Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
ecc6a239 4 * Copyright(c) 2013 - 2016 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
7ed3f5f0 29
7f12ad74 30#include "i40evf.h"
ed0980c4 31#include "i40e_trace.h"
206812b5 32#include "i40e_prototype.h"
7f12ad74
GR
33
34static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
35 u32 td_tag)
36{
37 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
38 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
39 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
40 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
41 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
42}
43
44#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
45
46/**
47 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
48 * @ring: the ring that owns the buffer
49 * @tx_buffer: the buffer to free
50 **/
51static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
52 struct i40e_tx_buffer *tx_buffer)
53{
54 if (tx_buffer->skb) {
64bfd68e
AD
55 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
56 kfree(tx_buffer->raw_buf);
57 else
58 dev_kfree_skb_any(tx_buffer->skb);
7f12ad74
GR
59 if (dma_unmap_len(tx_buffer, len))
60 dma_unmap_single(ring->dev,
61 dma_unmap_addr(tx_buffer, dma),
62 dma_unmap_len(tx_buffer, len),
63 DMA_TO_DEVICE);
64 } else if (dma_unmap_len(tx_buffer, len)) {
65 dma_unmap_page(ring->dev,
66 dma_unmap_addr(tx_buffer, dma),
67 dma_unmap_len(tx_buffer, len),
68 DMA_TO_DEVICE);
69 }
a42e7a36 70
7f12ad74
GR
71 tx_buffer->next_to_watch = NULL;
72 tx_buffer->skb = NULL;
73 dma_unmap_len_set(tx_buffer, len, 0);
74 /* tx_buffer must be completely set up in the transmit path */
75}
76
77/**
78 * i40evf_clean_tx_ring - Free any empty Tx buffers
79 * @tx_ring: ring to be cleaned
80 **/
81void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
82{
83 unsigned long bi_size;
84 u16 i;
85
86 /* ring already cleared, nothing to do */
87 if (!tx_ring->tx_bi)
88 return;
89
90 /* Free all the Tx ring sk_buffs */
91 for (i = 0; i < tx_ring->count; i++)
92 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
93
94 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
95 memset(tx_ring->tx_bi, 0, bi_size);
96
97 /* Zero out the descriptor ring */
98 memset(tx_ring->desc, 0, tx_ring->size);
99
100 tx_ring->next_to_use = 0;
101 tx_ring->next_to_clean = 0;
102
103 if (!tx_ring->netdev)
104 return;
105
106 /* cleanup Tx queue statistics */
e486bdfd 107 netdev_tx_reset_queue(txring_txq(tx_ring));
7f12ad74
GR
108}
109
110/**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117{
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127}
128
a68de58d 129/**
9c6c1259
KP
130 * i40evf_get_tx_pending - how many Tx descriptors not processed
131 * @tx_ring: the ring of descriptors
dd353109 132 * @in_sw: is tx_pending being checked in SW or HW
a68de58d 133 *
9c6c1259
KP
134 * Since there is no access to the ring head register
135 * in XL710, we need to use our local copies
a68de58d 136 **/
dd353109 137u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
a68de58d 138{
9c6c1259 139 u32 head, tail;
a68de58d 140
b1cb07db 141 head = ring->next_to_clean;
9c6c1259
KP
142 tail = readl(ring->tail);
143
144 if (head != tail)
145 return (head < tail) ?
146 tail - head : (tail + ring->count - head);
147
148 return 0;
a68de58d
JB
149}
150
1dc8b538 151#define WB_STRIDE 4
c29af37f 152
7f12ad74
GR
153/**
154 * i40e_clean_tx_irq - Reclaim resources after transmit completes
a619afe8
AD
155 * @vsi: the VSI we care about
156 * @tx_ring: Tx ring to clean
157 * @napi_budget: Used to determine if we are in netpoll
7f12ad74
GR
158 *
159 * Returns true if there's any budget left (e.g. the clean is finished)
160 **/
a619afe8
AD
161static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
162 struct i40e_ring *tx_ring, int napi_budget)
7f12ad74
GR
163{
164 u16 i = tx_ring->next_to_clean;
165 struct i40e_tx_buffer *tx_buf;
166 struct i40e_tx_desc *tx_desc;
a619afe8
AD
167 unsigned int total_bytes = 0, total_packets = 0;
168 unsigned int budget = vsi->work_limit;
7f12ad74
GR
169
170 tx_buf = &tx_ring->tx_bi[i];
171 tx_desc = I40E_TX_DESC(tx_ring, i);
172 i -= tx_ring->count;
173
174 do {
175 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
176
177 /* if next_to_watch is not set then there is no work pending */
178 if (!eop_desc)
179 break;
180
181 /* prevent any other reads prior to eop_desc */
182 read_barrier_depends();
183
ed0980c4 184 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
b1cb07db
PB
185 /* if the descriptor isn't done, no work yet to do */
186 if (!(eop_desc->cmd_type_offset_bsz &
187 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
7f12ad74
GR
188 break;
189
190 /* clear next_to_watch to prevent false hangs */
191 tx_buf->next_to_watch = NULL;
192
193 /* update the statistics for this packet */
194 total_bytes += tx_buf->bytecount;
195 total_packets += tx_buf->gso_segs;
196
197 /* free the skb */
a619afe8 198 napi_consume_skb(tx_buf->skb, napi_budget);
7f12ad74
GR
199
200 /* unmap skb header data */
201 dma_unmap_single(tx_ring->dev,
202 dma_unmap_addr(tx_buf, dma),
203 dma_unmap_len(tx_buf, len),
204 DMA_TO_DEVICE);
205
206 /* clear tx_buffer data */
207 tx_buf->skb = NULL;
208 dma_unmap_len_set(tx_buf, len, 0);
209
210 /* unmap remaining buffers */
211 while (tx_desc != eop_desc) {
ed0980c4
SP
212 i40e_trace(clean_tx_irq_unmap,
213 tx_ring, tx_desc, tx_buf);
7f12ad74
GR
214
215 tx_buf++;
216 tx_desc++;
217 i++;
218 if (unlikely(!i)) {
219 i -= tx_ring->count;
220 tx_buf = tx_ring->tx_bi;
221 tx_desc = I40E_TX_DESC(tx_ring, 0);
222 }
223
224 /* unmap any remaining paged data */
225 if (dma_unmap_len(tx_buf, len)) {
226 dma_unmap_page(tx_ring->dev,
227 dma_unmap_addr(tx_buf, dma),
228 dma_unmap_len(tx_buf, len),
229 DMA_TO_DEVICE);
230 dma_unmap_len_set(tx_buf, len, 0);
231 }
232 }
233
234 /* move us one more past the eop_desc for start of next pkt */
235 tx_buf++;
236 tx_desc++;
237 i++;
238 if (unlikely(!i)) {
239 i -= tx_ring->count;
240 tx_buf = tx_ring->tx_bi;
241 tx_desc = I40E_TX_DESC(tx_ring, 0);
242 }
243
016890b9
JB
244 prefetch(tx_desc);
245
7f12ad74
GR
246 /* update budget accounting */
247 budget--;
248 } while (likely(budget));
249
250 i += tx_ring->count;
251 tx_ring->next_to_clean = i;
252 u64_stats_update_begin(&tx_ring->syncp);
253 tx_ring->stats.bytes += total_bytes;
254 tx_ring->stats.packets += total_packets;
255 u64_stats_update_end(&tx_ring->syncp);
256 tx_ring->q_vector->tx.total_bytes += total_bytes;
257 tx_ring->q_vector->tx.total_packets += total_packets;
258
f6d83d13 259 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
f6d83d13
ASJ
260 /* check to see if there are < 4 descriptors
261 * waiting to be written back, then kick the hardware to force
262 * them to be written back in case we stay in NAPI.
263 * In this mode on X722 we do not enable Interrupt.
264 */
88dc9e6f 265 unsigned int j = i40evf_get_tx_pending(tx_ring, false);
f6d83d13
ASJ
266
267 if (budget &&
1dc8b538 268 ((j / WB_STRIDE) == 0) && (j > 0) &&
0da36b97 269 !test_bit(__I40E_VSI_DOWN, vsi->state) &&
f6d83d13
ASJ
270 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
271 tx_ring->arm_wb = true;
272 }
273
e486bdfd
AD
274 /* notify netdev of completed buffers */
275 netdev_tx_completed_queue(txring_txq(tx_ring),
7f12ad74
GR
276 total_packets, total_bytes);
277
278#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
279 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
280 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
281 /* Make sure that anybody stopping the queue after this
282 * sees the new next_to_clean.
283 */
284 smp_mb();
285 if (__netif_subqueue_stopped(tx_ring->netdev,
286 tx_ring->queue_index) &&
0da36b97 287 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
7f12ad74
GR
288 netif_wake_subqueue(tx_ring->netdev,
289 tx_ring->queue_index);
290 ++tx_ring->tx_stats.restart_queue;
291 }
292 }
293
b03a8c1f 294 return !!budget;
7f12ad74
GR
295}
296
c29af37f 297/**
ecc6a239 298 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
c29af37f 299 * @vsi: the VSI we care about
ecc6a239 300 * @q_vector: the vector on which to enable writeback
c29af37f
ASJ
301 *
302 **/
ecc6a239
ASJ
303static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
304 struct i40e_q_vector *q_vector)
c29af37f 305{
8e0764b4 306 u16 flags = q_vector->tx.ring[0].flags;
ecc6a239 307 u32 val;
8e0764b4 308
ecc6a239
ASJ
309 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
310 return;
311
312 if (q_vector->arm_wb_state)
313 return;
314
315 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
316 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
317
318 wr32(&vsi->back->hw,
319 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
320 vsi->base_vector - 1), val);
321 q_vector->arm_wb_state = true;
322}
323
324/**
325 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
326 * @vsi: the VSI we care about
327 * @q_vector: the vector on which to force writeback
328 *
329 **/
330void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
331{
332 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
333 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
334 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
335 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
336 /* allow 00 to be written to the index */;
337
338 wr32(&vsi->back->hw,
339 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
340 val);
c29af37f
ASJ
341}
342
7f12ad74
GR
343/**
344 * i40e_set_new_dynamic_itr - Find new ITR level
345 * @rc: structure containing ring performance data
346 *
8f5e39ce
JB
347 * Returns true if ITR changed, false if not
348 *
7f12ad74
GR
349 * Stores a new ITR value based on packets and byte counts during
350 * the last interrupt. The advantage of per interrupt computation
351 * is faster updates and more accurate ITR for the current traffic
352 * pattern. Constants in this function were computed based on
353 * theoretical maximum wire speed and thresholds were set based on
354 * testing data as well as attempting to minimize response time
355 * while increasing bulk throughput.
356 **/
8f5e39ce 357static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
7f12ad74
GR
358{
359 enum i40e_latency_range new_latency_range = rc->latency_range;
c56625d5 360 struct i40e_q_vector *qv = rc->ring->q_vector;
7f12ad74
GR
361 u32 new_itr = rc->itr;
362 int bytes_per_int;
51cc6d9f 363 int usecs;
7f12ad74
GR
364
365 if (rc->total_packets == 0 || !rc->itr)
8f5e39ce 366 return false;
7f12ad74
GR
367
368 /* simple throttlerate management
c56625d5 369 * 0-10MB/s lowest (50000 ints/s)
7f12ad74 370 * 10-20MB/s low (20000 ints/s)
c56625d5
JB
371 * 20-1249MB/s bulk (18000 ints/s)
372 * > 40000 Rx packets per second (8000 ints/s)
51cc6d9f
JB
373 *
374 * The math works out because the divisor is in 10^(-6) which
375 * turns the bytes/us input value into MB/s values, but
376 * make sure to use usecs, as the register values written
ee2319cf
JB
377 * are in 2 usec increments in the ITR registers, and make sure
378 * to use the smoothed values that the countdown timer gives us.
7f12ad74 379 */
ee2319cf 380 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
51cc6d9f 381 bytes_per_int = rc->total_bytes / usecs;
ee2319cf 382
de32e3ef 383 switch (new_latency_range) {
7f12ad74
GR
384 case I40E_LOWEST_LATENCY:
385 if (bytes_per_int > 10)
386 new_latency_range = I40E_LOW_LATENCY;
387 break;
388 case I40E_LOW_LATENCY:
389 if (bytes_per_int > 20)
390 new_latency_range = I40E_BULK_LATENCY;
391 else if (bytes_per_int <= 10)
392 new_latency_range = I40E_LOWEST_LATENCY;
393 break;
394 case I40E_BULK_LATENCY:
c56625d5 395 case I40E_ULTRA_LATENCY:
de32e3ef
CW
396 default:
397 if (bytes_per_int <= 20)
398 new_latency_range = I40E_LOW_LATENCY;
7f12ad74
GR
399 break;
400 }
c56625d5
JB
401
402 /* this is to adjust RX more aggressively when streaming small
403 * packets. The value of 40000 was picked as it is just beyond
404 * what the hardware can receive per second if in low latency
405 * mode.
406 */
407#define RX_ULTRA_PACKET_RATE 40000
408
409 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
410 (&qv->rx == rc))
411 new_latency_range = I40E_ULTRA_LATENCY;
412
de32e3ef 413 rc->latency_range = new_latency_range;
7f12ad74
GR
414
415 switch (new_latency_range) {
416 case I40E_LOWEST_LATENCY:
c56625d5 417 new_itr = I40E_ITR_50K;
7f12ad74
GR
418 break;
419 case I40E_LOW_LATENCY:
420 new_itr = I40E_ITR_20K;
421 break;
422 case I40E_BULK_LATENCY:
c56625d5
JB
423 new_itr = I40E_ITR_18K;
424 break;
425 case I40E_ULTRA_LATENCY:
7f12ad74
GR
426 new_itr = I40E_ITR_8K;
427 break;
428 default:
429 break;
430 }
431
7f12ad74
GR
432 rc->total_bytes = 0;
433 rc->total_packets = 0;
8f5e39ce
JB
434
435 if (new_itr != rc->itr) {
436 rc->itr = new_itr;
437 return true;
438 }
439
440 return false;
7f12ad74
GR
441}
442
4eeb1fff 443/**
7f12ad74
GR
444 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
445 * @tx_ring: the tx ring to set up
446 *
447 * Return 0 on success, negative on error
448 **/
449int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
450{
451 struct device *dev = tx_ring->dev;
452 int bi_size;
453
454 if (!dev)
455 return -ENOMEM;
456
67c818a1
MW
457 /* warn if we are about to overwrite the pointer */
458 WARN_ON(tx_ring->tx_bi);
7f12ad74
GR
459 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
460 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
461 if (!tx_ring->tx_bi)
462 goto err;
463
464 /* round up to nearest 4K */
465 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
466 tx_ring->size = ALIGN(tx_ring->size, 4096);
467 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
468 &tx_ring->dma, GFP_KERNEL);
469 if (!tx_ring->desc) {
470 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
471 tx_ring->size);
472 goto err;
473 }
474
475 tx_ring->next_to_use = 0;
476 tx_ring->next_to_clean = 0;
477 return 0;
478
479err:
480 kfree(tx_ring->tx_bi);
481 tx_ring->tx_bi = NULL;
482 return -ENOMEM;
483}
484
485/**
486 * i40evf_clean_rx_ring - Free Rx buffers
487 * @rx_ring: ring to be cleaned
488 **/
489void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
490{
7f12ad74
GR
491 unsigned long bi_size;
492 u16 i;
493
494 /* ring already cleared, nothing to do */
495 if (!rx_ring->rx_bi)
496 return;
497
e72e5659
SP
498 if (rx_ring->skb) {
499 dev_kfree_skb(rx_ring->skb);
500 rx_ring->skb = NULL;
501 }
502
7f12ad74
GR
503 /* Free all the Rx ring sk_buffs */
504 for (i = 0; i < rx_ring->count; i++) {
ab9ad98e
JB
505 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
506
ab9ad98e
JB
507 if (!rx_bi->page)
508 continue;
509
59605bc0
AD
510 /* Invalidate cache lines that may have been written to by
511 * device so that we avoid corrupting memory.
512 */
513 dma_sync_single_range_for_cpu(rx_ring->dev,
514 rx_bi->dma,
515 rx_bi->page_offset,
98efd694 516 rx_ring->rx_buf_len,
59605bc0
AD
517 DMA_FROM_DEVICE);
518
519 /* free resources associated with mapping */
520 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
98efd694 521 i40e_rx_pg_size(rx_ring),
59605bc0
AD
522 DMA_FROM_DEVICE,
523 I40E_RX_DMA_ATTR);
98efd694 524
1793668c 525 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
ab9ad98e
JB
526
527 rx_bi->page = NULL;
528 rx_bi->page_offset = 0;
7f12ad74
GR
529 }
530
531 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
532 memset(rx_ring->rx_bi, 0, bi_size);
533
534 /* Zero out the descriptor ring */
535 memset(rx_ring->desc, 0, rx_ring->size);
536
ab9ad98e 537 rx_ring->next_to_alloc = 0;
7f12ad74
GR
538 rx_ring->next_to_clean = 0;
539 rx_ring->next_to_use = 0;
540}
541
542/**
543 * i40evf_free_rx_resources - Free Rx resources
544 * @rx_ring: ring to clean the resources from
545 *
546 * Free all receive software resources
547 **/
548void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
549{
550 i40evf_clean_rx_ring(rx_ring);
551 kfree(rx_ring->rx_bi);
552 rx_ring->rx_bi = NULL;
553
554 if (rx_ring->desc) {
555 dma_free_coherent(rx_ring->dev, rx_ring->size,
556 rx_ring->desc, rx_ring->dma);
557 rx_ring->desc = NULL;
558 }
559}
560
561/**
562 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
563 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
564 *
565 * Returns 0 on success, negative on failure
566 **/
567int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
568{
569 struct device *dev = rx_ring->dev;
570 int bi_size;
571
67c818a1
MW
572 /* warn if we are about to overwrite the pointer */
573 WARN_ON(rx_ring->rx_bi);
7f12ad74
GR
574 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
575 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
576 if (!rx_ring->rx_bi)
577 goto err;
578
f217d6ca 579 u64_stats_init(&rx_ring->syncp);
638702bd 580
7f12ad74 581 /* Round up to nearest 4K */
ab9ad98e 582 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
7f12ad74
GR
583 rx_ring->size = ALIGN(rx_ring->size, 4096);
584 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
585 &rx_ring->dma, GFP_KERNEL);
586
587 if (!rx_ring->desc) {
588 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
589 rx_ring->size);
590 goto err;
591 }
592
ab9ad98e 593 rx_ring->next_to_alloc = 0;
7f12ad74
GR
594 rx_ring->next_to_clean = 0;
595 rx_ring->next_to_use = 0;
596
597 return 0;
598err:
599 kfree(rx_ring->rx_bi);
600 rx_ring->rx_bi = NULL;
601 return -ENOMEM;
602}
603
604/**
605 * i40e_release_rx_desc - Store the new tail and head values
606 * @rx_ring: ring to bump
607 * @val: new head index
608 **/
609static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
610{
611 rx_ring->next_to_use = val;
ab9ad98e
JB
612
613 /* update next to alloc since we have filled the ring */
614 rx_ring->next_to_alloc = val;
615
7f12ad74
GR
616 /* Force memory writes to complete before letting h/w
617 * know there are new descriptors to fetch. (Only
618 * applicable for weak-ordered memory model archs,
619 * such as IA-64).
620 */
621 wmb();
622 writel(val, rx_ring->tail);
623}
624
ca9ec088
AD
625/**
626 * i40e_rx_offset - Return expected offset into page to access data
627 * @rx_ring: Ring we are requesting offset of
628 *
629 * Returns the offset value for ring into the data buffer.
630 */
631static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
632{
633 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
634}
635
7f12ad74 636/**
ab9ad98e
JB
637 * i40e_alloc_mapped_page - recycle or make a new page
638 * @rx_ring: ring to use
639 * @bi: rx_buffer struct to modify
c2e245ab 640 *
ab9ad98e
JB
641 * Returns true if the page was successfully allocated or
642 * reused.
a132af24 643 **/
ab9ad98e
JB
644static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
645 struct i40e_rx_buffer *bi)
a132af24 646{
ab9ad98e
JB
647 struct page *page = bi->page;
648 dma_addr_t dma;
a132af24 649
ab9ad98e
JB
650 /* since we are recycling buffers we should seldom need to alloc */
651 if (likely(page)) {
652 rx_ring->rx_stats.page_reuse_count++;
653 return true;
654 }
a132af24 655
ab9ad98e 656 /* alloc new page for storage */
98efd694 657 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
ab9ad98e
JB
658 if (unlikely(!page)) {
659 rx_ring->rx_stats.alloc_page_failed++;
660 return false;
661 }
a132af24 662
ab9ad98e 663 /* map page for use */
59605bc0 664 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
98efd694 665 i40e_rx_pg_size(rx_ring),
59605bc0
AD
666 DMA_FROM_DEVICE,
667 I40E_RX_DMA_ATTR);
f16704e5 668
ab9ad98e
JB
669 /* if mapping failed free memory back to system since
670 * there isn't much point in holding memory we can't use
f16704e5 671 */
ab9ad98e 672 if (dma_mapping_error(rx_ring->dev, dma)) {
98efd694 673 __free_pages(page, i40e_rx_pg_order(rx_ring));
ab9ad98e
JB
674 rx_ring->rx_stats.alloc_page_failed++;
675 return false;
a132af24
MW
676 }
677
ab9ad98e
JB
678 bi->dma = dma;
679 bi->page = page;
ca9ec088 680 bi->page_offset = i40e_rx_offset(rx_ring);
a0cfc313
AD
681
682 /* initialize pagecnt_bias to 1 representing we fully own page */
1793668c 683 bi->pagecnt_bias = 1;
c2e245ab 684
ab9ad98e
JB
685 return true;
686}
c2e245ab 687
ab9ad98e
JB
688/**
689 * i40e_receive_skb - Send a completed packet up the stack
690 * @rx_ring: rx ring in play
691 * @skb: packet to send up
692 * @vlan_tag: vlan tag for packet
693 **/
694static void i40e_receive_skb(struct i40e_ring *rx_ring,
695 struct sk_buff *skb, u16 vlan_tag)
696{
697 struct i40e_q_vector *q_vector = rx_ring->q_vector;
c2e245ab 698
ab9ad98e
JB
699 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
700 (vlan_tag & VLAN_VID_MASK))
701 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
702
703 napi_gro_receive(&q_vector->napi, skb);
a132af24
MW
704}
705
706/**
ab9ad98e 707 * i40evf_alloc_rx_buffers - Replace used receive buffers
7f12ad74
GR
708 * @rx_ring: ring to place buffers on
709 * @cleaned_count: number of buffers to replace
c2e245ab 710 *
ab9ad98e 711 * Returns false if all allocations were successful, true if any fail
7f12ad74 712 **/
ab9ad98e 713bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
7f12ad74 714{
ab9ad98e 715 u16 ntu = rx_ring->next_to_use;
7f12ad74
GR
716 union i40e_rx_desc *rx_desc;
717 struct i40e_rx_buffer *bi;
7f12ad74
GR
718
719 /* do nothing if no valid netdev defined */
720 if (!rx_ring->netdev || !cleaned_count)
c2e245ab 721 return false;
7f12ad74 722
ab9ad98e
JB
723 rx_desc = I40E_RX_DESC(rx_ring, ntu);
724 bi = &rx_ring->rx_bi[ntu];
7f12ad74 725
ab9ad98e
JB
726 do {
727 if (!i40e_alloc_mapped_page(rx_ring, bi))
728 goto no_buffers;
7f12ad74 729
59605bc0
AD
730 /* sync the buffer for use by the device */
731 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
732 bi->page_offset,
98efd694 733 rx_ring->rx_buf_len,
59605bc0
AD
734 DMA_FROM_DEVICE);
735
ab9ad98e
JB
736 /* Refresh the desc even if buffer_addrs didn't change
737 * because each write-back erases this info.
738 */
739 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7f12ad74 740
ab9ad98e
JB
741 rx_desc++;
742 bi++;
743 ntu++;
744 if (unlikely(ntu == rx_ring->count)) {
745 rx_desc = I40E_RX_DESC(rx_ring, 0);
746 bi = rx_ring->rx_bi;
747 ntu = 0;
748 }
749
750 /* clear the status bits for the next_to_use descriptor */
751 rx_desc->wb.qword1.status_error_len = 0;
752
753 cleaned_count--;
754 } while (cleaned_count);
755
756 if (rx_ring->next_to_use != ntu)
757 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
758
759 return false;
760
7f12ad74 761no_buffers:
ab9ad98e
JB
762 if (rx_ring->next_to_use != ntu)
763 i40e_release_rx_desc(rx_ring, ntu);
c2e245ab
JB
764
765 /* make sure to come back via polling to try again after
766 * allocation failure
767 */
768 return true;
7f12ad74
GR
769}
770
7f12ad74
GR
771/**
772 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
773 * @vsi: the VSI we care about
774 * @skb: skb currently being received and modified
ab9ad98e 775 * @rx_desc: the receive descriptor
7f12ad74
GR
776 **/
777static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
778 struct sk_buff *skb,
ab9ad98e 779 union i40e_rx_desc *rx_desc)
7f12ad74 780{
ab9ad98e 781 struct i40e_rx_ptype_decoded decoded;
ab9ad98e 782 u32 rx_error, rx_status;
858296c8 783 bool ipv4, ipv6;
ab9ad98e
JB
784 u8 ptype;
785 u64 qword;
786
787 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
788 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
789 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
790 I40E_RXD_QW1_ERROR_SHIFT;
791 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
792 I40E_RXD_QW1_STATUS_SHIFT;
793 decoded = decode_rx_desc_ptype(ptype);
7f12ad74 794
7f12ad74
GR
795 skb->ip_summed = CHECKSUM_NONE;
796
ab9ad98e
JB
797 skb_checksum_none_assert(skb);
798
7f12ad74 799 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
800 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
801 return;
802
803 /* did the hardware decode the packet and checksum? */
41a1d04b 804 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
8a3c91cc
JB
805 return;
806
807 /* both known and outer_ip must be set for the below code to work */
808 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
809 return;
810
fad57330
AD
811 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
812 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
813 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
814 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
8a3c91cc
JB
815
816 if (ipv4 &&
41a1d04b
JB
817 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
818 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
8a3c91cc
JB
819 goto checksum_fail;
820
ddf1d0d7 821 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 822 if (ipv6 &&
41a1d04b 823 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
8a3c91cc 824 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
825 return;
826
8a3c91cc 827 /* there was some L4 error, count error and punt packet to the stack */
41a1d04b 828 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
8a3c91cc
JB
829 goto checksum_fail;
830
831 /* handle packets that were not able to be checksummed due
832 * to arrival speed, in this case the stack can compute
833 * the csum.
834 */
41a1d04b 835 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 836 return;
7f12ad74 837
858296c8
AD
838 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
839 switch (decoded.inner_prot) {
840 case I40E_RX_PTYPE_INNER_PROT_TCP:
841 case I40E_RX_PTYPE_INNER_PROT_UDP:
842 case I40E_RX_PTYPE_INNER_PROT_SCTP:
843 skb->ip_summed = CHECKSUM_UNNECESSARY;
844 /* fall though */
845 default:
846 break;
847 }
8a3c91cc
JB
848
849 return;
850
851checksum_fail:
852 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
853}
854
855/**
857942fd 856 * i40e_ptype_to_htype - get a hash type
206812b5
JB
857 * @ptype: the ptype value from the descriptor
858 *
859 * Returns a hash type to be used by skb_set_hash
860 **/
ab9ad98e 861static inline int i40e_ptype_to_htype(u8 ptype)
206812b5
JB
862{
863 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
864
865 if (!decoded.known)
866 return PKT_HASH_TYPE_NONE;
867
868 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
869 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
870 return PKT_HASH_TYPE_L4;
871 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
872 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
873 return PKT_HASH_TYPE_L3;
874 else
875 return PKT_HASH_TYPE_L2;
876}
877
857942fd
ASJ
878/**
879 * i40e_rx_hash - set the hash value in the skb
880 * @ring: descriptor ring
881 * @rx_desc: specific descriptor
882 **/
883static inline void i40e_rx_hash(struct i40e_ring *ring,
884 union i40e_rx_desc *rx_desc,
885 struct sk_buff *skb,
886 u8 rx_ptype)
887{
888 u32 hash;
ab9ad98e 889 const __le64 rss_mask =
857942fd
ASJ
890 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
891 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
892
893 if (ring->netdev->features & NETIF_F_RXHASH)
894 return;
895
896 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
897 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
898 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
899 }
900}
901
7f12ad74 902/**
ab9ad98e
JB
903 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
904 * @rx_ring: rx descriptor ring packet is being transacted on
905 * @rx_desc: pointer to the EOP Rx descriptor
906 * @skb: pointer to current skb being populated
907 * @rx_ptype: the packet type decoded by hardware
7f12ad74 908 *
ab9ad98e
JB
909 * This function checks the ring, descriptor, and packet information in
910 * order to populate the hash, checksum, VLAN, protocol, and
911 * other fields within the skb.
7f12ad74 912 **/
ab9ad98e
JB
913static inline
914void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
915 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
916 u8 rx_ptype)
7f12ad74 917{
ab9ad98e 918 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
7f12ad74 919
ab9ad98e 920 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
a132af24 921
ab9ad98e 922 skb_record_rx_queue(skb, rx_ring->queue_index);
a5b268e4
AD
923
924 /* modifies the skb - consumes the enet header */
925 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
ab9ad98e 926}
a132af24 927
ab9ad98e
JB
928/**
929 * i40e_cleanup_headers - Correct empty headers
930 * @rx_ring: rx descriptor ring packet is being transacted on
931 * @skb: pointer to current skb being fixed
932 *
933 * Also address the case where we are pulling data in on pages only
934 * and as such no data is present in the skb header.
935 *
936 * In addition if skb is not at least 60 bytes we need to pad it so that
937 * it is large enough to qualify as a valid Ethernet frame.
938 *
939 * Returns true if an error was encountered and skb was freed.
940 **/
941static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
942{
ab9ad98e
JB
943 /* if eth_skb_pad returns an error the skb was freed */
944 if (eth_skb_pad(skb))
945 return true;
7f12ad74 946
ab9ad98e
JB
947 return false;
948}
857942fd 949
ab9ad98e
JB
950/**
951 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
952 * @rx_ring: rx descriptor ring to store buffers on
953 * @old_buff: donor buffer to have page reused
954 *
955 * Synchronizes page for reuse by the adapter
956 **/
957static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
958 struct i40e_rx_buffer *old_buff)
959{
960 struct i40e_rx_buffer *new_buff;
961 u16 nta = rx_ring->next_to_alloc;
7f12ad74 962
ab9ad98e 963 new_buff = &rx_ring->rx_bi[nta];
7f12ad74 964
ab9ad98e
JB
965 /* update, and store next to alloc */
966 nta++;
967 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7f12ad74 968
ab9ad98e 969 /* transfer page from old buffer to new buffer */
1793668c
AD
970 new_buff->dma = old_buff->dma;
971 new_buff->page = old_buff->page;
972 new_buff->page_offset = old_buff->page_offset;
973 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
ab9ad98e
JB
974}
975
976/**
9b37c937 977 * i40e_page_is_reusable - check if any reuse is possible
ab9ad98e 978 * @page: page struct to check
9b37c937
SP
979 *
980 * A page is not reusable if it was allocated under low memory
981 * conditions, or it's not in the same NUMA node as this CPU.
ab9ad98e 982 */
9b37c937 983static inline bool i40e_page_is_reusable(struct page *page)
ab9ad98e 984{
9b37c937
SP
985 return (page_to_nid(page) == numa_mem_id()) &&
986 !page_is_pfmemalloc(page);
987}
988
989/**
990 * i40e_can_reuse_rx_page - Determine if this page can be reused by
991 * the adapter for another receive
992 *
993 * @rx_buffer: buffer containing the page
9b37c937
SP
994 *
995 * If page is reusable, rx_buffer->page_offset is adjusted to point to
996 * an unused region in the page.
997 *
998 * For small pages, @truesize will be a constant value, half the size
999 * of the memory at page. We'll attempt to alternate between high and
1000 * low halves of the page, with one half ready for use by the hardware
1001 * and the other half being consumed by the stack. We use the page
1002 * ref count to determine whether the stack has finished consuming the
1003 * portion of this page that was passed up with a previous packet. If
1004 * the page ref count is >1, we'll assume the "other" half page is
1005 * still busy, and this page cannot be reused.
1006 *
1007 * For larger pages, @truesize will be the actual space used by the
1008 * received packet (adjusted upward to an even multiple of the cache
1009 * line size). This will advance through the page by the amount
1010 * actually consumed by the received packets while there is still
1011 * space for a buffer. Each region of larger pages will be used at
1012 * most once, after which the page will not be reused.
1013 *
1014 * In either case, if the page is reusable its refcount is increased.
1015 **/
a0cfc313 1016static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
9b37c937 1017{
a0cfc313
AD
1018 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1019 struct page *page = rx_buffer->page;
9b37c937
SP
1020
1021 /* Is any reuse possible? */
1022 if (unlikely(!i40e_page_is_reusable(page)))
1023 return false;
1024
1025#if (PAGE_SIZE < 8192)
1026 /* if we are only owner of page we can reuse it */
a0cfc313 1027 if (unlikely((page_count(page) - pagecnt_bias) > 1))
9b37c937 1028 return false;
9b37c937 1029#else
98efd694
AD
1030#define I40E_LAST_OFFSET \
1031 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1032 if (rx_buffer->page_offset > I40E_LAST_OFFSET)
9b37c937
SP
1033 return false;
1034#endif
1035
1793668c
AD
1036 /* If we have drained the page fragment pool we need to update
1037 * the pagecnt_bias and page count so that we fully restock the
1038 * number of references the driver holds.
1039 */
a0cfc313 1040 if (unlikely(!pagecnt_bias)) {
1793668c
AD
1041 page_ref_add(page, USHRT_MAX);
1042 rx_buffer->pagecnt_bias = USHRT_MAX;
1043 }
9b37c937
SP
1044
1045 return true;
ab9ad98e
JB
1046}
1047
1048/**
1049 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1050 * @rx_ring: rx descriptor ring to transact packets on
1051 * @rx_buffer: buffer containing page to add
ab9ad98e 1052 * @skb: sk_buff to place the data into
a0cfc313 1053 * @size: packet length from rx_desc
ab9ad98e
JB
1054 *
1055 * This function will add the data contained in rx_buffer->page to the skb.
fa2343e9 1056 * It will just attach the page as a frag to the skb.
ab9ad98e 1057 *
fa2343e9 1058 * The function will then update the page offset.
ab9ad98e 1059 **/
a0cfc313 1060static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
ab9ad98e 1061 struct i40e_rx_buffer *rx_buffer,
a0cfc313
AD
1062 struct sk_buff *skb,
1063 unsigned int size)
ab9ad98e 1064{
ab9ad98e 1065#if (PAGE_SIZE < 8192)
98efd694 1066 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
ab9ad98e 1067#else
ca9ec088 1068 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
a132af24 1069#endif
ab9ad98e 1070
fa2343e9
AD
1071 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1072 rx_buffer->page_offset, size, truesize);
ab9ad98e 1073
a0cfc313
AD
1074 /* page is being used so we must update the page offset */
1075#if (PAGE_SIZE < 8192)
1076 rx_buffer->page_offset ^= truesize;
1077#else
1078 rx_buffer->page_offset += truesize;
1079#endif
ab9ad98e
JB
1080}
1081
9a064128
AD
1082/**
1083 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1084 * @rx_ring: rx descriptor ring to transact packets on
1085 * @size: size of buffer to add to skb
1086 *
1087 * This function will pull an Rx buffer from the ring and synchronize it
1088 * for use by the CPU.
1089 */
1090static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1091 const unsigned int size)
1092{
1093 struct i40e_rx_buffer *rx_buffer;
1094
1095 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1096 prefetchw(rx_buffer->page);
1097
1098 /* we are reusing so sync this buffer for CPU use */
1099 dma_sync_single_range_for_cpu(rx_ring->dev,
1100 rx_buffer->dma,
1101 rx_buffer->page_offset,
1102 size,
1103 DMA_FROM_DEVICE);
1104
a0cfc313
AD
1105 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1106 rx_buffer->pagecnt_bias--;
1107
9a064128
AD
1108 return rx_buffer;
1109}
1110
ab9ad98e 1111/**
fa2343e9 1112 * i40e_construct_skb - Allocate skb and populate it
ab9ad98e 1113 * @rx_ring: rx descriptor ring to transact packets on
9a064128 1114 * @rx_buffer: rx buffer to pull data from
d57c0e08 1115 * @size: size of buffer to add to skb
ab9ad98e 1116 *
fa2343e9
AD
1117 * This function allocates an skb. It then populates it with the page
1118 * data from the current receive descriptor, taking care to set up the
1119 * skb correctly.
ab9ad98e 1120 */
fa2343e9
AD
1121static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1122 struct i40e_rx_buffer *rx_buffer,
1123 unsigned int size)
ab9ad98e 1124{
fa2343e9
AD
1125 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1126#if (PAGE_SIZE < 8192)
98efd694 1127 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
fa2343e9
AD
1128#else
1129 unsigned int truesize = SKB_DATA_ALIGN(size);
1130#endif
1131 unsigned int headlen;
1132 struct sk_buff *skb;
ab9ad98e 1133
fa2343e9
AD
1134 /* prefetch first cache line of first page */
1135 prefetch(va);
ab9ad98e 1136#if L1_CACHE_BYTES < 128
fa2343e9 1137 prefetch(va + L1_CACHE_BYTES);
ab9ad98e
JB
1138#endif
1139
fa2343e9
AD
1140 /* allocate a skb to store the frags */
1141 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1142 I40E_RX_HDR_SIZE,
1143 GFP_ATOMIC | __GFP_NOWARN);
1144 if (unlikely(!skb))
1145 return NULL;
1146
1147 /* Determine available headroom for copy */
1148 headlen = size;
1149 if (headlen > I40E_RX_HDR_SIZE)
1150 headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
ab9ad98e 1151
fa2343e9
AD
1152 /* align pull length to size of long to optimize memcpy performance */
1153 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1154
1155 /* update all of the pointers */
1156 size -= headlen;
1157 if (size) {
1158 skb_add_rx_frag(skb, 0, rx_buffer->page,
1159 rx_buffer->page_offset + headlen,
1160 size, truesize);
1161
1162 /* buffer is used by skb, update page_offset */
1163#if (PAGE_SIZE < 8192)
1164 rx_buffer->page_offset ^= truesize;
1165#else
1166 rx_buffer->page_offset += truesize;
1167#endif
1168 } else {
1169 /* buffer is unused, reset bias back to rx_buffer */
1170 rx_buffer->pagecnt_bias++;
1171 }
a0cfc313
AD
1172
1173 return skb;
1174}
1175
f8b45b74
AD
1176/**
1177 * i40e_build_skb - Build skb around an existing buffer
1178 * @rx_ring: Rx descriptor ring to transact packets on
1179 * @rx_buffer: Rx buffer to pull data from
1180 * @size: size of buffer to add to skb
1181 *
1182 * This function builds an skb around an existing Rx buffer, taking care
1183 * to set up the skb correctly and avoid any memcpy overhead.
1184 */
1185static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
1186 struct i40e_rx_buffer *rx_buffer,
1187 unsigned int size)
1188{
1189 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1190#if (PAGE_SIZE < 8192)
1191 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1192#else
2aae918c
BT
1193 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1194 SKB_DATA_ALIGN(I40E_SKB_PAD + size);
f8b45b74
AD
1195#endif
1196 struct sk_buff *skb;
1197
1198 /* prefetch first cache line of first page */
1199 prefetch(va);
1200#if L1_CACHE_BYTES < 128
1201 prefetch(va + L1_CACHE_BYTES);
1202#endif
1203 /* build an skb around the page buffer */
1204 skb = build_skb(va - I40E_SKB_PAD, truesize);
1205 if (unlikely(!skb))
1206 return NULL;
1207
1208 /* update pointers within the skb to store the data */
1209 skb_reserve(skb, I40E_SKB_PAD);
1210 __skb_put(skb, size);
1211
1212 /* buffer is used by skb, update page_offset */
1213#if (PAGE_SIZE < 8192)
1214 rx_buffer->page_offset ^= truesize;
1215#else
1216 rx_buffer->page_offset += truesize;
1217#endif
1218
1219 return skb;
1220}
1221
a0cfc313
AD
1222/**
1223 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1224 * @rx_ring: rx descriptor ring to transact packets on
1225 * @rx_buffer: rx buffer to pull data from
1226 *
1227 * This function will clean up the contents of the rx_buffer. It will
1228 * either recycle the bufer or unmap it and free the associated resources.
1229 */
1230static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1231 struct i40e_rx_buffer *rx_buffer)
1232{
1233 if (i40e_can_reuse_rx_page(rx_buffer)) {
ab9ad98e
JB
1234 /* hand second half of page back to the ring */
1235 i40e_reuse_rx_page(rx_ring, rx_buffer);
1236 rx_ring->rx_stats.page_reuse_count++;
1237 } else {
1238 /* we are not reusing the buffer so unmap it */
98efd694
AD
1239 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1240 i40e_rx_pg_size(rx_ring),
59605bc0 1241 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1793668c
AD
1242 __page_frag_cache_drain(rx_buffer->page,
1243 rx_buffer->pagecnt_bias);
ab9ad98e
JB
1244 }
1245
1246 /* clear contents of buffer_info */
1247 rx_buffer->page = NULL;
ab9ad98e
JB
1248}
1249
1250/**
1251 * i40e_is_non_eop - process handling of non-EOP buffers
1252 * @rx_ring: Rx ring being processed
1253 * @rx_desc: Rx descriptor for current buffer
1254 * @skb: Current socket buffer containing buffer in progress
1255 *
1256 * This function updates next to clean. If the buffer is an EOP buffer
1257 * this function exits returning false, otherwise it will place the
1258 * sk_buff in the next buffer to be chained and return true indicating
1259 * that this is in fact a non-EOP buffer.
1260 **/
1261static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1262 union i40e_rx_desc *rx_desc,
1263 struct sk_buff *skb)
1264{
1265 u32 ntc = rx_ring->next_to_clean + 1;
1266
1267 /* fetch, update, and store next to clean */
1268 ntc = (ntc < rx_ring->count) ? ntc : 0;
1269 rx_ring->next_to_clean = ntc;
1270
1271 prefetch(I40E_RX_DESC(rx_ring, ntc));
1272
1273 /* if we are the last buffer then there is nothing else to do */
1274#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1275 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1276 return false;
1277
ab9ad98e
JB
1278 rx_ring->rx_stats.non_eop_descs++;
1279
1280 return true;
a132af24
MW
1281}
1282
1283/**
ab9ad98e
JB
1284 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1285 * @rx_ring: rx descriptor ring to transact packets on
1286 * @budget: Total limit on number of packets to process
1287 *
1288 * This function provides a "bounce buffer" approach to Rx interrupt
1289 * processing. The advantage to this is that on systems that have
1290 * expensive overhead for IOMMU access this provides a means of avoiding
1291 * it by maintaining the mapping of the page to the system.
a132af24 1292 *
ab9ad98e 1293 * Returns amount of work completed
a132af24 1294 **/
ab9ad98e 1295static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
a132af24
MW
1296{
1297 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
e72e5659 1298 struct sk_buff *skb = rx_ring->skb;
a132af24 1299 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
c2e245ab 1300 bool failure = false;
a132af24 1301
ab9ad98e 1302 while (likely(total_rx_packets < budget)) {
9a064128 1303 struct i40e_rx_buffer *rx_buffer;
ab9ad98e 1304 union i40e_rx_desc *rx_desc;
d57c0e08 1305 unsigned int size;
a132af24 1306 u16 vlan_tag;
ab9ad98e
JB
1307 u8 rx_ptype;
1308 u64 qword;
1309
7f12ad74
GR
1310 /* return some buffers to hardware, one at a time is too slow */
1311 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
c2e245ab 1312 failure = failure ||
ab9ad98e 1313 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
7f12ad74
GR
1314 cleaned_count = 0;
1315 }
1316
ab9ad98e
JB
1317 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1318
ab9ad98e
JB
1319 /* status_error_len will always be zero for unused descriptors
1320 * because it's cleared in cleanup, and overlaps with hdr_addr
1321 * which is always zero because packet split isn't used, if the
d57c0e08 1322 * hardware wrote DD then the length will be non-zero
ab9ad98e 1323 */
d57c0e08 1324 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
ab9ad98e 1325
a132af24 1326 /* This memory barrier is needed to keep us from reading
d57c0e08
AD
1327 * any other fields out of the rx_desc until we have
1328 * verified the descriptor has been written back.
a132af24 1329 */
67317166 1330 dma_rmb();
a132af24 1331
0e626ff7
AD
1332 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1333 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1334 if (!size)
1335 break;
1336
ed0980c4 1337 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
9a064128
AD
1338 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
1339
fa2343e9
AD
1340 /* retrieve a buffer from the ring */
1341 if (skb)
1342 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
f8b45b74
AD
1343 else if (ring_uses_build_skb(rx_ring))
1344 skb = i40e_build_skb(rx_ring, rx_buffer, size);
fa2343e9
AD
1345 else
1346 skb = i40e_construct_skb(rx_ring, rx_buffer, size);
1347
1348 /* exit if we failed to retrieve a buffer */
1349 if (!skb) {
1350 rx_ring->rx_stats.alloc_buff_failed++;
1351 rx_buffer->pagecnt_bias++;
ab9ad98e 1352 break;
fa2343e9 1353 }
a132af24 1354
a0cfc313 1355 i40e_put_rx_buffer(rx_ring, rx_buffer);
a132af24
MW
1356 cleaned_count++;
1357
ab9ad98e 1358 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
a132af24 1359 continue;
a132af24 1360
ab9ad98e
JB
1361 /* ERR_MASK will only have valid bits if EOP set, and
1362 * what we are doing here is actually checking
1363 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1364 * the error field
1365 */
1366 if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
a132af24 1367 dev_kfree_skb_any(skb);
741b8b83 1368 skb = NULL;
a132af24
MW
1369 continue;
1370 }
1371
e72e5659
SP
1372 if (i40e_cleanup_headers(rx_ring, skb)) {
1373 skb = NULL;
ab9ad98e 1374 continue;
e72e5659 1375 }
ab9ad98e 1376
a132af24
MW
1377 /* probably a little skewed due to removing CRC */
1378 total_rx_bytes += skb->len;
a132af24 1379
99dad8b3
AD
1380 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1381 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1382 I40E_RXD_QW1_PTYPE_SHIFT;
1383
ab9ad98e
JB
1384 /* populate checksum, VLAN, and protocol */
1385 i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
a132af24 1386
a132af24 1387
ab9ad98e
JB
1388 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1389 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1390
ed0980c4 1391 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
a132af24 1392 i40e_receive_skb(rx_ring, skb, vlan_tag);
e72e5659 1393 skb = NULL;
a132af24 1394
ab9ad98e
JB
1395 /* update budget accounting */
1396 total_rx_packets++;
1397 }
7f12ad74 1398
e72e5659
SP
1399 rx_ring->skb = skb;
1400
7f12ad74
GR
1401 u64_stats_update_begin(&rx_ring->syncp);
1402 rx_ring->stats.packets += total_rx_packets;
1403 rx_ring->stats.bytes += total_rx_bytes;
1404 u64_stats_update_end(&rx_ring->syncp);
1405 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1406 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1407
ab9ad98e 1408 /* guarantee a trip back through this routine if there was a failure */
c2e245ab 1409 return failure ? budget : total_rx_packets;
7f12ad74
GR
1410}
1411
8f5e39ce
JB
1412static u32 i40e_buildreg_itr(const int type, const u16 itr)
1413{
1414 u32 val;
1415
1416 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
40d72a50
JB
1417 /* Don't clear PBA because that can cause lost interrupts that
1418 * came in while we were cleaning/polling
1419 */
8f5e39ce
JB
1420 (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1421 (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1422
1423 return val;
1424}
1425
1426/* a small macro to shorten up some long lines */
1427#define INTREG I40E_VFINT_DYN_CTLN1
3c234c47 1428static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
65e87c03
JK
1429{
1430 struct i40evf_adapter *adapter = vsi->back;
1431
3c234c47 1432 return adapter->rx_rings[idx].rx_itr_setting;
65e87c03
JK
1433}
1434
3c234c47 1435static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
65e87c03
JK
1436{
1437 struct i40evf_adapter *adapter = vsi->back;
1438
3c234c47 1439 return adapter->tx_rings[idx].tx_itr_setting;
65e87c03 1440}
8f5e39ce 1441
de32e3ef
CW
1442/**
1443 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1444 * @vsi: the VSI we care about
1445 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1446 *
1447 **/
1448static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1449 struct i40e_q_vector *q_vector)
1450{
1451 struct i40e_hw *hw = &vsi->back->hw;
8f5e39ce
JB
1452 bool rx = false, tx = false;
1453 u32 rxval, txval;
de32e3ef 1454 int vector;
65e87c03
JK
1455 int idx = q_vector->v_idx;
1456 int rx_itr_setting, tx_itr_setting;
de32e3ef
CW
1457
1458 vector = (q_vector->v_idx + vsi->base_vector);
ee2319cf
JB
1459
1460 /* avoid dynamic calculation if in countdown mode OR if
1461 * all dynamic is disabled
1462 */
8f5e39ce
JB
1463 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1464
3c234c47
CW
1465 rx_itr_setting = get_rx_itr(vsi, idx);
1466 tx_itr_setting = get_tx_itr(vsi, idx);
65e87c03 1467
ee2319cf 1468 if (q_vector->itr_countdown > 0 ||
65e87c03
JK
1469 (!ITR_IS_DYNAMIC(rx_itr_setting) &&
1470 !ITR_IS_DYNAMIC(tx_itr_setting))) {
ee2319cf
JB
1471 goto enable_int;
1472 }
1473
65e87c03 1474 if (ITR_IS_DYNAMIC(rx_itr_setting)) {
8f5e39ce
JB
1475 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1476 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
de32e3ef 1477 }
4eeb1fff 1478
65e87c03 1479 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
8f5e39ce
JB
1480 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1481 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1482 }
4eeb1fff 1483
8f5e39ce
JB
1484 if (rx || tx) {
1485 /* get the higher of the two ITR adjustments and
1486 * use the same value for both ITR registers
1487 * when in adaptive mode (Rx and/or Tx)
1488 */
1489 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1490
1491 q_vector->tx.itr = q_vector->rx.itr = itr;
1492 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1493 tx = true;
1494 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1495 rx = true;
de32e3ef 1496 }
8f5e39ce
JB
1497
1498 /* only need to enable the interrupt once, but need
1499 * to possibly update both ITR values
1500 */
1501 if (rx) {
1502 /* set the INTENA_MSK_MASK so that this first write
1503 * won't actually enable the interrupt, instead just
1504 * updating the ITR (it's bit 31 PF and VF)
1505 */
1506 rxval |= BIT(31);
1507 /* don't check _DOWN because interrupt isn't being enabled */
1508 wr32(hw, INTREG(vector - 1), rxval);
1509 }
1510
ee2319cf 1511enable_int:
0da36b97 1512 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
8f5e39ce 1513 wr32(hw, INTREG(vector - 1), txval);
ee2319cf
JB
1514
1515 if (q_vector->itr_countdown)
1516 q_vector->itr_countdown--;
1517 else
1518 q_vector->itr_countdown = ITR_COUNTDOWN_START;
de32e3ef
CW
1519}
1520
7f12ad74
GR
1521/**
1522 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1523 * @napi: napi struct with our devices info in it
1524 * @budget: amount of work driver is allowed to do this pass, in packets
1525 *
1526 * This function will clean all queues associated with a q_vector.
1527 *
1528 * Returns the amount of work done
1529 **/
1530int i40evf_napi_poll(struct napi_struct *napi, int budget)
1531{
1532 struct i40e_q_vector *q_vector =
1533 container_of(napi, struct i40e_q_vector, napi);
1534 struct i40e_vsi *vsi = q_vector->vsi;
1535 struct i40e_ring *ring;
1536 bool clean_complete = true;
c29af37f 1537 bool arm_wb = false;
7f12ad74 1538 int budget_per_ring;
32b3e08f 1539 int work_done = 0;
7f12ad74 1540
0da36b97 1541 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
7f12ad74
GR
1542 napi_complete(napi);
1543 return 0;
1544 }
1545
1546 /* Since the actual Tx work is minimal, we can give the Tx a larger
1547 * budget and be more aggressive about cleaning up the Tx descriptors.
1548 */
c29af37f 1549 i40e_for_each_ring(ring, q_vector->tx) {
a619afe8 1550 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
f2edaaaa
AD
1551 clean_complete = false;
1552 continue;
1553 }
1554 arm_wb |= ring->arm_wb;
0deda868 1555 ring->arm_wb = false;
c29af37f 1556 }
7f12ad74 1557
c67caceb
AD
1558 /* Handle case where we are called by netpoll with a budget of 0 */
1559 if (budget <= 0)
1560 goto tx_only;
1561
7f12ad74
GR
1562 /* We attempt to distribute budget to each Rx queue fairly, but don't
1563 * allow the budget to go below 1 because that would exit polling early.
1564 */
1565 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1566
a132af24 1567 i40e_for_each_ring(ring, q_vector->rx) {
ab9ad98e 1568 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
32b3e08f
JB
1569
1570 work_done += cleaned;
f2edaaaa
AD
1571 /* if we clean as many as budgeted, we must not be done */
1572 if (cleaned >= budget_per_ring)
1573 clean_complete = false;
a132af24 1574 }
7f12ad74
GR
1575
1576 /* If work not completed, return budget and polling will return */
c29af37f 1577 if (!clean_complete) {
96db776a
AB
1578 const cpumask_t *aff_mask = &q_vector->affinity_mask;
1579 int cpu_id = smp_processor_id();
1580
1581 /* It is possible that the interrupt affinity has changed but,
1582 * if the cpu is pegged at 100%, polling will never exit while
1583 * traffic continues and the interrupt will be stuck on this
1584 * cpu. We check to make sure affinity is correct before we
1585 * continue to poll, otherwise we must stop polling so the
1586 * interrupt can move to the correct cpu.
1587 */
1588 if (likely(cpumask_test_cpu(cpu_id, aff_mask))) {
c67caceb 1589tx_only:
96db776a
AB
1590 if (arm_wb) {
1591 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1592 i40e_enable_wb_on_itr(vsi, q_vector);
1593 }
1594 return budget;
164c9f54 1595 }
c29af37f 1596 }
7f12ad74 1597
8e0764b4
ASJ
1598 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1599 q_vector->arm_wb_state = false;
1600
7f12ad74 1601 /* Work is done so exit the polling mode and re-enable the interrupt */
32b3e08f 1602 napi_complete_done(napi, work_done);
96db776a
AB
1603
1604 /* If we're prematurely stopping polling to fix the interrupt
1605 * affinity we want to make sure polling starts back up so we
1606 * issue a call to i40evf_force_wb which triggers a SW interrupt.
1607 */
1608 if (!clean_complete)
1609 i40evf_force_wb(vsi, q_vector);
1610 else
1611 i40e_update_enable_itr(vsi, q_vector);
1612
6beb84a7 1613 return min(work_done, budget - 1);
7f12ad74
GR
1614}
1615
1616/**
3e587cf3 1617 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
7f12ad74
GR
1618 * @skb: send buffer
1619 * @tx_ring: ring to send buffer on
1620 * @flags: the tx flags to be set
1621 *
1622 * Checks the skb and set up correspondingly several generic transmit flags
1623 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1624 *
1625 * Returns error code indicate the frame should be dropped upon error and the
1626 * otherwise returns 0 to indicate the flags has been set properly.
1627 **/
3e587cf3
JB
1628static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1629 struct i40e_ring *tx_ring,
1630 u32 *flags)
7f12ad74
GR
1631{
1632 __be16 protocol = skb->protocol;
1633 u32 tx_flags = 0;
1634
31eaaccf
GR
1635 if (protocol == htons(ETH_P_8021Q) &&
1636 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1637 /* When HW VLAN acceleration is turned off by the user the
1638 * stack sets the protocol to 8021q so that the driver
1639 * can take any steps required to support the SW only
1640 * VLAN handling. In our case the driver doesn't need
1641 * to take any further steps so just set the protocol
1642 * to the encapsulated ethertype.
1643 */
1644 skb->protocol = vlan_get_protocol(skb);
1645 goto out;
1646 }
1647
7f12ad74 1648 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
1649 if (skb_vlan_tag_present(skb)) {
1650 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
7f12ad74
GR
1651 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1652 /* else if it is a SW VLAN, check the next protocol and store the tag */
1653 } else if (protocol == htons(ETH_P_8021Q)) {
1654 struct vlan_hdr *vhdr, _vhdr;
6995b36c 1655
7f12ad74
GR
1656 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1657 if (!vhdr)
1658 return -EINVAL;
1659
1660 protocol = vhdr->h_vlan_encapsulated_proto;
1661 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1662 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1663 }
1664
31eaaccf 1665out:
7f12ad74
GR
1666 *flags = tx_flags;
1667 return 0;
1668}
1669
1670/**
1671 * i40e_tso - set up the tso context descriptor
52ea3e80 1672 * @first: pointer to first Tx buffer for xmit
7f12ad74 1673 * @hdr_len: ptr to the size of the packet header
9c883bd3 1674 * @cd_type_cmd_tso_mss: Quad Word 1
7f12ad74
GR
1675 *
1676 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1677 **/
52ea3e80
AD
1678static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
1679 u64 *cd_type_cmd_tso_mss)
7f12ad74 1680{
52ea3e80 1681 struct sk_buff *skb = first->skb;
03f9d6a5 1682 u64 cd_cmd, cd_tso_len, cd_mss;
c777019a
AD
1683 union {
1684 struct iphdr *v4;
1685 struct ipv6hdr *v6;
1686 unsigned char *hdr;
1687 } ip;
c49a7bc3
AD
1688 union {
1689 struct tcphdr *tcp;
5453205c 1690 struct udphdr *udp;
c49a7bc3
AD
1691 unsigned char *hdr;
1692 } l4;
1693 u32 paylen, l4_offset;
52ea3e80 1694 u16 gso_segs, gso_size;
7f12ad74 1695 int err;
7f12ad74 1696
e9f6563d
SN
1697 if (skb->ip_summed != CHECKSUM_PARTIAL)
1698 return 0;
1699
7f12ad74
GR
1700 if (!skb_is_gso(skb))
1701 return 0;
1702
fe6d4aa4
FR
1703 err = skb_cow_head(skb, 0);
1704 if (err < 0)
1705 return err;
7f12ad74 1706
c777019a
AD
1707 ip.hdr = skb_network_header(skb);
1708 l4.hdr = skb_transport_header(skb);
85e76d03 1709
c777019a
AD
1710 /* initialize outer IP header fields */
1711 if (ip.v4->version == 4) {
1712 ip.v4->tot_len = 0;
1713 ip.v4->check = 0;
c49a7bc3 1714 } else {
c777019a
AD
1715 ip.v6->payload_len = 0;
1716 }
1717
577389a5 1718 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1c7b4a23 1719 SKB_GSO_GRE_CSUM |
7e13318d 1720 SKB_GSO_IPXIP4 |
bf2d1df3 1721 SKB_GSO_IPXIP6 |
577389a5 1722 SKB_GSO_UDP_TUNNEL |
5453205c 1723 SKB_GSO_UDP_TUNNEL_CSUM)) {
1c7b4a23
AD
1724 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1725 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1726 l4.udp->len = 0;
1727
5453205c
AD
1728 /* determine offset of outer transport header */
1729 l4_offset = l4.hdr - skb->data;
1730
1731 /* remove payload length from outer checksum */
24d41e5e 1732 paylen = skb->len - l4_offset;
b9c015d4
JK
1733 csum_replace_by_diff(&l4.udp->check,
1734 (__force __wsum)htonl(paylen));
5453205c
AD
1735 }
1736
c777019a
AD
1737 /* reset pointers to inner headers */
1738 ip.hdr = skb_inner_network_header(skb);
1739 l4.hdr = skb_inner_transport_header(skb);
1740
1741 /* initialize inner IP header fields */
1742 if (ip.v4->version == 4) {
1743 ip.v4->tot_len = 0;
1744 ip.v4->check = 0;
1745 } else {
1746 ip.v6->payload_len = 0;
1747 }
7f12ad74
GR
1748 }
1749
c49a7bc3
AD
1750 /* determine offset of inner transport header */
1751 l4_offset = l4.hdr - skb->data;
1752
1753 /* remove payload length from inner checksum */
24d41e5e 1754 paylen = skb->len - l4_offset;
b9c015d4 1755 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
c49a7bc3
AD
1756
1757 /* compute length of segmentation header */
1758 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
7f12ad74 1759
52ea3e80
AD
1760 /* pull values out of skb_shinfo */
1761 gso_size = skb_shinfo(skb)->gso_size;
1762 gso_segs = skb_shinfo(skb)->gso_segs;
1763
1764 /* update GSO size and bytecount with header size */
1765 first->gso_segs = gso_segs;
1766 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1767
7f12ad74
GR
1768 /* find the field values */
1769 cd_cmd = I40E_TX_CTX_DESC_TSO;
1770 cd_tso_len = skb->len - *hdr_len;
52ea3e80 1771 cd_mss = gso_size;
03f9d6a5
AD
1772 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1773 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1774 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
7f12ad74
GR
1775 return 1;
1776}
1777
1778/**
1779 * i40e_tx_enable_csum - Enable Tx checksum offloads
1780 * @skb: send buffer
89232c3b 1781 * @tx_flags: pointer to Tx flags currently set
7f12ad74
GR
1782 * @td_cmd: Tx descriptor command bits to set
1783 * @td_offset: Tx descriptor header offsets to set
529f1f65 1784 * @tx_ring: Tx descriptor ring
7f12ad74
GR
1785 * @cd_tunneling: ptr to context desc bits
1786 **/
529f1f65
AD
1787static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1788 u32 *td_cmd, u32 *td_offset,
1789 struct i40e_ring *tx_ring,
1790 u32 *cd_tunneling)
7f12ad74 1791{
b96b78f2
AD
1792 union {
1793 struct iphdr *v4;
1794 struct ipv6hdr *v6;
1795 unsigned char *hdr;
1796 } ip;
1797 union {
1798 struct tcphdr *tcp;
1799 struct udphdr *udp;
1800 unsigned char *hdr;
1801 } l4;
a3fd9d88 1802 unsigned char *exthdr;
d1bd743b 1803 u32 offset, cmd = 0;
a3fd9d88 1804 __be16 frag_off;
b96b78f2
AD
1805 u8 l4_proto = 0;
1806
529f1f65
AD
1807 if (skb->ip_summed != CHECKSUM_PARTIAL)
1808 return 0;
1809
b96b78f2
AD
1810 ip.hdr = skb_network_header(skb);
1811 l4.hdr = skb_transport_header(skb);
7f12ad74 1812
475b4205
AD
1813 /* compute outer L2 header size */
1814 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1815
7f12ad74 1816 if (skb->encapsulation) {
d1bd743b 1817 u32 tunnel = 0;
a0064728
AD
1818 /* define outer network header type */
1819 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
475b4205
AD
1820 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1821 I40E_TX_CTX_EXT_IP_IPV4 :
1822 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1823
a0064728
AD
1824 l4_proto = ip.v4->protocol;
1825 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 1826 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
a3fd9d88
AD
1827
1828 exthdr = ip.hdr + sizeof(*ip.v6);
a0064728 1829 l4_proto = ip.v6->nexthdr;
a3fd9d88
AD
1830 if (l4.hdr != exthdr)
1831 ipv6_skip_exthdr(skb, exthdr - skb->data,
1832 &l4_proto, &frag_off);
a0064728
AD
1833 }
1834
1835 /* define outer transport */
1836 switch (l4_proto) {
45991204 1837 case IPPROTO_UDP:
475b4205 1838 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
89232c3b 1839 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
45991204 1840 break;
a0064728 1841 case IPPROTO_GRE:
475b4205 1842 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
a0064728
AD
1843 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1844 break;
577389a5
AD
1845 case IPPROTO_IPIP:
1846 case IPPROTO_IPV6:
1847 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1848 l4.hdr = skb_inner_network_header(skb);
1849 break;
45991204 1850 default:
529f1f65
AD
1851 if (*tx_flags & I40E_TX_FLAGS_TSO)
1852 return -1;
1853
1854 skb_checksum_help(skb);
1855 return 0;
45991204 1856 }
b96b78f2 1857
577389a5
AD
1858 /* compute outer L3 header size */
1859 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1860 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1861
1862 /* switch IP header pointer from outer to inner header */
1863 ip.hdr = skb_inner_network_header(skb);
1864
475b4205
AD
1865 /* compute tunnel header size */
1866 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1867 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1868
5453205c
AD
1869 /* indicate if we need to offload outer UDP header */
1870 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1c7b4a23 1871 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
5453205c
AD
1872 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1873 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1874
475b4205
AD
1875 /* record tunnel offload values */
1876 *cd_tunneling |= tunnel;
1877
b96b78f2 1878 /* switch L4 header pointer from outer to inner */
b96b78f2 1879 l4.hdr = skb_inner_transport_header(skb);
a0064728 1880 l4_proto = 0;
7f12ad74 1881
a0064728
AD
1882 /* reset type as we transition from outer to inner headers */
1883 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
1884 if (ip.v4->version == 4)
1885 *tx_flags |= I40E_TX_FLAGS_IPV4;
1886 if (ip.v6->version == 6)
89232c3b 1887 *tx_flags |= I40E_TX_FLAGS_IPV6;
7f12ad74
GR
1888 }
1889
1890 /* Enable IP checksum offloads */
89232c3b 1891 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
b96b78f2 1892 l4_proto = ip.v4->protocol;
7f12ad74
GR
1893 /* the stack computes the IP header already, the only time we
1894 * need the hardware to recompute it is in the case of TSO.
1895 */
475b4205
AD
1896 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1897 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
1898 I40E_TX_DESC_CMD_IIPT_IPV4;
89232c3b 1899 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
475b4205 1900 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
a3fd9d88
AD
1901
1902 exthdr = ip.hdr + sizeof(*ip.v6);
1903 l4_proto = ip.v6->nexthdr;
1904 if (l4.hdr != exthdr)
1905 ipv6_skip_exthdr(skb, exthdr - skb->data,
1906 &l4_proto, &frag_off);
7f12ad74 1907 }
b96b78f2 1908
475b4205
AD
1909 /* compute inner L3 header size */
1910 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
7f12ad74
GR
1911
1912 /* Enable L4 checksum offloads */
b96b78f2 1913 switch (l4_proto) {
7f12ad74
GR
1914 case IPPROTO_TCP:
1915 /* enable checksum offloads */
475b4205
AD
1916 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1917 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1918 break;
1919 case IPPROTO_SCTP:
1920 /* enable SCTP checksum offload */
475b4205
AD
1921 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1922 offset |= (sizeof(struct sctphdr) >> 2) <<
1923 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1924 break;
1925 case IPPROTO_UDP:
1926 /* enable UDP checksum offload */
475b4205
AD
1927 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1928 offset |= (sizeof(struct udphdr) >> 2) <<
1929 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
7f12ad74
GR
1930 break;
1931 default:
529f1f65
AD
1932 if (*tx_flags & I40E_TX_FLAGS_TSO)
1933 return -1;
1934 skb_checksum_help(skb);
1935 return 0;
7f12ad74 1936 }
475b4205
AD
1937
1938 *td_cmd |= cmd;
1939 *td_offset |= offset;
529f1f65
AD
1940
1941 return 1;
7f12ad74
GR
1942}
1943
1944/**
1945 * i40e_create_tx_ctx Build the Tx context descriptor
1946 * @tx_ring: ring to create the descriptor on
1947 * @cd_type_cmd_tso_mss: Quad Word 1
1948 * @cd_tunneling: Quad Word 0 - bits 0-31
1949 * @cd_l2tag2: Quad Word 0 - bits 32-63
1950 **/
1951static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1952 const u64 cd_type_cmd_tso_mss,
1953 const u32 cd_tunneling, const u32 cd_l2tag2)
1954{
1955 struct i40e_tx_context_desc *context_desc;
1956 int i = tx_ring->next_to_use;
1957
ff40dd5d
JB
1958 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1959 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1960 return;
1961
1962 /* grab the next descriptor */
1963 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1964
1965 i++;
1966 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1967
1968 /* cpu_to_le32 and assign to struct fields */
1969 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1970 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1971 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1972 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1973}
1974
4eeb1fff 1975/**
3f3f7cb8 1976 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
71da6197 1977 * @skb: send buffer
71da6197 1978 *
3f3f7cb8
AD
1979 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
1980 * and so we need to figure out the cases where we need to linearize the skb.
1981 *
1982 * For TSO we need to count the TSO header and segment payload separately.
1983 * As such we need to check cases where we have 7 fragments or more as we
1984 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1985 * the segment payload in the first descriptor, and another 7 for the
1986 * fragments.
71da6197 1987 **/
2d37490b 1988bool __i40evf_chk_linearize(struct sk_buff *skb)
71da6197 1989{
2d37490b 1990 const struct skb_frag_struct *frag, *stale;
3f3f7cb8 1991 int nr_frags, sum;
71da6197 1992
3f3f7cb8 1993 /* no need to check if number of frags is less than 7 */
2d37490b 1994 nr_frags = skb_shinfo(skb)->nr_frags;
3f3f7cb8 1995 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2d37490b 1996 return false;
71da6197 1997
2d37490b 1998 /* We need to walk through the list and validate that each group
841493a3 1999 * of 6 fragments totals at least gso_size.
2d37490b 2000 */
3f3f7cb8 2001 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2d37490b
AD
2002 frag = &skb_shinfo(skb)->frags[0];
2003
2004 /* Initialize size to the negative value of gso_size minus 1. We
2005 * use this as the worst case scenerio in which the frag ahead
2006 * of us only provides one byte which is why we are limited to 6
2007 * descriptors for a single transmit as the header and previous
2008 * fragment are already consuming 2 descriptors.
2009 */
3f3f7cb8 2010 sum = 1 - skb_shinfo(skb)->gso_size;
2d37490b 2011
3f3f7cb8
AD
2012 /* Add size of frags 0 through 4 to create our initial sum */
2013 sum += skb_frag_size(frag++);
2014 sum += skb_frag_size(frag++);
2015 sum += skb_frag_size(frag++);
2016 sum += skb_frag_size(frag++);
2017 sum += skb_frag_size(frag++);
2d37490b
AD
2018
2019 /* Walk through fragments adding latest fragment, testing it, and
2020 * then removing stale fragments from the sum.
2021 */
2022 stale = &skb_shinfo(skb)->frags[0];
2023 for (;;) {
3f3f7cb8 2024 sum += skb_frag_size(frag++);
2d37490b
AD
2025
2026 /* if sum is negative we failed to make sufficient progress */
2027 if (sum < 0)
2028 return true;
2029
841493a3 2030 if (!nr_frags--)
2d37490b
AD
2031 break;
2032
3f3f7cb8 2033 sum -= skb_frag_size(stale++);
71da6197
AS
2034 }
2035
2d37490b 2036 return false;
71da6197
AS
2037}
2038
8f6a2b05
JB
2039/**
2040 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
2041 * @tx_ring: the ring to be checked
2042 * @size: the size buffer we want to assure is available
2043 *
2044 * Returns -EBUSY if a stop is needed, else 0
2045 **/
4ec441df 2046int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
8f6a2b05
JB
2047{
2048 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2049 /* Memory barrier before checking head and tail */
2050 smp_mb();
2051
2052 /* Check again in a case another CPU has just made room available. */
2053 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2054 return -EBUSY;
2055
2056 /* A reprieve! - use start_queue because it doesn't call schedule */
2057 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2058 ++tx_ring->tx_stats.restart_queue;
2059 return 0;
2060}
2061
7f12ad74 2062/**
3e587cf3 2063 * i40evf_tx_map - Build the Tx descriptor
7f12ad74
GR
2064 * @tx_ring: ring to send buffer on
2065 * @skb: send buffer
2066 * @first: first buffer info buffer to use
2067 * @tx_flags: collected send information
2068 * @hdr_len: size of the packet header
2069 * @td_cmd: the command field in the descriptor
2070 * @td_offset: offset for checksum or crc
2071 **/
3e587cf3
JB
2072static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2073 struct i40e_tx_buffer *first, u32 tx_flags,
2074 const u8 hdr_len, u32 td_cmd, u32 td_offset)
7f12ad74
GR
2075{
2076 unsigned int data_len = skb->data_len;
2077 unsigned int size = skb_headlen(skb);
2078 struct skb_frag_struct *frag;
2079 struct i40e_tx_buffer *tx_bi;
2080 struct i40e_tx_desc *tx_desc;
2081 u16 i = tx_ring->next_to_use;
2082 u32 td_tag = 0;
2083 dma_addr_t dma;
7f12ad74
GR
2084
2085 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2086 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2087 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2088 I40E_TX_FLAGS_VLAN_SHIFT;
2089 }
2090
7f12ad74
GR
2091 first->tx_flags = tx_flags;
2092
2093 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2094
2095 tx_desc = I40E_TX_DESC(tx_ring, i);
2096 tx_bi = first;
2097
2098 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5c4654da
AD
2099 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2100
7f12ad74
GR
2101 if (dma_mapping_error(tx_ring->dev, dma))
2102 goto dma_error;
2103
2104 /* record length, and DMA address */
2105 dma_unmap_len_set(tx_bi, len, size);
2106 dma_unmap_addr_set(tx_bi, dma, dma);
2107
5c4654da
AD
2108 /* align size to end of page */
2109 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
7f12ad74
GR
2110 tx_desc->buffer_addr = cpu_to_le64(dma);
2111
2112 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2113 tx_desc->cmd_type_offset_bsz =
2114 build_ctob(td_cmd, td_offset,
5c4654da 2115 max_data, td_tag);
7f12ad74
GR
2116
2117 tx_desc++;
2118 i++;
6a7fded7 2119
7f12ad74
GR
2120 if (i == tx_ring->count) {
2121 tx_desc = I40E_TX_DESC(tx_ring, 0);
2122 i = 0;
2123 }
2124
5c4654da
AD
2125 dma += max_data;
2126 size -= max_data;
7f12ad74 2127
5c4654da 2128 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
7f12ad74
GR
2129 tx_desc->buffer_addr = cpu_to_le64(dma);
2130 }
2131
2132 if (likely(!data_len))
2133 break;
2134
2135 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2136 size, td_tag);
2137
2138 tx_desc++;
2139 i++;
6a7fded7 2140
7f12ad74
GR
2141 if (i == tx_ring->count) {
2142 tx_desc = I40E_TX_DESC(tx_ring, 0);
2143 i = 0;
2144 }
2145
2146 size = skb_frag_size(frag);
2147 data_len -= size;
2148
2149 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2150 DMA_TO_DEVICE);
2151
2152 tx_bi = &tx_ring->tx_bi[i];
2153 }
2154
1dc8b538 2155 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
7f12ad74
GR
2156
2157 i++;
2158 if (i == tx_ring->count)
2159 i = 0;
2160
2161 tx_ring->next_to_use = i;
2162
4ec441df 2163 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
6a7fded7 2164
b1cb07db
PB
2165 /* write last descriptor with RS and EOP bits */
2166 td_cmd |= I40E_TXD_CMD;
6a7fded7 2167 tx_desc->cmd_type_offset_bsz =
1dc8b538
AD
2168 build_ctob(td_cmd, td_offset, size, td_tag);
2169
2170 /* Force memory writes to complete before letting h/w know there
2171 * are new descriptors to fetch.
2172 *
2173 * We also use this memory barrier to make certain all of the
2174 * status bits have been updated before next_to_watch is written.
2175 */
2176 wmb();
2177
2178 /* set next_to_watch value indicating a packet is present */
2179 first->next_to_watch = tx_desc;
6a7fded7 2180
7f12ad74 2181 /* notify HW of packet */
b1cb07db 2182 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
6a7fded7 2183 writel(i, tx_ring->tail);
1dc8b538
AD
2184
2185 /* we need this if more than one processor can write to our tail
2186 * at a time, it synchronizes IO on IA64/Altix systems
2187 */
2188 mmiowb();
6a7fded7 2189 }
1dc8b538 2190
7f12ad74
GR
2191 return;
2192
2193dma_error:
2194 dev_info(tx_ring->dev, "TX DMA map failed\n");
2195
2196 /* clear dma mappings for failed tx_bi map */
2197 for (;;) {
2198 tx_bi = &tx_ring->tx_bi[i];
2199 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2200 if (tx_bi == first)
2201 break;
2202 if (i == 0)
2203 i = tx_ring->count;
2204 i--;
2205 }
2206
2207 tx_ring->next_to_use = i;
2208}
2209
7f12ad74
GR
2210/**
2211 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2212 * @skb: send buffer
2213 * @tx_ring: ring to send buffer on
2214 *
2215 * Returns NETDEV_TX_OK if sent, else an error code
2216 **/
2217static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2218 struct i40e_ring *tx_ring)
2219{
2220 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2221 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2222 struct i40e_tx_buffer *first;
2223 u32 td_offset = 0;
2224 u32 tx_flags = 0;
2225 __be16 protocol;
2226 u32 td_cmd = 0;
2227 u8 hdr_len = 0;
4ec441df 2228 int tso, count;
6995b36c 2229
b74118f0
JB
2230 /* prefetch the data, we'll need it later */
2231 prefetch(skb->data);
2232
ed0980c4
SP
2233 i40e_trace(xmit_frame_ring, skb, tx_ring);
2234
4ec441df 2235 count = i40e_xmit_descriptor_count(skb);
2d37490b 2236 if (i40e_chk_linearize(skb, count)) {
52ea3e80
AD
2237 if (__skb_linearize(skb)) {
2238 dev_kfree_skb_any(skb);
2239 return NETDEV_TX_OK;
2240 }
5c4654da 2241 count = i40e_txd_use_count(skb->len);
2d37490b
AD
2242 tx_ring->tx_stats.tx_linearize++;
2243 }
4ec441df
AD
2244
2245 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2246 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2247 * + 4 desc gap to avoid the cache line where head is,
2248 * + 1 desc for context descriptor,
2249 * otherwise try next time
2250 */
2251 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2252 tx_ring->tx_stats.tx_busy++;
7f12ad74 2253 return NETDEV_TX_BUSY;
4ec441df 2254 }
7f12ad74 2255
52ea3e80
AD
2256 /* record the location of the first descriptor for this packet */
2257 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2258 first->skb = skb;
2259 first->bytecount = skb->len;
2260 first->gso_segs = 1;
2261
7f12ad74 2262 /* prepare the xmit flags */
3e587cf3 2263 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
7f12ad74
GR
2264 goto out_drop;
2265
2266 /* obtain protocol of skb */
a12c4158 2267 protocol = vlan_get_protocol(skb);
7f12ad74 2268
7f12ad74
GR
2269 /* setup IPv4/IPv6 offloads */
2270 if (protocol == htons(ETH_P_IP))
2271 tx_flags |= I40E_TX_FLAGS_IPV4;
2272 else if (protocol == htons(ETH_P_IPV6))
2273 tx_flags |= I40E_TX_FLAGS_IPV6;
2274
52ea3e80 2275 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
7f12ad74
GR
2276
2277 if (tso < 0)
2278 goto out_drop;
2279 else if (tso)
2280 tx_flags |= I40E_TX_FLAGS_TSO;
2281
7f12ad74 2282 /* Always offload the checksum, since it's in the data descriptor */
529f1f65
AD
2283 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2284 tx_ring, &cd_tunneling);
2285 if (tso < 0)
2286 goto out_drop;
7f12ad74 2287
3bc67973
AD
2288 skb_tx_timestamp(skb);
2289
2290 /* always enable CRC insertion offload */
2291 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2292
7f12ad74
GR
2293 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2294 cd_tunneling, cd_l2tag2);
2295
3e587cf3
JB
2296 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2297 td_cmd, td_offset);
7f12ad74 2298
7f12ad74
GR
2299 return NETDEV_TX_OK;
2300
2301out_drop:
ed0980c4 2302 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
52ea3e80
AD
2303 dev_kfree_skb_any(first->skb);
2304 first->skb = NULL;
7f12ad74
GR
2305 return NETDEV_TX_OK;
2306}
2307
2308/**
2309 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2310 * @skb: send buffer
2311 * @netdev: network interface device structure
2312 *
2313 * Returns NETDEV_TX_OK if sent, else an error code
2314 **/
2315netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2316{
2317 struct i40evf_adapter *adapter = netdev_priv(netdev);
0dd438d8 2318 struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
7f12ad74
GR
2319
2320 /* hardware can't handle really short frames, hardware padding works
2321 * beyond this point
2322 */
2323 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2324 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2325 return NETDEV_TX_OK;
2326 skb->len = I40E_MIN_TX_LEN;
2327 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2328 }
2329
2330 return i40e_xmit_frame_ring(skb, tx_ring);
2331}