061b18d 2009 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
0e340485 2010 (unsigned long) adapter);
9d5c8243
AK
2011
2012 INIT_WORK(&adapter->reset_task, igb_reset_task);
2013 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2014
450c87c8 2015 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2016 adapter->fc_autoneg = true;
2017 hw->mac.autoneg = true;
2018 hw->phy.autoneg_advertised = 0x2f;
2019
0cce119a
AD
2020 hw->fc.requested_mode = e1000_fc_default;
2021 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2022
9d5c8243
AK
2023 igb_validate_mdi_setting(hw);
2024
9d5c8243
AK
2025 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2026 * enable the ACPI Magic Packet filter
2027 */
2028
a2cf8b6c 2029 if (hw->bus.func == 0)
312c75ae 2030 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6d337dce 2031 else if (hw->mac.type >= e1000_82580)
55cac248
AD
2032 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2033 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2034 &eeprom_data);
a2cf8b6c
AD
2035 else if (hw->bus.func == 1)
2036 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243
AK
2037
2038 if (eeprom_data & eeprom_apme_mask)
2039 adapter->eeprom_wol |= E1000_WUFC_MAG;
2040
2041 /* now that we have the eeprom settings, apply the special cases where
2042 * the eeprom may be wrong or the board simply won't support wake on
2043 * lan on a particular port */
2044 switch (pdev->device) {
2045 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2046 adapter->eeprom_wol = 0;
2047 break;
2048 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2049 case E1000_DEV_ID_82576_FIBER:
2050 case E1000_DEV_ID_82576_SERDES:
9d5c8243
AK
2051 /* Wake events only supported on port A for dual fiber
2052 * regardless of eeprom setting */
2053 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2054 adapter->eeprom_wol = 0;
2055 break;
c8ea5ea9 2056 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2057 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2058 /* if quad port adapter, disable WoL on all but port A */
2059 if (global_quad_port_a != 0)
2060 adapter->eeprom_wol = 0;
2061 else
2062 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2063 /* Reset for multiple quad port adapters */
2064 if (++global_quad_port_a == 4)
2065 global_quad_port_a = 0;
2066 break;
9d5c8243
AK
2067 }
2068
2069 /* initialize the wol settings based on the eeprom settings */
2070 adapter->wol = adapter->eeprom_wol;
e1b86d84 2071 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
9d5c8243
AK
2072
2073 /* reset the hardware with the new settings */
2074 igb_reset(adapter);
2075
2076 /* let the f/w know that the h/w is now under the control of the
2077 * driver. */
2078 igb_get_hw_control(adapter);
2079
9d5c8243
AK
2080 strcpy(netdev->name, "eth%d");
2081 err = register_netdev(netdev);
2082 if (err)
2083 goto err_register;
2084
b2cb09b1
JP
2085 igb_vlan_mode(netdev, netdev->features);
2086
b168dfc5
JB
2087 /* carrier off reporting is important to ethtool even BEFORE open */
2088 netif_carrier_off(netdev);
2089
421e02f0 2090#ifdef CONFIG_IGB_DCA
bbd98fe4 2091 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2092 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2093 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2094 igb_setup_dca(adapter);
2095 }
fe4506b6 2096
38c845c7 2097#endif
673b8b70
AB
2098 /* do hw tstamp init after resetting */
2099 igb_init_hw_timer(adapter);
2100
9d5c8243
AK
2101 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2102 /* print bus type/speed/width info */
7c510e4b 2103 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
9d5c8243 2104 netdev->name,
559e9c49 2105 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
ff846f52 2106 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
559e9c49 2107 "unknown"),
59c3de89
AD
2108 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2109 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2110 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2111 "unknown"),
7c510e4b 2112 netdev->dev_addr);
9d5c8243 2113
9835fd73
CW
2114 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2115 if (ret_val)
2116 strcpy(part_str, "Unknown");
2117 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2118 dev_info(&pdev->dev,
2119 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2120 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2121 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2122 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2123 switch (hw->mac.type) {
2124 case e1000_i350:
2125 igb_set_eee_i350(hw);
2126 break;
2127 default:
2128 break;
2129 }
9d5c8243
AK
2130 return 0;
2131
2132err_register:
2133 igb_release_hw_control(adapter);
2134err_eeprom:
2135 if (!igb_check_reset_block(hw))
f5f4cf08 2136 igb_reset_phy(hw);
9d5c8243
AK
2137
2138 if (hw->flash_address)
2139 iounmap(hw->flash_address);
9d5c8243 2140err_sw_init:
047e0030 2141 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2142 iounmap(hw->hw_addr);
2143err_ioremap:
2144 free_netdev(netdev);
2145err_alloc_etherdev:
559e9c49
AD
2146 pci_release_selected_regions(pdev,
2147 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2148err_pci_reg:
2149err_dma:
2150 pci_disable_device(pdev);
2151 return err;
2152}
2153
2154/**
2155 * igb_remove - Device Removal Routine
2156 * @pdev: PCI device information struct
2157 *
2158 * igb_remove is called by the PCI subsystem to alert the driver
2159 * that it should release a PCI device. The could be caused by a
2160 * Hot-Plug event, or because the driver is going to be removed from
2161 * memory.
2162 **/
2163static void __devexit igb_remove(struct pci_dev *pdev)
2164{
2165 struct net_device *netdev = pci_get_drvdata(pdev);
2166 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2167 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2168
760141a5
TH
2169 /*
2170 * The watchdog timer may be rescheduled, so explicitly
2171 * disable watchdog from being rescheduled.
2172 */
9d5c8243
AK
2173 set_bit(__IGB_DOWN, &adapter->state);
2174 del_timer_sync(&adapter->watchdog_timer);
2175 del_timer_sync(&adapter->phy_info_timer);
2176
760141a5
TH
2177 cancel_work_sync(&adapter->reset_task);
2178 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2179
421e02f0 2180#ifdef CONFIG_IGB_DCA
7dfc16fa 2181 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2182 dev_info(&pdev->dev, "DCA disabled\n");
2183 dca_remove_requester(&pdev->dev);
7dfc16fa 2184 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2185 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2186 }
2187#endif
2188
9d5c8243
AK
2189 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2190 * would have already happened in close and is redundant. */
2191 igb_release_hw_control(adapter);
2192
2193 unregister_netdev(netdev);
2194
047e0030 2195 igb_clear_interrupt_scheme(adapter);
9d5c8243 2196
37680117
AD
2197#ifdef CONFIG_PCI_IOV
2198 /* reclaim resources allocated to VFs */
2199 if (adapter->vf_data) {
2200 /* disable iov and allow time for transactions to clear */
2201 pci_disable_sriov(pdev);
2202 msleep(500);
2203
2204 kfree(adapter->vf_data);
2205 adapter->vf_data = NULL;
2206 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 2207 wrfl();
37680117
AD
2208 msleep(100);
2209 dev_info(&pdev->dev, "IOV Disabled\n");
2210 }
2211#endif
559e9c49 2212
28b0759c
AD
2213 iounmap(hw->hw_addr);
2214 if (hw->flash_address)
2215 iounmap(hw->flash_address);
559e9c49
AD
2216 pci_release_selected_regions(pdev,
2217 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2218
2219 free_netdev(netdev);
2220
19d5afd4 2221 pci_disable_pcie_error_reporting(pdev);
40a914fa 2222
9d5c8243
AK
2223 pci_disable_device(pdev);
2224}
2225
a6b623e0
AD
2226/**
2227 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2228 * @adapter: board private structure to initialize
2229 *
2230 * This function initializes the vf specific data storage and then attempts to
2231 * allocate the VFs. The reason for ordering it this way is because it is much
2232 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2233 * the memory for the VFs.
2234 **/
2235static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2236{
2237#ifdef CONFIG_PCI_IOV
2238 struct pci_dev *pdev = adapter->pdev;
2239
a6b623e0
AD
2240 if (adapter->vfs_allocated_count) {
2241 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2242 sizeof(struct vf_data_storage),
2243 GFP_KERNEL);
2244 /* if allocation failed then we do not support SR-IOV */
2245 if (!adapter->vf_data) {
2246 adapter->vfs_allocated_count = 0;
2247 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2248 "Data Storage\n");
2249 }
2250 }
2251
2252 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2253 kfree(adapter->vf_data);
2254 adapter->vf_data = NULL;
2255#endif /* CONFIG_PCI_IOV */
2256 adapter->vfs_allocated_count = 0;
2257#ifdef CONFIG_PCI_IOV
2258 } else {
2259 unsigned char mac_addr[ETH_ALEN];
2260 int i;
2261 dev_info(&pdev->dev, "%d vfs allocated\n",
2262 adapter->vfs_allocated_count);
2263 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2264 random_ether_addr(mac_addr);
2265 igb_set_vf_mac(adapter, i, mac_addr);
2266 }
831ec0b4
CW
2267 /* DMA Coalescing is not supported in IOV mode. */
2268 if (adapter->flags & IGB_FLAG_DMAC)
2269 adapter->flags &= ~IGB_FLAG_DMAC;
a6b623e0
AD
2270 }
2271#endif /* CONFIG_PCI_IOV */
2272}
2273
115f459a
AD
2274
2275/**
2276 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2277 * @adapter: board private structure to initialize
2278 *
2279 * igb_init_hw_timer initializes the function pointer and values for the hw
2280 * timer found in hardware.
2281 **/
2282static void igb_init_hw_timer(struct igb_adapter *adapter)
2283{
2284 struct e1000_hw *hw = &adapter->hw;
2285
2286 switch (hw->mac.type) {
d2ba2ed8 2287 case e1000_i350:
55cac248
AD
2288 case e1000_82580:
2289 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2290 adapter->cycles.read = igb_read_clock;
2291 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2292 adapter->cycles.mult = 1;
2293 /*
2294 * The 82580 timesync updates the system timer every 8ns by 8ns
2295 * and the value cannot be shifted. Instead we need to shift
2296 * the registers to generate a 64bit timer value. As a result
2297 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2298 * 24 in order to generate a larger value for synchronization.
2299 */
2300 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2301 /* disable system timer temporarily by setting bit 31 */
2302 wr32(E1000_TSAUXC, 0x80000000);
2303 wrfl();
2304
2305 /* Set registers so that rollover occurs soon to test this. */
2306 wr32(E1000_SYSTIMR, 0x00000000);
2307 wr32(E1000_SYSTIML, 0x80000000);
2308 wr32(E1000_SYSTIMH, 0x000000FF);
2309 wrfl();
2310
2311 /* enable system timer by clearing bit 31 */
2312 wr32(E1000_TSAUXC, 0x0);
2313 wrfl();
2314
2315 timecounter_init(&adapter->clock,
2316 &adapter->cycles,
2317 ktime_to_ns(ktime_get_real()));
2318 /*
2319 * Synchronize our NIC clock against system wall clock. NIC
2320 * time stamp reading requires ~3us per sample, each sample
2321 * was pretty stable even under load => only require 10
2322 * samples for each offset comparison.
2323 */
2324 memset(&adapter->compare, 0, sizeof(adapter->compare));
2325 adapter->compare.source = &adapter->clock;
2326 adapter->compare.target = ktime_get_real;
2327 adapter->compare.num_samples = 10;
2328 timecompare_update(&adapter->compare, 0);
2329 break;
115f459a
AD
2330 case e1000_82576:
2331 /*
2332 * Initialize hardware timer: we keep it running just in case
2333 * that some program needs it later on.
2334 */
2335 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2336 adapter->cycles.read = igb_read_clock;
2337 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2338 adapter->cycles.mult = 1;
2339 /**
2340 * Scale the NIC clock cycle by a large factor so that
2341 * relatively small clock corrections can be added or
25985edc 2342 * subtracted at each clock tick. The drawbacks of a large
115f459a
AD
2343 * factor are a) that the clock register overflows more quickly
2344 * (not such a big deal) and b) that the increment per tick has
2345 * to fit into 24 bits. As a result we need to use a shift of
2346 * 19 so we can fit a value of 16 into the TIMINCA register.
2347 */
2348 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2349 wr32(E1000_TIMINCA,
2350 (1 << E1000_TIMINCA_16NS_SHIFT) |
2351 (16 << IGB_82576_TSYNC_SHIFT));
2352
2353 /* Set registers so that rollover occurs soon to test this. */
2354 wr32(E1000_SYSTIML, 0x00000000);
2355 wr32(E1000_SYSTIMH, 0xFF800000);
2356 wrfl();
2357
2358 timecounter_init(&adapter->clock,
2359 &adapter->cycles,
2360 ktime_to_ns(ktime_get_real()));
2361 /*
2362 * Synchronize our NIC clock against system wall clock. NIC
2363 * time stamp reading requires ~3us per sample, each sample
2364 * was pretty stable even under load => only require 10
2365 * samples for each offset comparison.
2366 */
2367 memset(&adapter->compare, 0, sizeof(adapter->compare));
2368 adapter->compare.source = &adapter->clock;
2369 adapter->compare.target = ktime_get_real;
2370 adapter->compare.num_samples = 10;
2371 timecompare_update(&adapter->compare, 0);
2372 break;
2373 case e1000_82575:
2374 /* 82575 does not support timesync */
2375 default:
2376 break;
2377 }
2378
2379}
2380
9d5c8243
AK
2381/**
2382 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2383 * @adapter: board private structure to initialize
2384 *
2385 * igb_sw_init initializes the Adapter private data structure.
2386 * Fields are initialized based on PCI device information and
2387 * OS network device settings (MTU size).
2388 **/
2389static int __devinit igb_sw_init(struct igb_adapter *adapter)
2390{
2391 struct e1000_hw *hw = &adapter->hw;
2392 struct net_device *netdev = adapter->netdev;
2393 struct pci_dev *pdev = adapter->pdev;
2394
2395 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2396
13fde97a 2397 /* set default ring sizes */
68fd9910
AD
2398 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2399 adapter->rx_ring_count = IGB_DEFAULT_RXD;
13fde97a
AD
2400
2401 /* set default ITR values */
4fc82adf
AD
2402 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2403 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2404
13fde97a
AD
2405 /* set default work limits */
2406 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2407
153285f9
AD
2408 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2409 VLAN_HLEN;
9d5c8243
AK
2410 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2411
12dcd86b 2412 spin_lock_init(&adapter->stats64_lock);
a6b623e0 2413#ifdef CONFIG_PCI_IOV
6b78bb1d
CW
2414 switch (hw->mac.type) {
2415 case e1000_82576:
2416 case e1000_i350:
9b082d73
SA
2417 if (max_vfs > 7) {
2418 dev_warn(&pdev->dev,
2419 "Maximum of 7 VFs per PF, using max\n");
2420 adapter->vfs_allocated_count = 7;
2421 } else
2422 adapter->vfs_allocated_count = max_vfs;
6b78bb1d
CW
2423 break;
2424 default:
2425 break;
2426 }
a6b623e0 2427#endif /* CONFIG_PCI_IOV */
a99955fc 2428 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
665c8c8e
WM
2429 /* i350 cannot do RSS and SR-IOV at the same time */
2430 if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
2431 adapter->rss_queues = 1;
a99955fc
AD
2432
2433 /*
2434 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2435 * then we should combine the queues into a queue pair in order to
2436 * conserve interrupts due to limited supply
2437 */
2438 if ((adapter->rss_queues > 4) ||
2439 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2440 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2441
a6b623e0 2442 /* This call may decrease the number of queues */
047e0030 2443 if (igb_init_interrupt_scheme(adapter)) {
9d5c8243
AK
2444 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2445 return -ENOMEM;
2446 }
2447
a6b623e0
AD
2448 igb_probe_vfs(adapter);
2449
9d5c8243
AK
2450 /* Explicitly disable IRQ since the NIC can be in any state. */
2451 igb_irq_disable(adapter);
2452
831ec0b4
CW
2453 if (hw->mac.type == e1000_i350)
2454 adapter->flags &= ~IGB_FLAG_DMAC;
2455
9d5c8243
AK
2456 set_bit(__IGB_DOWN, &adapter->state);
2457 return 0;
2458}
2459
2460/**
2461 * igb_open - Called when a network interface is made active
2462 * @netdev: network interface device structure
2463 *
2464 * Returns 0 on success, negative value on failure
2465 *
2466 * The open entry point is called when a network interface is made
2467 * active by the system (IFF_UP). At this point all resources needed
2468 * for transmit and receive operations are allocated, the interrupt
2469 * handler is registered with the OS, the watchdog timer is started,
2470 * and the stack is notified that the interface is ready.
2471 **/
2472static int igb_open(struct net_device *netdev)
2473{
2474 struct igb_adapter *adapter = netdev_priv(netdev);
2475 struct e1000_hw *hw = &adapter->hw;
2476 int err;
2477 int i;
2478
2479 /* disallow open during test */
2480 if (test_bit(__IGB_TESTING, &adapter->state))
2481 return -EBUSY;
2482
b168dfc5
JB
2483 netif_carrier_off(netdev);
2484
9d5c8243
AK
2485 /* allocate transmit descriptors */
2486 err = igb_setup_all_tx_resources(adapter);
2487 if (err)
2488 goto err_setup_tx;
2489
2490 /* allocate receive descriptors */
2491 err = igb_setup_all_rx_resources(adapter);
2492 if (err)
2493 goto err_setup_rx;
2494
88a268c1 2495 igb_power_up_link(adapter);
9d5c8243 2496
9d5c8243
AK
2497 /* before we allocate an interrupt, we must be ready to handle it.
2498 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2499 * as soon as we call pci_request_irq, so we have to setup our
2500 * clean_rx handler before we do so. */
2501 igb_configure(adapter);
2502
2503 err = igb_request_irq(adapter);
2504 if (err)
2505 goto err_req_irq;
2506
2507 /* From here on the code is the same as igb_up() */
2508 clear_bit(__IGB_DOWN, &adapter->state);
2509
047e0030
AD
2510 for (i = 0; i < adapter->num_q_vectors; i++) {
2511 struct igb_q_vector *q_vector = adapter->q_vector[i];
2512 napi_enable(&q_vector->napi);
2513 }
9d5c8243
AK
2514
2515 /* Clear any pending interrupts. */
2516 rd32(E1000_ICR);
844290e5
PW
2517
2518 igb_irq_enable(adapter);
2519
d4960307
AD
2520 /* notify VFs that reset has been completed */
2521 if (adapter->vfs_allocated_count) {
2522 u32 reg_data = rd32(E1000_CTRL_EXT);
2523 reg_data |= E1000_CTRL_EXT_PFRSTD;
2524 wr32(E1000_CTRL_EXT, reg_data);
2525 }
2526
d55b53ff
JK
2527 netif_tx_start_all_queues(netdev);
2528
25568a53
AD
2529 /* start the watchdog. */
2530 hw->mac.get_link_status = 1;
2531 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2532
2533 return 0;
2534
2535err_req_irq:
2536 igb_release_hw_control(adapter);
88a268c1 2537 igb_power_down_link(adapter);
9d5c8243
AK
2538 igb_free_all_rx_resources(adapter);
2539err_setup_rx:
2540 igb_free_all_tx_resources(adapter);
2541err_setup_tx:
2542 igb_reset(adapter);
2543
2544 return err;
2545}
2546
2547/**
2548 * igb_close - Disables a network interface
2549 * @netdev: network interface device structure
2550 *
2551 * Returns 0, this is not allowed to fail
2552 *
2553 * The close entry point is called when an interface is de-activated
2554 * by the OS. The hardware is still under the driver's control, but
2555 * needs to be disabled. A global MAC reset is issued to stop the
2556 * hardware, and all transmit and receive resources are freed.
2557 **/
2558static int igb_close(struct net_device *netdev)
2559{
2560 struct igb_adapter *adapter = netdev_priv(netdev);
2561
2562 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2563 igb_down(adapter);
2564
2565 igb_free_irq(adapter);
2566
2567 igb_free_all_tx_resources(adapter);
2568 igb_free_all_rx_resources(adapter);
2569
9d5c8243
AK
2570 return 0;
2571}
2572
2573/**
2574 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
9d5c8243
AK
2575 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2576 *
2577 * Return 0 on success, negative on failure
2578 **/
80785298 2579int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2580{
59d71989 2581 struct device *dev = tx_ring->dev;
9d5c8243
AK
2582 int size;
2583
06034649
AD
2584 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2585 tx_ring->tx_buffer_info = vzalloc(size);
2586 if (!tx_ring->tx_buffer_info)
9d5c8243 2587 goto err;
9d5c8243
AK
2588
2589 /* round up to nearest 4K */
85e8d004 2590 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2591 tx_ring->size = ALIGN(tx_ring->size, 4096);
2592
59d71989
AD
2593 tx_ring->desc = dma_alloc_coherent(dev,
2594 tx_ring->size,
2595 &tx_ring->dma,
2596 GFP_KERNEL);
9d5c8243
AK
2597
2598 if (!tx_ring->desc)
2599 goto err;
2600
9d5c8243
AK
2601 tx_ring->next_to_use = 0;
2602 tx_ring->next_to_clean = 0;
9d5c8243
AK
2603 return 0;
2604
2605err:
06034649 2606 vfree(tx_ring->tx_buffer_info);
59d71989 2607 dev_err(dev,
9d5c8243
AK
2608 "Unable to allocate memory for the transmit descriptor ring\n");
2609 return -ENOMEM;
2610}
2611
2612/**
2613 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2614 * (Descriptors) for all queues
2615 * @adapter: board private structure
2616 *
2617 * Return 0 on success, negative on failure
2618 **/
2619static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2620{
439705e1 2621 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2622 int i, err = 0;
2623
2624 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2625 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2626 if (err) {
439705e1 2627 dev_err(&pdev->dev,
9d5c8243
AK
2628 "Allocation for Tx Queue %u failed\n", i);
2629 for (i--; i >= 0; i--)
3025a446 2630 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2631 break;
2632 }
2633 }
2634
2635 return err;
2636}
2637
2638/**
85b430b4
AD
2639 * igb_setup_tctl - configure the transmit control registers
2640 * @adapter: Board private structure
9d5c8243 2641 **/
d7ee5b3a 2642void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2643{
9d5c8243
AK
2644 struct e1000_hw *hw = &adapter->hw;
2645 u32 tctl;
9d5c8243 2646
85b430b4
AD
2647 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2648 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2649
2650 /* Program the Transmit Control Register */
9d5c8243
AK
2651 tctl = rd32(E1000_TCTL);
2652 tctl &= ~E1000_TCTL_CT;
2653 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2654 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2655
2656 igb_config_collision_dist(hw);
2657
9d5c8243
AK
2658 /* Enable transmits */
2659 tctl |= E1000_TCTL_EN;
2660
2661 wr32(E1000_TCTL, tctl);
2662}
2663
85b430b4
AD
2664/**
2665 * igb_configure_tx_ring - Configure transmit ring after Reset
2666 * @adapter: board private structure
2667 * @ring: tx ring to configure
2668 *
2669 * Configure a transmit ring after a reset.
2670 **/
d7ee5b3a
AD
2671void igb_configure_tx_ring(struct igb_adapter *adapter,
2672 struct igb_ring *ring)
85b430b4
AD
2673{
2674 struct e1000_hw *hw = &adapter->hw;
a74420e0 2675 u32 txdctl = 0;
85b430b4
AD
2676 u64 tdba = ring->dma;
2677 int reg_idx = ring->reg_idx;
2678
2679 /* disable the queue */
a74420e0 2680 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2681 wrfl();
2682 mdelay(10);
2683
2684 wr32(E1000_TDLEN(reg_idx),
2685 ring->count * sizeof(union e1000_adv_tx_desc));
2686 wr32(E1000_TDBAL(reg_idx),
2687 tdba & 0x00000000ffffffffULL);
2688 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2689
fce99e34 2690 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 2691 wr32(E1000_TDH(reg_idx), 0);
fce99e34 2692 writel(0, ring->tail);
85b430b4
AD
2693
2694 txdctl |= IGB_TX_PTHRESH;
2695 txdctl |= IGB_TX_HTHRESH << 8;
2696 txdctl |= IGB_TX_WTHRESH << 16;
2697
2698 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2699 wr32(E1000_TXDCTL(reg_idx), txdctl);
2700}
2701
2702/**
2703 * igb_configure_tx - Configure transmit Unit after Reset
2704 * @adapter: board private structure
2705 *
2706 * Configure the Tx unit of the MAC after a reset.
2707 **/
2708static void igb_configure_tx(struct igb_adapter *adapter)
2709{
2710 int i;
2711
2712 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 2713 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
2714}
2715
9d5c8243
AK
2716/**
2717 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
9d5c8243
AK
2718 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2719 *
2720 * Returns 0 on success, negative on failure
2721 **/
80785298 2722int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 2723{
59d71989 2724 struct device *dev = rx_ring->dev;
9d5c8243
AK
2725 int size, desc_len;
2726
06034649
AD
2727 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2728 rx_ring->rx_buffer_info = vzalloc(size);
2729 if (!rx_ring->rx_buffer_info)
9d5c8243 2730 goto err;
9d5c8243
AK
2731
2732 desc_len = sizeof(union e1000_adv_rx_desc);
2733
2734 /* Round up to nearest 4K */
2735 rx_ring->size = rx_ring->count * desc_len;
2736 rx_ring->size = ALIGN(rx_ring->size, 4096);
2737
59d71989
AD
2738 rx_ring->desc = dma_alloc_coherent(dev,
2739 rx_ring->size,
2740 &rx_ring->dma,
2741 GFP_KERNEL);
9d5c8243
AK
2742
2743 if (!rx_ring->desc)
2744 goto err;
2745
2746 rx_ring->next_to_clean = 0;
2747 rx_ring->next_to_use = 0;
9d5c8243 2748
9d5c8243
AK
2749 return 0;
2750
2751err:
06034649
AD
2752 vfree(rx_ring->rx_buffer_info);
2753 rx_ring->rx_buffer_info = NULL;
59d71989
AD
2754 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2755 " ring\n");
9d5c8243
AK
2756 return -ENOMEM;
2757}
2758
2759/**
2760 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2761 * (Descriptors) for all queues
2762 * @adapter: board private structure
2763 *
2764 * Return 0 on success, negative on failure
2765 **/
2766static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2767{
439705e1 2768 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2769 int i, err = 0;
2770
2771 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 2772 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 2773 if (err) {
439705e1 2774 dev_err(&pdev->dev,
9d5c8243
AK
2775 "Allocation for Rx Queue %u failed\n", i);
2776 for (i--; i >= 0; i--)
3025a446 2777 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
2778 break;
2779 }
2780 }
2781
2782 return err;
2783}
2784
06cf2666
AD
2785/**
2786 * igb_setup_mrqc - configure the multiple receive queue control registers
2787 * @adapter: Board private structure
2788 **/
2789static void igb_setup_mrqc(struct igb_adapter *adapter)
2790{
2791 struct e1000_hw *hw = &adapter->hw;
2792 u32 mrqc, rxcsum;
2793 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2794 union e1000_reta {
2795 u32 dword;
2796 u8 bytes[4];
2797 } reta;
2798 static const u8 rsshash[40] = {
2799 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2800 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2801 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2802 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2803
2804 /* Fill out hash function seeds */
2805 for (j = 0; j < 10; j++) {
2806 u32 rsskey = rsshash[(j * 4)];
2807 rsskey |= rsshash[(j * 4) + 1] << 8;
2808 rsskey |= rsshash[(j * 4) + 2] << 16;
2809 rsskey |= rsshash[(j * 4) + 3] << 24;
2810 array_wr32(E1000_RSSRK(0), j, rsskey);
2811 }
2812
a99955fc 2813 num_rx_queues = adapter->rss_queues;
06cf2666
AD
2814
2815 if (adapter->vfs_allocated_count) {
2816 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2817 switch (hw->mac.type) {
d2ba2ed8 2818 case e1000_i350:
55cac248
AD
2819 case e1000_82580:
2820 num_rx_queues = 1;
2821 shift = 0;
2822 break;
06cf2666
AD
2823 case e1000_82576:
2824 shift = 3;
2825 num_rx_queues = 2;
2826 break;
2827 case e1000_82575:
2828 shift = 2;
2829 shift2 = 6;
2830 default:
2831 break;
2832 }
2833 } else {
2834 if (hw->mac.type == e1000_82575)
2835 shift = 6;
2836 }
2837
2838 for (j = 0; j < (32 * 4); j++) {
2839 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2840 if (shift2)
2841 reta.bytes[j & 3] |= num_rx_queues << shift2;
2842 if ((j & 3) == 3)
2843 wr32(E1000_RETA(j >> 2), reta.dword);
2844 }
2845
2846 /*
2847 * Disable raw packet checksumming so that RSS hash is placed in
2848 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2849 * offloads as they are enabled by default
2850 */
2851 rxcsum = rd32(E1000_RXCSUM);
2852 rxcsum |= E1000_RXCSUM_PCSD;
2853
2854 if (adapter->hw.mac.type >= e1000_82576)
2855 /* Enable Receive Checksum Offload for SCTP */
2856 rxcsum |= E1000_RXCSUM_CRCOFL;
2857
2858 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2859 wr32(E1000_RXCSUM, rxcsum);
2860
2861 /* If VMDq is enabled then we set the appropriate mode for that, else
2862 * we default to RSS so that an RSS hash is calculated per packet even
2863 * if we are only using one queue */
2864 if (adapter->vfs_allocated_count) {
2865 if (hw->mac.type > e1000_82575) {
2866 /* Set the default pool for the PF's first queue */
2867 u32 vtctl = rd32(E1000_VT_CTL);
2868 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2869 E1000_VT_CTL_DISABLE_DEF_POOL);
2870 vtctl |= adapter->vfs_allocated_count <<
2871 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2872 wr32(E1000_VT_CTL, vtctl);
2873 }
a99955fc 2874 if (adapter->rss_queues > 1)
06cf2666
AD
2875 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2876 else
2877 mrqc = E1000_MRQC_ENABLE_VMDQ;
2878 } else {
2879 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2880 }
2881 igb_vmm_control(adapter);
2882
4478a9cd
AD
2883 /*
2884 * Generate RSS hash based on TCP port numbers and/or
2885 * IPv4/v6 src and dst addresses since UDP cannot be
2886 * hashed reliably due to IP fragmentation
2887 */
2888 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2889 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2890 E1000_MRQC_RSS_FIELD_IPV6 |
2891 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2892 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666
AD
2893
2894 wr32(E1000_MRQC, mrqc);
2895}
2896
9d5c8243
AK
2897/**
2898 * igb_setup_rctl - configure the receive control registers
2899 * @adapter: Board private structure
2900 **/
d7ee5b3a 2901void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
2902{
2903 struct e1000_hw *hw = &adapter->hw;
2904 u32 rctl;
9d5c8243
AK
2905
2906 rctl = rd32(E1000_RCTL);
2907
2908 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 2909 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 2910
69d728ba 2911 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 2912 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 2913
87cb7e8c
AK
2914 /*
2915 * enable stripping of CRC. It's unlikely this will break BMC
2916 * redirection as it did with e1000. Newer features require
2917 * that the HW strips the CRC.
73cd78f1 2918 */
87cb7e8c 2919 rctl |= E1000_RCTL_SECRC;
9d5c8243 2920
559e9c49 2921 /* disable store bad packets and clear size bits. */
ec54d7d6 2922 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 2923
6ec43fe6
AD
2924 /* enable LPE to prevent packets larger than max_frame_size */
2925 rctl |= E1000_RCTL_LPE;
9d5c8243 2926
952f72a8
AD
2927 /* disable queue 0 to prevent tail write w/o re-config */
2928 wr32(E1000_RXDCTL(0), 0);
9d5c8243 2929
e1739522
AD
2930 /* Attention!!! For SR-IOV PF driver operations you must enable
2931 * queue drop for all VF and PF queues to prevent head of line blocking
2932 * if an un-trusted VF does not provide descriptors to hardware.
2933 */
2934 if (adapter->vfs_allocated_count) {
e1739522
AD
2935 /* set all queue drop enable bits */
2936 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
2937 }
2938
9d5c8243
AK
2939 wr32(E1000_RCTL, rctl);
2940}
2941
7d5753f0
AD
2942static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2943 int vfn)
2944{
2945 struct e1000_hw *hw = &adapter->hw;
2946 u32 vmolr;
2947
2948 /* if it isn't the PF check to see if VFs are enabled and
2949 * increase the size to support vlan tags */
2950 if (vfn < adapter->vfs_allocated_count &&
2951 adapter->vf_data[vfn].vlans_enabled)
2952 size += VLAN_TAG_SIZE;
2953
2954 vmolr = rd32(E1000_VMOLR(vfn));
2955 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2956 vmolr |= size | E1000_VMOLR_LPE;
2957 wr32(E1000_VMOLR(vfn), vmolr);
2958
2959 return 0;
2960}
2961
e1739522
AD
2962/**
2963 * igb_rlpml_set - set maximum receive packet size
2964 * @adapter: board private structure
2965 *
2966 * Configure maximum receivable packet size.
2967 **/
2968static void igb_rlpml_set(struct igb_adapter *adapter)
2969{
153285f9 2970 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
2971 struct e1000_hw *hw = &adapter->hw;
2972 u16 pf_id = adapter->vfs_allocated_count;
2973
e1739522
AD
2974 if (pf_id) {
2975 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
153285f9
AD
2976 /*
2977 * If we're in VMDQ or SR-IOV mode, then set global RLPML
2978 * to our max jumbo frame size, in case we need to enable
2979 * jumbo frames on one of the rings later.
2980 * This will not pass over-length frames into the default
2981 * queue because it's gated by the VMOLR.RLPML.
2982 */
7d5753f0 2983 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
2984 }
2985
2986 wr32(E1000_RLPML, max_frame_size);
2987}
2988
8151d294
WM
2989static inline void igb_set_vmolr(struct igb_adapter *adapter,
2990 int vfn, bool aupe)
7d5753f0
AD
2991{
2992 struct e1000_hw *hw = &adapter->hw;
2993 u32 vmolr;
2994
2995 /*
2996 * This register exists only on 82576 and newer so if we are older then
2997 * we should exit and do nothing
2998 */
2999 if (hw->mac.type < e1000_82576)
3000 return;
3001
3002 vmolr = rd32(E1000_VMOLR(vfn));
8151d294
WM
3003 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3004 if (aupe)
3005 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3006 else
3007 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3008
3009 /* clear all bits that might not be set */
3010 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3011
a99955fc 3012 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0
AD
3013 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3014 /*
3015 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3016 * multicast packets
3017 */
3018 if (vfn <= adapter->vfs_allocated_count)
3019 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3020
3021 wr32(E1000_VMOLR(vfn), vmolr);
3022}
3023
85b430b4
AD
3024/**
3025 * igb_configure_rx_ring - Configure a receive ring after Reset
3026 * @adapter: board private structure
3027 * @ring: receive ring to be configured
3028 *
3029 * Configure the Rx unit of the MAC after a reset.
3030 **/
d7ee5b3a
AD
3031void igb_configure_rx_ring(struct igb_adapter *adapter,
3032 struct igb_ring *ring)
85b430b4
AD
3033{
3034 struct e1000_hw *hw = &adapter->hw;
3035 u64 rdba = ring->dma;
3036 int reg_idx = ring->reg_idx;
a74420e0 3037 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3038
3039 /* disable the queue */
a74420e0 3040 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3041
3042 /* Set DMA base address registers */
3043 wr32(E1000_RDBAL(reg_idx),
3044 rdba & 0x00000000ffffffffULL);
3045 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3046 wr32(E1000_RDLEN(reg_idx),
3047 ring->count * sizeof(union e1000_adv_rx_desc));
3048
3049 /* initialize head and tail */
fce99e34 3050 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3051 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3052 writel(0, ring->tail);
85b430b4 3053
952f72a8 3054 /* set descriptor configuration */
44390ca6 3055 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
952f72a8 3056#if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
44390ca6 3057 srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3058#else
44390ca6 3059 srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
952f72a8 3060#endif
44390ca6 3061 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
757b77e2
NN
3062 if (hw->mac.type == e1000_82580)
3063 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3064 /* Only set Drop Enable if we are supporting multiple queues */
3065 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3066 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3067
3068 wr32(E1000_SRRCTL(reg_idx), srrctl);
3069
7d5753f0 3070 /* set filtering for VMDQ pools */
8151d294 3071 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3072
85b430b4
AD
3073 rxdctl |= IGB_RX_PTHRESH;
3074 rxdctl |= IGB_RX_HTHRESH << 8;
3075 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3076
3077 /* enable receive descriptor fetching */
3078 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3079 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3080}
3081
9d5c8243
AK
3082/**
3083 * igb_configure_rx - Configure receive Unit after Reset
3084 * @adapter: board private structure
3085 *
3086 * Configure the Rx unit of the MAC after a reset.
3087 **/
3088static void igb_configure_rx(struct igb_adapter *adapter)
3089{
9107584e 3090 int i;
9d5c8243 3091
68d480c4
AD
3092 /* set UTA to appropriate mode */
3093 igb_set_uta(adapter);
3094
26ad9178
AD
3095 /* set the correct pool for the PF default MAC address in entry 0 */
3096 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3097 adapter->vfs_allocated_count);
3098
06cf2666
AD
3099 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3100 * the Base and Length of the Rx Descriptor Ring */
3101 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3102 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3103}
3104
3105/**
3106 * igb_free_tx_resources - Free Tx Resources per Queue
9d5c8243
AK
3107 * @tx_ring: Tx descriptor ring for a specific queue
3108 *
3109 * Free all transmit software resources
3110 **/
68fd9910 3111void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3112{
3b644cf6 3113 igb_clean_tx_ring(tx_ring);
9d5c8243 3114
06034649
AD
3115 vfree(tx_ring->tx_buffer_info);
3116 tx_ring->tx_buffer_info = NULL;
9d5c8243 3117
439705e1
AD
3118 /* if not set, then don't free */
3119 if (!tx_ring->desc)
3120 return;
3121
59d71989
AD
3122 dma_free_coherent(tx_ring->dev, tx_ring->size,
3123 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3124
3125 tx_ring->desc = NULL;
3126}
3127
3128/**
3129 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3130 * @adapter: board private structure
3131 *
3132 * Free all transmit software resources
3133 **/
3134static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3135{
3136 int i;
3137
3138 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3139 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3140}
3141
ebe42d16
AD
3142void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3143 struct igb_tx_buffer *tx_buffer)
3144{
3145 if (tx_buffer->skb) {
3146 dev_kfree_skb_any(tx_buffer->skb);
3147 if (tx_buffer->dma)
3148 dma_unmap_single(ring->dev,
3149 tx_buffer->dma,
3150 tx_buffer->length,
3151 DMA_TO_DEVICE);
3152 } else if (tx_buffer->dma) {
3153 dma_unmap_page(ring->dev,
3154 tx_buffer->dma,
3155 tx_buffer->length,
3156 DMA_TO_DEVICE);
3157 }
3158 tx_buffer->next_to_watch = NULL;
3159 tx_buffer->skb = NULL;
3160 tx_buffer->dma = 0;
3161 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3162}
3163
3164/**
3165 * igb_clean_tx_ring - Free Tx Buffers
9d5c8243
AK
3166 * @tx_ring: ring to be cleaned
3167 **/
3b644cf6 3168static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3169{
06034649 3170 struct igb_tx_buffer *buffer_info;
9d5c8243
AK
3171 unsigned long size;
3172 unsigned int i;
3173
06034649 3174 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3175 return;
3176 /* Free all the Tx ring sk_buffs */
3177
3178 for (i = 0; i < tx_ring->count; i++) {
06034649 3179 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3180 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3181 }
3182
06034649
AD
3183 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3184 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3185
3186 /* Zero out the descriptor ring */
9d5c8243
AK
3187 memset(tx_ring->desc, 0, tx_ring->size);
3188
3189 tx_ring->next_to_use = 0;
3190 tx_ring->next_to_clean = 0;
9d5c8243
AK
3191}
3192
3193/**
3194 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3195 * @adapter: board private structure
3196 **/
3197static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3198{
3199 int i;
3200
3201 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3202 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3203}
3204
3205/**
3206 * igb_free_rx_resources - Free Rx Resources
9d5c8243
AK
3207 * @rx_ring: ring to clean the resources from
3208 *
3209 * Free all receive software resources
3210 **/
68fd9910 3211void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3212{
3b644cf6 3213 igb_clean_rx_ring(rx_ring);
9d5c8243 3214
06034649
AD
3215 vfree(rx_ring->rx_buffer_info);
3216 rx_ring->rx_buffer_info = NULL;
9d5c8243 3217
439705e1
AD
3218 /* if not set, then don't free */
3219 if (!rx_ring->desc)
3220 return;
3221
59d71989
AD
3222 dma_free_coherent(rx_ring->dev, rx_ring->size,
3223 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3224
3225 rx_ring->desc = NULL;
3226}
3227
3228/**
3229 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3230 * @adapter: board private structure
3231 *
3232 * Free all receive software resources
3233 **/
3234static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3235{
3236 int i;
3237
3238 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3239 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3240}
3241
3242/**
3243 * igb_clean_rx_ring - Free Rx Buffers per Queue
9d5c8243
AK
3244 * @rx_ring: ring to free buffers from
3245 **/
3b644cf6 3246static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3247{
9d5c8243 3248 unsigned long size;
c023cd88 3249 u16 i;
9d5c8243 3250
06034649 3251 if (!rx_ring->rx_buffer_info)
9d5c8243 3252 return;
439705e1 3253
9d5c8243
AK
3254 /* Free all the Rx ring sk_buffs */
3255 for (i = 0; i < rx_ring->count; i++) {
06034649 3256 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3257 if (buffer_info->dma) {
59d71989 3258 dma_unmap_single(rx_ring->dev,
80785298 3259 buffer_info->dma,
44390ca6 3260 IGB_RX_HDR_LEN,
59d71989 3261 DMA_FROM_DEVICE);
9d5c8243
AK
3262 buffer_info->dma = 0;
3263 }
3264
3265 if (buffer_info->skb) {
3266 dev_kfree_skb(buffer_info->skb);
3267 buffer_info->skb = NULL;
3268 }
6ec43fe6 3269 if (buffer_info->page_dma) {
59d71989 3270 dma_unmap_page(rx_ring->dev,
80785298 3271 buffer_info->page_dma,
6ec43fe6 3272 PAGE_SIZE / 2,
59d71989 3273 DMA_FROM_DEVICE);
6ec43fe6
AD
3274 buffer_info->page_dma = 0;
3275 }
9d5c8243 3276 if (buffer_info->page) {
9d5c8243
AK
3277 put_page(buffer_info->page);
3278 buffer_info->page = NULL;
bf36c1a0 3279 buffer_info->page_offset = 0;
9d5c8243
AK
3280 }
3281 }
3282
06034649
AD
3283 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3284 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3285
3286 /* Zero out the descriptor ring */
3287 memset(rx_ring->desc, 0, rx_ring->size);
3288
3289 rx_ring->next_to_clean = 0;
3290 rx_ring->next_to_use = 0;
9d5c8243
AK
3291}
3292
3293/**
3294 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3295 * @adapter: board private structure
3296 **/
3297static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3298{
3299 int i;
3300
3301 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3302 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3303}
3304
3305/**
3306 * igb_set_mac - Change the Ethernet Address of the NIC
3307 * @netdev: network interface device structure
3308 * @p: pointer to an address structure
3309 *
3310 * Returns 0 on success, negative on failure
3311 **/
3312static int igb_set_mac(struct net_device *netdev, void *p)
3313{
3314 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3315 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3316 struct sockaddr *addr = p;
3317
3318 if (!is_valid_ether_addr(addr->sa_data))
3319 return -EADDRNOTAVAIL;
3320
3321 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3322 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3323
26ad9178
AD
3324 /* set the correct pool for the new PF MAC address in entry 0 */
3325 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3326 adapter->vfs_allocated_count);
e1739522 3327
9d5c8243
AK
3328 return 0;
3329}
3330
3331/**
68d480c4 3332 * igb_write_mc_addr_list - write multicast addresses to MTA
9d5c8243
AK
3333 * @netdev: network interface device structure
3334 *
68d480c4
AD
3335 * Writes multicast address list to the MTA hash table.
3336 * Returns: -ENOMEM on failure
3337 * 0 on no addresses written
3338 * X on writing X addresses to MTA
9d5c8243 3339 **/
68d480c4 3340static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3341{
3342 struct igb_adapter *adapter = netdev_priv(netdev);
3343 struct e1000_hw *hw = &adapter->hw;
22bedad3 3344 struct netdev_hw_addr *ha;
68d480c4 3345 u8 *mta_list;
9d5c8243
AK
3346 int i;
3347
4cd24eaf 3348 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3349 /* nothing to program, so clear mc list */
3350 igb_update_mc_addr_list(hw, NULL, 0);
3351 igb_restore_vf_multicasts(adapter);
3352 return 0;
3353 }
9d5c8243 3354
4cd24eaf 3355 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3356 if (!mta_list)
3357 return -ENOMEM;
ff41f8dc 3358
68d480c4 3359 /* The shared function expects a packed array of only addresses. */
48e2f183 3360 i = 0;
22bedad3
JP
3361 netdev_for_each_mc_addr(ha, netdev)
3362 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3363
68d480c4
AD
3364 igb_update_mc_addr_list(hw, mta_list, i);
3365 kfree(mta_list);
3366
4cd24eaf 3367 return netdev_mc_count(netdev);
68d480c4
AD
3368}
3369
3370/**
3371 * igb_write_uc_addr_list - write unicast addresses to RAR table
3372 * @netdev: network interface device structure
3373 *
3374 * Writes unicast address list to the RAR table.
3375 * Returns: -ENOMEM on failure/insufficient address space
3376 * 0 on no addresses written
3377 * X on writing X addresses to the RAR table
3378 **/
3379static int igb_write_uc_addr_list(struct net_device *netdev)
3380{
3381 struct igb_adapter *adapter = netdev_priv(netdev);
3382 struct e1000_hw *hw = &adapter->hw;
3383 unsigned int vfn = adapter->vfs_allocated_count;
3384 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3385 int count = 0;
3386
3387 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3388 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3389 return -ENOMEM;
9d5c8243 3390
32e7bfc4 3391 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3392 struct netdev_hw_addr *ha;
32e7bfc4
JP
3393
3394 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3395 if (!rar_entries)
3396 break;
26ad9178
AD
3397 igb_rar_set_qsel(adapter, ha->addr,
3398 rar_entries--,
68d480c4
AD
3399 vfn);
3400 count++;
ff41f8dc
AD
3401 }
3402 }
3403 /* write the addresses in reverse order to avoid write combining */
3404 for (; rar_entries > 0 ; rar_entries--) {
3405 wr32(E1000_RAH(rar_entries), 0);
3406 wr32(E1000_RAL(rar_entries), 0);
3407 }
3408 wrfl();
3409
68d480c4
AD
3410 return count;
3411}
3412
3413/**
3414 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3415 * @netdev: network interface device structure
3416 *
3417 * The set_rx_mode entry point is called whenever the unicast or multicast
3418 * address lists or the network interface flags are updated. This routine is
3419 * responsible for configuring the hardware for proper unicast, multicast,
3420 * promiscuous mode, and all-multi behavior.
3421 **/
3422static void igb_set_rx_mode(struct net_device *netdev)
3423{
3424 struct igb_adapter *adapter = netdev_priv(netdev);
3425 struct e1000_hw *hw = &adapter->hw;
3426 unsigned int vfn = adapter->vfs_allocated_count;
3427 u32 rctl, vmolr = 0;
3428 int count;
3429
3430 /* Check for Promiscuous and All Multicast modes */
3431 rctl = rd32(E1000_RCTL);
3432
3433 /* clear the effected bits */
3434 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3435
3436 if (netdev->flags & IFF_PROMISC) {
3437 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3438 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3439 } else {
3440 if (netdev->flags & IFF_ALLMULTI) {
3441 rctl |= E1000_RCTL_MPE;
3442 vmolr |= E1000_VMOLR_MPME;
3443 } else {
3444 /*
3445 * Write addresses to the MTA, if the attempt fails
25985edc 3446 * then we should just turn on promiscuous mode so
68d480c4
AD
3447 * that we can at least receive multicast traffic
3448 */
3449 count = igb_write_mc_addr_list(netdev);
3450 if (count < 0) {
3451 rctl |= E1000_RCTL_MPE;
3452 vmolr |= E1000_VMOLR_MPME;
3453 } else if (count) {
3454 vmolr |= E1000_VMOLR_ROMPE;
3455 }
3456 }
3457 /*
3458 * Write addresses to available RAR registers, if there is not
3459 * sufficient space to store all the addresses then enable
25985edc 3460 * unicast promiscuous mode
68d480c4
AD
3461 */
3462 count = igb_write_uc_addr_list(netdev);
3463 if (count < 0) {
3464 rctl |= E1000_RCTL_UPE;
3465 vmolr |= E1000_VMOLR_ROPE;
3466 }
3467 rctl |= E1000_RCTL_VFE;
28fc06f5 3468 }
68d480c4 3469 wr32(E1000_RCTL, rctl);
28fc06f5 3470
68d480c4
AD
3471 /*
3472 * In order to support SR-IOV and eventually VMDq it is necessary to set
3473 * the VMOLR to enable the appropriate modes. Without this workaround
3474 * we will have issues with VLAN tag stripping not being done for frames
3475 * that are only arriving because we are the default pool
3476 */
3477 if (hw->mac.type < e1000_82576)
28fc06f5 3478 return;
9d5c8243 3479
68d480c4
AD
3480 vmolr |= rd32(E1000_VMOLR(vfn)) &
3481 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3482 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3483 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3484}
3485
13800469
GR
3486static void igb_check_wvbr(struct igb_adapter *adapter)
3487{
3488 struct e1000_hw *hw = &adapter->hw;
3489 u32 wvbr = 0;
3490
3491 switch (hw->mac.type) {
3492 case e1000_82576:
3493 case e1000_i350:
3494 if (!(wvbr = rd32(E1000_WVBR)))
3495 return;
3496 break;
3497 default:
3498 break;
3499 }
3500
3501 adapter->wvbr |= wvbr;
3502}
3503
3504#define IGB_STAGGERED_QUEUE_OFFSET 8
3505
3506static void igb_spoof_check(struct igb_adapter *adapter)
3507{
3508 int j;
3509
3510 if (!adapter->wvbr)
3511 return;
3512
3513 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3514 if (adapter->wvbr & (1 << j) ||
3515 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3516 dev_warn(&adapter->pdev->dev,
3517 "Spoof event(s) detected on VF %d\n", j);
3518 adapter->wvbr &=
3519 ~((1 << j) |
3520 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3521 }
3522 }
3523}
3524
9d5c8243
AK
3525/* Need to wait a few seconds after link up to get diagnostic information from
3526 * the phy */
3527static void igb_update_phy_info(unsigned long data)
3528{
3529 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3530 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3531}
3532
4d6b725e
AD
3533/**
3534 * igb_has_link - check shared code for link and determine up/down
3535 * @adapter: pointer to driver private info
3536 **/
3145535a 3537bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3538{
3539 struct e1000_hw *hw = &adapter->hw;
3540 bool link_active = false;
3541 s32 ret_val = 0;
3542
3543 /* get_link_status is set on LSC (link status) interrupt or
3544 * rx sequence error interrupt. get_link_status will stay
3545 * false until the e1000_check_for_link establishes link
3546 * for copper adapters ONLY
3547 */
3548 switch (hw->phy.media_type) {
3549 case e1000_media_type_copper:
3550 if (hw->mac.get_link_status) {
3551 ret_val = hw->mac.ops.check_for_link(hw);
3552 link_active = !hw->mac.get_link_status;
3553 } else {
3554 link_active = true;
3555 }
3556 break;
4d6b725e
AD
3557 case e1000_media_type_internal_serdes:
3558 ret_val = hw->mac.ops.check_for_link(hw);
3559 link_active = hw->mac.serdes_has_link;
3560 break;
3561 default:
3562 case e1000_media_type_unknown:
3563 break;
3564 }
3565
3566 return link_active;
3567}
3568
563988dc
SA
3569static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3570{
3571 bool ret = false;
3572 u32 ctrl_ext, thstat;
3573
3574 /* check for thermal sensor event on i350, copper only */
3575 if (hw->mac.type == e1000_i350) {
3576 thstat = rd32(E1000_THSTAT);
3577 ctrl_ext = rd32(E1000_CTRL_EXT);
3578
3579 if ((hw->phy.media_type == e1000_media_type_copper) &&
3580 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3581 ret = !!(thstat & event);
3582 }
3583 }
3584
3585 return ret;
3586}
3587
9d5c8243
AK
3588/**
3589 * igb_watchdog - Timer Call-back
3590 * @data: pointer to adapter cast into an unsigned long
3591 **/
3592static void igb_watchdog(unsigned long data)
3593{
3594 struct igb_adapter *adapter = (struct igb_adapter *)data;
3595 /* Do the rest outside of interrupt context */
3596 schedule_work(&adapter->watchdog_task);
3597}
3598
3599static void igb_watchdog_task(struct work_struct *work)
3600{
3601 struct igb_adapter *adapter = container_of(work,
559e9c49
AD
3602 struct igb_adapter,
3603 watchdog_task);
9d5c8243 3604 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3605 struct net_device *netdev = adapter->netdev;
563988dc 3606 u32 link;
7a6ea550 3607 int i;
9d5c8243 3608
4d6b725e 3609 link = igb_has_link(adapter);
9d5c8243
AK
3610 if (link) {
3611 if (!netif_carrier_ok(netdev)) {
3612 u32 ctrl;
330a6d6a
AD
3613 hw->mac.ops.get_speed_and_duplex(hw,
3614 &adapter->link_speed,
3615 &adapter->link_duplex);
9d5c8243
AK
3616
3617 ctrl = rd32(E1000_CTRL);
527d47c1
AD
3618 /* Links status message must follow this format */
3619 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
9d5c8243 3620 "Flow Control: %s\n",
559e9c49
AD
3621 netdev->name,
3622 adapter->link_speed,
3623 adapter->link_duplex == FULL_DUPLEX ?
9d5c8243 3624 "Full Duplex" : "Half Duplex",
559e9c49
AD
3625 ((ctrl & E1000_CTRL_TFCE) &&
3626 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3627 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3628 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
9d5c8243 3629
563988dc
SA
3630 /* check for thermal sensor event */
3631 if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
3632 printk(KERN_INFO "igb: %s The network adapter "
3633 "link speed was downshifted "
3634 "because it overheated.\n",
3635 netdev->name);
7ef5ed1c 3636 }
563988dc 3637
d07f3e37 3638 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3639 adapter->tx_timeout_factor = 1;
3640 switch (adapter->link_speed) {
3641 case SPEED_10:
9d5c8243
AK
3642 adapter->tx_timeout_factor = 14;
3643 break;
3644 case SPEED_100:
9d5c8243
AK
3645 /* maybe add some timeout factor ? */
3646 break;
3647 }
3648
3649 netif_carrier_on(netdev);
9d5c8243 3650
4ae196df 3651 igb_ping_all_vfs(adapter);
17dc566c 3652 igb_check_vf_rate_limit(adapter);
4ae196df 3653
4b1a9877 3654 /* link state has changed, schedule phy info update */
9d5c8243
AK
3655 if (!test_bit(__IGB_DOWN, &adapter->state))
3656 mod_timer(&adapter->phy_info_timer,
3657 round_jiffies(jiffies + 2 * HZ));
3658 }
3659 } else {
3660 if (netif_carrier_ok(netdev)) {
3661 adapter->link_speed = 0;
3662 adapter->link_duplex = 0;
563988dc
SA
3663
3664 /* check for thermal sensor event */
3665 if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
3666 printk(KERN_ERR "igb: %s The network adapter "
3667 "was stopped because it "
3668 "overheated.\n",
7ef5ed1c 3669 netdev->name);
7ef5ed1c 3670 }
563988dc 3671
527d47c1
AD
3672 /* Links status message must follow this format */
3673 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3674 netdev->name);
9d5c8243 3675 netif_carrier_off(netdev);
4b1a9877 3676
4ae196df
AD
3677 igb_ping_all_vfs(adapter);
3678
4b1a9877 3679 /* link state has changed, schedule phy info update */
9d5c8243
AK
3680 if (!test_bit(__IGB_DOWN, &adapter->state))
3681 mod_timer(&adapter->phy_info_timer,
3682 round_jiffies(jiffies + 2 * HZ));
3683 }
3684 }
3685
12dcd86b
ED
3686 spin_lock(&adapter->stats64_lock);
3687 igb_update_stats(adapter, &adapter->stats64);
3688 spin_unlock(&adapter->stats64_lock);
9d5c8243 3689
dbabb065 3690 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3691 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3692 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3693 /* We've lost link, so the controller stops DMA,
3694 * but we've got queued Tx work that's never going
3695 * to get done, so reset controller to flush Tx.
3696 * (Do the reset outside of interrupt context). */
dbabb065
AD
3697 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3698 adapter->tx_timeout_count++;
3699 schedule_work(&adapter->reset_task);
3700 /* return immediately since reset is imminent */
3701 return;
3702 }
9d5c8243 3703 }
9d5c8243 3704
dbabb065
AD
3705 /* Force detection of hung controller every watchdog period */
3706 tx_ring->detect_tx_hung = true;
3707 }
f7ba205e 3708
9d5c8243 3709 /* Cause software interrupt to ensure rx ring is cleaned */
7a6ea550 3710 if (adapter->msix_entries) {
047e0030
AD
3711 u32 eics = 0;
3712 for (i = 0; i < adapter->num_q_vectors; i++) {
3713 struct igb_q_vector *q_vector = adapter->q_vector[i];
3714 eics |= q_vector->eims_value;
3715 }
7a6ea550
AD
3716 wr32(E1000_EICS, eics);
3717 } else {
3718 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3719 }
9d5c8243 3720
13800469
GR
3721 igb_spoof_check(adapter);
3722
9d5c8243
AK
3723 /* Reset the timer */
3724 if (!test_bit(__IGB_DOWN, &adapter->state))
3725 mod_timer(&adapter->watchdog_timer,
3726 round_jiffies(jiffies + 2 * HZ));
3727}
3728
3729enum latency_range {
3730 lowest_latency = 0,
3731 low_latency = 1,
3732 bulk_latency = 2,
3733 latency_invalid = 255
3734};
3735
6eb5a7f1
AD
3736/**
3737 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3738 *
3739 * Stores a new ITR value based on strictly on packet size. This
3740 * algorithm is less sophisticated than that used in igb_update_itr,
3741 * due to the difficulty of synchronizing statistics across multiple
eef35c2d 3742 * receive rings. The divisors and thresholds used by this function
6eb5a7f1
AD
3743 * were determined based on theoretical maximum wire speed and testing
3744 * data, in order to minimize response time while increasing bulk
3745 * throughput.
3746 * This functionality is controlled by the InterruptThrottleRate module
3747 * parameter (see igb_param.c)
3748 * NOTE: This function is called only when operating in a multiqueue
3749 * receive environment.
047e0030 3750 * @q_vector: pointer to q_vector
6eb5a7f1 3751 **/
047e0030 3752static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 3753{
047e0030 3754 int new_val = q_vector->itr_val;
6eb5a7f1 3755 int avg_wire_size = 0;
047e0030 3756 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b
ED
3757 struct igb_ring *ring;
3758 unsigned int packets;
9d5c8243 3759
6eb5a7f1
AD
3760 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3761 * ints/sec - ITR timer value of 120 ticks.
3762 */
3763 if (adapter->link_speed != SPEED_1000) {
047e0030 3764 new_val = 976;
6eb5a7f1 3765 goto set_itr_val;
9d5c8243 3766 }
047e0030 3767
12dcd86b
ED
3768 ring = q_vector->rx_ring;
3769 if (ring) {
3770 packets = ACCESS_ONCE(ring->total_packets);
3771
3772 if (packets)
3773 avg_wire_size = ring->total_bytes / packets;
047e0030
AD
3774 }
3775
12dcd86b
ED
3776 ring = q_vector->tx_ring;
3777 if (ring) {
3778 packets = ACCESS_ONCE(ring->total_packets);
3779
3780 if (packets)
3781 avg_wire_size = max_t(u32, avg_wire_size,
3782 ring->total_bytes / packets);
047e0030
AD
3783 }
3784
3785 /* if avg_wire_size isn't set no work was done */
3786 if (!avg_wire_size)
3787 goto clear_counts;
9d5c8243 3788
6eb5a7f1
AD
3789 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3790 avg_wire_size += 24;
3791
3792 /* Don't starve jumbo frames */
3793 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 3794
6eb5a7f1
AD
3795 /* Give a little boost to mid-size frames */
3796 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3797 new_val = avg_wire_size / 3;
3798 else
3799 new_val = avg_wire_size / 2;
9d5c8243 3800
abe1c363
NN
3801 /* when in itr mode 3 do not exceed 20K ints/sec */
3802 if (adapter->rx_itr_setting == 3 && new_val < 196)
3803 new_val = 196;
3804
6eb5a7f1 3805set_itr_val:
047e0030
AD
3806 if (new_val != q_vector->itr_val) {
3807 q_vector->itr_val = new_val;
3808 q_vector->set_itr = 1;
9d5c8243 3809 }
6eb5a7f1 3810clear_counts:
047e0030
AD
3811 if (q_vector->rx_ring) {
3812 q_vector->rx_ring->total_bytes = 0;
3813 q_vector->rx_ring->total_packets = 0;
3814 }
3815 if (q_vector->tx_ring) {
3816 q_vector->tx_ring->total_bytes = 0;
3817 q_vector->tx_ring->total_packets = 0;
3818 }
9d5c8243
AK
3819}
3820
3821/**
3822 * igb_update_itr - update the dynamic ITR value based on statistics
3823 * Stores a new ITR value based on packets and byte
3824 * counts during the last interrupt. The advantage of per interrupt
3825 * computation is faster updates and more accurate ITR for the current
3826 * traffic pattern. Constants in this function were computed
3827 * based on theoretical maximum wire speed and thresholds were set based
3828 * on testing data as well as attempting to minimize response time
3829 * while increasing bulk throughput.
3830 * this functionality is controlled by the InterruptThrottleRate module
3831 * parameter (see igb_param.c)
3832 * NOTE: These calculations are only valid when operating in a single-
3833 * queue environment.
3834 * @adapter: pointer to adapter
047e0030 3835 * @itr_setting: current q_vector->itr_val
9d5c8243
AK
3836 * @packets: the number of packets during this measurement interval
3837 * @bytes: the number of bytes during this measurement interval
3838 **/
3839static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3840 int packets, int bytes)
3841{
3842 unsigned int retval = itr_setting;
3843
3844 if (packets == 0)
3845 goto update_itr_done;
3846
3847 switch (itr_setting) {
3848 case lowest_latency:
3849 /* handle TSO and jumbo frames */
3850 if (bytes/packets > 8000)
3851 retval = bulk_latency;
3852 else if ((packets < 5) && (bytes > 512))
3853 retval = low_latency;
3854 break;
3855 case low_latency: /* 50 usec aka 20000 ints/s */
3856 if (bytes > 10000) {
3857 /* this if handles the TSO accounting */
3858 if (bytes/packets > 8000) {
3859 retval = bulk_latency;
3860 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3861 retval = bulk_latency;
3862 } else if ((packets > 35)) {
3863 retval = lowest_latency;
3864 }
3865 } else if (bytes/packets > 2000) {
3866 retval = bulk_latency;
3867 } else if (packets <= 2 && bytes < 512) {
3868 retval = lowest_latency;
3869 }
3870 break;
3871 case bulk_latency: /* 250 usec aka 4000 ints/s */
3872 if (bytes > 25000) {
3873 if (packets > 35)
3874 retval = low_latency;
1e5c3d21 3875 } else if (bytes < 1500) {
9d5c8243
AK
3876 retval = low_latency;
3877 }
3878 break;
3879 }
3880
3881update_itr_done:
3882 return retval;
3883}
3884
6eb5a7f1 3885static void igb_set_itr(struct igb_adapter *adapter)
9d5c8243 3886{
047e0030 3887 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243 3888 u16 current_itr;
047e0030 3889 u32 new_itr = q_vector->itr_val;
9d5c8243
AK
3890
3891 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3892 if (adapter->link_speed != SPEED_1000) {
3893 current_itr = 0;
3894 new_itr = 4000;
3895 goto set_itr_now;
3896 }
3897
3898 adapter->rx_itr = igb_update_itr(adapter,
3899 adapter->rx_itr,
3025a446
AD
3900 q_vector->rx_ring->total_packets,
3901 q_vector->rx_ring->total_bytes);
9d5c8243 3902
047e0030
AD
3903 adapter->tx_itr = igb_update_itr(adapter,
3904 adapter->tx_itr,
3025a446
AD
3905 q_vector->tx_ring->total_packets,
3906 q_vector->tx_ring->total_bytes);
047e0030 3907 current_itr = max(adapter->rx_itr, adapter->tx_itr);
9d5c8243 3908
6eb5a7f1 3909 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4fc82adf 3910 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
6eb5a7f1
AD
3911 current_itr = low_latency;
3912
9d5c8243
AK
3913 switch (current_itr) {
3914 /* counts and packets in update_itr are dependent on these numbers */
3915 case lowest_latency:
78b1f607 3916 new_itr = 56; /* aka 70,000 ints/sec */
9d5c8243
AK
3917 break;
3918 case low_latency:
78b1f607 3919 new_itr = 196; /* aka 20,000 ints/sec */
9d5c8243
AK
3920 break;
3921 case bulk_latency:
78b1f607 3922 new_itr = 980; /* aka 4,000 ints/sec */
9d5c8243
AK
3923 break;
3924 default:
3925 break;
3926 }
3927
3928set_itr_now:
3025a446
AD
3929 q_vector->rx_ring->total_bytes = 0;
3930 q_vector->rx_ring->total_packets = 0;
3931 q_vector->tx_ring->total_bytes = 0;
3932 q_vector->tx_ring->total_packets = 0;
6eb5a7f1 3933
047e0030 3934 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
3935 /* this attempts to bias the interrupt rate towards Bulk
3936 * by adding intermediate steps when interrupt rate is
3937 * increasing */
047e0030
AD
3938 new_itr = new_itr > q_vector->itr_val ?
3939 max((new_itr * q_vector->itr_val) /
3940 (new_itr + (q_vector->itr_val >> 2)),
3941 new_itr) :
9d5c8243
AK
3942 new_itr;
3943 /* Don't write the value here; it resets the adapter's
3944 * internal timer, and causes us to delay far longer than
3945 * we should between interrupts. Instead, we write the ITR
3946 * value at the beginning of the next interrupt so the timing
3947 * ends up being correct.
3948 */
047e0030
AD
3949 q_vector->itr_val = new_itr;
3950 q_vector->set_itr = 1;
9d5c8243 3951 }
9d5c8243
AK
3952}
3953
7d13a7d0
AD
3954void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
3955 u32 type_tucmd, u32 mss_l4len_idx)
3956{
3957 struct e1000_adv_tx_context_desc *context_desc;
3958 u16 i = tx_ring->next_to_use;
3959
3960 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
3961
3962 i++;
3963 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3964
3965 /* set bits to identify this as an advanced context descriptor */
3966 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
3967
3968 /* For 82575, context index must be unique per ring. */
3969 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3970 mss_l4len_idx |= tx_ring->reg_idx << 4;
3971
3972 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
3973 context_desc->seqnum_seed = 0;
3974 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
3975 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3976}
3977
31f6adbb
AD
3978static inline int igb_tso(struct igb_ring *tx_ring, struct sk_buff *skb,
3979 u32 tx_flags, __be16 protocol, u8 *hdr_len)
9d5c8243 3980{
9d5c8243 3981 int err;
7d13a7d0
AD
3982 u32 vlan_macip_lens, type_tucmd;
3983 u32 mss_l4len_idx, l4len;
3984
3985 if (!skb_is_gso(skb))
3986 return 0;
9d5c8243
AK
3987
3988 if (skb_header_cloned(skb)) {
3989 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3990 if (err)
3991 return err;
3992 }
3993
7d13a7d0
AD
3994 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3995 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 3996
31f6adbb 3997 if (protocol == __constant_htons(ETH_P_IP)) {
9d5c8243
AK
3998 struct iphdr *iph = ip_hdr(skb);
3999 iph->tot_len = 0;
4000 iph->check = 0;
4001 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4002 iph->daddr, 0,
4003 IPPROTO_TCP,
4004 0);
7d13a7d0 4005 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
8e1e8a47 4006 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4007 ipv6_hdr(skb)->payload_len = 0;
4008 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4009 &ipv6_hdr(skb)->daddr,
4010 0, IPPROTO_TCP, 0);
4011 }
4012
7d13a7d0
AD
4013 l4len = tcp_hdrlen(skb);
4014 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243
AK
4015
4016 /* MSS L4LEN IDX */
7d13a7d0
AD
4017 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4018 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4019
7d13a7d0
AD
4020 /* VLAN MACLEN IPLEN */
4021 vlan_macip_lens = skb_network_header_len(skb);
4022 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4023 vlan_macip_lens |= tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4024
7d13a7d0 4025 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4026
7d13a7d0 4027 return 1;
9d5c8243
AK
4028}
4029
31f6adbb
AD
4030static inline bool igb_tx_csum(struct igb_ring *tx_ring, struct sk_buff *skb,
4031 u32 tx_flags, __be16 protocol)
9d5c8243 4032{
7d13a7d0
AD
4033 u32 vlan_macip_lens = 0;
4034 u32 mss_l4len_idx = 0;
4035 u32 type_tucmd = 0;
9d5c8243 4036
7d13a7d0
AD
4037 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4038 if (!(tx_flags & IGB_TX_FLAGS_VLAN))
4039 return false;
4040 } else {
4041 u8 l4_hdr = 0;
31f6adbb 4042 switch (protocol) {
7d13a7d0
AD
4043 case __constant_htons(ETH_P_IP):
4044 vlan_macip_lens |= skb_network_header_len(skb);
4045 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4046 l4_hdr = ip_hdr(skb)->protocol;
4047 break;
4048 case __constant_htons(ETH_P_IPV6):
4049 vlan_macip_lens |= skb_network_header_len(skb);
4050 l4_hdr = ipv6_hdr(skb)->nexthdr;
4051 break;
4052 default:
4053 if (unlikely(net_ratelimit())) {
4054 dev_warn(tx_ring->dev,
4055 "partial checksum but proto=%x!\n",
31f6adbb 4056 protocol);
fa4a7ef3 4057 }
7d13a7d0
AD
4058 break;
4059 }
fa4a7ef3 4060
7d13a7d0
AD
4061 switch (l4_hdr) {
4062 case IPPROTO_TCP:
4063 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4064 mss_l4len_idx = tcp_hdrlen(skb) <<
4065 E1000_ADVTXD_L4LEN_SHIFT;
4066 break;
4067 case IPPROTO_SCTP:
4068 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4069 mss_l4len_idx = sizeof(struct sctphdr) <<
4070 E1000_ADVTXD_L4LEN_SHIFT;
4071 break;
4072 case IPPROTO_UDP:
4073 mss_l4len_idx = sizeof(struct udphdr) <<
4074 E1000_ADVTXD_L4LEN_SHIFT;
4075 break;
4076 default:
4077 if (unlikely(net_ratelimit())) {
4078 dev_warn(tx_ring->dev,
4079 "partial checksum but l4 proto=%x!\n",
4080 l4_hdr);
44b0cda3 4081 }
7d13a7d0 4082 break;
9d5c8243 4083 }
7d13a7d0 4084 }
9d5c8243 4085
7d13a7d0
AD
4086 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4087 vlan_macip_lens |= tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4088
7d13a7d0 4089 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4090
7d13a7d0 4091 return (skb->ip_summed == CHECKSUM_PARTIAL);
9d5c8243
AK
4092}
4093
e032afc8
AD
4094static __le32 igb_tx_cmd_type(u32 tx_flags)
4095{
4096 /* set type for advanced descriptor with frame checksum insertion */
4097 __le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4098 E1000_ADVTXD_DCMD_IFCS |
4099 E1000_ADVTXD_DCMD_DEXT);
4100
4101 /* set HW vlan bit if vlan is present */
4102 if (tx_flags & IGB_TX_FLAGS_VLAN)
4103 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4104
4105 /* set timestamp bit if present */
4106 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4107 cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4108
4109 /* set segmentation bits for TSO */
4110 if (tx_flags & IGB_TX_FLAGS_TSO)
4111 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4112
4113 return cmd_type;
4114}
4115
4116static __le32 igb_tx_olinfo_status(u32 tx_flags, unsigned int paylen,
4117 struct igb_ring *tx_ring)
4118{
4119 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4120
4121 /* 82575 requires a unique index per ring if any offload is enabled */
4122 if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4123 (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX))
4124 olinfo_status |= tx_ring->reg_idx << 4;
4125
4126 /* insert L4 checksum */
4127 if (tx_flags & IGB_TX_FLAGS_CSUM) {
4128 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4129
4130 /* insert IPv4 checksum */
4131 if (tx_flags & IGB_TX_FLAGS_IPV4)
4132 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4133 }
4134
4135 return cpu_to_le32(olinfo_status);
4136}
4137
ebe42d16
AD
4138/*
4139 * The largest size we can write to the descriptor is 65535. In order to
4140 * maintain a power of two alignment we have to limit ourselves to 32K.
4141 */
4142#define IGB_MAX_TXD_PWR 15
4143#define IGB_MAX_DATA_PER_TXD (1 << IGB_MAX_TXD_PWR)
9d5c8243 4144
ebe42d16
AD
4145static void igb_tx_map(struct igb_ring *tx_ring, struct sk_buff *skb,
4146 struct igb_tx_buffer *first, u32 tx_flags,
4147 const u8 hdr_len)
9d5c8243 4148{
ebe42d16
AD
4149 struct igb_tx_buffer *tx_buffer_info;
4150 union e1000_adv_tx_desc *tx_desc;
4151 dma_addr_t dma;
4152 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4153 unsigned int data_len = skb->data_len;
4154 unsigned int size = skb_headlen(skb);
4155 unsigned int paylen = skb->len - hdr_len;
4156 __le32 cmd_type;
4157 u16 i = tx_ring->next_to_use;
4158 u16 gso_segs;
4159
4160 if (tx_flags & IGB_TX_FLAGS_TSO)
4161 gso_segs = skb_shinfo(skb)->gso_segs;
4162 else
4163 gso_segs = 1;
4164
4165 /* multiply data chunks by size of headers */
4166 first->bytecount = paylen + (gso_segs * hdr_len);
4167 first->gso_segs = gso_segs;
4168 first->skb = skb;
4169
4170 tx_desc = IGB_TX_DESC(tx_ring, i);
4171
4172 tx_desc->read.olinfo_status =
4173 igb_tx_olinfo_status(tx_flags, paylen, tx_ring);
4174
4175 cmd_type = igb_tx_cmd_type(tx_flags);
4176
4177 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4178 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33 4179 goto dma_error;
9d5c8243 4180
ebe42d16
AD
4181 /* record length, and DMA address */
4182 first->length = size;
4183 first->dma = dma;
4184 first->tx_flags = tx_flags;
4185 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4186
4187 for (;;) {
4188 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4189 tx_desc->read.cmd_type_len =
4190 cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4191
4192 i++;
4193 tx_desc++;
4194 if (i == tx_ring->count) {
4195 tx_desc = IGB_TX_DESC(tx_ring, 0);
4196 i = 0;
4197 }
4198
4199 dma += IGB_MAX_DATA_PER_TXD;
4200 size -= IGB_MAX_DATA_PER_TXD;
4201
4202 tx_desc->read.olinfo_status = 0;
4203 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4204 }
4205
4206 if (likely(!data_len))
4207 break;
2bbfebe2 4208
ebe42d16 4209 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
9d5c8243 4210
65689fef 4211 i++;
ebe42d16
AD
4212 tx_desc++;
4213 if (i == tx_ring->count) {
4214 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4215 i = 0;
ebe42d16 4216 }
65689fef 4217
ebe42d16
AD
4218 size = frag->size;
4219 data_len -= size;
4220
4221 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4222 size, DMA_TO_DEVICE);
4223 if (dma_mapping_error(tx_ring->dev, dma))
6366ad33
AD
4224 goto dma_error;
4225
ebe42d16
AD
4226 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4227 tx_buffer_info->length = size;
4228 tx_buffer_info->dma = dma;
4229
4230 tx_desc->read.olinfo_status = 0;
4231 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4232
4233 frag++;
9d5c8243
AK
4234 }
4235
ebe42d16
AD
4236 /* write last descriptor with RS and EOP bits */
4237 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
4238 tx_desc->read.cmd_type_len = cmd_type;
8542db05
AD
4239
4240 /* set the timestamp */
4241 first->time_stamp = jiffies;
4242
ebe42d16
AD
4243 /*
4244 * Force memory writes to complete before letting h/w know there
4245 * are new descriptors to fetch. (Only applicable for weak-ordered
4246 * memory model archs, such as IA-64).
4247 *
4248 * We also need this memory barrier to make certain all of the
4249 * status bits have been updated before next_to_watch is written.
4250 */
4251 wmb();
4252
8542db05 4253 /* set next_to_watch value indicating a packet is present */
ebe42d16 4254 first->next_to_watch = tx_desc;
9d5c8243 4255
ebe42d16
AD
4256 i++;
4257 if (i == tx_ring->count)
4258 i = 0;
6366ad33 4259
ebe42d16 4260 tx_ring->next_to_use = i;
6366ad33 4261
ebe42d16 4262 writel(i, tx_ring->tail);
6366ad33 4263
ebe42d16
AD
4264 /* we need this if more than one processor can write to our tail
4265 * at a time, it syncronizes IO on IA64/Altix systems */
4266 mmiowb();
4267
4268 return;
4269
4270dma_error:
4271 dev_err(tx_ring->dev, "TX DMA map failed\n");
4272
4273 /* clear dma mappings for failed tx_buffer_info map */
4274 for (;;) {
4275 tx_buffer_info = &tx_ring->tx_buffer_info[i];
4276 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
4277 if (tx_buffer_info == first)
4278 break;
a77ff709
NN
4279 if (i == 0)
4280 i = tx_ring->count;
6366ad33 4281 i--;
6366ad33
AD
4282 }
4283
9d5c8243 4284 tx_ring->next_to_use = i;
9d5c8243
AK
4285}
4286
e694e964 4287static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4288{
e694e964
AD
4289 struct net_device *netdev = tx_ring->netdev;
4290
661086df 4291 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4292
9d5c8243
AK
4293 /* Herbert's original patch had:
4294 * smp_mb__after_netif_stop_queue();
4295 * but since that doesn't exist yet, just open code it. */
4296 smp_mb();
4297
4298 /* We need to check again in a case another CPU has just
4299 * made room available. */
c493ea45 4300 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4301 return -EBUSY;
4302
4303 /* A reprieve! */
661086df 4304 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4305
4306 u64_stats_update_begin(&tx_ring->tx_syncp2);
4307 tx_ring->tx_stats.restart_queue2++;
4308 u64_stats_update_end(&tx_ring->tx_syncp2);
4309
9d5c8243
AK
4310 return 0;
4311}
4312
717ba089 4313static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
9d5c8243 4314{
c493ea45 4315 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4316 return 0;
e694e964 4317 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4318}
4319
cd392f5c
AD
4320netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4321 struct igb_ring *tx_ring)
9d5c8243 4322{
8542db05 4323 struct igb_tx_buffer *first;
ebe42d16 4324 int tso;
91d4ee33 4325 u32 tx_flags = 0;
31f6adbb 4326 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4327 u8 hdr_len = 0;
9d5c8243 4328
9d5c8243
AK
4329 /* need: 1 descriptor per page,
4330 * + 2 desc gap to keep tail from touching head,
4331 * + 1 desc for skb->data,
4332 * + 1 desc for context descriptor,
4333 * otherwise try next time */
e694e964 4334 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
9d5c8243 4335 /* this is a hard error */
9d5c8243
AK
4336 return NETDEV_TX_BUSY;
4337 }
33af6bcc 4338
2244d07b
OH
4339 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4340 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
33af6bcc 4341 tx_flags |= IGB_TX_FLAGS_TSTAMP;
33af6bcc 4342 }
9d5c8243 4343
eab6d18d 4344 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4345 tx_flags |= IGB_TX_FLAGS_VLAN;
4346 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4347 }
4348
8542db05
AD
4349 /* record the location of the first descriptor for this packet */
4350 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
cdfd01fc 4351
31f6adbb 4352 tso = igb_tso(tx_ring, skb, tx_flags, protocol, &hdr_len);
e032afc8 4353 if (tso < 0) {
7d13a7d0 4354 goto out_drop;
e032afc8
AD
4355 } else if (tso) {
4356 tx_flags |= IGB_TX_FLAGS_TSO | IGB_TX_FLAGS_CSUM;
31f6adbb 4357 if (protocol == htons(ETH_P_IP))
e032afc8 4358 tx_flags |= IGB_TX_FLAGS_IPV4;
31f6adbb 4359 } else if (igb_tx_csum(tx_ring, skb, tx_flags, protocol) &&
e032afc8 4360 (skb->ip_summed == CHECKSUM_PARTIAL)) {
bc1cbd34 4361 tx_flags |= IGB_TX_FLAGS_CSUM;
e032afc8 4362 }
9d5c8243 4363
ebe42d16 4364 igb_tx_map(tx_ring, skb, first, tx_flags, hdr_len);
85ad76b2
AD
4365
4366 /* Make sure there is space in the ring for the next send. */
e694e964 4367 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
85ad76b2 4368
9d5c8243 4369 return NETDEV_TX_OK;
7d13a7d0
AD
4370
4371out_drop:
4372 dev_kfree_skb_any(skb);
4373 return NETDEV_TX_OK;
9d5c8243
AK
4374}
4375
1cc3bd87
AD
4376static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4377 struct sk_buff *skb)
4378{
4379 unsigned int r_idx = skb->queue_mapping;
4380
4381 if (r_idx >= adapter->num_tx_queues)
4382 r_idx = r_idx % adapter->num_tx_queues;
4383
4384 return adapter->tx_ring[r_idx];
4385}
4386
cd392f5c
AD
4387static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4388 struct net_device *netdev)
9d5c8243
AK
4389{
4390 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4391
4392 if (test_bit(__IGB_DOWN, &adapter->state)) {
4393 dev_kfree_skb_any(skb);
4394 return NETDEV_TX_OK;
4395 }
4396
4397 if (skb->len <= 0) {
4398 dev_kfree_skb_any(skb);
4399 return NETDEV_TX_OK;
4400 }
4401
1cc3bd87
AD
4402 /*
4403 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4404 * in order to meet this minimum size requirement.
4405 */
4406 if (skb->len < 17) {
4407 if (skb_padto(skb, 17))
4408 return NETDEV_TX_OK;
4409 skb->len = 17;
4410 }
9d5c8243 4411
1cc3bd87 4412 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4413}
4414
4415/**
4416 * igb_tx_timeout - Respond to a Tx Hang
4417 * @netdev: network interface device structure
4418 **/
4419static void igb_tx_timeout(struct net_device *netdev)
4420{
4421 struct igb_adapter *adapter = netdev_priv(netdev);
4422 struct e1000_hw *hw = &adapter->hw;
4423
4424 /* Do the reset outside of interrupt context */
4425 adapter->tx_timeout_count++;
f7ba205e 4426
55cac248
AD
4427 if (hw->mac.type == e1000_82580)
4428 hw->dev_spec._82575.global_device_reset = true;
4429
9d5c8243 4430 schedule_work(&adapter->reset_task);
265de409
AD
4431 wr32(E1000_EICS,
4432 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4433}
4434
4435static void igb_reset_task(struct work_struct *work)
4436{
4437 struct igb_adapter *adapter;
4438 adapter = container_of(work, struct igb_adapter, reset_task);
4439
c97ec42a
TI
4440 igb_dump(adapter);
4441 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4442 igb_reinit_locked(adapter);
4443}
4444
4445/**
12dcd86b 4446 * igb_get_stats64 - Get System Network Statistics
9d5c8243 4447 * @netdev: network interface device structure
12dcd86b 4448 * @stats: rtnl_link_stats64 pointer
9d5c8243 4449 *
9d5c8243 4450 **/
12dcd86b
ED
4451static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4452 struct rtnl_link_stats64 *stats)
9d5c8243 4453{
12dcd86b
ED
4454 struct igb_adapter *adapter = netdev_priv(netdev);
4455
4456 spin_lock(&adapter->stats64_lock);
4457 igb_update_stats(adapter, &adapter->stats64);
4458 memcpy(stats, &adapter->stats64, sizeof(*stats));
4459 spin_unlock(&adapter->stats64_lock);
4460
4461 return stats;
9d5c8243
AK
4462}
4463
4464/**
4465 * igb_change_mtu - Change the Maximum Transfer Unit
4466 * @netdev: network interface device structure
4467 * @new_mtu: new value for maximum frame size
4468 *
4469 * Returns 0 on success, negative on failure
4470 **/
4471static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4472{
4473 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4474 struct pci_dev *pdev = adapter->pdev;
153285f9 4475 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 4476
c809d227 4477 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4478 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4479 return -EINVAL;
4480 }
4481
153285f9 4482#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 4483 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4484 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4485 return -EINVAL;
4486 }
4487
4488 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4489 msleep(1);
73cd78f1 4490
9d5c8243
AK
4491 /* igb_down has a dependency on max_frame_size */
4492 adapter->max_frame_size = max_frame;
559e9c49 4493
4c844851
AD
4494 if (netif_running(netdev))
4495 igb_down(adapter);
9d5c8243 4496
090b1795 4497 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4498 netdev->mtu, new_mtu);
4499 netdev->mtu = new_mtu;
4500
4501 if (netif_running(netdev))
4502 igb_up(adapter);
4503 else
4504 igb_reset(adapter);
4505
4506 clear_bit(__IGB_RESETTING, &adapter->state);
4507
4508 return 0;
4509}
4510
4511/**
4512 * igb_update_stats - Update the board statistics counters
4513 * @adapter: board private structure
4514 **/
4515
12dcd86b
ED
4516void igb_update_stats(struct igb_adapter *adapter,
4517 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4518{
4519 struct e1000_hw *hw = &adapter->hw;
4520 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4521 u32 reg, mpc;
9d5c8243 4522 u16 phy_tmp;
3f9c0164
AD
4523 int i;
4524 u64 bytes, packets;
12dcd86b
ED
4525 unsigned int start;
4526 u64 _bytes, _packets;
9d5c8243
AK
4527
4528#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4529
4530 /*
4531 * Prevent stats update while adapter is being reset, or if the pci
4532 * connection is down.
4533 */
4534 if (adapter->link_speed == 0)
4535 return;
4536 if (pci_channel_offline(pdev))
4537 return;
4538
3f9c0164
AD
4539 bytes = 0;
4540 packets = 0;
4541 for (i = 0; i < adapter->num_rx_queues; i++) {
4542 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
3025a446 4543 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4544
3025a446 4545 ring->rx_stats.drops += rqdpc_tmp;
128e45eb 4546 net_stats->rx_fifo_errors += rqdpc_tmp;
12dcd86b
ED
4547
4548 do {
4549 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4550 _bytes = ring->rx_stats.bytes;
4551 _packets = ring->rx_stats.packets;
4552 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4553 bytes += _bytes;
4554 packets += _packets;
3f9c0164
AD
4555 }
4556
128e45eb
AD
4557 net_stats->rx_bytes = bytes;
4558 net_stats->rx_packets = packets;
3f9c0164
AD
4559
4560 bytes = 0;
4561 packets = 0;
4562 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4563 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4564 do {
4565 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4566 _bytes = ring->tx_stats.bytes;
4567 _packets = ring->tx_stats.packets;
4568 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4569 bytes += _bytes;
4570 packets += _packets;
3f9c0164 4571 }
128e45eb
AD
4572 net_stats->tx_bytes = bytes;
4573 net_stats->tx_packets = packets;
3f9c0164
AD
4574
4575 /* read stats registers */
9d5c8243
AK
4576 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4577 adapter->stats.gprc += rd32(E1000_GPRC);
4578 adapter->stats.gorc += rd32(E1000_GORCL);
4579 rd32(E1000_GORCH); /* clear GORCL */
4580 adapter->stats.bprc += rd32(E1000_BPRC);
4581 adapter->stats.mprc += rd32(E1000_MPRC);
4582 adapter->stats.roc += rd32(E1000_ROC);
4583
4584 adapter->stats.prc64 += rd32(E1000_PRC64);
4585 adapter->stats.prc127 += rd32(E1000_PRC127);
4586 adapter->stats.prc255 += rd32(E1000_PRC255);
4587 adapter->stats.prc511 += rd32(E1000_PRC511);
4588 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4589 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4590 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4591 adapter->stats.sec += rd32(E1000_SEC);
4592
fa3d9a6d
MW
4593 mpc = rd32(E1000_MPC);
4594 adapter->stats.mpc += mpc;
4595 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4596 adapter->stats.scc += rd32(E1000_SCC);
4597 adapter->stats.ecol += rd32(E1000_ECOL);
4598 adapter->stats.mcc += rd32(E1000_MCC);
4599 adapter->stats.latecol += rd32(E1000_LATECOL);
4600 adapter->stats.dc += rd32(E1000_DC);
4601 adapter->stats.rlec += rd32(E1000_RLEC);
4602 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4603 adapter->stats.xontxc += rd32(E1000_XONTXC);
4604 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4605 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4606 adapter->stats.fcruc += rd32(E1000_FCRUC);
4607 adapter->stats.gptc += rd32(E1000_GPTC);
4608 adapter->stats.gotc += rd32(E1000_GOTCL);
4609 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4610 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4611 adapter->stats.ruc += rd32(E1000_RUC);
4612 adapter->stats.rfc += rd32(E1000_RFC);
4613 adapter->stats.rjc += rd32(E1000_RJC);
4614 adapter->stats.tor += rd32(E1000_TORH);
4615 adapter->stats.tot += rd32(E1000_TOTH);
4616 adapter->stats.tpr += rd32(E1000_TPR);
4617
4618 adapter->stats.ptc64 += rd32(E1000_PTC64);
4619 adapter->stats.ptc127 += rd32(E1000_PTC127);
4620 adapter->stats.ptc255 += rd32(E1000_PTC255);
4621 adapter->stats.ptc511 += rd32(E1000_PTC511);
4622 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4623 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4624
4625 adapter->stats.mptc += rd32(E1000_MPTC);
4626 adapter->stats.bptc += rd32(E1000_BPTC);
4627
2d0b0f69
NN
4628 adapter->stats.tpt += rd32(E1000_TPT);
4629 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4630
4631 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4632 /* read internal phy specific stats */
4633 reg = rd32(E1000_CTRL_EXT);
4634 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4635 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4636 adapter->stats.tncrs += rd32(E1000_TNCRS);
4637 }
4638
9d5c8243
AK
4639 adapter->stats.tsctc += rd32(E1000_TSCTC);
4640 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4641
4642 adapter->stats.iac += rd32(E1000_IAC);
4643 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4644 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4645 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4646 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4647 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4648 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4649 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4650 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4651
4652 /* Fill out the OS statistics structure */
128e45eb
AD
4653 net_stats->multicast = adapter->stats.mprc;
4654 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4655
4656 /* Rx Errors */
4657
4658 /* RLEC on some newer hardware can be incorrect so build
8c0ab70a 4659 * our own version based on RUC and ROC */
128e45eb 4660 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4661 adapter->stats.crcerrs + adapter->stats.algnerrc +
4662 adapter->stats.ruc + adapter->stats.roc +
4663 adapter->stats.cexterr;
128e45eb
AD
4664 net_stats->rx_length_errors = adapter->stats.ruc +
4665 adapter->stats.roc;
4666 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4667 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4668 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4669
4670 /* Tx Errors */
128e45eb
AD
4671 net_stats->tx_errors = adapter->stats.ecol +
4672 adapter->stats.latecol;
4673 net_stats->tx_aborted_errors = adapter->stats.ecol;
4674 net_stats->tx_window_errors = adapter->stats.latecol;
4675 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4676
4677 /* Tx Dropped needs to be maintained elsewhere */
4678
4679 /* Phy Stats */
4680 if (hw->phy.media_type == e1000_media_type_copper) {
4681 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 4682 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
4683 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4684 adapter->phy_stats.idle_errors += phy_tmp;
4685 }
4686 }
4687
4688 /* Management Stats */
4689 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4690 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4691 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
4692
4693 /* OS2BMC Stats */
4694 reg = rd32(E1000_MANC);
4695 if (reg & E1000_MANC_EN_BMC2OS) {
4696 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4697 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4698 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4699 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4700 }
9d5c8243
AK
4701}
4702
9d5c8243
AK
4703static irqreturn_t igb_msix_other(int irq, void *data)
4704{
047e0030 4705 struct igb_adapter *adapter = data;
9d5c8243 4706 struct e1000_hw *hw = &adapter->hw;
844290e5 4707 u32 icr = rd32(E1000_ICR);
844290e5 4708 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 4709
7f081d40
AD
4710 if (icr & E1000_ICR_DRSTA)
4711 schedule_work(&adapter->reset_task);
4712
047e0030 4713 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
4714 /* HW is reporting DMA is out of sync */
4715 adapter->stats.doosync++;
13800469
GR
4716 /* The DMA Out of Sync is also indication of a spoof event
4717 * in IOV mode. Check the Wrong VM Behavior register to
4718 * see if it is really a spoof event. */
4719 igb_check_wvbr(adapter);
dda0e083 4720 }
eebbbdba 4721
4ae196df
AD
4722 /* Check for a mailbox event */
4723 if (icr & E1000_ICR_VMMB)
4724 igb_msg_task(adapter);
4725
4726 if (icr & E1000_ICR_LSC) {
4727 hw->mac.get_link_status = 1;
4728 /* guard against interrupt when we're going down */
4729 if (!test_bit(__IGB_DOWN, &adapter->state))
4730 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4731 }
4732
25568a53
AD
4733 if (adapter->vfs_allocated_count)
4734 wr32(E1000_IMS, E1000_IMS_LSC |
4735 E1000_IMS_VMMB |
4736 E1000_IMS_DOUTSYNC);
4737 else
4738 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
844290e5 4739 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
4740
4741 return IRQ_HANDLED;
4742}
4743
047e0030 4744static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 4745{
26b39276 4746 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4747 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 4748
047e0030
AD
4749 if (!q_vector->set_itr)
4750 return;
73cd78f1 4751
047e0030
AD
4752 if (!itr_val)
4753 itr_val = 0x4;
661086df 4754
26b39276
AD
4755 if (adapter->hw.mac.type == e1000_82575)
4756 itr_val |= itr_val << 16;
661086df 4757 else
047e0030 4758 itr_val |= 0x8000000;
661086df 4759
047e0030
AD
4760 writel(itr_val, q_vector->itr_register);
4761 q_vector->set_itr = 0;
6eb5a7f1
AD
4762}
4763
047e0030 4764static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 4765{
047e0030 4766 struct igb_q_vector *q_vector = data;
9d5c8243 4767
047e0030
AD
4768 /* Write the ITR value calculated from the previous interrupt. */
4769 igb_write_itr(q_vector);
9d5c8243 4770
047e0030 4771 napi_schedule(&q_vector->napi);
844290e5 4772
047e0030 4773 return IRQ_HANDLED;
fe4506b6
JC
4774}
4775
421e02f0 4776#ifdef CONFIG_IGB_DCA
047e0030 4777static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 4778{
047e0030 4779 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6
JC
4780 struct e1000_hw *hw = &adapter->hw;
4781 int cpu = get_cpu();
fe4506b6 4782
047e0030
AD
4783 if (q_vector->cpu == cpu)
4784 goto out_no_update;
4785
4786 if (q_vector->tx_ring) {
4787 int q = q_vector->tx_ring->reg_idx;
4788 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4789 if (hw->mac.type == e1000_82575) {
4790 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4791 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
2d064c06 4792 } else {
047e0030
AD
4793 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4794 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4795 E1000_DCA_TXCTRL_CPUID_SHIFT;
4796 }
4797 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4798 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4799 }
4800 if (q_vector->rx_ring) {
4801 int q = q_vector->rx_ring->reg_idx;
4802 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4803 if (hw->mac.type == e1000_82575) {
2d064c06 4804 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
92be7917 4805 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
047e0030
AD
4806 } else {
4807 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4808 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4809 E1000_DCA_RXCTRL_CPUID_SHIFT;
2d064c06 4810 }
fe4506b6
JC
4811 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4812 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4813 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4814 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
fe4506b6 4815 }
047e0030
AD
4816 q_vector->cpu = cpu;
4817out_no_update:
fe4506b6
JC
4818 put_cpu();
4819}
4820
4821static void igb_setup_dca(struct igb_adapter *adapter)
4822{
7e0e99ef 4823 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
4824 int i;
4825
7dfc16fa 4826 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
4827 return;
4828
7e0e99ef
AD
4829 /* Always use CB2 mode, difference is masked in the CB driver. */
4830 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4831
047e0030 4832 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
4833 adapter->q_vector[i]->cpu = -1;
4834 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
4835 }
4836}
4837
4838static int __igb_notify_dca(struct device *dev, void *data)
4839{
4840 struct net_device *netdev = dev_get_drvdata(dev);
4841 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4842 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
4843 struct e1000_hw *hw = &adapter->hw;
4844 unsigned long event = *(unsigned long *)data;
4845
4846 switch (event) {
4847 case DCA_PROVIDER_ADD:
4848 /* if already enabled, don't do it again */
7dfc16fa 4849 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 4850 break;
fe4506b6 4851 if (dca_add_requester(dev) == 0) {
bbd98fe4 4852 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 4853 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
4854 igb_setup_dca(adapter);
4855 break;
4856 }
4857 /* Fall Through since DCA is disabled. */
4858 case DCA_PROVIDER_REMOVE:
7dfc16fa 4859 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 4860 /* without this a class_device is left
047e0030 4861 * hanging around in the sysfs model */
fe4506b6 4862 dca_remove_requester(dev);
090b1795 4863 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 4864 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 4865 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
4866 }
4867 break;
4868 }
bbd98fe4 4869
fe4506b6 4870 return 0;
9d5c8243
AK
4871}
4872
fe4506b6
JC
4873static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4874 void *p)
4875{
4876 int ret_val;
4877
4878 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4879 __igb_notify_dca);
4880
4881 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4882}
421e02f0 4883#endif /* CONFIG_IGB_DCA */
9d5c8243 4884
4ae196df
AD
4885static void igb_ping_all_vfs(struct igb_adapter *adapter)
4886{
4887 struct e1000_hw *hw = &adapter->hw;
4888 u32 ping;
4889 int i;
4890
4891 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4892 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 4893 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
4894 ping |= E1000_VT_MSGTYPE_CTS;
4895 igb_write_mbx(hw, &ping, 1, i);
4896 }
4897}
4898
7d5753f0
AD
4899static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4900{
4901 struct e1000_hw *hw = &adapter->hw;
4902 u32 vmolr = rd32(E1000_VMOLR(vf));
4903 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4904
d85b9004 4905 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7d5753f0
AD
4906 IGB_VF_FLAG_MULTI_PROMISC);
4907 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4908
4909 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4910 vmolr |= E1000_VMOLR_MPME;
d85b9004 4911 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
4912 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4913 } else {
4914 /*
4915 * if we have hashes and we are clearing a multicast promisc
4916 * flag we need to write the hashes to the MTA as this step
4917 * was previously skipped
4918 */
4919 if (vf_data->num_vf_mc_hashes > 30) {
4920 vmolr |= E1000_VMOLR_MPME;
4921 } else if (vf_data->num_vf_mc_hashes) {
4922 int j;
4923 vmolr |= E1000_VMOLR_ROMPE;
4924 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4925 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4926 }
4927 }
4928
4929 wr32(E1000_VMOLR(vf), vmolr);
4930
4931 /* there are flags left unprocessed, likely not supported */
4932 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4933 return -EINVAL;
4934
4935 return 0;
4936
4937}
4938
4ae196df
AD
4939static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4940 u32 *msgbuf, u32 vf)
4941{
4942 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4943 u16 *hash_list = (u16 *)&msgbuf[1];
4944 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4945 int i;
4946
7d5753f0 4947 /* salt away the number of multicast addresses assigned
4ae196df
AD
4948 * to this VF for later use to restore when the PF multi cast
4949 * list changes
4950 */
4951 vf_data->num_vf_mc_hashes = n;
4952
7d5753f0
AD
4953 /* only up to 30 hash values supported */
4954 if (n > 30)
4955 n = 30;
4956
4957 /* store the hashes for later use */
4ae196df 4958 for (i = 0; i < n; i++)
a419aef8 4959 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
4960
4961 /* Flush and reset the mta with the new values */
ff41f8dc 4962 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
4963
4964 return 0;
4965}
4966
4967static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4968{
4969 struct e1000_hw *hw = &adapter->hw;
4970 struct vf_data_storage *vf_data;
4971 int i, j;
4972
4973 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
4974 u32 vmolr = rd32(E1000_VMOLR(i));
4975 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4976
4ae196df 4977 vf_data = &adapter->vf_data[i];
7d5753f0
AD
4978
4979 if ((vf_data->num_vf_mc_hashes > 30) ||
4980 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4981 vmolr |= E1000_VMOLR_MPME;
4982 } else if (vf_data->num_vf_mc_hashes) {
4983 vmolr |= E1000_VMOLR_ROMPE;
4984 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4985 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4986 }
4987 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
4988 }
4989}
4990
4991static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4992{
4993 struct e1000_hw *hw = &adapter->hw;
4994 u32 pool_mask, reg, vid;
4995 int i;
4996
4997 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4998
4999 /* Find the vlan filter for this id */
5000 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5001 reg = rd32(E1000_VLVF(i));
5002
5003 /* remove the vf from the pool */
5004 reg &= ~pool_mask;
5005
5006 /* if pool is empty then remove entry from vfta */
5007 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5008 (reg & E1000_VLVF_VLANID_ENABLE)) {
5009 reg = 0;
5010 vid = reg & E1000_VLVF_VLANID_MASK;
5011 igb_vfta_set(hw, vid, false);
5012 }
5013
5014 wr32(E1000_VLVF(i), reg);
5015 }
ae641bdc
AD
5016
5017 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5018}
5019
5020static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5021{
5022 struct e1000_hw *hw = &adapter->hw;
5023 u32 reg, i;
5024
51466239
AD
5025 /* The vlvf table only exists on 82576 hardware and newer */
5026 if (hw->mac.type < e1000_82576)
5027 return -1;
5028
5029 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5030 if (!adapter->vfs_allocated_count)
5031 return -1;
5032
5033 /* Find the vlan filter for this id */
5034 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5035 reg = rd32(E1000_VLVF(i));
5036 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5037 vid == (reg & E1000_VLVF_VLANID_MASK))
5038 break;
5039 }
5040
5041 if (add) {
5042 if (i == E1000_VLVF_ARRAY_SIZE) {
5043 /* Did not find a matching VLAN ID entry that was
5044 * enabled. Search for a free filter entry, i.e.
5045 * one without the enable bit set
5046 */
5047 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5048 reg = rd32(E1000_VLVF(i));
5049 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5050 break;
5051 }
5052 }
5053 if (i < E1000_VLVF_ARRAY_SIZE) {
5054 /* Found an enabled/available entry */
5055 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5056
5057 /* if !enabled we need to set this up in vfta */
5058 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5059 /* add VID to filter table */
5060 igb_vfta_set(hw, vid, true);
4ae196df
AD
5061 reg |= E1000_VLVF_VLANID_ENABLE;
5062 }
cad6d05f
AD
5063 reg &= ~E1000_VLVF_VLANID_MASK;
5064 reg |= vid;
4ae196df 5065 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5066
5067 /* do not modify RLPML for PF devices */
5068 if (vf >= adapter->vfs_allocated_count)
5069 return 0;
5070
5071 if (!adapter->vf_data[vf].vlans_enabled) {
5072 u32 size;
5073 reg = rd32(E1000_VMOLR(vf));
5074 size = reg & E1000_VMOLR_RLPML_MASK;
5075 size += 4;
5076 reg &= ~E1000_VMOLR_RLPML_MASK;
5077 reg |= size;
5078 wr32(E1000_VMOLR(vf), reg);
5079 }
ae641bdc 5080
51466239 5081 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5082 return 0;
5083 }
5084 } else {
5085 if (i < E1000_VLVF_ARRAY_SIZE) {
5086 /* remove vf from the pool */
5087 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5088 /* if pool is empty then remove entry from vfta */
5089 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5090 reg = 0;
5091 igb_vfta_set(hw, vid, false);
5092 }
5093 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5094
5095 /* do not modify RLPML for PF devices */
5096 if (vf >= adapter->vfs_allocated_count)
5097 return 0;
5098
5099 adapter->vf_data[vf].vlans_enabled--;
5100 if (!adapter->vf_data[vf].vlans_enabled) {
5101 u32 size;
5102 reg = rd32(E1000_VMOLR(vf));
5103 size = reg & E1000_VMOLR_RLPML_MASK;
5104 size -= 4;
5105 reg &= ~E1000_VMOLR_RLPML_MASK;
5106 reg |= size;
5107 wr32(E1000_VMOLR(vf), reg);
5108 }
4ae196df
AD
5109 }
5110 }
8151d294
WM
5111 return 0;
5112}
5113
5114static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5115{
5116 struct e1000_hw *hw = &adapter->hw;
5117
5118 if (vid)
5119 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5120 else
5121 wr32(E1000_VMVIR(vf), 0);
5122}
5123
5124static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5125 int vf, u16 vlan, u8 qos)
5126{
5127 int err = 0;
5128 struct igb_adapter *adapter = netdev_priv(netdev);
5129
5130 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5131 return -EINVAL;
5132 if (vlan || qos) {
5133 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5134 if (err)
5135 goto out;
5136 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5137 igb_set_vmolr(adapter, vf, !vlan);
5138 adapter->vf_data[vf].pf_vlan = vlan;
5139 adapter->vf_data[vf].pf_qos = qos;
5140 dev_info(&adapter->pdev->dev,
5141 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5142 if (test_bit(__IGB_DOWN, &adapter->state)) {
5143 dev_warn(&adapter->pdev->dev,
5144 "The VF VLAN has been set,"
5145 " but the PF device is not up.\n");
5146 dev_warn(&adapter->pdev->dev,
5147 "Bring the PF device up before"
5148 " attempting to use the VF device.\n");
5149 }
5150 } else {
5151 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5152 false, vf);
5153 igb_set_vmvir(adapter, vlan, vf);
5154 igb_set_vmolr(adapter, vf, true);
5155 adapter->vf_data[vf].pf_vlan = 0;
5156 adapter->vf_data[vf].pf_qos = 0;
5157 }
5158out:
5159 return err;
4ae196df
AD
5160}
5161
5162static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5163{
5164 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5165 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5166
5167 return igb_vlvf_set(adapter, vid, add, vf);
5168}
5169
f2ca0dbe 5170static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5171{
8fa7e0f7
GR
5172 /* clear flags - except flag that indicates PF has set the MAC */
5173 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5174 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5175
5176 /* reset offloads to defaults */
8151d294 5177 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5178
5179 /* reset vlans for device */
5180 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5181 if (adapter->vf_data[vf].pf_vlan)
5182 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5183 adapter->vf_data[vf].pf_vlan,
5184 adapter->vf_data[vf].pf_qos);
5185 else
5186 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5187
5188 /* reset multicast table array for vf */
5189 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5190
5191 /* Flush and reset the mta with the new values */
ff41f8dc 5192 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5193}
5194
f2ca0dbe
AD
5195static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5196{
5197 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5198
5199 /* generate a new mac address as we were hotplug removed/added */
8151d294
WM
5200 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5201 random_ether_addr(vf_mac);
f2ca0dbe
AD
5202
5203 /* process remaining reset events */
5204 igb_vf_reset(adapter, vf);
5205}
5206
5207static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5208{
5209 struct e1000_hw *hw = &adapter->hw;
5210 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5211 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5212 u32 reg, msgbuf[3];
5213 u8 *addr = (u8 *)(&msgbuf[1]);
5214
5215 /* process all the same items cleared in a function level reset */
f2ca0dbe 5216 igb_vf_reset(adapter, vf);
4ae196df
AD
5217
5218 /* set vf mac address */
26ad9178 5219 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5220
5221 /* enable transmit and receive for vf */
5222 reg = rd32(E1000_VFTE);
5223 wr32(E1000_VFTE, reg | (1 << vf));
5224 reg = rd32(E1000_VFRE);
5225 wr32(E1000_VFRE, reg | (1 << vf));
5226
8fa7e0f7 5227 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5228
5229 /* reply to reset with ack and vf mac address */
5230 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5231 memcpy(addr, vf_mac, 6);
5232 igb_write_mbx(hw, msgbuf, 3, vf);
5233}
5234
5235static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5236{
de42edde
GR
5237 /*
5238 * The VF MAC Address is stored in a packed array of bytes
5239 * starting at the second 32 bit word of the msg array
5240 */
f2ca0dbe
AD
5241 unsigned char *addr = (char *)&msg[1];
5242 int err = -1;
4ae196df 5243
f2ca0dbe
AD
5244 if (is_valid_ether_addr(addr))
5245 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5246
f2ca0dbe 5247 return err;
4ae196df
AD
5248}
5249
5250static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5251{
5252 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5253 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5254 u32 msg = E1000_VT_MSGTYPE_NACK;
5255
5256 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5257 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5258 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5259 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5260 vf_data->last_nack = jiffies;
4ae196df
AD
5261 }
5262}
5263
f2ca0dbe 5264static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5265{
f2ca0dbe
AD
5266 struct pci_dev *pdev = adapter->pdev;
5267 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5268 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5269 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5270 s32 retval;
5271
f2ca0dbe 5272 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5273
fef45f4c
AD
5274 if (retval) {
5275 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5276 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5277 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5278 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5279 return;
5280 goto out;
5281 }
4ae196df
AD
5282
5283 /* this is a message we already processed, do nothing */
5284 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5285 return;
4ae196df
AD
5286
5287 /*
5288 * until the vf completes a reset it should not be
5289 * allowed to start any configuration.
5290 */
5291
5292 if (msgbuf[0] == E1000_VF_RESET) {
5293 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5294 return;
4ae196df
AD
5295 }
5296
f2ca0dbe 5297 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5298 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5299 return;
5300 retval = -1;
5301 goto out;
4ae196df
AD
5302 }
5303
5304 switch ((msgbuf[0] & 0xFFFF)) {
5305 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5306 retval = -EINVAL;
5307 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5308 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5309 else
5310 dev_warn(&pdev->dev,
5311 "VF %d attempted to override administratively "
5312 "set MAC address\nReload the VF driver to "
5313 "resume operations\n", vf);
4ae196df 5314 break;
7d5753f0
AD
5315 case E1000_VF_SET_PROMISC:
5316 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5317 break;
4ae196df
AD
5318 case E1000_VF_SET_MULTICAST:
5319 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5320 break;
5321 case E1000_VF_SET_LPE:
5322 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5323 break;
5324 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5325 retval = -1;
5326 if (vf_data->pf_vlan)
5327 dev_warn(&pdev->dev,
5328 "VF %d attempted to override administratively "
5329 "set VLAN tag\nReload the VF driver to "
5330 "resume operations\n", vf);
8151d294
WM
5331 else
5332 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5333 break;
5334 default:
090b1795 5335 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5336 retval = -1;
5337 break;
5338 }
5339
fef45f4c
AD
5340 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5341out:
4ae196df
AD
5342 /* notify the VF of the results of what it sent us */
5343 if (retval)
5344 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5345 else
5346 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5347
4ae196df 5348 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5349}
4ae196df 5350
f2ca0dbe
AD
5351static void igb_msg_task(struct igb_adapter *adapter)
5352{
5353 struct e1000_hw *hw = &adapter->hw;
5354 u32 vf;
5355
5356 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5357 /* process any reset requests */
5358 if (!igb_check_for_rst(hw, vf))
5359 igb_vf_reset_event(adapter, vf);
5360
5361 /* process any messages pending */
5362 if (!igb_check_for_msg(hw, vf))
5363 igb_rcv_msg_from_vf(adapter, vf);
5364
5365 /* process any acks */
5366 if (!igb_check_for_ack(hw, vf))
5367 igb_rcv_ack_from_vf(adapter, vf);
5368 }
4ae196df
AD
5369}
5370
68d480c4
AD
5371/**
5372 * igb_set_uta - Set unicast filter table address
5373 * @adapter: board private structure
5374 *
5375 * The unicast table address is a register array of 32-bit registers.
5376 * The table is meant to be used in a way similar to how the MTA is used
5377 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5378 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5379 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5380 **/
5381static void igb_set_uta(struct igb_adapter *adapter)
5382{
5383 struct e1000_hw *hw = &adapter->hw;
5384 int i;
5385
5386 /* The UTA table only exists on 82576 hardware and newer */
5387 if (hw->mac.type < e1000_82576)
5388 return;
5389
5390 /* we only need to do this if VMDq is enabled */
5391 if (!adapter->vfs_allocated_count)
5392 return;
5393
5394 for (i = 0; i < hw->mac.uta_reg_count; i++)
5395 array_wr32(E1000_UTA, i, ~0);
5396}
5397
9d5c8243
AK
5398/**
5399 * igb_intr_msi - Interrupt Handler
5400 * @irq: interrupt number
5401 * @data: pointer to a network interface device structure
5402 **/
5403static irqreturn_t igb_intr_msi(int irq, void *data)
5404{
047e0030
AD
5405 struct igb_adapter *adapter = data;
5406 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5407 struct e1000_hw *hw = &adapter->hw;
5408 /* read ICR disables interrupts using IAM */
5409 u32 icr = rd32(E1000_ICR);
5410
047e0030 5411 igb_write_itr(q_vector);
9d5c8243 5412
7f081d40
AD
5413 if (icr & E1000_ICR_DRSTA)
5414 schedule_work(&adapter->reset_task);
5415
047e0030 5416 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5417 /* HW is reporting DMA is out of sync */
5418 adapter->stats.doosync++;
5419 }
5420
9d5c8243
AK
5421 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5422 hw->mac.get_link_status = 1;
5423 if (!test_bit(__IGB_DOWN, &adapter->state))
5424 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5425 }
5426
047e0030 5427 napi_schedule(&q_vector->napi);
9d5c8243
AK
5428
5429 return IRQ_HANDLED;
5430}
5431
5432/**
4a3c6433 5433 * igb_intr - Legacy Interrupt Handler
9d5c8243
AK
5434 * @irq: interrupt number
5435 * @data: pointer to a network interface device structure
5436 **/
5437static irqreturn_t igb_intr(int irq, void *data)
5438{
047e0030
AD
5439 struct igb_adapter *adapter = data;
5440 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5441 struct e1000_hw *hw = &adapter->hw;
5442 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5443 * need for the IMC write */
5444 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5445 if (!icr)
5446 return IRQ_NONE; /* Not our interrupt */
5447
047e0030 5448 igb_write_itr(q_vector);
9d5c8243
AK
5449
5450 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5451 * not set, then the adapter didn't send an interrupt */
5452 if (!(icr & E1000_ICR_INT_ASSERTED))
5453 return IRQ_NONE;
5454
7f081d40
AD
5455 if (icr & E1000_ICR_DRSTA)
5456 schedule_work(&adapter->reset_task);
5457
047e0030 5458 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5459 /* HW is reporting DMA is out of sync */
5460 adapter->stats.doosync++;
5461 }
5462
9d5c8243
AK
5463 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5464 hw->mac.get_link_status = 1;
5465 /* guard against interrupt when we're going down */
5466 if (!test_bit(__IGB_DOWN, &adapter->state))
5467 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5468 }
5469
047e0030 5470 napi_schedule(&q_vector->napi);
9d5c8243
AK
5471
5472 return IRQ_HANDLED;
5473}
5474
047e0030 5475static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5476{
047e0030 5477 struct igb_adapter *adapter = q_vector->adapter;
46544258 5478 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5479
4fc82adf
AD
5480 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5481 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
047e0030 5482 if (!adapter->msix_entries)
6eb5a7f1 5483 igb_set_itr(adapter);
46544258 5484 else
047e0030 5485 igb_update_ring_itr(q_vector);
9d5c8243
AK
5486 }
5487
46544258
AD
5488 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5489 if (adapter->msix_entries)
047e0030 5490 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5491 else
5492 igb_irq_enable(adapter);
5493 }
9d5c8243
AK
5494}
5495
46544258
AD
5496/**
5497 * igb_poll - NAPI Rx polling callback
5498 * @napi: napi polling structure
5499 * @budget: count of how many packets we should handle
5500 **/
5501static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5502{
047e0030
AD
5503 struct igb_q_vector *q_vector = container_of(napi,
5504 struct igb_q_vector,
5505 napi);
16eb8815 5506 bool clean_complete = true;
9d5c8243 5507
421e02f0 5508#ifdef CONFIG_IGB_DCA
047e0030
AD
5509 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5510 igb_update_dca(q_vector);
fe4506b6 5511#endif
047e0030 5512 if (q_vector->tx_ring)
13fde97a 5513 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5514
047e0030 5515 if (q_vector->rx_ring)
cd392f5c 5516 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 5517
16eb8815
AD
5518 /* If all work not completed, return budget and keep polling */
5519 if (!clean_complete)
5520 return budget;
46544258 5521
9d5c8243 5522 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
5523 napi_complete(napi);
5524 igb_ring_irq_enable(q_vector);
9d5c8243 5525
16eb8815 5526 return 0;
9d5c8243 5527}
6d8126f9 5528
33af6bcc 5529/**
c5b9bd5e 5530 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
33af6bcc 5531 * @adapter: board private structure
c5b9bd5e
AD
5532 * @shhwtstamps: timestamp structure to update
5533 * @regval: unsigned 64bit system time value.
5534 *
5535 * We need to convert the system time value stored in the RX/TXSTMP registers
5536 * into a hwtstamp which can be used by the upper level timestamping functions
5537 */
5538static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5539 struct skb_shared_hwtstamps *shhwtstamps,
5540 u64 regval)
5541{
5542 u64 ns;
5543
55cac248
AD
5544 /*
5545 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5546 * 24 to match clock shift we setup earlier.
5547 */
5548 if (adapter->hw.mac.type == e1000_82580)
5549 regval <<= IGB_82580_TSYNC_SHIFT;
5550
c5b9bd5e
AD
5551 ns = timecounter_cyc2time(&adapter->clock, regval);
5552 timecompare_update(&adapter->compare, ns);
5553 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5554 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5555 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5556}
5557
5558/**
5559 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5560 * @q_vector: pointer to q_vector containing needed info
06034649 5561 * @buffer: pointer to igb_tx_buffer structure
33af6bcc
PO
5562 *
5563 * If we were asked to do hardware stamping and such a time stamp is
5564 * available, then it must have been for this skb here because we only
5565 * allow only one such packet into the queue.
5566 */
06034649
AD
5567static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
5568 struct igb_tx_buffer *buffer_info)
33af6bcc 5569{
c5b9bd5e 5570 struct igb_adapter *adapter = q_vector->adapter;
33af6bcc 5571 struct e1000_hw *hw = &adapter->hw;
c5b9bd5e
AD
5572 struct skb_shared_hwtstamps shhwtstamps;
5573 u64 regval;
33af6bcc 5574
c5b9bd5e 5575 /* if skb does not support hw timestamp or TX stamp not valid exit */
2bbfebe2 5576 if (likely(!(buffer_info->tx_flags & IGB_TX_FLAGS_TSTAMP)) ||
c5b9bd5e
AD
5577 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5578 return;
5579
5580 regval = rd32(E1000_TXSTMPL);
5581 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5582
5583 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
2873957d 5584 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
33af6bcc
PO
5585}
5586
9d5c8243
AK
5587/**
5588 * igb_clean_tx_irq - Reclaim resources after transmit completes
047e0030 5589 * @q_vector: pointer to q_vector containing needed info
9d5c8243
AK
5590 * returns true if ring is completely cleaned
5591 **/
047e0030 5592static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5593{
047e0030
AD
5594 struct igb_adapter *adapter = q_vector->adapter;
5595 struct igb_ring *tx_ring = q_vector->tx_ring;
06034649 5596 struct igb_tx_buffer *tx_buffer;
8542db05 5597 union e1000_adv_tx_desc *tx_desc, *eop_desc;
9d5c8243 5598 unsigned int total_bytes = 0, total_packets = 0;
13fde97a 5599 unsigned int budget = q_vector->tx_work_limit;
8542db05 5600 unsigned int i = tx_ring->next_to_clean;
9d5c8243 5601
13fde97a
AD
5602 if (test_bit(__IGB_DOWN, &adapter->state))
5603 return true;
0e014cb1 5604
06034649 5605 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 5606 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 5607 i -= tx_ring->count;
9d5c8243 5608
13fde97a 5609 for (; budget; budget--) {
8542db05 5610 eop_desc = tx_buffer->next_to_watch;
13fde97a 5611
8542db05
AD
5612 /* prevent any other reads prior to eop_desc */
5613 rmb();
5614
5615 /* if next_to_watch is not set then there is no work pending */
5616 if (!eop_desc)
5617 break;
13fde97a
AD
5618
5619 /* if DD is not set pending work has not been completed */
5620 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5621 break;
5622
8542db05
AD
5623 /* clear next_to_watch to prevent false hangs */
5624 tx_buffer->next_to_watch = NULL;
9d5c8243 5625
ebe42d16
AD
5626 /* update the statistics for this packet */
5627 total_bytes += tx_buffer->bytecount;
5628 total_packets += tx_buffer->gso_segs;
13fde97a 5629
ebe42d16
AD
5630 /* retrieve hardware timestamp */
5631 igb_tx_hwtstamp(q_vector, tx_buffer);
5632
5633 /* free the skb */
5634 dev_kfree_skb_any(tx_buffer->skb);
5635 tx_buffer->skb = NULL;
13fde97a 5636
ebe42d16
AD
5637 /* unmap skb header data */
5638 dma_unmap_single(tx_ring->dev,
5639 tx_buffer->dma,
5640 tx_buffer->length,
5641 DMA_TO_DEVICE);
5642
5643 /* clear last DMA location and unmap remaining buffers */
5644 while (tx_desc != eop_desc) {
5645 tx_buffer->dma = 0;
9d5c8243 5646
13fde97a
AD
5647 tx_buffer++;
5648 tx_desc++;
9d5c8243 5649 i++;
8542db05
AD
5650 if (unlikely(!i)) {
5651 i -= tx_ring->count;
06034649 5652 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
5653 tx_desc = IGB_TX_DESC(tx_ring, 0);
5654 }
ebe42d16
AD
5655
5656 /* unmap any remaining paged data */
5657 if (tx_buffer->dma) {
5658 dma_unmap_page(tx_ring->dev,
5659 tx_buffer->dma,
5660 tx_buffer->length,
5661 DMA_TO_DEVICE);
5662 }
5663 }
5664
5665 /* clear last DMA location */
5666 tx_buffer->dma = 0;
5667
5668 /* move us one more past the eop_desc for start of next pkt */
5669 tx_buffer++;
5670 tx_desc++;
5671 i++;
5672 if (unlikely(!i)) {
5673 i -= tx_ring->count;
5674 tx_buffer = tx_ring->tx_buffer_info;
5675 tx_desc = IGB_TX_DESC(tx_ring, 0);
5676 }
0e014cb1
AD
5677 }
5678
8542db05 5679 i += tx_ring->count;
9d5c8243 5680 tx_ring->next_to_clean = i;
13fde97a
AD
5681 u64_stats_update_begin(&tx_ring->tx_syncp);
5682 tx_ring->tx_stats.bytes += total_bytes;
5683 tx_ring->tx_stats.packets += total_packets;
5684 u64_stats_update_end(&tx_ring->tx_syncp);
5685 tx_ring->total_bytes += total_bytes;
5686 tx_ring->total_packets += total_packets;
9d5c8243 5687
13fde97a
AD
5688 if (tx_ring->detect_tx_hung) {
5689 struct e1000_hw *hw = &adapter->hw;
12dcd86b 5690
8542db05 5691 eop_desc = tx_buffer->next_to_watch;
9d5c8243 5692
9d5c8243
AK
5693 /* Detect a transmit hang in hardware, this serializes the
5694 * check with the clearing of time_stamp and movement of i */
5695 tx_ring->detect_tx_hung = false;
8542db05
AD
5696 if (eop_desc &&
5697 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
5698 (adapter->tx_timeout_factor * HZ)) &&
5699 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 5700
9d5c8243 5701 /* detected Tx unit hang */
59d71989 5702 dev_err(tx_ring->dev,
9d5c8243 5703 "Detected Tx Unit Hang\n"
2d064c06 5704 " Tx Queue <%d>\n"
9d5c8243
AK
5705 " TDH <%x>\n"
5706 " TDT <%x>\n"
5707 " next_to_use <%x>\n"
5708 " next_to_clean <%x>\n"
9d5c8243
AK
5709 "buffer_info[next_to_clean]\n"
5710 " time_stamp <%lx>\n"
8542db05 5711 " next_to_watch <%p>\n"
9d5c8243
AK
5712 " jiffies <%lx>\n"
5713 " desc.status <%x>\n",
2d064c06 5714 tx_ring->queue_index,
238ac817 5715 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 5716 readl(tx_ring->tail),
9d5c8243
AK
5717 tx_ring->next_to_use,
5718 tx_ring->next_to_clean,
8542db05
AD
5719 tx_buffer->time_stamp,
5720 eop_desc,
9d5c8243 5721 jiffies,
0e014cb1 5722 eop_desc->wb.status);
13fde97a
AD
5723 netif_stop_subqueue(tx_ring->netdev,
5724 tx_ring->queue_index);
5725
5726 /* we are about to reset, no point in enabling stuff */
5727 return true;
9d5c8243
AK
5728 }
5729 }
13fde97a
AD
5730
5731 if (unlikely(total_packets &&
5732 netif_carrier_ok(tx_ring->netdev) &&
5733 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5734 /* Make sure that anybody stopping the queue after this
5735 * sees the new next_to_clean.
5736 */
5737 smp_mb();
5738 if (__netif_subqueue_stopped(tx_ring->netdev,
5739 tx_ring->queue_index) &&
5740 !(test_bit(__IGB_DOWN, &adapter->state))) {
5741 netif_wake_subqueue(tx_ring->netdev,
5742 tx_ring->queue_index);
5743
5744 u64_stats_update_begin(&tx_ring->tx_syncp);
5745 tx_ring->tx_stats.restart_queue++;
5746 u64_stats_update_end(&tx_ring->tx_syncp);
5747 }
5748 }
5749
5750 return !!budget;
9d5c8243
AK
5751}
5752
cd392f5c
AD
5753static inline void igb_rx_checksum(struct igb_ring *ring,
5754 u32 status_err, struct sk_buff *skb)
9d5c8243 5755{
bc8acf2c 5756 skb_checksum_none_assert(skb);
9d5c8243
AK
5757
5758 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
85ad76b2
AD
5759 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5760 (status_err & E1000_RXD_STAT_IXSM))
9d5c8243 5761 return;
85ad76b2 5762
9d5c8243
AK
5763 /* TCP/UDP checksum error bit is set */
5764 if (status_err &
5765 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
b9473560
JB
5766 /*
5767 * work around errata with sctp packets where the TCPE aka
5768 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5769 * packets, (aka let the stack check the crc32c)
5770 */
85ad76b2 5771 if ((skb->len == 60) &&
12dcd86b
ED
5772 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
5773 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 5774 ring->rx_stats.csum_err++;
12dcd86b
ED
5775 u64_stats_update_end(&ring->rx_syncp);
5776 }
9d5c8243 5777 /* let the stack verify checksum errors */
9d5c8243
AK
5778 return;
5779 }
5780 /* It must be a TCP or UDP packet with a valid checksum */
5781 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5782 skb->ip_summed = CHECKSUM_UNNECESSARY;
5783
59d71989 5784 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
9d5c8243
AK
5785}
5786
757b77e2 5787static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
c5b9bd5e
AD
5788 struct sk_buff *skb)
5789{
5790 struct igb_adapter *adapter = q_vector->adapter;
5791 struct e1000_hw *hw = &adapter->hw;
5792 u64 regval;
5793
5794 /*
5795 * If this bit is set, then the RX registers contain the time stamp. No
5796 * other packet will be time stamped until we read these registers, so
5797 * read the registers to make them available again. Because only one
5798 * packet can be time stamped at a time, we know that the register
5799 * values must belong to this one here and therefore we don't need to
5800 * compare any of the additional attributes stored for it.
5801 *
2244d07b 5802 * If nothing went wrong, then it should have a shared tx_flags that we
c5b9bd5e
AD
5803 * can turn into a skb_shared_hwtstamps.
5804 */
757b77e2
NN
5805 if (staterr & E1000_RXDADV_STAT_TSIP) {
5806 u32 *stamp = (u32 *)skb->data;
5807 regval = le32_to_cpu(*(stamp + 2));
5808 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5809 skb_pull(skb, IGB_TS_HDR_LEN);
5810 } else {
5811 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5812 return;
c5b9bd5e 5813
757b77e2
NN
5814 regval = rd32(E1000_RXSTMPL);
5815 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5816 }
c5b9bd5e
AD
5817
5818 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5819}
44390ca6 5820static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
2d94d8ab
AD
5821{
5822 /* HW will not DMA in data larger than the given buffer, even if it
5823 * parses the (NFS, of course) header to be larger. In that case, it
5824 * fills the header buffer and spills the rest into the page.
5825 */
5826 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5827 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
44390ca6
AD
5828 if (hlen > IGB_RX_HDR_LEN)
5829 hlen = IGB_RX_HDR_LEN;
2d94d8ab
AD
5830 return hlen;
5831}
5832
cd392f5c 5833static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
9d5c8243 5834{
047e0030 5835 struct igb_ring *rx_ring = q_vector->rx_ring;
16eb8815
AD
5836 union e1000_adv_rx_desc *rx_desc;
5837 const int current_node = numa_node_id();
9d5c8243 5838 unsigned int total_bytes = 0, total_packets = 0;
2d94d8ab 5839 u32 staterr;
16eb8815
AD
5840 u16 cleaned_count = igb_desc_unused(rx_ring);
5841 u16 i = rx_ring->next_to_clean;
9d5c8243 5842
60136906 5843 rx_desc = IGB_RX_DESC(rx_ring, i);
9d5c8243
AK
5844 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5845
5846 while (staterr & E1000_RXD_STAT_DD) {
06034649 5847 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
16eb8815
AD
5848 struct sk_buff *skb = buffer_info->skb;
5849 union e1000_adv_rx_desc *next_rxd;
9d5c8243 5850
69d3ca53 5851 buffer_info->skb = NULL;
16eb8815 5852 prefetch(skb->data);
69d3ca53
AD
5853
5854 i++;
5855 if (i == rx_ring->count)
5856 i = 0;
42d0781a 5857
60136906 5858 next_rxd = IGB_RX_DESC(rx_ring, i);
69d3ca53 5859 prefetch(next_rxd);
9d5c8243 5860
16eb8815
AD
5861 /*
5862 * This memory barrier is needed to keep us from reading
5863 * any other fields out of the rx_desc until we know the
5864 * RXD_STAT_DD bit is set
5865 */
5866 rmb();
9d5c8243 5867
16eb8815
AD
5868 if (!skb_is_nonlinear(skb)) {
5869 __skb_put(skb, igb_get_hlen(rx_desc));
5870 dma_unmap_single(rx_ring->dev, buffer_info->dma,
44390ca6 5871 IGB_RX_HDR_LEN,
59d71989 5872 DMA_FROM_DEVICE);
91615f76 5873 buffer_info->dma = 0;
bf36c1a0
AD
5874 }
5875
16eb8815
AD
5876 if (rx_desc->wb.upper.length) {
5877 u16 length = le16_to_cpu(rx_desc->wb.upper.length);
bf36c1a0 5878
aa913403 5879 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
bf36c1a0
AD
5880 buffer_info->page,
5881 buffer_info->page_offset,
5882 length);
5883
16eb8815
AD
5884 skb->len += length;
5885 skb->data_len += length;
5886 skb->truesize += length;
5887
d1eff350
AD
5888 if ((page_count(buffer_info->page) != 1) ||
5889 (page_to_nid(buffer_info->page) != current_node))
bf36c1a0
AD
5890 buffer_info->page = NULL;
5891 else
5892 get_page(buffer_info->page);
9d5c8243 5893
16eb8815
AD
5894 dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
5895 PAGE_SIZE / 2, DMA_FROM_DEVICE);
5896 buffer_info->page_dma = 0;
9d5c8243 5897 }
9d5c8243 5898
bf36c1a0 5899 if (!(staterr & E1000_RXD_STAT_EOP)) {
06034649
AD
5900 struct igb_rx_buffer *next_buffer;
5901 next_buffer = &rx_ring->rx_buffer_info[i];
b2d56536
AD
5902 buffer_info->skb = next_buffer->skb;
5903 buffer_info->dma = next_buffer->dma;
5904 next_buffer->skb = skb;
5905 next_buffer->dma = 0;
bf36c1a0
AD
5906 goto next_desc;
5907 }
44390ca6 5908
9d5c8243 5909 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
16eb8815 5910 dev_kfree_skb_any(skb);
9d5c8243
AK
5911 goto next_desc;
5912 }
9d5c8243 5913
757b77e2
NN
5914 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5915 igb_rx_hwtstamp(q_vector, staterr, skb);
9d5c8243
AK
5916 total_bytes += skb->len;
5917 total_packets++;
5918
cd392f5c 5919 igb_rx_checksum(rx_ring, staterr, skb);
9d5c8243 5920
16eb8815 5921 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
047e0030 5922
b2cb09b1
JP
5923 if (staterr & E1000_RXD_STAT_VP) {
5924 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
9d5c8243 5925
b2cb09b1
JP
5926 __vlan_hwaccel_put_tag(skb, vid);
5927 }
5928 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 5929
16eb8815 5930 budget--;
9d5c8243 5931next_desc:
16eb8815
AD
5932 if (!budget)
5933 break;
5934
5935 cleaned_count++;
9d5c8243
AK
5936 /* return some buffers to hardware, one at a time is too slow */
5937 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
cd392f5c 5938 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9d5c8243
AK
5939 cleaned_count = 0;
5940 }
5941
5942 /* use prefetched values */
5943 rx_desc = next_rxd;
9d5c8243
AK
5944 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5945 }
bf36c1a0 5946
9d5c8243 5947 rx_ring->next_to_clean = i;
12dcd86b 5948 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
5949 rx_ring->rx_stats.packets += total_packets;
5950 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 5951 u64_stats_update_end(&rx_ring->rx_syncp);
c023cd88
AD
5952 rx_ring->total_packets += total_packets;
5953 rx_ring->total_bytes += total_bytes;
5954
5955 if (cleaned_count)
cd392f5c 5956 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 5957
16eb8815 5958 return !!budget;
9d5c8243
AK
5959}
5960
c023cd88 5961static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
06034649 5962 struct igb_rx_buffer *bi)
c023cd88
AD
5963{
5964 struct sk_buff *skb = bi->skb;
5965 dma_addr_t dma = bi->dma;
5966
5967 if (dma)
5968 return true;
5969
5970 if (likely(!skb)) {
5971 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
5972 IGB_RX_HDR_LEN);
5973 bi->skb = skb;
5974 if (!skb) {
5975 rx_ring->rx_stats.alloc_failed++;
5976 return false;
5977 }
5978
5979 /* initialize skb for ring */
5980 skb_record_rx_queue(skb, rx_ring->queue_index);
5981 }
5982
5983 dma = dma_map_single(rx_ring->dev, skb->data,
5984 IGB_RX_HDR_LEN, DMA_FROM_DEVICE);
5985
5986 if (dma_mapping_error(rx_ring->dev, dma)) {
5987 rx_ring->rx_stats.alloc_failed++;
5988 return false;
5989 }
5990
5991 bi->dma = dma;
5992 return true;
5993}
5994
5995static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 5996 struct igb_rx_buffer *bi)
c023cd88
AD
5997{
5998 struct page *page = bi->page;
5999 dma_addr_t page_dma = bi->page_dma;
6000 unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
6001
6002 if (page_dma)
6003 return true;
6004
6005 if (!page) {
6006 page = netdev_alloc_page(rx_ring->netdev);
6007 bi->page = page;
6008 if (unlikely(!page)) {
6009 rx_ring->rx_stats.alloc_failed++;
6010 return false;
6011 }
6012 }
6013
6014 page_dma = dma_map_page(rx_ring->dev, page,
6015 page_offset, PAGE_SIZE / 2,
6016 DMA_FROM_DEVICE);
6017
6018 if (dma_mapping_error(rx_ring->dev, page_dma)) {
6019 rx_ring->rx_stats.alloc_failed++;
6020 return false;
6021 }
6022
6023 bi->page_dma = page_dma;
6024 bi->page_offset = page_offset;
6025 return true;
6026}
6027
9d5c8243 6028/**
cd392f5c 6029 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
9d5c8243
AK
6030 * @adapter: address of board private structure
6031 **/
cd392f5c 6032void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 6033{
9d5c8243 6034 union e1000_adv_rx_desc *rx_desc;
06034649 6035 struct igb_rx_buffer *bi;
c023cd88 6036 u16 i = rx_ring->next_to_use;
9d5c8243 6037
60136906 6038 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 6039 bi = &rx_ring->rx_buffer_info[i];
c023cd88 6040 i -= rx_ring->count;
9d5c8243
AK
6041
6042 while (cleaned_count--) {
c023cd88
AD
6043 if (!igb_alloc_mapped_skb(rx_ring, bi))
6044 break;
9d5c8243 6045
c023cd88
AD
6046 /* Refresh the desc even if buffer_addrs didn't change
6047 * because each write-back erases this info. */
6048 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
9d5c8243 6049
c023cd88
AD
6050 if (!igb_alloc_mapped_page(rx_ring, bi))
6051 break;
6052
6053 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
9d5c8243 6054
c023cd88
AD
6055 rx_desc++;
6056 bi++;
9d5c8243 6057 i++;
c023cd88 6058 if (unlikely(!i)) {
60136906 6059 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 6060 bi = rx_ring->rx_buffer_info;
c023cd88
AD
6061 i -= rx_ring->count;
6062 }
6063
6064 /* clear the hdr_addr for the next_to_use descriptor */
6065 rx_desc->read.hdr_addr = 0;
9d5c8243
AK
6066 }
6067
c023cd88
AD
6068 i += rx_ring->count;
6069
9d5c8243
AK
6070 if (rx_ring->next_to_use != i) {
6071 rx_ring->next_to_use = i;
9d5c8243
AK
6072
6073 /* Force memory writes to complete before letting h/w
6074 * know there are new descriptors to fetch. (Only
6075 * applicable for weak-ordered memory model archs,
6076 * such as IA-64). */
6077 wmb();
fce99e34 6078 writel(i, rx_ring->tail);
9d5c8243
AK
6079 }
6080}
6081
6082/**
6083 * igb_mii_ioctl -
6084 * @netdev:
6085 * @ifreq:
6086 * @cmd:
6087 **/
6088static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6089{
6090 struct igb_adapter *adapter = netdev_priv(netdev);
6091 struct mii_ioctl_data *data = if_mii(ifr);
6092
6093 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6094 return -EOPNOTSUPP;
6095
6096 switch (cmd) {
6097 case SIOCGMIIPHY:
6098 data->phy_id = adapter->hw.phy.addr;
6099 break;
6100 case SIOCGMIIREG:
f5f4cf08
AD
6101 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6102 &data->val_out))
9d5c8243
AK
6103 return -EIO;
6104 break;
6105 case SIOCSMIIREG:
6106 default:
6107 return -EOPNOTSUPP;
6108 }
6109 return 0;
6110}
6111
c6cb090b
PO
6112/**
6113 * igb_hwtstamp_ioctl - control hardware time stamping
6114 * @netdev:
6115 * @ifreq:
6116 * @cmd:
6117 *
33af6bcc
PO
6118 * Outgoing time stamping can be enabled and disabled. Play nice and
6119 * disable it when requested, although it shouldn't case any overhead
6120 * when no packet needs it. At most one packet in the queue may be
6121 * marked for time stamping, otherwise it would be impossible to tell
6122 * for sure to which packet the hardware time stamp belongs.
6123 *
6124 * Incoming time stamping has to be configured via the hardware
6125 * filters. Not all combinations are supported, in particular event
6126 * type has to be specified. Matching the kind of event packet is
6127 * not supported, with the exception of "all V2 events regardless of
6128 * level 2 or 4".
6129 *
c6cb090b
PO
6130 **/
6131static int igb_hwtstamp_ioctl(struct net_device *netdev,
6132 struct ifreq *ifr, int cmd)
6133{
33af6bcc
PO
6134 struct igb_adapter *adapter = netdev_priv(netdev);
6135 struct e1000_hw *hw = &adapter->hw;
c6cb090b 6136 struct hwtstamp_config config;
c5b9bd5e
AD
6137 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6138 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
33af6bcc 6139 u32 tsync_rx_cfg = 0;
c5b9bd5e
AD
6140 bool is_l4 = false;
6141 bool is_l2 = false;
33af6bcc 6142 u32 regval;
c6cb090b
PO
6143
6144 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6145 return -EFAULT;
6146
6147 /* reserved for future extensions */
6148 if (config.flags)
6149 return -EINVAL;
6150
33af6bcc
PO
6151 switch (config.tx_type) {
6152 case HWTSTAMP_TX_OFF:
c5b9bd5e 6153 tsync_tx_ctl = 0;
33af6bcc 6154 case HWTSTAMP_TX_ON:
33af6bcc
PO
6155 break;
6156 default:
6157 return -ERANGE;
6158 }
6159
6160 switch (config.rx_filter) {
6161 case HWTSTAMP_FILTER_NONE:
c5b9bd5e 6162 tsync_rx_ctl = 0;
33af6bcc
PO
6163 break;
6164 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6165 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6166 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6167 case HWTSTAMP_FILTER_ALL:
6168 /*
6169 * register TSYNCRXCFG must be set, therefore it is not
6170 * possible to time stamp both Sync and Delay_Req messages
6171 * => fall back to time stamping all packets
6172 */
c5b9bd5e 6173 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
33af6bcc
PO
6174 config.rx_filter = HWTSTAMP_FILTER_ALL;
6175 break;
6176 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
c5b9bd5e 6177 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6178 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
c5b9bd5e 6179 is_l4 = true;
33af6bcc
PO
6180 break;
6181 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
c5b9bd5e 6182 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
33af6bcc 6183 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
c5b9bd5e 6184 is_l4 = true;
33af6bcc
PO
6185 break;
6186 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6187 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
c5b9bd5e 6188 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6189 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
c5b9bd5e
AD
6190 is_l2 = true;
6191 is_l4 = true;
33af6bcc
PO
6192 config.rx_filter = HWTSTAMP_FILTER_SOME;
6193 break;
6194 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6195 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
c5b9bd5e 6196 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
33af6bcc 6197 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
c5b9bd5e
AD
6198 is_l2 = true;
6199 is_l4 = true;
33af6bcc
PO
6200 config.rx_filter = HWTSTAMP_FILTER_SOME;
6201 break;
6202 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6203 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6204 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
c5b9bd5e 6205 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
33af6bcc 6206 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
c5b9bd5e 6207 is_l2 = true;
33af6bcc
PO
6208 break;
6209 default:
6210 return -ERANGE;
6211 }
6212
c5b9bd5e
AD
6213 if (hw->mac.type == e1000_82575) {
6214 if (tsync_rx_ctl | tsync_tx_ctl)
6215 return -EINVAL;
6216 return 0;
6217 }
6218
757b77e2
NN
6219 /*
6220 * Per-packet timestamping only works if all packets are
6221 * timestamped, so enable timestamping in all packets as
6222 * long as one rx filter was configured.
6223 */
6224 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6225 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6226 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6227 }
6228
33af6bcc
PO
6229 /* enable/disable TX */
6230 regval = rd32(E1000_TSYNCTXCTL);
c5b9bd5e
AD
6231 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6232 regval |= tsync_tx_ctl;
33af6bcc
PO
6233 wr32(E1000_TSYNCTXCTL, regval);
6234
c5b9bd5e 6235 /* enable/disable RX */
33af6bcc 6236 regval = rd32(E1000_TSYNCRXCTL);
c5b9bd5e
AD
6237 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6238 regval |= tsync_rx_ctl;
33af6bcc 6239 wr32(E1000_TSYNCRXCTL, regval);
33af6bcc 6240
c5b9bd5e
AD
6241 /* define which PTP packets are time stamped */
6242 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
33af6bcc 6243
c5b9bd5e
AD
6244 /* define ethertype filter for timestamped packets */
6245 if (is_l2)
6246 wr32(E1000_ETQF(3),
6247 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6248 E1000_ETQF_1588 | /* enable timestamping */
6249 ETH_P_1588)); /* 1588 eth protocol type */
6250 else
6251 wr32(E1000_ETQF(3), 0);
6252
6253#define PTP_PORT 319
6254 /* L4 Queue Filter[3]: filter by destination port and protocol */
6255 if (is_l4) {
6256 u32 ftqf = (IPPROTO_UDP /* UDP */
6257 | E1000_FTQF_VF_BP /* VF not compared */
6258 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6259 | E1000_FTQF_MASK); /* mask all inputs */
6260 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6261
6262 wr32(E1000_IMIR(3), htons(PTP_PORT));
6263 wr32(E1000_IMIREXT(3),
6264 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6265 if (hw->mac.type == e1000_82576) {
6266 /* enable source port check */
6267 wr32(E1000_SPQF(3), htons(PTP_PORT));
6268 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6269 }
6270 wr32(E1000_FTQF(3), ftqf);
6271 } else {
6272 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6273 }
33af6bcc
PO
6274 wrfl();
6275
6276 adapter->hwtstamp_config = config;
6277
6278 /* clear TX/RX time stamp registers, just to be sure */
6279 regval = rd32(E1000_TXSTMPH);
6280 regval = rd32(E1000_RXSTMPH);
c6cb090b 6281
33af6bcc
PO
6282 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6283 -EFAULT : 0;
c6cb090b
PO
6284}
6285
9d5c8243
AK
6286/**
6287 * igb_ioctl -
6288 * @netdev:
6289 * @ifreq:
6290 * @cmd:
6291 **/
6292static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6293{
6294 switch (cmd) {
6295 case SIOCGMIIPHY:
6296 case SIOCGMIIREG:
6297 case SIOCSMIIREG:
6298 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b
PO
6299 case SIOCSHWTSTAMP:
6300 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6301 default:
6302 return -EOPNOTSUPP;
6303 }
6304}
6305
009bc06e
AD
6306s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6307{
6308 struct igb_adapter *adapter = hw->back;
6309 u16 cap_offset;
6310
bdaae04c 6311 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6312 if (!cap_offset)
6313 return -E1000_ERR_CONFIG;
6314
6315 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6316
6317 return 0;
6318}
6319
6320s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6321{
6322 struct igb_adapter *adapter = hw->back;
6323 u16 cap_offset;
6324
bdaae04c 6325 cap_offset = adapter->pdev->pcie_cap;
009bc06e
AD
6326 if (!cap_offset)
6327 return -E1000_ERR_CONFIG;
6328
6329 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6330
6331 return 0;
6332}
6333
b2cb09b1 6334static void igb_vlan_mode(struct net_device *netdev, u32 features)
9d5c8243
AK
6335{
6336 struct igb_adapter *adapter = netdev_priv(netdev);
6337 struct e1000_hw *hw = &adapter->hw;
6338 u32 ctrl, rctl;
6339
6340 igb_irq_disable(adapter);
9d5c8243 6341
b2cb09b1 6342 if (features & NETIF_F_HW_VLAN_RX) {
9d5c8243
AK
6343 /* enable VLAN tag insert/strip */
6344 ctrl = rd32(E1000_CTRL);
6345 ctrl |= E1000_CTRL_VME;
6346 wr32(E1000_CTRL, ctrl);
6347
51466239 6348 /* Disable CFI check */
9d5c8243 6349 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6350 rctl &= ~E1000_RCTL_CFIEN;
6351 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6352 } else {
6353 /* disable VLAN tag insert/strip */
6354 ctrl = rd32(E1000_CTRL);
6355 ctrl &= ~E1000_CTRL_VME;
6356 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6357 }
6358
e1739522
AD
6359 igb_rlpml_set(adapter);
6360
9d5c8243
AK
6361 if (!test_bit(__IGB_DOWN, &adapter->state))
6362 igb_irq_enable(adapter);
6363}
6364
6365static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6366{
6367 struct igb_adapter *adapter = netdev_priv(netdev);
6368 struct e1000_hw *hw = &adapter->hw;
4ae196df 6369 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6370
51466239
AD
6371 /* attempt to add filter to vlvf array */
6372 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6373
51466239
AD
6374 /* add the filter since PF can receive vlans w/o entry in vlvf */
6375 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6376
6377 set_bit(vid, adapter->active_vlans);
9d5c8243
AK
6378}
6379
6380static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6381{
6382 struct igb_adapter *adapter = netdev_priv(netdev);
6383 struct e1000_hw *hw = &adapter->hw;
4ae196df 6384 int pf_id = adapter->vfs_allocated_count;
51466239 6385 s32 err;
9d5c8243
AK
6386
6387 igb_irq_disable(adapter);
9d5c8243
AK
6388
6389 if (!test_bit(__IGB_DOWN, &adapter->state))
6390 igb_irq_enable(adapter);
6391
51466239
AD
6392 /* remove vlan from VLVF table array */
6393 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6394
51466239
AD
6395 /* if vid was not present in VLVF just remove it from table */
6396 if (err)
4ae196df 6397 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6398
6399 clear_bit(vid, adapter->active_vlans);
9d5c8243
AK
6400}
6401
6402static void igb_restore_vlan(struct igb_adapter *adapter)
6403{
b2cb09b1 6404 u16 vid;
9d5c8243 6405
b2cb09b1
JP
6406 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6407 igb_vlan_rx_add_vid(adapter->netdev, vid);
9d5c8243
AK
6408}
6409
14ad2513 6410int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6411{
090b1795 6412 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6413 struct e1000_mac_info *mac = &adapter->hw.mac;
6414
6415 mac->autoneg = 0;
6416
14ad2513
DD
6417 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6418 * for the switch() below to work */
6419 if ((spd & 1) || (dplx & ~1))
6420 goto err_inval;
6421
cd2638a8
CW
6422 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6423 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
14ad2513
DD
6424 spd != SPEED_1000 &&
6425 dplx != DUPLEX_FULL)
6426 goto err_inval;
cd2638a8 6427
14ad2513 6428 switch (spd + dplx) {
9d5c8243
AK
6429 case SPEED_10 + DUPLEX_HALF:
6430 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6431 break;
6432 case SPEED_10 + DUPLEX_FULL:
6433 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6434 break;
6435 case SPEED_100 + DUPLEX_HALF:
6436 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6437 break;
6438 case SPEED_100 + DUPLEX_FULL:
6439 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6440 break;
6441 case SPEED_1000 + DUPLEX_FULL:
6442 mac->autoneg = 1;
6443 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6444 break;
6445 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6446 default:
14ad2513 6447 goto err_inval;
9d5c8243
AK
6448 }
6449 return 0;
14ad2513
DD
6450
6451err_inval:
6452 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6453 return -EINVAL;
9d5c8243
AK
6454}
6455
3fe7c4c9 6456static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
9d5c8243
AK
6457{
6458 struct net_device *netdev = pci_get_drvdata(pdev);
6459 struct igb_adapter *adapter = netdev_priv(netdev);
6460 struct e1000_hw *hw = &adapter->hw;
2d064c06 6461 u32 ctrl, rctl, status;
9d5c8243
AK
6462 u32 wufc = adapter->wol;
6463#ifdef CONFIG_PM
6464 int retval = 0;
6465#endif
6466
6467 netif_device_detach(netdev);
6468
a88f10ec
AD
6469 if (netif_running(netdev))
6470 igb_close(netdev);
6471
047e0030 6472 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
6473
6474#ifdef CONFIG_PM
6475 retval = pci_save_state(pdev);
6476 if (retval)
6477 return retval;
6478#endif
6479
6480 status = rd32(E1000_STATUS);
6481 if (status & E1000_STATUS_LU)
6482 wufc &= ~E1000_WUFC_LNKC;
6483
6484 if (wufc) {
6485 igb_setup_rctl(adapter);
ff41f8dc 6486 igb_set_rx_mode(netdev);
9d5c8243
AK
6487
6488 /* turn on all-multi mode if wake on multicast is enabled */
6489 if (wufc & E1000_WUFC_MC) {
6490 rctl = rd32(E1000_RCTL);
6491 rctl |= E1000_RCTL_MPE;
6492 wr32(E1000_RCTL, rctl);
6493 }
6494
6495 ctrl = rd32(E1000_CTRL);
6496 /* advertise wake from D3Cold */
6497 #define E1000_CTRL_ADVD3WUC 0x00100000
6498 /* phy power management enable */
6499 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6500 ctrl |= E1000_CTRL_ADVD3WUC;
6501 wr32(E1000_CTRL, ctrl);
6502
9d5c8243 6503 /* Allow time for pending master requests to run */
330a6d6a 6504 igb_disable_pcie_master(hw);
9d5c8243
AK
6505
6506 wr32(E1000_WUC, E1000_WUC_PME_EN);
6507 wr32(E1000_WUFC, wufc);
9d5c8243
AK
6508 } else {
6509 wr32(E1000_WUC, 0);
6510 wr32(E1000_WUFC, 0);
9d5c8243
AK
6511 }
6512
3fe7c4c9
RW
6513 *enable_wake = wufc || adapter->en_mng_pt;
6514 if (!*enable_wake)
88a268c1
NN
6515 igb_power_down_link(adapter);
6516 else
6517 igb_power_up_link(adapter);
9d5c8243
AK
6518
6519 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6520 * would have already happened in close and is redundant. */
6521 igb_release_hw_control(adapter);
6522
6523 pci_disable_device(pdev);
6524
9d5c8243
AK
6525 return 0;
6526}
6527
6528#ifdef CONFIG_PM
3fe7c4c9
RW
6529static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6530{
6531 int retval;
6532 bool wake;
6533
6534 retval = __igb_shutdown(pdev, &wake);
6535 if (retval)
6536 return retval;
6537
6538 if (wake) {
6539 pci_prepare_to_sleep(pdev);
6540 } else {
6541 pci_wake_from_d3(pdev, false);
6542 pci_set_power_state(pdev, PCI_D3hot);
6543 }
6544
6545 return 0;
6546}
6547
9d5c8243
AK
6548static int igb_resume(struct pci_dev *pdev)
6549{
6550 struct net_device *netdev = pci_get_drvdata(pdev);
6551 struct igb_adapter *adapter = netdev_priv(netdev);
6552 struct e1000_hw *hw = &adapter->hw;
6553 u32 err;
6554
6555 pci_set_power_state(pdev, PCI_D0);
6556 pci_restore_state(pdev);
b94f2d77 6557 pci_save_state(pdev);
42bfd33a 6558
aed5dec3 6559 err = pci_enable_device_mem(pdev);
9d5c8243
AK
6560 if (err) {
6561 dev_err(&pdev->dev,
6562 "igb: Cannot enable PCI device from suspend\n");
6563 return err;
6564 }
6565 pci_set_master(pdev);
6566
6567 pci_enable_wake(pdev, PCI_D3hot, 0);
6568 pci_enable_wake(pdev, PCI_D3cold, 0);
6569
047e0030 6570 if (igb_init_interrupt_scheme(adapter)) {
a88f10ec
AD
6571 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6572 return -ENOMEM;
9d5c8243
AK
6573 }
6574
9d5c8243 6575 igb_reset(adapter);
a8564f03
AD
6576
6577 /* let the f/w know that the h/w is now under the control of the
6578 * driver. */
6579 igb_get_hw_control(adapter);
6580
9d5c8243
AK
6581 wr32(E1000_WUS, ~0);
6582
a88f10ec
AD
6583 if (netif_running(netdev)) {
6584 err = igb_open(netdev);
6585 if (err)
6586 return err;
6587 }
9d5c8243
AK
6588
6589 netif_device_attach(netdev);
6590
9d5c8243
AK
6591 return 0;
6592}
6593#endif
6594
6595static void igb_shutdown(struct pci_dev *pdev)
6596{
3fe7c4c9
RW
6597 bool wake;
6598
6599 __igb_shutdown(pdev, &wake);
6600
6601 if (system_state == SYSTEM_POWER_OFF) {
6602 pci_wake_from_d3(pdev, wake);
6603 pci_set_power_state(pdev, PCI_D3hot);
6604 }
9d5c8243
AK
6605}
6606
6607#ifdef CONFIG_NET_POLL_CONTROLLER
6608/*
6609 * Polling 'interrupt' - used by things like netconsole to send skbs
6610 * without having to re-enable interrupts. It's not called while
6611 * the interrupt routine is executing.
6612 */
6613static void igb_netpoll(struct net_device *netdev)
6614{
6615 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 6616 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6617 int i;
9d5c8243 6618
eebbbdba 6619 if (!adapter->msix_entries) {
047e0030 6620 struct igb_q_vector *q_vector = adapter->q_vector[0];
eebbbdba 6621 igb_irq_disable(adapter);
047e0030 6622 napi_schedule(&q_vector->napi);
eebbbdba
AD
6623 return;
6624 }
9d5c8243 6625
047e0030
AD
6626 for (i = 0; i < adapter->num_q_vectors; i++) {
6627 struct igb_q_vector *q_vector = adapter->q_vector[i];
6628 wr32(E1000_EIMC, q_vector->eims_value);
6629 napi_schedule(&q_vector->napi);
eebbbdba 6630 }
9d5c8243
AK
6631}
6632#endif /* CONFIG_NET_POLL_CONTROLLER */
6633
6634/**
6635 * igb_io_error_detected - called when PCI error is detected
6636 * @pdev: Pointer to PCI device
6637 * @state: The current pci connection state
6638 *
6639 * This function is called after a PCI bus error affecting
6640 * this device has been detected.
6641 */
6642static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6643 pci_channel_state_t state)
6644{
6645 struct net_device *netdev = pci_get_drvdata(pdev);
6646 struct igb_adapter *adapter = netdev_priv(netdev);
6647
6648 netif_device_detach(netdev);
6649
59ed6eec
AD
6650 if (state == pci_channel_io_perm_failure)
6651 return PCI_ERS_RESULT_DISCONNECT;
6652
9d5c8243
AK
6653 if (netif_running(netdev))
6654 igb_down(adapter);
6655 pci_disable_device(pdev);
6656
6657 /* Request a slot slot reset. */
6658 return PCI_ERS_RESULT_NEED_RESET;
6659}
6660
6661/**
6662 * igb_io_slot_reset - called after the pci bus has been reset.
6663 * @pdev: Pointer to PCI device
6664 *
6665 * Restart the card from scratch, as if from a cold-boot. Implementation
6666 * resembles the first-half of the igb_resume routine.
6667 */
6668static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6669{
6670 struct net_device *netdev = pci_get_drvdata(pdev);
6671 struct igb_adapter *adapter = netdev_priv(netdev);
6672 struct e1000_hw *hw = &adapter->hw;
40a914fa 6673 pci_ers_result_t result;
42bfd33a 6674 int err;
9d5c8243 6675
aed5dec3 6676 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
6677 dev_err(&pdev->dev,
6678 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
6679 result = PCI_ERS_RESULT_DISCONNECT;
6680 } else {
6681 pci_set_master(pdev);
6682 pci_restore_state(pdev);
b94f2d77 6683 pci_save_state(pdev);
9d5c8243 6684
40a914fa
AD
6685 pci_enable_wake(pdev, PCI_D3hot, 0);
6686 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 6687
40a914fa
AD
6688 igb_reset(adapter);
6689 wr32(E1000_WUS, ~0);
6690 result = PCI_ERS_RESULT_RECOVERED;
6691 }
9d5c8243 6692
ea943d41
JK
6693 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6694 if (err) {
6695 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6696 "failed 0x%0x\n", err);
6697 /* non-fatal, continue */
6698 }
40a914fa
AD
6699
6700 return result;
9d5c8243
AK
6701}
6702
6703/**
6704 * igb_io_resume - called when traffic can start flowing again.
6705 * @pdev: Pointer to PCI device
6706 *
6707 * This callback is called when the error recovery driver tells us that
6708 * its OK to resume normal operation. Implementation resembles the
6709 * second-half of the igb_resume routine.
6710 */
6711static void igb_io_resume(struct pci_dev *pdev)
6712{
6713 struct net_device *netdev = pci_get_drvdata(pdev);
6714 struct igb_adapter *adapter = netdev_priv(netdev);
6715
9d5c8243
AK
6716 if (netif_running(netdev)) {
6717 if (igb_up(adapter)) {
6718 dev_err(&pdev->dev, "igb_up failed after reset\n");
6719 return;
6720 }
6721 }
6722
6723 netif_device_attach(netdev);
6724
6725 /* let the f/w know that the h/w is now under the control of the
6726 * driver. */
6727 igb_get_hw_control(adapter);
9d5c8243
AK
6728}
6729
26ad9178
AD
6730static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6731 u8 qsel)
6732{
6733 u32 rar_low, rar_high;
6734 struct e1000_hw *hw = &adapter->hw;
6735
6736 /* HW expects these in little endian so we reverse the byte order
6737 * from network order (big endian) to little endian
6738 */
6739 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6740 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6741 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6742
6743 /* Indicate to hardware the Address is Valid. */
6744 rar_high |= E1000_RAH_AV;
6745
6746 if (hw->mac.type == e1000_82575)
6747 rar_high |= E1000_RAH_POOL_1 * qsel;
6748 else
6749 rar_high |= E1000_RAH_POOL_1 << qsel;
6750
6751 wr32(E1000_RAL(index), rar_low);
6752 wrfl();
6753 wr32(E1000_RAH(index), rar_high);
6754 wrfl();
6755}
6756
4ae196df
AD
6757static int igb_set_vf_mac(struct igb_adapter *adapter,
6758 int vf, unsigned char *mac_addr)
6759{
6760 struct e1000_hw *hw = &adapter->hw;
ff41f8dc
AD
6761 /* VF MAC addresses start at end of receive addresses and moves
6762 * torwards the first, as a result a collision should not be possible */
6763 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 6764
37680117 6765 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 6766
26ad9178 6767 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
6768
6769 return 0;
6770}
6771
8151d294
WM
6772static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6773{
6774 struct igb_adapter *adapter = netdev_priv(netdev);
6775 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6776 return -EINVAL;
6777 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6778 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6779 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6780 " change effective.");
6781 if (test_bit(__IGB_DOWN, &adapter->state)) {
6782 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6783 " but the PF device is not up.\n");
6784 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6785 " attempting to use the VF device.\n");
6786 }
6787 return igb_set_vf_mac(adapter, vf, mac);
6788}
6789
17dc566c
LL
6790static int igb_link_mbps(int internal_link_speed)
6791{
6792 switch (internal_link_speed) {
6793 case SPEED_100:
6794 return 100;
6795 case SPEED_1000:
6796 return 1000;
6797 default:
6798 return 0;
6799 }
6800}
6801
6802static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6803 int link_speed)
6804{
6805 int rf_dec, rf_int;
6806 u32 bcnrc_val;
6807
6808 if (tx_rate != 0) {
6809 /* Calculate the rate factor values to set */
6810 rf_int = link_speed / tx_rate;
6811 rf_dec = (link_speed - (rf_int * tx_rate));
6812 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6813
6814 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6815 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6816 E1000_RTTBCNRC_RF_INT_MASK);
6817 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6818 } else {
6819 bcnrc_val = 0;
6820 }
6821
6822 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6823 wr32(E1000_RTTBCNRC, bcnrc_val);
6824}
6825
6826static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6827{
6828 int actual_link_speed, i;
6829 bool reset_rate = false;
6830
6831 /* VF TX rate limit was not set or not supported */
6832 if ((adapter->vf_rate_link_speed == 0) ||
6833 (adapter->hw.mac.type != e1000_82576))
6834 return;
6835
6836 actual_link_speed = igb_link_mbps(adapter->link_speed);
6837 if (actual_link_speed != adapter->vf_rate_link_speed) {
6838 reset_rate = true;
6839 adapter->vf_rate_link_speed = 0;
6840 dev_info(&adapter->pdev->dev,
6841 "Link speed has been changed. VF Transmit "
6842 "rate is disabled\n");
6843 }
6844
6845 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6846 if (reset_rate)
6847 adapter->vf_data[i].tx_rate = 0;
6848
6849 igb_set_vf_rate_limit(&adapter->hw, i,
6850 adapter->vf_data[i].tx_rate,
6851 actual_link_speed);
6852 }
6853}
6854
8151d294
WM
6855static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6856{
17dc566c
LL
6857 struct igb_adapter *adapter = netdev_priv(netdev);
6858 struct e1000_hw *hw = &adapter->hw;
6859 int actual_link_speed;
6860
6861 if (hw->mac.type != e1000_82576)
6862 return -EOPNOTSUPP;
6863
6864 actual_link_speed = igb_link_mbps(adapter->link_speed);
6865 if ((vf >= adapter->vfs_allocated_count) ||
6866 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6867 (tx_rate < 0) || (tx_rate > actual_link_speed))
6868 return -EINVAL;
6869
6870 adapter->vf_rate_link_speed = actual_link_speed;
6871 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6872 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6873
6874 return 0;
8151d294
WM
6875}
6876
6877static int igb_ndo_get_vf_config(struct net_device *netdev,
6878 int vf, struct ifla_vf_info *ivi)
6879{
6880 struct igb_adapter *adapter = netdev_priv(netdev);
6881 if (vf >= adapter->vfs_allocated_count)
6882 return -EINVAL;
6883 ivi->vf = vf;
6884 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 6885 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
6886 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6887 ivi->qos = adapter->vf_data[vf].pf_qos;
6888 return 0;
6889}
6890
4ae196df
AD
6891static void igb_vmm_control(struct igb_adapter *adapter)
6892{
6893 struct e1000_hw *hw = &adapter->hw;
10d8e907 6894 u32 reg;
4ae196df 6895
52a1dd4d
AD
6896 switch (hw->mac.type) {
6897 case e1000_82575:
6898 default:
6899 /* replication is not supported for 82575 */
4ae196df 6900 return;
52a1dd4d
AD
6901 case e1000_82576:
6902 /* notify HW that the MAC is adding vlan tags */
6903 reg = rd32(E1000_DTXCTL);
6904 reg |= E1000_DTXCTL_VLAN_ADDED;
6905 wr32(E1000_DTXCTL, reg);
6906 case e1000_82580:
6907 /* enable replication vlan tag stripping */
6908 reg = rd32(E1000_RPLOLR);
6909 reg |= E1000_RPLOLR_STRVLAN;
6910 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
6911 case e1000_i350:
6912 /* none of the above registers are supported by i350 */
52a1dd4d
AD
6913 break;
6914 }
10d8e907 6915
d4960307
AD
6916 if (adapter->vfs_allocated_count) {
6917 igb_vmdq_set_loopback_pf(hw, true);
6918 igb_vmdq_set_replication_pf(hw, true);
13800469
GR
6919 igb_vmdq_set_anti_spoofing_pf(hw, true,
6920 adapter->vfs_allocated_count);
d4960307
AD
6921 } else {
6922 igb_vmdq_set_loopback_pf(hw, false);
6923 igb_vmdq_set_replication_pf(hw, false);
6924 }
4ae196df
AD
6925}
6926
9d5c8243 6927/* igb_main.c */