bonding:record primary when modify it via sysfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / ethernet / dlink / sundance.c
CommitLineData
1da177e4
LT
1/* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
2/*
3 Written 1999-2000 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
16
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
03a8c661 19 [link no longer provides useful info -jgarzik]
e714d99c
PDM
20 Archives of the mailing list are still available at
21 http://www.beowulf.org/pipermail/netdrivers/
1da177e4 22
1da177e4
LT
23*/
24
25#define DRV_NAME "sundance"
d5b20697
AG
26#define DRV_VERSION "1.2"
27#define DRV_RELDATE "11-Sep-2006"
1da177e4
LT
28
29
30/* The user-configurable values.
31 These may be modified when a driver module is loaded.*/
32static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
33/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
34 Typical is a 64 element hash table based on the Ethernet CRC. */
f71e1309 35static const int multicast_filter_limit = 32;
1da177e4
LT
36
37/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
38 Setting to > 1518 effectively disables this feature.
39 This chip can receive into offset buffers, so the Alpha does not
40 need a copy-align. */
41static int rx_copybreak;
42static int flowctrl=1;
43
44/* media[] specifies the media type the NIC operates at.
45 autosense Autosensing active media.
46 10mbps_hd 10Mbps half duplex.
47 10mbps_fd 10Mbps full duplex.
48 100mbps_hd 100Mbps half duplex.
49 100mbps_fd 100Mbps full duplex.
50 0 Autosensing active media.
51 1 10Mbps half duplex.
52 2 10Mbps full duplex.
53 3 100Mbps half duplex.
54 4 100Mbps full duplex.
55*/
56#define MAX_UNITS 8
57static char *media[MAX_UNITS];
58
59
60/* Operational parameters that are set at compile time. */
61
62/* Keep the ring sizes a power of two for compile efficiency.
63 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
64 Making the Tx ring too large decreases the effectiveness of channel
65 bonding and packet priority, and more than 128 requires modifying the
66 Tx error recovery.
67 Large receive rings merely waste memory. */
68#define TX_RING_SIZE 32
69#define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
70#define RX_RING_SIZE 64
71#define RX_BUDGET 32
72#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
73#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
74
75/* Operational parameters that usually are not changed. */
76/* Time in jiffies before concluding the transmitter is hung. */
77#define TX_TIMEOUT (4*HZ)
78#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
79
80/* Include files, designed to support most kernel versions 2.0.0 and later. */
81#include <linux/module.h>
82#include <linux/kernel.h>
83#include <linux/string.h>
84#include <linux/timer.h>
85#include <linux/errno.h>
86#include <linux/ioport.h>
1da177e4
LT
87#include <linux/interrupt.h>
88#include <linux/pci.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/skbuff.h>
92#include <linux/init.h>
93#include <linux/bitops.h>
94#include <asm/uaccess.h>
95#include <asm/processor.h> /* Processor type for cache alignment. */
96#include <asm/io.h>
97#include <linux/delay.h>
98#include <linux/spinlock.h>
0c8a745f 99#include <linux/dma-mapping.h>
1da177e4
LT
100#include <linux/crc32.h>
101#include <linux/ethtool.h>
102#include <linux/mii.h>
1da177e4
LT
103
104/* These identify the driver base version and may not be removed. */
3af0fe39
SH
105static const char version[] __devinitconst =
106 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE
107 " Written by Donald Becker\n";
1da177e4
LT
108
109MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
110MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
111MODULE_LICENSE("GPL");
112
113module_param(debug, int, 0);
114module_param(rx_copybreak, int, 0);
115module_param_array(media, charp, NULL, 0);
116module_param(flowctrl, int, 0);
117MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
118MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
119MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
120
121/*
122 Theory of Operation
123
124I. Board Compatibility
125
126This driver is designed for the Sundance Technologies "Alta" ST201 chip.
127
128II. Board-specific settings
129
130III. Driver operation
131
132IIIa. Ring buffers
133
134This driver uses two statically allocated fixed-size descriptor lists
135formed into rings by a branch from the final descriptor to the beginning of
136the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
137Some chips explicitly use only 2^N sized rings, while others use a
138'next descriptor' pointer that the driver forms into rings.
139
140IIIb/c. Transmit/Receive Structure
141
142This driver uses a zero-copy receive and transmit scheme.
143The driver allocates full frame size skbuffs for the Rx ring buffers at
144open() time and passes the skb->data field to the chip as receive data
145buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
146a fresh skbuff is allocated and the frame is copied to the new skbuff.
147When the incoming frame is larger, the skbuff is passed directly up the
148protocol stack. Buffers consumed this way are replaced by newly allocated
149skbuffs in a later phase of receives.
150
151The RX_COPYBREAK value is chosen to trade-off the memory wasted by
152using a full-sized skbuff for small frames vs. the copying costs of larger
153frames. New boards are typically used in generously configured machines
154and the underfilled buffers have negligible impact compared to the benefit of
155a single allocation size, so the default value of zero results in never
156copying packets. When copying is done, the cost is usually mitigated by using
157a combined copy/checksum routine. Copying also preloads the cache, which is
158most useful with small frames.
159
160A subtle aspect of the operation is that the IP header at offset 14 in an
161ethernet frame isn't longword aligned for further processing.
162Unaligned buffers are permitted by the Sundance hardware, so
163frames are received into the skbuff at an offset of "+2", 16-byte aligning
164the IP header.
165
166IIId. Synchronization
167
168The driver runs as two independent, single-threaded flows of control. One
169is the send-packet routine, which enforces single-threaded use by the
170dev->tbusy flag. The other thread is the interrupt handler, which is single
171threaded by the hardware and interrupt handling software.
172
173The send packet thread has partial control over the Tx ring and 'dev->tbusy'
174flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
175queue slot is empty, it clears the tbusy flag when finished otherwise it sets
176the 'lp->tx_full' flag.
177
178The interrupt handler has exclusive control over the Rx ring and records stats
179from the Tx ring. After reaping the stats, it marks the Tx queue entry as
180empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
181clears both the tx_full and tbusy flags.
182
183IV. Notes
184
185IVb. References
186
187The Sundance ST201 datasheet, preliminary version.
b71b95ef
PDM
188The Kendin KS8723 datasheet, preliminary version.
189The ICplus IP100 datasheet, preliminary version.
190http://www.scyld.com/expert/100mbps.html
191http://www.scyld.com/expert/NWay.html
1da177e4
LT
192
193IVc. Errata
194
195*/
196
197/* Work-around for Kendin chip bugs. */
198#ifndef CONFIG_SUNDANCE_MMIO
199#define USE_IO_OPS 1
200#endif
201
a3aa1884 202static DEFINE_PCI_DEVICE_TABLE(sundance_pci_tbl) = {
46009c8b
JG
203 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
204 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
205 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
206 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
207 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
208 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
209 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
210 { }
1da177e4
LT
211};
212MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
213
214enum {
215 netdev_io_size = 128
216};
217
218struct pci_id_info {
219 const char *name;
220};
46009c8b 221static const struct pci_id_info pci_id_tbl[] __devinitdata = {
1da177e4
LT
222 {"D-Link DFE-550TX FAST Ethernet Adapter"},
223 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
224 {"D-Link DFE-580TX 4 port Server Adapter"},
225 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
226 {"D-Link DL10050-based FAST Ethernet Adapter"},
227 {"Sundance Technology Alta"},
1668b19f 228 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
46009c8b 229 { } /* terminate list. */
1da177e4
LT
230};
231
232/* This driver was written to use PCI memory space, however x86-oriented
233 hardware often uses I/O space accesses. */
234
235/* Offsets to the device registers.
236 Unlike software-only systems, device drivers interact with complex hardware.
237 It's not useful to define symbolic names for every register bit in the
238 device. The name can only partially document the semantics and make
239 the driver longer and more difficult to read.
240 In general, only the important configuration values or bits changed
241 multiple times should be defined symbolically.
242*/
243enum alta_offsets {
244 DMACtrl = 0x00,
245 TxListPtr = 0x04,
246 TxDMABurstThresh = 0x08,
247 TxDMAUrgentThresh = 0x09,
248 TxDMAPollPeriod = 0x0a,
249 RxDMAStatus = 0x0c,
250 RxListPtr = 0x10,
251 DebugCtrl0 = 0x1a,
252 DebugCtrl1 = 0x1c,
253 RxDMABurstThresh = 0x14,
254 RxDMAUrgentThresh = 0x15,
255 RxDMAPollPeriod = 0x16,
256 LEDCtrl = 0x1a,
257 ASICCtrl = 0x30,
258 EEData = 0x34,
259 EECtrl = 0x36,
1da177e4
LT
260 FlashAddr = 0x40,
261 FlashData = 0x44,
262 TxStatus = 0x46,
263 TxFrameId = 0x47,
264 DownCounter = 0x18,
265 IntrClear = 0x4a,
266 IntrEnable = 0x4c,
267 IntrStatus = 0x4e,
268 MACCtrl0 = 0x50,
269 MACCtrl1 = 0x52,
270 StationAddr = 0x54,
271 MaxFrameSize = 0x5A,
272 RxMode = 0x5c,
273 MIICtrl = 0x5e,
274 MulticastFilter0 = 0x60,
275 MulticastFilter1 = 0x64,
276 RxOctetsLow = 0x68,
277 RxOctetsHigh = 0x6a,
278 TxOctetsLow = 0x6c,
279 TxOctetsHigh = 0x6e,
280 TxFramesOK = 0x70,
281 RxFramesOK = 0x72,
282 StatsCarrierError = 0x74,
283 StatsLateColl = 0x75,
284 StatsMultiColl = 0x76,
285 StatsOneColl = 0x77,
286 StatsTxDefer = 0x78,
287 RxMissed = 0x79,
288 StatsTxXSDefer = 0x7a,
289 StatsTxAbort = 0x7b,
290 StatsBcastTx = 0x7c,
291 StatsBcastRx = 0x7d,
292 StatsMcastTx = 0x7e,
293 StatsMcastRx = 0x7f,
294 /* Aliased and bogus values! */
295 RxStatus = 0x0c,
296};
24de5285
DK
297
298#define ASIC_HI_WORD(x) ((x) + 2)
299
1da177e4
LT
300enum ASICCtrl_HiWord_bit {
301 GlobalReset = 0x0001,
302 RxReset = 0x0002,
303 TxReset = 0x0004,
304 DMAReset = 0x0008,
305 FIFOReset = 0x0010,
306 NetworkReset = 0x0020,
307 HostReset = 0x0040,
308 ResetBusy = 0x0400,
309};
310
311/* Bits in the interrupt status/mask registers. */
312enum intr_status_bits {
313 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
314 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
315 IntrDrvRqst=0x0040,
316 StatsMax=0x0080, LinkChange=0x0100,
317 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
318};
319
320/* Bits in the RxMode register. */
321enum rx_mode_bits {
322 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
323 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
324};
325/* Bits in MACCtrl. */
326enum mac_ctrl0_bits {
327 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
328 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
329};
330enum mac_ctrl1_bits {
331 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
332 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
333 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
334};
335
336/* The Rx and Tx buffer descriptors. */
337/* Note that using only 32 bit fields simplifies conversion to big-endian
338 architectures. */
339struct netdev_desc {
14c9d9b0
AV
340 __le32 next_desc;
341 __le32 status;
342 struct desc_frag { __le32 addr, length; } frag[1];
1da177e4
LT
343};
344
345/* Bits in netdev_desc.status */
346enum desc_status_bits {
347 DescOwn=0x8000,
348 DescEndPacket=0x4000,
349 DescEndRing=0x2000,
350 LastFrag=0x80000000,
351 DescIntrOnTx=0x8000,
352 DescIntrOnDMADone=0x80000000,
353 DisableAlign = 0x00000001,
354};
355
356#define PRIV_ALIGN 15 /* Required alignment mask */
357/* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
358 within the structure. */
359#define MII_CNT 4
360struct netdev_private {
361 /* Descriptor rings first for alignment. */
362 struct netdev_desc *rx_ring;
363 struct netdev_desc *tx_ring;
364 struct sk_buff* rx_skbuff[RX_RING_SIZE];
365 struct sk_buff* tx_skbuff[TX_RING_SIZE];
366 dma_addr_t tx_ring_dma;
367 dma_addr_t rx_ring_dma;
1da177e4 368 struct timer_list timer; /* Media monitoring timer. */
725a4a46
DK
369 /* ethtool extra stats */
370 struct {
371 u64 tx_multiple_collisions;
372 u64 tx_single_collisions;
373 u64 tx_late_collisions;
374 u64 tx_deferred;
375 u64 tx_deferred_excessive;
376 u64 tx_aborted;
377 u64 tx_bcasts;
378 u64 rx_bcasts;
379 u64 tx_mcasts;
380 u64 rx_mcasts;
381 } xstats;
1da177e4
LT
382 /* Frequently used values: keep some adjacent for cache effect. */
383 spinlock_t lock;
1da177e4
LT
384 int msg_enable;
385 int chip_id;
386 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
387 unsigned int rx_buf_sz; /* Based on MTU+slack. */
388 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
389 unsigned int cur_tx, dirty_tx;
390 /* These values are keep track of the transceiver/media in use. */
391 unsigned int flowctrl:1;
392 unsigned int default_port:4; /* Last dev->if_port value. */
393 unsigned int an_enable:1;
394 unsigned int speed;
395 struct tasklet_struct rx_tasklet;
396 struct tasklet_struct tx_tasklet;
397 int budget;
398 int cur_task;
399 /* Multicast and receive mode. */
400 spinlock_t mcastlock; /* SMP lock multicast updates. */
401 u16 mcast_filter[4];
402 /* MII transceiver section. */
403 struct mii_if_info mii_if;
404 int mii_preamble_required;
405 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
406 struct pci_dev *pci_dev;
407 void __iomem *base;
7b738b55 408 spinlock_t statlock;
1da177e4
LT
409};
410
411/* The station address location in the EEPROM. */
412#define EEPROM_SA_OFFSET 0x10
413#define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
414 IntrDrvRqst | IntrTxDone | StatsMax | \
415 LinkChange)
416
417static int change_mtu(struct net_device *dev, int new_mtu);
418static int eeprom_read(void __iomem *ioaddr, int location);
419static int mdio_read(struct net_device *dev, int phy_id, int location);
420static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
50500155 421static int mdio_wait_link(struct net_device *dev, int wait);
1da177e4
LT
422static int netdev_open(struct net_device *dev);
423static void check_duplex(struct net_device *dev);
424static void netdev_timer(unsigned long data);
425static void tx_timeout(struct net_device *dev);
426static void init_ring(struct net_device *dev);
61357325 427static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
1da177e4 428static int reset_tx (struct net_device *dev);
7d12e780 429static irqreturn_t intr_handler(int irq, void *dev_instance);
1da177e4
LT
430static void rx_poll(unsigned long data);
431static void tx_poll(unsigned long data);
432static void refill_rx (struct net_device *dev);
433static void netdev_error(struct net_device *dev, int intr_status);
434static void netdev_error(struct net_device *dev, int intr_status);
435static void set_rx_mode(struct net_device *dev);
436static int __set_mac_addr(struct net_device *dev);
4b4f5467 437static int sundance_set_mac_addr(struct net_device *dev, void *data);
1da177e4
LT
438static struct net_device_stats *get_stats(struct net_device *dev);
439static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
440static int netdev_close(struct net_device *dev);
7282d491 441static const struct ethtool_ops ethtool_ops;
1da177e4 442
b71b95ef
PDM
443static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
444{
445 struct netdev_private *np = netdev_priv(dev);
446 void __iomem *ioaddr = np->base + ASICCtrl;
447 int countdown;
448
449 /* ST201 documentation states ASICCtrl is a 32bit register */
450 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
451 /* ST201 documentation states reset can take up to 1 ms */
452 countdown = 10 + 1;
453 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
454 if (--countdown == 0) {
455 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
456 break;
457 }
458 udelay(100);
459 }
460}
461
633a277e
SH
462static const struct net_device_ops netdev_ops = {
463 .ndo_open = netdev_open,
464 .ndo_stop = netdev_close,
465 .ndo_start_xmit = start_tx,
466 .ndo_get_stats = get_stats,
afc4b13d 467 .ndo_set_rx_mode = set_rx_mode,
633a277e
SH
468 .ndo_do_ioctl = netdev_ioctl,
469 .ndo_tx_timeout = tx_timeout,
470 .ndo_change_mtu = change_mtu,
4b4f5467 471 .ndo_set_mac_address = sundance_set_mac_addr,
633a277e
SH
472 .ndo_validate_addr = eth_validate_addr,
473};
474
1da177e4
LT
475static int __devinit sundance_probe1 (struct pci_dev *pdev,
476 const struct pci_device_id *ent)
477{
478 struct net_device *dev;
479 struct netdev_private *np;
480 static int card_idx;
481 int chip_idx = ent->driver_data;
482 int irq;
483 int i;
484 void __iomem *ioaddr;
485 u16 mii_ctl;
486 void *ring_space;
487 dma_addr_t ring_dma;
488#ifdef USE_IO_OPS
489 int bar = 0;
490#else
491 int bar = 1;
492#endif
ac1d49f8 493 int phy, phy_end, phy_idx = 0;
1da177e4
LT
494
495/* when built into the kernel, we only print version if device is found */
496#ifndef MODULE
497 static int printed_version;
498 if (!printed_version++)
499 printk(version);
500#endif
501
502 if (pci_enable_device(pdev))
503 return -EIO;
504 pci_set_master(pdev);
505
506 irq = pdev->irq;
507
508 dev = alloc_etherdev(sizeof(*np));
509 if (!dev)
510 return -ENOMEM;
1da177e4
LT
511 SET_NETDEV_DEV(dev, &pdev->dev);
512
513 if (pci_request_regions(pdev, DRV_NAME))
514 goto err_out_netdev;
515
516 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
517 if (!ioaddr)
518 goto err_out_res;
519
520 for (i = 0; i < 3; i++)
14c9d9b0
AV
521 ((__le16 *)dev->dev_addr)[i] =
522 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
30d60a82 523 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1da177e4 524
1da177e4
LT
525 np = netdev_priv(dev);
526 np->base = ioaddr;
527 np->pci_dev = pdev;
528 np->chip_id = chip_idx;
529 np->msg_enable = (1 << debug) - 1;
530 spin_lock_init(&np->lock);
7b738b55 531 spin_lock_init(&np->statlock);
1da177e4
LT
532 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
533 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
534
0c8a745f
DK
535 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE,
536 &ring_dma, GFP_KERNEL);
1da177e4
LT
537 if (!ring_space)
538 goto err_out_cleardev;
539 np->tx_ring = (struct netdev_desc *)ring_space;
540 np->tx_ring_dma = ring_dma;
541
0c8a745f
DK
542 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE,
543 &ring_dma, GFP_KERNEL);
1da177e4
LT
544 if (!ring_space)
545 goto err_out_unmap_tx;
546 np->rx_ring = (struct netdev_desc *)ring_space;
547 np->rx_ring_dma = ring_dma;
548
549 np->mii_if.dev = dev;
550 np->mii_if.mdio_read = mdio_read;
551 np->mii_if.mdio_write = mdio_write;
552 np->mii_if.phy_id_mask = 0x1f;
553 np->mii_if.reg_num_mask = 0x1f;
554
555 /* The chip-specific entries in the device structure. */
633a277e 556 dev->netdev_ops = &netdev_ops;
1da177e4 557 SET_ETHTOOL_OPS(dev, &ethtool_ops);
1da177e4 558 dev->watchdog_timeo = TX_TIMEOUT;
633a277e 559
1da177e4
LT
560 pci_set_drvdata(pdev, dev);
561
1da177e4
LT
562 i = register_netdev(dev);
563 if (i)
564 goto err_out_unmap_rx;
565
e174961c 566 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
0795af57 567 dev->name, pci_id_tbl[chip_idx].name, ioaddr,
e174961c 568 dev->dev_addr, irq);
1da177e4 569
67ec2f80
JL
570 np->phys[0] = 1; /* Default setting */
571 np->mii_preamble_required++;
ac1d49f8 572
0d615ec2
ACM
573 /*
574 * It seems some phys doesn't deal well with address 0 being accessed
ac1d49f8 575 * first
0d615ec2 576 */
ac1d49f8
JG
577 if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
578 phy = 0;
579 phy_end = 31;
580 } else {
581 phy = 1;
582 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */
583 }
584 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
b06c093e 585 int phyx = phy & 0x1f;
0d615ec2 586 int mii_status = mdio_read(dev, phyx, MII_BMSR);
67ec2f80 587 if (mii_status != 0xffff && mii_status != 0x0000) {
b06c093e
JL
588 np->phys[phy_idx++] = phyx;
589 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
67ec2f80
JL
590 if ((mii_status & 0x0040) == 0)
591 np->mii_preamble_required++;
592 printk(KERN_INFO "%s: MII PHY found at address %d, status "
593 "0x%4.4x advertising %4.4x.\n",
b06c093e 594 dev->name, phyx, mii_status, np->mii_if.advertising);
1da177e4 595 }
67ec2f80
JL
596 }
597 np->mii_preamble_required--;
1da177e4 598
67ec2f80
JL
599 if (phy_idx == 0) {
600 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
601 dev->name, ioread32(ioaddr + ASICCtrl));
602 goto err_out_unregister;
1da177e4
LT
603 }
604
67ec2f80
JL
605 np->mii_if.phy_id = np->phys[0];
606
1da177e4
LT
607 /* Parse override configuration */
608 np->an_enable = 1;
609 if (card_idx < MAX_UNITS) {
610 if (media[card_idx] != NULL) {
611 np->an_enable = 0;
612 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
613 strcmp (media[card_idx], "4") == 0) {
614 np->speed = 100;
615 np->mii_if.full_duplex = 1;
8e95a202
JP
616 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
617 strcmp (media[card_idx], "3") == 0) {
1da177e4
LT
618 np->speed = 100;
619 np->mii_if.full_duplex = 0;
620 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
621 strcmp (media[card_idx], "2") == 0) {
622 np->speed = 10;
623 np->mii_if.full_duplex = 1;
624 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
625 strcmp (media[card_idx], "1") == 0) {
626 np->speed = 10;
627 np->mii_if.full_duplex = 0;
628 } else {
629 np->an_enable = 1;
630 }
631 }
632 if (flowctrl == 1)
633 np->flowctrl = 1;
634 }
635
636 /* Fibre PHY? */
637 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
638 /* Default 100Mbps Full */
639 if (np->an_enable) {
640 np->speed = 100;
641 np->mii_if.full_duplex = 1;
642 np->an_enable = 0;
643 }
644 }
645 /* Reset PHY */
646 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
647 mdelay (300);
648 /* If flow control enabled, we need to advertise it.*/
649 if (np->flowctrl)
650 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
651 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
652 /* Force media type */
653 if (!np->an_enable) {
654 mii_ctl = 0;
655 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
656 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
657 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
658 printk (KERN_INFO "Override speed=%d, %s duplex\n",
659 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
660
661 }
662
663 /* Perhaps move the reset here? */
664 /* Reset the chip to erase previous misconfiguration. */
665 if (netif_msg_hw(np))
666 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
e714d99c 667 sundance_reset(dev, 0x00ff << 16);
1da177e4
LT
668 if (netif_msg_hw(np))
669 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
670
671 card_idx++;
672 return 0;
673
674err_out_unregister:
675 unregister_netdev(dev);
676err_out_unmap_rx:
0c8a745f
DK
677 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
678 np->rx_ring, np->rx_ring_dma);
1da177e4 679err_out_unmap_tx:
0c8a745f
DK
680 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
681 np->tx_ring, np->tx_ring_dma);
1da177e4
LT
682err_out_cleardev:
683 pci_set_drvdata(pdev, NULL);
684 pci_iounmap(pdev, ioaddr);
685err_out_res:
686 pci_release_regions(pdev);
687err_out_netdev:
688 free_netdev (dev);
689 return -ENODEV;
690}
691
692static int change_mtu(struct net_device *dev, int new_mtu)
693{
694 if ((new_mtu < 68) || (new_mtu > 8191)) /* Set by RxDMAFrameLen */
695 return -EINVAL;
696 if (netif_running(dev))
697 return -EBUSY;
698 dev->mtu = new_mtu;
699 return 0;
700}
701
702#define eeprom_delay(ee_addr) ioread32(ee_addr)
703/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
704static int __devinit eeprom_read(void __iomem *ioaddr, int location)
705{
706 int boguscnt = 10000; /* Typical 1900 ticks. */
707 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
708 do {
709 eeprom_delay(ioaddr + EECtrl);
710 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
711 return ioread16(ioaddr + EEData);
712 }
713 } while (--boguscnt > 0);
714 return 0;
715}
716
717/* MII transceiver control section.
718 Read and write the MII registers using software-generated serial
719 MDIO protocol. See the MII specifications or DP83840A data sheet
720 for details.
721
722 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
723 met by back-to-back 33Mhz PCI cycles. */
724#define mdio_delay() ioread8(mdio_addr)
725
726enum mii_reg_bits {
727 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
728};
729#define MDIO_EnbIn (0)
730#define MDIO_WRITE0 (MDIO_EnbOutput)
731#define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
732
733/* Generate the preamble required for initial synchronization and
734 a few older transceivers. */
735static void mdio_sync(void __iomem *mdio_addr)
736{
737 int bits = 32;
738
739 /* Establish sync by sending at least 32 logic ones. */
740 while (--bits >= 0) {
741 iowrite8(MDIO_WRITE1, mdio_addr);
742 mdio_delay();
743 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
744 mdio_delay();
745 }
746}
747
748static int mdio_read(struct net_device *dev, int phy_id, int location)
749{
750 struct netdev_private *np = netdev_priv(dev);
751 void __iomem *mdio_addr = np->base + MIICtrl;
752 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
753 int i, retval = 0;
754
755 if (np->mii_preamble_required)
756 mdio_sync(mdio_addr);
757
758 /* Shift the read command bits out. */
759 for (i = 15; i >= 0; i--) {
760 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
761
762 iowrite8(dataval, mdio_addr);
763 mdio_delay();
764 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
765 mdio_delay();
766 }
767 /* Read the two transition, 16 data, and wire-idle bits. */
768 for (i = 19; i > 0; i--) {
769 iowrite8(MDIO_EnbIn, mdio_addr);
770 mdio_delay();
771 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
772 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
773 mdio_delay();
774 }
775 return (retval>>1) & 0xffff;
776}
777
778static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
779{
780 struct netdev_private *np = netdev_priv(dev);
781 void __iomem *mdio_addr = np->base + MIICtrl;
782 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
783 int i;
784
785 if (np->mii_preamble_required)
786 mdio_sync(mdio_addr);
787
788 /* Shift the command bits out. */
789 for (i = 31; i >= 0; i--) {
790 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
791
792 iowrite8(dataval, mdio_addr);
793 mdio_delay();
794 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
795 mdio_delay();
796 }
797 /* Clear out extra bits. */
798 for (i = 2; i > 0; i--) {
799 iowrite8(MDIO_EnbIn, mdio_addr);
800 mdio_delay();
801 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
802 mdio_delay();
803 }
1da177e4
LT
804}
805
50500155
DN
806static int mdio_wait_link(struct net_device *dev, int wait)
807{
808 int bmsr;
809 int phy_id;
810 struct netdev_private *np;
811
812 np = netdev_priv(dev);
813 phy_id = np->phys[0];
814
815 do {
816 bmsr = mdio_read(dev, phy_id, MII_BMSR);
817 if (bmsr & 0x0004)
818 return 0;
819 mdelay(1);
820 } while (--wait > 0);
821 return -1;
822}
823
1da177e4
LT
824static int netdev_open(struct net_device *dev)
825{
826 struct netdev_private *np = netdev_priv(dev);
827 void __iomem *ioaddr = np->base;
c514f285 828 const int irq = np->pci_dev->irq;
acd70c2b 829 unsigned long flags;
1da177e4
LT
830 int i;
831
832 /* Do we need to reset the chip??? */
833
c514f285 834 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1da177e4
LT
835 if (i)
836 return i;
837
838 if (netif_msg_ifup(np))
c514f285
FR
839 printk(KERN_DEBUG "%s: netdev_open() irq %d\n", dev->name, irq);
840
1da177e4
LT
841 init_ring(dev);
842
843 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
844 /* The Tx list pointer is written as packets are queued. */
845
846 /* Initialize other registers. */
847 __set_mac_addr(dev);
848#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
849 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
850#else
851 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
852#endif
853 if (dev->mtu > 2047)
854 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
855
856 /* Configure the PCI bus bursts and FIFO thresholds. */
857
858 if (dev->if_port == 0)
859 dev->if_port = np->default_port;
860
861 spin_lock_init(&np->mcastlock);
862
863 set_rx_mode(dev);
864 iowrite16(0, ioaddr + IntrEnable);
865 iowrite16(0, ioaddr + DownCounter);
866 /* Set the chip to poll every N*320nsec. */
867 iowrite8(100, ioaddr + RxDMAPollPeriod);
868 iowrite8(127, ioaddr + TxDMAPollPeriod);
869 /* Fix DFE-580TX packet drop issue */
44c10138 870 if (np->pci_dev->revision >= 0x14)
1da177e4
LT
871 iowrite8(0x01, ioaddr + DebugCtrl1);
872 netif_start_queue(dev);
873
acd70c2b
JH
874 spin_lock_irqsave(&np->lock, flags);
875 reset_tx(dev);
876 spin_unlock_irqrestore(&np->lock, flags);
877
1da177e4
LT
878 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
879
880 if (netif_msg_ifup(np))
881 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
882 "MAC Control %x, %4.4x %4.4x.\n",
883 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
884 ioread32(ioaddr + MACCtrl0),
885 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
886
887 /* Set the timer to check for link beat. */
888 init_timer(&np->timer);
889 np->timer.expires = jiffies + 3*HZ;
890 np->timer.data = (unsigned long)dev;
c061b18d 891 np->timer.function = netdev_timer; /* timer handler */
1da177e4
LT
892 add_timer(&np->timer);
893
894 /* Enable interrupts by setting the interrupt mask. */
895 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
896
897 return 0;
898}
899
900static void check_duplex(struct net_device *dev)
901{
902 struct netdev_private *np = netdev_priv(dev);
903 void __iomem *ioaddr = np->base;
904 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
905 int negotiated = mii_lpa & np->mii_if.advertising;
906 int duplex;
907
908 /* Force media */
909 if (!np->an_enable || mii_lpa == 0xffff) {
910 if (np->mii_if.full_duplex)
911 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
912 ioaddr + MACCtrl0);
913 return;
914 }
915
916 /* Autonegotiation */
917 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
918 if (np->mii_if.full_duplex != duplex) {
919 np->mii_if.full_duplex = duplex;
920 if (netif_msg_link(np))
921 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
922 "negotiated capability %4.4x.\n", dev->name,
923 duplex ? "full" : "half", np->phys[0], negotiated);
62660e28 924 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0);
1da177e4
LT
925 }
926}
927
928static void netdev_timer(unsigned long data)
929{
930 struct net_device *dev = (struct net_device *)data;
931 struct netdev_private *np = netdev_priv(dev);
932 void __iomem *ioaddr = np->base;
933 int next_tick = 10*HZ;
934
935 if (netif_msg_timer(np)) {
936 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
937 "Tx %x Rx %x.\n",
938 dev->name, ioread16(ioaddr + IntrEnable),
939 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
940 }
941 check_duplex(dev);
942 np->timer.expires = jiffies + next_tick;
943 add_timer(&np->timer);
944}
945
946static void tx_timeout(struct net_device *dev)
947{
948 struct netdev_private *np = netdev_priv(dev);
949 void __iomem *ioaddr = np->base;
950 unsigned long flag;
6aa20a22 951
1da177e4
LT
952 netif_stop_queue(dev);
953 tasklet_disable(&np->tx_tasklet);
954 iowrite16(0, ioaddr + IntrEnable);
955 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
956 "TxFrameId %2.2x,"
957 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
958 ioread8(ioaddr + TxFrameId));
959
960 {
961 int i;
962 for (i=0; i<TX_RING_SIZE; i++) {
963 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
964 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
965 le32_to_cpu(np->tx_ring[i].next_desc),
966 le32_to_cpu(np->tx_ring[i].status),
967 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
6aa20a22 968 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1da177e4
LT
969 le32_to_cpu(np->tx_ring[i].frag[0].length));
970 }
6aa20a22
JG
971 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
972 ioread32(np->base + TxListPtr),
1da177e4 973 netif_queue_stopped(dev));
6aa20a22 974 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
1da177e4
LT
975 np->cur_tx, np->cur_tx % TX_RING_SIZE,
976 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
977 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
978 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
979 }
980 spin_lock_irqsave(&np->lock, flag);
981
982 /* Stop and restart the chip's Tx processes . */
983 reset_tx(dev);
984 spin_unlock_irqrestore(&np->lock, flag);
985
986 dev->if_port = 0;
987
1ae5dc34 988 dev->trans_start = jiffies; /* prevent tx timeout */
553e2335 989 dev->stats.tx_errors++;
1da177e4
LT
990 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
991 netif_wake_queue(dev);
992 }
993 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
994 tasklet_enable(&np->tx_tasklet);
995}
996
997
998/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
999static void init_ring(struct net_device *dev)
1000{
1001 struct netdev_private *np = netdev_priv(dev);
1002 int i;
1003
1004 np->cur_rx = np->cur_tx = 0;
1005 np->dirty_rx = np->dirty_tx = 0;
1006 np->cur_task = 0;
1007
1008 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
1009
1010 /* Initialize all Rx descriptors. */
1011 for (i = 0; i < RX_RING_SIZE; i++) {
1012 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
1013 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1014 np->rx_ring[i].status = 0;
1015 np->rx_ring[i].frag[0].length = 0;
1016 np->rx_skbuff[i] = NULL;
1017 }
1018
1019 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1020 for (i = 0; i < RX_RING_SIZE; i++) {
21a4e469
PD
1021 struct sk_buff *skb =
1022 netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1da177e4
LT
1023 np->rx_skbuff[i] = skb;
1024 if (skb == NULL)
1025 break;
1da177e4
LT
1026 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1027 np->rx_ring[i].frag[0].addr = cpu_to_le32(
0c8a745f
DK
1028 dma_map_single(&np->pci_dev->dev, skb->data,
1029 np->rx_buf_sz, DMA_FROM_DEVICE));
d91dc279
DK
1030 if (dma_mapping_error(&np->pci_dev->dev,
1031 np->rx_ring[i].frag[0].addr)) {
1032 dev_kfree_skb(skb);
1033 np->rx_skbuff[i] = NULL;
1034 break;
1035 }
1da177e4
LT
1036 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1037 }
1038 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1039
1040 for (i = 0; i < TX_RING_SIZE; i++) {
1041 np->tx_skbuff[i] = NULL;
1042 np->tx_ring[i].status = 0;
1043 }
1da177e4
LT
1044}
1045
1046static void tx_poll (unsigned long data)
1047{
1048 struct net_device *dev = (struct net_device *)data;
1049 struct netdev_private *np = netdev_priv(dev);
1050 unsigned head = np->cur_task % TX_RING_SIZE;
6aa20a22 1051 struct netdev_desc *txdesc =
1da177e4 1052 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
6aa20a22 1053
1da177e4
LT
1054 /* Chain the next pointer */
1055 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1056 int entry = np->cur_task % TX_RING_SIZE;
1057 txdesc = &np->tx_ring[entry];
1058 if (np->last_tx) {
1059 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1060 entry*sizeof(struct netdev_desc));
1061 }
1062 np->last_tx = txdesc;
1063 }
1064 /* Indicate the latest descriptor of tx ring */
1065 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1066
1067 if (ioread32 (np->base + TxListPtr) == 0)
1068 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1069 np->base + TxListPtr);
1da177e4
LT
1070}
1071
61357325 1072static netdev_tx_t
1da177e4
LT
1073start_tx (struct sk_buff *skb, struct net_device *dev)
1074{
1075 struct netdev_private *np = netdev_priv(dev);
1076 struct netdev_desc *txdesc;
1077 unsigned entry;
1078
1079 /* Calculate the next Tx descriptor entry. */
1080 entry = np->cur_tx % TX_RING_SIZE;
1081 np->tx_skbuff[entry] = skb;
1082 txdesc = &np->tx_ring[entry];
1083
1084 txdesc->next_desc = 0;
1085 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
0c8a745f
DK
1086 txdesc->frag[0].addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev,
1087 skb->data, skb->len, DMA_TO_DEVICE));
d91dc279
DK
1088 if (dma_mapping_error(&np->pci_dev->dev,
1089 txdesc->frag[0].addr))
1090 goto drop_frame;
1da177e4
LT
1091 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1092
1093 /* Increment cur_tx before tasklet_schedule() */
1094 np->cur_tx++;
1095 mb();
1096 /* Schedule a tx_poll() task */
1097 tasklet_schedule(&np->tx_tasklet);
1098
1099 /* On some architectures: explicitly flush cache lines here. */
8e95a202
JP
1100 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 &&
1101 !netif_queue_stopped(dev)) {
1da177e4
LT
1102 /* do nothing */
1103 } else {
1104 netif_stop_queue (dev);
1105 }
1da177e4
LT
1106 if (netif_msg_tx_queued(np)) {
1107 printk (KERN_DEBUG
1108 "%s: Transmit frame #%d queued in slot %d.\n",
1109 dev->name, np->cur_tx, entry);
1110 }
6ed10654 1111 return NETDEV_TX_OK;
d91dc279
DK
1112
1113drop_frame:
1114 dev_kfree_skb(skb);
1115 np->tx_skbuff[entry] = NULL;
1116 dev->stats.tx_dropped++;
1117 return NETDEV_TX_OK;
1da177e4
LT
1118}
1119
1120/* Reset hardware tx and free all of tx buffers */
1121static int
1122reset_tx (struct net_device *dev)
1123{
1124 struct netdev_private *np = netdev_priv(dev);
1125 void __iomem *ioaddr = np->base;
1126 struct sk_buff *skb;
1127 int i;
6aa20a22 1128
1da177e4
LT
1129 /* Reset tx logic, TxListPtr will be cleaned */
1130 iowrite16 (TxDisable, ioaddr + MACCtrl1);
e714d99c
PDM
1131 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1132
1da177e4
LT
1133 /* free all tx skbuff */
1134 for (i = 0; i < TX_RING_SIZE; i++) {
2109f89f
JH
1135 np->tx_ring[i].next_desc = 0;
1136
1da177e4
LT
1137 skb = np->tx_skbuff[i];
1138 if (skb) {
0c8a745f 1139 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1140 le32_to_cpu(np->tx_ring[i].frag[0].addr),
0c8a745f 1141 skb->len, DMA_TO_DEVICE);
a9478e38 1142 dev_kfree_skb_any(skb);
1da177e4 1143 np->tx_skbuff[i] = NULL;
553e2335 1144 dev->stats.tx_dropped++;
1da177e4
LT
1145 }
1146 }
1147 np->cur_tx = np->dirty_tx = 0;
1148 np->cur_task = 0;
2109f89f 1149
bca79eb7 1150 np->last_tx = NULL;
2109f89f
JH
1151 iowrite8(127, ioaddr + TxDMAPollPeriod);
1152
1da177e4
LT
1153 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1154 return 0;
1155}
1156
6aa20a22 1157/* The interrupt handler cleans up after the Tx thread,
1da177e4 1158 and schedule a Rx thread work */
7d12e780 1159static irqreturn_t intr_handler(int irq, void *dev_instance)
1da177e4
LT
1160{
1161 struct net_device *dev = (struct net_device *)dev_instance;
1162 struct netdev_private *np = netdev_priv(dev);
1163 void __iomem *ioaddr = np->base;
1164 int hw_frame_id;
1165 int tx_cnt;
1166 int tx_status;
1167 int handled = 0;
e242040d 1168 int i;
1da177e4
LT
1169
1170
1171 do {
1172 int intr_status = ioread16(ioaddr + IntrStatus);
1173 iowrite16(intr_status, ioaddr + IntrStatus);
1174
1175 if (netif_msg_intr(np))
1176 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1177 dev->name, intr_status);
1178
1179 if (!(intr_status & DEFAULT_INTR))
1180 break;
1181
1182 handled = 1;
1183
1184 if (intr_status & (IntrRxDMADone)) {
1185 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1186 ioaddr + IntrEnable);
1187 if (np->budget < 0)
1188 np->budget = RX_BUDGET;
1189 tasklet_schedule(&np->rx_tasklet);
1190 }
1191 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1192 tx_status = ioread16 (ioaddr + TxStatus);
1193 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1194 if (netif_msg_tx_done(np))
1195 printk
1196 ("%s: Transmit status is %2.2x.\n",
1197 dev->name, tx_status);
1198 if (tx_status & 0x1e) {
b71b95ef
PDM
1199 if (netif_msg_tx_err(np))
1200 printk("%s: Transmit error status %4.4x.\n",
1201 dev->name, tx_status);
553e2335 1202 dev->stats.tx_errors++;
1da177e4 1203 if (tx_status & 0x10)
553e2335 1204 dev->stats.tx_fifo_errors++;
1da177e4 1205 if (tx_status & 0x08)
553e2335 1206 dev->stats.collisions++;
b71b95ef 1207 if (tx_status & 0x04)
553e2335 1208 dev->stats.tx_fifo_errors++;
1da177e4 1209 if (tx_status & 0x02)
553e2335 1210 dev->stats.tx_window_errors++;
e242040d 1211
b71b95ef
PDM
1212 /*
1213 ** This reset has been verified on
1214 ** DFE-580TX boards ! phdm@macqel.be.
1215 */
1216 if (tx_status & 0x10) { /* TxUnderrun */
b71b95ef
PDM
1217 /* Restart Tx FIFO and transmitter */
1218 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
b71b95ef 1219 /* No need to reset the Tx pointer here */
1da177e4 1220 }
2109f89f
JH
1221 /* Restart the Tx. Need to make sure tx enabled */
1222 i = 10;
1223 do {
1224 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1225 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1226 break;
1227 mdelay(1);
1228 } while (--i);
1da177e4
LT
1229 }
1230 /* Yup, this is a documentation bug. It cost me *hours*. */
1231 iowrite16 (0, ioaddr + TxStatus);
1232 if (tx_cnt < 0) {
1233 iowrite32(5000, ioaddr + DownCounter);
1234 break;
1235 }
1236 tx_status = ioread16 (ioaddr + TxStatus);
1237 }
1238 hw_frame_id = (tx_status >> 8) & 0xff;
1239 } else {
1240 hw_frame_id = ioread8(ioaddr + TxFrameId);
1241 }
6aa20a22 1242
44c10138 1243 if (np->pci_dev->revision >= 0x14) {
1da177e4
LT
1244 spin_lock(&np->lock);
1245 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1246 int entry = np->dirty_tx % TX_RING_SIZE;
1247 struct sk_buff *skb;
1248 int sw_frame_id;
1249 sw_frame_id = (le32_to_cpu(
1250 np->tx_ring[entry].status) >> 2) & 0xff;
1251 if (sw_frame_id == hw_frame_id &&
1252 !(le32_to_cpu(np->tx_ring[entry].status)
1253 & 0x00010000))
1254 break;
6aa20a22 1255 if (sw_frame_id == (hw_frame_id + 1) %
1da177e4
LT
1256 TX_RING_SIZE)
1257 break;
1258 skb = np->tx_skbuff[entry];
1259 /* Free the original skb. */
0c8a745f 1260 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1261 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
0c8a745f 1262 skb->len, DMA_TO_DEVICE);
1da177e4
LT
1263 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1264 np->tx_skbuff[entry] = NULL;
1265 np->tx_ring[entry].frag[0].addr = 0;
1266 np->tx_ring[entry].frag[0].length = 0;
1267 }
1268 spin_unlock(&np->lock);
1269 } else {
1270 spin_lock(&np->lock);
1271 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1272 int entry = np->dirty_tx % TX_RING_SIZE;
1273 struct sk_buff *skb;
6aa20a22 1274 if (!(le32_to_cpu(np->tx_ring[entry].status)
1da177e4
LT
1275 & 0x00010000))
1276 break;
1277 skb = np->tx_skbuff[entry];
1278 /* Free the original skb. */
0c8a745f 1279 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1280 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
0c8a745f 1281 skb->len, DMA_TO_DEVICE);
1da177e4
LT
1282 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1283 np->tx_skbuff[entry] = NULL;
1284 np->tx_ring[entry].frag[0].addr = 0;
1285 np->tx_ring[entry].frag[0].length = 0;
1286 }
1287 spin_unlock(&np->lock);
1288 }
6aa20a22 1289
1da177e4
LT
1290 if (netif_queue_stopped(dev) &&
1291 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1292 /* The ring is no longer full, clear busy flag. */
1293 netif_wake_queue (dev);
1294 }
1295 /* Abnormal error summary/uncommon events handlers. */
1296 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1297 netdev_error(dev, intr_status);
1298 } while (0);
1299 if (netif_msg_intr(np))
1300 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1301 dev->name, ioread16(ioaddr + IntrStatus));
1302 return IRQ_RETVAL(handled);
1303}
1304
1305static void rx_poll(unsigned long data)
1306{
1307 struct net_device *dev = (struct net_device *)data;
1308 struct netdev_private *np = netdev_priv(dev);
1309 int entry = np->cur_rx % RX_RING_SIZE;
1310 int boguscnt = np->budget;
1311 void __iomem *ioaddr = np->base;
1312 int received = 0;
1313
1314 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1315 while (1) {
1316 struct netdev_desc *desc = &(np->rx_ring[entry]);
1317 u32 frame_status = le32_to_cpu(desc->status);
1318 int pkt_len;
1319
1320 if (--boguscnt < 0) {
1321 goto not_done;
1322 }
1323 if (!(frame_status & DescOwn))
1324 break;
1325 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1326 if (netif_msg_rx_status(np))
1327 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1328 frame_status);
1329 if (frame_status & 0x001f4000) {
1330 /* There was a error. */
1331 if (netif_msg_rx_err(np))
1332 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1333 frame_status);
553e2335
ED
1334 dev->stats.rx_errors++;
1335 if (frame_status & 0x00100000)
1336 dev->stats.rx_length_errors++;
1337 if (frame_status & 0x00010000)
1338 dev->stats.rx_fifo_errors++;
1339 if (frame_status & 0x00060000)
1340 dev->stats.rx_frame_errors++;
1341 if (frame_status & 0x00080000)
1342 dev->stats.rx_crc_errors++;
1da177e4
LT
1343 if (frame_status & 0x00100000) {
1344 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1345 " status %8.8x.\n",
1346 dev->name, frame_status);
1347 }
1348 } else {
1349 struct sk_buff *skb;
1350#ifndef final_version
1351 if (netif_msg_rx_status(np))
1352 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1353 ", bogus_cnt %d.\n",
1354 pkt_len, boguscnt);
1355#endif
1356 /* Check if the packet is long enough to accept without copying
1357 to a minimally-sized skbuff. */
8e95a202 1358 if (pkt_len < rx_copybreak &&
21a4e469 1359 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1da177e4 1360 skb_reserve(skb, 2); /* 16 byte align the IP header */
0c8a745f
DK
1361 dma_sync_single_for_cpu(&np->pci_dev->dev,
1362 le32_to_cpu(desc->frag[0].addr),
1363 np->rx_buf_sz, DMA_FROM_DEVICE);
8c7b7faa 1364 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
0c8a745f
DK
1365 dma_sync_single_for_device(&np->pci_dev->dev,
1366 le32_to_cpu(desc->frag[0].addr),
1367 np->rx_buf_sz, DMA_FROM_DEVICE);
1da177e4
LT
1368 skb_put(skb, pkt_len);
1369 } else {
0c8a745f 1370 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1371 le32_to_cpu(desc->frag[0].addr),
0c8a745f 1372 np->rx_buf_sz, DMA_FROM_DEVICE);
1da177e4
LT
1373 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1374 np->rx_skbuff[entry] = NULL;
1375 }
1376 skb->protocol = eth_type_trans(skb, dev);
1377 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1378 netif_rx(skb);
1da177e4
LT
1379 }
1380 entry = (entry + 1) % RX_RING_SIZE;
1381 received++;
1382 }
1383 np->cur_rx = entry;
1384 refill_rx (dev);
1385 np->budget -= received;
1386 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1387 return;
1388
1389not_done:
1390 np->cur_rx = entry;
1391 refill_rx (dev);
1392 if (!received)
1393 received = 1;
1394 np->budget -= received;
1395 if (np->budget <= 0)
1396 np->budget = RX_BUDGET;
1397 tasklet_schedule(&np->rx_tasklet);
1da177e4
LT
1398}
1399
1400static void refill_rx (struct net_device *dev)
1401{
1402 struct netdev_private *np = netdev_priv(dev);
1403 int entry;
1404 int cnt = 0;
1405
1406 /* Refill the Rx ring buffers. */
1407 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1408 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1409 struct sk_buff *skb;
1410 entry = np->dirty_rx % RX_RING_SIZE;
1411 if (np->rx_skbuff[entry] == NULL) {
21a4e469 1412 skb = netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1da177e4
LT
1413 np->rx_skbuff[entry] = skb;
1414 if (skb == NULL)
1415 break; /* Better luck next round. */
1da177e4
LT
1416 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1417 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
0c8a745f
DK
1418 dma_map_single(&np->pci_dev->dev, skb->data,
1419 np->rx_buf_sz, DMA_FROM_DEVICE));
d91dc279
DK
1420 if (dma_mapping_error(&np->pci_dev->dev,
1421 np->rx_ring[entry].frag[0].addr)) {
1422 dev_kfree_skb_irq(skb);
1423 np->rx_skbuff[entry] = NULL;
1424 break;
1425 }
1da177e4
LT
1426 }
1427 /* Perhaps we need not reset this field. */
1428 np->rx_ring[entry].frag[0].length =
1429 cpu_to_le32(np->rx_buf_sz | LastFrag);
1430 np->rx_ring[entry].status = 0;
1431 cnt++;
1432 }
1da177e4
LT
1433}
1434static void netdev_error(struct net_device *dev, int intr_status)
1435{
1436 struct netdev_private *np = netdev_priv(dev);
1437 void __iomem *ioaddr = np->base;
1438 u16 mii_ctl, mii_advertise, mii_lpa;
1439 int speed;
1440
1441 if (intr_status & LinkChange) {
50500155
DN
1442 if (mdio_wait_link(dev, 10) == 0) {
1443 printk(KERN_INFO "%s: Link up\n", dev->name);
1444 if (np->an_enable) {
1445 mii_advertise = mdio_read(dev, np->phys[0],
1446 MII_ADVERTISE);
1447 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
1448 mii_advertise &= mii_lpa;
1449 printk(KERN_INFO "%s: Link changed: ",
1450 dev->name);
1451 if (mii_advertise & ADVERTISE_100FULL) {
1452 np->speed = 100;
1453 printk("100Mbps, full duplex\n");
1454 } else if (mii_advertise & ADVERTISE_100HALF) {
1455 np->speed = 100;
1456 printk("100Mbps, half duplex\n");
1457 } else if (mii_advertise & ADVERTISE_10FULL) {
1458 np->speed = 10;
1459 printk("10Mbps, full duplex\n");
1460 } else if (mii_advertise & ADVERTISE_10HALF) {
1461 np->speed = 10;
1462 printk("10Mbps, half duplex\n");
1463 } else
1464 printk("\n");
1da177e4 1465
50500155
DN
1466 } else {
1467 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR);
1468 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1469 np->speed = speed;
1470 printk(KERN_INFO "%s: Link changed: %dMbps ,",
1471 dev->name, speed);
1472 printk("%s duplex.\n",
1473 (mii_ctl & BMCR_FULLDPLX) ?
1474 "full" : "half");
1475 }
1476 check_duplex(dev);
1477 if (np->flowctrl && np->mii_if.full_duplex) {
1478 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1479 ioaddr + MulticastFilter1+2);
1480 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1481 ioaddr + MACCtrl0);
1482 }
1483 netif_carrier_on(dev);
1da177e4 1484 } else {
50500155
DN
1485 printk(KERN_INFO "%s: Link down\n", dev->name);
1486 netif_carrier_off(dev);
1da177e4
LT
1487 }
1488 }
1489 if (intr_status & StatsMax) {
1490 get_stats(dev);
1491 }
1492 if (intr_status & IntrPCIErr) {
1493 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1494 dev->name, intr_status);
1495 /* We must do a global reset of DMA to continue. */
1496 }
1497}
1498
1499static struct net_device_stats *get_stats(struct net_device *dev)
1500{
1501 struct netdev_private *np = netdev_priv(dev);
1502 void __iomem *ioaddr = np->base;
7b738b55 1503 unsigned long flags;
725a4a46 1504 u8 late_coll, single_coll, mult_coll;
1da177e4 1505
7b738b55 1506 spin_lock_irqsave(&np->statlock, flags);
1da177e4 1507 /* The chip only need report frame silently dropped. */
553e2335
ED
1508 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1509 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1510 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
553e2335 1511 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
725a4a46
DK
1512
1513 mult_coll = ioread8(ioaddr + StatsMultiColl);
1514 np->xstats.tx_multiple_collisions += mult_coll;
1515 single_coll = ioread8(ioaddr + StatsOneColl);
1516 np->xstats.tx_single_collisions += single_coll;
1517 late_coll = ioread8(ioaddr + StatsLateColl);
1518 np->xstats.tx_late_collisions += late_coll;
1519 dev->stats.collisions += mult_coll
1520 + single_coll
1521 + late_coll;
1522
1523 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer);
1524 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer);
1525 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort);
1526 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx);
1527 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx);
1528 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx);
1529 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx);
1530
553e2335
ED
1531 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1532 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1533 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1534 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1da177e4 1535
7b738b55
ED
1536 spin_unlock_irqrestore(&np->statlock, flags);
1537
553e2335 1538 return &dev->stats;
1da177e4
LT
1539}
1540
1541static void set_rx_mode(struct net_device *dev)
1542{
1543 struct netdev_private *np = netdev_priv(dev);
1544 void __iomem *ioaddr = np->base;
1545 u16 mc_filter[4]; /* Multicast hash filter */
1546 u32 rx_mode;
1547 int i;
1548
1549 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1da177e4
LT
1550 memset(mc_filter, 0xff, sizeof(mc_filter));
1551 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
4cd24eaf 1552 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
8e95a202 1553 (dev->flags & IFF_ALLMULTI)) {
1da177e4
LT
1554 /* Too many to match, or accept all multicasts. */
1555 memset(mc_filter, 0xff, sizeof(mc_filter));
1556 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
4cd24eaf 1557 } else if (!netdev_mc_empty(dev)) {
22bedad3 1558 struct netdev_hw_addr *ha;
1da177e4
LT
1559 int bit;
1560 int index;
1561 int crc;
1562 memset (mc_filter, 0, sizeof (mc_filter));
22bedad3
JP
1563 netdev_for_each_mc_addr(ha, dev) {
1564 crc = ether_crc_le(ETH_ALEN, ha->addr);
1da177e4
LT
1565 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1566 if (crc & 0x80000000) index |= 1 << bit;
1567 mc_filter[index/16] |= (1 << (index % 16));
1568 }
1569 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1570 } else {
1571 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1572 return;
1573 }
1574 if (np->mii_if.full_duplex && np->flowctrl)
1575 mc_filter[3] |= 0x0200;
1576
1577 for (i = 0; i < 4; i++)
1578 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1579 iowrite8(rx_mode, ioaddr + RxMode);
1580}
1581
1582static int __set_mac_addr(struct net_device *dev)
1583{
1584 struct netdev_private *np = netdev_priv(dev);
1585 u16 addr16;
1586
1587 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1588 iowrite16(addr16, np->base + StationAddr);
1589 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1590 iowrite16(addr16, np->base + StationAddr+2);
1591 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1592 iowrite16(addr16, np->base + StationAddr+4);
1593 return 0;
1594}
1595
4b4f5467
DK
1596/* Invoked with rtnl_lock held */
1597static int sundance_set_mac_addr(struct net_device *dev, void *data)
1598{
1599 const struct sockaddr *addr = data;
1600
1601 if (!is_valid_ether_addr(addr->sa_data))
504f9b5a 1602 return -EADDRNOTAVAIL;
4b4f5467
DK
1603 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
1604 __set_mac_addr(dev);
1605
1606 return 0;
1607}
1608
725a4a46
DK
1609static const struct {
1610 const char name[ETH_GSTRING_LEN];
1611} sundance_stats[] = {
1612 { "tx_multiple_collisions" },
1613 { "tx_single_collisions" },
1614 { "tx_late_collisions" },
1615 { "tx_deferred" },
1616 { "tx_deferred_excessive" },
1617 { "tx_aborted" },
1618 { "tx_bcasts" },
1619 { "rx_bcasts" },
1620 { "tx_mcasts" },
1621 { "rx_mcasts" },
1622};
1623
1da177e4
LT
1624static int check_if_running(struct net_device *dev)
1625{
1626 if (!netif_running(dev))
1627 return -EINVAL;
1628 return 0;
1629}
1630
1631static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1632{
1633 struct netdev_private *np = netdev_priv(dev);
68aad78c
RJ
1634 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1635 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1636 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1da177e4
LT
1637}
1638
1639static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1640{
1641 struct netdev_private *np = netdev_priv(dev);
1642 spin_lock_irq(&np->lock);
1643 mii_ethtool_gset(&np->mii_if, ecmd);
1644 spin_unlock_irq(&np->lock);
1645 return 0;
1646}
1647
1648static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1649{
1650 struct netdev_private *np = netdev_priv(dev);
1651 int res;
1652 spin_lock_irq(&np->lock);
1653 res = mii_ethtool_sset(&np->mii_if, ecmd);
1654 spin_unlock_irq(&np->lock);
1655 return res;
1656}
1657
1658static int nway_reset(struct net_device *dev)
1659{
1660 struct netdev_private *np = netdev_priv(dev);
1661 return mii_nway_restart(&np->mii_if);
1662}
1663
1664static u32 get_link(struct net_device *dev)
1665{
1666 struct netdev_private *np = netdev_priv(dev);
1667 return mii_link_ok(&np->mii_if);
1668}
1669
1670static u32 get_msglevel(struct net_device *dev)
1671{
1672 struct netdev_private *np = netdev_priv(dev);
1673 return np->msg_enable;
1674}
1675
1676static void set_msglevel(struct net_device *dev, u32 val)
1677{
1678 struct netdev_private *np = netdev_priv(dev);
1679 np->msg_enable = val;
1680}
1681
725a4a46
DK
1682static void get_strings(struct net_device *dev, u32 stringset,
1683 u8 *data)
1684{
1685 if (stringset == ETH_SS_STATS)
1686 memcpy(data, sundance_stats, sizeof(sundance_stats));
1687}
1688
1689static int get_sset_count(struct net_device *dev, int sset)
1690{
1691 switch (sset) {
1692 case ETH_SS_STATS:
1693 return ARRAY_SIZE(sundance_stats);
1694 default:
1695 return -EOPNOTSUPP;
1696 }
1697}
1698
1699static void get_ethtool_stats(struct net_device *dev,
1700 struct ethtool_stats *stats, u64 *data)
1701{
1702 struct netdev_private *np = netdev_priv(dev);
1703 int i = 0;
1704
1705 get_stats(dev);
1706 data[i++] = np->xstats.tx_multiple_collisions;
1707 data[i++] = np->xstats.tx_single_collisions;
1708 data[i++] = np->xstats.tx_late_collisions;
1709 data[i++] = np->xstats.tx_deferred;
1710 data[i++] = np->xstats.tx_deferred_excessive;
1711 data[i++] = np->xstats.tx_aborted;
1712 data[i++] = np->xstats.tx_bcasts;
1713 data[i++] = np->xstats.rx_bcasts;
1714 data[i++] = np->xstats.tx_mcasts;
1715 data[i++] = np->xstats.rx_mcasts;
1716}
1717
7282d491 1718static const struct ethtool_ops ethtool_ops = {
1da177e4
LT
1719 .begin = check_if_running,
1720 .get_drvinfo = get_drvinfo,
1721 .get_settings = get_settings,
1722 .set_settings = set_settings,
1723 .nway_reset = nway_reset,
1724 .get_link = get_link,
1725 .get_msglevel = get_msglevel,
1726 .set_msglevel = set_msglevel,
725a4a46
DK
1727 .get_strings = get_strings,
1728 .get_sset_count = get_sset_count,
1729 .get_ethtool_stats = get_ethtool_stats,
1da177e4
LT
1730};
1731
1732static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1733{
1734 struct netdev_private *np = netdev_priv(dev);
1da177e4 1735 int rc;
1da177e4
LT
1736
1737 if (!netif_running(dev))
1738 return -EINVAL;
1739
1740 spin_lock_irq(&np->lock);
1741 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1742 spin_unlock_irq(&np->lock);
1da177e4
LT
1743
1744 return rc;
1745}
1746
1747static int netdev_close(struct net_device *dev)
1748{
1749 struct netdev_private *np = netdev_priv(dev);
1750 void __iomem *ioaddr = np->base;
1751 struct sk_buff *skb;
1752 int i;
1753
31f817e9
JH
1754 /* Wait and kill tasklet */
1755 tasklet_kill(&np->rx_tasklet);
1756 tasklet_kill(&np->tx_tasklet);
1757 np->cur_tx = 0;
1758 np->dirty_tx = 0;
1759 np->cur_task = 0;
bca79eb7 1760 np->last_tx = NULL;
31f817e9 1761
1da177e4
LT
1762 netif_stop_queue(dev);
1763
1764 if (netif_msg_ifdown(np)) {
1765 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1766 "Rx %4.4x Int %2.2x.\n",
1767 dev->name, ioread8(ioaddr + TxStatus),
1768 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1769 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1770 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1771 }
1772
1773 /* Disable interrupts by clearing the interrupt mask. */
1774 iowrite16(0x0000, ioaddr + IntrEnable);
1775
acd70c2b
JH
1776 /* Disable Rx and Tx DMA for safely release resource */
1777 iowrite32(0x500, ioaddr + DMACtrl);
1778
1da177e4
LT
1779 /* Stop the chip's Tx and Rx processes. */
1780 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1781
31f817e9
JH
1782 for (i = 2000; i > 0; i--) {
1783 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1784 break;
1785 mdelay(1);
1786 }
1787
1788 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
24de5285 1789 ioaddr + ASIC_HI_WORD(ASICCtrl));
31f817e9
JH
1790
1791 for (i = 2000; i > 0; i--) {
24de5285 1792 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0)
31f817e9
JH
1793 break;
1794 mdelay(1);
1795 }
1da177e4
LT
1796
1797#ifdef __i386__
1798 if (netif_msg_hw(np)) {
ad361c98 1799 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1da177e4
LT
1800 (int)(np->tx_ring_dma));
1801 for (i = 0; i < TX_RING_SIZE; i++)
ad361c98 1802 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n",
1da177e4
LT
1803 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1804 np->tx_ring[i].frag[0].length);
ad361c98 1805 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1da177e4
LT
1806 (int)(np->rx_ring_dma));
1807 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1808 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1809 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1810 np->rx_ring[i].frag[0].length);
1811 }
1812 }
1813#endif /* __i386__ debugging only */
1814
c514f285 1815 free_irq(np->pci_dev->irq, dev);
1da177e4
LT
1816
1817 del_timer_sync(&np->timer);
1818
1819 /* Free all the skbuffs in the Rx queue. */
1820 for (i = 0; i < RX_RING_SIZE; i++) {
1821 np->rx_ring[i].status = 0;
1da177e4
LT
1822 skb = np->rx_skbuff[i];
1823 if (skb) {
0c8a745f 1824 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1825 le32_to_cpu(np->rx_ring[i].frag[0].addr),
0c8a745f 1826 np->rx_buf_sz, DMA_FROM_DEVICE);
1da177e4
LT
1827 dev_kfree_skb(skb);
1828 np->rx_skbuff[i] = NULL;
1829 }
14c9d9b0 1830 np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */
1da177e4
LT
1831 }
1832 for (i = 0; i < TX_RING_SIZE; i++) {
31f817e9 1833 np->tx_ring[i].next_desc = 0;
1da177e4
LT
1834 skb = np->tx_skbuff[i];
1835 if (skb) {
0c8a745f 1836 dma_unmap_single(&np->pci_dev->dev,
14c9d9b0 1837 le32_to_cpu(np->tx_ring[i].frag[0].addr),
0c8a745f 1838 skb->len, DMA_TO_DEVICE);
1da177e4
LT
1839 dev_kfree_skb(skb);
1840 np->tx_skbuff[i] = NULL;
1841 }
1842 }
1843
1844 return 0;
1845}
1846
1847static void __devexit sundance_remove1 (struct pci_dev *pdev)
1848{
1849 struct net_device *dev = pci_get_drvdata(pdev);
1850
1851 if (dev) {
0c8a745f
DK
1852 struct netdev_private *np = netdev_priv(dev);
1853 unregister_netdev(dev);
1854 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
1855 np->rx_ring, np->rx_ring_dma);
1856 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
1857 np->tx_ring, np->tx_ring_dma);
1858 pci_iounmap(pdev, np->base);
1859 pci_release_regions(pdev);
1860 free_netdev(dev);
1861 pci_set_drvdata(pdev, NULL);
1da177e4
LT
1862 }
1863}
1864
61a21455
DK
1865#ifdef CONFIG_PM
1866
1867static int sundance_suspend(struct pci_dev *pci_dev, pm_message_t state)
1868{
1869 struct net_device *dev = pci_get_drvdata(pci_dev);
1870
1871 if (!netif_running(dev))
1872 return 0;
1873
1874 netdev_close(dev);
1875 netif_device_detach(dev);
1876
1877 pci_save_state(pci_dev);
1878 pci_set_power_state(pci_dev, pci_choose_state(pci_dev, state));
1879
1880 return 0;
1881}
1882
1883static int sundance_resume(struct pci_dev *pci_dev)
1884{
1885 struct net_device *dev = pci_get_drvdata(pci_dev);
1886 int err = 0;
1887
1888 if (!netif_running(dev))
1889 return 0;
1890
1891 pci_set_power_state(pci_dev, PCI_D0);
1892 pci_restore_state(pci_dev);
1893
1894 err = netdev_open(dev);
1895 if (err) {
1896 printk(KERN_ERR "%s: Can't resume interface!\n",
1897 dev->name);
1898 goto out;
1899 }
1900
1901 netif_device_attach(dev);
1902
1903out:
1904 return err;
1905}
1906
1907#endif /* CONFIG_PM */
1908
1da177e4
LT
1909static struct pci_driver sundance_driver = {
1910 .name = DRV_NAME,
1911 .id_table = sundance_pci_tbl,
1912 .probe = sundance_probe1,
1913 .remove = __devexit_p(sundance_remove1),
61a21455
DK
1914#ifdef CONFIG_PM
1915 .suspend = sundance_suspend,
1916 .resume = sundance_resume,
1917#endif /* CONFIG_PM */
1da177e4
LT
1918};
1919
1920static int __init sundance_init(void)
1921{
1922/* when a module, this is printed whether or not devices are found in probe */
1923#ifdef MODULE
1924 printk(version);
1925#endif
29917620 1926 return pci_register_driver(&sundance_driver);
1da177e4
LT
1927}
1928
1929static void __exit sundance_exit(void)
1930{
1931 pci_unregister_driver(&sundance_driver);
1932}
1933
1934module_init(sundance_init);
1935module_exit(sundance_exit);
1936
1937